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A B S T R A C T 

For neuro-biologists to understand the working of the central nervous system, 

they need to reconstruct the underlying neural circuitry. The neural circuit, which 

consists of the neuron cells and synapses in a three-dimensional (3D) volume of 

tissue are scanned slice-by-slice at very high magnifications using an electron mi­

croscope. From the electron microscopy images, the neurons and their connec­

tions (synapses) are identified to lay out the connections of the neural circuitry. 

One of the necessary tasks in this process is to segment the individual neurons 

in the images of the sliced volume. To effectively carry out this segmentation 

we need to delineate the cell membranes of the neurons. For this purpose, we 

propose a supervised learning approach to detect the cell membranes. The classifier 

was trained using decision stumps boosted using AdaBoost, on local and context 

features. The features were selected to highlight the curve like characteristics 

of cell membranes. It is also shown that using features from context positions 

allows for more information to be utilized in the classification. Together with 

the nonlinear discrimination ability of the AdaBoost classifier there are clearly 

noticeable improvements over previously used methods. We also detail several 

experiments conducted for identification of synapse structures in the microscopy 

images. 

ABSTRACT 

For neuro-biologists to understand the working of the central nervous system, 

they need to reconstruct the underlying neural circuitry. The neural circuit , which 

consists of the neuron cells and synapses in a three-dimensional (3D) volume of 

t issue are scanned slice-by-slice at very high magnifications using an electron mi­

croscope. From the electron microscopy images, the neurons and their connec­

tions(synapses) are identified to layout the connections of the neural circuitry. 

One of the necessary tasks in this process is to segment the individual neurons 

in the images of the sliced volume. To effectively carry out this segmentation 

we need to delineate the cell membranes of the neurons. For this purpose, we 

propose a supervised learning approach to detect the cell membranes. The classifier 

was trained using decision stumps boosted using AdaBoost, on local and context 

features. The features were selected to highlight the curve like characteristics 

of cell membranes. It is also shown that using features from context positions 

allows for more information to be utilized in the classification. Together with 

the nonlinear discrimination ability of the AdaBoost classifier there are clearly 

noticeable improvements over previously used methods. Vife also detail several 

experiments conducted for identification of synapse structures in the microscopy 

images. 
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C H A P T E R 1 

I N T R O D U C T I O N 

This chapter descibes the motivation for automating the detection of membranes 

and synapses. Futher, it explains the organization of remaining chapters of this 

thesis. 

1 .1 M o t i v a t i o n 

Neuro-scientists are currently developing new imaging techniques to better un­

derstand the complex structure of the central nervous system. In particular, re­

searchers are making efforts to map the connectivity of large volumes of individual 

neurons in order to understand how signals are communicated across processes. 

Mapping the connectivity of large volumes helps in identification of network mo­

tifs [1]. The most extensive study undertaken thus far uses electron microscopy 

to create detailed diagrams of neuronal structure [8] and connectivity [26, 4]. The 

most well-known example of neural circuit reconstruction is of the 302 neurons 

in the C. elegans worm. Even though this is one of the simplest organisms with 

a nervous system, the manual reconstruction process took 10 years [4]. Human 

interpretation of data over large volumes of neural anatomy is so labor intensive 

that very little ground t ru th exists. For this reason, image processing and machine 

learning algorithms are needed to automate the process and allow analysis of large 

datasets by neural circuit reconstruction. 

Serial-section transmission electron microscopy (TEM) is the preferred data 

acquisition technology for capturing images of large sections of neuronal tissue. 

Images from TEM span a wide field of view, capturing processes that may wander 

through a specimen and have an in-plane resolution useful for identifying cellular 

features such as synapses. These structures are critical in understanding neuron 
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activity and function. Images from serial-section TEM are captured by cutting a 

section from the specimen and suspending it over an electron beam which passes 

through the section creating a projection that is captured as a digital image. See 

figure 3.2(a) for an example serial-section TEM image corresponding to a cross-

section of the nematode C. elegans with a resolution of 6nmx6nmx33nm. 

1.1.1 P r e v i o u s w o r k 

An accurate mapping of neuron features begins with the segmentation of the 

neuron boundaries. Jurrus et al. [14] use these boundaries to extract the three-

dimensional (3D) connectivity present in similar image volumes. In their method, 

a contrast enhancing filter followed by a directional diffusion filter is applied to 

the raw images to enhance and connect cellular membranes. The images are then 

thresholded and neuron cell bodies are identified using a watershed segmentation 

method. This method fails when membranes are weak or there are too many intra­

cellular features. This indicates that more adaptive algorithms need to be developed 

to segment these structures. For this reason, machine learning algorithms have been 

shown as a successful alternative for identifying membranes in TEM data. In related 

work, Jain et al. [13] use a multilayer convolution neural network to classify pixels as 

membrane and nonmembrane. However, the stain used on the specimen highlights 

cell boundaries, attenuating intracellular structures, simplifying the segmentation 

task. Another successful application of learning applied to TEM is the use of a 

perceptron trained with a set of predefined image features [17]. However, extensive 

postprocessing is required to close the detected cell membranes and remove internal 

cellular structures. 

1.1.2 O u r w o r k 

Our method described in this thesis improves upon previous work by utilizing 

context information for discrimination of membrane pixels from the nonmembrane 

pixels. By including the features of neighboring pixels as inputs to the classifier, the 

classifier can utilize the context to deal with membrane disconnectivities. The fea­

tures were designed to improve the classification accuracy of elongated structures, 
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like the membranes. The nonlinear decision boundary is learned by a classifier 

trained under the AdaBoost framework. 

We also attempted identification of the synapses in the images. Region-based 

attributes were used to quantify the shape of the regions. A framework capable 

of detecting rare events effectively was used to detect synapses since synapses are 

sparsely distributed across the image mosaic. 

The following section gives the overview of the entire thesis. 

1 .2 O u t l i n e 

The remaining chapters of this thesis are organized as follows: 

• Chapter 2 provides background material for the rest of the thesis. Section 2.1 

gives a brief overview of neural circuitry, TEM and image acquisition using TEM 

are described in section 2.2. Section 2.3 and section 2.4 give a brief introduction 

to decision stumps and AdaBoost. Lastly in section 2.5 we discuss about our 

classifier's performance on artificial datasets and its limitations. 

• Chapter 3 is divided into two major sections. Section 3.2 and section 3.3 

are dedicated to cell membrane detection and synspase detection respectively. Sec­

tion 3.1 describes about the preprocessing of images before setting up the classifi­

cation experiment. Subsections 3.2.1 and 3.3.1 describe the features used by the 

classifier. The last subsections (section 3.2.2 and section 3.3.4) explain the machine 

learning classifier setup in detail. 

• Chapter 4 presents a detailed evaluation of the proposed methods of cell 

membrane detection and synapse detection. Section 4.1 discusses the cell membrane 

detection classifier training and testing on a C. elegans worm dataset, whereas the 

synapse detection algorithm is run over a rabbit retina dataset. It is discussed in 

section 4.2. 

• Chapter 5 concludes the thesis and discusses the contributions of this thesis 

(section 5.1) and proposed future work (section 5.2). 
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learning classifier setup in detail. 

• Chapter 4 presents a detailed evaluation of the proposed methods of cell 

membrane detection and synapse detection. Section 4.1 discusses the cell membrane 

detection classifier training and testing on a C. elegans worm dataset, whereas the 

synapse detection algorithm is run over a rabbit retina dataset. It is discussed in 

section 4.2. 

• Chapter 5 concludes the thesis and discusses the contributions of this thesis 

(section 5.1) and proposed future work (section 5.2). 



C H A P T E R 2 

B A C K G R O U N D 

This chapter provides the necessary background information about the data used 

in the experiments. It also gives the basic information necessary to understand the 

experiment setup. 

2 . 1 N e u r a l c i r c u i t r y 

The nervous systems of animals are made up of numerous neural circuits that 

transmit and process the sensory perception signals, motor activity control signals of 

these organisms [16]. The neural circuits are a collection of neurons interconnected 

to each other communicating through electrochemical reactions and electrical im­

pulses. There are various types of neuronal cells and equally numerous types of 

interconnections between them. The complexity of the neural circuit is dependent 

on the types of neurons and their interconnectivity. The communication between 

these neurons is through synapses that through the electrically excitable membranes 

of neurons propagate the electrical signals. The physical structure of the neural 

circuit can be observed using high magnification electron microscopes. Sample 

images of neural circuits of C. elegans and rabbit mouse retina are shown in 

Figure 2.1. In both the images of Figure 2.1 we can see cell membranes separating 

one neuron from the other. 

The images in Figure 2.2 show the synapse structures near the cell membranes. 

The bulged shape is because of accumulation of vesicles near the region of transmis­

sion. This bulged dark region is called the presynaptic density of the synapse [6]. 

There are various other types of synapses that result in just darkening of the 

membrane structure. There is a type of synapse called as the "Gap junctions", 
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F i g u r e 2.2. Neural tissue slices of rabbit retina showing synapses 

which is a rod like structure spanning across neurons. This synapse structure 

shows clumping of the vesicles even in the interior of the neurons. 

2 . 2 T r a n s m i s s i o n e l e c t r o n m i c r o s c o p y 

Transmission electron microscopy(TEM) is a microscopy technique in which a 

beam of electrons is transmitted through a very thin sliced specimen (in order of mi­

crometers or nanometers) interacting with the specimen as they pass through. This 

interaction of electrons with the specimen results in an image of the specimen [27], 

which is then magnified and focused onto an imaging devices like a fluorescent 

screen or a photographic film. Modern microscopes have CCD cameras to directly 
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(a) C. elegans worm neural tissue (b) Rabbit retina neural tissue 

Figure 2.1. Neural tissue slices of C. elegans worm and rabbit retina 
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Figure 2.2 . Neural tissue slices of rabbit retina showing synapses 

which is a rod like structure spanning across neurons. This synapse structure 

shows clumping of the vesicles even in the interior of the neurons. 

2.2 Transmission electron microscopy 
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crometers or nanometers) interacting with the specimen as they pass through. This 

interaction of electrons with the specimen results in an image of the specimen [27], 

which is then magnified and focused onto an imaging devices like a fluorescent 

screen or a photographic film. Modern microscopes have CCD cameras to directly 
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digitize these high resolution images. 

Since electrons are equivalent to electromagnetic waves of very small wavelength, 

TEMs are capable of very high resolution (in order of nanometer/pixel) images 

compared to light microscopes, which operate with electromagnetic waves of much 

higher wavelength. This enables the neural tissues to be scanned at very high 

magnifications. 

2 .2 .1 C o m p o n e n t s a n d w o r k i n g 

The TEM is vacuumized system where the electrons travel and interact with 

the specimen. One end of the TEM has an electron gun, which is the source of the 

beam of electrons. The other end of the TEM has the imaging device to capture the 

image of the specimen. A series of electromagnetic lenses and electrostatic plates 

guide the electron beam through the specimen and focus on the imaging device. 

The imaging device provides the observer with the image of the specimen under 

observation. 

2.2.2 C h a l l e n g e s 

The usage of TEM for imaging the neural tissue has the following challenges: 

Since the TEM operates at very high magnifications, it can scan only a small area 

of the specimen. However, the neural tissue spans much more than a few microns; 

thus a single specimen has to be scanned as multiple tiles. Since electron beams are 

equivalent to high energy beams impacting the specimen, bombardment of these 

beams on the specimen causes nonuniform heating of the tissue and subsequent 

distortion of the sample. 

2.2.3 D a t a p r e p a r a t i o n 

The section of neural tissue that is the region of interest is pigmented and frozen. 

Then thin specimens are sliced out using a microtome. Once ultrathin specimens 

are prepared, as discussed in the section 2.2.2, the specimens are imaged as tiles. 

The ir-tool chain [15] is used to assemble the tiles to a mosaic and further the 

slices are registered together to reconstruct the final volume. A faster method to 
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assemble such tiles to a mosaic is explained in chapter A. 

2 . 3 D e c i s i o n s t u m p s 

The decision stump is a special case of decision tree [18], [12], which is a class 

of supervised learning algorithms frequently used in data mining and machine 

learning. 

Figure 2.3 and Figure 2.4 show an example of a decision stump and a decision 

tree, respectively. The algorithm constructs a decision tree with just one decision 

node and two classification leaves during training based on a given set of training 

samples. Decision stump is the weak learner, i.e., it cannot give the best classifica­

tion for the samples but a rather simple and fast classifier with accuracy at least 

just greater than 50% where possible. The following section explains the learning 

and classification of samples using decision stumps. 

F i g u r e 2 .3 . Decision stump 
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2.3.1 Dec i s ion s t u m p l e a r n i n g 

Like the rest of the supervised learning algorithms, the learning algorithm takes 

the following as the input: 

1. Attributes 

2. Attribute values 

3. Sample classification 

4. Sample weights 

The learning algorithm chooses the at tr ibute and a threshold value that gives the 

best classification performance and margin for the decision stump as classifier. 

2.3.2 Dec i s ion s t u m p class i f icat ion 

The classification of a test sample based on the learned model is trivial. The 

model gives the attribute, threshold value and the inequality relation of the at­

tribute value to the threshold. The evaluation of the inequality equation gives the 

classification of the sample. 

2 . 4 A d a B o o s t 

AdaBoost [20] is a type of boosting algorithm. Boosting is an ensemble learning 

technique where weak learners such as decision stumps are used as components to 

create strong classifiers. The AdaBoost meta-algorithm at each round learns a weak 

classifier with accuracy at least greater than 50% for a set of weighted samples. This 

weak classifier adds to the set of weak classifiers learned in the previous rounds. 

The final classification depends on the classification of weak learners in each round. 

2 . 5 C l a s s i f i e r o n a r t i f i c i a l d a t a s e t s 

The boosted decision stumps were tested for their classification performance on 

few artificial datasets before applying to the real image datasets. This was done to 

access the performance of the classifier on certain specific nature of these datasets. 

The datasets and their unique traits are listed below: 
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1. Crescent dataset - Linearly nonseparable 

2. Concentric circles dataset - Linearly nonseparable and means of the classes 

are very close to each other if not the same 

3. Star dataset - Linearly nonseparable and multiple clustering of samples of 

same dataset 

4. Nonaxis aligned dataset - Decision boundary is not aligned to any of the 

dimension's axes 

The results of such experiments are discussed in the following sections. 

2 .5 .1 C r e s c e n t d a t a s e t 

Table 2.1 describes the dataset properties. Figure 2.5 shows a typical crescent 

dataset and Figure 2.6 shows the performance of the classifier at various rounds of 

the learning. 

2.5.2 C o n c e n t r i c c i rc les d a t a s e t 

Table 2.2 describes the dataset properties. Figure 2.7 shows a typical concentric 

circles dataset, and Figure 2.8 shows the performance of the classifier at various 

rounds of the learning. 

2 .5.3 S t a r d a t a s e t 

Table 2.3 describes the dataset properties. Figure 2.9 shows a typical star 

dataset, and Figure 2.10 shows the performance of the classifier at various rounds 

of the learning. 

T a b l e 2 . 1 . Crescent dataset properties 
Attribute Attribute nature 
Data, dimensionality 2 
Number of classes 2 
Separability Separable but linearly nonseparable 
Description The samples of one class are distributed as a crescent. The 

mean of the samples are clearly separated. 
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T a b l e 2.2. Concentric circles dataset properties 
Attribute Attribute nature 
Data dimensionality 2 
Number of classes to 

Separability Separable but linearly nonseparable 
Description The samples of one class are distributed within a circle. 

The other class is a ring surrounding the other class. The 
mean of the samples are very close to each other. 

3 

2 

1 
CD 
">< n < 0 
>• 

-1 

C lass 0 
C la s s 1 

- 2 

- 3 
- 3 - 2 0 

X-Axis 

F i g u r e 2.7. Concentric circles dataset 

2.5.4 N o n a x i s a l i gned d a t a s e t 

We have seen that the classifier is able to learn all the above artificial datasets to 

100 percent accuracy in training. One of the main disadvantages of using decision 

stumps as weak classifiers is that the model cannot learn classifications based on 

multiple attributes or it can learn based on distribution of just one attr ibute. 

This statement is corroborated in the following experiment with nonaxis aligned 

dataset. Table 2.4 describes the dataset properties. Figure 2.11 shows a typical 

nonaxis aligned dataset and Figure 2.12 shows the performance of the classifier at 

various rounds of the learning. We can see from Figure 2.12 that the classifier takes 
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T a b l e 2 .3 . Star dataset properties 
Attribute Attribute nature 
Data dimensionality 2 
Number of classes to 

Separability Separable but linearly nonseparable 
Description The samples of one class are distributed as four distinct 

clusters with cluster centers on the axis and equidistant 
from the origin. The samples of the other classes are 
distributed as clusters with centers exactly in between the 
clusters of the other class. The means of the samples are 
very close to each other. 

many rounds to learn the 2D linear decision boundary. Section 2.5.5 compares the 

classification performance of boosted decision stump classifier with other types of 

classifiers. 
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Table 2.3. Star dataset properties 
Attribute Attribute nature 
Data dimensionali ty 2 
Number of classes 2 
Separability Separable but linearly nonseparable 
Description The samples of one class are distributed as four distinct 

clusters with cluster centers on the axis and equidistant 
from the origin. The samples of the other classes are 
distributed as clusters with centers exactly in between the 
clusters of the other class. The means of the samples are 
very close to each other. 
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many rounds to learn the 2D linear decision boundary. Section 2.5.5 compares the 

classification performance of boosted decision stump classifier with other types of 

classifiers. 

2.5.5 Comparison with other classifiers 

More complex learning algorithms, such as a perceptron , can learn these kind 

of distinct linear decision boundaries in just one round of learning. Support vector 

machines(SVM) [23, 2, 5] are capable of projecting the data into infinite dimen-
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T a b l e 2.4. Nonaxis aligned dataset properties 
Attribute Attribute nature 
Data dimensionality 2 
Number of classes 2 
Separability Linearly nonseparable 
Description The samples of both classes are Gaussian distributions 

with variance along one direction much larger than the 
other variance in direction in the perpendicular direction. 
The two classes are separated by a linear decision boundary 
that is not parallel to any of the axis. The mean of the 
samples are well separated from each other. 
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sions using the kernel trick and learning nonlinear decision boundaries. Here we 

have conducted experiments with SVMs which are capable of learning decision 

boundaries with maximum margin. The test results of few such algorithms are 

shown in Table 2.5. 

The problem with these models is that their training time increases with the 

increase in dimensionality and number of samples of the training dataset. We tried 

training the SVM classifiers on microscopy datasets on subset of its samples and 

learned classifiers did not yield the same classification performance as the boosted 
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have conducted experiments with SVMs which are capable of learning decision 

boundaries with maximum margin. The test results of few such algorithms are 

shown in Table 2.5. 
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decision stumps trained on the whole dataset. Thus we chose the decision stump 

based classifier for our problem. 



C H A P T E R 3 

M E T H O D S 

This chapter describes the proposed methods for membrane detection and synapse 

detection in detail. Figure 3.1 provides an overview of the fundamental steps. 

Initially, the contrast of the gray scale images is normalized using CLAHE [11]. 

Then the feature values for the individual pixels of the enhanced images are gen­

erated. Using the ground t ru th markup of cell membranes and synapses for these 

images, a supervised learning experiment is set up. The decision stumps (weak 
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Figure 3.1. Block diagram of the proposed methods in the overall reconstruction 
pipeline 



18 

classifiers) are boosted [9] for several rounds until a high accuracy classifier is ob­

tained in case of the membrane detection experiment. In case of synapse detection, 

the same classifier is used in a cascaded architecture. The following sections review 

these steps in greater detail. 

3 . 1 I m a g e e n h a n c e m e n t 

Before the images are used for feature extraction step, a contrast limited adap­

tive histogram equalization (CLAHE) [11] is applied to the raw electron microscopy 

images. This method changes the grey value of the pixels depending upon the 

pixel values of neighboring pixels in the image, thus improving the local contrast. 

This improves the contrast of the cell membranes locally against the contents 

inside and outside the neuron cell, and also fixes overall brightness variability 

between images [14]. The decrease in variability greatly helps the classifier since 

it reduces the difference between training images, between training and testing 

images. An example of such CLAHE enhancement is shown in Figure 3.2. The 

CLAHE algorithm is shown in Algorithm 1. 

(a) Original image (b) CLAHE Enhanced Image 

F i g u r e 3.2. Comparison between original and CLAHE enhanced image 
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A l g o r i t h m 1 CLAHE 
7 <— Image to be enhanced 
O <— Enhanced Image 
W *— Moving window 
s <— Maximum contrast limit 
(n, n) <— Height and width of W 
Pad image 7 with (n — l ) / 2 pixels on all sides 
for For every pixel p in 7 d o 

Construct window W around pixel p 
Pw P D F of grey values of pixels in W 
cw <— CDF of grey values of pixels in W such that the max difference between 
consecutive bins in s 
Op <— cw{pixelp) 

e n d for 

3 . 2 C e l l m e m b r a n e d e t e c t i o n 

3.2.1 F e a t u r e s 

Four features were computed for each pixel in the image: the pixel intensity, 

and eigenvalues and orientation of the first eigenvector of the Gaussian smoothed 

Hessian matrix. The gray value of the pixel is utilized since membranes are usually 

dark and therefore are useful for segmentation, as verified in previous works [14, 13, 

17]. The other three features are properties derived from the Gaussian smoothed 

Hessian matrix, 

H(x,y) = G„ * 
d2i o2i 
dx2 dxdy 
d2I d2I (3.1) 

dydx dy2 

where 7 is the (CLAHE enhanced) image, and Ga is the Gaussian blurring kernel 

with standard deviation a. The Hessian matrix was used in the context of fil­

tering [21] and segmenting [17] electron microscopy images. Since membranes are 

elongated structures, the eigenvalues of the smoothened Hessian matrix represent 

the anisotropic nature of the region around the pixel. The eigenvalue of the 

principal eigenvector of the Hessian is proportional to the gradient orthogonal to 

the membrane and the smaller eigenvalue is proportional to the gradient along 

the cell membrane. The ability of this feature to measure the anisotropic nature 

of the shape can be seen when we compare the eigenvalues of ellipses of different 

eccentricities. 

Algorithm 1 CLAHE 
I +- Image to be enhanced 
o +- Enhanced Image 
W +- Moving window 
s +- Maximum contrast limit 
(n, n) +- Height and width of W 
Pad image I with (n - 1) /2 pixels on all sides 
for For every pixel p in I do 

Construct window W around pixel p 
Pw +- PDF of grey values of pixels in W 
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Cw +- CDF of grey values of pixels in W such that the max difference between 
consecutive bins in s 
Op +- cw(pixelp ) 

end for 

3.2 Cell membrane detection 

3.2.1 Features 

Four features were computed for each pixel in the image: the pixel intensity, 

and eigenvalues and orientation of the first eigenvector of the Gaussian smoothed 

Hessian matrix. The gray value of the pixel is utilized since membranes are usually 

dark and therefore are useful for segmentation , as verified in previous works [14, 13, 

17]. The other three features are properties derived from the Gaussian smoothed 

Hessian matrix, 

[

[P I 

H(x, y) = Ga * ~~~ 
oyox 

(3.1 ) 

where I is the (CLAHE enhanced) image, and Ga is t he Gaussian blurring kernel 

with standard deviation cr. The Hessian matrix was used in the context of fil­

tering [21] and segmenting [17] electron microscopy images. Since membranes are 

elongated structures, the eigenvalues of the smoothened Hessian matrix represent 

the anisotropic nature of the region around the pixel. The eigenvalue of the 

principal eigenvector of the Hessian is proportional to the gradient orthogonal to 

the membrane and the smaller eigenvalue is proportional to the gradient along 

the cell membrane. The ability of this feature to measure the anisotropic nature 

of the shape can be seen when we compare the eigenvalues of ellipses of different 

eccentricit ies . 
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The eigenvalues of ellipse of different eccentricities are shown in Table 3.1. As we 

see, the eigenvalue of the principal eigenvector increases with increase in eccentricity 

of the ellipse as expected. Thus when the ratio of the major axis to the minor axis is 

near one, the shape is more circular and the blob region is more likely to represent 

a vesicle than a membrane. 

The fourth feature is the orientation of the principal eigenvector at that point. 

The inclusion of this feature gains significance during learning of the classifier 

because the neighboring pixels features are also considered. 

The feature vector for every pixel in the image consists of the feature values 

of that pixel and of its neighbors. The neighborhood is defined by a star shaped 

stencil with its 8 arms forking out every 45 degrees (Figure 3.3). We show in the 

results section that the neighboring pixel features adds relevant information for the 

T a b l e 3 .1 . Eigenvalue of ellipses of different parameters 
Ellipse Parameters Ratio of eigenvalues 

• 
Major axis = 20, Minor 
axis = 20 

1:1 

• 
Major axis = 20, Minor 
axis = 40 

2:1 

Major axis =100, Minor 
axis =10 

10:1 
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The eigenvalues of ellipse of different eccentricities are shown in Table 3.1. As we 

see, the eigenvalue of the principal eigenvector increases with increase in eccentricity 

of the ellipse as expected. Thus when the ratio of the major axis to the minor axis is 

near one , the shape is more circular and the blob region is more likely to represent 

a vesicle than a membrane. 

The fourth feature is the orientation of the principal eigenvector at that point. 

The inclusion of this feature gains significance during learning of the classifier 

because the neighboring pixels features are also considered . 

The feature vector for every pixel in the image consists of the feature values 

of that pixel and of its neighbors. The neighborhood is defined by a star shaped 

stencil with its 8 arms forking out every 45 degrees (Figure 3.3). We show in the 

results section that the neighboring pixel features adds relevant information for the 

Table 3.1. Eigenvalue of ellipses of different parameters 
Ellipse Parameters Ratio of eigenvalues 

Major axis = 20, Minor 1:1 
axis = 20 

Major axis = 20, Minor 2:1 
axis = 40 

Major axis = 100, Minor 10:1 
axis = 10 
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F i g u r e 3.3. Stencil neighborhood. 

classification. The context helps to identify membranes at regions were there are 

minor discontinuities, as it allows for the classifier to utilize the context information 

to "interpolate" the cell membrane. In this regard, the orientation feature plays 

an important role by imposing a smoothness constraint on the curvature of the 

membrane. 

3.2.2 Classifier 

We propose to utilize a classifier trained with AdaBoost [9] since such a classifier 

can model a nonlinear decision boundary. AdaBoost is a meta-algorithm that builds 

the classifier from "weak" classifiers, such as a decision stump. At each round, 

AdaBoost adds a weak classifier to the set of weak classifiers by training for best 

classification performance according to samples weights. The sample weights are 

varied depending on the classification result of the previous round, by increasing 

the weights of incorrectly classified samples and decreasing the weights of correctly 

classified samples. The final classifier is a weighted sum of the weak classifiers 

according to their accuracy in the training rounds. It has been observed empirically 

in previous experiments that the obtained classifiers generally do not over fit [10], 

[3], [7], [19]. The algorithm for AdaBoost is given in Algorithm 2. 

In this paper, decision stumps are used for the weak classifier. Decision stumps 

are the simplest form of binary decision trees with just one decision node. The deci­

sion stump makes the classification decision based on just the value of a particular 

feature with respect to a threshold. Given the feature set, desired classification 

and prior of the samples, the threshold for a particular feature can be chosen 
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Figure 3.3. Stencil neighborhood. 

classification. The context helps to identify membranes at regions were there are 

minor discontinuit ies, as it allows for t he classifier to utilize t he context information 

to "interpolate" the cell membrane. In this regard, t he orientation feature plays 

an important role by imposing a smoothness constraint on the curvature of the 

membrane. 

3.2.2 Classifier 

We propose to utilize a classifier trained wi th AdaBoost [9] since such a classifier 

can model a nonlinear decision boundary. AdaBoost is a meta-algorithm that builds 

the classifier from "weak" classifiers, such as a decision stump. At each round , 

AdaBoost adds a weak classifier to t he set of weak classifiers by t raining for best 

classification performance according to samples weights. The sample weights are 

varied depending on t he classification result of the previous round , by increasing 

t he weights of incorrectly classified samples and decreasing the weights of correctly 

classified samples. The final classifier is a weighted sum of the weak classifiers 

according to their accuracy in the t raining rounds. It has been observed empirically 

in previous experiments that t he obtained classifiers generally do not over fit [10], 

[3], [7], [19]. The algorithm for AdaBoost is given in Algorithm 2. 

In this paper , decision stumps are used for the weak classifier. Decision stumps 

are the simplest form of binary decision trees with just one decision node. The deci­

sion stump makes the classification decision based on just the value of a part icular 

feature with respect to a threshold. Given t he feature set , desired classification 

and prior of the samples , the t hreshold for a part icular feature can be chosen 
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A l g o r i t h m 2 AdaBoost 
X <— Samples 
Y <— Classification 
N <r— Number of samples 
D <— Number of dimensions 
T <— Number of rounds of boosting 
Wi(n) <— 4 , where n = 1 . . . N {Initializing weight distribution of samples} 
for t = 1 . . . T d o 

ht <— Train weak learner using weight distribution Wt 

N 
et <— 2_\Wt{n)[yn 7̂  ht{xn)\{Calculate weighted error rate} 

based on the probability distribution functions of membrane and nonmembrane 

classes over the feature values without making any underlying assumption about 

the distribution of the feature. This gives the stump of best accuracy compared to 

the ones built using other metrics like information gain. The AdaBoost mechanism 

along with the decision stump classifier acts as a feature selection mechanism [25]. 

Algorithm 3 shown the algorithm for building the decision stump with maximum 

classification performance. The algorithm is modified to get maximum performance 

by vectorizing the operations. This algorithm also takes care of maximizing the 

margin for the decision boundary. 

The various functions specified in the algorithm are specified in the following 

Wt+i(n) +- Wt(n)eatyMxn){Calculate new weight distribution} 
Wf+i(n) < Wi+i(n)—{Normalize weights} 

t=i 

figures: 

1. fpos, P D F of class 1 samples-*— Class 1 function of Figure 3.4(a) 

2. fneg, PDF of class 0 s a m p l e s ^ Class 0 function of Figure 3.4(a) 

3. Cpos, CDF of class 1 samples*— Class 1 function of Figure 3.4(b) 

Algorithm 2 AdaBoost 
X f- Samples 
Y f- Classification 
N f- Number of samples 
D f- Number of dimensions 
T f- Number of rounds of boosting 
WI (n) f- iJ , where n = 1 ... N {Initializing weight distribution of samples} 
for t = 1 ... T do 

ht f- Train weak learner using weight distribution Wt 
N 

Et f- L Wt(n)[Yn =1= ht(xn)]{Calculate weighted error rate} 
n=1 

a f- l.in I- ft. 
t 2 f t. 

WH1 (n) f- Wt(n )eCl: tYn h t(xn) {Calculate new weight distribution} 
Wt+1(n) f- N W t+ l(n) {Normalize weights} 

L Wt+1(n) 
n = 1 

end for 
T 

Final boosted classifier H (x) f- sign(L atht(x)) 
t=l 
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based on the probability distribution functions of membrane and nonmembrane 

classes over the feature values without making any underlying assumption about 

the distribution of the feature . This gives the stump of best accuracy compared to 

the ones built using other metrics like information gain. The AdaBoost mechanism 

along with the decision stump classifier acts as a feature selection mechanism [25]. 

Algorithm 3 shown the algorithm for building the decision stump with maximum 

classification performance. The algorithm is modified to get maximum performance 

by vectorizing t he operations. This algorithm also takes care of maximizing the 

margin for the decision boundary. 

The various functions specified in the algorithm are specified in the following 

figures: 

1. jpos, PDF of class 1 samplesf- Class 1 function of Figure 3.4(a) 

2. fneg, PDF of class 0 samplesf- Class 0 function of Figure 3.4(a) 

3. cpos, CDF of class 1 samplesf- Class 1 function of Figure 3.4(b) 
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A l g o r i t h m 3 Decision stump learning (Vectorized) 
X *— Samples 
Y <— Classification 
N *— Number of samples 
D *— Number of dimensions 
W «— Weight distribution of samples 
for d = 1 . . . D d o 

[X^ s o r t e d , sortlndices] <— sort(Xa){Sort at tr ibute values of one dimension} 
/pos PDF of sample of class 1 weighted by distribution W 
fneg <— PDF of sample of class 0 weighted by distribution W 
Cpos *— CDF of sample of class 1 weighted by distribution W 
cneg <— CDF of sample of class 0 weighted by distribution W 
^pos * Cpos 
ineg * TYICLX (Cneg) Cneg 
for t = Every value of X^ d o 

Accuracyi(t) <— ipos(t) + [maa:(«n e 9) — i n e f f ( t )]{Accuracy of Decision stump 1 
at all values of t} 
Accuracy 2{t) *— ineg(t) + [max(ipo8) — ipos{t)]{Accuracy of Decision stump 2 
at all values of t} 

e n d for 
Accuracy(d) <— max(max(Accuracyi),max(Accuracy2)) 
Threshold(d) <— Threshold corresponding to Accuracy(d) 
I inequality (d) <— Inequality corresponding to Accuracy(d) 

e n d for 
Accuracy.max *— max (Accuracy) 
^Threshold ^~ Threshold corresponding to Accuracymax 

hAttribute <— Attribute d corresponding to Accuracymax 

^equality <- Inequality corresponding to A c e u r a q / m a x 

4. c n e f l , CDF of class 0 samples*— Class 0 function of Figure 3.4(b) 

5. ipos, CDF of class 1 samples normalized over the entire sample set*— Class 1 

function of Figure 3.4(c) 

6. i n e g , CDF of class 0 samples normalized over the entire sample set*— Class 0 

function of Figure 3.4(c) 

7. Accuracy \, Accuracy of decision stump where the inequality is attr ibute 

valuegethreshold *— Accuracy 1 function of Figure 3.4(d) 

Algorithm 3 Decision stump learning (Vectorized) 
X i- Samples 
Y i- Classification 
N i- Number of samples 
D i- Number of dimensions 
Wi-Weight distribution of samples 
for d = 1 .. . D do 

[XdsQI·ted, sartI ndices] i- sort(Xd){Sort attribute values of one dimension} 
Ipos i- PDF of sample of class 1 weighted by distribution W 
j~,eg i- PDF of sample of class 0 weighted by distribution W 
cpos i- CDF of sample of class 1 weighted by distribution W 
cneg i- CDF of sample of class 0 weighted by distribution W 
2pos i- cpos 
ineg i- max ( cneg) - cneg 
for t = Every value of X d do 
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AccuracYl(t) i- ipos(t) + [max(ineg) - ineg(t)]{Accuracy of Decision stump 1 
at all values of t } 
AccuracY2(t ) i- ineg(t) + [max(ipos) - ipos(t)]{Accuracy of Decision stump 2 
at all values of t } 

end for 
Accuracy(d) i- max(max(AccuracYl) , max (AccuracY2)) 
Threshold(d) i- Threshold corresponding to Accuracy(d) 
I nequality( d) i- Inequality corresponding to Accuracy ( d) 

end for 
AccuracYma3; i- max (Accuracy) 
hTlu'eshold i- Threshold corresponding to AccuracYmax 
hAttl';,/J'/lle i- Attribute d corresponding to AccuracYmax 
hinequality i- Inequality corresponding to AccuracYmax 

4, cneg' CDF of class 0 samplesi- Class 0 function of Figure 3.4(b) 

5, ipos , CDF of class 1 samples normalized over the entire sample seti- Class 1 

function of Figure 3.4(c) 

6. ineg, CDF of class 0 samples normalized over t he ent ire sample seti- Class 0 

function of Figure 3.4( c) 

7. AccuracYl , Accuracy of decision stump where the inequality is attribute 

valuegethreshold i- Accuracy 1 function of Figure 3.4(d) 
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3 . 3 S y n a p s e d e t e c t i o n 

3.3.1 F e a t u r e s 

The features used in this setup are properties of regions of interest extracted 

from the enhanced image. The enhanced image is thresholded and the thresholded 

regions are used as masks to extract regions of interest. Due to the huge size of 

the image, calculation of features for each and every pixel of the image would be 

very time consuming in both the training and testing phases. Thus the image is 
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Figure 3.4. Plot of different functions in t he decision stump learning algorithm 

8. AccuracY2, Accuracy of decision stump where the inequality is attribute 

valueltthreshold <- Accuracy 2 function of Figure 3.4( d) 

3.3 Synapse detection 

3.3.1 Features 

The features used in this setup are propert ies of regions of interest extracted 

from the enhanced image. The enhanced image is thresholded and the thresholded 

regions are used as masks to extract regions of interest . Due to the huge size of 

t he image, calculation of features for each and every pixel of the image would be 

very t ime consuming in both the training and testing phases. Thus the image is 
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first down sampled so that we have a reasonable training dataset size. Even then, 

the number of data points was huge. By visual examination, it was seen that the 

synapses are darker structures. Thus an optimum grey threshold value is learned 

such that the thresholded regions are around the synapse location or its vicinity. 

For all the connected component regions extracted from the thresholded region, the 

following features are calculated: 

1. 7 Rotation, translation and scale invariant moments 

2. 30 bin cumulative histogram bin values 

3. Area of the region 

These features are explained in detail in the following sections. 

3.3.2 Scale a n d r o t a t i o n inva r i an t m o m e n t s 

The raw moment of any discrete region is given by the following equation 

My = £ 5 > y / ( * , y ) (3.2) 
x y 

In our case since we are calculating moments for regions of various sizes. We 

normalize them by dividing any moment by the following value. 

x y 

We chose the centroid of the region as the point around with the moments are 

calculated. The centroid of the region is given by the following equation 

{ic, y} = { M 1 0 / M 0 0 , MQI/MOO} (3.4) 

To introduce translation invariance, all the moments are calculated around the 

centroid of the region as follows 
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first down sampled so that we have a reasonable training dataset size. Even then, 

the number of data points was huge . By visual examination, it was seen that the 

synapses are darker structures. Thus an optimum grey threshold value is learned 

such that the thresholded regions are around the synapse location or its vicinity. 

For all the connected component regions extracted from the thresholded region, the 

following features are calculated: 

1. 7 Rotation, translation and scale invariant moments 

2. 30 bin cumulative histogram bin values 

3. Area of the region 

These features are explained in detail in the following sections. 

3.3.2 Scale and rotation invariant moments 

The raw moment of any discrete region is given by the following equation 

(3.2) 
x y 

In our case since we are calculating moments for regions of various sizes. We 

normalize them by dividing any moment by the following value. 

LL I(x ,y) (3.3) 
x y 

We chose t he centroid of the region as the point around with the moments are 

calculated. The centroid of the region is given by the following equation 

{x , ]]} = {MlO/Moo,MoI/Moo} (3.4) 

To introduce translation invariance, all the moments are calculated around the 

centroid of the region as follows 
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x y 
We calculate the central moments (up to an order of 3) to determine the seven 

scale, rotation moments The central moments are given by the following equations: 

Moo — MDO (3.6) 

MOI = 0 (3.7) 

Mio = 0 (3.8) 

Mil = Mn - xM01 = Mn - xM01 (3.9) 

Mao = M 2 0 - xMio (3.10) 

M02 = M02 - yM01 (3.11) 

M21 = M 2 i - 2 z M n - j / M 2 0 + 2 x 2 M 0 i (3.12) 

M12 = M12 - 2 y M u - z M 0 2 + 2 £ 2 M 1 0 
(3.13) 

M3 0 = M 3 0 - 3xM 2 ( ) + 2a : 2 M 1 0 
(3.14) 

/ i 0 3 = M 0 3 - 3 z M 0 2 + 2 x 2 M 0 i (3.15) 

The scale invariant moments rjij can be constructed from the central moments 

by dividing by the properly scaled 0th moments as shown below. 

m = (3.i6) 
Moo 

The scale invariant seven moments used as input features for the classifier are 

given by the following equations. These moments are also called Hu invariant 

moments. 

26 

(3.5) 
x y 

We calculate the central moments (up to an order of 3) to determine the seven 

scale, rotation moments The central moments are given by the following equations: 

/-loa = Moo 

/-lOI = 0 

/-lIO = 0 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3. 11) 

(3.12) 

(3 .13) 

(3.14) 

(3.15) 

The scale invariant moments 'r}'ij can be constructed from the central moments 

by dividing by the properly scaled oth moments as shown below. 

/-lij 
'r}'ij = 1+( i¥) 

/-loa 

(3.16) 

The scale invariant seven moments used as input features for the classifier are 

given by the following equations, These moments are also called Hu invariant 

moments. 
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h = ??20 + 7]Q2 (3.17) 

h = (7720 - V02)2 + (2T7H) 2 (3.18) 

^3 = (7/30 - 37712)2 + (3r/2i - 7?o3)2 (3.19) 

h = (7/30 + flu)2 + (T?21 + ^7o3)2 (3.20) 

h = {mo - 37712X7730 + 7712) [(7730 + 7/12)2 - 3(7721 + 7703)2] 

+ (3r/2i - 7703)(mi + 7703)[3(7730 + 7712)2 - (7721 + m)2} (3.21) 

h = (mo ~ 77o2)[(7730 + 7712)2 - (7/21 + 7/so)2] + 47711(7730 + 7712)(7721 + 7703) (3.22) 

^7 = (37721 - 7703)(7730 + 7712)[(r/30 + 7/12)2 - 3(7721 + 7703)2] 

Circular regions of interest are extracted with synapse point as the center. The 

Hu invariant features are calculated for these circular regions. 

3.3.3 C u m u l a t i v e h i s t o g r a m a n d a r e a f ea tu re s 

The grey values of the region are rescaled to a normalized scale between the grey 

scale minimum to threshold value. The rescaled range is divided into 30 equally 

sized bins and a cumulative histogram is estimated. The 30 values of the 30 bins 

are used as additional input features. The entire thresholded region is used for 

estimating the bin values rather than using just the circular regions which were 

used to calculate the moment features. Since the regions are extracted by masking 

with a threshold, the range of grey scale is from zero (minimum grey value) to the 

threshold value instead on the entire range of grey values. 

The area of the region is the number of pixels in the extracted region. 

3.3.4 Classif ier 

In this problem we have an unbalanced training dataset, i.e., the number of 

examples of synapse regions are far less than the number of examples of nonsynapses 

+ (7730 - 37712)(7721 + 7703)13(7730 + 7712)2 - (7/21 + 7703)2] (3.23) 

h = rJ20 + rJ02 

12 = (rJ20 - rJ02)2 + (2rJll)2 

13 = (rJ30 - 3rJ12)2 + (3rJ21 - 1703)2 

14 = (rJ30 + rJ12)2 + (rJ21 + rJ03)2 

h (rJ30 - 3rJ12) (rJ30 + rJ12) [(rJ30 + rJ12) 2 - 3(rJ21 + rJ03)2] 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 

+ (31721 - rJ03)( rJ21 + rJ03) [3 (rJ30 + rJ12)2 - (rJ21 + rJ03)2] (3 .21) 

h = (rJ20 - rJ02) [( rJ30 + rJ12)2 - (rJ21 + rJ30)2] + 4rJll(rJ30 + rJ12) (rJ21 + rJ03) (3.22) 

17 (3rJ21 - rJ03)(rJ30 + rJ12) [(rJ30 + rJ12) 2 - 3(rJ21 + rJ03) 2] 

+ (rJ30 - 3rJ12)(rJ21 + rJ03)[3(rJ30 + rJ12)2 - (rJ21 + rJ03)2] (3.23) 

Circular regions of interest are extracted with synapse point as the center. The 

Bu invariant features are calculated for these circular regions. 

3.3.3 Cumulative histogram and area features 

The grey values of the region are rescaled to a normalized scale between the grey 

scale minimum to threshold value. The rescaled range is divided into 30 equally 

sized bins and a cumulative histogram is estimated. The 30 values of the 30 bins 

are used as additional input features. The entire thresholded region is used for 

estimating the bin values rather than using just t he circular regions which were 

used to calculate the moment features. Since the regions are extracted by masking 

with a threshold , the range of grey scale is from zero (minimum grey value) to the 

threshold value instead on the entire range of grey values. 

The area of the region is the number of pixels in the extracted region. 

3.3.4 Classifier 

In this problem we have an unbalanced training dataset, i.e., the number of 

examples of synapse regions are far less than the number of examples of nonsynapses 
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regions. In the testing phase also we observe that detection of synapses is like 

finding a needle in a haystack. Thus we use a cascading architecture that works 

well with other kinds of such rare event detection problem, such as face detection 

in photographs [24]. In this architecture, results of several high prediction rate 

classifiers are cascaded. The output of the the final classifier of the cascade gives 

the prediction for synapses with few false negatives. The architecture is shown 

in Figure 3.5. As shown in the figure, every classifier is an ensemble of weighted 

decision stumps. The final boosted classifiers prediction is based on equation 3.24. 

N 
Class = sgn(y^ wnHn(x) — threshold) (3.24) 

n=0 

AdaBoost + 
Decision Stump, 
adjusted 
threshold for very 
high prediction 
rate 

Negatives 

Negatives 

Classifies 

Positives 

Negatives Positives 

F i g u r e 3.5. Cascade architecture 
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From equation 3.24 we can infer that the classification of a sample by the 

ensemble can be varied by adjusting the threshold. This property is used at 

every node of the ensemble, such that by varying the threshold for the ensemble, 

we improve the prediction rate (approximately 100%). For the first stage of the 

cascade, all the positive examples and an equal number of negative examples are 

chosen as the training set. The ensemble is trained to a point where adding more 

weak classifier does not improve the prediction rate of the ensemble. Then the 

threshold of the ensemble is varied such that ensemble has a very high prediction 

rate. After adjusting the threshold, the ensemble will predict a few samples as 

nonsynapses. These samples will not be used for training in the following levels 

of cascade. At the next stage of the cascade, we take all the samples predicted as 

synapses in the previous stage and add a set negative samples such that the training 

set is balanced. The classifier is trained just like the previous stage. The cascade 

is trained until we run out of training examples or the rate of rejection negative 

examples drops down. 

3.3.5 O r i e n t a t i o n e s t i m a t i o n 

Once the synapses regions are detected by the cascaded classifier, we estimate 

the orientation of the synapses so that the predicted synapses can be aesthetically 

viewed on the markup viewer. The original image is down sampled to 25% of its 

size and blurred using perona-malik smoothening. This takes care that the blurring 

occurs within the synapse alone and does not blur the entire area. A circular region 

around the synapse is extracted and thresholded at the median grey value. From 

this thresholded image, the orientation of the synapse is calculated as follows. 

The orientation of principal axis of the binary image patch can be calculated 

from the covariance matrix constructed from the 2nd order central moments as 

follows. 

The covariance matrix is given by 

cov[I(x,y)] = 

where 

M20 M11 
M11 M02 

(3.25) 
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f (3-27) 

^ (3.28) 

The orientation of the image patch is given by the angle of the principal eigen­

vector. The angle of the principal eigenvector is given by 

9 = \arctan{ ^ f ) (3.29) 
2 M20 ~~ M02 

The orientation of the principal axis corresponds to the orientation of the 

membrane. Thus the orientation of the synapses corresponds to the the minor 

eigenvector which is orthogonal to the principal eigenvector on the 2D plane. Thus 

the orientation of the synapses is given by, 

Bsynapse = 6 ± 90° (3.30) 
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The orientation of the image patch is given by the angle of the principal eigen-

vector. The angle of the principal eigenvector is given by 

1 2J-l' 
8 = -arctan( , II , ) 

2 J-l 20 - J-l02 
(3.29) 

The orientation of the principal axis corresponds to the orientation of the 

membrane. Thus the orientation of the synapses corresponds to the the minor 

eigenvector which is orthogonal to the principal eigenvector on the 2D plane. Thus 

the orientation of the synapses is given by, 

8 synapse = 8 ± 90 0 (3.30) 



C H A P T E R 4 

R E S U L T S 

This chapter presents a detailed evaluation of the proposed methods of cell 

membrane detection and synapse detection on a C. elegans worm dataset and a 

rabbit retina dataset, respectively. 

4 . 1 C e l l m e m b r a n e d e t e c t i o n 

The proposed method for cell membrane detection was tested on a C. elegans 

dataset. The entire volume is made of 149 slices of 662x697 gray scale images. Out 

of this stack, 5 image slices where chosen at random from the first 50 slices and the 

accuracy of the method was assessed using 5-fold cross-validation. In each case, the 

training was done using four of the five images and tested on the image that was left 

out of training. The ratio of membrane/nonmembrane pixels is unbalanced in the 

order of 1:10 and thus affects the performance of the classifier. The classifier trained 

with a balanced dataset (1:1 ratio) had the best accuracy compared to classifiers 

trained with various ratios of positive (membrane) and negative (nonmembrane) 

samples, with results shown for this case. The negative samples were chosen at 

random. 

The feature vectors were generated as described in Chapter 3, with a 7 x 7 

neighborhood and Gaussian standard deviation a = 5. At any location, these 

parameters yielded 100 features (25 points in the neighborhood x 4 features for 

every pixel). Initially, the decision stumps were boosted for 10000 rounds and the 

area under the ROC (averaged over the 5 folds) computed after each round. We 

can observe from Figure 4.1 that the area under the ROC curve flattens out after 

around 3000 rounds of boosting. The corresponding ROCs are shown in Figure 4.2, 

and the test images results in Figure 4.3, 4.4, 4.5, 4.6, 4.7. Table 4.1 shows the 
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F i g u r e 4 . 1 . Semilog plot of number of boosting rounds versus the area under the 
ROC curve for that boosting round. 

sample statistics (average of all folds) used in the experiments. At the knee of the 

testing ROC curve, the false positive rate = 0.15 (60000 pixels) and true positive 

rate = 0.85 (31000). The high false positive rate is because the pixels neighboring 

the membranes and pixels of vescicles are classified as membrane pixels. Figure 4.2 

clearly shows that the use of neighborhood context combined with the proposed 

feature set yields significantly better results than thresholding of the diffusion filter 

image [14]. Moreover, comparing with the results without context information 

underlines the importance of using neighborhood for membrane detection. 
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ROC curve for that boosting round. 

sample statistics (average of all folds) used in the experiments. At the knee of the 

testing ROC curve, the false positive rate = 0.15 (60000 pixels) and true positive 

rate = 0.85 (31000) . The high false positive rate is because the pixels neighboring 

the membranes and' pixels of vescicles are classified as membrane pixels. Figure 4.2 

clearly shows that the use of neighbor hood context combined wi th the proposed 

feature set yields significantly better results than thresholding of the diffusion fi lter 

image [14]. Moreover , comparing with the results without context information 

underlines the importance of using neighborhood for membrane detection. 
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T a b l e 4 . 1 . Statistics of samples in various experiments (average of all folds) 
Mode Total Samples Number of 

Positives 
Number of Negatives 

Training 296380 148190 148190 (randomly chosen from 
408320 pixels) 

Testing 461414 (all pix­
els in the test 
image) 

37047 408320 (approx. 10 times number 
of positives 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
False Positive rate 

F i g u r e 4.2. ROC curves of the classifiers trained with AdaBoost at boosting round 
3000. For comparison, the ROC for the method by Jurrus et al. [14] is also shown. 
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F i g u r e 4.4. Membrane detection results of the fold-2 test images in the 5-fold 
cross-validation: original images (left), and detected membranes (right). 
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Figure 4.3 . Membrane detection results of the fold-l test images in the 5-fold 
cross-validation: original images (left), and detected membranes (right). 

Figure 4.4. Membrane detection results of the fold-2 test images in the 5-fold 
cross-validation: original images (left), and detected membranes (right). 
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F i g u r e 4.6. Membrane detection results of the fold-4 test images in the 5-fold 
cross-validation: original images (left), and detected membranes (right). 
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Figure 4.5. Membrane detection results of the fold-3 test images in the 5-fold 
cross-validation: original images (left) , and detected membranes (right). 
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Figure 4.6. Membrane detection results of the fold-4 test images in the 5-fold 
cross-validation: original images (left) , and detected membranes (right). 
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F i g u r e 4.7. Membrane detection results of the fold-5 test images in the 5-fold 
cross-validation: original images (left), and detected membranes (right). 
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Figure 4 .7. Membrane detection results of the fold-5 test images in the 5-fold 
cross-validation: original images (left) , and detected membranes (right). 
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4 . 2 S y n a p s e d e t e c t i o n 

The proposed method for synapse detection was tested on a single slice cross-

section of a rabbit retina dataset. The image is scanned under a 5000x magnifi­

cation. One pixel in the digital image represents 2.18 nm at this magnification. 

The full resolution image was 16720 x 16750 pixel sized grey scale image. The 

image was first down sampled four times, to a size of 4180 x 4188 pixels. The 

accuracy of the proposed method was assessed using four-fold cross-validation. The 

image was divided into four quadrants and in each fold, the training was done on 

3 quadrants and tested on the third quadrant. In the entire image, the ratio of 

synapse regions/nonsynapses region was in the order of 1:100. 

The initial problem was the reduction in the number of testing samples in a 

image so as to reduce the testing time. The masking of thresholded regions provided 

the initial dataset reduction. The next problem was to choose a representative point 

around which the region attributes will be calculated. Many ways of choosing the 

representative point were tried. A few significant ones are listed below: 

1. The centroid of the binary thresholded region was chosen. 

2. The weighted centroid was chosen, where the weight of individual pixel was 

directly proportional to the darkness of the pixels in the CLAHE image. 

3. SIFT key points, which are representative of corners and peaks were calculated 

for the regions of interest. Based on darkness of each key point in a particular 

region, a representative point was chosen. 

4. The SIFT key points were allowed to converge towards the darkest pixels in 

the region and the converged point was chosen. 

In all the above methods, only a lesser percentage of the representative points 

was near the actual marked up synapses, thus, the region around the synapses was 

not even in the test dataset. For the few representative points that were near the 

synapses, few were classified as nonsynapses regions since the features calculated 

did not have the required separability in this dataset. Because of the above reasons, 
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the classifier either had unreliable detection rate necessitating more user guidance 

to identify the synapses. 
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C H A P T E R 5 

C O N C L U S I O N 

This chapter discusses the contributions of this thesis and proposes future 

research directions. 

5 . 1 C o n t r i b u t i o n 

The proposed method utilizes neighborhood context information to improve the 

accuracy of membrane detection. Along with the nonlinear discrimination ability 

of the AdaBoost classifier and the Hessian feature set, this results in improved 

membrane detection compared to previous methods. Thus one can expect a more 

robust segmentation of the individual neurons. 

5 . 2 F u t u r e w o r k 

Even though the classifier does good work in classification of the membranes, 

the classifier fails to discern certain structures like vesicles from membranes, which 

may result in over-segmentation of individual neurons. Utilizing additional fea­

tures that discriminate these regions from membranes may prevent these false 

positives. Moreover, recent work suggests that cascading the classifier predictions 

and additional feature set onto another classifier may help connect discontinuities in 

membranes and thereby avoid under segmentation [22]. Future work would address 

these problems in membrane detection to improve the segmentation accuracy of the 

individual neurons. The segmentation of one slice of the volume could be used in 

a more robust segmentation of successive slices where membranes are weak. As far 

as the problem of detection of synapses, new features that can quantify the shape 

of the region have to be developed. The feature has to account for the variablity of 

the synapse shapes because of their types. 
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A P P E N D I X A 

A S S E M B L I N G L A R G E M O S A I C S O F 

E L E C T R O N M I C R O S C O P E I M A G E S 

U S I N G G P U S 

Novel imaging techniques are being used to map the connectivity of individual 

neurons in large neuronal tissue sections, to understand the neural circuitry of the 

retina, and particularly how signals are communicated across processes. Extensive 

studies have been undertaken using electron microscopy to create detailed diagrams 

of general neuronal structures [8] and their connectivities [1, 26, 4]. The entire 

volume of neuronal tissue is scanned as ultra thin slices (approx. 70nm) sliced using 

a micro tome. The thin slices are assembled together to reconstruct the volume. 

The neuronal tissue has to be scanned at very high resolutions (around 2nm/pixel) 

to unambiguously identify the neurons and synapses in the scanned volume and 

create detailed maps. The serial-section Transmission Electron Microscope (TEM) 

is the preferred imaging modality for capturing large sections of neuronal tissues at 

this magnification level. The section to be scanned spans a few millimeters. Rarely 

do we find an electron microscope that can capture such a wide field of view and 

at the required nanoscale resolution. Thus the sample of interest is imaged as a 

sequence of tiles with some overlap. Figure A.l shows sample neuronal tissue image 

tiles of mice scanned using TEM. 

The imaging of these tiles using TEM requires the sample to be suspended over a 

beam of electrons. The passage of high energy electron beams through the specimen 

causes it to heat up and subsequently distort. The distortion is not uniform among 

tiles and thus has to be unwarped individually. Thus, reconstructing the image 

from the set of tiles, called image mosaicing, involves significant computation to 

APPENDIX A 

ASSEMBLING LARGE MOSAICS OF 

ELECTRON MICROSCOPE IMAGES 

USING GPUS 
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(a) Sample neuronal image tile scanned using (b) Triangle mesh over a regular grid of con-
an Transmission Electron Microscope trol points 

F i g u r e A . l . Mice neuronal image tile slice and triangle mesh overlay 

identify and handle overlapping portions of the image, and correct nonuniform 

distortions over a very large number of tiles. A typical section of neuronal tissue 

is 2500 microns in diameter and is scanned as 1000 tiles of 4080x4080 pixels 

each. Currently, researchers assemble the volume from the scanned tiles using a 

multithreaded tool chain [15], but this computation is one of the bottlenecks in 

the critical path to reconstruct the volume since it is estimated to take around 

90 days to assemble a volume made of 270 mosaics with each mosaic made of 

approximately 1000 tiles. In this appendix, we describe our experiences using 

GPUs to accelerate this computation. Because of the inherent parallelism of the 

computation, the roughly identical computation at each pixel, and the data locality 

across neighboring tiles, our initial observation was that this computation ought to 

achieve high speedup on a GPU if we can effectively manage the streaming of 

data. In the current method [15], every image tile contributing to a region of 

mosaic is unwarped to calculate the value of the pixels. The warping is modeled 

as a discontinuous transform. Every tile is sampled as a uniform triangle mesh 

as shown in Figure A.l . The vertices of the triangles in the mesh are control 

points whose positions are known in tile space and mosaic space. The location 
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of every point on the mosaic can be mapped to a triangle in one or more tiles 

using a barycentric coordinate system. Thus with this position information we can 

find the value of every pixel in the mosaic. We have implemented the mosaicing 

application in CUDA for the NVIDIA platforms below and compare its performance 

with existing sequential and parallel library implementations. A 13783 x 13686 pixel 

mosaic of mice neural tissue shown in Figure A.2 was reconstructed from 16 image 

tiles using the CUDA implementation. 

Salient features of the implementation are: 

1. Mosaic is calculated as equally sized tiles. 

2. The scanned tiles are stored as textures, and pixel values of the mosaic are 

calculated using the texture look up. The textures are stored as unsigned 

character images. We get significant performance gain doing nearest neighbor 

interpolation because of hardware-accelerated lookups. 
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3. Smooth blending of tiles is possible at the tile transitions of the mosaic since 

the kernel has access to all overlapping tile textures for any point in the 

mosaic. 

Table A.l compares the performance of the different implementations of the mo-

saicing application used to reconstruct the above test mosaic. We can see tha t the 

NVIDIA CUDA based gives 12x speedup compared to the current multithreaded 

ITK based CPU application [15] without the use of acceleration data structures. 

Tab le A . l . Comparison of classifiers 
Programming model machine details Time 

Elapsed (in 
seconds) 

Speed 
Up 

Single Threaded C Intel Core 2 Quad CPU Q9550 @ 
2.83 GHz 

2022.3 N/A 

OpenMP Multi-threaded 
(16 threads) 

Intel Core 2 Quad CPU Q9550 @ 
2.83 GHz 

1140.46 1.77x 

ITK based and multi­
threaded ir-assemble 

Intel Core 2 Quad CPU Q9550 @ 
2.83 GHz 

120 16x 

NVIDIA CUDA Intel Core 2 Quad CPU Q9550 @ 
2.83 GHz 

10.8 187.23x 
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S Y N A P S E V I E W E R 

A synapse viewer is a cross platform viewer of image data and markups. This 

software is built on Nokia Q t / C + + . It works for subsampled datasets. The features 

of the software are described below: 

• The 2D image data in JPEG, PNG, BMP formats can be browsed in the 

image viewer. 

• Sea ling: The image viewer has controls to scale down the data and view the 

entire image within the window. The scaling can be achieved using the scaling 

bar or by clicking the zoom in or zoom out widgets. The image can be scaled 

in steps 10% of the original size. 

• Scrolling: The image can be scrolled by simple click and drag operation on 

the image. 

• Synapse markup overlay: The application can read an XML file listing the 

position and orientation of synapses. Multiple markup files can be opened 

up. This feature is useful when comparing the ground t ruth and predicted 

datasets. The viewer has the ability to change the color, transperancy and 

visibility of a particular synapse group. 

• Membrane markup overlay: The application can show overlay of predicted 

membranes. Multiple membrane overlays can be seen simultaneously. 

Figure B.l shows a snapshot of the synapse viewer. 
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