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ABSTRACT

Magnetic Resonance (MR) is a relatively risk-free and flexible imaging modality that is 

widely used for studying the brain. Biophysical and chemical properties of brain tissue are 

captured by intensity measurements in T1W  (T1-Weighted) and T2W  (T2-Weighted) MR 

scans. Rapid maturational processes taking place in the infant brain manifest as changes 

in contrast between white matter and gray matter tissue classes in these scans. However, 

studies based on MR image appearance face severe limitations due to the uncalibrated 

nature of MR intensity and its variability with respect to changing conditions of scan. In 

this work, we develop a method for studying the intensity variations between brain white 

matter and gray matter that are observed during infant brain development. This method is 

referred to by the acronym WIVID (White-gray Intensity Variation in Infant Development). 

WIVID is computed by measuring the Hellinger Distance of separation between intensity 

distributions of W M (White Matter) and GM (Gray Matter) tissue classes. The WIVID 

measure is shown to be relatively stable to interscan variations compared with raw signal 

intensity and does not require intensity normalization.

In addition to quantification of tissue appearance changes using the WIVID measure, 

we test and implement a statistical framework for modeling temporal changes in this 

measure. WIVID contrast values are extracted from MR scans belonging to large-scale, 

longitudinal, infant brain imaging studies and modeled using the NLME (Nonlinear Mixed 

Effects) method. This framework generates a normative model of WIVID contrast changes 

with time, which captures brain appearance changes during neurodevelopment. Parameters 

from the estimated trajectories of WIVID contrast change are analyzed across brain lobes 

and image modalities. Parameters associated with the normative model of WIVID contrast 

change reflect established patterns of region-specific and modality-specific maturational se

quences. We also detect differences in WIVID contrast change trajectories between distinct 

population groups. These groups are categorized based on sex and risk/diagnosis for ASD 

(Autism Spectrum Disorder). As a result of this work, the usage of the proposed WIVID 

contrast measure as a novel neuroimaging biomarker for characterizing tissue appearance is 

validated, and the clinical potential of the developed framework is demonstrated.
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CHAPTER 1

INTRODUCTION 

1.1 Medical Imaging : An Introduction
Advancements in the field of medical imaging have provided both researchers and physi

cians with an unprecedented “inside view” of the human body. As a result, several questions 

of both a scientific and diagnostic nature can now be clearly answered. Some of these 

critical questions are related to shapes of anatomical regions and their physiological func

tions, biophysical and chemical properties of tissues, the detection of abnormalities such as 

lesions, and tracking of disease progression. In general, medical imaging helps answer these 

questions without being impeded by the procedural risks and inconveniences of invasive 

techniques. Tissues, mechanisms, and processes, which are not visible to the naked eye 

even during surgery, can be clearly observed using medical imaging techniques. In the light 

of advances over the last century, it would surely not be untrue to declare that medical 

imaging has transformed the very manner in which we understand ourselves.

The major medical imaging modalities include X-ray, CT (Computed Tomography), 

PET (Positron Emmision Tomography), SPECT (Single Photon Emission Computed To

mography), and MRI (Magnetic Resonance Imaging) [1]. Each imaging modality provides 

unique information about specific bodily tissues, structures, and processes. The scans 

generated by some of these imaging technologies are capable of displaying high levels 

of anatomical detail, clearly defined biological structures, and sometimes even dynamic 

physiological changes. In addition, they can capture intensity inhomogeneities indicative of 

underlying tissue properties.

Information that is present in medical images, beyond visual observation, can be ex

tracted using advanced image processing and machine learning algorithms. Volume, shape, 

microstructure, and image features are examples of some quantitative medical imaging 

measures. When used in conjunction with biostatistical and information processing meth

ods, these quantitative measures are valuable tools for Computer Aided Diagnosis and 

imaging-based clinical research studies. Examples illustrating the effectiveness of this
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quantitative approach include the automatic detection of lung nodules on chest radiographs 

and CT [2], MRI studies of hippocampal volumetry for diagnosis of AD (Alzheimer's Dis

ease) [3], and FDG (fluorodeoxyglucose-positron)-PET imaging for the detection of aortitis 

and large-vessel vasculitis [4, 5]. In this work, we too use a quantitative, interdisciplinary 

approach to explore the question of effectively studying intensity variations that constitute 

appearance of a medical image.

Appearance of an image can be understood as a synthesis of two characteristics: 1) 

shapes of structures and 2) patterns of intensity variations within the image [6]. While 

current medical imaging techniques include sophisticated tools to study the shapes of 

biological structures, the aspect of intensity variations is relatively less explored. Intensity 

variations in medical images can provide vital biological information, which can be seen 

particularly in MRI. MR images display intensity variations within and across scans of 

a subject, reflective of changes in properties of underlying tissues. However, the lack 

of calibration in nonquantitative MRI and variability due to scanning conditions create 

significant variability of signal intensity between scans, independent of changes in inherent 

properties of the scanned region. Additionally, the presence of an MR bias field causes 

intensity inhomogeneities within a single image. These issues make MRI an especially 

interesting platform upon which new methods for quantification of intensity variations may 

be tested.

MRI, being a relatively risk-free and flexible modality, is widely used for imaging the 

brain. The two major brain tissues, White Matter (WM) and Gray Matter (GM), have 

dissimilar intensities when imaged using MRI. This intensity gradient between W M and 

GM constitutes a major portion of the intensity variations seen in MR images. The primary 

goal of this work is to measure and analyze the intensity differences between WM and GM 

tissues in brain MRI, with applications to neurodevelopmental studies.

The intensity difference between WM and GM does not remain static over time. Instead, 

brain changes resulting in alterations in the structure and composition of cortical W M and 

GM manifest as changes in intertissue contrast, as observed in MRI. These brain changes can 

be attributed to natural processes related to neurodevelopment or aging, or other reasons 

such as progression of diseases, trauma, injury, infection, or the presence of psychiatric 

abnormalities. Hence, studying WM-GM intensity variation, within and across brain MR 

images, can provide vital clues for characterization of normal processes related to growth 

and aging, and for detection of abnormalities in these processes. Analysis of intensity 

differences between WM and GM in the developing brain might even have the potential
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6 months 12 months 24 months

Figure 1.1: T1-Weighted (top) and T2-Weighted (bottom) MR images of the developing 
brain, scanned at 6 months (left column), 12 months (central column), and 24 months (right 
column) of age.

to provide a deeper understanding of the origin and basis of psychiatric and neurological 

disorders, subsequently enabling early diagnosis of these conditions. As an illustrative 

example, Figure 1.1 displays changes in WM-GM intensity differences during the course of 

normal neurodevelopment.

In this dissertation, we address questions related to intensity variations, specifically 

oriented towards analyzing intensity differences between WM and GM tissues in MR images. 

Some of these key questions are, “How can MR image appearance be effectively quantified in 

terms of relative WM-GM intensity variations within an MR scan?” and “Can we generate 

a normative model of changes in this quantified appearance measure across longitudinal 

series of scans, in order to characterize neurodevelopmental processes?” . To summarize, 

the broad goal of this work is effectively quantifying intensity variations between tissues 

within brain MR images, followed by creating a coherent spatiotemporal framework for 

modeling and analysis of this intensity variation across longitudinal neuroimaging datasets. 

Further, by application of this methodology to large-scale, longitudinal, imaging studies 

of the developing infant brain, we illustrate the substantial potential of spatiotemporal 

mapping of WM-GM intensity variations for making scientific and clinical inferences.
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1.2 A Brief Overview of Brain Imaging
Within the extensive field of medical imaging, brain imaging is a relatively new discipline. 

Structural brain imaging investigates the structure of brain regions and tissues, and plays a 

key role in diagnosis of tumors, stroke, large-scale diseases, injury, and psychiatric disorders 

[7]. On the other hand, functional brain imaging relates to neural activity, connectivity 

between anatomical regions, and the role that different brain regions play in specific mental 

functions. Since its conception, brain imaging has continued to grow into a dynamic field, 

challenging everything from the way neurologists and neurosurgeons plan brain surgeries, 

to modern philosophies of the mind, consciousness, and perception [8].

From a clinical perspective, 10 highly important conditions in which brain imaging 

provides critical diagnostic aid are studied together as the “big 10.” These are 1) infarction, 

2) hemorrhage, 3) infection, 4) tumor, 5) trauma, 6) dementia, 7) MS (Multiple Sclerosis), 

8) epilepsy, 9) cranial neuropathy, and 10) neuro-opthalmology [9]. In addition, measures 

derived from brain scans are used to assess changes accompanying neurological processes 

such as brain maturation, aging, and the progression of neurodegenerative disorders. Fol

lowing recent advances, structural and functional brain imaging has even begun to play a 

vital role in the analysis of psychiatric conditions such as drug addiction, schizophrenia, 

bipolar disorder, and depression [10].

Histological studies were the earliest means used to actually observe the anatomical 

structure of the brain, and they remain highly informative, particularly in the detailed 

analysis of postmortem brains [11- 13]. Recent studies of synaptogenesis have used advanced 

histological analysis based on semiquantitative blotting techniques for counting synaptic 

density [14]. Histological studies also serve as a reference for confirming neurobiological 

hypotheses generated from other types of imaging data.

Widely used imaging techniques applied to brain studies include CT, MRI, PET, SPECT, 

and ultrasound, as well as MR-related modalities such as DTI (Diffusion Tensor Imaging) 

and fMRI (functional Magnetic Resonance Imaging). Each modality conveys a specific type 

of information concerning the brain. Brain scans using some of these modalities can be seen 

in Figure 1.2.

A highly important modality for imaging the brain is CT. CT (interchangeably known 

as X-ray CT), which is based on reconstructing a 3D object from several 2D radiographs 

acquired at various angles, produces high-resolution brain images. CT can be applied for the 

diagnosis of headaches, abnormal development of the head or neck, hemorrhage or blood 

vessel abnormalities, cranio-facial trauma, stroke, fracture, and loss of sensory or motor
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Figure 1.2: Multimodal imaging of the brain : (a) Histological study, (b) CT, (c) MRI, 
(d) SPECT, and (e) PET. Axial slices of the brain are displayed. Figure courtesy: Patrick 
J. Lynch and C. Carl Jaffe, Yale University, 2006.

function. While dramatic improvements in CT scanning speed and resolution have taken 

place, its greatest drawback is the iumedium-to-high radiation dosage it involves.

Among modalities that, unlike CT, are radiation-free, MRI is one of the most widely 

used for brain imaging. The principles of NMR are the basis for MR image generation, as 

illustrated in Figure 1.3. A high-field-strength magnet is used to create a large magnetic 

field, which we name B0. Protons (found in the hydrogen nuclei of water molecules in the 

brain) have associated spins, which align uniformly in the presence of this main magnetic 

field, B0 [15]. A net equilibrium magnetization is reached, with all protons aligned along the 

direction of B0. This equilibrium can be disrupted by the application of a short duration 

RF field, B1, which results in selective excitation. This RF field causes individual protons 

to lose their equilibrium alignment, and they now precess and tilt at an angle known as 

the tip angle, pointing away from the direction of the main magnetic field. Once the 

RF field is turned off, the spins regain their original alignment, primarily through two 

processes known as T1 and T2 “relaxation.” The transverse component of the magnetization 

vector, precessing in the transverse plane, causes signal generation in the receiver coils by 

electromagnetic induction. The signals measured at the receiver coil form the resultant 

MR image. Properties related to protons in the brain - including their density, and the 

biophysical and chemical form in which they are present - manifest as variations in the
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Figure 1.3: Basic principles of MRI.

received MR signal. Variations in tissue properties are captured in MR images in this 

manner.

The fact that MR imaging is not dependent on ionizing radiation, along with its high 

resolution, flexibility, and excellent soft tissue contrast, make it a popular modality, par

ticularly for imaging the brain. The drawbacks of MRI are bulky instrumentation, high 

costs, and long scan times during which motion must be avoided. Several interesting MR 

scanning protocols and pulse sequences are currently being explored for imaging specific 

processes and tissues. The commonly accepted imaging protocols for brain MRI currently 

include a T1-weighted sequence in the sagittal plane (or a T1-weighted volumetric acquisi

tion), and T2-weighted fluid-attenuated inversion recovery (FLAIR) and fast spin-echo or 

turbo-spin-echo (or equivalent) sequences in the axial plane [16].
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In addition to conventional MRI, closely associated medical imaging techniques include 

DTI (Diffusion Tensor Imaging), fMRI (function Magnetic Resonance Imaging), magnetiza

tion transfer, and MWF (Myelin Water Fraction). DTI provides microstructural informa

tion related to the brain, by measuring the extent of diffusion of water molecules over a fixed 

time period [17]. By measuring diffusion, along with its associated directional information, 

it is possible to better understand the underlying structure of the brain, particularly details 

of axonal organization and white matter fiber pathways. On the other hand, fMRI, the 

functional counterpart of MRI, measures the change in magnetization between oxygenated 

and deoxygenated blood cells, which enables recording of BOLD (Blood Oxygen Level 

Dependent) contrast in the brain, which essentially maps neural activity according to 

changes in blood flow with time. Associated techniques such as MWF and magnetization 

transfer are novel methods for generating quantitative maps with tissue information, based 

on the usage of advanced pulse sequences and signal suppression, respectively.

In the last decade, PET and SPECT have emerged as powerful techniques in neuro- 

biological studies of brain disorders [10]. Compared with CT and MR, PET and SPECT 

modalities both involve the introduction of a radioactive isotope into the bloodstream. In 

PET and SPECT imaging, the energy released by the radiotracer is detected and converted 

into a scan, enabling the detection of metabolic activity, rate of oxygen use, and blood flow. 

Since these scans can detect subtle metabolic changes even at the cellular level, as well as 

neurotransmitter activity, they can provide clues for the early detection of disorders much 

earlier than CT or MRI [18]. Although PET can be used to detect CNS disorders such as 

seizures, tumors, cancer, and even conditions such as AD (Alzheimer's Disease), the high 

cost of these scans makes their availability quite rare. SPECT is comparatively cheaper 

and has widespread applications in detecting injury, trauma, drug abuse, and psychiatric 

and neurological disorders.

Being a noninvasive technique with very low risks, ultrasound is used for specialized 

applications in brain imaging. In ultrasound, pulses of high-frequency sound waves that 

are generated using transducers are made to travel through the body. Complex tissues 

and organ boundaries reflect or scatter these sound waves, which then return back to the 

transducer. The transducer detects these echoes, converts the acoustic signals to electrical 

signals, and forms an ultrasound image. Although ultrasound results in relatively low- 

quality images, its popularity can be attributed to its risk-free nature and adaptability, 

along with the low cost and portability of its associated instrumentation. Ultrasound is 

used particularly for the examination of blood flow in brain imaging, and for fetal and
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neonatal brain studies. Neurosonography is proven to be highly effective in detection of 

fetal brain abnormalities [19].

In addition to these popular modalities, MRS (Magnetic Resonance Spectroscopy) and 

NIRS (Near Infra Red Spectroscopy) have emerged as powerful optical imaging tools. MRS, 

which provides spatially encoded chemical information, has been used to study metabolic 

changes in diseases such as cancer [20,21] and AD [22] that affect the brain. NIRS has also 

demonstrated utility as a simple technique for measuring changes in blood flow associated 

with neural activation [23]. Other novel medical imaging techniques include elastography, 

tactile imaging, photoacoustic imaging, and advanced spectroscopic techniques.

Apart from these neuroimaging tools, EEG (Electroencephalography) and MEG (Mag- 

netoencephalography) are two closely related techniques that capture underlying brain 

activity in terms of electrical and magnetic fields, respectively [24]. In EEG, an interface 

is created to the brain by placing electrodes at points on the scalp and recognizing voltage 

differences between different points, while MEG works on magnetic field measurements. 

These techniques have excellent temporal resolution but poor spatial resolution, and can be 

used in conjunction with imaging modalities such as fMRI for effective diagnosis of seizures, 

tumors, and functional abnormalities, in major cortical areas.

1.3 Origins of MR Signal Intensity and Variations
MRI is a radiation-free and relatively risk-free modality for imaging the brain. MR 

imaging is also highly flexible - by modifying the pulse sequences and scanning protocols 

used for image generation, specific properties of biological tissues that are of interest can be 

observed. In the last section, the fundamental principles of MR imaging were mentioned. 

Here, the origin of MR signal intensity and intertissue intensity variations will be elucidated.

Initially, given that the net external magnetic field is a static field B, and y is the 

gyromagnetic ratio of a nucleus, the magnetization vector M  associated with a proton 

varies according to the equation

dM  =  m  x yB. (1.1)

It is known that the magnetization vector M , which contributes to the final MR image, 

varies as a function of relaxation times. This can be seen in Figure 1.4, which illustrates 

details of the MR signal formation process, as a continuation of Figure 1.3. After the RF 

field B1 is switched off, the longitudinal component of the magnetization vector undergoes 

strengthening at a rate based on the longitudinal T1 relaxation time, while the transverse 

component of the magnetization vector undergoes decay at a rate based on the transverse
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After the RF field B1 is switched off, relaxation 
of the magnetization vector back to equilibrium 
takes place by two mechanisms. The first 
mechanism - longitudinal relaxation, characterizes 
the return of the longitudinal component of the 
magnetization vector, MLongitudinal, to the 
longitudinal axis, and is defined by time constant T1.
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As a result of different T1 and T2 relaxation values 
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transverse axis, and is defined by the time constant 
T2. In this figure, we display decay of the transverse 
component of the magnetization vector, Mtransverse.
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While T1W MR scans indicate T1 relaxation times 
of underlying tissues, T2W MR scans are dependent 
on the T2 relaxation times of underlying tissues.
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These T1W and T2W brain MR scans of a two-year 
old subject display distinct signal intensity values for 
the WM (White Matter) and GM (Gray Matter) tissue 
classes.

Figure 1.4: Origin of the MR signal in terms of T1 and T2 relaxation processes (top row), 
and mechanisms underlying intertissue intensity variations (bottom row).

T2 relaxation times. Assuming that the RF field B 1 tilts the magnetization vector by a 

tip angle of 90 degrees, and given that M 0 is the magnetization vector at time t =  0, the 

longitudinal component of magnetization at a time t can be written mathematically as

M longitudinal(t) =  M 0(1 — e T1 )• (1.2)

Under the same assumptions as listed above, for a 90 degree tilt angle, the transverse 

component of magnetization at a time t can be written as

M transverse(t) =  M 0e T2 • (1.3)

As a result of the dependence of the magnetization vector on T1 and T2 relaxation times, 

the measured signal also varies as a result of changes in T1 and T2. In this discussion,
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we do not examine the complex details of the equations governing the received MR signal. 

However, for the purpose of our discussion, it is sufficient to know that the received MR 

signal depends on the signal oscillating in the transverse plane, and is hence dependent on 

both T 1 and T 2 constants, although the exact nature of this dependence might vary based 

on the pulse sequences and type of MR scanning used. In the simplified case of a spin echo 

saturation recovery sequence, repeated cycles of excitation and recording of the received 

signal take place. The received signal depends on two acquisition parameters : TE (echo 

time) or the time between the RF excitation pulse and measurement of MR signal, and TR 

(repetition time), i.e., the time between two excitation pulses in the constantly repeating 

sequence. In the final spin echo MR image, the intensity I  of the received signal, can be 

written as
TR, TE ,

I  =  Kp[1 -  e-  t t ]e -  T2 . (1.4)

Here, I  is the MR Intensity, K  is the gain constant, TR  is the repetition time, T E  is 

the echo time, p is the spin density, T 1 is the longitudinal relaxation time, and T2 is the 

transverse relaxation time.

From this equation, it can be clearly seen that the received signal measurements, corre

sponding to the MR signal intensities, are dependent on T1 and T2 relaxation constants. 

TE and TR values are appropriately chosen while scanning to obtain T1-Weighted (T1W) 

or T2-Weighted (T2W) MR images. In standard T1-Weighted images, the T1 relaxation 

constants contribute most dominantly to image intensity, whereas for standard T2-Weighted 

images, the image intensity is mostly dependent on the T2 relaxation constants. Proton 

Density (PD), denoted by p in Equation 1.4, also contributes to image intensity in both 

T1W  and T2W  images.

The T1 or T2 relaxation constants for a small volume in the brain will vary depending on 

the physical and biochemical properties of the tissue, or tissues, constituting that volume. 

This intertissue difference in values of relaxation constants is hence a major source of the 

intensity variation observable in MR [25, 26]. Additionally, since different tissue classes 

have dissimilar densities of protons, a second factor contributing considerably to intertissue 

intensity variation is proton density [25]. Finally, the degree and nature of intensity variation 

can be modified by adopting advanced pulse sequences and scanning mechanisms such as 

fat suppression, radio frequency inversion, and magnetization transfer [26].

Based on the above discussion, it can be concluded that with all other parameters 

remaining constant and under ideal scanning conditions, variation in received signal inten

sity measurements for different points in a reconstructed MR image can be attributed to
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differences in T1, T2, and PD values at these points [27]. In the human brain, WM and 

GM tissue have different values for these parameters. Therefore, for commonly used T1W 

and T2W  scanning protocols, intensity variation is clearly observable between WM and GM 

regions in MR images. Additionally, by changing scanning parameters, images with varying 

degrees of WM-GM contrast and contrast direction can be produced [28].

Since WM-GM intensity variation changes as a result of maturation, aging, and neuro

logical diseases, studying these changes can aid in neurological research. In the following 

section, biological underpinnings of intensity variations between W M and GM, as observed 

in MR-based neurodevelopmental studies, will be discussed.

1.4 W M -GM  Intensity Variations in Neurodevelopment
Although early brain development involves a complex sequence of several rapid bio

physical, chemical, structural, and functional changes, these changes occur in an extremely 

organized and predictable manner. A crucial component of these processes, known as myeli- 

nation, consists of the formation of a myelin sheath around a nerve fiber [29]. Myelination 

of WM enables the effective transmission of neural impulses and occurs from birth until the 

end of the second year. Before myelination, lipid and water components are similar in gray 

and white matter, but as a result of myelination, bulk water content decreases from 88 % 

to 82 % at 6 months.

As shown in Figure 1.5, it is observed that as a result of maturation and associated 

myelinational processes, W M displays progressively higher signal intensities in T1W  images, 

and progressively lower signal intensities in T2W  images. These changes in T1W  and T2W 

images result primarily from WM myelination, change in water content, and the subsequent 

shortening of T1 and T2 relaxation times with age, as well as changes in PD [27,30]. The T1 

shortening that is observed during myelination is hypothesized to occur due to properties 

of the hydrophilic cholesterol and glycolipid components of the developing myelin sheath. 

T2 shortening is reported to occur at the time of tightening of myelin around the axon, 

and may correlate best with the development of myelination as determined by histological 

methods [29,31]. Plots of T1 and T2 shortening can be seen in Figure 1.5. These plots have 

been adapted from [32].

It should be noted that both GM and W M undergo shortening of T1 and T2 signals 

during brain maturation. However, the effect of this shortening is much more pronounced 

in WM tissue, resulting in highly noticeable changes in W M signal intensity. In comparison, 

the signal intensity of GM changes in a more subtle manner. As a result of these dual 

processes of WM and GM signal intensity changing with age, changes can also be seen in
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Figure 1.5: Changing T1 relaxation values (top left) and T2 relaxation values (top right) 
for WM and GM tissue in the developing infant brain. The T1 relaxation values for WM 
and GM are «1615 ms and ^1590 ms, respectively, at the neonate stage; and ^800 ms and 
^500 ms respectively, at 100 days of age. Similarly, the T2 values for WM and GM are 
^91 ms and «8 8  ms at the neonate stage; these values are «5 5  ms and ^50 ms at 100 days 
of age. Consequently, observable changes in WM -GM intensity difference can be seen in 
longitudinal series of T1W  scans (bottom left) and T2W  scans (bottom right) of an infant 
scanned at approximately 6 months, 12 months, and 24 months of age.

the intensity variation between WM and GM. Intensity differences between brain WM and 

GM first decrease in the first few months after birth up to a point of iso-intensity. They then 

reverse in direction of intensity gradient, and finally keep increasing up to early childhood. 

Crucial neurodevelopmental processes involved in brain maturation, including myelination 

of WM fibers, can be tracked by observing changes in WM-GM intensity variation. Besides 

intensity analysis, actual T1 and T2 relaxation times have also been shown to have potential 

as in-vivo markers of tissue properties and brain tissue abnormalities [33].

The nature of WM-GM intensity variation is highly modality-specific. Although both 

T1 and T2 relaxation times change as a result of maturation, the sequence and timing of 

these changes are hugely different. T1 shortening takes place from birth until around 8 

months of age, whereas T2 shortening is most prominent from around 6 months until 3 

years of age. As a result of the timing of changes taking place, T1W  images are useful in 

studying brain development in the first 6-8 months of life whereas T2W  images are more 

useful after 6 months [30]. As a result of the underlying neurobiological causes for T1W  and
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T2W  changes, each of these modalities supply useful and unique information about specific 

maturational stages and processes.

WM-GM intensity variation is also spatially dependent. Myelination is a heterosyn- 

chronous process, with different regions of the brain undergoing myelination at different 

times. It has been seen that myelination generally proceeds from central to peripheral, 

inferior to superior, and posterior to anterior brain regions [30,34]. This phenomenon leads 

to corresponding spatial differences in WM-GM intensity variations. Therefore, studies of 

WM-GM appearance must be undertaken in a regional or spatially localized manner, such 

that the spatially dependent nature of maturational processes can be better analyzed.

1.4.1 Additional Sources of Intensity Variation

Intensity variation, apart from inherent changes due to altered tissue characteristics, 

can be attributed to two causes: 1) variations within an image due to MR bias field and 

associated intensity inhomogeneities, and 2) variations between images due to differences 

in scanner type used for acquisition, scanning conditions, and minor changes in acquisition 

parameters [35]. A study of variations belonging to the latter category for a human phantom 

dataset will be explained in detail in Chapter 2.

As a result of these intensity variations due to undesirable sources, signal intensity or 

appearance-based MR analysis is relatively less common when compared to other analyt

ical methods. Although undesirable intensity variations can be corrected in adult brain 

scans using advanced intensity normalization techniques as outlined in the Appendix, these 

corrections cannot be easily applied to infant brain scans due to inherent variations in 

tissue intensities in these scans, resulting from neurodevelopment. As a result, studies of 

brain development based on MRI have focused mainly on morphometric, volumetric, and 

microstructural changes rather than on appearance variations. In the following section, a 

survey of MR studies of early brain development will be presented.

1.5 MR Studies of Early Brain Development
Compared with other brain imaging techniques, neurodevelopmental changes can be 

observed using MR with greater sensitivity, high spatial resolution, and no risk of radiation 

dose [36,37]. Safety and radiation standards, which are especially important while imaging 

infants, are met by MR imaging. Moreover, MR images show developmental processes such 

as cortical folding, premyelination changes in white matter, myelination, iron deposition, 

and the growth of different brain regions, which cannot be imaged using C T or ultrasound 

[29].
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Understanding the growth patterns of the brain in the first two years after birth is crucial 

to the study of neurodevelopment and neurological disorders. During this time period, the 

brain triples in size [38, 39] and also undergoes tremendous neuronal growth, increases in 

synaptic numbers, and myelination [40- 42]. Since the creation of mature, complex cerebral 

circuitry depends to a large extent on neuronal growth right after birth, this is also a time in 

which adverse conditions can have a greater effect on brain growth and myelination [43,44]. 

Therefore, apart from giving us important information about normative patterns of growth 

and cognitive development, studying the developing brain could play a key role in the 

early diagnosis of brain disorders and timely intervention. Several recent research studies 

have found links between neuropsychiatric disorders such as schizophrenia and quantitative 

measures obtained from early brain MRI [45, 46].

Most existing studies of the pediatric brain have focused mainly on volumetric and 

morphometric indicators [46- 53]. In several of these studies, changes in volumes of gray 

matter and white matter tissues in major brain regions were analyzed, indicating rapid 

growth during the first year of life, followed by slower growth up to adolescence [47,49,52,53]. 

Correlations between regional volumes and cognitive outcomes were also established, con

firming the effectiveness of volumetric biomarkers for predicting cognitive disturbances [52]. 

Besides volumetric studies, nonlinear deformation-based mapping has been used to produce 

localized growth maps characterizing brain changes [48]. Fine-grained cortical thickness 

analysis has also been performed, indicating a decrease in cortical thickness with a back to 

front progression [54]. It should be noted that in several of these volumetric and morpho

metric studies, the usage of infant data posed unique challenges. Some of these challenges 

include extremely large changes in volumes of structures, low contrast to noise ratio, and 

intensity inhomogeneities due to myelination - all leading to difficulties in segmentation and 

estimation of cortical boundaries [55].

Several microstructural DTI (Diffusion Tensor Imaging) studies have recently been 

performed on the infant brain. These studies have focused on changes in diffusion pa

rameters with age, thereby correlating changes in these parameters with brain maturation 

[56- 58]. Since brain myelination results in restriction of water diffusion, the direction of 

myelinated fiber bundles can be detected by studying diffusion parameters. Studies of 

diffusion parameters across pediatric datasets consistently indicate directional restriction of 

water molecules with age, often showing changes even before myelination is macroscopically 

observable [59]. Correlations with behavioral parameters have also established the utility 

of diffusion parameters in brain maturation studies [60]. A drawback of diffusion measures,
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however, is that the changes seen in these measures could be attributed to a variety of 

factors besides myelination. These factors, related to axon structure and fiber size, tract 

coherence, and membrane structure and permeability, affect diffusion values significantly, 

making it difficult to attribute changes in diffusion parameters to specific maturational 

processes such as myelination [61].

In addition to these methods, novel imaging techniques are now being used for studying 

early brain development. One such method, MRS (Magnetic Resonance Spectroscopy), 

derives information from protons present in nonwater molecules such as creatine, N-acetyl- 

aspartate (NAA), choline, and glutamate [60]. Studies of MRS have mapped changes 

in concentrations of cerebral metabolites with brain maturation [62], thereby measuring 

alterations in brain chemistry. Other methods for imaging brain maturation include Myelin 

Water Fraction (MWF) imaging, Magnetization Transfer (MT) imaging, and quantitative 

T2 imaging. Analysis of T2 relaxation in the central nervous system led to the discovery 

of two T2 components - a short component attributed to water trapped between myelin 

layers and a long component linked to intra- or extra-axonal water [63]. The Myelin-Water 

Fraction (MWF) measure was hence defined as the ratio of myelin water to total water, and 

has shown potential for identifying demyelination of brain tissue in MS (Multiple Sclerosis). 

MWF studies have also been extended to analysis of infant brains [61], resulting in successful 

mapping of myelinational processes. MT imaging, a closely related technique, is based on 

suppression of signal and magnetization transfer between two components (semisolid and 

liquid) of a model. MT has shown efficacy in detection of lesions, WM integrity, and 

demyelination processes [64]. A third technique that is closely related is quantitative T2 

mapping. Quantitative T2 imaging uses relaxometry techniques to map T2 relaxation 

values and has been shown to be a sensitive indicator of brain maturation [65]. The 

mapping of actual T2 values, rather than the acquisition of a weighted image, results in an 

actual quantitative indicator of the state of underlying tissues [33]. However, the uncertain 

reliability of T2 estimates, as well as longer scan times due to multiecho acquisition, are 

factors to be considered when employing this method for infant brain imaging.

In addition to these studies, histological analysis of the brain has been performed [40]. 

Postmortem studies involving staining for myelin revealed that white matter myelination 

takes place in an orderly sequence from inferior to superior, and from posterior to anterior 

of the brain [31]. A recent study also analyzed synaptic density in the prefrontal cortex 

using Western blotting methods [14]. While histological studies provide great insight into 

synaptic structure and organization of neurons at a scale that is far finer than most imaging



16

techniques, they can be performed only on postmortem brains. The results of histological 

studies might also be variable depending on the stains used for capturing histological 

features. These studies are, however, extremely valuable in validating the efficacy of newly 

developed imaging techniques, and in examining the biochemistry involved in neurological 

changes.

The biomarkers resulting from the volumetric, morphometric, and novel imaging tech

niques discussed above have proven highly effective in analyzing trajectories of early develop

ment. However, image appearance measures as biomarkers characterizing neurodevelopment 

are relatively less explored. Image appearance is known to be a valuable indicator of mat

uration in qualitative MR studies and presents scope for further analysis. Biophysical and 

chemical information, complementary to data from morphometric and volumetric analysis, 

can be obtained from appearance studies. Appearance analysis is also a viable alternative 

to other methods for obtaining biochemical information from the brain, such as diffusion, 

MWF, and MT, as these methods rely on modified techniques at the acquisition stage, 

and hence cannot be used for analysis of large retrospective studies. Therefore, appearance 

measures could be valuable neuroimaging biomarkers, particularly if computed in a manner 

that is stable with respect to changing conditions of scan and intraimage inhomogeneities. 

Additionally, appearance measures can be jointly analyzed along with other indicators 

for greater insight into neurodevelopmental mechanisms (for example, signal intensity and 

diffusion parameters can be jointly studied).

1.6 Appearance Studies in Neuroimaging
The earliest appearance studies in neuroimaging were purely qualitative in nature, and 

consisted of observations made by radiologists [29]. However, the subjective nature of 

qualitative studies may lead to interobserver variability and errors due to medical image 

quality, human errors, and perceptual factors [66].

Recently, quantitative appearance-based research studies restricted to MR signal in

tensity analysis of the pediatric brain have shown interesting results [67- 71]. The goal of 

these studies was to analyze changes in tissue properties, as indicated by measured signal 

intensity values. One of the earliest intensity-based studies of early brain development 

jointly analyzed the changes in T1W  and T2W  signal intensity along with DTI parameters 

along major white matter fiber tracts [67]. A linear mixed model was fit to track changes 

in these parameters across a dataset of infants and to find correlations between diffusion 

and intensity measurements. In a similar pilot study, the utility of studying MR signal
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intensities along with diffusion measures was shown on a dataset of infants [71]. Another 

study performed cross-sectional analysis of T1W  and T2W  images of 116 preterm subjects 

between 29-44 weeks gestational age (GA) [69]. Voxel-wise signal intensity change was 

modeled across age using kernel regression. The results of this study, which focused on 

changes in subcortical structures, showed that central and peripheral cortical regions display 

different rates of intensity change. In other work along similar lines, changes in WM 

signal intensities in infant brain MR images were modeled across time using the Legendre 

polynomial [70]. Following spatial and intensity normalization, regions displaying similar 

trajectories of intensity change were clustered in a data-driven manner using a Dirichlet 

Process Mixture Model (DPMM). For each cluster, growth curves displaying changes in 

intensity with age were generated. Along with T1 and T2 signal intensity, other properties 

such as diffusion parameters were also mapped across time, and clinical variables indicating 

rate of growth were developed. In a related research study, the signal intensity of T1W  and 

T2W  MR images of infants was analyzed and modeled with age in conjunction with diffusion 

parameters [68]. Analysis of these intensity and diffusion parameters was performed using 

three methods: 1) voxel-wise, 2) anatomical atlas-driven, and 3) purely data-driven. As a 

result of fitting these parameters across time with a Gompertz function, statistical indices 

characterizing changes in W M signal intensity, such as rate of growth, delay, and asymptote, 

were extracted - for voxels, anatomical regions, and data-driven regions. It was shown that 

nonlinear growth patterns observed in intensity data were characterized effectively using 

the Gompertz function.

It is important to consider that intensity normalization was performed on the infant 

brain images used in these studies in order to bring the intensities of all analyzed scans into 

a standardized range. A note on normalization techniques used in infant brain studies is 

presented in the Appendix. Intensity normalization on infant images is highly challenging 

due to several factors, including inherent intensity changes due to neurodevelopmental tissue 

changes. Intensity normalization algorithms should not remove these maturation-induced 

intensity variations by confusing them with image variations due to nonideal scanning 

conditions. Since the methods discussed above analyze absolute signal intensity values, 

they are limited by their crucial dependence on intensity normalization.

Spatial normalization (nonlinear registration) was also done in the studies discussed 

above, in order to enable voxel-wise comparison of signal intensity across images. Spatial 

normalization also has several limitations when applied to infant data, including low signal- 

to-noise ratios, low contrast, and large variabilities in brain shape of infants.
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A recent study outlined a method for characterizing joint appearance and shape vari

ability across neuroimaging datasets via manifold learning, with specific applications to 

infant brain scans [72]. This study utilized the Normalized Cross-Correlation (NCC) metric 

to measure similarity in the appearance of two distinct brain images. Although the NCC 

has the property of being invariant to affine transformations of underlying intensities and 

hence removing the need for intensity normalization, it requires point-wise spatial corre

spondence between images. Spatial normalization via deformations are embedded into the 

methodological framework, but the method is still dependent on accurate normalization for 

appearance characterization.

Intensity-based appearance analysis has recently gained importance for its role in en

suring accurate registration between longitudinal images of the rapidly changing developing 

brain. Recent studies have modeled intensity changes across longitudinal images of the 

early developing brain by fitting a linear or nonlinear model to voxel-wise intensity infor

mation [73,74]. Modeling intensity transformations between these images have subsequently 

improved interscan registration. In one of these studies, the nonlinear logistic model was 

used to create a spatiotemporal mapping of white matter intensities in brain MR scans of 

monkeys [74]. On similar lines, Intensity Growth Maps (IGM ’s) were created to model and 

correct for areas of low WM-GM contrast in regions of immature WM, with the object of 

improving the resultant tissue segmentation [75].

Although the intensity studies discussed above have begun exploration of MR signal 

intensity as an imaging biomarker, limitations associated with purely intensity-based anal

ysis have proven a deterrent to extensive research in this direction. To summarize, some 

major limitations of intensity studies include variability of signal intensity due to external 

factors such as the type of scanner and scanning conditions, lack of calibration procedures 

directly linked to the MR signal, and crucial dependence on the use of accurate intensity 

normalization.

1.6.1 Relative Intensity-based MRI Studies
As an alternative to studies of absolute intensity, relative intensity differences or contrast 

between tissues has been explored as an indicator of brain maturation. In general, the 

contrast between WM and GM was measured as the difference in W M and GM mean 

intensities, divided by noise [25]. It was seen in an early research study that WM-GM 

contrast computed using this definition is better suited for the verification of increasing 

myelin density than the actual relaxation times. This conclusion was made since significant 

differences between regions undergoing early and delayed maturation were more clearly



19

indicated by contrast [27]. Reasons proposed for explaining the superior performance 

of contrast as a biomarker were amplification of both T1 relaxation and proton density 

differences in the contrast measure.

Besides neurodevelopmental research, contrast studies have been conducted for analysis 

of neurological processes such as aging and neural degeneration [76- 79]. An early study 

based on the idea of WM-GM contrast as a biomarker used a subjective method to qual

itatively “rate” the degree of WM-GM contrast, which was seen to decrease significantly 

with age [80]. This decrease in contrast was attributed to changes in the structure of myelin 

in white matter, and neuronal loss in gray matter. In a longitudinal, contrast-based study 

of the aging brain, a regional contrast ratio (rCR) given by was computed,

demonstrating that degenerative age changes in WM connectivity are captured by changes 

in contrast [77]. A recent study on subjects undergoing healthy aging measured the ratio 

of gray matter to white matter signal intensity (GW R) at each point along the cortical 

surface, showing strong, localized, significance of increasing GWR, and hence decreasing 

contrast, with age [76]. Another study showed that the GW R was significantly reduced 

in several regions in individuals with Alzheimer’s disease [78], also indicating that contrast 

is a unique measure which is complementary to other morphometric measurements. In a 

study of twins, it was seen that contrast as measured by the GW R is genetically influenced, 

and a high degree of heritability was seen for contrast in the major brain regions [81]. In 

addition, it was seen that contrast did not have significant genetic correlations with cortical 

thickness, thereby indicating the novelty and uniqueness of this measure.

These studies have shown that WM-GM contrast, also referred to as WM-GM intensity 

difference or WM-GM intensity variation, has potential as an indicator of healthy and 

abnormal trends in aging, and also as a biomarker in studies of imaging genetics. However, 

the methods for contrast computation that are listed above might not be easily applicable 

to infant brain studies, since they require estimation of the cortical surface for computation 

of WM-GM contrast. In the case of developing brains, the location of the cortical surface 

is highly uncertain, making these methods unreliable for infant studies.

1.7 Goals of This Dissertation
In this work, we propose a novel methodology with two objectives - first, to quantify 

WM-GM appearance variations by measuring the relative distance between their intensity 

distributions, and second, to provide parametric modeling of such tissue contrast distances 

as a function of time. The quantitative nature of this method ensures that the appearance
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measure does not vary in a subjective manner and can be used to statistically test findings 

based on qualitative observations. In addition, since the measures we propose are not just 

measures of signal intensity, but relative indicators of signal intensity variations, instability 

due to external factors such as changing scanning conditions is minimized. Finally, we ensure 

that the method we develop is not dependent on intensity normalization, cortical thickness 

measurements, or other complex processing methodologies that are difficult to apply for the 

specific case of the infant brain. The major features of this framework, including details of 

spatiotemporal modeling of the developed appearance measure will be discussed, with the 

application of methods to several ongoing clinical infant neuroimaging studies.

1.7.1 Quantification of W M -G M  Intensity Variations
In order to compute intensity variations between WM and GM, we implement a 4D lon

gitudinal, registration-segmentation framework, followed by methods to generate intensity 

distributions in WM and GM tissues. Intensity variation is then evaluated in terms of the 

Hellinger distance-based “separation” between W M and GM intensity distributions, result

ing in a measure named WIVID (White-gray Intensity Variability in Infant Development). 

The sensitivity of this measure of WM-GM intensity variation in capturing differential 

maturation patterns is analyzed. Since the WIVID measure is invariant to affine transfor

mations of underlying signal intensities, it is less sensitive to external factors. We explore 

the possibility that this “relative intensity” -based measure can ensure greater stability with 

respect to changing scanning conditions, compared with absolute signal intensity measures. 

Higher stability will in turn allow usage of this method across large-scale neuroimaging 

studies that are undertaken across different scanner sites and scanning conditions without 

any changes in the analyzed biomarker.

1.7.2 Spatio-temporal Modeling of Intensity Variations
Following the development of WIVID to measure WM-GM intensity variation, we de

velop a methodology for longitudinal statistical modeling, inference, and analysis, based on 

this developed measure. The quantitative nature of the WIVID measure developed enables 

statistical analysis. We outline methods for modeling and analysis of changes in WIVID 

over time using advanced biostatistical techniques. The large-scale datasets under study are 

longitudinal in nature and consist of repeated scans of the same subject taken at different 

time points. Inherent challenges posed by the repeated nature of this data are tackled using 

NLME (Non Linear Mixed Effects) models. These NLME models account for correlation 

between repeated scans of a single subject, creating both population- and subject-specific
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models to map temporal change. When used in conjunction with nonlinear growth models, 

NLME-based statistical analysis provides key information related to parameters underlying 

growth. The growth parameters that are estimated from NLME analysis are intuitive and 

easy to understand, in addition to holding clinically relevant information.

1.7.3 Modeling Multimodal W M -G M  Intensity Variations
In the context of modeling of relative WM-GM intensity for an MR dataset, differences 

based on modality of scan and scanning protocols used should be considered. As can be seen 

in Figure 1.5, the very nature of the signal being recorded by the brain scan is determined 

by the scan modality: different MR imaging modalities display completely different image 

appearance and intertissue contrast [16]. For instance, T1W  (T1-Weighted) and T2W 

(T2-Weighted) modalities display inverted WM-GM intensity gradients. That is, in T1W 

images of the mature brain, W M is of much higher intensity than GM, whereas the reverse 

is true for T2W  images of the mature brain. In addition, based on the scanning protocols 

used, imaging datasets have different timing and sequential changes associated with brain 

maturation [29]. In the framework we develop, WM-GM intensity differences in terms of 

the WIVID measure are computed separately for each MR imaging modality. However, 

their statistical modeling is performed jointly across modalities, enabling consideration 

of temporal correlations between modalities in computation of the evolution of WM-GM 

appearance. Finding their temporal correlations also helps in understanding the physical 

tissue properties that each modality measures and the relationships between their growth 

trajectories.

1.7.4 Spatial Heterogeneity in W M -G M  Intensity Variations
Even within a single scanning modality, the nature of brain appearance change is spa

tially heterosynchronous. WM-GM intensity differences vary considerably across cortical re

gions, particularly during neurodevelopment. Our framework involves the study of WM-GM 

intensity differences in a region-specific manner. Therefore, although trajectories of intensity 

variation can change considerably between different cortical regions, the region-specific 

framework we implement inherently models this variation. This region-specific framework, 

coupled with statistical analysis methods, can even test for significant differences in the 

trajectories associated with WM-GM intensity variations of distinct cortical regions.
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1.7.5 Intensity Variation-based Infant Studies

We apply the complete framework developed for WM-GM intensity variation analysis 

to the study of longitudinal datasets of MR scans of the developing infant brain. As a 

result, we can study regional and spatially localized changes in WIVID across different 

stages of neurodevelopment, from birth to later stages of childhood. Further, the statistical 

framework we implement enables investigating the effectiveness of the appearance measures 

developed as biomarkers. The ability of these measures to distinguish between differential 

growth trajectories belonging to varied populations of interest grouped on the basis of 1) 

risk and diagnosis for brain disorders, and 2) sex, is analyzed.

1.8 Overview of Chapters
The remainder of this dissertation is organized as follows:

Chapter 2 discusses the methodology for quantification of WM-GM intensity variation in 

large cortical regions and evaluates the stability and effectiveness of the quantified measure.

Chapter 3 explores nonlinear mixed effects methods for longitudinal statistical modeling 

of WM-GM intensity variation across time, with extensions to multivariate data.

In Chapter 4, the complete framework for quantification and modeling of intensity 

variation is applied to a large-scale neurodevelopmental study of infants from 6 months 

to 2 years of age, and patterns of appearance change are analyzed.

Chapter 5 analyzes age-related appearance changes across a dataset consisting of 10 

subjects scanned at five time points each, from birth to 12 months of age.

Chapter 6 summarizes the overall goals met by this dissertation and highlights significant 

contributions made in this work, followed by an analysis of related challenges and limitations 

and discussion of future work.



CHAPTER 2

QUANTIFICATION OF W M -GM  MR 
INTENSITY VARIATIONS

Medical image appearance is a function of signal intensity at each point in the image. In 

medical images acquired using techniques such as X-ray CT and PET, the signal intensity 

value at a point corresponds to a physical quantity of interest, which characterizes the region 

being imaged. For example, the signal intensity values in an X-ray CT scan correspond 

to tissue attenuation as empirically defined by Hounsfield Units [25]. However, in the 

generalized case of MR images, the signal intensity value at a point does not correspond to 

an absolute physical quantity of interest. Instead, it is a complex function of the density 

of water molecules in the region under study, as well as T1 and T2 relaxation constants 

characterizing the region. The extent to which each of these parameters influences the 

signal intensities in an MR image depends on the type of weighted MR scan being acquired 

and on associated scanning parameters. In general, there is no single physical quantity of 

interest that can be determined from MR signal intensity, with exceptions being the case 

of specialized MR techniques such as MWF and MT that were discussed in Chapter 1.

In spite of not providing a direct quantitative measure, MR signal intensity has excellent 

potential as an indicator of underlying tissue characteristics. This has led to several MR 

signal intensity studies that are qualitative in nature, consisting of observations of MR image 

appearance made by radiologists [29]. However, qualitative studies have drawbacks such 

as the subjective nature of observations and errors due to image quality, image perception, 

and human factors [66]. Another drawback of purely qualitative analysis is the lack of 

resulting numerical quantities that can be modeled and analysed using statistical and 

machine learning techniques. Therefore, in order to effectively convert information based 

on the signal intensity of MR images into clinically useful findings, it is necessary to develop 

methods for quantification of MR image appearance.

It has been noted in the last chapter that the contrast between regions in an MR image is 

a useful imaging indicator of appearance [25], and could be a better measure than just signal
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intensity. Specifically, it was mentioned that the contrast, or intensity variation, between 

brain WM and GM regions is of special interest in neuroimaging studies [27]. Underlying 

neurobiological reasons for WM-GM contrast appearance were also discussed in depth. 

From these discussions, it was concluded that methods for the quantification of intensity 

variation between WM and GM tissues can be of considerable potential in neuroimaging, 

particularly in studies of early brain development. One of the primary goals of this work is 

to develop a measure of the intensity variation between W M and GM regions.

For an effective measure of WM-GM intensity variation, it is crucial that this indicator 

must ideally be sensitive to changes in tissue properties, while remaining invariant to 

changing scan conditions. Interscan variability in conditions during MR signal acquisition 

introduces undesirable variations in signal intensity, in addition to variations of actual 

interest that are induced by changing tissue characteristics. This interscan variability, 

coupled with the lack of “standardization” of the MR signal (in terms of direct links 

to absolute physical quantities of interest), increases the importance of stability of MR 

appearance measures.

In this chapter, we will first discuss the concept of appearance from image processing 

and medical imaging perspectives, and then explore methods for its quantification. A stable 

measure of MR image appearance that captures intensity variations between W M and GM 

tissue in the brain will then be developed, and a detailed description of the pipelines for 

processing and computation of this measure will be given. Next, the question of whether the 

developed measure effectively captures maturation-related tissue changes will be explored. 

Finally, the relative stability of the developed measure will be tested.

2.1 Methods to Study Appearance and Contrast
In the context of image processing in general, the meaning of the terms “Appearance” 

and “Contrast,” which are used to describe medical images, will now be examined. The 

appearance of a medical image generally consists of a synthesis of two aspects - the shape 

or structure of the image and the texture or patterns of intensity variation in the image 

[6]. With complete knowledge of the appearance of an image, in terms of shapes and 

intensity patterns, the original medical image can be synthesized. Appearance variations 

between images can be defined in terms of variations in shape and intensity patterns. 

Methods for describing the shape component of appearance variations between images 

include deformable elastic models such as snakes [82], finite element methods [83], shape 

representation using geometric or rigorously parameterised models [84], and statistical
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as well as diffeomorphic models [85, 86]. Other methods with extensive applications in 

vision that directly or indirectly utilize image intensity information include SIFT (via 

computation of image intensity gradients), the Harris corner detector, high-dimensional 

histograms representing texture based on combinations of spatial relationships between 

pixels, and moment invariants for joint shape and appearance representation of images [87].

Several methods jointly model both shape and intensity variation, with applications in 

computer vision1. One such method used to match images is the representation of a 2D 

surface in a 3D format, with the third dimension corresponding to the intensity of the 

surface [90]. Another joint shape-intensity model uses the sum of squared differences in 

pixel-wise intensity between source and reference images to define texture [91]. Variants of 

this texture measure involve encoding pixel-wise intensity differences between image pixels 

and a reference atlas image [92,93]. Advanced texture analysis methods use arrays of filter 

banks including Gabor filters, wavelets, and DCT (Discrete Cosine Transform), to name a 

few. These image analysis methods focus on characterizing the spatial relationships between 

pixels of certain intensities, or the frequency content of images. In most of these studies, the 

analysis generally requires perfect point-wise correspondence across images. In some cases, 

deformations to achieve accurate point-wise correspondence are estimated and applied in 

conjunction with these image analysis schemes. However, our interest in this work lies 

in methods for capturing only the intensity variation component of appearance, without 

considering shape variations.

In intensity-based studies of appearance, absolute intensity values are generally not 

commonly studied, unless they are quantitative indicators. Instead, intensity is usually 

measured in terms of its variation across, or within, images, or sometimes even both. 

Existing methods that capture intensity variations between images include image matching 

functions such as cross-correlation, mutual information, Euclidean distance, the L 1-metric, 

and L2-metric [89]. Here, we briefly go over some of the major image matching techniques.

Consider two images, X  and Y , both of size Nx x Ny. The pixel values of each of these

1Besides applications in medical imaging, intensity comparison methods between regions of images have 
been studied extensively in the field of object tracking and computer vision [88]. It is interesting to 
note that intensity comparison methods in the field of object tracking contend with some issues that are 
analogous to problems in medical imaging. Intensity variations studied in computer vision are attributed to 
illumination intensity differences, shadows, instrumentation gain and base level differences, and changes in 
light direction [89]. These issues are somewhat similar to interimage and intraimage intensity inhomogeneities 
present in medical imaging due to issues such as bias field, conditions during acquisition of M R scans, etc. 
While illumination invariance in vision applications is generally achieved by modeling light sources, in 
medical imaging, postprocessing techniques such as filtering of medical images and intensity normalization 
are adopted to remove these intensity changes.
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two images are denoted by xij and yij respectively, with i and j  being the 2D spatial indices 

ranging from 1 up to Nx, and from 1 to Ny , respectively. Some of the basic image matching 

functions can be defined over the paired pixel values X j and y j  of these two images as 

follows [89] :

\
Nx NyEE ( x j  — yij)2 ... Euclidean metric. 
i= 1 j= 1

Nx NyEE |xij — yij| ... L 1 metric. 
i=1 j=1

(2.1)

(2.2)

\
Nx NyEE Ixij — yij|2 I ... L2 metric. (2.3)

,i=1 j= 1 )
These metrics can be extended to p dimensions using the Lp metric, defined as follows :

Nx NyEE |xij — y ijIp | ... Lp metric.
. i=1 j=1

(2.4)

Cross-correlation (CC) is another method by which intensities of different images can be 

matched, with notable applications in image registration [94, 95]. The cross-correlation 

between the two images X  and Y  with paired pixel values x ij and yij , having mean intensities 

x and y respectively, and with standard deviations ox and oy, can be defined as :

C C  (X , Y ) =
1

Nx Ny

Nx Ny

E  E
(xi j — x)(y i j — y) (2 .5)

i=1 j=1 y

In the above normalized version of cross-correlation, subtraction of image intensities from 

their respective means (e.g., x ij — x), and division by their standard deviations ensures that 

affine transformations of the underlying intensities will not affect the similarity value. Nor

malized cross-correlation (NCC) between image pairs has been applied for characterization 

of appearance in infant brain images, primarily due to this feature of invariance to intensity 

scale changes [72].

Mutual information (MI), an information theoretic measure, has also been used to com

pare two images of different intensity [96,97]. Consider two images, X  and Y , with individual 

entropies H (X ) and H (Y ), respectively, and joint entropy H (X , Y ). The similarity between 

the two images in terms of their mutual information can be expressed as

M I (X , Y ) =  H  (X ) +  H (Y ) — H (X , Y ). (2.6)

Essentially, since the entropy of an image denotes the amount of information contained in it, 

this mutual information measure quantifies the amount of information in an image X  that is
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contained in image Y, or vice versa. Mutual information can be used to compare image pairs 

that might have undergone intensity changes (e.g., due to introduction of contrast agents), 

or image pairs belonging to different modalities. Unlike cross-correlation, which can be used 

to detect locally varying patterns, MI can be only used on large regions since it requires 

large sample sizes for statistical reliability. MI is also complex to define mathematically 

and model across time. In addition, the joint entropy estimation involves computation 

of the joint intensity distributions of corresponding voxels in both images, which requires 

voxel-wise correspondence for interimage appearance comparison.

As discussed in Chapter 1, the major drawback in current methods in appearance 

analysis is the need for spatial and intensity normalization. Although some of the methods, 

such as NCC, discussed above, capture intensity differences between images with little to no 

dependence on intensity normalization, they are still dependent on image shapes. That is, 

these methods assume that the two images X  and Y  being compared are already in perfect 

point-wise correspondence (i.e., the points X j  and y j , as defined earlier in this section, 

are assumed to be in correspondence)2. In this work, our goal is to develop a method in 

which this pointwise correspondence between image voxels or regions is not required for 

testing image similarity. The technique we use to accomplish this is intensity distribution 

based analysis - by extracting the intensity histogram of a region and extracting features 

of this histogram, intensity analysis can be performed without any dependence on spatial 

relationships.

Entropy as a measure, independent of MI-based computations, can also be used for 

assessment of appearance in a brain region. However, entropy calculations, besides being 

mathematically complex, are highly dependent on regional structures [98]. In a brain MR 

scan, the entropy of a region would depend on the ratio of WM and GM tissue volumes in 

that region. The structural dependence of entropy computations is a major drawback due 

to which it cannot be used to assess appearance in early brain MR studies.

Intensity distributions and histograms3 have been used in imaging and in some medical 

applications for characterization of appearance [99, 100].

2Alternately, these methods for computing the similarity between images are used in neuroimaging to ob
tain the best matching or registration between two images. This is done by computing the image registrations 
that maximise the similarity metric between them (e.g., to maximise Cross-Correlation (CC)) [94].

3The difference between the values of intensity histograms and intensity distributions lies in the quantities 
they represent. That is, intensity histograms generally contain frequency information related to occurrence 
of each intensity in the histogram's range. Intensity distributions, on the other hand, are normalized versions 
of these histograms and record the probability o f occurrence of each intensity in the range of the distribution.
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Features such as mean, median, and standard deviation can be computed from image 

histograms. These features can then be analyzed as quantitative markers that summarize 

information from high-dimensional histogram space. Multidimensional histograms can also 

be used for intensity analysis based on several images or image features. For example, joint 

histograms from images of an object obtained at different time instants have been used for 

characterizing the type of change taking place in the object [101]. An important point to 

consider while using histograms for appearance characterization is that studying histograms 

requires standardization of the intensity range of histograms under analysis (continuing 

dependence on effective intensity normalization). The accuracy of extracting region-specific 

and tissue-specific voxels, based on which the histograms are constructed, also plays a vital 

role in histogram analysis. While extraction of these voxels removes dependence on spatial 

locations of voxels, it could also introduce additional errors.

In this work, we characterize appearance in terms of pairwise relative differences between 

intensity distributions. Since features of the analyzed distributions are not independently 

extracted but studied in relation to another distribution extracted from the same image, 

the need for intensity normalization could be potentially reduced based on the methodology 

employed. Examples of pairwise analysis of distributions can be found in computer vision 

literature as well. An illustrative example consists of testing between similarity of image 

features by computing the normalized cross-correlation between intensity distributions of 

patches centered around the feature of interest [102].

Since we use this type of measurement of relative differences between two distributions 

for capturing intensity variations between two regions within an image, it could also be 

considered a form of contrast analysis. Contrast, although being closely related to appear

ance, focuses on patterns of intensity variation within a single image, rather than testing 

the similarity of intensities between images. Contrast in medical imaging, for example, is 

used to describe the apparent intensity differences between dissimilar tissue regions. In 

the following sections, contrast measurement within the context of medical imaging will be 

examined.

2.1.1 Contrast in Medical Imaging
In medical images, the definition of image contrast is highly dependent on the type of 

imaging system used. The metrics used to define appearance and contrast for a medical 

image can be chosen effectively only when the imaging modality used is taken into con

sideration. Signal intensity values in medical imaging modalities such as X-ray CT are 

directly proportional to an actual physical quantity (e.g., the attenuation, and increase
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in atomic number, in X-ray CT). However, in MR the signal intensity values in images 

are quantities that are related in a complex manner to several factors, such as T1 and 

T2 relaxation times and proton density. Studies of contrast in NMR-based imaging have 

explored various mathematical expressions determining contrast between two regions, in 

terms of the magnetization between them [25]. The acquisition times of MR scans are also 

considered in this contrast computation. A phantom image constructed to demonstrate 

contrast between two tissues, A and B, is shown in Figure 2.1. For two interfacing tissues, 

A and B , the MR contrast can be expressed in terms of their local transverse magnetizations 

(defined in Chapter 1) as

C or M A — M B (2 7)v_/ ov iv±transverse 1VJ-transverse* V̂ *V

Given this definition of contrast, the contrast-to-noise ratio (CNR) can be written in terms 

of TR (Repetition time) and TS (Total scan time) as

TS
C N R  ^  TR (Mtransverse M transverse) • (2.8)

This equation highlights the dependence of contrast between tissues on the parameters of 

scans, in addition to the intrinsic tissue properties. Since the signal intensity of a point 

is a function of M transverse, this definition of contrast in terms of MR physics can also 

be interpreted as being proportional to the difference between the signal intensity values 

of tissues A  and B . Other representations of contrast include ratios of mean intensities 

of the regions A and B, denoted by , and other functions of the mean
• , r j • Mean( Intensity a) — Meant.Intensity b ) r 1 -n 1
intensities of two regions, e.g., MeanilntensiZHMeanilntensityl) [76, 77]. For our analysis,
we adopt a method by which contrast is represented by divergence between the signal 

intensity distributions of the two regions being studied. This divergence is computed using 

the Hellinger distance, the reasoning for which will be discussed in the following sections.

2.2 Method
In the last section, a survey of methods for measurement of appearance and contrast 

from image processing and medical imaging perspectives was presented. In this section, 

we will adapt this knowledge for the development of an appearance measure relevant to 

MR-based neurodevelopmental studies.

One of the primary goals of this dissertation is the development of a stable method for 

quantifying appearance variations within a medical image that does not require intensity 

normalization. Specifically, the developed measure is designed to be an indicator of the 

intensity variation between W M and GM. In order to accomplish this, MR image appearance
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A

Figure 2.1: (Left) Phantom image illustrating the concept of contrast between two regions 
A and B, (right) Difference between mean intensities of regions A and B. The intensity 
distributions of regions A and B are separately normalized, thereby losing all volume 
information related to their spatial localizations, or the voxels they represent.
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is measured in terms of the distance between intensity distributions of WM and GM tissue 

classes, computed using the Hellinger Distance. The developed measure is referred to by 

the acronym WIVID (White-gray Intensity Variation in Infant Development). The scientific 

reasoning behind the methodology used for computation of WIVID as well as detailed steps 

involved in this procedure are outlined below.

2.2.1 Framework for Infant Brain M RI Studies of Appearance
The framework for computation and modeling of WIVID consists of three major compo

nents. First, the entire image dataset is processed via a pipeline that performs spatiotempo- 

ral image registration and segmentation as well as parcellation of the brain into the major 

cortical regions of interest. This procedure segments the brain into major tissue classes 

and regions such that their intensity distributions and relative WM-GM intensity variation 

can be analyzed in a region-wise manner. The second step consists of quantification of 

this intertissue intensity variation for each major cortical region by finding the Hellinger 

Distance-based separation between gray matter and white matter intensity distributions, 

resulting in the measure referred to as WIVID. In addition to the magnitude of the WIVID 

measure, its direction is estimated based on its location on the contrast change curve in 

the early brain, which first decreases up to a minima point and then increases. Finally, 

the resulting WIVID values, which are now complete in their characterization due to both 

magnitude and direction being quantified, are modeled in a longitudinal manner using 

statistical modeling methods, constituting the third step. The parameters of the growth 

functions that result from the statistical modeling are then analyzed. The details of WIVID 

modeling are explored in later chapters. Figure 2.2 describes the entire framework outlined 

above.

2.2.2 Joint 4D Registration-Segmentation Pipeline
In order to study the changes in appearance that are seen in longitudinal datasets 

of the early brain, we implement a joint 4D registration-segmentation pipeline. This 

pipeline utilizes the longitudinal nature of the data to perform effective segmentation and 

parcellation of the infant brain - operations that divide the brain into major tissue classes 

and cortical regions, respectively. Obtaining accurate segmentation and parcellation of the 

brain is crucial to further analysis, particularly given the challenges facing these operations 

when applied to early infant brain images.

The results of implementing this pipeline include extraction of voxels belonging to each 

tissue class, as well as determination of the membership of these voxels to major cortical
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PIPELINE FOR COMPUTATION OF WM-GM INTENSITY VARIATION

4-D IMAGE PROCESSING PIPELINE 

MULTIMODAL LONGITUDINAL MR

v V  \

INTRASUBJECT AND INTERSUBJECT|
MHMI IM FAR  R F n iS T R A T in N

LONGITUDINAL SEGMENTATION

CORTICAL PARCELLATION

GENERATION OF WM AND GM

50 100 150 200
Intensity values 

COMPUTATION OF HELLINGER 
DISTANCE BETWEEN DISTRIBUTIONS

Figure 2.2: Framework outlining the registration-segmentation pipeline as well as the 
procedure to perform statistical analysis on the contrast.
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regions. As a result, intensity distributions of tissue classes such as W M and GM can be 

generated for each major cortical region of the brain. Appearance variations between WM 

and GM for a specific cortical region can then be computed as the distance of separation 

between the WM and GM intensity distributions constructed from voxels in this region. 

Since spatial locations of the voxels used for generating distributions are not considered 

for computation of WIVID, and since normalization of the distribution belonging to each 

tissue class ensures removal of volumetric dependence, this appearance measure would not 

be affected by other factors such as shape, structure, and volume.

The first step in this procedure consists of bias correction and aligning the images 

rigidly with respect to a standard template image. Bias correction can be performed using 

a method such as N4-ITK [103] that estimates parameters of a smoothly varying bias field. 

Aligning with respect to a standard template ensures that the origins and coordinate of all 

images are standardized. Preliminary alignment is followed by intrasubject and intersubject 

registration between scans of the same subject acquired at different time points, the details 

of which are outlined in Figure 2.3, and described in the next sections.

2.2.2.1 Intrasubject Image Registration
Intrasubject image registration is the registration of all images belonging to the same 

subject, including those acquired at different time points, onto a common coordinate space. 

Intrasubject registration is accomplished using the ANTS algorithm based on symmetric 

normalization that uses Cross-Correlation (CC) as the metric of choice for matching of 

images within diffeomorphic maps [94]. The choice of this algorithm for intrasubject 

nonlinear deformation is motivated by several factors. Firstly, based on visual observation 

it was seen that this algorithm is highly effective, particularly in the case of infant image 

registration. Secondly, studies have indicated that this technique is consistently top-ranked 

in comparison to other popular registration methods [104]. Finally, ANTS is capable of 

jointly leveraging information from multiple modality scans for the purpose of achieving 

accurate brain image registration.

Intrasubject image registration can be expressed mathematically as follows. Consider a 

multimodal image dataset consisting of scanned modalities ranging from m =  1 ,2 , . . . ,M . 

Scans of these modalities can be obtained for every subject i =  1 ,2 , . . . . ,N , at all K  

time points given by t\,t2, .....tK 4. For a specific subject i, this series of multimodal

4For the sake of simplification, it is assumed here that each subject is scanned for the same number of 
time points (K ), and at exactly the same time instants (ti , t2, ..., tK)• This assumption is not applied in 
later chapters concerned with statistical modeling of this data.
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STEP 1 : BIAS CORRECTION, RIGID ALIGNMENT TO TEMPLATE
Bias correction of all images : removal of intensity inhomogeneities

Inhomogeneity

Modality 1 Scans 

Modality 7, Scans

Modality M S

Figure 2.3: Framework outlining the intrasubject and intersubject registration pipeline.
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images obtained at a time tk is denoted by Ii,1(tk), Ii}2(tk) , ..., h,M(tk), and summarized as 

Ii(tk). A series of such multimodal image sets from a subject i, obtained at several time

points t1,t2, .....tK can similarly be written as (Ii(t1) , Ii(t2),...., Ii(tK)). During intrasubject

registration, co-registration is performed across all scans belonging to a single subject i, 

obtained at different time points t and belonging to all m modalities. As a result, voxel 

x in a scan of modality m obtained at time tk from subject i, denoted by Ii,m(x,tk), will 

correspond to the same voxel x in a scan of modality m' obtained from the same subject at 

time tk>, denoted by Ii,m/ (x ,tk/). This relation will be valid for all possible combinations of 

m,m',tk, and tk/ , indicating that intrasubject registration is performed between scans of all 

modalities and between scans obtained at all time instants.

2.2.2.2 Intersubject Image Registration
Intrasubject registration is followed by optional intersubject image registration using an 

unbiased atlas building framework based on LDDMM (Large Deformation Diffeomorphic 

Metric Mapping) [105]. The choice of LDDMM is motivated by its unbiased method of 

spatial normalization and effectiveness in estimating large deformations. Datasets of infant 

brains always display large morphological variability, and their accurate standardization to 

an unbiased template space is possible with the large deformations estimated in LDDMM. 

Intersubject registration based on LDDMM results in the entire multimodal dataset being 

deformed to a common coordinate space, hence enabling population analysis of all the brain 

images in the dataset on a voxelwise basis and registration of the entire dataset to other 

reference atlases. Consider the voxel x from subject i ’s scan belonging to the modality m 

and obtained at time tk. Following intrasubject registration, this voxel will correspond to 

the voxel x in the m'th modality scan from another subject i', obtained at time t y . That 

is, as a result of intersubject registration, voxels denoted by Ii,m(x ,tk) and Ii/,m/ (x ,tk/) will 

have correspondence across all combinations of i,i',m ,m ',tk, and tk/ .

The reason for applying this combined pipeline of intrasubject registration followed 

by intersubject registration is to improve co-registration quality by using the longitudinal 

nature of the dataset. Intrasubject registration usually consists of deformation of all images 

of a specific subject into the coordinate space of the latest time point images of that 

subject (it is assumed that the multimodal images belonging to the latest time point are 

co-registered before this). As a result, intersubject registration can be performed using the 

latest time point images of each subject alone (since all earlier time point images of each 

subject are already co-registered to this latest time point), as illustrated in Figure 2.3. Since 

the latest time point images are generally closest in appearance to the adult brain, they
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have much better intertissue contrast and well-defined anatomical structures compared with 

images from earlier time points. As a result, intersubject registration based on the latest 

time point images will have improved quality compared with intersubject registration based 

on early time point images.

The above steps of intersubject and intrasubject image registration are not directly 

necessary for the appearance analysis framework, since computation of WIVID is done 

over large cortical regions and does not require voxel-wise correspondence across images 

in the dataset. However, these image registration steps enable effective segmentation 

and parcellation of the infant brain. Two facts support the hypothesis that accuracy of 

segmentation and parcellation operations on the infant brain, particularly on scans taken 

soon after birth, improve greatly by coregistration of the images and subsequent utilization 

of the longitudinal nature of the datasets. First, the brain at later stages of development 

(e.g., at 2 years of age) has much better intertissue contrast and less SNR compared with the 

brain at earlier stages, and second, the basic brain anatomy of an individual remains mostly 

the same across time in spite of volumetric changes due to very early gyrification [106, 107].

It can be concluded from these observations that segmentation and parcellation of early time 

point infant scans can be improved by using prior information from corresponding later time 

point scans of the same infant. Since accurate tissue segmentation and brain parcellation 

are essential for proper computation of WIVID, registration of all images obtained from a 

subject to the latest time point image of that subject is an important part of the appearance 

analysis pipeline.

2.2.2.3 Longitudinal Image Segmentation
Following coregistration, a segmentation procedure based on the expectation-maximization 

(EM) algorithm is implemented [108], which classifies each voxel in the image into one of 

the major tissue classes. In the case of brain images, segmentation of the images using 

EM algorithm results in every voxel in the image being classified into one of the major 

tissue classes Cj =  {white matter, gray matter, csf, non-brain}. Consider the multimodal 

set of images denoted by Ii,1(tk), Ii,2(tk) , ..., Ii,M (tk) and summarized as Ii(tk) that was 

introduced earlier. The segmentation procedure implemented is such that information from 

several modalities of the same subject is used to produce a single segmentation result. 

Since the result of segmentation is only a single set of tissue classification values for the 

entire tuple of scans belonging to subject i that were obtained at time tk, this result can 

be denoted by the binary label map defining the presence or absence of a class Cj at a 

specific location X. This label map indicating membership to a tissue class Cj is given by
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Li(cj,x,tk), for the image set I  j,(tk). In addition, priors based on the segmentation of later 

time point scans belonging to a specific subject could be used to get better segmentations of 

early time point scans from the same subject [106]. Consider the label map obtained from 

classification of the latest time point image into tissue class Cj - Li(cj,x ,tLatest) . After 

intrasubject registration of all time point scans to the space of the latest time point image, 

the information from segmentation of the latest time point image, Li(c j,x ,tLatest), will be 

in correspondence with all the earlier time point images. When applied as prior in the Bayes 

theorem, Li(c j,x ,tLatest) can be used for computation of the label map at any earlier time 

point Li(cj,x,tk ). The method of applying later-time point segmentations as probabilistic 

priors for improving the segmentation of early brain images is well established [106]. This 

procedure improves the accuracy of segmenting early time point images, and also ensures 

smooth transitions of segmented label maps of images of the same subject acquired across 

time. The details of this procedure are described in Figure 2.4.

2.2.2.4 Brain Image Parcellation
Since our analysis of contrast is region-specific, and based on anatomical regions of 

the brain, the final processing stage involves parcellation of the already registered brain 

images into major cortical regions. Parcellation atlases that have been obtained from past 

large-scale neuroimaging studies are deformed to the coordinate space of the set of scanned 

images, which can be done by deforming the template associated with it to the latest time 

point scan from each subject [50]. Alternatively, the template associated with a regional 

parcellation atlas could be deformed to the unbiased atlas template that was previously 

generated using the entire image dataset. A choice could be made between the two above 

methods based on the extent of intersubject shape variability in the dataset and the quality 

of the atlas template built.

Consider the same multimodal series of scans of a single subject acquired across time, 

which are coregistered such that voxel-wise correspondence has been established between 

each scan in the tuple ((Ii(t1) ,I i(t2), ••••,Ii(tK ))). Each voxel x of the parcellation atlas 

denoted by Parcel(x) is now deformed such that it has correspondence with the same voxel 

x in all these co-registered scans (defined by Ij,(x,tk) in the general case). The membership 

probability of a voxel in the parcellation atlas template to a cortical region Ri can be given 

by the value PAtias(Ri,x). After coregistration with the image set of a subject i, this atlas, 

which contains regional membership probabilities, can be redefined as PAtlas,i(Rl,x). Any 

voxel x in the image set Ij,(x,tk) will now be classified as belonging to a spatial region Rl, 

based on the value of PAtias,i(Ri,x).
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STEP 4 : 4D (LONGITUDINAL) SEGMENTATION

Segmentation of Latest Time Point image (Time K)

Segmentation of EarlyTime Point images (Time < K) |

STEP 5 : PARCELLATION INTO MAJOR CORTICAL LOBES

Figure 2.4: Framework outlining the longitudinal segmentation and parcellation pipeline.
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As a result of the segmentation-parcellation pipeline outlined above, every voxel x in a 

brain image will have two associated values - the first defining membership to an anatomical 

region, and the second defining membership to a tissue class.4 Voxels belonging to a 

particular class and cortical region will then be used to generate intensity distributions 

for contrast analysis.

2.2.3 Removal of Shape and Volume Information
We require that any measure of appearance we develop should quantify only the variation 

in intensity between W M and GM tissues. Since this study is not concerned with volumetric 

and morphometric variations, the appearance measure developed must not be altered due 

to volumetric or morphometric changes. A possible method for achieving this invariance to 

morphometric and volumetric differences consists of removal of shape, structure, and volume 

differences via nonlinear image deformation. However, achieving accurate deformations that 

ensure voxel-wise correspondence is challenging, and is especially hard to accomplish given 

the large shape variations, low signal to noise ratios, and intensity variations present in 

infant brain image data. In order to maintain invariance with respect to volumetric and 

structural differences, we convert the spatially dependent intensity information contained in 

images into intensity distributions. The intensity distributions generated are simultaneously 

both region specific and tissue specific. Although the intensity distributions are region 

specific, they do not depend on the exact spatial position of contributing voxels. The image 

processing procedures for extracting voxels belonging to specific tissue classes and regions 

were discussed in detail above. As a result of these procedures, the WIVID appearance 

measure developed is computed solely as a function of W M and GM intensity distributions 

or histograms.

Intensity distributions are closely related to intensity histograms: while a histogram 

generally indicates the frequency of occurrence of each intensity value, the intensity dis

tribution transforms this frequency into a probabilistic scale, indicating the probability of 

occurrence of each intensity value. Mathematically, for a range of intensities from Int1 to 

IntQ, with counts of occurrence of each intensity value Intq denoted as Count(Intq), the

4The difference here between probabilistic maps associated with segmentation and parcellation must be 
noted. While the probabilistic maps associated with segmentation indicate the probability of each voxel in 
the image belonging to a tissue class such as WM or GM, the maps associated with parcellation indicate 
the probability of each voxel belonging to an anatomical brain region. As a result, each voxel has both 
membership to a tissue class and simultaneous membership to a brain region. This results in no dissonance, 
since the tissue membership is based on underlying biochemical properties that are captured via imaging, 
whereas regional membership is purely based on spatial localization to a brain region.
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histogram value for an intensity Intq is denoted by the number Count(Intq).

In the same scenario, the intensity distribution at each point can be expressed as the 

relative probability of occurrence of Intq.

P (Intq) =  C 0T (I^  t ' . <2-9)z_̂ q_1 Count(intq)

We now extend this example to the case of several tissue classes. Each tissue class Cj will 

have an associated intensity distribution. The distribution value for intensity Intq is denoted 

by P(Intq|cj). This mathematically verifies that the intensity distribution of the tissue class 

Cj only retains information regarding the likelihood of a certain intensity value occurring for 

voxels belonging to that tissue class, while removing spatial information related to where 

the voxels are located. Similarly, normalization of the probabilistic distribution by the total 

number of voxels belonging to the tissue class ensures that the intensity distributions are 

not distorted by volumetric information.

Consider a series of individual scans of various modalities, obtained at a time point tk, 

which can be given by Ii,1(tk) ,I i,2(tk) , . . . ,h,M(tk). A function denoting the distribution 

of intensities is constructed for each modality, for all combinations of tissue class Cj and 

regions Ri. This function is computed based on the likelihoods of voxels belonging to this 

tissue class, defined previously as Li(cj,x ,tk), and based on the membership of voxels to 

anatomical regions, given by PAtias,i(Ri,x). As a result, this distribution is a function of 

the intensity values of image voxels x that belong to tissue class cj and anatomical region 

Ri.

Pi,m(Intq,tk|cj,Ri) =  f(Int(Ii,m(x,tk|x e cj,Ri))). (2.10)

2.2.3.1 Construction of Intensity Distributions
As a part of the processing pipeline outlined above, intensity normalization can op

tionally be performed in the manner specified in Appendix A , although this is not strictly 

necessary. The only advantage with implementing intensity normalization at this stage 

concerns generation of intensity distributions. Heuristic values for parameters used in 

generation of intensity distributions could be set more easily across all subjects if the 

images have been normalized. Apart from this, intensity normalization should not affect 

the values resulting from the WIVID pipeline. The adoption of Kernel Density Estimation 

for construction of intensity distributions further minimizes the dependence of the WIVID 

pipeline on intensity normalization.

Construction of actual intensity distributions from voxels belonging to specific tissue 

classes and regions can be done using several techniques. The simplest method is to
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parameterize the distribution such that it follows a pre-existing model such as a Gaussian, 

Beta, or Exponential distribution, for example. In this case, if the fitted model has N  

parameters, the intensity distribution P(Intq), which is originally q — dimensional, will 

be reduced to a much sparser, N  — dimensional representation. The intensity data from 

infant brain images were fit to major distribution models (including the Gaussian) and 

the resulting fit was verified using the Chi-squared test. It was concluded that based on 

empirical evidence from available image datasets, the intensity data failed to conform to any 

of the popularly used distribution models. As a result, the effectiveness of nonparameteric 

representations of the distribution data was investigated instead.

Construction of q — dimensional intensity distributions is an effective alternative if data 

fail to conform to parametric models. Earlier, a method for generation of an intensity 

distribution from a histogram, discretized to q-levels, was described. However, histogram- 

based distributions have drawbacks such as discretization errors associated with binning, 

and variability based on the choice of bins and binsize, as displayed in Figure 2.5. To 

overcome these drawbacks, we opt for a continuous, smoothly varying intensity distribution 

that is estimated using kernel-based methods.

Kernel Density Estimation (KDE) is based on the principle that rather than counting 

the number of voxels that belong to a certain intensity bin, the probability distribution 

at a point can be a cumulative sum of the weighted probabilities of voxels with similar 

intensities. That is, the intensity of a voxel determines a weight factor, thus influencing 

the probability distribution of intensities in its vicinity. If the weighting influence of each 

voxel’s intensity on neighboring intensity values is smooth such as in the case of a Gaussian 

kernel, a smooth distribution results.

In this work, KDE using a Gaussian kernel G  is used to obtain a smooth and continuous 

intensity distribution for each tissue class cj and region Rl , belonging to each image of 

modality m - Ii,m. This distribution is generated from the voxels that belong to the tissue 

class and region under analysis. The intensity distribution corresponding to an intensity 

Intq is denoted as Pim(Intq,tk\cj, Ri). This value, i.e., the probability of a signal intensity 

value Intq being exhibited by voxels belonging to the tissue class cj and region Ri, for a 

subject i ’s scan of modality m is computed by the equation

P ^In tq ,tk \cj , Ri) =  E  G ( In‘q — ) .  (2.11)
x£cj ,Ri

Here, the intensity of a voxel x belonging to subject i and the modality m scan is given 

by Int(Ii,m(x)), and h is the bandwidth of the kernel. Using this equation, a continuous
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Figure 2.5: KDE procedure, and (b) Comparison between distributions from histogram- 
based and KDE analysis.

probability distribution Pim (Int\cj) is generated for each class Cj over all possible values of 

intensity Int, for a scan belonging to subject i and of modality m. An example of intensity 

histograms that are generated for the T1W  and T2W  modalities at 3 different time points 

can be seen in Figure 2.6. It should be noted that individual histograms are generated for 

each brain imaging modality.

Rather than using only voxels that have been classified as belonging to a tissue class in a 

binary manner, the label maps of the underlying voxels can be used for fuzzy membership- 

based generation of the KDE. Here, the contribution of the voxel x to the distribution of 

a tissue class Cj, will be weighted by its membership value Li(cj,x,tk) to this tissue class. 

In this case, the KDE equation can be redefined for computation of distribution at a single 

intensity value Intq as

Pi,m(Intq,tk\cj,Ri) =  ^  Li(Cj,x,tk) x c f 1̂ — Int(Iim(x)))  . (2.12)
xeRi '  '

When this probability is computed over the entire range of intensity values, it results in 

a complete intensity distribution Pim (Intq,tk\cj,Ri). This representation could be ad

vantageous since it reduces excessive dependence on binary label maps from segmentations, 

instead basing its results on probabilistic (or fuzzy) memberships to tissue classes. However, 

this approach is not adopted since the behavior of distributions computed in this manner 

could be highly complex and unstable, in addition to this representation being relatively 

less understood.

Based on empirical evidence, if the intensities under study ranged from 0 to 255, a 

Gaussian kernel of width 3 was used for generation of the KDE. Since these operations are 

quantized based on underlying intensities, the final KDE value is recorded for intensities 

separated by a stepsize of 0.1.
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Intensity values Intensity values Intensity values

Intensity values Intensity values Intensity values

Figure 2.6: Intensity distributions of gray matter (red) and white matter (blue) changing 
with time for a single subject scanned at 6 months (leftmost column), 1 year (central 
column), and 2 years (rightmost column) of age, with the T1W images in the top row and 
the T2W images in the bottom row. Since each individual distribution has been normalized 
such that the area under it sums to one, the relative size of WM and GM distributions does 
not convey information related to their respective volumes.

2.2.4 Computation of Distance Between Intensity Distributions

Following extraction of intensity distributions, the computation of intensity variations 
is undertaken purely in the intensity domain - that is, by measuring the overlap between 

the probabilistic intensity distributions of WM and GM. The measure of distance adopted 

will be used to quantify the degree of separation between two intensity distributions, hence 

serving as an indicator of their intensity differences. An example of WM and GM intensity 

distributions computed for a single subject at different time points can be seen in Figure 2.6. 

A high degree of overlap between WM and GM intensity distributions will correspond to 
low contrast.

The primary role of a distance measure between two distributions is to summarize 
information from the high-dimensional space of the distribution to a lower-dimensional 

space. Only a subset of distance measures qualifies as distance metrics. The basic properties 

a distance measure must satisfy to qualify as a distance metric include symmetry, triangle 

inequality, non-negativity, and identity of discernibles. Considering two distributions, P 1 

and P 2, these properties are briefly defined below for the distance measure D between them

D (P 1 ,P2) =  D(P2,P  1) .... Symmetry. (2.13)
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Considering a third distribution, P 3,

D(P  1,P2) < D(P 1 ,P3) +  D (P 3 ,P 2) .... Triangle Inequality. (2.14)

D(P  1,P2) > 0 .... Non-negativity. (2.15)

D(P  1,P2) = 0 , P 1 =  P 2 .... Identity of Discernibles. (2.16)

The Hellinger Distance (HD), which satisfies all properties of a metric, is used to measure the 

overlap between the probability distributions of the distinct tissue classes [109]. Considering 
any two distributions P 1 and P 2 defined over a range of values y , the HD can be defined 
mathematically as [110]

H D (P 1, P 2) = y ^ W )  2
Uy

(2.17)

In the case of distributions that are defined for a discrete set of values indexed by y and 
ranging from 1 to Y , the HD can be redefined as

H D (P 1, P 2) = \ £  ( / p i m  -  V P x y
y=i

(2.18)

Alternately, the Hellinger Distance can be generated in terms of the Bhattacharyya coeffi
cient (BC). The Bhattacharyya coefficient can be defined for the continuous case as

B C (P 1, P 2) =  /  / P  1(y)P2(y)dy. (2.19)
y

The Hellinger Distance can in turn be defined in terms of the Bhattacharyya coefficient as

H D(P 1, P2) =  /2 (1  -  BC(P 1,P2)). (2.20)

That is, the Hellinger Distance can alternatively be defined as

H D(P 1, P2) =  ^  2(1 -  J j P  1(y)P 2(y)dy). (2.21)

Finally, in the case that the distribution data we analyze is of Gaussian nature, a closed-form 
solution for the Hellinger Distance between two such Gaussian distributions exists. Consider 

two Gaussian distributions P 1 and P 2, with respective standard deviations Std1 and Std2, 

and Mean values StdPooled =  Pooled Standard Deviation across the two distributions,

2
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Mean1 =  Mean of P1, Mean2 =  Mean of P2. The Hellinger Distance between them is 

given by

H D(P 1, P2) =  V2 x

It follows from the above equations and the properties of probability distributions that 

the Hellinger Distance is bounded in the range from 0 to \/2. The overlap measure based 
on the Hellinger Distance is an indicator of the divergence or separation in their intensity 

distributions, and is a bin-to-bin distance measure.
The major reasons for choice of Hellinger Distance for computing the divergence between 

intensity distributions are listed below. The metric properties of the Hellinger distance, 

along with other useful properties it possesses such as boundedness, make it suitable for the 

purpose of measuring WM-GM intensity divergence. Lack of symmetry in the KL distance 

computation, and triangle inequality in the Bhattacharyya distance computation, eliminate 

the possibility of using these distances in this work. The Hellinger Distance-based method 

outlined above, used for computation of intensity variation or intertissue contrast, is also 

not limited by Gaussian or parametric assumptions of nature of intensity distributions. For 

example, the Mahalanobis distance is generally applicable only to Gaussian distributions. It 
is also independent of the sample sizes used for estimating the distribution, a property that 

is not satisfied by other measures such as the Chi-squared distance [111]. Importantly, the 

Hellinger Distance computed remains invariant to affine transformations of the underlying 

distributions. This property is crucial to the measure we adopt since the measure we develop 

must be stable with respect to affine intensity transformations, particularly those caused 

by variations in external scanning conditions. Distances such as the L1-norm,L2-norm, 

and Earth mover’s Distance (EMD) fail to remain the same with affine transformations of 
underlying intensities. Finally, it is also well known in areas of computer vision and image 

recognition that using a distance measure such as the Hellinger Distance to compare two 

histograms leads to better results than using other measures such as the regular Euclidean 

distance measure [112].

Following this reasoning, the measure of tissue intensity variation is then computed in 

terms of the Hellinger Distance between the intensity distributions of WM and GM tissue 

classes. In our application, the WIVID value is measured in a spatio-temporal framework - 

being both specific to each region of the brain being studied and to the time point of scan. 

The intensity distributions of the gray and white matter tissue classes are independently 
generated using KDE for each major cortical region of the brain. The WIVID value of

(Std1 4 )(Std2 4 ) (Mean1-Mean2)2 \ , ,
1 — ------------------x e------------stdPooied . (2.22)

. StdPooled 2 I
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the kth scan of subject i, obtained at time point tk, for the region Ri, is denoted as 

W I V I D Rm(tk). Since White-gray Intensity Variation in Infant Development, denoted by 

the acronym W IVID,  measures the distance between WM and GM intensity distributions, 
it can be defined based on the equation given above for the Hellinger Distance as

W IV ID R l  (tk) =  HD(Pi,m(Int, tk l j  =  WM, R ) , P i>m(Intlcj =  GM, Ri)). (2.23)

Some important properties of the WIVID distance measure are listed below, based on 
properties of the Hellinger Distance (for ease of representation, the distance measure is 

denoted just by the symbol W IVID,  with references to region under study Ri, time point 

tk, and the subject and modality details i and m, respectively, being excluded):

1) As the divergence between WM and GM distributions increases, the value of the 

WIVID measure also increases, and vice versa.
2) The WIVID measure between WM and GM intensity distributions remains the same 

even if WM and GM intensity distributions are interchanged (property of symmetry). This 

property is of importance particularly since intensity distributions of WM and GM are 
reversed during the course of early brain development.

W I V I D  =  H D(P (Intlcj =  W M ) ,P  (Intlcj =  G M )). (2.24)

In the above expression, P(Intlcj  =  W M ) corresponds to P(Intlcj =  G M ), and P(Intlcj  =  

G M ) corresponds to P(Intlcj =  W M ).

3) Unless the intensity distributions of WM and GM are identical, the WIVID measure 

would not be 0 (property of identity), which ensures that only when the tissue appearance 
of WM and GM regions is alike would the WIVID measure between them be 0.

W I V I D  =  0, ^  P(Intlcj =  W M ') =  P(Intlcj =  GM 1). (2.25)

This property also emphasizes the principle that WIVID captures shape differences between 

intensity distributions - it will not be zero-valued unless there are no shape differences 

between intensity distributions, even if the means or medians of these distributions are 

equal. This property, that the measure not only reflects a shift between distributions but 
at the same time the difference between the shapes of the distributions, becomes important 
when interpreting results from longitudinal analysis.

4) The WIVID measure is always positive (follows from property of non-negativity). 

Modeling of the WIVID measure is hence restricted purely to the positive range, although
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this restriction can be relaxed by considering the directionality of shifts between distribu

tions by calculating as a sign (see following subsection).

W I V I D  >  0. (2.26)

Besides these mathematical properties, the WIVID measure has two very important 

characteristics: it is computed in a region-specific and modality-specific manner. That is, 
the WIVID values are computed independently for each modality scanned and for each brain 

region within those scans. This characteristic results from our framework for computation 

of tissue intensity variation, rather than from the intrinsic nature of the Hellinger Distance 

measure. By defining a modality-specific WIVID value, the vast differences in tissue 

appearances that are seen in scans of different modalities are accounted for. The origin 

for this stems from the nature of the MR signal being recorded in each modality, which 

has been discussed in Chapter 1. The regional specificity of the computed WIVID measure 

ensures that variations in tissue appearance between different regions are represented and 

can be further analysed. Regional specificity is achieved by parcellation of the brain into 

the major cortical regions.
Finally, the WIVID measure as computed using the Hellinger Distance has the property 

of being invariant to affine transformations of the underlying intensity distributions [113, 

114]. It is evident that since the Hellinger Distance measures values on the space of 

probabilities, it would be invariant to global translation of the underlying intensities. Global 
translation would result only in all the probabilities being shifted in terms of their range, 

while remaining the same in magnitude. Invariance to scaling follows from mathematical 

properties that are described by Gibbs et al. [113]. As a result of these properties, scaling and 

shifting the WM and GM intensity distributions would not change the computed WIVID 

value. This property is central to the concept of WIVID being stable and independent of 
intensity normalization techniques. Since WIVID is invariant to affine transformations of 

intensity distributions, normalization procedures involving simple scaling or shifting will 

not change the WIVID result. Similarly, any other intensity inhomogeneity that shifts or 

scales both WM and GM intensity distributions to an equal extent will not alter the WIVID 
result.

As an extension to this principle, the WIVID measure is also invariant to any invertible 

nonlinear deformation to the underlying intensity distributions [115]. However, in the prac

tical case this principle would be true only dependent on the type of binning or quantization 
that is performed for generation of the intensity distribution of interest. In the case of an 

affine transformation, it would be easy to quantize or bin the data by appropriate scaling



48

or translation in such a manner that its essential variations and properties are preserved. 

However, in the case of a nonlinear transformation, a data point might be transformed 
nonlinearly, but due to binning and quantization methods it might not contribute to the 
same point on the intensity distribution. This type of transformation to the intensity 

distribution might result in a modified value of the Hellinger Distance. It is also important 

to note that only the application of invertible deformations to both WM and GM intensity 

distributions results in invariant Hellinger Distance values.
A further assumption we make in this case is that any nonlinear scaling or deformation 

that is applied to the tissue intensities is uniform across WM and GM tissue classes. If 

only a small subregion of the WM and GM tissue classes is affected by a transformation, a 

modified Hellinger Distance would result. In contrast, if a transformation is applied to the 
entire WM or GM region in a cortical lobe, the resulting Hellinger Distance remains the 

same. Since the cortical regions we consider are reasonably sized, this assumption would 

be applicable to our analysis.

2.3 WIVID Measure: Directionality and Simulations
Following the detailed description of the properties and method for computation of the 

WIVID measure, the performance of this measure will be evaluated in this section and 

directionality attributes will be assigned. Initially, behavior of the WIVID measure for 

artificially translated WM distributions will be analyzed. Based on this analysis, a method 
for characterizing the direction of WIVID will be described. Finally, a series of phantom 

images with differential variations in tissue intensity, similar to the tissue appearance 

differences observed during early brain growth, will be evaluated.

2.3.1 W IV ID  Measure Behavior for Shifted W M  Distribution

In this section, we assess behavior of the WIVID measure in response to a simple 

experiment. WM and GM intensity distributions are extracted from a sample infant MR 

scan. While keeping the GM distribution as constant, the WM intensity distribution is 

shifted or translated to both left and right of its current position, as observable in Figure 2.7. 
The resulting WIVID curve is recorded in Figure 2.8. Typically, the pattern of WM-GM 

contrast variations seen in infants can be observed to be similar to this pattern, i.e, consisting 
of a decreasing portion followed by an increasing portion.
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Figure 2.7: WM-GM configurations at different points shown in the previous Figure above: 
(Left) Plot with WM distribution shifted to the left from its original configuration, (Center) 
plot indicating original configuration of WM-GM distribution at point being studied, with 
no shifts in the distribution, and (Right) plot with WM distribution shifted to the right 
from its original configuration.

Figure 2.8: Plot indicating change in behavior of WIVID with shift of WM intensity 
distribution, keeping GM distribution as constant, with both positive (green) and negative 
(pink) gradient portions of the WIVID trajectory being displayed.

2.3.2 W IV ID  Measure Directionality

Consider the case that no directional attribute is assigned to the WIVID points analyzed 
in Figure 2.8. In this case, the WIVID values that result from left-shift of WM intensity 
and right-shift of WM intensity would be identical. However, it is known that the WM 

distribution underwent a shift in the process and converted from the left-shift configuration 

to the right-shift configuration. This difference between the left-shifted and right-shifted 

WM-GM intensity configurations is captured by the directional attribute.

Since we want our procedure for assigning a directional attribute to be generalizable 

for any modality studied, we study the common trajectory of WIVID contrast change over 
time in both T1 and T2 modalities, rather than the intensity gradient from WM to GM. 
The WIVID contrast in all modalities first decreases, reaching a minimum close to zero, and 

then increases over time, during early brain development. WIVID contrast values on either
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side of the minimum have opposite WM-GM gradient directions. By the convention we 

assume, a WIVID contrast point with WM-GM configuration that maps to the decreasing 

portion of the curve is assigned a negative direction. If a WIVID contrast point has a 
WM-GM configuration that maps to the increasing portion of the curve, it is assigned a 
positive direction. This assumption is common to both T1W and T2W WIVID values.

We will now address the issue of how a particular configuration of WM-GM intensity 

distributions could be mapped onto the WIVID contrast change trajectory. Specifically, 

this can be done for a pair of WM and GM distributions by shifting WM distributions 
to both left and right while maintaining the GM distribution to be constant, as shown in 

Figure 2.7. The point of highest overlap between WM and GM distributions is the point at 
which the WIVID curve reaches a minimum. This point of lowest WIVID contrast can be 
determined by computing the WIVID measure for each WM-GM configuration generated 

by progressively shifting the WM.

To evaluate if the WM-GM configuration at a particular time has positive directionality, 

we can ask the question,“If the WM distribution is shifted to the left and right of its current 

position while keeping GM constant, does the point of lowest contrast lie on the left-shifted 

portion or right-shifted portion of the configuration?” If the point of lowest contrast lies to 

the left of the current configuration, it can be concluded that the WM-GM distributions 

currently lie on the curve with positive gradient and can hence be assigned a positive 
direction based on the convention defined above. Along similar lines, if the point of lowest 
contrast lies to the right of the current configuration, it can be concluded that the WM-GM 

distributions currently lie on the curve with negative gradient and can hence be assigned a 

positive direction based on the convention defined above.

The directionality attribute is assigned based on some assumptions. The major assump

tion, that the WM and GM distributions do not change vastly in shape with time such that 
the WIVID trajectory varies irregularly, is valid based on the behavior of WM and GM 

distributions as seen in the histogram images. From the behavior of WM and GM intensity 

distributions, the nature of the WIVID curve that we assume is reasonable, specifically 
since based on experiments it was shown that the infant brain has relatively constant GM 

intensity over time, while WM intensity shifts over time. Biological explanations for this 

observation have also been discussed in Chapter 1.

A point of scientific discussion at this juncture would be the choice of method for 
assigning directionality. Prior to implementing this solution, a signal intensity ratio based on 

ratio of mean or median values between WM and GM distributions was used to characterize
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direction [116]. If the signal intensity ratio between WM and GM median values, for 

example, was greater than 1, the WIVID measure could be assigned a positive direction and 
vice versa. However, the mean or median values are incapable of representing the behavior 
of the entire distribution, particularly in cases of irregularly shaped distributions. In such 

cases the method described above could provide a more effective measure of directionality. 

Further, T1W and T2W modalities have opposite direction for WM-GM intensity gradient. 

Therefore, a method that assigns direction to WIVID contrast based on the ratio of signal 

intensities between WM and GM would be confusing to interpret for different modalities.

2.3.3 Phantom Image Studies
A series of four phantoms assumed to be longitudinal in time was created from Gaussian 

intensity models, as can be seen in Figure 2.9. Each phantom consists of the two regions A 

and B of the same shape, with the only difference being the intensities of these regions. The 
intensity variations between the two regions are high in Phantom 1 and lower in Phantom 

2. Phantom 3 is of almost zero intensity variation as no contrast is seen between the two 

regions. Phantom 4 again has nonzero intensity variation, with the intensity gradient being 
of opposite direction when compared with Phantoms 1 and 2. That is, the intensities of the 

two regions underwent a reversal of relative intensities.
In the initial phase, Region A is of lower intensity than Region B in Phantom 1 and 2. In 

the middle phase, Region A and Region B have equal intensities. In the final phase, Region 
A is of higher intensity than Region B. These interregion patterns of intensity variation 

can be clearly observed in the intensity distributions displayed. Therefore, although the 
magnitude of the WIVID value for Phantom 1 might be the same as for Phantoms 2 or 3, 

the direction of their intensity gradient should be considered. The direction of the intensity 

gradient can be obtained by several methods, including finding the ratio between mean 

intensities of Regions A and B. However, in this study, we find the direction of intensity 

gradient by shifting one histogram while keeping the other constant. The exact procedure for 
assigning a direction sign to the WIVID value is discussed in a later section. To understand 

the phantom image series, it is sufficient to note that the direction of relative intensity 

gradient between the two regions A and B undergoes a reversal with time, changing from 

—1, to zero at point of no contrast, to +1 for the last phantom image. This change in the 

WIVID value, and in its gradient, can be seen in Figure 2.10.
In conjunction with the absolute WIVID values, which capture the change in magnitude 

of relative intensity variation, the directional information related to the intensity gradient 

provides a complete picture of the appearance changes taking place in the phantom data.
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(a) Time 1 (b) Time 2 (c) Time 3 (d) Time 4

Figure 2.9: (Top row) Series of phantom images corresponding to longitudinal time 
series from a single subject. The phantom images have two distinct regions - A (circular 
foreground) and B (background). (Bottom row) Series of histograms of Region A (blue) 
and Region B (red) corresponding to each phantom image in the same column in the top
row.

Figure 2.10: (Left) Absolute WIVID values for phantom Images over time, (Right) 
Direction of relative intensity gradient between two Regions A and B.

The addition of the direction information reflects the reversal in intensity gradient seen 

between Regions A and B. From this discussion it can be understood that the WIVID 

measure, which has both magnitude and direction, is capable of characterizing intensity 
variation between regions.

2.4 Stability of WIVID Measure
In this section, we will study the stability of appearance measures in 3D MR imaging. 

After conducting a literature survey of relevant papers in both statistics and neuroimaging, 

we will outline a methodology for stability analysis. We will then present results from 

systematically applying this methodology on a series of repeated scans of two human
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traveling phantoms, acquired across different locations and scanner platforms. The primary 

goal of this analysis is to comparatively evaluate the stability of signal intensity and 

Hellinger-Distance based WIVID measures as regional appearance measures. With respect 
to the traveling phantom studies, however, it should be noted that it is not possible to 
compare signal intensity and the WIVID measure directly since they are entirely different 

quantities. Rather we independently compute the stability of intensity and WIVID in terms 

of their coefficients of variation and compare the results based on this coefficient.

Papers specifically dealing with the issues of stability, reliability and repeatability, 
especially in the context of neuroimaging, have become increasingly important in the 

context of large-scale, multisite, neuroimaging studies. A major multisite neuroimaging 

study of reliability [117] used a dataset similar to that of the human traveling phantom 
we employed - a single subject was scanned twice within a 24-hour time window. Further, 

these repeated scans were obtained at 5 different MR sites over a period of 6 weeks. The 

age of the subject (25 years), along with absence of physical and mental illness, suggests 
that the brain remained the same during the 6-week period. Three types of analysis were 

undertaken - an evaluation of reproducibility of different image analysis methods within a 

single site, between different sites with the same type of scanner, and between sites with 

different scanner types. Importantly, this study used COV (Coefficient of Variation) as 

a quantitative tool to study stability under varying conditions. Another research study 
compared different methods of tracking fibers using DTI [118], and performed repeatability 

analysis to confirm which method shows the greatest stability. This study also performed 

sensitivity analysis, exploring statistical methods to establish the method of obtaining DTI 
fibers that are most effective with respect to identifying microstructural alterations in MS 

patients.

Since we wish to apply our findings from the traveling phantom dataset to the study 
of infant brain development, it is necessary to fully understand how imaging of the infant 

brain is different when compared with that of the adult. A paper on pediatric neuroimag

ing [119] describes confounding factors that are specific to infant neuroimaging. Although 

the paper specifically addresses problems faced in functional neuroimaging, many of the 

same principles also apply to structural MR. Since magnets are shimmed to offer the 
highest signal at the center of the coil, which is generally out of reach for children (due 

to shorter necks), the resulting images have a lower signal to noise ratio. In addition, 

subjects who move more also show greater signal to noise ratio, thereby adding risk to 
studies dealing with children with attention and behavioral disorders. Although motion
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correction algorithms are employed to correct motion-induced distortion, this is often not 

fully removed. Differences in skull thickness can also affect the signal to noise ratio of 

MR images. Finally, to study raw signal intensity, factors such as field inhomogeneity, 
head position, head motion, and other variables need to be carefully studied. Another 

publication summarizes these variations as occurring at two levels [117]. At the level 

of data acquisition, possible sources of variation could be patient positioning, scanner 

geometry, scanner intensity variation, and discrete image artifacts. At the level of image 

analysis, variation could occur due to different procedures for image registration, bias field 
correction, interpolation, and manual interaction. Finally, a study of stability related to 

cortical thickness measurements [120] also discusses the effect of the subject being scanned, 

such as hydration status of the subject, in addition to instrumentation. The importance of 
stability studies in the context of longitudinal data is also emphasized. Since longitudinal 

studies face challenges associated with both subject-related as well as instrument-related 

factors such as major scanner updates, it is critical to understand these thoroughly.
Depending on the type of study conducted, confounding factors that depend on the 

history of the subject and their treatment also need to be studied. For instance, in a critical 

review of neuroimaging-based ADHD studies, the effect of factors that might indirectly 

contribute to the imaging results is examined [121]. For example, the usage of psychotropic 
drugs for ADHD treatment might significantly reduce dopamine uptake in specific areas of 

the brain, thereby changing the appearance of scanned images.
Critical to our analysis is a paper by BIRN [122] which analyzes the calibration of multi

site structural MRI by accurately correcting for gradient-induced distortions, in order to 

allow cross-site comparisons of morphometry by minimizing dependence on on-site factors. 

Most relevant to our study of appearance measures is the quantification of per-voxel intensity 
variability defined in this paper, which is computed as std dev./voxel mean. In this paper, 

the results of this variability are shown for a single subject test-retest both within and 

across sites, both before and after geometric distortion correction. This paper concludes, 

based on histogram analysis, that this per-voxel variability is highly reduced after geometric 
correction.

2.4.1 Preprocessing Pipeline
The traveling phantom study was designed to calibrate image data in a large multisite 

pediatric neuroimaging study, and includes two subjects (Phantom 1 and Phantom 2) who 
have undergone repeated scans at various imaging sites. Two scanners, a Siemens 3T 

Allegra head-only scanner and a Siemens 3T Tim Trio, were used in the study to estimate
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the reliability of MR measures under changing conditions of scan [123]. The pulse sequences 
used were MPRAGE and high-resolution T2 (TSE). The two healthy male human phantoms 

of ages 26 and 27 were scanned at 4 sites within a week. Two repeated scans of the same 
phantom were obtained at each site, using the same scanner, within 24 hours. The age of 

the phantoms and their health status, as well as the short time period between repeated 

scans, indicate that subject-related changes were minimized. Since the entire image dataset 

for each phantom was acquired within a week, it is safe to assume that no major brain 

changes took place during this time period. The tuple of images belonging to each phantom 

p consists of a set of MR scans attributed to different modalities, locations, time points, 

and scanners. Seven co-registered, multimodal scans of Phantom 1, obtained at 4 scanning 

locations using 2 different scanner types, can be seen in Figure 2.11.
Initial preprocessing of the phantom images consisted of rigid registration to a template 

using the IRTK algorithm [124]. This was followed by bias correction and tissue segmen

tation, which were both computed in an iterative manner as part of the EM algorithm 

[108]. Prior to analysis of the traveling phantom images, we had to ensure that they 
were all co-registered in order to remove volumetric and morphometric differences. After 

co-registration by rigid transformation and bias correction, we created an unbiased atlas 
Ap from the set of T1W images from the Trio scans of Phantom p. Unbiased atlas building 

was done using an algorithm based on LDDMM (Large Deformation Diffeomorphic Metric 

Mapping) [105]. The T2W scans and images belonging to the Allegra scanner were then 

deformed onto the atlas created using a fluid-based deformation method [123]. As a result 

of the steps described above, the images from all scanners, obtained at all time points and 

locations, belonging to a phantom denoted by p , were co-registered to the corresponding 

atlas Ap. After being co-registered, the entire tuple of images obtained for a single phantom 

p could be denoted by Ip, and the vector of intensities for a single voxel i could be given by 
Ip,i. After atlas building, a parcellation map was registered to the generated atlas, and the 

major cortical regions were extracted. The final step in the processing pipeline consisted of 
intensity normalization of all images by linear scaling using the following normalization 

factors: (i) 90 percentile value of the fatty tissue region for T1W images, and (ii) 90 
percentile value of the ventricular CSF region for the T2W images.

In order to measure the reliability of the WIVID measure, we calculate the COV 
(Coefficient Of Variation) across all scans to obtain a normalized measure of variation. 

The COV of a quantity Q with mean value ^(Q), and standard deviation a(Q) is given as

COV <Q> = m  • (i27 )
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T1W

T2W

Trio (4 Locations) Allegra
Figure 2.11: Seven T1W (top row) and T2W (bottom row) scans of Phantom 1, acquired 
across 2 scanner types and 4 locations. The scans are all co-registered - the five leftmost 
scans belong to the Trio scanner, while the two rightmost scans belong to the Allegra 
scanner.
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Since WIVID is a regional measure, the COV of WIVID is computed for each cortical 

region. Let the set of images belonging to phantom p obtained under different scanning 

conditions be denoted by Ip. The corresponding vector of WIVID values for a region R of 
the brain, from scans of modality m, is given by W IVIDR. The COV of the WIVID for a 
region R can be written as

R x ^(W IVID R—
COV  (W IV ID R— =  —------------ p— . (2.28)

( p,m) m w i v i d R - )  ( ;

In comparison with WIVID, signal intensity measurements are computed in a voxel-wise 
manner, therefore leading to voxel-wise maps of COV. To obtain a regional estimate of the 

COV of signal intensity, we compute the mean COV of signal intensity averaged over all 

voxels in a distinct cortical region. As defined previously, for a set of images of scan modality 
m belonging to a phantom p, the voxel x has intensities denoted by Ip,—(x). The COV for 

the voxel x computed over the entire set of images is given by

COV <IP -< x »  = i t S l f . (2'29)

From the above equation, the mean COV over all N r  voxels in a region R can be 

computed as
rn Exen  COV(Ip,m(x))

N r
C O V (IRm) =  ^ xeR— A7 v ' . (2.30)

2.4.2 Visual Inspection of Image Quality
Figure 2.12 shows all the Trio scans obtained from Phantom 1. The Allegra scans 

belonging to Phantom 1 are displayed in Figure 2.13. To serve as a point of comparison for 

image quality, Allegra scans and Trio scans of Phantom 1 can be seen in Figure 2.11. From 

visual inspection, it is clear that the image quality of the Trio images is superior to those 

of Allegra, and it is apparent that Trio images display greater stability. This is particularly 
observed in the case of the T2W scans, in which the image quality is drastically improved 

in Trio scans compared with Allegra. In the sections to follow, we restrict our analysis to 

Trio scans alone and move to quantitative analysis.

2.4.3 Quantitative Analysis of W IV ID

In our analysis, COV (Coefficient of Variation) is adopted as the tool of choice to study 

stability across measurements, along the lines of similar studies of stability for neuroimaging 

data [117]. Coefficient of variation can be defined as the ratio of standard deviation to 

overall mean. As described in the previous section, 2 phantoms were scanned repeatedly
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Figure 2 .12 : Bias corrected Trio scans of Phantom 1 from the 4 scan locations (top 2 rows, 
scans are repeated in 2 scanner in one of the locations), with T1W images (top 2 rows) and 
T2W images (bottom 2 rows).

Figure 2.13: Bias-corrected T1W Allegra scans of Phantom 1 from the 4 channel coil (2 
leftmost images), and volume coil (2 rightmost images).

using 2 scanners (Allegra and Trio) at 4 locations. We apply the processing pipeline and 

the registration framework described above to the scans belonging to each phantom. The 
Coefficient Of Variation (COV) for WIVID in each region R is computed. The mean COV 

for intensity in each region R is also computed, by averaging the voxel-wise COV over all 
voxels in the region R .

The results of the phantom experiment show that with changing external scanning
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conditions and scanner type, the COV of WIVID is significantly lower than the mean COV 

of intensity values. This is illustrated in Figure 2.14, which shows the relative stability of 

WIVID when external factors such as scanner type, locations, and conditions of scan are 
varied. Since the COV is analyzed in a region-wise manner, it is shown for each of the 

15 lobar parcellation regions. In most regions of the brain, the regional COV of WIVID 

lies between 2 and 5 percent. Therefore, any changes in WIVID across scans that lie in a 
much higher range can be predominantly attributed to actual changes in the appearance of 

images rather than to artifacts due to scanning conditions. In comparison, the mean COV 

of intensity for a region is much higher, ranging between 5 and 10 percent for T1W scans, 

and between 10 and 20 percent for T2W scans. Subsequently, lower COV values indicate 

lower standard deviation and better stability values. As a point of reference, it was shown 

previously that the COV value associated with volumetric analysis for the same dataset 

ranged from 0.5 and 10 percent for major cortical and subcortical structures [123]. From 

the above analysis of COV values, it can be concluded that the stability of the WIVID 

measure is superior to that of signal intensity, providing a strong motivation for adopting 
WIVID as the biomarker of choice for quantifying intertissue appearance variations in brain 

images.
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COV across all scanners T1 Phantoml COV across all scanners T2 Phantoml

COV across all scanners T1 Phantom2 COV across all scanners T2 Phantom2

Figure 2.14: The COV (Coefficient of Variation) values of WIVID and Mean COV values 
of intensity, plotted for T1W (left column) and T2W (right column) scans belonging to 
Phantom 1 (top row) and Phantom 2 (bottom row) across 15 brain regions. Brain regions 
are indexed as follows: Occipital Right =  1, Temporal Right =  2, Subcortical Right =  3, 
Frontal Right =  4, Cerebellum R =  5, Parietal Right =  6 , Occipital Left =  7, Subcortical 
Left =  8, Frontal Left =  9, Cerebellum Left =  10, Parietal Left =  11 Temporal L =  12, 
CSF Left =  13, Prefrontal Right =  14, Prefrontal Left =  15.



CHAPTER 3

STATISTICAL MODELING OF 
INTENSITY VARIABILITY IN 

DEVELOPING BRAIN MRI

3.1 Normative Models of Growth
Statistical modeling and analysis is possible with the development of quantitative mark

ers. In the context of neuroimaging, these quantitative markers could range from volu
metric, morphometric, and diffusion indices, to appearance indicators. Modeling of these 

markers across time can establish standardized trajectories of change characterizing normal 

development. These normative models of changes in imaging biomarkers are important for 

understanding crucial neurodevelopmental processes [60].
The origin of several neurobiological disorders can be traced back to early brain develop

ment [46,125], which can be attributed to plasticity of the early brain and its subsequent vul
nerability to external influences. Understanding the origin and course of brain disorders even 

at early stages is possible with the creation of statistical models for use with neuroimaging 

studies. Normative models of change can be used to establish standards related to healthy 

brain development and assess the degree of deviation from these standards in the case of 

abnormal development. Procedures for early diagnosis of disorders based on normative 
growth information can then be formulated, facilitating the use of early interventional 

therapies that are effective when applied to the highly plastic infant brain. In addition, the 

normative statistical models developed can be used to evaluate interventional procedures 

and therapies following early diagnosis [60]. The importance of establishing normative 
models that map changes in neurodevelopmental biomarkers is outlined in Figure 3.1.

A major goal of this dissertation is to understand the nature of appearance changes 

in brain tissues across time, which can be accomplished by statistical modeling of the 
WIVID biomarker that was introduced in Chapter 2. Given WIVID data from large-scale 

neuroimaging datasets, a question at hand is, “What is the best method of modeling this 

data” ? The neuroimaging data studied in this work is longitudinal in nature - i.e., it consists
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Figure 3.1: Importance of establishing normative models to quantify changes in neurode- 
velopmental biomarkers.

of repeated scans of the same subject being acquired over time. Modeling data of this nature 
using traditional cross-sectional modeling approaches could misrepresent the data, being 

insensitive to individual differences in development [54, 58]. Resulting changes that are 

reported using this approach could be distorted or might not be detected altogether [126]. 

Alternatively, methods for modeling of longitudinal data could be employed to present a 

more accurate picture of brain development [127]. Longitudinal modeling of data takes 

into account the correlations between repeated samples obtained from the same subject 

across time. In this chapter we introduce basic concepts in statistical modeling followed 

by discussions of comprehensive schemes for testing and modeling of longitudinal data. 
Multivariate analysis for jointly modeling changes in different modalities is also introduced 

here. These schemes for longitudinal and multivariate data modeling will be practically



63

applied to WIVID data and further explored in later chapters.

3.2 Modeling Repeated Measures Data
In this section, we discuss concepts in data modeling that are essential precursors to 

understanding longitudinal mixed effects modeling. The concepts covered include the nature 

of repeated measures data, quantitative tools for testing data models, the role of visual 
analysis in data modeling, parametric and nonparametric modeling, linear and nonlinear 

cross-sectional modeling, adding group-based covariates, and subject-specific modeling. 

While these concepts have already been discussed in the context of NLME (Nonlinear 

Mixed Effects) and LME (Linear Mixed Effects) modeling [17, 128, 129], we organize this 
information and present the pipeline involved with the specific application of modeling 
neuroimaging biomarkers in view. Figure 3.2 illustrates the options available for statistical 

modeling of longitudinal data.

To illustrate some of the concepts in basic data modeling and mixed effects modeling, 

we use a subset of the ACE-IBIS data that is analyzed in greater detail in Chapter 4. The 

subset used consists of scans from 92 subjects, obtained at three time points (6, 12, and 24 
months), and categorized based on risk/diagnosis for Autism Spectrum Disorder (ASD). The 

grouped data points analyzed include WIVID contrast measures from 22 controls, 14 HR+ 

(High Risk Positive) subjects, and 56 HR- (High Risk Negative) subjects. To simplify the 

analysis for purposes of discussion, only positively valued WIVID measures are included 

in this example subset. Additionally, only WIVID contrast values of the right temporal 

lobe from T1W scans are studied here, for the sake of illustrating principles of statistical 
modeling.

3.2.1 Repeated Measures Data

“Repeated measures data” refers to data that is generated by observing a number of 

individuals repeatedly under differing experimental conditions [130]. In longitudinal data, 

the repeated measures observations could be obtained by ordering in time or space, resulting 
in serial correlations between data.

In the past, repeated measures data addressed measurements from experiments such as 

epidemiological studies, where a large number of individuals were observed from a small 

number of time points [129]. Since large-scale neuroimaging datasets consist of repeated 

scans of the same subject taken at different time points, this also falls within the repeated 
measures category. Traditional cross-sectional fits to the data might not be sufficient. 

Due to the highly correlated nature of data belonging to the same subject obtained at
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Figure 3.2: Description of process governing model-selection for longitudinal neuroimaging 
WIVID biomarker data from the ACE-IBIS dataset.

different time points, modeling the data in a cross-sectional manner would violate the 
necessary assumptions of independence. Another possibility for modeling repeated measures 

data is subject-specific modeling. However, this type of modeling restricts the estimated 

model to the subjects under study and may not be easily extendable to other subjects. 

The number of samples per subject required to estimate this model is also high, and due 

to limited samples the resulting per-subject fit might not be accurate. Therefore, the 
mixed effects model simultaneously takes into account the subject-specific (random effects) 

and population (fixed effects) trends. In addition, major advantages of using a mixed 

effects modeling approach to model longitudinal data include robustness to outliers and 

noise, as well as the ability to utilize incomplete datasets with missing and unbalanced 
data acquisition. In the following sections, nonparameteric and parametric models for 
characterizing neuroimaging biomarkers are discussed.
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3.2.2 Quantitative Analysis of Data Fit

The major quantitative tools used to analyze the quality of a model fit include the 

following: 1) residual standard error, 2) residual plots, 3) R-squared error or R2, 4) ANOVA 
(Analysis of Variance) results, 5) standard deviations of estimates, 6) confidence intervals, 

and 7) AIC (Akaike Information Criterion). Of these, the AIC is a very important criterion 

that can be used for examining models. These tools can be used to compare different models 

for fitting data, examine grouping factors, and also to diagnose issues with these models. 

In the discussion that follows, y is assumed to be the outcome variable obtained at time 

instants tk indexed by k =  1,2,..., K . Predicted values of the outcome variable are denoted 

by y. At a specific time instant tk, the outcome variable is y(tk) and the predicted outcome 

variable is y(tk). From this definition, the sum of squared error (SSE) can be defined as

K K
SSE =  £  e(tk)2 =  £  (y(tk) -  y(tk))2. (3.1)

k=1 k=1

(1) The residual standard error (RSE) can be defined in terms of the SSE as

SSE
RSE =  W —— — -, where, dof  is the number of degrees of freedom. (3.2)

(2) Residual plots consist of the residual y(tk) — y(tk) corresponding to each value y(tk) 

plotted on the y-axis, versus tk values plotted on x-axis. If trends are seen in the values of 

the residual with respect to the covariate, it could an indicator of an underlying problem 

with the fit. Residuals also verify assumptions made regarding the nature of statistical 

errors e.

(3) The R-squared error or R2 is the proportional reduction in squared error resulting 
from the model fit. Consider a model that does not use independent variables, for which 

prediction is based only on the mean outcome. In this case, the term total sum of squares 

(TSS) refers to the sum of squared errors for this model, given by

K
TSS =  £  (y(tk) — y)2. (3.3)

k=1
Based on the TSS and SSE values, the R2 measure is given by

R2 =  1 SSE (3 4) 
R - 1 — TS S . (3'4)

The corrected R2 error, which penalizes for extra independent variables p in the model, 

is given by
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SSE
R2 =  1 -  ^ . (3.5)

n—1
(4) The ANOVA (Analysis of variance) results are derived from definitions of TSS, SSE, 

and RegSS. RegSS or the regression sum of squares is given by RegSS =  ^  K=1 (y(tfc) — y)2. 
The decomposition TSS =  SSE+RegSS constitutes the basis of ANOVA. ANOVA tests for 

statistical significance, mainly by differentiating between two sources of variation - intrinsic 

variation within a dataset from its mean and variation with respect to a predicted value. 

The significance of the factors involved in prediction can be tested using ANOVA.

(5) Standard deviations of estimated parameters can also be used for diagnosis of 

goodness of fit in the case of mixed effects models. While the formulation for standard 
deviation is outside the scope of this dissertation, it could be broadly defined as the deviation 

associated with the estimated parameter values of the fit. The standard deviation of each 

parameter is a result of the ML (Maximum Likelihood)-based estimation procedure, and 
must be within reasonable limits for the model fit to be considered.

(6) As a by-product of the ML-based estimation procedure, the mean and standard 

deviations of each parameter can also be used to produce bands of confidence intervals. 
Overlap in confidence intervals between different groups can indicate whether the grouping 

or categorization needs to be accounted for in the model.

(7) Akaike Information Criterion (AIC) is a critical diagnostic measure for analyzing fits 

from mixed effects models. Considering logLik - the log-likelihood estimate from the ML 

procedure in mixed effects modeling, and the number of paramters to be estimated - npar, 

the AIC value can be defined as

AIC =  —2logLik +  2npar. (3.6)

A lower AIC value corresponds to a better model fit for the data.

3.2.3 Visual Analysis of Data Points

Prior to modeling the data, visual observation of the data is crucial. An important 
question to answer when applying longitudinal statistical modeling is “which function 

best fits the data?” In certain cases, visual analysis of the data can lead to an improved 
understanding of the inherent nature of variations in the data and mechanisms governing 

these variations. Based on this understanding, inspection of various models used for data 
fitting and verification of the best model fit serve as a crucial addition to quantitative checks 
such as the residual standard error and Akaike Information Criterion (AIC). Among other
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factors, sparsely sampled data and missing data points might provide misleading results if 

only quantitative checks are considered for deciding the best fit to the data.
To illustrate this concept, WIVID data is modeled in a cross-sectional manner using 

both quadratic and nonlinear fits, as shown in Figure 3.3. From neurobiological evidence, 

tissue appearance differences, as quantified by the WIVID, will constantly increase for the 

age range under study in this dataset, until they stabilize at an asymptotic point. This 

asymptotic nature makes nonlinear growth functions, such as the Gompertz or Logistic 
functions (discussed extensively in the next section), an ideal fit to the data. However, 
on examination of the residual squared error values, the quadratic fit is only a marginally 

weaker fit compared to logistic and Gompertz fits (the residual standard error values are

0.06473, 0.06293, and 0.0767 for logistic, Gompertz, and quadratic fits respectively). In this 

example, the knowledge that tissue appearance difference does not decrease during this age 

range would be valuable for choosing the right function to model the data.

3.2.4 Nonparametric Models via Kernel Regression
Kernel regression can be used to get an initial estimate of spatiotemporal biomarker 

variation without making any assumptions based on parametric models. Considering that 

each subject i has been scanned at time indices k, denoted by titk, we denote the biomarker 

of the subject i computed at the kth scan by y(ti,k). The measure y obtained for a single 
subject at specific time instants given by y(tiyk), is interpolated using kernel regression, 
which results in a continuous trajectory of change in the biomarker for the specific subject

1, over all time points t , given by

,  ,  K(t , t i,k)y(ti,k)
y(ti) =  v  K a t  ; . (3J )K (t,ti,k)

A population trend is often essential for representing the overall information gained 

from several subject-specific trends. From the computation of the individual trend y(t) 
using kernel regression, the mean value for the appearance measure at each time t for the 

entire population can be found. This value is found from the population trend, which is 
obtained by integrating the measure from each subject i over all subjects i =  1,2, ....N at

5The convention used here is a departure from that in Chapter 2. In Chapter 2, the biomarker 
corresponding to region R i , modality m and subject i was denoted by W I V I D f lm (tk, where time is indexed 
by (tfc). In this case, the common indexing of time points across all subjects is implicit since the term 
(tfc) is independent of the subject index i. This common indexing follows from the simplification made in 
Chapter 2, that the markers modeled are extracted from data acquired at the same time points across all 
subjects. Since the subject of the current chapter is exclusively data modeling, this assumption is relaxed - 
each subject i is assumed to be scanned at time points ti>k, therefore adding the flexibility that these time 
points could vary between subjects.
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Quadratic Cross-Sectional Model Logistic Cross-sectional Model

Age (Months) Age (Months)

a) b)

Figure 3.3: WIVID contrast measure changing with age are modeled by (Left) Quadratic 
cross-sectional fit, and (Right) Logistic cross-sectional fit.

each point t, and dividing this per-instant value by the total number of subjects, which is 
mathematically formulated as

y(t) =  N X y(ti) . (3.8)

Here, K (■, ■) denotes a kernel function that is chosen to be a Gaussian kernel in all our 

subsequent analysis. The main feature of this approach is that a parametric representation 

of change in data is eschewed in favor of a broader, nonparametric approach. Examples of 
the kernel regression fit performed for contrast change in a specific lobe of the brain are 

shown in Figure 3.4.

Averaging of subject-specific curves at each time point is done with the purpose of 
generating an average curve for the entire population, based on assumptions about the 

nature of distribution of values across all subjects at each time instant. In the sense in 

which KDE is implemented here, the results can be interpreted as subject specific. However, 

kernel regression can also be applied simultaneously to data points across all subjects. In 

this case, the correlated nature of repeated measurements from the same subject is ignored, 
and kernel regression will be cross-sectional in nature.

Kernel regression requires densely sampled data points to be effective, mainly due to 

the large number of values that are estimated. Practical application of the kernel regression 
method to our neuroimaging datasets is problematic, since it requires multiple scans of each 
subject at closely spaced time points for effective computation. The close clustering of time
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Covariate (Time) Covariate (Time)

Figure 3.4: Kernel regression of biomarker data is performed with respect to the covariate 
time, resulting in a) individual subject-specific trend (blue), b) population trend (black) 
computed from individual trajectories of 10 subjects (blue).

points at which the different subjects were scanned and their imbalanced nature is another 

factor that leads to problems. Some problems that are observed in the resulting appearance 

change trajectories include artifacts such as stair-casing and excessive dependence of the fit 

on the kernel parameters that are chosen [131]. In addition, the use of kernel regression does 

not result in a set of parameters or values that can be easily used by clinicians to understand 
the behavior of the quantities under study. Hence, although kernel regression provides a fair 

initial idea of the nature of trajectories of biomarkers studied, we will investigate adopting 

parametric modeling techniques as suitable methods for spatiotemporal analysis on this 

dataset.

3.2.5 Parametric Regression Models

Prior to longitudinal modeling, it is beneficial to apply cross-sectional regression-based 

modeling to the biomarker data y of interest and explore the results. Cross-sectional 

modeling essentially consists of fitting a single model to data from the entire population. 

This approach assumes that all the data points being fit are independent, and hence it does 

not consider the correlation between repeated measurements from the same subject. By 
applying cross-sectional modeling, we can estimate and compare the efficacy of different 

functions in modeling our data, as an initial step. This approach can also be used to 
find initial estimates of growth parameters that are critical to implementation of more 

advanced models. The effectiveness of the models fitted can be quantified and compared

6Since we study data modeling with the view of applying it to neurodevelopmental biomarkers, time t is 
assumed by default to be the covariate of interest.
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using diagnostic tools such as the residual standard error, R-squared errors, and ANOVA 

(Analysis Of Variance) values [130] that were defined earlier. In addition, the standard 

deviations of the estimated values in fits could be analyzed and checked for being within 
reasonable limits.

A linear cross-sectional approach is first explored for modeling the outcome variable y(t) 
corresponding to the biomarker of interest, which changes with respect to the covariate time 

t6, which is described by the equation

y(t) =  0 1t +  02 , where 0 1 =  slope , 02 =  intercept, t =  time/age. (3.9)

Results from this linear fit can be seen in Figure 3.5a.
An alternative cross-sectional regression fit to the data is the quadratic model, which 

consists of an additional quadratic term, given by the equation

y(t) =  0it2 +  021 +  03 . (3.10)

Linear and quadratic cross-sectional models are generally fit using least squares estima

tion, although alternative methods exist. Using this technique, the values of the coefficients 

in the model - for example, 0 1 and 0 2, are estimated such that the sum of squares error 

between the predicted outcome and actual (i.e., empirical) outcome value is minimized. 
Considering the linear cross-sectional model shown above, and given that K  experimental 

outcome values denoted by y(tk) are recorded at time instants tk, the sum of squared error 
to be minimized can be given as

K K

E  etk2 =  E  (y (tk) — 0 it k + 0 2)2. (3.11)
k=1 k=1

Alternately, nonlinear growth functions can also be implemented using the cross-sectional 

model. Some major nonlinear growth functions and their equations, with parameters 

0 1, 0 2, 0 3, are listed below.

y(t) =  0 1 x e- ^ 3 , .... Gompertz fit. (3.12)

y(t) =  01 + ------02j,3_f , .... Logistic fit. (3.13)
(1 +  e 4̂ )

y(t) =  0 1 +  (02 — 0 1)e - e ^31, .... Asymptotic fit. (3.14)

The trajectories in Figure 3.5b model the entire sample data using the three nonlinear 

growth functions mentioned above. The parameters of the nonlinear growth function are 

estimated using nonlinear least squares methods.
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Linear trend to f it  all the data (no grouping) Nonlinear f it  com parisons
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Figure 3.5: Examples of cross-sectional fits to data: (a) Linear cross-sectional fit to data 
independent of grouping, (b) Nonlinear cross-sectional fits to data (Logistic, Gompertz, and 
Asymptotic), independent of grouping.

Based on the asymptotic nature of brain appearance change trajectories for the age 

range under study, the quadratic fit is not implemented since it predicts an increase in the 

data followed by a decrease. While this trajectory might hold true for brain development 

curves from birth, the ACE-IBIS data, which ranges from 6 months to 2 years of age, 

generally displays only trends of increasing contrast. This asymptotic nature of contrast 
makes nonlinear functions such as the Gompertz, logistic, and asymptotic fits suitable for 

data modeling.

Based on the AIC values shown in Table 3.1, it could be observed that the logistic 

function provides the best cross-sectional fit, closely followed by Gompertz and asymptotic 

functions.
The AIC values of the linear fit were dramatically higher than for the nonlinear fits, 

indicating that nonlinear fits are much more suited for analysis of the dataset being studied. 

Further, all three nonlinear fits also displayed much lower values for residual standard 
error, compared with the linear fit. The logistic function also had the lowest value for the 

residual standard error, further establishing its suitability for modeling WIVID contrast 

data compared to other models. Upon studying the parameters and their associated 

standard error values, it was observed that the delay parameter for the Gompertz curve had 

the highest standard error of up to 25 percent of the value of the parameter itself, which

Age (Months)

a)

Age (Months) 

b)
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Table 3.1: Diagnostic Parameters for Assessment of Fit of Linear and Nonlinear Cross
Sectional Models.

Function Linear Gompertz Logistic Asymptotic Regression
AIC -313.5890 -721.3247 -722.8527 -718.4570

Residual Standard error 0.1361 0.06491 0.06473 0.06525
Par1 0.799704 1.188303 1.185722 1.191400

StdErr(Par1) 0.018027 0.005474 0.005226 0.005759
Par2 0.017933 15.969526 5.402050 -7.311748

StdErr(Par2) 0.001092 4.323236 0.082397 1.857816
Par3 NA 0.564018 1.468603 -0.737506

StdErr(Par3) NA 0.024335 0.111540 0.074316

indicates that the Gompertz fit implemented using cross-sectional modeling might be very 

unstable.
A comparison of the three nonlinear growth models shown in Figure 3.5b indicates that 

their resulting fits to the data are very similar. The main difference between them seems to 

be the speed at which they approach the asymptote. Although the logistic function sharply 

approaches the asymptote, the Gompertz function approaches the asymptote less sharply. 

Again, whereas the logistic function is constrained to be symmetric on both sides of the 
midpoint, this is not true for the Gompertz function. In comparison with the logistic and 

Gompertz functions, the asymptotic function approaches the asymptote the slowest.

In the linear and nonlinear models mentioned above, the only covariate used is age. 

Additional factors can be added to the analysis in such a way that they influence one or all of 
the model parameters. Examples of covariates than can be meaningful to clinical population 

analysis are sex, diagnostic results, and genetic factors. As an illustrative example, we 

change the linear cross-sectional analysis by adding a covariate to the intercept that we 
simply call “group.” Any number and combination of the estimated parameters can be 

associated with any of the groups. The mathematical equation for linear cross-sectional 

analysis can be rewritten as

y(t) =  0it +  02 ,group, (3.15)

where 0 1 refers to the common slope for all subjects and <fi2,group refers to the intercept for 

each group. In this case, the model fit to the data will be distinct for the distinct population 

groups of interest, although they will share the estimate for slope.

Extending this example to the case of both slope and intercept being grouped, the 
equation for linear cross-sectional analysis can be written as

y(t) =  0i ,groupt +  02 ,group, (3.16)
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where 01>group refers to the slope based on group and 02,group refers to the intercept for each 

group. The resulting linear fit has grouping for both slope and intercept parameters.

The estimation of grouped covariates can also be extended to the case of nonlinear 
models. Some growth functions of interest can be reformulated as given below, assuming 

that all their parameters are dependent on the group covariates.

y(t) =  01>group x e- ^2’group̂ 3’group , .... Gompertz fit. (3.17)

y (t) =  — 01C 7up-t , . . . .  L°gistic fit. (3.18)
(1 +  e 3̂ ,group )

y(t) =  01,group +  (02,group -  01,group)e-6 3̂’gT°UP\ .... Asymptotic fit. (3.19)

Nonlinear logistic fitting applied to the entire dataset with grouping for all three parameters 

can be seen in the red, blue, and green curves in Figure 3.6. Whether or not grouping is 

necessary for an improved model fit needs to be assessed. Comparisons of residual standard 

error from Gompertz and logistic functions, when model fitting is done with and without 

grouping of the data, can be seen in Table 3.2. The data are grouped based on risk/diagnosis 
category. From this table, it can be inferred that grouping based on risk/diagnosis category 

reduces the residual standard error and is beneficial to the modeling.

The significance of each covariate associated with each parameter can be measured using 

ANOVA tests for the data. That is, if the p-value of the ANOVA tests is significant for the 

covariate-parameter combination of interest, it implies that the covariate is significant with 

respect to that parameter and should be included in the analysis. In this case, the group 

is the covariate of interest, and the p-value associated with this grouping, corresponding to 

each of the parameters (for example, 01, 02), can determine if the covariates need to be 
included into the analysis.

To summarize, the results of applying linear and nonlinear cross-sectional models on the 

autism data introduced earlier can be seen in Figure 3.6. Results of applying the quadratic 

model fit on the same data are displayed. It was observed that cross-sectional nonlinear 

models were far superior to the cross-sectional linear model. In addition, it was seen that 

the best nonlinear fit to the data was provided by using the logistic growth function in the 

cross-sectional model. It should be mentioned that since WIVID contrast changes across 
all brain lobes roughly follow the same asymptotic pattern observed in the right temporal 

lobe, nonlinear functions might be the best fit for WIVID changes in these lobes as well.
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Logistic fit of R temporal lobe contrast : with grouping

Age (Months)

Figure 3.6: Logistic cross-sectional fit to the data with grouping applied to all three logistic 
parameters. The grouping is performed on the basis of ASD risk/diagnosis groups.

Table 3.2: Comparison of Gompertz and Logistic Cross-Sectional fits with and without 
grouping based on risk/diagnosis category.

Function Gompertz (grouping) Gompertz Logistic (grouping) Logistic
Residual Standard error 0.06293 0.06491 0.06271 0.06473
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The defining feature of these cross-sectional models is that a single set of model param
eters is estimated for the entire population or for each population group. In the following 

sections, the concept of repeated measurements will be introduced. In the case of repeated 
measures data, each subject might have a separate set of estimated model parameters. 

Advanced methods for effective modeling of repeated measures data will subsequently be 

introduced.

3.2.6 Subject-Specific Modeling of Data

A method of modeling repeated measures data is to perform subject-specific fits: that is, 

each subject is fit with an individual model. For example, we can redefine a subject-specific 
extension for the basic linear cross-sectional model defined earlier as

y(t) =  01,it +  02,i, where i refers to each individual subject. (3.20)

Each subject can be thought of as a “group,” which makes subject-specific analysis very 

similar to covariate-based analysis, with each subject being the covariate in question. In 
the equation mentioned above, both parameters, 0 1 and 0 2, are assumed to be subject 

dependent. However, depending on the specific case under study, some of the parameters 

of the fit could be assumed as subject-specific, while others could be the same for the 

entire population. An example is given below in which the slope alone is assumed to be 

subject-specific, whereas the intercept is common for the population.

y(t) =  01 ,it +  02 . (3.21)

Similar subject-specific fits could also be applied with nonlinear growth functions. A 

subject-specific fit to data for the logistic growth function is given below, and can be seen 

in Figure 3.7. The subject-specific model for the logistic function can be specified as follows

yi(t) =  — . (3.22)
(1 +  e ^  )

As mentioned previously, subject-specific fits cannot be easily extended to broader pop

ulation data, because they are estimated specifically for the data under study. As a 

result, it is difficult to determine overall trends in data based on subject-specific fits alone. 
Subject-specific fits of data also require a large number of samples for proper estimates of 

values. These reasons, coupled with the issues with applying cross-sectional fits to repeated 

measures data, lead us to explore mixed effects modeling techniques in the following section.
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Linear fit of R temporal lobe contrast : subject specific

Age (Months)

Logistic subject specific fit :Growth-scale constant
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a) b)

Figure 3.7: Subject-specific fits to WIVID data: (a) Linear function, subject-specific fit 
(each subject is encoded with a specific color), b) Logistic subject specific fit to the data 
keeping the rate parameter constant (each risk/diagnosis group is encoded with a specific 
color).

3.3 Mixed Effects Modeling
Apart from being intuitively appealing, mixed effects models allow nonconstant cor

relations among observations and unbalanced data designs. Both linear and nonlinear 

functions can be implemented using mixed effects modeling. Here, since the superiority 
of the nonlinear fit for the WIVID data has already been established, only NLME modeling 

is discussed.

3.4 Nonlinear Mixed Effects Modeling
Nonlinear mixed effects modeling, also known as NLME, jointly estimates both pop

ulation and individual trajectories of change. In our approach, we use the established 
framework of hierarchical NLME to model contrast change with time. This NLME model, 

proposed by Lindstrom and Bates [132], models the observation of the ith individual at the 
jth time point ti,j as

yij =  f  (0i, tij) +  eij. (3.23)
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We begin by only considering a univariate observation yij . Here i =  1,..., Nind refers to the 

different individuals indexed by values ranging from 1 to Nind, and j  =  1, ...,Tind indicates 
the time points of scan, ranging from 1 to Tind. The function f  is the nonlinear growth 

function of choice that is used to model the contrast change trajectory, dependent on the 

covariate vector t j  as well as the individual-specific parameter vector 0 i . The error term 
tij refers to the i.i.d error following the distribution e j  ~  N (0, a2). The parameter vector 

0 i consists of both fixed and random effects components. This can be written as

0 i =  A*fi +  B ibi , where b* ~  N (0, ^ ). (3.24)

That is, the fixed effects and random effects design matrices are given by A* and B* for 

each subject, and the p-vector of fixed effects is given by fi and the q-vector of random 

effects is given by b*. The random effects that contribute to parameter 0 i are assumed to 

be normally distributed with variance-covariance matrix ^  over all subjects.
Since we want to model the highly nonlinear trends seen in contrast change, and 

eventually extract parameters that describe maturational processes in terms of contrast 

change, we adopt a nonlinear mixed effects modeling approach using a growth function. 

We systematically evaluate three nonlinear growth functions - the Asymptotic, Logistic, 
and Gompertz functions. The question of which function shows the best fit overall can 

be answered by both comparing the Akaike Information Criterion (AIC) values and by 

examining the estimated random effects parameters, residual standard error, and residual 

plots of the NLME fit versus the actual observed values.
For the purpose of this discussion, the NLME models introduced correspond to the logis

tic growth function, although they can be extended to other functions as well. Parametric 
growth models such as the logistic and Gompertz growth function provide concise descrip

tion of the data and greater flexibility compared with the standard linear mixed effects 

representation. The logistic function using the NLME format, in which the parameters of 

the growth function 0  consist of both fixed and random effects, can be written as

f  ($i, tij) =  0ii + ------- 0% 3 - ~ . (3.25)
1 +  exp î4

Since our logistic fit is unique for each region, the response yR for a region R is

yR =  0Rii + 0  t- +  eij. (3.26) ̂ i3 Lij
1 +  exp

The parameters of nonlinear growth functions can also be interpreted in a manner that 

is intuitive. For example, the parameters of the logistic growth function can be interpreted
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as follows: 1) 0 1 is the left asymptotic parameter for very small values of input, 2) 0 2 is 

the right asymptotic parameter for very large values of input, 3) 03 is the Inflection Point 
parameter also called Delay, which indicates the time taken to reach half the difference 
between left and right asymptotic values, and 4) is the rate parameter, also called a 
scale parameter, denoting a scaling function on the time axis.

Crucial observations can be drawn regarding the nature of the NLME fit from Table 3.3. 

It can be seen that the logistic NLME models provide the best fit to the longitudinal data 

based on the values of the standard error parameter.

3.5 Extension of NLME to Multimodal Data
Since we want to model multimodal data, the jth response at time tij belonging to each 

subject i, modality m in a region R is written as:

A  ,m +  bi2 ,m
yij,m — Pl,m +  bi1,m + 3̂,m + bi3,m îj

1 _|_ eXp 4̂,m+bi4,m
+  eij (3.27)

Therefore, for the entire set of multimodal images, the responses can be modeled as

VR-&ij,m

i
jit, 

•
i,f(

i

ij (3.28)

In order to jointly study both variability within a modality (between individuals) and 

across modalities, the random effects belonging to all modalities are assumed to follow 
a multivariate normal distribution, the parameters of which are estimated. In this manner, 

the growth patterns of scans from different modalities are associated and jointly estimated 
rather than separately. Therefore, for both the modalities [m — 1,2,..., M ] that we consider, 

the joint random effects associated with parameters bi2 and bi3 (corresponding to parameters

0 2 and 03 , i.e., asymptote and delay) are

T
bi — [bi2,i bi3,i . . bi2,M bi3,M ] ~  N (0 , ^ ). (3.29)

Inferences can be made based on the above statistical analysis by 1) studying the estimated 

mixed effects parameters and resulting growth trajectories, and 2) hypothesis testing to find 
significant differences in parameters belonging to different modalities. The details about 

computation of estimated parameters ( ^ , ^ , ^ , a 2) as well as hypothesis testing can be 

found in [58].
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Table 3.3: AIC values for choosing optimal configuration of random Effects for NLME 
model. Abbreviations used: Parameter (Par), Standard Error (Std Error), and Variance 
(Var) . *NOTE: The quantity within the brackets in the case of the NLME fit refers to the 
index of the parameters (abbreviated as Par.), that were considered as random effects in the 
corresponding mixed effects model. Here, the random effects 0 1 , for example, is represented 
by the index 1.

Quantity(all logistic fits)* Cross-sectional NLME(12) NLME(13) NLME(1)
AIC CS -842.5382 -820.7867 -721.1057

Par 1 (Fixed effect) 1.57 1.180 1.182 1.1856
Par 2 (Fixed effect) 5.4020 5.857 5.699 5.3967
Par 3 (Fixed effect) 1.4686 0.855 1.1488 1.473
(Par 1) Std Error 0.005 0.003 0.003 0.0053
(Par 2) Std Error 0.082 0.076 0.0519 0.0821
(Par 3) Std Error 0.11 0.072 0.095 0.1110

Var Par 1 (Random effects) NA 0.0212 0.017 0.0123
Var Par 2 (Random effects) NA 0.4265 NA NA
Var Par 3 (Random effects) NA NA 0.613 NA

Within group error NA 0.0289 0.03099 0.0633
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3.6 NLME Modeling on Synthetic Data
To better understand multivariate NLME analysis, bivariate synthetic data were gen

erated. Trajectories of change of two variables were generated using logistic growth func
tions such that the random effects parameters underlying the growth function belong to 

a multivariate Gaussian distribution. Two experiments were conducted independently in 

which the random effects parameters of the growth functions were 1) strongly correlated 

and 2) uncorrelated, as can be seen in Figure 3.8. The fixed effects were the same for 

both experiments. The individual and subject-specific trends were then modeled using 

NLME-based mixed effects analysis. The NLME model fit was first done separately for 
each variable, followed by a joint modeling of both the variables using the multivariate 

version of NLME. Our most important inference from these phantom experiments is that 
when correlation is present between parameters of the two variables, a multivariate NLME 

fit results in a significantly lower AIC value compared with the summed AIC values of 

individual fits for each variable, as seen in Table 3.4. Thus the superiority of the multi

variate fit is observed, which confirms the need for multivariate analysis, particularly when 

correlation is present between variables in a dataset. Results of hypothesis testing (not 

shown), which are consistent with our experimental design, as well as accuracy of estimated 
growth function parameter values, shown in Table 3.5, further confirm the efficacy of the 

multivariate NLME framework.

3.7 NLME: Analysis and Inferences
The inferences that can be made from the statistical analysis outlined above consists 

primarily of understanding patterns of brain growth and timing based on the parameters 

of the estimated growth function. Since the logistic fit was most stable and suitable to the 

data studied, we will discuss the parameters of the logistic growth function. The different 
parameters of the logistic function represent asymptote (final contrast value in the adult-like 

brain), delay (time taken to reach 1/2  of the final asymptotic value), and a rate parameter. 

A study of these parameters, particularly of the delay parameter, has the potential to 
illustrate the heterosynchronous nature of brain maturation that takes place at different 

rates in different regions of the brain.

Hypothesis testing is done on the parameters of the growth function to check for 

significant differences between distinct population groups. The exact procedure for this 

is outlined in the NLME literature [58, 128]. It should be noted that when parameters from 
multiple regions are compared, correction for multiple comparisons is employed.
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Figure 3.8: Top row: (Left) Strongly correlated phantom data, uncorrelated phantom 
data, Middle row: Trajectories of change in two variables with strongly correlated growth 
parameters, and Bottom row: Trajectories of change in two variables with uncorrelated 
(bottom) growth parameters, experimental values of (center) asymptote and (right) delay.

Table 3.4: AIC comparisons for separate and joint fits of multivariate synthetic data.

Relation Between Variables AIC(Var.1) +  AIC(Var.2) AIC(Var.1 +  Var.2)
Strong Correlation -869.751 -1015.242

No Correlation -866.006 -864.939

Table 3.5: Multivariate NLME: Estimation of growth parameters and hypothesis testing.

Parameter Var.1(Truth) Var.1(Estd) Var.2(Truth) Var.2(Estd) p-value
Asymptote 1.4 1.408 1.3 1.308 < 0.001

Delay 5 5.029 10 10.290 < 0.001
Scale 5 4.983 5 5.008 0.089
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In this work, we correct for multiple comparisons using the False Discovery Rate (FDR) 

method. In addition, since the different modalities have been modeled in a joint manner, it 

is possible to do hypothesis testing based on the estimated fixed effects and their sampling 
distributions. By comparison of the fixed effects parameters for a specific cortical region 

across all modalities, conclusions can be drawn as to the timing of specific components or 

phases that constitute the complete maturational process.



CHAPTER 4

TISSUE APPEARANCE ANALYSIS : 
EXPERIMENTS WITH IBIS (INFANT 

BRAIN IMAGING STUDY) DATA

4.1 Studies of Infant Brain Appearance Change
In this chapter, we study WM-GM intensity variations in longitudinal brain MR images 

from the ACE-IBIS (Autism Centers of Excellence - Infant Brain Imaging Study) project. 
The dataset analyzed consists of the brain MR images of children scanned at approximately 

6 months, 12 months, and 24 months of age. Intensity variations between WM and GM 
tissues are quantified for this dataset by computation of the WIVID contrast measure, 

and changes in the WIVID measure over time are modeled to study neurodevelopmental 

processes. The purpose of studying intertissue appearance change in this infant brain 

dataset is two-fold - firstly, it serves to deepen our insight into mechanisms underlying 

normal brain development, and secondly, it enables detection of differences between the 

neurodevelopmental trajectories of distinct population groups.

The ACE-IBIS dataset consists of T1W (T1-Weighted) and T2W (T2-Weighted) brain 

MR scans. The multimodal nature of this dataset enables the study of distinct biolog
ical properties captured by each modality. In order to facilitate this, values of WIVID 
(White-gray Intensity Variation in Infant Development) are calculated independently for 

each modality included in this study.

The WIVID measures studied are also computed in a region-dependent manner. That 
is, a specific value of WIVID is extracted for each cortical region of the brain. The fact 

that brain growth is spatially heterosynchronous is the motivation for studying the WIVID 

measure independently for each brain region. It should be noted that a specific region being 

studied is further categorized based on the hemisphere to which it belongs. For example, 
in the computation and study of the WIVID measure, values from the left temporal lobe 

are treated as distinct from those of the right temporal lobe for the same subject.
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In addition to its modality-specificity and region-specificity, the WIVID measure is 

also analyzed independently for distinct population groups. The subjects studied in the 

ACE-IBIS dataset belong to different population groups, and could be categorized based 
on sex and based on their risk/diagnosis category for ASD (Autism Spectrum Disorder). 

Similarly, all the subjects could be classified into either male or female population groups. 

Studies of differences in the spatiotemporal WIVID trajectories of distinct population groups 

are performed, with potential applications including early diagnosis of brain disorders and 
greater understanding of mechanisms underlying abnormal brain growth.

The study of intertissue image appearance in ACE-IBIS data is divided into quan

tification, modeling, and analysis components. The first component comprises stepwise 

processing of infant MR scans and extraction of WIVID contrast measures. Detailed 
discussion of the image processing pipeline employed for extraction of the WIVID measure 

has already been given in Chapter 2. In this chapter, we augment this discussion with 

actual examples drawn from processing of the ACE-IBIS dataset. These examples display 

intermediate results from key stages of the pipeline used for image processing and extraction 
of the WIVID biomarker. The second component concerns determining the best model fit 

for the WIVID data under study, following the steps described in Chapter 3. Initially, 

we visually analyze the WIVID data points to investigate which model would fit the data 

best. A comparison of data fits from cross-sectional and mixed effects models, linear and 
nonlinear models, and several distinct nonlinear growth functions has already been discussed 

in Chapter 3 with respect to a subset of the ACE-IBIS data. In this chapter, quantitative 

proof is provided for choice of model using AIC (Akaike Information Criterion) values 

resulting from fitting models to the entire dataset under study. Comparison of the nature 

of the resulting fit with prior neurobiological knowledge is also an integral part of this step. 
In the third component, we analyze the parameters resulting from fitting of the best model 

to the data. The parameters analyzed describe growth and are used to compare trajectories 

of changes in the WIVID contrast measure, across brain regions and modalities. Hypothesis 
testing is also done to predict significant differences in these growth parameters between 

distinct population groups under study. Differences based on sex and risk/diagnosis for 

ASD are explored.

Two interrelated questions are raised by modeling WIVID values based on ACE data: 

first, “How can the changing directionality of the WM-GM intensity gradient be accounted 

for in the WIVID contrast measure?” , and second, “Given prior biological knowledge that 

WM-GM intensity differences first decrease and then increase, how can WIVID values be
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effectively modeled?” . These questions are linked, since the intensity variations quantified 

on the increasing and decreasing sections of this growth curve have WM-GM gradients 

oriented in opposite directions. As described in Chapter 2, methods to quantify WIVID 
direction have been developed, by means of which the WIVID measure can be assigned a 

“sign” based on the relative direction of the intensity gradient of gray matter with respect 

to white matter. Insufficient samples belonging to the decreasing portion of the WIVID 

change trajectory prevent usage of WIVID points with negative direction. Instead, only the 
increasing portion of the WIVID curve is modeled, thus explaining the restriction of analysis 

to WIVID points with positive direction. Therefore, for purposes of preliminary exploration, 

only positively valued WIVID data points are considered for the statistical analysis. For 

purposes of visualization, WIVID values with both positive and negative directionality are 
displayed in some figures. In these figures, only the magnitude of the WIVID measure 

is plotted, while the assigned direction is indicated by color of the displayed data points. 

Details of WIVID computation, visualization of data points, and choice of best model fit are 

discussed in the following sections, followed by analysis of normative and population-specific 

trends.

4.1.1 ACE-IBIS Study
The ACE-IBIS (Autism Centers of Excellence: Infant Brain-Imaging Study) study is a 

longitudinal study with image processing and analysis of structural MRI/DTI of infants at 

high risk for autism at approximately 6 , 12, and 24 months of age. The goal of this multisite 
network study is to analyze infants at genetic risk for ASD based on having an older sibling 

diagnosed with autism3 [133], using both neuroimaging and behavioral data. This investiga
tion is funded by the National Institutes of Health and is informally called the Infant Brain 

Imaging Study (IBIS). The ACE-IBIS network includes four clinical data collection sites 

(University of North Carolina at Chapel Hill, University of Washington, Children’s Hospital 

of Philadelphia, Washington University in St. Louis), a data coordinating center (Montreal 

Neurological Institute at McGill University), and two image processing sites (University of 
Utah, University of North Carolina).

The study enrolls 1) 6-month-old high-risk infants (with an older sibling who is diagnosed 

with ASD) who are seen for follow-up assessments at 12 and 24 months of age, 2) 12-

3To quote the details of the ACE study from a recent paper by Hazlett et al. [133] , “Subjects were 
characterized as having high risk if they had an older sibling with a diagnosis of an ASD that was documented 
in a clinical diagnostic report and confirmed by the Autism Diagnostic Interview-Revised administered at 
enrollment. Subjects were enrolled in the low-risk group if they had an older sibling without evidence of 
ASD and no family history of a first- or second-degree relative with an ASD.”
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month-old high-risk infants who are followed up at 24 months, and 3) a comparison group 

of typically developing controls - infants considered to be at low risk for autism (i.e., older 

siblings are developing typically), who are seen at 6, 12, and 24 months. The test detecting 
diagnosis of autism is administered at 24 months of age (and again at 36 months of age if the 

timeline of the project allows). Due to subject availability, data acquisition, and processing 

issues, it must be mentioned that not all subjects have scans available from the required 
follow ups - for example, some 6-month-old high-risk infants might not have scans available 

at 12 months of age, and might only have follow-up scans available at 24 months of age.
Based on combined risk and diagnosis information, the subjects in the dataset can be 

divided into four groups for the purpose of our analysis. The first group, HR+ (High Risk 
Positive), consists of subjects born with a high genetic risk for autism, who were diagnosed 

positive for ASD. The second group, HR- (High Risk Negative), consists of subjects who are 

born with a high genetic risk for autism, diagnosed as negative for ASD. The third group 

consists of healthy controls (HC), subjects without high genetic risk for autism, who were 

also diagnosed as negative for ASD. The fourth group consists of controls positive (C+), 

subjects without high genetic risk for autism who were diagnosed as positive for ASD. 

Subjects from the C+ group were limited in number and have hence been mostly excluded 

from the analysis presented. Additional scans from two subjects diagnosed with Downs 
Syndrome (DS) have also been included. Both male and female subjects were included in 

the analysis.

4.1.2 M R  Image Acquisition
A 3-T Siemens Tim Trio scanner with a 12-channel head coil was used for MR acquisition 

at all clinical sites. The scans were acquired without any sedation, when the infants were 

asleep. Steps such as feeding, swaddling, and protecting the ears of the infants were 

undertaken, along with conditioning with scanner sounds from a compact disc to ensure 

that the infant is able to sleep and can be successfully scanned.
The details of MR acquisition provided below have been reproduced from a paper 

by Hazlett [133]. The MR acquisition protocol includes 1) a localizer scan ; 2) a three
dimensional T1 magnetization-prepared rapid acquisition gradient-echo (MPRAGE) scan: 

TR (Repetition Time) =2,400 ms, TE (Time to Echo) =3.16 ms, 160 sagittal slices, field 

of view (FOV)=256 mm, voxel size=1 mm3 ; 3) a three-dimensional T2 fast spin echo 

(FSE) scan: TR=3,200 ms, TE=499 ms, 160 sagittal slices, FOV=256 mm, voxel size=1 
mm3 ; and 4) a 25-direction diffusion tensor imaging scan: TR=12,800 ms, TE=102 ms, 

slice thickness=2 mm isotropic, variable b value=maximum of 1,000 s/mm2, F0V=190
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mm. Regional distortions were corrected and image quality was assessed with the help of a 

LEGO phantom that was scanned each month at all the acquisition sites. Additionally, two 
human phantoms were scanned once each year per scanner. Scanner stability and reliability 

were tested across all sites and scanners using the LEGO phantom and human phantom 

data.

4.1.3 Sample Used in Analysis

For the analysis we perform, a subset of the data obtained in the ACE-IBIS study was 

included. The total number of subjects whose scans were used was 306. Of these, 185 

subjects scanned at all three time points, 71 subjects scanned at 12 and 24 months, 41 
subjects scanned at 6 and 24 months, and 14 subjects scanned at 24 months alone. There 

were 70 controls, 56 HR+ (High Risk Positive) subjects, and 174 HR- (High Risk Negative) 

subjects included in the study. Categorized based on sex, 193 subjects were male and 113 

subjects were female. At each time point, two scans belonging to T1W and T2W modalities 

were obtained. Therefore, a total of 1556 scans were obtained from this study.
Properties of the data subset used are listed below as follows - 1) Imbalanced in Number 

of Samples : The number of samples obtained per subject was imbalanced, that is, each 

subject was scanned at one to three time points ; 2) Imbalanced in Covariates : The values 

of the covariates were imbalanced - that is, the subjects were not scanned exactly at the 

same time points ; and 3) Unequal sample sizes : The sample sizes of the data was unequal 

- that is, the number of subjects belonging to each population group was unequal.
In the following section, we illustrate a practical example of the pipeline for computation 

of the WIVID contrast measure, implemented on a healthy controls subject as part of a 
population study.

4.2 Computation of the WIVID Measure
Computation of the WIVID measure follows the procedure outlined in Chapter 2, which 

is based on calculation of the HD (Hellinger Distance) between the nonparametric intensity 
distributions for gray and white matter tissue classes. Initially, steps such as alignment 

to a template, bias correction, intrasubject registration and intersubject registration are 
performed. The original series of images belonging to a control subject from the ACE-IBIS 

study is displayed in Figure 4.1.

From these scans, it can be observed that the T1W images displayed have very low 
WM-GM contrast at the age of 6 months, and increase in contrast with time. At the age 

of 24 months they display excellent contrast. In the case of T2W images, the contrast is
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Figure 4.1: Multimodal, repeated measures dataset : Series of longitudinal images from a 
single subject taken at 6 months (left), 12 months (center), and 24 months (right) of age.

close to zero at 6 months, and increases slowly over time up to 24 months of age. It can be 

observed that T1W images “lead” T2W images in terms of WM-GM contrast change
Coregistered scans belonging to the same subject have been shown in Figure 4.2. These 

scans are the result of intrasubject registration. Coregistration is an essential precursor to 

proper segmentation of early time point images into the major tissue classes. This is mainly 
since, after coregistration, probability maps from later time point images can be employed 

as priors for improving the segmentation of early time point images that otherwise suffer 
from lack of contrast.

The multimodal set of scans at each time point is segmented using the longitudinal 

method outlined above. Results from segmentation can be seen in Figure 4.3, which 

shows WM and GM binary label maps corresponding to scan sets from each time point. 

Segmentation of these scan sets was performed using longitudinal techniques and resulted 
in classification of the brain into major tissue classes.

Binary label maps as priors corresponding to the multimodal set of scans obtained at 
each time point, are shown here. The displayed scans and their label maps lie in their original 

coordinate space (images corresponding to different time points are not coregistered). In 

this figure, it should be noted that the parcellation maps that have been coregistered to 
the set of scans at each time point can be seen in the third column, dividing the brain 

into major cortical regions. These scans and their parcellation maps lie in their original 

coordinate space, that is, images corresponding to different time points are not coregistered. 
It can be seen that the use of a probabilistic prior for segmentation of early time points 

yields satisfactory results, especially considering the poor intertissue contrast during early 

stages of brain development. Consistency in the segmented label maps across different time 
points is also ensured by this process, as seen in the segmentation results.
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Figure 4.2: Intrasubject image registration: Series of coregistered longitudinal images 
from the same subject, taken at 6 months (left), 12 months (center), and 24 months (right) 
of age. The coregistration was performed using nonlinear deformation techniques.

Figure 4.3: Image segmentation: Results from segmentation of a longitudinal series of 
images from the same subject, obtained at 6 months (first row), 12 months (second row), 
and 24 months (third row) of age. The multimodal scan set that is segmented consists of 
T1W (first column) and T2W (second column) scans.

After segmentation, parcellation of the image set at each time point into major brain 

regions is shown in Figure 4.4. Parcellation is performed by deformation of an anatomical 

atlas with delineated cortical regions to the coordinate space of scans under study. Ex
ploration of changing WM-GM intensity variation on a per-lobe basis is possible due to 
parcellation of brain scans.

As a result of segmentation of the MR scans into major tissue classes and parcellation 

into cortical regions, WM and GM intensity distributions from important brain regions can 
be extracted. Sample WM and GM distributions from the left frontal lobe and left occipital 

lobe are displayed in Figure 4.5. It should be noted that in this figure, each distribution 
is normalized such that the area under it sums to unity. For example, the area under the 

WM distribution for the left temporal lobe in the T1W scan sums to unity. As a result,
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Figure 4.4: Image parcellation: Results from parcellation of a longitudinal series of images 
from the same subject into major cortical regions. The scans in this series were obtained 
at 6 months (first row), 12 months (second row), and 24 months (third row) of age. The 
multimodal scan set which is segmented consists of T1W (first column) and T2W (second 
column) scans, and uses the binary label maps for GM (third column) and WM (fourth 
column).

the shapes of distributions do not reflect the number of points constituting each tissue 

class. From these plots, it can be concluded that in general, the distance of separation 
between WM and GM intensity distributions increases with time. Lobar differences in 
the configuration of WM and GM intensity distributions are also evident from this figure, 

particularly for values from T1W scans. The left occipital acquires considerable WM-GM 
contrast for the T1W scan at 6 months of age compared with the left frontal lobe - an 

observation that is consistent with theories of heterosynchronicity in brain development.

WIVID contrast values corresponding to the distributions displayed are shown in Fig

ure 4.6. As a departure from the convention adopted in this chapter of only displaying 
the magnitude of WIVID, the WIVID values plotted in this figure include their directional 

attribute. The direction is conveyed by their sign, with these signs provided by the direction 
of gradient as defined in Chapter 2. The general trend of WIVID values increasing with 

age can be observed, although the left occipital lobe shows a deviation at 24 months.
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Figure 4.5: White matter (blue), and GM (red) intensity distributions are displayed for 
frontal and occipital lobes of the brain. The distributions that are displayed correspond to 
scans acquired at 6 months (first column), 12 months (second column), and 24 months (third 
column) of age. The distributions correspond to cortical regions in the left hemisphere.

Figure 4.6: Signed WIVID contrast values extracted from two major cortical lobes of the 
brain are displayed for scans from different time points. The sign for the contrast values is 
derived from the directionality attribute.
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From this plot of absolute WIVID values, intermodal and interlobe differences in tra

jectories of change in the WIVID contrast measure can be clearly seen. In particular, the 
early growth of WIVID values in the left occipital lobe when compared with the left frontal 

lobe is observed. Statistical evidence for these interlobe and intermodal differences in the 

WIVID contrast measure will be analyzed in later sections.

4.3 Experiments for Finding the Best Model Fit
In Chapter 3, a subset of the ACE-IBIS under study was analyzed, and the best methods 

for statistical modeling of this subset were determined. Nonparametric methods such as 
kernel regression were explored empirically and considered unsuitable for modeling WIVID 

across this dataset. Further, it was established via cross-sectional modeling that nonlinear 

growth functions were superior to linear fits of the data. Additionally, the superiority of 

mixed-effects models when compared with cross-sectional models for fitting the longitudinal 
data was confirmed. In this section, we examine some conclusions that were made related 

to the sample subset of the data studied (choice of parametric fit over nonparametric fit, 
nonlinear fit over linear fit, mixed effects fit over cross-sectional fit) and check if they 
remain true for the entire population. In addition, we confirm the superiority of nonlinear 

vs. linear fits, and mixed-effects vs. cross-sectional fits by modeling the entire population 

of healthy controls using each of these methods and comparing the results quantitatively 

using statistical tools. Further, once a particular fit is chosen, other options are explored 

in depth. These could include the type of nonlinear model function used, type of grouping 

employed to best model the data, univariate vs. multivariate modeling for multimodal data, 
and choice of fixed and random effects parameters. The population of healthy controls was 

used to analyze choices for the best model fit.

4.3.1 Choice of Parametric Fits for Modeling Data
Two major reasons can be cited regarding the choice of parametric fit for modeling the 

data, instead of the nonparametric kernel regression fit. The first of these is concerned 

with the fact that MR scans in the ACE-IBIS dataset are sparsely sampled across time. 

Kernel regression involves estimation of fit at several intermediate points between samples; 

therefore, a maximum of three time points per subject is too sparse for proper estimation 
of the curve using kernel regression. In addition, data in the current sample is concen

trated around the 6 months, 12 months, and 24 months time points, making the samples 
imbalanced and difficult to model via kernel regression. The second major reason is that 

parametric models for the data result in concise parameters by means of which behavior
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of the data can be described. This succinct representation of change in data is highly 

valuable in clinical studies such as the ACE-IBIS. Concise parametric representation allows 
for quick translation of statistical results into easily interpretable parameters. Finally, kernel 

regression is highly dependent on choice of bandwidth and parameters of the kernel. Results 
from regression might be variable based on choice of these parameters. Since stability and 

consistency are central goals of our modeling exercise, we adopt relatively stable parametric 
models for analyzing our data.

4.3.2 Cross-Sectional Model for Fitting data

In this section, we perform a comparison of various cross-sectional fits to the data by 

studying their AIC values. Cross-sectional fitting can provide an accurate initial estimate 

of the best methods for modeling the data. Linear and quadratic fits, discussed in detail in 

Chapter 3, are applied to the data. Additionally, we also apply three major nonlinear growth 

functions - the logistic function, Gompertz function, and asymptotic function. These three 
functions model change that is highly nonlinear and asymptotic in nature. Considering 

the response variable y being studied at time instants t , the equations describing these 

functions, along with parameters 0^ 0 2, 0 3, are listed below.

y(t) =  — —g - T , .... Logistic fit. (41)
(1 +  e 23 )

y(t) =  0 1 x e- ^2̂ 3*, .... Gompertz fit. (4.2)

y(t) =  0 1 +  (02 — 01)e-e231, .... Asymptotic fit. (4.3)

The results from model fits of all the above functions to WIVID contrast data from T1W 

and T2W scans can be seen in Table 4.1 and Table 4.2. Based on the vastly lower AIC 
values for the nonlinear models, it can be concluded that nonlinear models are better fits 

for the data compared to linear models. Amongst nonlinear fits for the data, the AIC values 

are extremely close, and hence it is not conclusive as to which nonlinear growth function is 

the best fit at this stage of the modeling procedure.

4.3.3 Cross-Sectional vs. Mixed Effects Models
Earlier, it was determined that fitting the ACE-IBIS data with nonlinear functions is 

superior compared with fits using linear functions when implemented using a cross-sectional 
approach. As a continuation of the discussion on choice of best model fit to the data, we 
now implement nonlinear growth functions using mixed effects methods.
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Table 4.1: AIC values from results of fitting various cross-sectional models to WIVID 
contrast values for T1W scans changing with time. The AIC value is substituted by CC 
(cannot converge) when the model fit estimation does not converge. The abbreviations 
used for the cross-sectional models are as follows: Lin. =  Linear, Quad. =  Quadratic, 
Log. =  Logistic, Gomp. =  Gompertz, and Asymp. =  Asymptotic. The abbreviations 
used to represent cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari 
=  Parietal, and Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Lin. Quad. Log. Gomp. Asymp.
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

-204.0227
-192.0841
-364.3062
-226.6109
-206.2182
-177.4749
-374.7357
-218.7208

-417.8263
-418.8859
-500.488

-407.2369
-418.7146
-403.8914
-518.5823
-404.7162

-481.9439
-474.7366
-542.3359
-473.6326
-500.2523
-460.5110
-547.1465
-467.2036

-482.9996
-472.4878

CC
CC

-501.5194
-457.8785
-547.2528
-466.5585

-483.1256
-468.6484
-543.6835
-472.5627
-502.0333
-453.3481
-547.2614
-465.2907

Table 4.2: AIC values from results of fitting various cross-sectional models to WIVID 
contrast values for T2W scans changing with time. The abbreviations used for the cross
sectional models are as follows: Lin. =  Linear, Quad. =  Quadratic, Log. =  Logistic, 
Gomp. =  Gompertz, and Asymp. =  Asymptotic. The abbreviations used to represent 
cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and 
Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Lin. Quad. Log. Gomp. Asymp.
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

-216.3274
-233.6071
-239.038
-171.4767
-225.4172
-229.2674
-219.4007
-168.2874

-385.1637
-350.7108
-385.6701
-376.7392
-383.119

-351.0523
-366.2591
-370.7254

-392.7746
-354.3747
-389.1405
-381.1361
-389.4781
-353.7357
-371.0914
-373.9839

-394.7163
-355.6372
-395.6181
-389.1581
-502.0333
-483.3481
-547.2614
-465.2907

-389.4201
-353.3851
-401.2010
-390.0586
-386.9869
-354.1122
-376.7596
-385.0810
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The differences between the cross-sectional model and mixed effects model have been 

discussed in detail in Chapter 3. Essentially, the mixed effects model consists both of a 

fixed component denoting values estimated for the entire population under study, and a 
random component that estimates the deviations of individual subject trajectories from the 

population curve. For example, the logistic function introduced earlier can be extended 

into a mixed-effects model. The logistic function implemented using the NLME format, in 
which the parameters of the growth function 0  consist of both fixed and random effects, 

can be written as

f  (0u tij) =  0i1 + ------- 0 l22i3-tij . (4.4)
1 +  exp 2i4

Here, i is the subject being studied at time points tij . The parameter vector 0 i in this 

equation consists of both fixed and random effects components. This can be written as

0 i =  A*fi +  B ibi , where b* ~  N (0, ^ ). (4.5)

Restating the definition given in Chapter 3, the fixed effects and random effects design 

matrices are given by A* and B* for each subject, and the p-vector of fixed effects is 

given by and the q-vector of random effects is given by b*. Of all the parameters 
describing a function, some can be chosen to have purely fixed effects components, and 

some can be chosen to have random effects components also. Based on the diagnostic 

tools analyzed in Chapter 3, it was concluded that the mixed effects model was clearly 

superior to cross-sectional models for fitting longitudinal data. Here, we assume the same 

is true for the case of the entire population of healthy controls, particularly since we 

know that repeated measures data cannot be correctly modeled using the population-level 

cross-sectional approach.

4.3.4 NLME Models for ACE-IBIS Data
The three nonlinear growth functions mentioned earlier were implemented, using both 

cross-sectional and mixed effects modeling approaches. The NLME fits assumed 0 1 and
0 2 to be random effects parameters, whereas 0 3 was assumed to be purely a fixed effects 

parameter. This choice was because of the fact that in the nonlinear functions studied, 0 3 

happens to be quite unstable compared with the other parameters, primarily because it 

refers to a scaling factor that is relatively complex to estimate. It was observed from results 

using only 0 1 as random effects that the AIC values of the resulting fits (not displayed here) 

was not lower than for the case presented, in which 0 1 and 0 2 were both used as random 

effects parameters. When 0 1 and 0 3 were assumed to be the random effects parameters,
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with 0 2 assumed to be a fixed effect parameter, it was concluded that the fit was highly 

unstable and did not converge in several cases. Additionally, the standard deviations of 

estimated values were very high for these fits, often ranging till up to 20 percent of the 
estimated value itself.

Based on the above discussion, the ACE-IBIS data were fit with the logistic, Gompertz, 

and asymptotic nonlinear growth functions using mixed effects methods, maintaining 0 1 and

02 as random effects parameters. AIC values resulting from these fits can be compared in 
Table 4.3 and Table 4.4. From these values, it can be concluded that the logistic function is 

the best and most stable for fitting WIVID contrast values from T1W scans, given that the 

NLME models implemented using Gompertz and asymptotic cannot converge to a stable 

estimate in several cases. In the case of WIVID contrast values from T2W scans, the 

logistic function proved to be the best fit according to AIC values measured in different 

regions. In the left and right occipital lobes, although the logistic function did not have the 

lowest AIC value compared to the Gompertz and asymptotic, it still had acceptable AIC 
values. Finally, the correlation matrices and standard deviations of estimated parameters 

in the logistic model fit remained within acceptable bounds compared to these values from 

Gompertz and asymptotic fits.

4.3.5 Multivariate Versus Univariate Modeling
In the final stage, we investigate whether joint multivariate to WIVID contrast values is 

preferable to fitting each modality separately. In order to do this, we compare AIC values of 
the joint multivariate fit to the summed AIC values resulting from fitting to each modality 

separately. The results of this comparison can be assessed in Table 4.5. From the resulting 

AIC values, it can be concluded that the joint fit is superior to the individual fit in all lobes 

except for the frontal lobe. This superiority of the joint fit could be attributed to the fact 
that WIVID contrast change trajectories have a non-zero correlation between modalities. 

This intermodal correlation in tissue appearance change in turn contributes to estimating 

a better fit to the data. Additionally, when T1W and T2W data are jointly studied, the 

number of samples available to estimate a particular trajectory is also increased (although 
the number of variables needed for determining this trajectory also increase due to nonzero 

correlation between modalities).

4.3.6 Other Factors to Consider in NLME Modeling

Additional factors to consider in NLME modeling include the structure of the random 

effects variance-covariance matrix, and heteroscedasticity of random effects.
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Table 4.3: AIC values from results of fitting various nonlinear models using NLME 
methods to WIVID contrast values for T1W scans changing with time. The AIC value 
is substituted by CC (cannot converge) when the model fit estimation does not converge. 
The abbreviations used for the cross-sectional models are as follows: Log. =  Logistic, 
Gomp. =  Gompertz, and Asymp. =  Asymptotic, NLME =  Non linear mixed effects. The 
NLME fits assumed 0 1 and 02 to be random effects parameters. The abbreviations used 
to represent cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  
Parietal, and Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Log.(ME) Gomp.(ME) Asymp.(ME)
Fron L -539.9489 -489.004 CC
Temp L -510.3468 -487.9058 CC
Pari L -521.7956 CC CC
Occi L -568.9369 CC CC
Fron R -560.7123 CC CC
Temp R -495.3094 CC -474.2473
Pari R -521.9392 CC CC
Occi R -578.9379 CC CC

Table 4.4: AIC values from results of fitting various nonlinear models using NLME 
methods to WIVID contrast values for T2W scans changing with time. The AIC value 
is substituted by CC (cannot converge) when the model fit estimation does not converge. 
The abbreviations used for the cross-sectional models are as follows: Log. =  Logistic, 
Gomp. =  Gompertz, and Asymp. =  Asymptotic, NLME =  Non-Linear Mixed Effects. 
The NLME fits assumed 0 i and 0 2 to be random effects parameters. The abbreviations 
used to represent cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari 
=  Parietal, and Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Log.(ME) Gomp.(ME) Asymp.(ME)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

-401.4559
-371.2675
-419.958

-428.7865
-401.5341
-366.3393
-419.5685
-373.9839

-399.5792
-353.3851
-401.2010
-390.0586
-386.9869
-354.1122
-376.7596
-420.5339

-389.4201
-363.1307
-416.7448
-430.8633
-388.2832
-364.9019
-414.1612
-420.1369
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Table 4.5: AIC values from results of NLME-based fitting of the logistic function to WIVID 
contrast values for T1W and T2W scans changing with time, using (first column) joint 
multivariate modeling, and (second column) the summed AIC value from univariate fits to 
T1W and T2W scans. The logistic NLME fits assumed and to be random effects 
parameters. The abbreviations used to represent cortical regions are as follows: Fron = 
Frontal, Temp =  Temporal, Pari =  Parietal, and Occi =  Occipital, L =  Left hemisphere, 
and R =  Right hemisphere.

Lobe AIC(T1+T2) AIC(T1) +AIC(T2)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

-938.7905
-911.3041
-983.4265
-1015.866
-944.5014
-911.3038
-986.0895
-1034.893

-941.4048
-881.6143
-941.7536
-997.7234
-962.2464
-861.6487
-941.5077
-999.4718

Grouping due to additional factors such as sex, and ways to model “signed” WIVID 

values (that is, WIVID contrast values that have been assigned a directionality) must also 
be considered. In the experiments outlined above, the random effects variance-covariance 

matrix estimated in the NLME procedure was considered to be a full matrix. However, as
sumptions could be made regarding the variance-covariance matrix that reduce the number 

of parameters estimated in the matrix and enforce a certain pattern of change.

For example, the variance-covariance matrix could be assumed to be a diagonal matrix, 

thereby constraining the covariance between different mixed effects parameters to be zero. 

In practical terms, this could imply that the asymptote and delay are uncorrelated in the 

logistic fit performed above. Since the WIVID contrast measure is novel and we have limited 
knowledge of its changing behavior with time, we assume a full variance-covariance matrix 
in this chapter, for modeling purposes.

A closely related consideration is that the random effects values estimated for each 

subject are currently assumed to be Gaussian in nature in each group. That is, these 

random effects form a single cluster per group, and the shape of this cluster is estimated 
by the random effects variance-covariance matrix. Experiments with heteroscedasticity 

can be used to further subdivide this cluster into subclusters, which is not to be confused 

with grouping factors that naturally divides the random effects into group-based clusters. 

Each cluster of random effects parameters will then assumed to be Gaussian. Although
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this increases the number of parameters to be estimated, heterescedasticity could be useful 

when the population under study does not conform to one single pattern of deviation. 

For example, in the logistic model under study, the asymptote parameters of the healthy 
controls data could be divided into two clusters if heteroscedastic. However, the implications 

of heteroscedasticity are not completely understood, particularly in the context of testing 

for significance between parameters of the fit. Since hypothesis testing forms a core part 

of the inferential process we use to understand intertissue appearance changes, and due to 

lack of evidence that random effects for the data studied are heteroscedastic, we assume 

homoscedasticity over heteroscedasticity for modeling the WIVID contrast data.

In order to consider variability due to grouping factors such as sex, we perform the 
hierarchical or multilevel modeling as described in Chapter 3. The mixed effects model is 
inherently hierarchical in nature since it consists of a population-level model and subject- 

level model.

We have understood from the discussion in the last section that joint fits to multimodal 

data are superior to univariate fits to data from each modality. In addition, consider the 

case that grouped data are being modeled - for example, data consisting of both male 

and female subjects are analyzed. In this case, we have a multilevel model, with the first 

level being modality, the second level being based on grouping factors such as sex, and the 
third level being subject-level variations. If data are studied in this hierarchical manner, 

comparisons between different groups can also be easily made based on p-values resulting 

from the multilevel model estimation.

Finally, the question of modeling the directionality attribute of WIVID contrast values 

is examined. Based on the discussion of WIVID contrast direction in Chapter 2, it could 

be concluded that WIVID contrast is assigned a directionality attribute or sign, based 

on the configuration of WM and GM intensity distributions at a point, with respect to 

the configurations across time. As a result, the WIVID computations we made have also 

included a sign or direction component. The behavior of WIVID contrast across infant 
brain scans from birth to 2 years of age generally involves a trajectory of decreasing WIVID 

followed by increasing WIVID. The decreasing section of the WIVID contrast curve is 

assigned negative direction, and the increasing section of the WIVID contrast curve is 

assigned a positive direction. Figure 4.7 illustrates the directionality concept in the left 

parietal lobe for the ACE-IBIS data under study. Since T1W WIVID values for the age 

range under study are always positive, our attention will be mainly on the T2W data.
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Figure 4.7: Concept of (left) contrast without direction, and (right) contrast with 
direction, is illustrated for the case of the left parietal lobe. WIVID values associated 
with (top row) T1W scans, and (bottom row) T2W scans, are displayed. Since T1W scans 
usually do not have negative-valued WIVID data, the positive and negative curves in the 
data cannot be seen in T1W scans. Although data points have directional attributes, only 
the absolute values of WIVID are displayed, hence ensuring all data points fall in the positive 
range.
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In most lobes, only a small fraction of the total number of T2W WIVID contrast points 

at the first time point has negative direction assigned. Data from other time points (at 12 

and 24 months) are entirely positively valued. As a result, the number of data points that 
can be used to define the negative or decreasing portion of the curve is extremely limited. 

Data symmetry or extrapolation assumptions will have to be made if the two-sided data 

is to be modeled. For the purposes of this work, we limit our analysis to only positively 

valued WIVID contrast points. As a result, this work models only the increasing portion 

of the WIVID contrast curve.

4.3.7 Experiments for Modeling ACE-IBIS Data
To summarize results from the experiments shown above, the following conclusions can 

be made: parametric modeling was chosen instead of kernel regression, nonlinear models 

provided superior data fits compared with linear models, and the logistic fit was chosen to be 

the best nonlinear models for fitting the data using mixed effects methods. Additionally, the 

logistic mixed effects fit implemented modeled asymptote and delay parameters as random 

effects, while the rate parameter was considered to be purely fixed effects. Extending 

this model to multiple modality data, the joint multivariate fit was favored for modeling 
multimodal data over separate univariate fits for each modality. Further, the analysis 

considered the variance-covariance matrix for random effects to be a full matrix without 

any restrictions such as zero nondiagonal values being applied. The random effects were 

also assumed to be homoscedastic. Comparison between different population groups was 
facilitated by employing a hierarchical multilevel fit to the grouped data. Finally, for the 

analysis performed, only positively valued WIVID contrast data points were considered.
Theoretical reasoning also supports these claims. Neurobiological processes underlying 

WM-GM contrast change in the infant brain are highly nonlinear in nature, justifying 

the use of nonlinear growth functions [58]. Cross sectional modeling of longitudinal data 
fails to account for the correlations between repeated measurements, affirming the need 
for an approach such as the mixed effects model that estimates inherent correlations in 

this data. Other approaches such as kernel regression that are nonparametric in nature 

cannot properly model this dataset since brain scans are sparsely sampled across time, 

i.e., they have been acquired only at three time points. Moreover, parametric nonlinear 

growth models provide growth parameters that describe growth effectively, are intuitively 

appealing, and have potential as clinical indicators. On the basis of the reasoning outlined 
above, parametric nonlinear growth functions implemented using a mixed effects approach 

would provide the ideal solution to the question of modeling WIVID contrast values for
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ACE-IBIS data. The choice of multivariate data modeling is also justified, particularly since 

specific synchrony and patterns can be seen in WM-GM appearance changes across different 

modalities [29,36]. These intermodal patterns justify the inclusion of the correlation between 
growth parameters across modalities in our joint, multivariate model.

4.4 WIVID Contrast Analysis for ACE-IBIS Data
4.4.1 Visual Analysis of W IV ID  Data Points

By visual observation of WIVID data that has positive directionality, as shown in 

Figures 4.8 and 4.9, we can make certain qualitative conclusions. A crucial observation is 
that WIVID increases monotonically in a nonlinear manner for the age range under study. 

The left and right temporal lobes, frontal lobes, and parietal lobes look quite similar in 

terms of WIVID values for T1W and T2W modalities. The T1W WIVID value of these 

lobes ranges approximately between 0.5 and 1.3 units. The occipital lobes, which are the 

earliest to mature, have T1W WIVID values that are close to saturation even as early as 6 

months of age. Frontal, temporal, and parietal lobes have relatively low WIVID values for 

T1W scans at 6 month but quickly reach saturation around 12 months of age. The occipital 

lobe is the earliest to mature, as indicated by WIVID values in T2W scans. The frontal 

lobes are the latest to mature in terms of WIVID values for T2W scans. The T2W parietal 
lobe WIVID value at 6 months looks higher than that of the frontal and temporal lobes 

in terms of growth. Maturing at a relatively slower pace compared with the parietal lobe, 
the T2W temporal lobe contrast still seems to undergo growth earlier compared with the 

frontal lobe.

In terms of intermodal variation in appearance, it could be seen that T1W WIVID values 

are much higher than T2W WIVID values, particularly at 6 and 12 months of age. T2W 

WIVID values show a clear lag behind T1W WIVID values at every time point. Whereas 

T2W WIVID values continue growing up to 24 months of age, T1W WIVID values begin 
to saturate at 12 months of age. These qualitative observations based on WIVID confirm 

observations found in neuroimaging literature - mainly confirming that T1W scans develop 

WM-GM contrast at a much earlier age compared with T2W scan, and although T1W scans 

predominantly undergo appearance change up to the age of 6 months, T2W scans undergo 

appearance change from 6 months up to 2 years of age [29, 36]. In the following sections, 

these qualitative observations will be studied in greater detail and quantified using statistical 
parameters of interest. In addition to obvious interlobe and intermodality variations, other 

factors such as sex and risk/diagnosis group could further affect WIVID values. Since the
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Figure 4.8: WIVID contrast values displayed for T1W (left column) and T2W (right 
column) scans, for major lobes in the left cortical hemisphere.
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T1W: Right frontal lobe WIVID for male controls T2W: Right frontal lobe WIVID for male controls
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Figure 4.9: WIVID contrast values displayed for T1W (left column) and T2W (right 
column) scans, for major lobes in the right cortical hemisphere.
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variations seen due to these factors are much more subtle, any visual-observation-based 

discussion would likely be inconclusive and speculative. However, data grouped by these 

factors are displayed and analyzed in the following sections.

4.4.2 W IV ID  Contrast Change: Intermodal Variations
In order to find intermodal differences in normative contrast trajectories, healthy male 

controls were studied. Nonlinear logistic growth functions were fit to the entire dataset 
of healthy controls using a hierarchical mixed effects scheme based on grouping of the 

data into male and female subjects. For the purpose of better understanding intermodal 

behavior, only scans from male controls were examined. This was mainly for the purposes of 
establishing normative trends, since the number of male controls was larger than the number 

of female subjects. In addition, later sections study the behavior of male subjects grouped 

by ASD risk/diagnosis, further establishing the need for study of normative trajectories of 
change in WIVID for male subjects in the controls group. In later sections, variations in 

growth parameters due to region and sex will be discussed, based on the same data.
Plots resulting from fitting logistic NLME functions to T1W and T2W WIVID contrast 

values can be seen in Figure 4.10. From these plots, clear differences in the growth 

trajectories based on modality can be seen. It can be clearly observed that T2W intertissue 

contrast develops much later than T1W intertissue contrast, resulting in a lag or time-shift 

between the two signals. While T1W contrast increases rapidly from 6 months of age and 

reaches saturation at around 12 to 15 months of age, T2W contrast increases at a slower 

pace initially and continues to vary up to 2 years of age. Essentially, MR image appearance 

becomes close to adult-like in terms of relative intensity of white and gray matter at around 
12 months of age in T1W scans. In comparison, the intensity variation between white matter 
and gray matter keeps increasing until 2 years of age in T2W scans. Since myelination is 

known to be one of the key processes contributing to contrast in T1W and T2W images, 
this pattern is in conformity with the well-established knowledge that myelin appears earlier 

and proceeds faster on T1W images than it does on conventional T2W images [29].
Intermodal variations in growth parameters resulting from the logistic fit can be analyzed 

based on Table 4.6. These growth parameters are also plotted in Figure 4.11 for quick 
visual comparison. The observations made from the plots of T1W and T2W WIVID values 
changing are further confirmed by analysis of the parameter values of the fits. It is seen 

that the asymptote value of T1W scans is much higher than that of T2W scans, which is 

justified by neurobiology, since T2W intertissue contrast can change up to 3 years.



106

T1W, T2W WIVID in Male Controls : Left frontal Lobe

Age (Months)

T1W, T2W WIVID in Male Controls : Left temporal Lobe

Age (Months)

T1W, T2W WIVID in Male Controls : Left parietal Lobe

Age (Months)

T1W, T2W WIVID in Male Controls : Left occipital Lobe

Age (Months)

Figure 4.10: Multilevel NLME modeling 
controls: Plots of WIVID trajectories for 
population groups. The lobes studied are 
Parietal (third row), and Occipital (fourth 
right hemisphere (second column) regions in
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of WIVID contrast change in healthy male 
T1W scans (blue) and T2W scans (black) 
Frontal (first row), Temporal (second row), 
■ow), with left hemisphere (first column) and 
each of these lobes analyzed.



107

Table 4.6: Multilevel NLME Logistic Modeling for T1W and T2W WIVID values based on 
healthy male controls: Parameters (Asymptote - abbreviated as Asymp, Delay, and Rate) 
from logistic fit to model WIVID contrast values changing with time for T1W and T2W 
scans, with these scans are denoted by T1W and T2W, respectively. The abbreviations 
used to represent cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari 
=  Parietal, and Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp (T1) Asymp (T2) Delay (T1) Delay (T2) Rate (T1) Rate (T2)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

1.2172
1.1664
1.2192
1.1917
1.2166
1.1587
1.2150
1.1932

1.0693
0.9864
1.0502
0.9785
1.0603
0.9897
1.0542
0.9585

5.8880
5.6558
5.4313
4.6548
5.6780
5.7826
5.4770
4.4946

10.3819
9.7758
9.8531
9.0184
10.2035
9.5976
9.7989
9.0619

1.6242
1.4959
1.1737
1.3153
1.3482
1.4964
1.2558
1.4483

2.7084
3.1484
2.4862
2.9338
2.8156
3.2866
2.5138
2.7809
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Figure 4.11: Multilevel NLME modeling of WIVID differences in T1W and T2W scans for 
healthy male controls: Plots of parameters asymptote (first column), delay (second column), 
and rate (third column) that result from fitting a logistic model to WIVID contrast values 
for T1W scans (blue) and T2W scans (black). The x-axis of these plots represents the 
indices corresponding to the lobes studied - 1 =  frontal left hemisphere, 2 =  temporal left 
hemisphere, 3 =  parietal left hemisphere, 4 =  occipital left hemisphere, 5 =  frontal right 
hemisphere, 6 =  temporal right hemisphere, 7 =  parietal right hemisphere, 8 =  occipital 
right Hemisphere.
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Vast differences are also seen in the timing of the WIVID contrast change curves, as 

reflected in the delay and rate parameters. The delay parameter shows a difference of 4 to 5 

months for T1W and T2W scans, which implies a correspondence to the timing difference in 
the maturational processes captured by each of these modalities. It is also very interesting 
to note that the difference in delay parameters follows a lobar pattern. The difference 

between delays belonging to each modality is highest in the left and right frontal lobes. 
The rate parameter is highly correlated with the delay parameter. On examining the rate 

parameter, it can be seen that the rate parameter is much higher for the T2W WIVID values 

compared with the T1W WIVID values. This difference in the rate reflects growth after the 

midpoint of the logistic curve, and indicates that while the T2W WIVID value continues 

increasing after this midpoint, the T1W WIVID saturates and does not increase further. 
Further, upon examination of the results from hypothesis testing for significant differences 

between modalities across all three parameters, it was concluded that all parameters had 

significant differences. These significant differences were also consistently present across all 

brain regions.

4.4.3 W IV ID  Contrast Modeling: Interlobe Variations

As a result of differential spatial patterns of maturation, it can be seen that intertissue 

contrast varies across different spatial regions [29, 36, 69]. To quantify this phenomenon, 

regional-specificity was incorporated as a key feature of the WIVID measure. In this section 
we examine interlobe variations in the WIVID contrast measure. Since healthy male controls 

form a sufficiently large population group in our study we study interlobe variations within 

their group. Lobar patterns in healthy male controls can be observed from Table 4.6.
A key finding here is that the delay parameters are consistent with established posterior- 

to-anterior and inferior-to-superior patterns of maturation found in neuroimaging litera

ture [29]. Delay parameters are highest in frontal and temporal lobe and lowest in the 

occipital lobe by a large margin.

This evident difference in delay parameters across brain lobes can serve as indicators of 

heterosynchronous maturational patterns that are seen across different regions of the brain. 

It is also interesting to note that this difference between delay parameters is also consistent 
across both T1W and T2W modalities.

4.4.4 W IV ID  Contrast Variations Based on Sex

As a result of multilevel modeling performed by considering groups based on sex, 
comparisons between male and female populations could be made. The NLME logistic fits
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to the WIVID data from T1W and T2W scans are shown in Figure 4.12 and Figure 4.13, 

respectively. Graphical comparison of the resulting growth parameters are also shown in 
Figure 4.14.

An interesting phenomenon is that the delay values associated with T1W scans are higher 

for male subjects compared with female subjects, again observed in all regions studied. 

These results, which suggest that male subjects experience delayed maturation compared 

with females, could have interesting implications in the study of sexual dimorphism in early 

brain development. Observing the rate parameter, it could be concluded that with the 

exception of the left and right occipital lobes, the growth rate as visible on T1W scans is 

higher for male subjects compared with female subjects. The growth rate in the logistic 

function approximately tracks the time taken to travel from 50 percent of the final value to 
75 percent of the final value. In this case, since male subjects initially experience a delay 

in development, a higher growth rate could also be intrinsically correlated with this delay.

It is interesting to see that T2W WIVID contrast trajectories follow slightly different 

patterns of sex differences compared with trajectories associated with T1W scans. Except 
for the right frontal lobe, all brain regions show a higher value of asymptote for female 

subjects compared with male subjects in T1W scans. This observation is consistent with 

the hypothesis that the T2W WIVID contrast undergoes delayed growth compared with 

the T1W WIVID contrast; therefore, the T2W WIVID value at any point is a time-shifted 
version of the T1W WIVID value at an earlier point. Initially, maturation is delayed in 

males compared with females, a fact that is indicated by T1W delay values. Over time, the 

maturation of males increases to the same level as females, as reflected in T1W asymptote 

values. However, the asymptote value of the T2W curve corresponds to the early phase 

of the T1W curve, which explains the seemingly opposing observations in T1W and T2W 

WIVID contrast values with respect to the asymptote parameters of their logistic fits.

The delay parameter associated with T2W WIVID contrast trajectories conforms to 

the patterns seen in the T1W WIVID contrast curves: male subjects display higher delay 
compared with female subjects. This difference in delay between male and female contrast 

curves can be clearly observed across all brain regions without exception. In comparison, 
analysis of the rate parameter for male and female groups showed no clear patterns of 

difference.

The resulting logistic growth parameters corresponding to male and female controls 

are displayed in Table 4.7 and Table 4.8 for T1W and T2W contrast values, respectively. 

From plots of WIVID contrast change trajectories for T1W scans, a subtle difference in the
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Figure 4.12: Multilevel NLME Modeling of WIVID Differences Based on Male/Female 
Categorization: Plots of WIVID trajectories for T1W scans are displayed for male (blue) and 
female (dark pink) population groups. The lobes studied are frontal (first row), temporal 
(second row), parietal (third row), and occipital (fourth row), with left hemisphere (first 
column) and right hemisphere (second column) regions in each of these lobes analyzed.
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Male, Female WIVID In Controls : Left temporal Lobe T2

Age (Months)

Male, Female WIVID In Controls : Left parietal Lobe T2

Age (Months)

Male, Female WIVID In Controls : Left occipital Lobe T2
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Male, Female WIVID In Controls : Right frontal Lobe T2
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Figure 4.13: Multilevel NLME Modeling of WIVID Differences Based on Male/Female 
Categorization: Plots of WIVID trajectories for T2W scans are displayed for male (blue) and 
female (dark pink) population groups. The lobes studied are frontal (first row), temporal 
(second row), parietal (third row), and occipital (fourth row), with left hemisphere (first 
column) and right hemisphere (second column) regions in each of these lobes analyzed.
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Figure 4.14: Multilevel NLME Modeling of WIVID Differences Based on Sex: Plots of 
parameters asymptote (first column), delay (second column), and rate (third column) that 
result from fitting a logistic model to WIVID contrast values for T1W scans (top row) and 
T2W scans (bottom row). Parameter values are displayed for male (blue) and female (dark 
pink) population groups. The x-axis of these plots represent the indices corresponding to 
the lobes studied - 1 =  frontal left hemisphere, 2 =  temporal left hemisphere, 3 =  parietal 
left hemisphere, 4 =  occipital left hemisphere, 5 =  frontal right hemisphere, 6 =  temporal 
right hemisphere, 7 =  parietal right hemisphere, 8 =  occipital right hemisphere.

asymptote between male and female subjects can be observed. This difference in asymptote 

can be confirmed from Table 4.7, in which it is seen that the asymptote is higher for male 

subjects compared with female subjects.

This difference in asymptote is consistently observed across all regions. Without cor
rection for multiple comparisons, the P-values for T2W WIVID data show significance for 

parietal and occipital lobes in both hemispheres, at a significance level of 0.05. After 

correction for multiple comparisons, these P-values for parietal and occipital lobes are 

slightly above the significance-level, at around 0.06. These results from hypothesis testing 
indicate that maturational trajectories indeed follow different patterns in male and female 

subjects. It is also of interest that P-values corresponding to delay parameters are low for 
the parietal and occipital lobes that mature relatively early.
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Table 4.7: Multilevel NLME Logistic Modeling for T1W WIVID values from male, female 
groups: Parameters (Asymptote - abbreviated as Asymp, Delay, and Rate) from logistic fit 
to model WIVID contrast values changing with time for male and female groups, with these 
groups are denoted by M and F respectively. The abbreviations used to represent cortical 
regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and Occi =  
Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp (M) Asymp (F) Delay (M) Delay (F) Rate (M) Rate (F)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

1.2172
1.1664
1.2192
1.1917
1.2166
1.1587
1.2150
1.1932

1.2070
1.1600
1.2138
1.1830
1.2055
1.1480
1.2068
1.1826

5.8880
5.6558
5.4313
4.6548
5.6780
5.7826
5.4770
4.4946

5.6080
5.5864
5.3063
3.9179
5.4260
5.7403
5.2679
3.6760

1.6242
1.4959
1.1737
1.3153
1.3482
1.4964
1.2558
1.4483

1.5969 
1.3239 
1.1004
1.5969 
1.3128 
1.2401 
1.2364 
1.8299

Table 4.8: Multilevel NLME Logistic Modeling for T2W WIVID values from Male, Female 
groups: Parameters (Asymptote - abbreviated as Asymp, Delay, and Rate) from logistic 
fit to model WIVID contrast values changing with time for male and female groups , with 
these groups are denoted by M and F respectively. The abbreviations used to represent 
cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and 
Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp (M) Asymp (F) Delay (M) Delay (F) Rate (M) Rate (F)
Fron L 1.0693 1.0702 10.3819 10.1066 2.7084 2.7080
Temp L 0.9864 0.9985 9.7758 9.5575 3.1484 3.0195
Pari L 1.0502 1.0619 9.8531 9.3146 2.4862 2.6350
Occi L 0.9785 0.9786 9.0184 8.3888 2.9338 3.2221
Fron R 1.0603 1.0654 10.2035 9.9642 2.8156 2.7532
Temp R 0.9897 0.9895 9.5976 9.1731 3.2866 2.9132
Pari R 1.0542 1.0636 9.7989 9.2930 2.5138 2.6430
Occi R 0.9585 0.9611 9.0619 8.4870 2.7809 2.9438
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This could suggest that sex differences associated with brain appearance change are 

specific to only specific certain brain regions. The extent of sex differences might follow 

a pattern that is closely related to patterns of regional brain maturation. P-values result
ing from hypothesis testing between male and female WIVID curves are enumerated in 

Table 4.9 and Table 4.10. P-values associated with T1W data are quite high and do not 

show significance. However, P-values corresponding to T2W data points are much lower, 
particularly for the delay parameter.

4.4.5 Effect of ASD Risk/Diagnosis Category on W IV ID
In this section, we compare trajectories of the WIVID measure changing with time 

across population groups that are categorized based on their genetic risk and diagnosis for 

ASD. As mentioned earlier, subjects were classified on the basis of ASD risk/diagnosis into 

HR+ (High Risk Positive), HR- (High Risk Negative), HC (Healthy Controls), and C+ 
(Controls Positive). Here, we use hierarchical multilevel NLME modeling to model and 

compare growth trajectories between different population groups. Our focus in this section 
is on HR+ and HR- groups, with 44 subjects from the HR+ category and 105 subjects from 

the HR- category included in our analysis.
Only male subjects are included in this comparison, which is important since sex dif

ferences that were discussed in the last section could otherwise be a confounding factor in 
the analysis. Further, the HR+ group consists of a low ratio of only 12 female subjects to 

44 male subjects, but the HR- group consists of a much better ratio of 69 female subjects 

to 105 male subjects. As a result, if female subjects were included in the comparison of 

HR+ and HR- population groups, the vast differences in ratio of number of female to male 

samples between these groups might pose an additional problem.
On examining the trajectories of WIVID contrast change with time shown in Figures 4.15 

and 4.16, it can be seen that curves belonging to the HR+ group saturate at a lower value 
when compared with curves belonging to the HR- group. This difference in the saturation 

point, quantified by the asymptote parameter in the logistic function, is especially evident 

in WIVID contrast values associated with T2W scans.
The parameters of the logistic growth curves belonging to HR+ and HR- population 

groups are shown in Figure 4.17, and enumerated in Table 4.11 and Table 4.12, for WIVID 

contrast change curves obtained from T1W and T2W scans, respectively. As a result of 

studying the growth parameters in these tables, it can be concluded that asymptote values 

from T1W and T2W scans are higher for the HR- group when compared with the HR+ 

group.
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Table 4.9: Multilevel NLME Logistic Modeling for T1W WIVID values of Male, Female 
groups: P values corresponding to parameters (Asymptote - abbreviated as Asymp, Delay, 
and Rate) from fitting WIVID contrast values with the logistic growth function. P-values 
that are corrected for multiple comparisons are denoted by p* (correction was done using 
the False Discovery Rate (FDR) method). The abbreviations used to represent cortical 
regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and Occi =  
Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp p Delay (p) Rate (p) Asym (p*) Delay (p*) Rate (p*)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

0.3822
0.6435
0.6264
0.3999
0.2996
0.4555
0.4654
0.3006

0.1592
0.705

0.5853
0.2254
0.1839
0.8007
0.3565
0.1712

0.9057
0.4717
0.7243
0.4699
0.8672
0.2714
0.9289
0.3382

0.6205
0.6435
0.6435
0.6205
0.6205
0.6205
0.6205
0.6205

0.4508
0.8007
0.7804
0.4508
0.4508
0.8007
0.5704
0.4508

0.9289
0.9289
0.9289
0.9289
0.9289
0.9289
0.9289
0.9289

Table 4.10: Multilevel NLME Logistic Modeling for T2W WIVID values of Male,Female 
groups: P values corresponding to parameters (Asymptote - abbreviated as Asymp, Delay, 
and Rate) from fitting WIVID contrast values with the logistic growth function. P-values 
that are corrected for multiple comparisons are denoted by p* (correction was done using 
the False Discovery Rate method). The abbreviations used to represent cortical regions are 
as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and Occi =  Occipital, L =  
Left hemisphere, and R =  Right hemisphere.

Lobe Asymp p Delay (p) Rate (p) Asym (p*) Delay (p*) Rate (p*)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

0.9582
0.5771
0.5067
0.9942
0.7615
0.9942
0.5983
0.8951

0.2418
0.4795
0.0183
0.0172
0.3498
0.1522
0.0338
0.0232

0.9977
0.4761
0.2169
0.102

0.6361
0.0473
0.2672
0.2747

0.9942
0.9942
0.9942
0.9942
0.9942
0.9942
0.9942
0.9942

0.3224
0.4795
0.0618
0.0618
0.3997
0.2435
0.0676
0.0618

0.9977
0.6348
0.4395
0.4080
0.7269
0.3784
0.4395
0.4395
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Figure 4.15: Multilevel NLME modeling of WIVID differences based on risk/diagnosis 
group for ASD: Plots of WIVID trajectories for T1W scans are displayed for HR+ or High 
Risk Positive (red) and HR- or High Risk Negative (green) groups.
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(T2W) WIVID in left frontal lobe : HR- and HR+ (T2W) WIVID in right frontal lobe : HR- and HR+
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(T2W) WIVID in left occipital lobe : HR- and HR+ (T2W) WIVID in r ight occipital lobe : HR- and HR+

Figure 4.16: Multilevel NLME modeling of WIVID differences based on the basis of 
risk/diagnosis group for ASD: Plots of WIVID trajectories for T2W scans are displayed for 
HR+ or High Risk Positive (red) and HR- or High Risk Negative (green) groups.
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Figure 4.17: Multilevel NLME modeling of WIVID differences based on the basis of 
risk/diagnosis group for ASD: Plots of parameters asymptote (first column), delay (second 
column), and rate (third column) that result from fitting a logistic model to WIVID contrast 
values for T1W scans (top row) and T2W scans (bottom row). Parameter values are 
displayed for HR+ or High Risk Positive (red) and HR- or High Risk Negative (green) 
population groups. The x-axis of these plots represent the indices corresponding to the 
lobes studied - 1 =  Frontal left hemisphere, 2 =  Temporal left hemisphere, 3 =  Parietal 
left hemisphere, 4 =  Occipital left hemisphere, 5 =  Frontal right hemisphere, 6 =  Temporal 
right hemisphere, 7 =  Parietal right hemisphere, 8 =  Occipital Right Hemisphere.

Table 4.11: Multilevel NLME Logistic Modeling for T1W WIVID values from HR-, HR+ 
groups: Parameters (Asymptote - abbreviated as Asym, Del, and Rate) from logistic fit 
to model WIVID contrast values changing with time. The abbreviations used to represent 
cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and 
Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asym(HR-) Asym(HR+) Del(HR-) Del(HR+) Rate(HR-) Rate(HR+)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

1.1936
1.1575
1.2064
1.1845
1.2032
1.1494
1.2037
1.1862

1.1759
1.1413
1.1903
1.1736
1.1911
1.1316
1.1884
1.1740

5.4351
5.6999
5.5791
4.6403
5.6013
5.9363
5.6670
4.6550

5.7705
5.7878
5.6946
5.0636
5.7000
5.8670
5.5677
4.7707

0.0187
0.5573
0.4516
0.2089
0.5119
0.6201
0.9351
1.2912

1.5795
1.2419
0.9396
1.2955
1.2428
1.0294
1.1962
1.3265
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Table 4.12: Multilevel NLME Logistic Modeling for T2W WIVID values from HR-, HR+ 
groups: Parameters (Asymptote - abbreviated as Asymp, Delay, and Rate) from logistic fit 
to model WIVID contrast values changing with time. The abbreviations used to represent 
cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and 
Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asym(HR-) Asym(HR+) Del(HR-) Del(HR+) Rate(HR-) Rate(HR+)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

1.0821
1.0061
1.0680
0.9861
1.0711
1.0067
1.0719
0.9714

1.0333
0.9623
1.0197
0.9466
1.0121
0.9672
1.02706
0.9335

9.9365
9.8565
9.7032
9.0991
10.0627
9.5810
9.6308
9.1507

9.9678
9.4127
9.5284
8.7971
10.1413
9.0708
9.6034
8.8702

2.8066
3.1327
2.4933
2.8131
2.8858
3.1222
2.5509
2.7437

2.4997
3.0848
2.6490
2.8523
2.4502
3.0844
2.5538
2.8437
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Some differences were also seen in delay and rate parameters. It was interesting to note 

that except in the case of the frontal lobes, a delay associated with WIVID curves based on 

T2W scans is consistently higher for the HR- group when compared with the HR+ group. 
Upon analyzing the p-values shown in Table 4.13 and Table 4.14, it can be concluded that 

asymptote values associated with T2W contrast values are significant even after applying 

multiple comparison corrections. The right frontal lobe also showed significant differences in 

the rate parameter associated with WIVID curves based on T2W scans. The rate parameter 
for this brain region is higher for the HR- group than the HR+ group.

These findings confirm the hypothesis that WIVID contrast values could be significant 

biomarkers in the analysis of neurodevelopment. It is especially interesting to note that 
asymptote values are significant across all brain regions. The significant differences seen in 
the rate parameter for the right frontal lobe might also hold potential for research related 

to an early diagnosis of autism. The analysis shown, which finds statistical evidence for 
links between intertissue appearance and infant brain disorders is a major contribution of 

this work.
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Table 4.13: Multilevel NLME Logistic Modeling for T1W WIVID values of HR-, HR+ 
groups: P values corresponding to parameters (Asymptote - abbreviated as Asymp, Delay, 
and Rate) from fitting the WIVID contrast values with the logistic growth function. P- 
values that are corrected for multiple comparisons are denoted by p*. The abbreviations 
used to represent cortical regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari 
=  Parietal, and Occi =  Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp p Delay (p) Rate (p) Asym (p*) Delay (p*) Rate (p*)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

0.1531
0.2817
0.2131
0.4419
0.31

0.2428
0.239

0.3904

0.0187
0.5573
0.4516
0.2089
0.5119
0.6201
0.5167
0.7287

0.1027
0.7228
0.8533
0.4292
0.8782
0.0925
0.1331
0.8921

0.4133
0.4133
0.41333
0.4419
0.4133
0.41333
0.4133
0.4419

0.7086
0.7086
0.7086
0.7086
0.7086
0.7086
0.7086
0.7287

0.3549
0.8921
0.8921
0.8584
0.8921
0.3549
0.3549
0.8921

Table 4.14: Multilevel NLME Logistic Modeling for T2W WIVID values of HR-, HR+ 
groups: P values corresponding to parameters (Asymptote - abbreviated as Asymp, Delay, 
and Rate) from fitting WIVID contrast values with the logistic growth function. P-values 
that are corrected for multiple comparisons are denoted by p*, with significant p* values 
highlighted in red for significance levels of 0.05. The abbreviations used to represent cortical 
regions are as follows: Fron =  Frontal, Temp =  Temporal, Pari =  Parietal, and Occi =  
Occipital, L =  Left hemisphere, and R =  Right hemisphere.

Lobe Asymp p Delay (p) Rate (p) Asym (p*) Delay (p*) Rate (p*)
Fron L 
Temp L 
Pari L 
Occi L 
Fron R 
Temp R 
Pari R 
Occi R

0.0032
0.0173
0.0061
0.0257
0.0011
0.0328
0.0092
0.0369

0.9001
0.1577
0.4393
0.2627
0.7561
0.0877
0.8996
0.2928

0.0317
0.8134
0.2366
0.8224
0.0043
0.8436
0.9816
0.5639

0.0128
0.02768
0.01626
0.0342
0.0088
0.0369
0.0184
0.0369

0.9001
0.5856
0.7028
0.5856
0.9001
0.5856
0.9001
0.5856

0.1268
0.9641
0.6309
0.9641
0.0344
0.9641
0.9816
0.9641



CHAPTER 5

STUDY OF BRAIN TISSUE 
APPEARANCE IN INFANTS 

5.1 Brain Appearance in the First Year After Birth
In this chapter, we study WM-GM intensity variations in longitudinal brain MR images 

from birth to 1 year of age. The dataset analyzed consists of multimodal brain MR images 
of children scanned at five time points: approximately at 2 weeks, 3 months, 6 months, 

9 months, and 12 months of age. The WIVID measure is used to quantify and analyze 

intensity variations for this dataset by computation of intertissue contrast at each of the 

five time points scanned. Images obtained during the first year after birth are of special 

significance in pediatric neuroimaging studies, particularly since this stage of infant brain 

development is a critical period of rapid growth and contrast change [29, 36, 44]. This 
early stage of infant neurodevelopment is also a time when the brain is highly plastic and 

vulnerable to external influences, and hence contains key answers to questions concerning 

the origins of psychiatric and neurological disorders. In addition, images from this age range 

can distinctly capture the process of contrast-inversion that takes place in the early brain.

Three brain tissue appearance patterns can be discerned during neurodevelopment - 

infantile (at birth), iso-intense, and adult-like [134]. During early brain development, as 

captured by neuroimaging studies, the intensity gradient between WM and GM reduces 
from birth up to a point of iso-intensity. After this point, a reversal of the direction 

of the intensity gradient takes place, while the intertissue intensity variation continues 
increasing from this point up to 2 years of age. This pattern is clearly seen in both T1W 

and T2W modality scans. For example, in T1W scans, the intensity of WM is initially 
much lower than that of GM, and this pattern undergoes a reversal between 3 months 

and 6 months of age, after which point WM is of higher intensity than GM. The reverse 

sequence can be observed at a later time point, between 6 months and 8 months of age, 
on T2W scans. Contrast inversion takes place at different time points for each subject 

based on the degree of tissue maturation. Hence, the point of contrast reversal could be a
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useful temporal neuroimaging marker of brain appearance change, which in turn indicates 

progression of underlying neurodevelopmental processes. This process of contrast flip can 

be clearly observed in the T1W scans in Figure 5.1. In comparison, T2W scans display a 
lag in this process, and contrast flip takes place around 2-3 months later in these scans.

Courtesy of Dr. Weili Lin and Dr. Dinggang Shen, UNC Chapel Hill, we were given 

access to a unique five time-point early infant MRI dataset. The five time-point serial 

dataset analyzed consists of T1W (T1-Weighted) and T2W (T2-Weighted) brain MR scans. 

The scans were previously segmented, utilizing longitudinal techniques to enable improved 

tissue segmentation, particularly during the phase of iso-intensity [106, 134, 135]. Specific 

challenges unique to this dataset include computing accurate deformations for intrasubject 

image registration, especially given the low contrast and noisy quality of infant brain images.
Additionally, appropriate nonlinear methods for modeling WIVID contrast change tra

jectories need to be adopted to account for nonmonotonic changes in intertissue contrast. 

Essentially, since WIVID contrast undergoes a decrease followed by an increase, it assumes 

the form of a nonmonotonic function. A limited number of time points at which scans 

were acquired further complicates modeling of this curve. As described in Chapter 3, we 
adopt a nonparametric kernel-regression-based modeling scheme to characterize this curve 

of temporally varying WIVID.

5.1.1 Five Time Point Data Under Study

The current dataset under study consists of T1W and T2W MR data acquired at five 

distinct time points from 10 subjects. Two scans were discarded due to low image quality. 

MR images that are used were acquired using a Siemens head-only 3T Allegra scanner 
with a circular polarized head coil [134]. T1 images were acquired from a 3T head-only 
MR scanner consisting of 144 slices at a resolution of 1x1x1 mm3, and the following 

parameters of scan: TR =  19004.38ms, and flip angle of 7. T2 images were obtained at the 
resolution 1.25x1.25x1.95 mm3, and the following parameters of scan: TR =  7380119ms, 

and flip angle of 150. Preprocessing steps included skull stripping, bias correction, and 

tissue segmentation.

5.1.2 Intrasubject Image Registration

The sample image set belonging to a single subject is displayed in Figure 5.2. The 

data were presegmented using advanced longitudinal methods [134], hence removing the 

need for additional tissue segmentation. Further, it must be noted that the image series 
displayed in Figure 5.2 have already undergone intersubject registration. As described



124

Figure 5.1: Sample scans from serial, multimodal infant brain images along with their 
tissue segmentations. Note: These scans are yet to be co-registered.

in depth in Chapter 2, ANTS was implemented for diffeomorphic registration of images 

using CC (Cross-Correlation) as the metric of choice [94]. Since five time points have been 

scanned for each subject, several options exist for multimodal intrasubject registration such 

that all scans belonging to a single subject are coregistered. Upon visual analysis of resulting 

registrations and quantitative comparisons using CC as the image matching metric, it was 
found that using both T1W and T2W scans for registration, along with segmentation results 

as a third channel, results in optimal registration. It was also concluded that intrasubject 
registration is best accomplished by nonlinear deformation of all the scans to the latest time 

point scans.

The primary purpose of intrasubject registration in this analysis lies in performing 
atlas-based parcellation of the MR brain scans. Once intrasubject registration is com

plete, the parcellation atlas, which delineates cortical regions of interest, can be accurately 

co-registered to the scans belonging to each subject, particularly in the case of low-contrast 

or iso-intense scans that have insufficient structure for nonlinear registration. Following 

parcellation, the MR scans are segmented into the major cortical lobes of interest, as 

displayed in Figure 5.3.
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Figure 5.2: Multimodal, repeated measures dataset: Co-registered series of longitudinal 
images from a single subject taken at five time points.

T2W Atlas-Template Atlas

Figure 5.3: Atlas-based parcellation of multimodal data.

5.2 Computation of the WIVID Measure
Once scans are co-registered and parcellated into major anatomical regions, WIVID 

is computed for the five time points using the methodology delineated in Chapter 2. 
Modeling of the WIVID measure changing with time is challenging, primarily because the 

resulting WIVID function is not monotonic, hence eliminating the use of several linear 
and nonlinear parametric functions. To obtain a preliminary estimate of WIVID contrast 

change trajectories with time, we use kernel regression. The procedure for kernel regression 

has been outlined in Chapter 3, and basically involves estimating change in a quantity via 

adoption of a Gaussian-kernel-weighted smoothing procedure. Kernel regression consists of 

estimating a subject-specific trajectory for each subject, followed by averaging this across 
all subjects to generate a population-averaged trajectory. Subject-specific individual tra
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jectories displaying change in WIVID are displayed in Figure 5.4. Results from estimating 
a population trajectory for the right frontal lobe WIVID data for T1W and T2W scans 

using kernel regression are displayed in Figure 5.5.
Optimal kernel size was fixed at a standard deviation of 1.3 months following heuristic 

analysis. Finally, population trajectories of changing WIVID values can be compared across 

the major brain lobes as well. Results comparing WIVID change trajectories for the four 

major lobes in the right cortical hemisphere are displayed in Figure 5.6 for both T1W and 

T2W scans.

5.3 Results and Discussion
As a result of spatiotemporal modeling and analysis of WIVID change during the 

first year after birth, it is possible to discern interesting patterns of tissue appearance 

changes in the earliest stages of brain development. Studying these patterns has potential 
clinical utility, particularly since maturational patterns of the early developing brain contain 

answers to several important neurobiological questions [29]. Additionally, the time frame 

under study enables characterization of the pattern of decrease in contrast, followed by an 
increase after the point of contrast reversal. In Figure 5.1, this pattern is visible on the T1W 
MRI scans prior to quantification of appearance. Following quantification of appearance by 

means of WIVID computation, it is possible to map spatiotemporal changes in the WIVID 
values across the first year after birth. The timing and sequence of this nonmonotonic 

trajectory of contrast change might hold considerable value in the study of early brain 

maturation. It is possible that in the future, the points of contrast inversion might also be 

extracted following this spatiotemporal trajectory mapping.

Upon analysis of both the subject-specific trends in WIVID across modalities in Fig

ure 5.4, and the population trends in WIVID in Figure 5.5, distinct patterns of WIVID 
change can be discerned in the T1W and T2W modalities. It can be clearly seen that 

patterns of WIVID change in T2W scans have a temporal “lag” with respect to those in 

T1W scans. While contrast flip can be estimated to take place at around roughly 2-5 

months of age for T1W scans, the contrast flip was estimated to take place at 5-8 months 

of age in T2W scans. Moreover, this finding is corroborated by established literature in 

the area of early brain imaging [12,29,36], which emphasized a similar lag in the contrast 

reversal process between T1W and T2W modalities. It must be noted here that the exact 

time of contrast reversal is dependent on the pulse sequence used, and hence it cannot be 
compared across imaging datasets with dissimilar scanning protocols. Patterns of contrast
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Figure 5.4: Temporal modeling of WIVID values from birth to 2 years of age in the right 
frontal lobe: Individual subject-specific trajectories.

WIVID analysis in right frontal lobe : Population trajectory

Figure 5.5: Temporal modeling of WIVID values from birth to 2 years of age in the right 
frontal lobe: Average population trajectory.

change in different brain regions can also be analyzed, although the limited nature of the 

dataset prevents drawing of clear conclusions.

In conclusion, it can be established that spatiotemporal modeling of WIVID during the 

first year after birth enables the study of characteristic patterns of contrast change seen 
in the early developing brain. The spatiotemporal trajectory of WIVID change distinctly 

captures three phases of brain appearance change that have been described qualitatively in 

previous imaging literature - contrast decrease, contrast iso-intensity followed by contrast 
flip or reversal, and finally increasing contrast up to adulthood. Finally, patterns of WIVID 

change across T1W and T2W modalities confirm qualitative findings in neuroimaging 

literature. It is observed that contrast reversal in T2W scans lags behind this point on
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Population trajectories of T1W WIVID changes in right hemisphere

Population trajectories of T2W WIVID changes in right hemisphere

Figure 5.6: Temporal modeling of T1W (top), and T2W (bottom) WIVID values from 
birth to 2 years of age in the right frontal lobe : Average population trajectories across 
major brain lobes.

T1W scans. Further analysis of temporal biomarkers extracted from these WIVID change 

trajectories could be of potential utility in clinical studies of neurodevelopment. These 

temporal biomarkers, such as the point of contrast reversal, could provide insight into 

delayed trajectories of neurodevelopment in the case of subjects diagnosed with psychiatric 
and neurological disorders.



CHAPTER 6

DISCUSSION AND CONCLUSIONS 

6.1 Major Contributions
The rapidly changing appearance of MR scans observed during the course of neu

rodevelopment can be attributed in large part to the intensity variations between WM 

(White Matter) and GM (Gray Matter) tissue classes. A primary goal achieved by this 
dissertation has been the development of a method for quantification of WM-GM intensity 

variation during infant brain development. We refer to this neuroimaging biomarker as 

the WIVID (White-Gray Intensity Variation in Infant Development) measure. WIVID 

characterizes the intensity difference between WM and GM tissue classes by using the 

Hellinger Distance to measure the separation between WM and GM intensity distributions. 
An important feature of WIVID is its relative stability with respect to changing external 

conditions of scan. Given that MR images are prone to interscan variations resulting from 

instrument-related and subject-related factors [117, 120], the stability of any appearance 
measure developed becomes critical. To our knowledge, this is the only work that captures 
intertissue contrast in the infant brain by measuring the distance between underlying WM 

and GM distributions. Moreover, this computation was done in such a manner that reliance 

on intensity normalization techniques is reduced.

Our second contribution is a systematic implementation of statistical techniques for 
estimating trajectories of WIVID changing with time, resulting in a normative model 

of WM-GM contrast changes during infant brain development. Since the data to be 
modeled is longitudinal, additional challenges are posed by the repeated nature of mea

surements acquired from each subject. Experiments were conducted using several modeling 
methods - ranging from nonparametric kernel-regression-based techniques and parametric 

cross-sectional fits, to linear and Non-Linear Mixed Effects (NLME) methods. Following 

experimentation with these methods and assessment of quality of fit using diagnostic tools, 

the logistic growth function implemented using NLME was determined to be the best fit 
for modeling WIVID contrast change. As an extension to this fit, a multivariate version of
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the NLME methodology was implemented, which jointly modeled WIVID contrast changes 

across multiple modalities. As a result of this comprehensive statistical modeling procedure, 
normative trends characterizing changes in tissue appearance during early development were 
established. Parameters of the underlying nonlinear growth model were also shown to be 

descriptive markers of MR image appearance properties. These parameters enabled quan
tification of differences observed in the normative WIVID contrast trajectories belonging 

to distinct modalities and brain lobes - observations that were so far conveyed mainly in 

qualitative terms.

Our third novel contribution is the assessment of population differences in the evolution 

of intertissue appearance during early brain development. Testing for population differences 
was implemented as an extension to the methodology implemented for statistical modeling 

of WIVID contrast changes with time. An analysis of differences between male and female 

groups led to several interesting inferences related to neurodevelopment. It was shown that 

brain maturation measured in terms of WM-GM contrast takes places earlier in female 

subjects than in male subjects. Comparisons between subjects classified as High Risk 
Positive (HR+) and High Risk Negative (HR-) for ASD (Autism Spectrum Disorder) were 

also drawn. Significant differences in asymptote parameters for T2W scans were found 

between HR+ and HR- groups. These significant differences in asymptote were seen across 

all brain lobes. Significant difference was also observed in the rate parameter in the right 
frontal lobe, which has been a region of special interest in several autism studies [136, 137]. 
These observations can provide exciting clinical insights into the origin of brain disorders. 

The observations concerning the rate parameter also demonstrate that early diagnosis for 

ASD might be a practical possibility. Observed differences between WIVID contrast change 

trajectories belonging to distinct populations also indicate the potential of the WIVID 
contrast measure as a meaningful biomarker for assessing brain development. Additionally, 

WIVID-based tissue appearance change was analyzed from birth to 1 year of age. WIVID 

analysis enabled plotting of the trajectory of WM-GM contrast change during this age 
span, which is crucial for neurodevelopmental studies. Studies of WIVID change for this 

early stage of brain maturation characterize the three distinct stages of intertissue contrast 

observed during infancy. These stages include a decrease in contrast following birth, reversal 
of direction of contrast between WM and GM, and finally an increase in contrast up to early 

adulthood. Clear differences in the timing and sequence of WIVID change trajectories were 

also observed between T1W and T2W modalities, with a lag of the T2W WIVID change 

curve with respect to that of the T1W WIVID curve.
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6.1.1 Development of W IV ID  Measure

Brain maturation is comprised of several sequential biophysical and chemical processes, 

which manifest as changes in the relative contrast between WM and GM tissues in MR 
scans. Although some recent studies have analyzed intensity changes over time during early 

brain development [68, 69], a major limitation to progress in this field has been the lack 

of signal intensity calibration in MR scans. Some studies of the adult brain overcome this 
issue by analyzing the ratio, or difference, between signal intensity measurements from WM 

and GM tissues, rather than measuring raw signal intensity [76]. The ratio, or difference, 
between intensity values from two brain regions is a relative measure, and hence more stable 

compared to raw signal intensity. However, these methods involve complex operations that 

cannot be performed accurately on infants, such as estimation of cortical surfaces.
As a solution to this problem, we developed a technique by which the intensity distri

butions belonging to WM and GM tissue classes are extracted, and the intensity variation 

between the two tissue classes is captured by measuring the Hellinger Distance between 

them. This quantity extracted is referred to as WIVID, as mentioned previously. A major 

advantage offered by this technique is the lack of dependence on complex techniques such as 
intensity normalization or cortical surface extraction, which cannot be performed easily on 

infant brain images. A second crucial advantage of this technique is that the WIVID contrast 

measure is invariant to affine transformations of the underlying intensity distributions. For 
example, if WM and GM intensity distributions belonging to the same brain region undergo 

the same scaling and/or shifting transformations, the WIVID contrast measure will not 

change as a result. This affine invariance property stems from the corresponding property 

of the Hellinger distance that is used to compute the WIVID contrast measure. Other 

favorable properties of the WIVID contrast measure such as boundedness, symmetry, and 

identity, are discussed in Chapter 2. Importantly, the WIVID contrast measure can capture 

shape differences between intensity distributions. Therefore, it can capture subtle intensity 

variations that cannot be quantified using functions based on summary values such as the 
mean or median of WM and GM tissue intensities.

The WIVID contrast measure is computed in a region-specific and modality-specific 
manner. Region-specificity is critical to studies of the infant brain, mainly since large 

spatial variations in intertissue appearance are observable in these brain images. By com

puting WIVID on a per-region or per-lobe basis, appearance changes that are distinct for 

different brain regions can be analyzed. WIVID contrast is also computed separately for 

each modality, since T1W and T2W scans capture entirely different tissue properties [36].



132

Modality-specific computation of WIVID provides the opportunity to study the distinct 

neurobiological processes underlying appearance changes seen in each modality.
Practical computation of WM-GM intensity differences for a series of infant brain images 

presents several issues. High SNR and low intertissue contrast in the infant brain pose 
challenges to accurate segmentation and parcellation of the brain. In Chapter 2, we describe 

an optimal image processing pipeline that utilizes the longitudinal nature of the dataset 

studied to produce accurate segmentation and parcellation results. Intensity distributions of 
WM and GM are then extracted using nonparametric kernel density estimation techniques.

Chapter 2 demonstrates the behavior of the WIVID contrast measure for a series of 

phantom images, illustrating its sensitivity to appearance variations. Besides the magnitude 

or extent of intertissue intensity variations, a directional attribute is also attached to the 
WIVID contrast measure. The WIVID contrast measure undergoes first decreasing, and 
then increasing, trajectories of change during early brain development. The directional 

attribute associated with the WIVID contrast measure provides information related to 
the position of the current configuration of WM and GM intensity distributions on this 

nonmonotonic change curve. That is, the direction indicates whether the WIVID contrast 
measure at a particular time point belongs to the decreasing or increasing portion of the 

trajectory. A WIVID point on the decreasing portion of the contrast change curve is 

assigned a negative direction, whereas a WIVID point on the increasing portion is assigned 
a positive direction. Without the directional attribute, intertissue contrast values with the 

same WIVID magnitude, but opposite direction of WM-GM intensity gradient, would be 
considered identical. Given that the infant brain undergoes contrast reversal, characteriza

tion of direction is a crucial addition to complete WIVID-based contrast analysis, since it 
enables correct estimation of appearance change during infant brain development.

A traveling phantom study was used for analysis of stability of the WIVID contrast 

measure with respect to signal intensity. This study consisted of repeated scans obtained 

from two human phantoms across multiple scanners and multiple locations. The COV 
(Coefficient Of Variation) was calculated for capturing variations in WIVID contrast and 

signal intensity measures, across scans of the same subject. It was observed from this study 

that the COV of intensity for every region studied is higher than the corresponding COV of 
the WIVID contrast measure. This conclusion was valid even after intensity normalization, 

highlighting the superior stability of the WIVID contrast measure with respect to interscan 

variations, compared with the stability of signal intensity measurements.
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6.1.2 Normative Trajectories of Appearance Change in Infants

In Chapters 3 and 4, a systematic evaluation of several statistical methodologies for 

modeling WIVID contrast across ACE-IBIS data was undertaken. Quantitative diagnostic 
tools such as the AIC values were employed to confirm the best model fit. A sequential 

procedure was adopted for assessing nonparametric and parametric models, linear and 
nonlinear models, and cross-sectional and nonlinear mixed-effects (NLME) models. Ad

ditionally, neurobiological factors concerning the WIVID contrast measure, which aids in 

the choice of model fit, were discussed. In Chapter 3, based on experiments with modeling 

a sample subset from the ACE-IBIS data, it was determined that the multivariate logistic 
growth function implemented using a nonlinear mixed-effects approach was the best choice 

for modeling WIVID contrast changes with time. In Chapter 4, some of these experiments 
were extended to the entire dataset of healthy male controls, and the choice of model was 

confirmed for studies of the entire population.
A significant contribution in this area is the application of joint multivariate NLME 

for modeling WIVID contrast from multimodal datasets. Assuming that correlation exists 

between the modalities being modeled, it was demonstrated by means of phantom experi

ments in Chapter 3 that the joint multivariate fit is superior to separate univariate fits to 

the data. This concept was also extended to the multimodal ACE-IBIS data in Chapter 

4. It was confirmed using AIC values that joint multivariate modeling of WIVID contrast 
values from T1W and T2W scans results in a better fit to the data compared with individual 
fits for each modality. This multivariate NLME model sets up a convenient platform for 

analysis and comparison of appearance change trends across major cortical regions and 

distinct modalities.
Trajectories of WIVID contrast change, resulting from application of NLME models to 

normative ACE-IBIS data, were displayed in Chapter 4. Healthy male controls were used 

as the population subset of choice for establishing these normative models. In addition to 

plots of WIVID changing with time, parameters that provided a concise description of these 
trajectories were summarized in tables. Visualizations of these parameters were also given, 

enabling drawing conclusions regarding the nature of contrast change. As a result of these 

tools, evident patterns of normative appearance change could be quantified.
Two major conclusions could be made from the normative trends of WIVID contrast 

change. Firstly, significant intermodality differences were observed, reinforcing primar

ily qualitative observations that have been published in established neuroimaging liter

ature [29, 36]. Appearance change trajectories between T1W and T2W scans exhibited
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major differences in their timing and shape, as reflected by delay and rate parameters in 

their corresponding logistic models. Trajectories of WM-GM contrast in T2W scans were 

delayed in time compared with T1W scans. This crucial observation essentially quantifies 
the fact that T1W and T2W scans offer snapshots of different stages of neurodevelopment. 
Therefore, parameters enumerating differences in intermodal appearance change could serve 

as biomarkers for distinct neurobiological processes that comprise brain maturation.

The second significant conclusion that could be drawn from normative trajectories of 

WIVID contrast change was related to the spatially heterosynchronous nature of brain 

development. Pediatric brain imaging literature has consistently supported the hypothesis 

that brain maturation occurs differently across distinct brain regions. A sequential pattern 
of brain development across posterior-to-anterior and inferior-to-superior cortical regions 

was observed. This trend was confirmed upon analysis of parameter values from WIVID 

contrast change trajectories in Chapter 4. It was seen that the occipital lobe is the earliest to 

undergo appearance change, followed by the parietal and temporal lobes, while the frontal 

lobe was the last to mature. This pattern was consistent in both hemispheres, and could 

also be seen across T1W and T2W modalities.

In short, statistical modeling of normative WIVID trends was performed using a sys

tematic procedure that adopted diagnostic tools to select the best fit to the data. Nor

mative trajectories of WIVID contrast change resulted in interesting conclusions related 
to intermodal differences and interregion differences in brain development. Importantly, 

these differences followed patterns that confirmed observations made in the established 
neuroimaging literature. These findings further confirm the potential of the WIVID contrast 

measure for capturing appearance changes, and they validate the spatiotemporal modeling 

procedure employed as a tool for drawing inferences regarding differences between distinct 

WIVID contrast change trajectories.
In Chapter 5, a similar task of modeling WIVID trajectories was undertaken for an 

earlier age span, i.e., for subjects ranging from birth to 1 year of age. During this crucial 

phase of brain maturation, a trend of decreasing WM-GM contrast, followed by a period 

of iso-intensity or zero contrast, finally followed by a trend of contrast increasing up to 1 

year, was characterized. Intermodality differences and a lag in T2W contrast change with 

respect to T1W contrast change could be established. This would quantify the phase shift 

observed in the growth characteristics of T1W and T2W scan modalities.



135

6.1.3 Population-wise Differences in Appearance Change

Population differences in WIVID contrast change curves were detected using a multilevel 

extension to the multivariate approach used for modeling multimodal data. As a result of 
implementing the hierarchical NLME scheme on WIVID values from ACE-IBIS data, it 

was possible to compare intertissue appearance change trajectories belonging to different 
brain regions. Crucial inferences could be made regarding the differential WIVID contrast 

change trajectories belonging to male and female groups, as well as between high-risk 

groups that were diagnosed positive (HR+) and negative (HR-) for ASD. Notable differences 
between male and female groups from the population of healthy controls were seen in the 

timing of appearance change trajectories. These timing differences, as reflected in values 

of the delay and rate parameters of the logistic function, indicated that female subjects 
undergo earlier maturation compared with male subjects. Delay parameters between male 

and female subjects for T2W data displayed significance before corrections were applied 
for multiple comparison using the FDR (False Discovery Rate) method. Although these 

significant differences were no longer observed after correcting for multiple comparisons (for 

a significance level of 0.05), the p-values associated with the delay parameters of the occipital 

and parietal lobes still displayed very low values (around 0.06) after correcting for multiple 

comparison. These values indicate that WIVID contrast change trajectories, particularly 

those associated with T2W scans, are indeed governed by distinct timing mechanisms based 
on sex. Further, the strong differences seen in the delay parameters only in the occipital 

and parietal lobes have interesting implications for the spatially dependent nature of trends 
in sexual dimorphism.

A second major contribution made in this direction is related to differences in contrast 

change trajectories between HR+ and HR- population groups diagnosed for ASD. It is of 

great clinical interest to note that significant differences were observed between the logistic 

parameters used for modeling HR+ and HR- WIVID contrast curves. The asymptote values 

associated with T2W scans displayed significance across all brain lobes that were studied. It 
was observed that the HR+ group, which was diagnosed with ASD, displayed lower values 

of asymptote compared with the HR- group. The rate parameter associated with T2W 

scans, measured in the right frontal lobe, also showed significant differences between the two 

groups. This is particularly interesting, since the frontal lobe has been linked with autism 

in several studies. These p-values remained significant even after correction was applied for 

multiple comparisons, establishing conclusively that maturational patterns associated with 

ASD are distinct from patterns of at-risk but healthy subjects. The significant differences
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seen in the rate parameters are especially critical, since they indicate the possibility that 

early diagnosis of ASD could be made by analysis of WIVID contrast change.
To the best of our knowledge, these experiments are the first to study early brain 

development, sex differences, and differences based on ASD risk/diagnosis, in terms of 

WM-GM appearance changes. In addition to providing vital clinical clues regarding the 
origins of sexual dimorphism and brain disorders, the above experiments also demonstrate 

that the WIVID contrast measure is sensitive to variations in maturational trends across 

population groups. The potential of the WIVID contrast measure to characterize and 
capture trends in brain appearance is illustrated by these studies, laying the foundation for 

application of WIVID-based appearance analysis to other kinds of neuroimaging data.

6.2 Limitations
Several limitations faced in studies of WIVID contrast can be attributed to the nature of 

infant brain data. Infant brain scans are inherently prone to several image processing issues, 
including low tissue contrast, motion artifacts, low signal to noise ratios, large variability in 

size and shape, and rapid age-related changes [55]. Due to the risk of radiation exposure, 

infants cannot be scanned by sophisticated techniques that eliminate these issues. Infant 

brain datasets also consist of a limited number of temporal samples - for example, two to 

five scans are generally acquired from each subject over the period of birth to 2 years. Also, 

WIVID contrast is computed in a manner that mostly measures appearance change, but 

does not explore the causes for these changes. This gap between knowledge of effect and 

cause, coupled with the nonspecific nature of MR tissue contrast, could affect interpretation 
of results from WIVID-based studies. In the following paragraphs, we will discuss how these 
broad factors limit the current work.

6.2.1 Inaccuracies in Image Processing Procedures
Low tissue contrast is commonly observed in MR scans of infants along with other issues, 

such as the presence of noise and motion artifacts [55]. These factors adversely affect image 

processing procedures such as nonlinear registration, image segmentation into tissue classes, 

and parcellation of the brain into major cortical regions. Since these steps are critical for 

proper extraction of WM and GM intensity distributions and subsequent computation of 

WIVID, inaccuracies in these procedures could result in erroneous WIVID measurements. 
To make the pipeline optimal for infant brain scans, a longitudinal method was adopted by 

which the repeated nature of scans and consistency of brain anatomy across age are utilized 
for registration, segmentation, and parcellation. This pipeline is particularly effective in the
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case of segmentation, where probabilistic segmentation maps from late time point images 

are used as priors for improving segmentation of early time points as described in Chapter 
2 [106]. Further, an extension of the current method for WIVID contrast computation is 

outlined in Section 6.3, by which the effects of segmentation errors could be mitigated.

6.2.2 Intensity Inhomogeneities

Intensity inhomogeneities that cannot be attributed to changes in tissue characteristics 
can be a source of irregularities in WIVID contrast modeling. Whereas affine transforma

tions that uniformly impacts both WM and GM intensity distributions from the region being 
studied do not affect the WIVID contrast measure, nonlinear transformations of the inten

sity distributions can adversely impact the results. Similarly, even affine transformations 

that affect WM and GM distributions from the same regions by varying degrees could result 
in inconsistent WIVID calculations. A primary cause for MR intensity inhomogeneity is 

the presence of the bias field, which can be attributed to nonideal scanning and acquisition 

conditions. We have sufficient evidence to believe that inhomogeneities caused by the bias 
field are multiplicative in nature, hence falling within the category of affine transformations. 

We also assume in this work that transformations such as the bias field will affect both WM 
and GM distributions from a single region uniformly. This assumption could be generally 

made due to the smoothly varying nature of the bias field, but it might not be applicable 

to all cases. It is not yet completely clear how the problem of a bias inhomogeneity that 
affects only one portion of a brain region can be solved in terms of effective WIVID contrast 

computation. We take an image processing approach to this problem by applying algorithms 
that have been proven effective in removing intensity inhomogeneities induced by the bias 

field to the scans studied [103]. However, this method must be approached with caution, 

especially since intensity inhomogeneities due to tissue characteristics might be mistaken 

for undesirable bias inhomogeneities by these algorithms, and they could be subsequently 

eliminated in the process. Intensity inhomogeneities might also be present due to reasons 

other than the MR bias field. Root causes of any major nonbias intensity inhomogeneities 

must be carefully examined, such that the adverse effects of these inhomogeneities on image 

analysis are clearly understood.

6.2.3 Limitations: Longitudinal Data
Several challenges in modeling the ACE-IBIS data stem from the presence of missing 

time points, unevenly spaced data (measurements are clustered around 6-, 12-, and 24- 
month time points), and imbalanced data (measurements from each subject are variable in



138

number). Due to the limited number of scans that are generally available in infant brain 

studies, appropriate statistical techniques must be used for proper modeling. For example, 

as discussed in Chapters 3 and 4, kernel-regression-based techniques cannot be used for data 
that are sparsely sampled over time. However, the NLME framework can be implemented 

for data that have all the limitations listed above. The robust nature of NLME modeling 

has been established in several studies [58, 128]. By using a hierarchical structure that 

estimates a population curve and individual deviations from this curve, the NLME model 

is relatively insensitive to noise and outliers.
In the NLME model we implemented, the random effects parameters of the nonlinear 

function used were assumed to follow a Gaussian distribution. In general this is a reasonable 

assumption to make, but it can be further verified by plotting the histogram of parameters 
from individual subject-specific fits if sufficiently large samples of data are available. If 

these histograms conform to the Gaussian distribution, verifiable also by the Chi-squared 

test and QQ-Plots, the assumption made in the NLME estimation will be valid. Deviations 

from this assumption can be accommodated by modeling non Gaussian distributions using 

heteroscedasticity of random effects parameters.

6.2.4 Limitations: Variable Scanning Protocols

As mentioned in Chapter 1, MR image appearance is dependent on signal measurements, 

which are in turn based on scanning parameters and the scan protocol used. MR scans 
acquired from the same subject can appear completely dissimilar if the scanning parameters 

and protocols used are different. Hence, it would only be reasonable to compare WIVID 

contrast values for scans acquired using common scanning protocols and scan parameters. 
Important parameters of scan include flip angle, TE (Time to Excitation), and TR (Repeti

tion Time), and magnitude of the main magnetic field. As a result of this limitation, caution 

must be taken, particularly when values from studies using different scanning protocols are 

interpreted together.

6.2.5 Nonspecificity of M R  Image Appearance

Changes in MR tissue appearance can be attributed to several causes, with precise rela
tionships between neurobiological processes and changes in MR signal remaining somewhat 

unknown [138]. Not only are the T1W and T2W MR signals sensitive to myelinational 

processes, but they are also affected by changes to several factors including water content, 

compartmentalization related to changes in axonal structure, and iron content [139]. As a 
result, it might not be valid to always link changes in MR image appearance to increased
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myelination alone [140]. This limitation can be overcome by more detailed studies of 

processes underlying MR signal change, with a focus on the infant age range.

6.3 Future Work
The WIVID contrast measure as specified in this dissertation can be further developed 

through several types of future work. Experiments that have been performed so far on the 

WIVID measure have resulted in demonstration of its sensitivity to maturational differences 

and stability with respect to interscan variations. These properties of the WIVID contrast 

measure, along with its potential as a clinical tool for examining population differences, 
reaffirm the need to carry this research forward, which could be done in several different 

ways, as outlined below.

The computation of the WIVID method could be modified such that the contrast 

measure developed is more robust to segmentation errors. Also, the current WIVID measure 

captures the intensity variation between tissues. An adaptation of this WIVID measure 
could be implemented to capture intensity variations between regions. From the point of 
view of behavioral analysis and structural-functional links, correlations between changing 

tissue appearance and behavioral scores could be investigated. From a neurobiological 

perspective, the biophysical and chemical processes underlying appearance change could be 

closely examined to establish more concrete links between neurodevelopmental processes 
and their manifestation as changes in MR image appearance. Further, it is even possible 

to use the contrast measure we define for assessing intertissue appearance in adult brain 

images as a biomarker to evaluate aging and progression of diseases. Finally, although the 
WIVID measure was developed with the view to capture intensity variations in the brain, it 

could also be extended to nonbrain applications. Details of all these possibilities for future 

work are discussed below.

6.3.1 Robustness to Segmentation Errors
In Chapter 2, the development of a longitudinal segmentation pipeline was outlined for 

achieving accurate brain tissue classification. However, the infant brain suffers from several 

issues, including lack of sufficient contrast, high noise levels, and motion artifacts, making 

even the best possible segmentations somewhat suboptimal. The current WIVID contrast 
measure is based on WM and GM intensity distributions that have been derived from WM 

and GM voxels that are determined by binary membership to their respective tissue classes. 
However, it is possible to extend this concept to the case of voxels with fuzzy membership to 

tissue classes. Essentially, the KDE (Kernel Density Estimation) procedure that is used for
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generating tissue intensity distributions can be extended for use with voxels that have fuzzy 

memberships to the tissue classes being studied. For instance, to generate the WM intensity 

distribution, rather than using only the voxels that have been classified on a binary basis 
as belonging to the WM tissue class, all voxels with nonzero values of fuzzy membership to 

the WM tissue class can be considered. In this case, the KDE equation can be extended 
very easily by weighting the contribution of each voxel to the distribution. The weight for 

each voxel is determined by the value of its fuzzy membership to the tissue class being 

studied. By converting the previous dependencies of this technique on binary label maps 

to dependencies on fuzzy segmentation maps, the effects caused by errors in segmentation 

might be reduced. This method poses several challenges such as potential instability of 

intensity distributions generated and the bimodal nature of the resulting distributions. 

These issues might decrease the effectiveness of the Hellinger Distance in computing the 

distance between WM and GM distributions. However, by careful exploration of this idea, 

the dependence of the current WIVID contrast measure on accurate segmentation maps 

might eventually be minimized.

6.3.2 Regional W IV ID  Measure

The current WIVID measure has been developed to measure intensity variation between 

WM and GM tissue classes. While extending this to any other tissue classes of interest is 
straightforward, it might be more complex to analyze intensity differences between distinct 

regions using this method. Measurement of region contrast differences was explored in 

the early stages of this work [141]. In several neurological conditions of interest, ranging 
from Gadolinium-accumulation to Alzheimer's Disease, interesting results were found upon 

comparing signal intensity measures from different regions of the brain [142]. By measuring 

the overlap in intensity distributions belonging to the two regions of interest, some subtle 

discoveries can be made that might be outside the potential of straightforward techniques, 
such as ratios of mean intensities of the two regions or cross-correlation between their overall 

distributions. Contrast change trajectories in two or more regions can also be analyzed 

jointly in terms of relative growth rate and other similar parameters.

6.3.3 Brain-Behavior Studies using W IV ID
The ACE-IBIS and other infant brain imaging datasets are also rich repositories of 

complex behavioral information. For instance, several behavioral scores are tracked in the 

ACE-IBIS study, including gaze-tracking indices, scores on learning tests, and measurements 
of social skills [133]. Since intertissue appearance changes are biomarkers that indicate
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underlying brain patterns of brain maturation, it would be interesting to investigate links 

between WIVID contrast measures and associated subject-specific behavioral scores. A 
primary process linked with WM-GM contrast change is myelination. Myelination of a 
brain region, in turn, is associated with the functional maturity of that region. As a 

result, the links between WM-GM contrast change and functional or behavioral scores 

are of considerable scientific potential. Since the WIVID contrast measures we study are 

region-specific, such an investigation could deepen our insight into relationships between 

brain structure and function.

6.3.4 Neurobiology of W M -G M  Contrast

Although histological and neurological studies have provided proof for the concept that 

neurodevelopmental processes result in changes in WM-GM contrast, precise relationships 

to describe these connections have not been found. For example, it is hypothesized that 
premyelinational stages and tightening of the myelin spiral around the axon contribute to 

the appearance changes seen in T1W and T2W scans. However, precise observations of 
changes in MR relaxation parameters and signal with the development of each of these 

processes have not been made. If the neurobiological underpinnings related to specific 

phases of MR signal intensity change could be established, further clues would result as to 
the precise origin of brain disorders.

6.3.5 W IV ID  Across Multiple Scanning Protocols
It is a common fact that MR signal intensity and intertissue appearance are heavily 

dependent on the scanning protocols used for image generation [29]. It was noted that 

the timing sequences associated with appearance change trajectories from MR scans using 

vastly dissimilar scanning protocols might be completely different [29]. This is reasonable, 

primarily since the nature of the measured MR signal and the tissue properties that are 
captured are entirely dependent on the scanning protocol used, as described in Chapter 1. 

It would hence be useful if the WIVID contrast measure could be explored based on MR 

scans generated using different scanning protocols. If conclusive results could be extracted 

by using several different scanning protocols, eventually it might be possible to compile an 

entire database of tissue appearance across different types of MR scans, which might also 

facilitate interstudy analysis. That is, brain imaging studies that used different scanning 
protocols could be examined in a combined manner.
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6.3.6 W IV ID  for Other Neurobiological Processes
In this work, we have restricted our usage of WIVID contrast to infant brain imag

ing studies. However, WM-GM contrast also plays a crucial role in other neurobiolog- 
ical processes such as aging and progression of diseases such as MS (Multiple Sclero

sis) [76, 79, 143, 144]. Application of the WIVID measure to studying these processes could 
be extremely valuable, particularly since it might be sensitive to variations that cannot be 

fully captured using summary measures such as the mean intensity of a region. WIVID 

contrast in these studies might also not face the same limitations as infant studies - for 

example, segmentation and parcellation of the adult brain would be superior to that of the 

infant. However, other challenges in these datasets, such as the presence of plaques in aging 

brain studies and lesions in MS studies, need to be overcome. In spite of these limitations, it 
might be worthwhile to explore such datasets, especially given the demonstrated potential 

of the WIVID measure for quantifying appearance changes.

6.3.7 Application of W IV ID  to Nonbrain Data
Besides neuroimaging studies, several other types of medical imaging studies utilize the 

concept of contrast. For example, contrast is used in LGE (Late Gadolinium Enhanced) 

imaging, in which a contrast agent is injected for enhancing intensity differences between 

tissues. Intertissue contrast is often measured on these datasets by computing a simplistic 

difference of mean intensities of the two regions studied. Other studies in which the concept 

of contrast and intensity is directly or indirectly used include detection of tumors [145], 

examining appearance of the myocardium [146], and studies of the uterus [147]. The 

work we discussed in this dissertation can be applied to other types of medical imaging 
studies outside of neuroimaging, by extension of the current concept of WM-GM contrast 

as measured by WIVID to contrast between any two tissues of interest. Although some 

of these modalities such as CT might not be affected by lack of calibration, the concept 

of using the Hellinger Distance between distributions to capture contrast might still be 

relevant. Finally, contrast is often measured visually to confirm optimal settings of scanner 

parameters with the final goal of properly capturing tissue structures in modalities such as 

MR. That is, the parameters of scan acquisition might be varied, and resulting images will 
be studied until optimal tissue structure is visible. A possible application of the WIVID 

contrast measure would be to quantify this process in such a way that setting parameters 

of scan becomes accurate and standardized.



APPENDIX

INTENSITY NORMALIZATION FOR 
INFANT MRI

Intensity normalization is defined as correction of intraimage signal inhomogeneities 

as well as standardization of image intensities to a required range [35]. A variety of 
sophisticated intensity normalization techniques are available, many of which have been 

established as extremely effective in the normalization of adult brain images [148]. These 
techniques essentially transform MR image intensities such that the image intensities for a 

certain tissue class across scans of different subjects are “normalized” , or made to occupy 

a certain standard intensity range.
In the infant age-range, intensity normalization techniques face several challenges, in

cluding inherent variability of signal intensity due to developmental processes and lower 

signal to noise ratios. Difficulty discerning intrinsic intensity differences due to neurodevel

opment from those differences caused by variable scanning conditions is a great challenge to 
intensity normalization for infant datasets. In addition, the tissue intensity of different 

regions is often vastly different in the infant brain of a single subject. This could be 
attributed to the fact that each cortical region might be at a different stage of maturation 

and hence might have differential tissue characteristics, contributing to natural variations 

in tissue intensities, particularly for WM.
Therefore, intensity normalization in infant datasets consists of a relatively simple 

approach. This approach consists of division of intensities throughout the brain uniformly 

by a single constant. The constant factor for division is determined by the intensity 

distribution of regions of fatty tissue and ventricular CSF in T1W and T2W images, 

respectively [67]. The normalization constant is computed as the mean, median, or a 

percentile (e.g. 90th percentile) of the intensity distributions of these regions. We now 
mathematically define normalization in the case of the constant factor being computed 

using the mean operation. Considering the original T1W image ImT  1, the normalized 

version of this image ImT 1normaiized, fatty tissue region consisting of total of NFattyTissue
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In t(Im T 1normalized) — \ (A .1)

points with each such point denoted by x G FattyTissue, normalization can be expressed 
mathematically for T1 images as

Int(Im T  1)

L?feFattyTissue ImT  1(x) 'N F a t t y T i s s u e  j

Similarly, for the T2W image Im T2, with ventricular CSF regions analogous to the fatty tis

sue regions defined for T1W images above, the corresponding normalized image Im T2normalized 

can be computed as

Int(Im T 2normalized) — ^ ------- Int (ImT2)---------- - ^ ^ )
/ 2-̂ xgVe n t r i c u l a r C S F  ImT2(x) I
y N V  e n t r i c u l a r C  S F  J

Since these regions (fatty tissue in T1W images and ventricular CSF in T2W images) are 

assumed to have a constant intensity throughout stages of neurodevelopment, by using the 
mean or median intensity of these regions as a normalizing factor, the intensity ranges of 

individual scans can be brought to occupy a standard intensity range.
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