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ABSTRACT

This dissertation addresses several key challenges in multiple-antenna commu-

nications, including information-theoretical analysis of channel capacity, capacity-

achieving signaling design, and practical statistical detection algorithms.

The first part of the thesis studies the capacity limits of multiple-input multiple-

output (MIMO) multiple access channel (MAC) via virtual representation (VR)

model. The VR model captures the physical scattering environment via channel

gains in the angular domain, and hence is a realistic MIMO channel model that

includes many existing channel models as special cases. This study provides analytical

characterization of the optimal input distribution that achieves the sum-capacity of

MAC-VR. It also investigates the optimality of beamforming, which is a simple scalar

coding strategy desirable in practice. For temporally correlated channels, beamform-

ing codebook designs are proposed that can efficiently exploit channel correlation.

The second part of the thesis focuses on statistical detection for time-varying

frequency-selective channels. The proposed statistical detectors are developed based

on Markov Chain Monte Carlo (MCMC) techniques. The complexity of such detectors

grows linearly in system dimensions, which renders them applicable to inter-symbol-

interference (ISI) channels with long delay spread, for which the traditional trellis-

based detectors fail due to prohibitive complexity. The proposed MCMC detectors

provide substantial gain over the de facto turbo minimum-mean square-error (MMSE)

detector for both synthetic channel and underwater acoustic (UWA) channels. The

effectiveness of the proposed MCMC detectors is successfully validated through ex-

perimental data collected from naval at-sea experiments.
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CHAPTER 1

INTRODUCTION

In recent years, multiple-antenna communications have been identified as one of

the most practical methods to increase the channel capacity, and also to improve

the reliability of wireless communications. Wireless channels that utilize multiple

antennas are referred to as multiple-input multiple-output (MIMO) channels. For the

next generation cellular and wireless local area networks (LAN), MIMO technology

is envisioned to be the core technology to achieve higher data rates. Currently, IEEE

is proposing the 802.11n (MIMO) wireless standards, which promise to deliver a

data rate of 500 Mbs (about 10 times faster than todays wireless LANs) for wireless

transmissions of HDTV and other multimedia devices for streaming video and audio.

Successful employment of MIMO technology imposes new challenges in the fields of

wireless communication, signal processing, and communication networks.

In this dissertation, we investigate several key challenges in multiple-antenna com-

munications. The main contribution of this dissertation is two-fold. First, we conduct

an in-depth study of the information-theoretical capacity of wireless multiple-access

channels that employs multiple antennas, and develop practical signaling strategies

to achieve the channel capacity. Our study originates from a recently developed

channel model via virtual representation (VR). The VR model captures the physical

scattering environment via channel gains in the angular domain, and hence is a

realistic MIMO channel model that includes many existing channel models as special

cases. Our study yields new information-theoretical results that are different from

those obtained under other idealized channel models and provides signaling designs

that have direct engineering impact. Second, we develop a class of novel statistical

detection methods based on Markov Chain Monte Carlo methods for time-varying,

frequency-selective channels. We have successfully demonstrated that the proposed
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statistical detectors achieve excellent performance for underwater acoustic channels,

which are considered as one of the most challenging communication channels due

to severe inter-symbol-interference and fast time-variation. Using real data collected

from at-sea experiments, the proposed detectors achieve a bit-error- rate that is orders

of magnitude less than that of the other state-of-the-art deterministic detectors.

1.1 Capacity and Signaling Design for MIMO MAC

MIMO technology provides powerful means to improve the reliability and capacity

of wireless channels. A significant amount of work has been done to study the

optimal input distribution and channel capacity of both MIMO single user and

multiuser channels [3–9]. Several models have been adopted to capture the statistical

correlation of elements of the channel matrices including the i.i.d. model [3], the

Kronecker model [10–13], the virtual representation (VR) model [14, 15], and the

unitary independent-unitary (UIU) model [7]. The first two models apply only to

limited wireless environments where scattering is rich or at least locally rich at either

the transmitter or the receiver. The VR and UIU models are more general channel

models, and both transform the MIMO channel to a domain such that the channel

gains can be justified to be approximately independent.

In the first part of the dissertation [16], we generalize the study of single-user

MIMO channel based on VR [14] to the MIMO multiple access channel (MAC) based

on VR. We first characterize the optimal input distribution that achieves the sum-

capacity. We study the optimality of beamforming, which is a simple scalar coding

strategy desirable in practice. We first strengthen the conditions for the optimality

of beamforming for the single-user VR model in [14] by proving that there exists a

signal-to-noise ratio (SNR) threshold below which beamforming is optimal and above

which beamforming is strictly suboptimal. For multiuser case, we show that the

capacity-achieving beamforming angle (c.b.a.) of a given user may vary with SNR

and beamforming angles of other users. This is in contrast to the single-user case

in which the c.b.a. is independent of SNR. We also derive explicit conditions to

determine possible c.b.a. for certain MAC-VR channels. For systems with K users,

we show that as K goes to infinity, the sum-rates achieved by a large class of power
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allocation schemes are within a constant of the sum-capacity, and they grow in the

order of nr logK, where nr is the number of receive antennas. Furthermore, we obtain

conditions under which beamforming is asymptotically capacity-achieving.

We also study the issue of beamforming design for communication systems under

limited feedback. The goal of this study is to develop low-complexity signaling design

methods for practical systems in which only limited information about the channel

state information is available to the transmitter. For such systems, we first design a

finite set of beamforming codebooks that are known a priori to both the transmitter

and receiver. The receiver selects a codebook based on the instantaneous channel state

information and feeds back the codeword index to the transmitter for transmission.

Compared to previous work [17–19] that consider the idealized independent and

identically distributed (i.i.d.) Rayleigh fading channels or spatially correlated channel,

the goal of this work is to design beamforming codebooks that can effectively utilize

channel temporal correlation, hence improving system performance.

1.2 Markov Chain Monte Carlo (MCMC) Statistical

Detection for Time-Varying Channels

A main contribution of this dissertation is the development of statistical detectors

for time-varying channels with inter-symbol-interference (ISI). The proposed statisti-

cal detectors are developed based on Markov Chain Monte Carlo (MCMC) techniques.

The MCMC detectors are stochastic in nature, which makes them fundamentally

different from other state-of-the-art detectors that are largely deterministic. This

work demonstrates that the proposed MCMC detectors are high performance, low-

complexity detectors that can significantly outperform other existing detectors under

even the most challenging operating environment.

Earlier versions of the MCMC detectors have been applied to wireless commu-

nications and signal processing [20, 21]. These detectors, developed based on the

bit-counting approach, typically require a large number of samples (thus high com-

plexity) to achieve satisfactory performance. The MCMC detectors developed in

this work are built upon a class of recently proposed MCMC detectors [22–24]. This

new class of MCMC detectors utilizes Monte Carlo integration in soft detection, which
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yields substantial complexity reduction when compared to earlier MCMC designs [25]

It is shown in [22,26] that for MIMO channels, the MCMC detectors outperform the

much studied sphere decoding detectors with a complexity that is order of magnitude

less. In [27], it is shown that MCMC detectors outperform the state-of-the-art turbo

minimum-mean square-error (MMSE) detectors for various ISI channels considered.

These work establish the MCMC detectors as a promising detector of choice for

transceiver design.

In this work, we address a more challenging problem of MCMC detection for

time-varying ISI channels with long channel memory. Such channels require the

design of an entirely new class of MCMC detectors beyond those of [27], together

with adaptive channel estimation algorithms, to facilitate joint channel tracking and

data detection. The MCMC detector proposed here is based on list channel estimate

(MCMC-LCE). In MCMC-LCE, the Gibbs sampler (core part of the MCMC detector)

is designed to generate a list of likely pairs of data samples and matching estimates of

the channel impulse response (CIR). This is important to overcome the uncertainly in

both data and CIR under the difficult channels considered in this work. In contrast,

the Gibbs sampler of [27] is for stationary channels, and thus generates only data

samples assuming a perfectly known CIR. The idea of performing data detection

using a list of channel estimates, rather than a single channel estimate that could

be erroneous, is a key technical contribution that makes the proposed receiver highly

effective for time-varying channels. Moreover, the choice of a particular form of the

VSLMS algorithm and its deployment along within an iterative channel refinement in

the context of turbo equalization has led to a significant improvement in the receiver

performance.

In order to validate the performance of the proposed MCMC detector, we have

tested our receiver design using data collected from actual at sea experiments. The

underwater acoustic (UWA) channel has been considered as one of the most challeng-

ing channels in use today due to long multipath spread and rapid time variability.

Our detector achieves bit-error-rates that are orders of magnitude less than those

of the existing detectors developed by other leading UWA communication research

groups.
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1.3 Dissertation Structure

This dissertation is organized as follows.

Chapter 2 presents the information theoretical analysis on MIMO MAC channels

based on the virtual representation model. We first derive necessary and sufficient

conditions for capacity-achieving inputs in Section 2.2. An iterative algorithm for

computing the optimal input distribution is developed in Section 2.3, followed by

a low-complexity version based on a deterministic form of the capacity expression.

Section 2.4 provides the main results on the optimality of beamforming. The single-

user case and multiuser case are treated separately. In Section 2.4.1, we prove that

beamforming can be optimal at low SNR and the beamforming angle is uniquely

determined by the channel variance matrix. We also prove the threshold behavior

which indicates that there exists a threshold below which the beamforming is strictly

optimal. In Section 2.4.2, we investigate the multiuser case and demonstrate by

examples that previous results for the Kronecker model may not hold for the virtual

representation model. The asymptotic behavior of MIMO MAC capacity is studied

in Section 2.5.

Chapter 3 presents a practical beamforming codebook design for temporally cor-

related multiple-input single-out (MISO) channels. The channel model and system

setup are introduced in Section 3.1. In Section 3.2, we present a rotation-based

codebook design which adapts the codebook according to the instantaneous CSI. In

Section 3.3, several criteria are proposed to construct the root codebook. Numerical

results for both coded and uncoded systems are provided in Section 3.4.

Chapter 4 describes the transceiver design for time-varying frequency selective

channels. The proposed single-carrier block transmission (SCBT) system is described

in Section 4.1. A particular form of adaptive least mean square channel estimation

method with variable step-size (VSLMS) is proposed to perform channel tracking as

presented in Section 4.2. In Section 4.3, we present the proposed MCMC detector

based on list channel estimate. The effectiveness of the proposed design is demon-

strated for both synthetic channels and UWA channels.

Chapter 5 summarizes this dissertation and addresses future research directions.



CHAPTER 2

OPTIMALITY OF BEAMFORMING FOR

MIMO MULTIPLE ACCESS CHANNELS

VIA VIRTUAL REPRESENTATION

The multiple-input multiple-output (MIMO) techniques provide powerful means

to improve reliability and capacity of wireless channels. A significant amount of

work has been done to study optimal input distributions and the channel capacity of

single-user and multi-user MIMO channels (see, e.g., [1, 5, 9, 10, 14, 28, 29]). Several

models have been adopted to capture the spatial correlation between the channel

gains corresponding to different transmit-receive antenna pairs. These models include

the i.i.d. model [28], the Kronecker model [10–12,30], the virtual representation (VR)

model [14,31], and the unitary-independent-unitary (UIU) model [1]. The i.i.d. model

assumes that the channel gains are independent and identically distributed (i.i.d.),

and the Kronecker model assumes that the correlation between the channel gains

can be written in terms of the product of the transmit correlation and the receive

correlation. These two models apply only to wireless environments with rich or locally

rich scattering at either the transmitter or the receiver. The VR and UIU models

are more general, and both transform the MIMO channel to a domain such that the

channel gains can be justified to be approximately independent. In this work, we

adopt the VR model [31], which represents the MIMO channel in a virtual angular

domain with each channel gain corresponding to one virtual transmit and receive angle

pair. In the angular domain, the channel gains can be justified to be approximately

independent of each other, although not necessarily identically distributed, because

they include different signal paths (corresponding to different transmit and receive

angle pairs) with independent random phases.
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The single-user MIMO channel based on VR was studied in [14]. In this work

[16,32], we generalize this study to the MIMO multiple access channel (MAC) based

on VR, denoted by MAC-VR. We first characterize the optimal input distribution that

achieves the sum-capacity. Then we study the optimality of beamforming, which is a

simple scalar coding strategy desirable in practice. We first strengthen the conditions

for the optimality of beamforming for the single-user VR model in [14] by proving

that there exists an signal-to-noise ratio (SNR) threshold below which beamforming

is optimal and above which beamforming is strictly suboptimal. This result was

illustrated in [14] only numerically. We then study the MAC-VR, for which we present

an example to show that the capacity-achieving beamforming angle of a given user

may vary with SNR and beamforming angles of other users. This is in contrast to the

single-user case in which the capacity-achieving beamforming angle is independent

of SNR. We also derive explicit conditions to determine possible capacity-achieving

beamforming angles for certain MAC-VR channels. For systems with K users, we

show that as K goes to infinity, the sum-rates achieved by a large class of input

signaling schemes are within a constant of the sum-capacity, and they grow in the

order of nr logK, where nr is the number of receive antennas. Furthermore, we obtain

conditions under which beamforming is asymptotically capacity-achieving.

Our study for the single-user case generalizes that in [10, 29] for the Kronecker

model, and is different from [33] for the double-scattering model [34]. Our study for

the MAC-VR also differs from [9] which assumes perfect channel state information

at the transmitter, and from [35], which assumes finite feedback. We also note that

the results we derive for the MAC-VR are applicable to the MIMO-MAC Kronecker

(MAC-Kr) model in [12]. However, certain results valid for the MAC-Kr may not

hold for the MAC-VR as demonstrated in later sections.

2.1 Channel Model and Virtual Representation

We consider the K-user MIMO MAC, in which K users transmit to one base

station (BS) with each user equipped with nt antennas and the BS equipped with

nr antennas. The channel between each user k and the BS is assumed to be the

frequency-flat, slow fading MIMO channel. The received signal at the BS is an nr-
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dimensional vector Y ∈ Cnr and is given by

Y =
K∑
k=1

√
pk

nt

HkXk +W, (2.1)

where Xk ∈ Cnt is the input vector of user k that satisfies the power constraint

E[Xk†Xk] ≤ nt, (·)† denotes the Hermitian operator, pk represents the effective SNR

of user k at each receive antenna, W ∈ Cnr is a proper complex Gaussian noise vector

that consists of i.i.d. entries with zero-mean and unit-variance, and Hk ∈ Cnr×nt

is the channel matrix of user k. The entries of Hk are identically distributed with

unit variance, i.e., E[|Hm,j|2] = 1 for all m = 1, . . . , nr and j = 1, . . . , nt. As we

show in Figure 2.1, when there are finite number of scatters, in general, these entries

are correlated because each channel gain in the antenna domain (corresponding to

a transmit and receive antenna pair) captures all of the signal paths. For each Hk,

we follow [14] to consider its virtual representation Hk = ArH̃
kA†

t , where Ar and

At are two-dimensional spatial Fourier matrices. The matrix H̃k is referred to as a

virtual representation ofHk. Each element of H̃k, referred to as the virtual coefficient,

represents the channel gain corresponding to one transmit and receive virtual angle

pair. The virtual coefficients are independent and not identically distributed (i.n.d.)

random variables and each is assumed to be a zero-mean proper complex random

variable with a symmetric distribution around the origin. The independency among

virtual coefficients can be justified because they capture different sets of signal paths

with independent random phases, each corresponding to a different pair of transmit

and receive angle. The correlation of the channel gains in the antenna domain is

implicitly determined by the i.n.d. channel gains in virtual domain and the Fourier

transform between the two domains. 1

A virtual representation of the MIMO MAC channel (2.1) is given by

Ỹ =
K∑
k=1

√
pk

nt

H̃kX̃k + W̃ , (2.2)

1We note that a channel matrix with arbitrary correlation in the antenna domain may not
necessarily have a meaningful virtual representation with an i.n.d. channel matrix in the angular
domain [31].
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where X̃k = A†
tX

k, Ỹ = A†
rY, and W̃ = A†

rW . Due to the unitarity of At, the input

power constraint in the virtual domain does not change, i.e., E(X̃k†X̃k) ≤ nt. Given

H̃k, we define the (m, j)-th element of the variance matrix V k as V k
m,j = Var(H̃k

m,j),

for 1 ≤ m ≤ nr and 1 ≤ j ≤ nt, which characterizes the second order statistics of H̃k.

In [12], the MIMO MAC channel (2.1) is considered assuming that each user’s

channel follows the kronecker channel model

Hk = Φ1/2Hk
w(Σ

k)1/2 k = 1, · · · , K (2.3)

where elements of Hk
w are i.i.d, zero-mean, unit-variance complex Gaussian CN (0, 1)

random variables, Σk ∈ Cnt×nt is the deterministic transmit correlation matrix of user

k, Φ∈Cnr×nr is the deterministic receive correlation matrix which is assumed to be the

same for all users in the MAC channel. We will show that this MAC channel model

reduces to a special case of (2.2). To see this, we perform eigenvalue decomposition

of Φ1/2 and (Σk)
1/2

to obtain Φ1/2 = RΛR† and (Σk)1/2 = T kΣkT k†, where R and T k

are unitary matrices; Λ = diag(λ1, · · · , λnr) and Σk = diag(γk
1 , · · · , γk

nt
) are diagonal

matrices containing the eigenvalues of Φ1/2 and (Σk)1/2, respectively. We have

Hk = R
(
ΛR†Hk

wT
kΓk
)
T k† = RH̃kT k†, (2.4)

where H̃k = ΛR†Hk
wT

kΓk. Since the elements of Hk
w are i.i.d. CN (0, 1) distributed,

elements of R†Hk
wT

k are also i.i.d. CN (0, 1) distributed. It follows that the elements of

H̃k are independent, zero-mean complex-Gaussian random variables, and the variance

of the (m,n)-th element H̃k
m,n, denoted by V k

m,n equals λm · γk
n. Hence, using (2.4),

the MIMO kronecker MAC reduces to (2.2) once we let X̃k = T k†Xk, Ỹ = R†Y,

and W̃ = R†W . Hence, the results presented in this paper for the MIMO MAC via

virtual representation (2.2) are also applicable to the MIMO kronecker MAC studied

in [12].

For the Kronecker model, V k takes on a special product-form: V k = Λ · Γk and

therefore V k
m,n = λm ·γk

n. This product relation in general does not hold for the virtual

representation model with elements in V k can take arbitrary nonnegative values. The

latter model is also more general because each virtual coefficient H̃k
m,n is only required

to be a zero-mean, proper-complex random variable with a symmetric distribution
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around the origin. The Gaussian assumption is not imposed. For the Kronecker

model, however, H̃k
m,n is assumed to be Gaussian distributed.

2.2 Optimal Input Distribution

By adopting the virtual representation for the MIMO MAC, the sum capacity is

given by

C = max
Q̃k,k=1,··· ,K

I
(
Q̃1, · · · Q̃K

)
= max

Q̃k,k=1,··· ,K
E

[
log det

(
I +

K∑
k=1

pk

nt

H̃kQ̃kH̃k†

)]
s.t. Tr(Q̃k) ≤ nt for k = 1, · · · , K

(2.5)

where Q̃k = E(X̃kX̃k
†
) is the covariance matrix of the input vector of user k in the

virtual domain.

We need to be cautious when interpreting this capacity equation. Throughout this

work, we consider ergodic capacity, assuming that perfect channel state information

is available at the receiver via training and that only channel statistics are known at

the transmitter. The latter is a realistic assumption because the channel statistics

change over much larger time scales than that of the channel gains. Accordingly,

capacity is based on a quasi-static analysis where the channel state varies randomly

from burst to burst. Within a burst the channel is assumed to be unchanged and

it is also assumed that sufficient bits are transmitted for the standard infinite time

horizon of information theory to be meaningful. It is also assumed that the channel

is memoryless, i.e., each burst draws an independent channel realization. Thus, the

capacity measurement can be performed over sufficient number of bursts to achieve

average performance, which justifies the study of ergodic capacity.

We would also like to point out that, in this work, we focus on small-scale fading,

with the understanding that the large scale fading such as path loss and reflection

loss, can be treated at a much larger time scale through system-level design such as

power control. The results presented in this work apply to a time duration over which

the large scale fading is roughly unchanged and only small-scale fading contributes

to the channel variation.
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It is shown in [14] that for the single user case in which K = 1, the optimal

input covariance matrix under the virtual channel representation is diagonal. In the

following Theorem, we extend this result in [14] to MIMO-MAC-VR in which K > 1,

and show that the optimal input covariance matrix remains diagonal for each user.

An important consequence of the optimal input covariance matrices being diagonal

is as follows. Since Xk = AtX̃
k, for MIMO-MAC-VR, the optimal signaling scheme

is for each user to transmit independent data streams to the nt column vectors,

corresponding to nt virtual transmitting angles of the Fourier matrix At. For the

MIMO MAC kronecker model, since Xk = T kX̃k, the optimal signaling scheme,

therefore, is for each user to transmit independent data streams to the nt column

vectors of T k, which are the eigenvectors of the transmitter covariance matrix (Σk).

Hence, Here we generalize [12] Theorem 1 for the MIMO MAC kronecker model to

the MIMO MAC VR model. The proof presented above follows the techniques of [14],

which does not reply on the Gaussian assumption, whereas the proof of [12] Theorem

1 follows a different approach that relies on the Gaussian assumption.

Next, we derive a necessary and sufficient condition of optimality for the input

covariance matrices.

Theorem 1 The diagonal covariance matrices {Q̃k, k = 1, · · · , K} achieve the sum-

capacity if and only if for every 1 ≤ k ≤ K and 1 ≤ j ≤ nt, we have

E Tr
[
A−1

(
h̃k
j h̃

k†

j − 1

nt

H̃kQ̃kH̃k†
)]{= 0, if λk

j > 0,

≤ 0, if λk
j = 0,

(2.6)

where Q̃k = diag(λk
1, · · · , λk

nt
), A = Inr +

K∑
l=1

pl

nt
H̃ lQ̃lH̃ l†, and h̃k

j denotes the j-th

column of H̃k.

Proof. See 2.8.1.

For the single user case, by letting A = Int , one can show that (2.6) is equiv-

alent to (5) of [36]. We can rewrite the left-hand side of (2.6) as E
[
h̃k†
j A−1h̃k

j −
1
nt

∑nt

l=1 λ
k
l h̃

k†

l A−1h̃l
j

]
It implies that if the optimal power allocation λk

j > 0, then it

must satisfy

λk
j =

λk
jE[h̃k†

j A−1h̃k
j ]

1
nt

∑nt

l=1 λ
k
l E[h̃k†

l A−1h̃k
l ]

=
λk
j
Σk

nt
E[h̃k†

j A−1h̃k
j ]

1
nt

∑nt

l=1 λ
k
l
Σk

nt
E[h̃k†

l A−1h̃k
l ]

(2.7)
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As discussed in [36], conditioned upon the channel realization, the term h̃k†
j A−1h̃k

j

relates to the instantaneous minimum mean square error (MMSE) on the linear

estimation of X̃k
j , which is the transmitted symbol from the j-th virtual angle of

user k, as follows:

MMSEk
j = 1− λk

j

pk

nt

h̃k∗
j A−1h̃k

j (2.8)

The averaged MMSE, denoted by MMSEk
j , is given by MMSE

k

i = 1−λk
j
pk

nt
E[h̃k∗

j A−1h̃k
j ]

It immediately follows from (2.7) that

λk
j =

1−MMSE
k

j

1
nt

∑nt

l=1(1−MMSE
k

l )
(2.9)

Based on the above derivations, we can construct an iterative algorithm to com-

pute the optimal covariance matrices of all users that satisfy condition (2.6). Our

algorithm extends the results in [36] into the generalized multi-user scenario.

By taking turns to refine the input of one user while fixing the rest, the problem

is reduced to the single user scenario, except with known interference from other

users. If the channel is reduced to the Kronecker model, the proposed algorithm is

equivalent to the one proposed in [30], and readers are suggested to refer to [30] for

the convergence analysis.

In information theory for MIMO communications, it is well known that to obtain

close-form analytic formulas for the mean capacity or outage capacity of MIMO

channels is an open problem when transmit/receive antennas are modeled to be

spatially correlated. Once consequence is that the computation of capacity-achieving

input covariance is of very high complexity since the calculation of the MIMO capac-

ity requires integrating over the probability density distribution of random channel

matrices. The solution is only available for the special case of i.i.d. Rayleigh dis-

tributed MIMO channels, where the ergodic capacity can be obtained [3] by using

the eigenvalue distribution of the Wishart matrix in an integral form. Such results

can not be applied to the virtual representation model where the channel elements

are not identically Gaussian distributed. Therefore, although the proposed algorithm

provides the optimal solution that satisfies all conditions in (2.6), the computational

complexity is high since it is based on the capacity formula in the expectation form.
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Algorithm 1: Algorithm to compute the optimal covariance matrices

For a K-user MIMO-MAC-VR system, each user having nr receive antennas
and nt transmit antennas:
1) given SNR p1, · · · , pK and variance matrices V 1, · · · , V K , initialize
Q̃1, · · · , Q̃K to be identity matrices;
2) For each user k = 1, · · · , K:
I.Fix Q̃k′ for all other users k′ ̸= k;
II.For iteration index n = 1, 2, · · ·
a. update MMSE

k(n)

j as

MMSE
k(n)

j = E

1− λ
k(n−1)
j

pk

nt

h̃k∗
j

(
I +

∑
l ̸=k

pl

nt

H̃ lQ̃lH̃ l† +
pk

nt

H̃kQ̃k(n−1)H̃k†

)−1

h̃k
j


b. update {λk(n)

1 , · · · , λk(n)
nt } as

λ
k(n)
j = 0 pkE

[
h̃k+
j A−1h̃k

j

]
≤

nt∑
l=1

(
1−MMSE

k(n)

j

)
λ
k(n)
j =

1−MMSE
k(n)
j

1
nt

∑nt
l=1(1−MMSE

k(n)
l )

otherwise

c. if ||Q̃k(n) − Q̃k(n−1)||2 < ε1, return Q̃k = Q̃k(n) and step forward to the
next user;
III. if max

j,k
||∇λk

j
I(Q̃1, · · · , Q̃K)||2 < ε2, return {Q̃1, · · · , Q̃K}; or else repeat

step II.

In Section 2.3, we propose a low-complexity algorithm that does not require the

computation of the expectation.

2.3 Low Complexity Signalling Design

It is well known that the distribution of eigenvalues of a large class of random

matrix ensembles converges to deterministic limiting distribution as the matrix di-

mension goes to infinity. A random matrix shows fewer random fluctuations as its

dimension increases. According to a central limit theorem in the random matrix

theory [37], the distribution of random determinants converges to Gaussian, which

indicates that with a certain limiting ratio between the numbers of transmit and

receive antennas, the MIMO random capacity is asymptotically Gaussian as the

number of antennas goes to infinity. For a MIMO channel with finite number of
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antennas, the asymptotic results still serves as a good approximation. Specifically,

Girko’s random matrix results can be applied to the virtual representation channel

model to compute the asymptotic normalized capacity. The asymptotic capacity can

be directly presented in the form of a two-dimensional spatial scattering channel func-

tion. The advantage is, following this approach, the computation of the asymptotic

capacity requires only the second-order statistics, i.e., the channel variance matrix,

while the computation of nonasymptotic capacity requires the detailed probability

density functions about the marginals of all virtual channel elements. In [14], it has

been shown that the asymptotics are accurate even for moderate numbers of transmit

and receive antennas. A direct indication is that the virtual channel variance matrix is

all we need to accurately characterizing the capacity even for nonGaussian channels.

This result can be easily leveraged to the multi-user scenarios when the channel

hardens with multiple users. As an efficient low-complexity approach leading to a

near-optimum signaling solution, it provides important insights to how the second

order statistics of channel elements affects the MIMO capacity.

For single-user channels with independent and nonidentically distributed (IND)

entries, a similar approach was presented in [1], where the channel takes a simpler

form. In [1], it is shown that the optimal capacity for the single-user IND channels

can be approximated by

C ≈
nt∑
j=1

log2(
1 + pβ∗

j

eα
∗
jβ

∗
j

) +
nr∑
i=1

log2(1 +
1

nt

nt∑
j=1

λ∗
jVi,jα

∗
j ) (2.10)

where {λ∗
1, · · · , λ∗

nt
} denotes the optimal power allocation, and {α∗

j , β
∗
j , j = 1, · · · , nt}

are the solutions to the following pair of equations

α∗
j =

p

1 + pβ∗
j

(2.11)

β∗
j =

nr∑
i=1

λ∗
jVi,j

nt +
nt∑
j=1

λ∗
jVi,jα∗

j

(2.12)

It is shown in [1] that asymptotically, the signal-to-interference-plus-noise ratio (S-

INR) exhibited by the signal radiated from the j-th virtual angle at the output of

a linear MMSE receiver is approximated by pβ∗
j , while the corresponding MMSE is

approximated by α∗
j/p.
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Considering a K-user system with each user having nt transmit antennas and nr

receive antennas, the capacity expression (2.5) has the same form as that of a single-

user system with K ∗ nt transmit antennas and nr receive antennas, except for the

power constraints being imposed to each user independently. Whereas the asymptotic

limits in [1] were derived independent of input power profile, so we can generalize the

asymptotic capacity expression (2.10) for MAC channels by replacing (α∗
j , β

∗
j , Vi,j)

with (αl∗
j , β

l∗
j , V

l
i,j),

nt∑
j=1

with
K∑
l=1

nt∑
j=1

, and 1
nt
λ∗
j with 1

nt
λl∗
j , where l = 1, · · · , K is user

index. We write down the expression as follows:

C ≈
K∑
l=1

nt∑
j=1

log2(
1 + plβl∗

j

eα
l∗
j βl∗

j

) +
nr∑
i=1

log2(1 +
1

nt

K∑
l=1

nt∑
j=1

λl∗

j V
l
i,jα

l∗

j ) (2.13)

where {λl∗
j , j = 1, · · · , nt, l = 1, · · · , K} denotes the optimum power allocation, and

(αl∗
j , β

l∗
j ) satisfies

αl∗

j =
pl

1 + plβl∗
j

βl∗

j =
nr∑
i=1

λl∗
j V

l
i,j

nt +
K∑
l=1

nt∑
j=1

λl∗
j V

l
i,jα

l∗
j

(2.14)

Let λ = {λl
j},α = {λl

j},β = {βl
j}, where j = 1, · · · , nt, l = 1, · · · , K. Now we

show that the optimal solution to

I(λ,α,β) =
K∑
l=1

nt∑
j=1

log2(
1 + plβl

j

eα
l
jβ

l
j

) +
nr∑
i=1

log2(1 +
1

nt

K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j) (2.15)

must satisfy

λl
j =

αl
jβ

l
j

1
nt

nt∑
k=1

αl
kβ

l
k.

(2.16)

To maximize (2.15), it is equivalent to maximize

Ĩ(λ,α,β) =
K∑
l=1

nt∑
j=1

ln(1 + plβl
j) +

nr∑
i=1

ln(1 +
1

nt

K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j)−

K∑
l=1

nt∑
j=1

αl
jβ

l
j

(2.17)
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Accordingly, we can introduce the Lagrangian multiplier and generate a set of KKT

conditions for user m as 
∂Ĩ
∂λm

k
= um for λm

k > 0
∂Ĩ
∂λm

k
< um for λm

k = 0

um

(
nt∑
k=1

λm
k − nt

)
= 0

(2.18)

To solve this optimization problem, we need to deal with the first order derivative

of (2.17) to all the power coefficients λl
j, l = 1, · · · , K, j = 1, · · · , nt. We will derive

the derivative of the three terms in (2.17) to an arbitrary λm
k respectively. For the

first term, the derivative is

∂
K∑
l=1

nt∑
j=1

ln(1 + plβl
j)

∂λm
k

=
K∑
l=1

nt∑
j=1

pl∂β
l
j
/
∂λm

k

1 + pβl
j

=
K∑
l=1

nt∑
j=1

αl
j

∂βl
j

∂λm
k

(2.19)

For the second term, the derivative is

∂
nr∑
i=1

(1 + 1
nt

K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j)

∂λm
k

=
nr∑
i=1

K∑
l=1

nt∑
j=1

λl
jV

l
i,j

∂αl
j

∂λm
k
+ V m

i,kα
m
k

nt +
K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j

=
K∑
l=1

nt∑
j=1

βl
j

∂αl
j

∂λm
k

+
nr∑
i=1

V m
i,kα

m
k

nt +
K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j

(2.20)

For the third term, the derivative is

∂

(
−

K∑
l=1

nt∑
j=1

αl
jβ

l
j

)
∂λm

k

= −
K∑
l=1

nt∑
j=1

(
βl
j

∂αl
j

∂λm
k

+ αl
j

∂βl
j

∂λm
k

)
(2.21)

Summing up (2.19), (2.20), and (2.21), we obtain

∂Ĩ
∂λm

k

=
nr∑
i=1

V m
i,kα

m
k

nt +
K∑
l=1

nt∑
j=1

λl
jV

l
i,jα

l
j

=
αm
k β

m
k

λm
k

(2.22)

and therefore we have λm
k

∂I
∂λm

k
= αm

k β
m
k .
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From the first two lines of KKT condition, we have λm
k

∂I
∂λm

k
= λm

k u
m for arbitrary

k. Thus,

um = um 1

nt

( nt∑
k=1

λm
k

)
=

1

nt

( nt∑
k=1

umλm
k

)
=

1

nt

( nt∑
k=1

λm
k

∂Ĩ
∂λm

k

)
=

1

nt

( nt∑
k=1

αm
k β

m
k

)
(2.23)

Then we can update λm
k as

λm
k =

λm
k

∂I
∂λm

k

um
=

αm
k β

m
k

1
nt

nt∑
j=1

αm
j β

m
j

(2.24)

Based on the above derivations, we can develop an iterative algorithm to find

{λl∗
j , α

l∗
j , β

l∗
j } as follows:

Algorithm 2: The low-complexity algorithm to compute the optimal covariance
matrices

For a K-user MIMO-MAC-VR system, initiate Q̃1, · · · , Q̃K to be identity
matrices, then take the following steps:
1) For each user k = 1, · · · , K,
a. Fix {αk

j} and {βk
j } for all other users k′ ̸= k;

b. Update {αk
j} and {βk

j }, where j = 1, · · · , nt according to (2.14) till the
values converge;
c. Update {λk(n)

j , j = 1, · · · , nt} according to (2.16);

d. if ||Q̃k(n) − Q̃k(n−1)||2 < ε1, return Q̃k = Q̃k(n) and step forward to the
next user;
2) check the convergence condition, if it is satisfied, stop iteration; or else
repeat steps 1 and 2.

Since αl
j ≈ plMMSEl

j and βl
j ≈

SINRl
j

pl
, we have

αl
j · βl

j ≈ plMMSEl
j ·

SINRl
j

pl
=
(
plMMSEl

j

)1−MMSEl
j

plMMSEl
j

= 1−MMSEl
j

When replacing MMSEl
j by MMSE

l

j, the power updating step in (2.16) resembles that

of (2.9).

2.4 Optimality of Beamforming

One practical issue in realistic propagation environments is the channel rank

deficiency caused by double scattering or keyhole effects. Rank deficiency may de-

crease the channel spatial multiplexing gain and thereby severely degrade the MIMO
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capacity. Based on physical measurements, A keyhole channel [38] has been proposed

which indicates the occurrence of a rank-deficient channel where the channel has

only one single degree of freedom even though the channel fading is uncorrelated.

In this model, the channel elements are in the product form of two independent

complex Gaussian variables, instead of being the complex Gaussian random variables

as assumed in the i.i.d. Gaussian channels. Similarly, a double scattering MIMO

channel model that includes both the fading correlation and rank deficiency was

proposed [34], and it is pointed out that for this type of channels, there is no spatial

correlation among the transmit and receive antennas but the channel still shows a poor

rank property. The keyhole channel model can actually be viewed as a special case

of double scattering channel model. Both types of channel models exhibit significant

degradation on the achievable capacity, and require different signaling strategies other

than the equal power solution for the i.i.d. channels. Especially for the keyhole

channels, the capacity-achieving covariance should be rank one.

In previous sections, we considered the optimality conditions of the capacity-

achieving inputs and proposed a low-complexity approach to obtain near-optimum

solutions. However, those designs might still be too complicated to implement in

realistic communication systems. An appealing alternative scheme is beamforming,

which is of even lower complexity. In such scenario, only one diagonal element, say λk
j ,

in the input covariance matrix Q̃k is nonzero. Hence, all transmission power is allo-

cated to the j-th (transmit) virtual angle, which we refer to as the beamforming angle

of user k. One advantage of beamforming is that the scalar codec techniques can be

used, which greatly simplifies the transmission, so that beamforming is quite desirable

in practise. The beamforming scheme does not guarantee to achieve sum capacity.

Thus, the research on optimality region of beamforming becomes meaningful.

In the literature, most work was focused on the Kronecker model. In the single-

user case when the transmitter knows only the channel covariance matrix and the

receiver knows perfect CSI, it was shown that beamforming is optimal under certain

conditions for single-sided correlation environment [10] or double-sided correlation

environment [29]. In [29], the conditions for beamforming to be optimal is shown to

depend on SNR and the eigenvalues of channel covariance matrix, and it is revealed
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the capacity-achieving beamforming should be along the direction of strongest eigen-

value of the channel covariance matrix. For the Kronecker model, it can be easily

shown that the eigenvectors of channel covariance matrix are the same the as the

eigenvectors of the transmit correlation matrix. For the virtual representation model,

however, there are few results available on the issue of optimality of beamforming. In

[14], it is shown that beamforming along one transmit virtual angle is asymptotically

optimal at low SNR regime, for single-user MIMO channels via virtual representation.

General conditions for the optimality of beamforming has not been derived yet for

the virtual representation model, in either single-user or multi-use case.

Therefore, here we study the conditions under which beamforming achieves the

sum capacity (2.5) under MIMO-MAC-VR. Given a K-user system. Assume that all

users perform beamforming. Let h̃k
B denote the column of H̃k that corresponds to

the beamforming angle of user k. Since each user k performs beamforming, we have

H̃kQ̃kH̃k† = nth̃
k
Bh̃

k†
B . Hence,

I +
K∑
l=1

pl

nt

H̃ lQ̃lH̃ l† = I +
K∑
l=1

pkh̃k
Bh̃

k†

B .

. By substituting it into (2.6), we obtain a different form of the optimality conditions

as: beamforming is optimal, in the sense of achieving the sum capacity (2.5), if and

only if for every j = 1, · · · , nt , k = 1, · · · , K, the condition

fk
j (p

k) = E
[
h̃k†

j A−1h̃k
j − h̃k†

B A−1h̃k
B

]
≤ 0 (2.25)

is satisfied, where

A = I +
K∑
l=1

plh̃l
Bh̃

l†

B (2.26)

Since each user k performs beamforming, we have H̃kQ̃kH̃k† = nth̃
k
Bh̃

k†
B . Hence,

I +
K∑
l=1

pl

nt

H̃ lQ̃lH̃ l† = I +
K∑
l=1

pkh̃k
Bh̃

k†

B .

Based on the above derivations, we further investigate properties of optimal beam-

forming angles and how SNR affects the optimality of beamforming. We consider the

single user case and the multi user case separately.



20

2.4.1 Single-User Case

It is observed in [14] numerically that there exists an SNR threshold below which

beamforming is optimal and above which beamforming is suboptimal. Here we pro-

vide a mathematical proof of this threshold behavior. We first define the sum-variance

of the i-th virtual angle as
∑nr

j=1 Vj,i.

Theorem 2 For a single-user VR channel, beamforming to the i-th virtual angle is

optimal (capacity-achieving) if and only if

(a) The i-th virtual angle has a sum-variance that is strictly larger than the sum-

variance of any other virtual angles. Thus, the capacity-achieving beamforming

angle is unique.

(b) The SNR is below a threshold p < ps, where ps is a fixed constant.

Proof. see Section 2.8.2.

As stated in Theorem 2 (a), the i-th angle is the unique capacity-achieving beam-

forming angle if and only if it has a sum-variance that is strictly larger than the

sum-variance of any other virtual angles. This is a generalization of previous results

on the optimality of beamforming in a single user case. In the special case when

H̃k is an i.i.d complex Gaussian matrix, since all the virtual angles have the same

sum-variance, it follows from Theorem 2 (a) that none of the beamforming angle is

capacity-achieving. This is consistent with the well known result that the capacity-

achieving input distribution for this H̃k is the proper complex Gaussian distribution

with equal power allocation over each virtual angle. Hence, for H̃k beamforming is

not optimal. In the case of Kronecker model, the sum-variance of each transmit angle

is proportional to the eigenvalue of the transmit correlation matrix. Therefore, the

capacity-achieving beamforming strategy is to transmit in the eigenmode along the

spatial direction corresponding to the strongest eigenvalue. This is also consistent

with the results published in previous papers.

2.4.2 Multi User Case

As opposed to the single-user case where the capacity-achieving beamforming

angle (c.b.a.) of a given user is unique, we first present an example to show that
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for a multi user system, the c.b.a. of a particular user may vary with the SNRs and

beamforming angles of other users in the system.

Example 1 Consider a two-user MAC-VR with nt = nr = 2. The variance matri-

ces are V 1 =
(

3 0
0 1

)
, V 2 =

(
2.5 0
0 1.5

)
. From condition (2.25) we find that, if

(p1, p2) = (−15 dB,−10 dB), the first virtual angle is the c.b.a. for both users. If

(p1, p2) = (−3 dB,−10 dB), however, the second virtual angle becomes the c.b.a. for

user 2, while the first angle is still the c.b.a. for user 1.

In general, any of the nt virtual angles could be the c.b.a. at certain SNR. However,

as shown in Theorem 3, when the variance matrix satisfies certain properties, some

of the virtual angles cannot be the c.b.a.

Theorem 3 Consider user k in a K-user MAC-VR. The i-th virtual angle cannot

be the c.b.a. of user k if there exists another virtual angle j such that

V k
m,i ≤ V k

m,j for every m = 1, · · · , nr. (2.27)

Proof. see Section 2.8.3.

Example 2 Assume that V k =

(
1.5 1.6 0.3
0.6 0.8 1.2

)
. Since (2.27) is satisfied for i = 1

and j = 2, it follows from Theorem 3 that the first virtual angle cannot be the c.b.a

for user k. This result holds independent of the SNR and other users’ beamforming

angles.

An immediate corollary of Theorem 3 is as follows:

Corollary 1 If there exists a virtual angle i such that V k
m,i > V k

m,j, for every 1 ≤ m ≤

nr and j ̸= i, then angle i is the only possible c.b.a.

Corollary 1 implies that for the MAC-Kr, the c.b.a. of user k is the j-th angle that

maximizes {γk
i , i = 1, · · · , nt} . If there are multiple angles that maximize {γk

i }, then

beamforming cannot be optimal.

2.5 Power Allocation for Large Systems

We consider the optimality of beamforming for large systems, namely, systems

where the number of users is much larger than the number of receive antennas.
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Beamforming was shown [39] to be optimal asymptotically in the case that perfect

CSI is known to the transmitters. Beamforming is suboptimal in the scenario where

transmitters have no CSI [3]. For the Kronecker model, it has been proven [12] that

beamforming is asymptotically optimal when each user transmits to the direction of

the strongest eigenvector of its transmit correlation matrix. Therefore, an interesting

question is, for MIMO-MAC-VR, is that whether the asymptotically optimal transmit

strategy simply beamforming or not, with finite number of transmit/receive antennas

and let the number of uses goes to infinity.

In this section, we show that under mild conditions, the sum-capacity of a K-user

system, denoted by C(K), grows in the order of nr logK. Furthermore, we present

conditions under which the sum-rate achieved by a power allocation scheme λ is

within a constant of C(K) as K goes to infinity.

Given a power allocation λ = {λk
j , k = 1, · · · , K, j = 1, · · · , nt}, let AK = Inr +

K∑
k=1

pk

nt
H̃kQ̃kH̃k† = Inr +

K∑
k=1

nt∑
j=1

pk

nt
λk
j h̃

k
j h̃

k†
j . The sum-rate achieved by λ is given by

I(λ, K) = E[log detAK ]. We apply Jensen’s inequality to obtain an upper bound

Ī(λ, K) such that

I(λ, K) = E[log detAK ] ≤ log detE(AK)

=
nr∑

m=1

log
(
1 +

K∑
k=1

nt∑
j=1

pk

nt

λk
jV

k
m,j

)
= Ī(λ, K). (2.28)

Proposition 1 below shows that under mild conditions, Ī(λ, K) is asymptotically tight

as K → ∞.

Proposition 1 Assume that M4 = supm,j,k(p
k)2E(|h̃k

m,j|4) < ∞. If there exists a

constant c > 0 such that λ satisfies

min
1≤m≤nr

lim inf
K→∞

1

Knt

K∑
k=1

nt∑
j=1

pk

nt

λk
jV

k
m,j ≥ c > 0, (2.29)

then we have I(λ, K) = Ī(λ, K) + o(1), where o(1) converges to zero as K → ∞.

The proof is presented in Section 2.8.4.
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Note that although both proofs apply the SLLN, the proof of Proposition 1 differs

from that of [12, Lemma 2] for the MAC-Kr in that we provide a sufficient condition

(2.29), which guarantees that (2.63) holds. From Proposition 1 we obtain Corollary

2 below.

Corollary 2 For any λ that satisfies (2.29), we have I(λ, K) = C(K) + O(1) =

nr logK +O(1), where O(1) denotes a bounded quantity as K → ∞. Hence, I(λ, K)

grows in the order of nr logK, and asymptotically it differs from the sum-capacity

C(K) by only a constant.

Sketch of proof. It is sufficient to show that there exists constants u1 and uc such that

nr logK + uc + o(1) ≤ I(λ, K)

≤ C(K)

≤ max
λ

Ī(λ, K)

≤ nr logK + u1 + o(1). (2.30)

From (2.29) we can find uc such that Ī(λ, K) ≥ nr logK + uc. This, combined with

Proposition 1, leads to the first inequality of (2.30). The last inequality of (2.30)

utilizes M2 = supm,j,k p
kV k

m,j < ∞. �
Next, we consider a simple example for which we can characterize the term O(1)

in Corollary 2 for various λ. The accuracy of these computations will be verified in

Section 2.6.

Example 3 Assume that all users have the same pk = 2 and the same variance

matrix V =
[

2 0.5
0.5 1

]
. The virtual elements in H̃k are complex Gaussian distributed.

Assume that each user adopts the same power allocation λ = (λ1, λ2) such that λ1 +

λ2 = 2. For each λ that satisfies the assumptions of Proposition 1, we have

I(λ, K) = Ī(λ, K) + o(1)

= 2 log(K) + log(2λ1 + 0.5 · λ2) +

log(0.5 · λ1 + λ2) + o(1). (2.31)

Consider the following three power allocations for which Proposition 1 and Corollary

2 are applicable.
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(1) The beamforming scheme λBF where each user beamforms to the first virtual

angle which has the largest sum-variance. Since λ1 = 2, λ2 = 0, it follows from (2.31)

that

I(λBF, K) = Ī(λBF, K) + o(1)

= 2 logK + log(4) + o(1). (2.32)

(2) The equal power allocation λEq such that λ1 = λ2 = 1. From (2.31) we have

I(λEq, K) = Ī(λEq, K) + o(1)

= 2 logK + log(15/4) + o(1)

= 2 logK + 1.9069 + o(1). (2.33)

(3) We can choose (λ1, λ2) to maximize the summation of the two constant terms in

(2.31). This yields the optimized solution λ∗ = (λ∗
1, λ

∗
2) = (5/3, 1/3). Hence, from

(2.31) we have

I(λ∗, K) = Ī(λ∗, K) + o(1)

= 2 logK + log(49/12) + o(1)

= 2 logK + 2.0297 + o(1). (2.34)

The constant term in (2.34) is slightly greater than that of λBF in (2.32) and that of

λEq in (2.33). This example demonstrates that beamforming may not be asymptoti-

cally optimal for the MAC-VR, even though it is asymptotically optimal for MAC-Kr

[12, Theorem 7]. Corollary 3 below provides a sufficient condition under which

beamforming is asymptotically optimal for MAC-VR.

Corollary 3 Beamforming is asymptotically optimal for the MAC-VR: I(λBF, K) =

C(K) + o(1), as K → ∞, if each user k beamforms to a virtual angle ik that satisfies

V k
m,ik

≥ V k
m,j for every 1 ≤ m ≤ nr and 1 ≤ j ≤ nt, and there exists a constant c > 0

such that

min
1≤m≤nr

lim inf
K→∞

1

K

K∑
k=1

pkV k
m,ik

≥ c > 0. (2.35)
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Sketch of proof. Given V k
m,ik

≥ V k
m,j, one can show that C(K) ≤ Ī(λBF, K). Condition

(2.35) ensures that I(λBF, K) = Ī(λBF, K) + o(1). Thus Corollary 3 follows.

Considering a special case of Corollary 3 in which we let ik be the virtual angle that

maximizes {bkj , j = 1, · · · , nt}, then we obtain the same result as [12, Theorem 7] that

beamforming is always asymptotically optimal for MAC-Kr. In comparison, as shown

in Example 3, there exists MAC-VR such that beamforming is not asymptotically

optimal. This difference, again, is due to the general structure of the variance matrix

for MAC-VR.

2.6 Numerical Results

In this section, we present numerical examples to illustrate the theoretical results

given in previous sections. Four power allocation schemes are considered: the equal

power allocation (λEq), the beamforming scheme (λBF), the optimal power allocation

(λOpt) found by the algorithm of [30], and a low-complexity power allocation algo-

rithm derived based on [40] (λLow). Let I(λ) denote the sum-rate achieved by λ. We

first consider a single-user system with nr = nt = 5. The virtual coefficients in H̃ are

assumed to be complex Gaussian distributed with the same variance matrix as the

one in [14], given by

V =
25

5.7


0.1 0 1 0 0
0 0.1 1 0 0
0 0 1 0 0
0 0 1 0.25 0
0 0 1 0 0.25

 . (2.36)

Such a variance matrix could represent a physical environment with two very small

scatterers (corresponding to the first two columns), two bigger scatterers (correspond-

ing to the last two columns), and one large scattering cluster (corresponds to the all

one column). The third virtual angle is the beamforming angle because it has the

largest sum-variance. Figure 2.2 shows that I(λLow) is very close to I(λOpt) for the

entire range of SNRs considered. I(λEq) is near optimal only at high SNR and I(λBF)

is optimal only when SNR is below the threshold of 0.29 dB. This is consistent with

the threshold behavior proved in Theorem 2.

It is also interesting to investigate the power allocation schemes. In this example,

even if the third virtual angle is much stronger than the rest, I(λEq) still converges
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to the channel capacity at high SNR. In Figure 2.3, we plot the optimal power at

all virtual angles {λi, i = 1, · · · , nt} versus SNR. While at low SNR it is optimal to

allocate all power to the strongest virtual angle, at high SNR it tends to be optimal

to spread power equally over all virtual angles, no matter how weak some of these

angles are. This complies with the waterfilling strategy when the transmitter knows

the perfect CSI, and has been indicated in our low-complexity algorithm 2. In the

case of K = 1, according to (2.14), we would have αjβj ≈ 1 for large values of

Λ >> 0, which forces the optimal solution to equal power allocation as shown in

2.16. In Figure 2.4, we make comparisons between the optimal power allocation and

the solution from the low-complexity algorithm 2. Algorithm 2 tends to put more

power on the dominant virtual angle but it also appears to converge to I(λEq) as

SNR increases.

In Figure 2.5, we plot the beamforming conditions defined in Section 2.4.1 for the

third virtual angle i = 3. Since f2(p) = f1(p) and f5(p) = f4(p), Figure 2.5 plots f1(p)

and f4(p) and shows that when SNR is below 0.29 dB, both functions are negative

and thus beamforming to the third virtual angle is optimal. In this example, it shows

that i.i.d. inputs may achieve near-optimal performance when the transmission is over

sufficiently rich scattering channels, or when each of virtual transmit angles appears

to be symmetric in the variance matrix and shows similar fading strength.

In Figure 2.6, we examine the accuracy of Proposition 1 and Corollary 2 by com-

paring the asymptotic expressions (2.32)-(2.34) in Example 3 with numerical values

of I(λ, K) obtained through Monte Carlo integration. Three functions I(λBF, K) −

2 logK, I(λEq, K) − 2 logK, and I(λ∗, K) − 2 logK are plotted to confirm that as

K increases, they indeed converge to the predicted constants 2, 1.9069, and 2.0297,

respectively.

The optimality of beamforming heavily depends on the structure of the variance

matrix V . The example we looked at above considers the environment with large

transmit antenna correlation, where one or several virtual transmit angles are much

stronger than the rest. In that case, it can be optimal to transmit more power

on these strong virtual angles. In contrary, in the case where the correlation among

transmit antennas is negligible, I(λEq) can be superior to I(λBF) in most SNR region.
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An example is shown in Figure 2.7 by simply taking the transpose of V to be the

variance matrix.

In the multi user case, we consider the typical style of variance matrices with

dominant angles. For simplicity, we assume the dominant angles have all ones while

other angles have only nonzero values at diagonal elements. We randomize all those

nonzero elements to be uniformly distributed in (0, 1). Examples of four users with

one or two dominant angles are shown as follows. We assume a system with K = 4

users, where each user have nt = nr = 5 number of transmit and receive angles, the

variance matrices are listed as above. Assuming user 1 have two dominant angles

while other three all have only one dominant angle whose positions are randomly

assigned. The results are plotted in Figure 2.8. As shown in this figure, Algorithm 2

still performs close to the optimum; the beamforming solution is optimal at low SNR

but at high SNR (Γ = 15dB), it is about 1dB less than optimum; while equal power

allocation exhibits 1dB degradation in all SNR region.

V 1 =


1 0 0 0 0
1 0.1 0 0 0
1 0 0.3 0 0
1 0 0 0.5 0
1 0 0 0 0.1

 V 2 =


0.25 1 0 1 0
0 1 0 1 0
0 1 0.25 1 0
0 1 0 1 0
0 1 0 1 0.4



V 3 =


0.2 0 1 0 0
0 0.1 1 0 0
0 0 1 0 0
0 0 1 0.5 0
0 0 1 0 0.15

 V 4 =


0.1 0 0 1 0
0 0.6 0 1 0
0 0 0.3 1 0
0 0 0 1 0
0 0 0 1 0.8


(2.37)

Figure 2.9 considers a multi user system in which each V k is generated inde-

pendently, taking a form similar to (2.36). The beamforming angle of user k is

chosen to be the virtual angle with the largest sum-variance. Because {V k} satisfy

conditions of Corollary 3, λBF is asymptotically optimal. This is confirmed in Figure

2.9. The curve for I(λOpt, K) is not shown due to high complexity for computing λOpt.

Instead, we provide a simple sum-capacity upper bound C(K) ≤ nr log(1 +KM2) as

a performance benchmark for large K. Hence, the gap between I(λBF, K) and C(K)

is less than the small gap shown in Figure 2.9 between I(λBF, K) and the upper

bound. The gap becomes negligible as K increases, confirming the optimality of

beamforming. For small K, I(λLow, K) closely approximates I(λOpt, K) (not shown).



28

For large K, I(λLow, K) and I(λBF, K) merge quickly and become indistinguishable

after K ≥ 30. We note that I(λEq, K) is inferior to I(λBF, K) by roughly a constant,

even though it achieves the same asymptote of nr logK = 5 logK. This is consistent

with Corollary 2.

Up to now, we do all the simulations assuming the channel is Gaussian distributed.

However, our results should be applicable to arbitrary channel distributions due to

the definition of virtual representation model. To address this, we replaced the

Gaussian distributed channel with uniformly distributed channel [1] and repeated

the previous simulations. Uniformly distributed channels achieve higher capacity

than the Gaussian channels but the distribution only affects the scaling of MIMO

channel capacity. The results we presented in this work always hold regardless of the

channel distribution. In Figure 2.10, we repeat the single-user simulation and the

figure shows similar results to the Gaussian distribution case which leads to the same

conclusions as above. Similarly, Figure2.11 shows the results of multi user case with

uniformly distributed channel, as a comparison to Figure 2.8. Figure 2.12 shows the

sum-rates in the large system with Gaussian/Uniform distribution. As confirmed in

this figure, the sum capacity converges to be deterministic and is independent of the

channel distribution. Both distributions converge to the same capacity level.

2.7 Conclusion

In this work, we study the optimal input distribution and the optimality of

beamforming for the MIMO single user channel and the MIMO MAC based on

virtual representation. We proposed a low-complexity algorithm to design near-

optimum input distribution. We obtain the general condition for the beamforming

to be optimal, and demonstrate that in contrast to the single user case, the optimal

beamforming angle of a given user to achieve sum capacity for the MIMO MAC

depends on the SNRs and beamforming angles of other users. We derive the conditions

to disprove a beamforming angle from being the optimal beamforming angle by

extracting information from the structure of channel variance matrix. The selection of

optimal beamforming angles, however, requires further investigation. In particular, it
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will be interesting to study practical algorithms for the joint selection of beamforming

angles for the MIMO MAC.

2.8 Appendix

2.8.1 Proof of Theorem 1

Let us rewrite the capacity formulation here:

C = max
Q̃k,k=1,··· ,K

I
(
Q̃1, · · · Q̃K

)
= max

Q̃k,k=1,··· ,K
E

[
log det

(
I +

K∑
k=1

pk

nt

H̃kQ̃kH̃k†

)]
s.t. Tr(Q̃k) ≤ nt for k = 1, · · · , K

We separate the proof of Theorem 1 into two parts. In the first part, we prove

that the capacity-achieving covariance matrices Q̃k are diagonal matrices for all k =

1, · · · , K. To make the proof, we follow the technique in []; In the second part we

derive the set of necessary and sufficient conditions for optimal covariance matrices

as shown in the Theorem.

1). To prove the capacity-achieving {Q̃k, k = 1, · · · , K} are diagonal matrices, it is

sufficient to prove that the optimal Q̃1 is diagonal. In another word, we fix the values

of all other covariance matrices Q̃k, k = 2, · · · , K so that the mutual information can

be expressed as I
(
Q̃1
)
. We define two sets of matrices as:

Ω := {Q̃ : Q̃ is positive semidefinte, and Tr {Q̃} ≤ nt}

ΩΛ := {Λ : Λ is diagonal, and Λ ∈ Ω}

We first consider to optimize the mutual information in (2.5) over the set ΩΛ. In

this scenario, the differentiable function I(Q̃1) is strictly concave over the convex set

ΩΛ. Therefore, there must exist a unique Λ∗ that maximizes I
(
Q̃1
)
over ΩΛ, and Λ∗

satisfies the following condition:

δI(Λ∗; Λ− Λ∗) ≤ 0, ∀Λ ∈ ΩΛ (2.38)

where

δI(Λ∗; Λ− Λ∗) := lim
α→0

[I(Λ∗ + α(Λ− Λ∗))− I(Λ∗)]
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The left-hand side of (2.38) can be computed as follows:

δI(Λ∗; Λ− Λ∗)

=
d

dα
I(Λ∗ + α(Λ− Λ∗)) |x=0

=
d

dα
E

[
log det

(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

H̃1(Λ∗ + α(Λ− Λ∗))H̃1†

)]
|α=0

(2.39)

since the matrix(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

H̃1(Λ∗ + α(Λ− Λ∗))H̃1†

)
(2.40)

is positive definite, we can further compute the derivative of the above equation to

be

δI(Λ∗; Λ− Λ∗) = E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1(Λ− Λ∗)H̃1†


In this way, we convert the condition 2.38 to the following form:

E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1(Λ− Λ∗)H̃1†

 ≤ 0 (2.41)

for ∀Λ ∈ ΩΛ. Next, we will prove that Λ
∗ maximizes the mutual information I

(
Q̃1
)

when the optimization is performed over the set Ω. It is sufficient to show that

δI(Λ∗; Q̃1 − Λ∗) ≤ 0, ∀Q̃1 ∈ Ω (2.42)

where

δI(Λ∗; Q̃1 − Λ∗) = lim
α→0

1

α

[
I
(
Λ∗ + α(Q̃1 − Λ∗)

)
− I(Λ∗)

]
first of all, we express Q̃1 = Λ1 + Λ̄1 to separate the diagonal elements from the

nondiagonal element, where Λ1 is a diagonal matrix containing diagonal elements of
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Q̃1, and Λ̄1 is composed of all the nondiagonal elements of Q̃1 while the diagonal

components of Λ̄1 are all zeroes. Accordingly, we have

δI(Λ∗; Q̃1 − Λ∗)

= E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
Γ

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1(Q̃− Λ∗)H̃1†


= E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
Γ

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1(Λ1 − Λ∗)H̃1†


+ E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
Γ

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1Λ̄1H̃1†



(2.43)

Next, we examine the two right-side terms in (2.43). The first term in the

preceding equation has been shown to be no greater than zero in (2.41). To evaluate

the second term, we denote the columns of matrix H̃1 by h̃1
1, h̃

1
2, · · · , h̃1

nt
. Accordingly,

we can write the second term into

E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

H̃1Λ∗H̃1†

)−1

p1

nt

H̃1Λ̄1H̃1†


=

nt∑
m,l=1,m̸=l

E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

∑
i=1

(nt)λ
∗
i h̃

1
i h̃

1†
i

)−1

p1

nt

Λ̄1
m,lh̃

1
kh̃

1†
k


where λ∗

i is the ith diagonal entry of Λ∗.

In the above sum, consider a particular term

E Tr


(
I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

∑
i=1

ntλ
∗
i h̃

1
i h̃

1†
i

)−1

p1

nt

Λ̄1
1,2h̃

1
1h̃

1†
2


= Tr

{
E

[
E
[
(I +

K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

nt∑
i=1

λ∗
i h̃

1
i h̃

1†
i )−1

· p
1

nt

Λ̄1
1,2h̃1h̃

1†
2 | h̃1

2, h̃
1
3, · · · , h̃1

nt

]]}
(2.44)

According to the property of the virtual representation channel model, the column-

s of H̃1 are independent. Therefore, the distribution of h̃1
1 does not depend on

h̃1
2, · · · , h̃1

nt
. Note that the component inside the above expectation(

I +
K∑
k=2

pk

nt

H̃kQ̃kH̃k† +
p1

nt

nt∑
i=1

λ∗
i h̃

1
i h̃

1†
i

)−1

p1

nt

Λ̄1
1,2h̃

1
1,2h̃

1
1h̃

1†
2
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is an odd function of h̃1
1, which means, if we replace h̃1

1 by −h̃1
1, this entry would

change to its antisymmetric value. Since each element in H̃1 follows a symmetric

distribution around the origin, we have the inner expectation

E

[
()−1 · p

1

nt

Λ̄1
1,2h̃

1
1h̃

1
2 | h̃1

2, h̃
1
3, · · · , h̃1

nt

]
= 0 (2.45)

Hence, the particular term we considered in the sum on the right-hand side of (31) is

zero. Following the same reason, all the terms in the sum are zeroes. Therefore,

δI(Λ∗; Q̃1 − Λ∗) ≤ 0, ∀Q̃1 ∈ Ω (2.46)

2). Since we have proven that the capacity-achieving {Q̃k, k = 1, · · · , K} are

diagonal, we can define Q̃k = diag{λk
1, · · · , λk

nt
} for ∀k ∈ {1, 2, · · · , K}, where λk

j

denotes the j-th diagonal element of Q̃k. We have λk
j ≥ 0 for ∀j, k due to the fact that

the covariance matrices are Hermitian. The optimal solution of (2.5) is characterized

by a set of Karush-Kuhn-Tucker (KKT) conditions, which we derive in the following

steps. Consider a specific user k. Letting Q̃k = diag{λk
1, . . . , λ

k
nt
} and A = I +

K∑
l=1

pl

nt
H̃ lQ̃lH̃ l† , the Lagrangian of the objective function (2.5) can be written as

L = E log detA− µk

( nt∑
j=1

λk
j − nt

)
, (2.47)

where µk is the Lagrange multiplier corresponding to the power constraint
∑nt

j=1 λ
k
j =

nt.

Note that A = I +
nt∑
j=1

pk

nt
λk
j h̃

k
j h̃

k†
j +

K∑
l ̸=k

pl

nt
H̃ lQ̃lH̃ l† , we obtain

∂L
∂λk

j

= E

[
tr

(
A−1p

k

nt

h̃k
j h̃

k†

j

)]
− µk = 0, if λk

j > 0. (2.48)

∂L
∂λk

j

= E

[
tr

(
A−1p

k

nt

h̃k
j h̃

k†

j

)]
− µk ≤ 0, if λk

j = 0. (2.49)

It follows that

µkλk
j = E

[
tr

(
A−1p

k

nt

λk
j h̃

k
j h̃

k†

j

)]
,

and

µknt = µk

( nt∑
j=1

λk
j

)
=

nt∑
j=1

E

[
tr

(
A−1p

k

nt

λk
j h̃

k
j h̃

k†

j

)]
= E

[
tr

(
A−1p

k

nt

H̃kQ̃kH̃k†
)]
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Therefore, we obtain

µk =
1

nt

E

[
tr

(
A−1p

k

nt

H̃kQ̃kH̃k†
)]

(2.50)

Substituting (2.50) into (2.48) and (2.49) to yield

E

[
tr

{
A−1p

k

nt

h̃k
j h̃

k†

j

}]
− µk =

pk

nt

E

[
tr

{
A−1

(
h̃k
j h̃

k†

j − 1

nt

H̃kQ̃kH̃k†
)}]

(2.51)

Thus, (2.6) of Theorem 1 follows.

2.8.2 Proof of Theorem 2

Following (2.25), we let fj(p) = E
[
h̃†
j

(
Inr + ph̃ih̃

†
i

)−1

h̃j − h̃†
i

(
Inr + ph̃ih̃

†
i

)−1

h̃i

]
.

We first show that

f ′
j(p) =

∂fj(p)

∂p
>

1

p

(
E

[
1

1 + p∥h̃i∥2

]
− 1

)
fj(p). (2.52)

To prove (2.52), we use A−1 = Inr −
ph̃ih̃

†
i

1+p∥h̃i∥2
to obtain

fj(p) = E
[
h̃†
jA

−1h̃j − h̃†
iA

−1h̃i

]
= E

[
∥h̃j∥2 −

p∥h̃†
jh̃i∥2

1 + p∥h̃i∥2
]
− E

[
∥h̃i∥2 −

p∥h̃i∥4

1 + p∥h̃i∥2
]

= E
[∥h̃j∥2(1 + p∥h̃i∥2)− ∥h̃i∥2(1 + p∥h̃i∥2) + p∥h̃i∥4 − p∥h̃†

jh̃i∥2

1 + p∥h̃i∥2
]

= E
[∥h̃j∥2 − ∥h̃i∥2

1 + p∥h̃i∥2
]
+ E

[p∥h̃j∥2∥h̃i∥2 − p∥h̃†
jh̃i∥2

1 + p∥h̃i∥2
]

= uj(p) + vj(p), (2.53)

where uj(p) = E
[
∥h̃j∥2−∥h̃i∥2∥

1+p∥h̃i∥2

]
and vj(p) = E

[
∥h̃j∥2∥h̃i∥2−∥h̃†

j h̃i∥2

p−1+∥h̃i∥2

]
. Due to the Cauchy-

Schwartz inequality, we have ∥h̃j∥2∥h̃i∥2 − ∥h̃†
jh̃i∥2 > 0 and thus vj(p) is a positive,

strictly increasing function of p with v′j(p) > 0. It follows that
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∂fj(p)

∂p
=

∂uj(p)

∂p
+

∂vj(p)

∂p

>
∂uj(p)

∂p

= E

[
∥h̃i∥4 − ∥h̃j∥2∥h̃i∥2

(1 + p∥h̃i∥2)2

]
=

1

p
E

[
∥h̃i∥2 − ∥h̃j∥2

1 + p∥h̃i∥2

]
+

1

p
E

[
∥h̃j∥2(

1 + p∥h̃i∥2
)2]

−1

p
E

[
∥h̃i∥2(

1 + p∥h̃i∥2
)2]. (2.54)

For the second term of (2.54), we apply the inequality E(1/x2) > [E(1/x)]2 to obtain

E

[
∥h̃j∥2(

1 + p∥h̃i∥2
)2] = E

[
1(

1 + p∥h̃i∥2
)2]E[∥h̃j∥2

]
>

(
E

[
1

1 + p∥h̃i∥2

])2

E

[
∥h̃j∥2

]
= E

[
1

1 + p∥h̃i∥2

]
E

[
∥h̃j∥2

1 + p∥h̃i∥2

]
.

(2.55)

Similarly, for the third term of (2.54), we can show that

E

[
∥h̃i∥2(

1 + p∥h̃i∥2
)2] = 1

p
E

[
1

1 + p∥h̃i∥2
− 1(

1 + p∥h̃i∥2
)2]

<
1

p
E

[
1

1 + p∥h̃i∥2

]
− E

[
1(

1 + p∥h̃i∥2
)]2

= E

[
1

1 + p∥h̃i∥2

]
E

[
∥h̃i∥2

1 + p∥h̃i∥2

]
.

(2.56)

We then combine (2.54)-(2.56) to obtain (2.52).

Since
(
E
[

1
1+p∥h̃i∥2

]
− 1
)
< 0, it follows from (2.52) that if fj(p) ≤ 0, then we must

have f ′
j(p) > 0. There are two cases:

Case 1: Assume that fj(0) < 0. In this case, if we have fj(p) < 0 for all p > 0,

then we let pj,s = ∞. Otherwise, since fj(p) is a continuous function, there must

exists a zero point p0 ∈ (0,∞) such that fj(p0) = 0. We claim that p0 must be

the only zero point. Otherwise, let us assume that there is another zero point p1.

Without loss of generality, assume that p0 < p1. Since fj(p) is a continuous function,

the minimum of fj(p) over the interval [p0, p1] must be negative, because at the right
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end point p1, we have fj(p1) = 0 and f ′
j(p1) > 0. Assume that the minimum is

achieved at some interior point pm ∈ (p0, p1). We must have f ′
j(pm) = 0. On the

other hand, since fj(pm) < 0, it follows from (2.52) that f ′
j(pm) > 0. Therefore, we

reach a contradiction.

Combining that fact that fj is continuous, fj(0) < 0, p0 is the only zero point

of fj, and f ′
j(p0) > 0, then we have fj(p) < 0 if and only if p < p0. Finally, we let

pj,s = p0.

Case 2: Assume that fj(0) ≥ 0. In this case, suppose that there exists some

p0 ∈ (0,∞) such that fj(p0) ≤ 0. It follows from (2.52) that f ′
j(p0) > 0. Similar to

the proof of case 1, we consider the minimum of fj over the interval of [0, p0] to obtain

a contradiction. Hence, when fj(0) ≥ 0, we have fj(p) > 0 for all p > 0.

The above analysis implies that there exists a unique zero point p0 such that

fj(p0) = 0. Furthermore, we can show that:

• If fj(0) < 0, then there exists a threshold pj,s ∈ (0,∞] such that fj(p) < 0 if

and only if p < pj,s.

• If fj(0) ≥ 0, then we have fj(p) > 0 for all p > 0.

Hence, in order for a virtual angle i to be the capacity-achieving beamforming angle,

we must have fj(0) < 0, for all j = 1, · · · , nt and j ̸= i. Since fj(0) = E(∥h̃j∥2 −

∥h̃i∥2), angle i must have the largest sum-variance. Theorem 2 then follows by letting

ps = min
j ̸=i

pj,s.

2.8.3 Proof of Theorem 3

We examine condition (2.25) for the virtual angle j that satisfies (2.27). It is

sufficient to prove that fk
j (p

k) > 0, thus the beamforming condition is violated, for

any j such that V k
m,i ≤ V k

m,j,m = 1, · · · , nr. Here, the user k’s beamforming angle

is ik = i. To prove this, we apply the matrix inversion lemma which says that if

A = F + EBE†, then we have A−1 = F−1 − F−1E(B−1 + E†F−1E)−1E†F−1. Here

we let A = Inr +
∑K

l=1 p
lh̃l

il
h̃l†
il
, F = Inr +

∑K
l ̸=k p

lh̃l
il
h̃l†
il
, E = h̃k

i , and B = pk. Letting

D = F−1, we obtain
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A−1 = D −Dh̃k
i

[
(pk)−1 + h̃k†

i Dh̃k
i

]−1
h̃k†

i D

= D − pk
Dh̃k

i h̃
k†
i D

1 + pkh̃k†
i Dh̃k

i

. (2.57)

It follows that

fk
j (p

k) = E[h̃k†

j A−1h̃k
j ]− [h̃k†

i A−1h̃k
i ]

= E[h̃k†

j Dh̃k
j ]− pkE

[(h̃k†
j Dh̃k

i

)(
h̃k†
i Dh̃k

j

)
1 + pkh̃k†

i Dh̃k
i

]
− E[h̃k†

i Dh̃k
i ] + pkE

[(h̃k†
i Dh̃k

i

)(
h̃k†
i Dh̃k

i

)
1 + pkh̃k†

i Dh̃k
i

]
=E

[
h̃k†
j D−1h̃k

j − h̃k†
i D−1h̃k

i

1 + pkh̃k†
i D−1h̃k

i

]
+E

[
pk

h̃k†
j D−1h̃k

j h̃
k†
i D−1h̃k

i − h̃k†
j D−1h̃k

i h̃
k†
i D−1h̃k

j

1 + pkh̃k†
i D−1h̃k

i

]
.

(2.58)

Due to the Cauchy-Schwartz inequality, the second expectation of (2.58) is always

positive. Hence, in order to show that fk
j (p

k) > 0, it suffices to show that conditioned

upon any fixed D, the first expectation of (2.58) is positive. Let cj = h̃k†
j D−1h̃k

j and

ci = h̃k†
i D−1h̃k

i . For a fixed D, the two random variables cj and ci are independent.

Therefore,

fk
j (p

k) > E
[ cj − ci
1 + pkci

]
=

1

pk

(
E
[1 + pkcj
1 + pkci

]
− 1

)
=

1

pk

(
E[1 + pkcj] · E

[ 1

1 + pkci

]
− 1

)
>

1

pk

(
E[1 + pkcj]

E[1 + pkci]
− 1

)
=

1

pk

(
1 + pkE[cj]

1 + pkE[ci]
− 1

)
. (2.59)

Hence, it remains to show that E[cj] > E[ci]. First, we have

E[cj]− E[ci] = E[h̃k†

j D−1h̃k
j ]− E[h̃k†

i D−1h̃k
i ]

= Tr
[
D−1 · E

(
h̃k
j h̃

k†

j − h̃k
i h̃

k†

i

)]
. (2.60)

It follows from (2.27) that E
(
h̃k
j h̃

k†
j − h̃k

i h̃
k†
i

)
is a diagonal matrix with nonnegative

entries. This, combined with the fact that D−1 is a positive definite Hermitian matrix

with positive diagonal entries, implies that E[cj] > E[ci]. This proves that f
k
j (p

k) > 0.

Thus, virtual angle i cannot be the c.b.a. of user k.
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2.8.4 Proof of Proposition 1

First, we write

I(λ, K)− Ī(λ, K) = E log
detAK

detE(AK)

= E log
detAK

nr∏
m=1

[
1 +

K∑
k=1

nt∑
j=1

pk

nt
λk
jV

k
m,j

]
= E log det ÃK , (2.61)

where the (m, i)-th element of ÃK , denoted by (ÃK)m,i, is given by

(ÃK)m,i =

(
1 +

K∑
k=1

nt∑
j=1

pk

nt
λk
j h̃

k
m,jh̃

k†
i,j

)
(
1 +

K∑
k=1

nt∑
j=1

pk

nt
λk
jV

k
m,j

)

=

(
1 +

K∑
k=1

nt∑
j=1

pk

nt
λk
j h̃

k
m,jh̃

k†
i,j

)
/(1 +Knt)(

1 +
K∑
k=1

nt∑
j=1

pk

nt
λk
jV

k
m,j

)
/(1 +Knt)

. (2.62)

We let S̄K denote the numerator in the second fraction of (2.62), which equals the

average of the summation of independent random variables. It follows from the Strong

Law of Large Number (SLLN) and (2.29) that

0= lim
K→∞

|S̄K − E(S̄K)|

=lim sup
K→∞

(
E(S̄K)

∣∣∣∣ S̄K

E(S̄K)
− 1

∣∣∣∣)
≥
(
lim inf
K→∞

E(S̄K)

)(
lim sup
K→∞

∣∣∣∣ S̄K

E(S̄K)
− 1

∣∣∣∣)
≥ c · lim sup

K→∞

∣∣∣∣ S̄K

E(S̄K)
− 1

∣∣∣∣.
Thus, for m = i we obtain limK→∞(ÃK)i,i = limK→∞ S̄K/E(S̄K) = 1. For m ̸= i,

since E(S̄K) = 0, it follows from (2.29) and the SLLN that limK→∞(ÃK)m,i ≤
1
c
lim

K→∞
S̄K = 1

c
lim

K→∞

(
S̄K−E(S̄K)

)
= 0. This proves that ÃK converges to the identity

matrix and thus E lim
K→∞

[
log det ÃK

]
= 0. Assume that the distributions of the

random vectors {h̃k
j} are sufficiently smooth to facilitate exchange of the limit and the

expectation operator, we obtain lim
K→∞

[
I(λ, K) − Ī(λ, K)

]
= lim

K→∞

[
E log det ÃK

]
=

E
[
lim

K→∞
log det ÃK

]
= 0.
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CHAPTER 3

BEAMFORMING CODEBOOK DESIGN

FOR TEMPORALLY CORRELATED

FADING CHANNELS

Transmit beamforming provides an efficient mechanism to exploit the diversity

gain of the multiple-antenna channel by transmitting signals along the direction of

the channel vector. However, this mechanism requires full knowledge of channel state

information (CSI) at the transmitter, which is impractical in most wireless systems.

Recently, beamforming codebook design based on limited feedback from the receiver

has received much interest. The main idea is to construct a predetermined, finite set

of beamforming codebook that is known to both the transmitter and the receiver.

Then the receiver selects a codeword based on the instantaneous channel vector and

feeds back the codeword index to the transmitter for transmission.

Previous work on beamforming codebook designs [17–19] mostly consider identical

and independently distributed (i.i.d.) Rayleigh fading channel, or spatially correlated

channel. Even though some algorithms [19, 41] are applicable to arbitrary chan-

nel distribution, the complexity is high to update the codebook while the channel

distribution changes. Meanwhile, temporal correlation channel model is not taken

into account in these work. Representative work on developing limited feedback

techniques to exploit channel correlation are as follows. In [42] the quantized channel

state information (CSI) is fed back to the transmitter for the design of optimal

beamforming vector. In [43], a practical feedback scheme based on adaptive delta

modulation is employed to track time-varying channels and to maximize capacity.

In [44,45], subspace tracking techniques are investigated to exploit temporal or spatial

correlation of the channel. A adaptive codebook selection scheme that switches

between multiple codebooks to achieve higher performance gain is studied in [46].
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Reference [47] proposed a channel adaptive feedback strategy, where the codebook can

be derived from one mother codebook by rotation and scaling, to adapt the codebook

for arbitrary channel distributions. However, both [46] and [47] require feedback

overheads before the transmission of each block, and it costs extra complexity to make

selection of codebook from a codeset of large size. A variant rate feedback scheme [48]

is proposed to reduce the average feedback rate based on rate distortion theory. All

these work above indicate that the limited feedback scheme can benefit from taking

temporal correlation into account. This motivates us to develop low-complexity and

efficient algorithms for beamforming codebook design under temporally correlated

channels based on limited feedback [49].

Our main contributions can be summarized as follows. (1). we propose a low-

complexity rotation-based codebook design algorithm exploiting channel temporal

correlation without increasing the feedback rate. A root codebook is first designed

according to various optimization criteria. Subsequently, the beamforming codebook

at each time is obtained by simply rotating the root codebook by an unitary matrix

that is determined by the selected codeword from previous time instance. This results

in a low-complexity implementation of the adaptive beamforming design. (2). We

consider three root codebook designs based on the Lloyd algorithm, aiming to either

maximize average received SNR, maximize the capacity, or to minimize BER. While

the first two designs follow from similar work in the literature, the BER design is

proposed in this paper to optimize the BER performance of a beamforming codebook

for a limited feedback system. The three root codebook designs, in conjunction with

the proposed rotation-based scheme, are denoted by SNR-R, BER-R, and CAP-R,

respectively. (3) We examine both uncoded and channel coded performance of these

designs for a first-order autoregressive (AR) model with a low feedback rate of three

bits per channel use. For uncoded systems, we show that both SNR-R and CAP-R

encounter a ”high SNR problem” in that they do not give good BER performance

in the high SNR region. The proposed BER-R design is shown to give superior

performance in both uncoded and coded systems.

This chapter is organized as follows: In section 3.1 we introduce the channel

correlation model and describe the basic system setup for limited feedback. The
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proposed rotation-based codebook design is introduced in Section 3.2. In Section 3.3,

we consider several root codebook designs based on different optimization criteria.

Section 3.4 includes numerical results for both coded and uncoded systems employing

various codebooks.

3.1 System Model

We consider a multiple-input single-output (MISO) channel with Nt transmit an-

tenna and a single receive antenna. Assume that the channel is temporally correlated.

We model the temporal correlation by a first order autoregressive (AR) process. The

channel vector H(n+1) ∈ CNt×1 at time n+ 1 can be expressed as

H(n+1) = aH(n) + gv(n) (3.1)

where v(n) is an i.i.d. complex Gaussian vectors that is independent from H(n), and

the scalar a denotes the first-order autocorrelation coefficient for each channel gain,

i.e.,

a = E
[
H(n+1)†H(n)

]
, (3.2)

and (·)† denotes the Hermitian operator. The AR model (3.1) serves as a good

approximation of a mobile wireless channel when we let

a = J0(2πfdT ), g =

√
1− |a|2, (3.3)

where J0(·) is the zeroth-order Bessel function of the first kind, T is the sampling

period, and fd is the channel maximum doppler frequency.

When transmit beamforming is employed, the transmitted signal at time n can

be expressed as

X(n) = f (n)†s(n), (3.4)

where s(n) is a scalar complex symbol for time n that satisfies the average power

constraint E[|s(n)|2] = ρ, f (n) ∈ CNt×1 is the beamforming vector such that f (n) ∈

Ω(Nt, 1), where Ω(Nt, 1) is the set of Nt-dimensional vectors with unit norm. The

received signal at time n can be expressed as

y(n) = f (n)†H(n)s(n) + w(n) (3.5)

where w(n) is the complex additive white noise with unit variance.
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We assume that the receiver has perfect CSI, i.e., it knows the exact H(n), whereas

the transmitter only has partial CSI through a low-rate feedback link from the

receiver. Here we assume that the feedback link is error-free and delay-free. The

problem of beamforming codebook design can be formulated as follows: At time

n, assume that a codebook F (n) = {f (n)
1 , . . . , f

(n)
Nb

}, where each f
(n)
i ∈ Ω(Nt, 1), is

available at both the transmitter and the receiver. Using the instantaneous channel

vector H(n), the receiver chooses the best codeword f̃ (n) ∈ F (n) such that

f̃ (n) = arg max
f
(n)
i ∈F(n)

∣∣H(n)†f
(n)
i

∣∣2. (3.6)

The index of the codeword is then fed back to the transmitter, and the transmitter

chooses f̃ (n) as the beamforming vector for transmission. We say that a codebook

F (n)
o is optimal if it achieves the maximum average received SNR, i.e.,

F (n)
o = argmax

F(n)
E
[∣∣H(n)† f̃ (n)

∣∣2] (3.7)

It is shown in [17] that (3.7) is equivalent to the minimization of average distortion:

F (n)
o = argmin

F(n)
E
[
1−

∣∣H̄(n)† f̃ (n)
∣∣2]

= argmin
F(n)

E
[
d2(H̄(n)† , f̃ (n))

] (3.8)

where H̄(n) = H(n)/|H(n)| denotes the channel direction at time n, d(w1, w2) =√
1− |w†

1w2|2 denotes the choral distance of two vectors, which equals the sine of

the angle between these vectors.

For the memoryless, i.i.d. Rayleigh fading channel, the channel direction is uni-

formly distributed over the unit sphere Ω(Nt, 1). Hence, from (3.8), the beamforming

codebook design can be viewed a sphere vector quantization (SVQ) problem. Since

the channel distribution does not change over time for an i.i.d. channel, a single

codebook is always optimal. Therefore, the codebook design in [17] [19] can be

performed offline.

3.2 Codebook Design of Temporally

Correlated Channel

In this section we describe the proposed beamforming codebook design that ex-

plicitly exploits the temporal correlation according to the channel model in (3.1).
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For a temporally correlated channel, given H̄(n), H̄(n+1)is no longer uniformly

distributed over Ω(Nt, 1), but has a higher probability to be within the neighboring

region of H̄(n). Thus, as opposed to the case of i.i.d. channels, the optimal beamform-

ing codebook of a temporally correlated channel is no longer uniformly distributed.

Instead, the codewords will be more dense in the regions where the channel directions

are more likely to point to. We note that similar observations have been made for

spatially correlated channels [50, 51].

In the following we first present a possible approach of codebook design that

exploits the temporal correlation according to the channel model in (3.1), then we

further propose a equivalent approach with lower complexity.

As we know, the beamforming codebook design can be reviewed as a vector quan-

tization problem, where we quantize the channel vector with the best-match codeword

within the codebook. Therefore, for any time instance n, we could approximate the

channel vector with the current selected codeword, that is, H̄(n) ≈ f̃ (n), where f̃ (n)

was defined in (3.6). This approximation is asymptotically accurate when Nb goes

to infinity. Accordingly, we could design F (n+1) conditioned upon the knowledge of

H̄(n). That is,

F (n+1)
o = argmax

Fn+1
E
[∣∣H(n+1)f̃ (n+1)†

∣∣2∣∣∣H̄(n) = f̃ (n)
]

(3.9)

assuming H̄(n) ≈ f̃ (n), so that the channel distribution at time n+ 1 is considered to

be

H(n+1) = αβf̃ (n) + gv(n) (3.10)

where β is the amplitude of H(n) which is independent of H̄(n). Accordingly, we can

rewrite (3.9) into

F (n+1)
o = argmax

F
E
[∣∣Hf̃ †∣∣2∣∣∣H = αβf̃ (n) + gv

]
(3.11)

Thus, a certain algorithm can be applied for each time instance n to design a good

codebook according to (3.11), which, however, costs much high complexity. Mean-

while, it is hard to synchronize the transmitter and the receiver with the same updated

codebook at each time instance. Motivated by this, we propose a alternative codebook

design which has a much lower complexity.
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First of all, using the algorithms proposed previously, we construct a root code-

book F r = argmaxF E[|H(n+1)f̃ †|2
∣∣H̄(n) = f r] given a randomized f r ∈ Ω(Nt, 1).

The key step of our algorithm is to compute F (n+1) from F r through a rotation

U (n+1):

F (n+1) = U (n+1)F r = {U (n+1)f r
1 , U

(n+1)f r
2 , · · · , U (n+1)f r

Nb
}, (3.12)

where U (n+1) is any unitary matrix such that f̃ (n) = U (n+1)f r. Note that the selected

codewords f̃ (n) ∈ F (n) is utilized in our design because they are available to the

transmitter at time n due to the limited feedback from the receiver. The rotation

step (3.12) is based on Theorem 4 below.

Theorem 4 Under the idealized assumption that the channel direction at time n−1:

H̄(n−1) = f r is known to the transmitter at time n. Let Fo(f
r) = {f r

1 , . . . , f
r
Nb
}

denote an optimal codebook for time n that achieves the maximum average received

SNR conditioned upon f r:

E
[∣∣H(n)f̃ (n)†

∣∣2∣∣∣H̄(n−1) = f r
]

(3.13)

Then if f ′ ∈ Ω(Nt, 1), and f ′ = Uf , where U is a unitary matrix, then we have

Fo(f
′) = UFo(f

r) = {Uf r
1 , . . . , Uf r

Nb
} (3.14)

must be an optimal codebook conditioned upon H̄(n−1) = f ′.

Proof.

For any codebook F (n), the average received SNR conditioned upon H̄(n−1) = f r

equals

E
[
|H(n)† f̃ (n)|2

∣∣H̄(n−1) = f r
]

= E
[∣∣(UH(n)

)†(
Uf̃ (n)

)∣∣2∣∣H̄(n−1) = f r
]
,

(3.15)

where f̃ (n) = arg max
f
(n)
i ∈F(n)

∣∣H(n)†f
(n)
i

∣∣2.
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Conditioned upon H̄(n−1) = f r, we have

H(n) = a|H(n−1)|H̄(n−1) + gv(n−1)

= a|H(n−1)|f r + gv(n−1)

= U †(a|H(n−1)|f ′ + gz(n−1)),

(3.16)

where z(n−1) = Uv(n−1) has the same distribution as v(n−1). It follows that UH(n) =

a|H(n−1)|f ′ + gz(n−1), and thus, the following two conditional distributions are the

same:

p(UH(n)
∣∣H̄(n−1) = f r) ∼ p(H(n)

∣∣H̄(n−1) = f ′). (3.17)

Using (3.17), we can rewrite (3.15) as

E
[
|H(n)† f̃ (n)|2

∣∣H̄(n−1) = f ′
]
, (3.18)

where f̃ (n) = arg max
fn
i ∈UF(n)

∣∣H(n)†f
(n)
i

∣∣2. This follows that if Fo(f
r) is an optimal

codebook conditioned upon H̄(n−1) = f r, then the rotated codebook UF (n)
o must

be an optimal codebook conditioned upon H̄(n−1) = f ′. �
An immediate consequence of Theorem 4 is as follows: if H̄(n) is available to the

transmitter at time n + 1 and time n, then the optimal codebook Fo(H̄
(n)) can be

constructed from Fo(f
r) by a unitary rotation U (n) where H̄(n) = U (n)f r. Now, since

only the selected codewords f̃ (n) is available to the transmitter, we approximate the

rotation matrix U (n) by f̃ (n) = U (n)f r, assuming that f̃ (n) provide a good approxima-

tion of the actual channel directions H̄(n).

In Table 3.1, we summarize the main steps of our codebook design. Our algorithm

is initialized by applying GLA or other algorithms to obtain a root codebook Fo(f
r)

from an arbitrary root channel direction f r. Then we apply proper rotations at each

time instance to obtain the appropriate codebook used for the next time slot.

3.3 Root Codebook Design

3.3.1 SNR Based Root Codebook Design

The Lloyd algorithm [19, 52] is a popular numerical method in limited feedback

codebook design, it can be applied to arbitrary channel distributions. Here we can use
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the generalized Lloyd algorithm (GLA) proposed in [19] to derive our root codebook.

The general steps of GLA codebook design are stated as follows:

(1) Nearest neighbor rule: For given codewords, the optimum partition cells satisfy

Ri =
{∣∣H†fi

∣∣2 ≥ ∣∣H†fj
∣∣2 , ∀j ̸= i

}
(3.19)

for i = 1, · · · , Nb.

(2) Centroid condition: For a given partition , the optimum codeword vectors

satisfy

f̂i = arg max
fi∈Ri
∥fi∥=1

E
[∣∣H†fi

∣∣2 |H ∈ Ri

]
(3.20)

It is easy to find out that f̂i should be the eigenvector of the dominant eigenvalue of

E
[
HH†|H ∈ Ri

]
In practice, a codebook is derived by generating a sufficiently large number of

samples (channel realizations) and iterating the above two conditions for sufficient

times until it converges. In order to take temporal correlation into account, we

implement the GLA as follows. First, we randomly generate a H̄
(−1)
r ∈ Ω(Nt, 1),

which we refer to as the root channel direction. Then we collect L random samples of

H̄
(0)
r following the AR modelH

(0)
r = a|H(−1)

r |H̄(−1)
r +gv(−1) and let H̄

(0)
r = H

(0)
r /|H(0)

r |.

Using the collection of L samples of H̄
(0)
r , the optimal beamforming codebook can be

computed iteratively following the procedure given in [19].

One straightforward approach is to directly apply this GLA algorithm to design

our root codebook, given a randomized f r. However, we observe a problem of this

design. In Figure 3.3, we compare the BER performance of the following codebooks:

’i.i.d. codebook’ refers to the GLA designed codebook assuming the channel is

i.i.d. distributed; ’SNR-R’ codebook denotes the rotated codebook where the root

codebook is designed by GLA assuming correlated channel, and the rotation is based

on the selected codewords; ’SNR-IR’ differs from ’SNR-R’ on that the rotation is

based on the exact channel direction. We assume Nt = 4, Nb = 8 and a slow fading

channel where α = 0.9648 in this figure. As shown in Figure 3.3, SNR-R and SNR-IR

performs better than the i.i.d. codebook only at low SNR region. This observation is

a little surprising because intuitively the proposed codebook should always has better

BER performance since it has a higher average received SNR than the i.i.d. codebook
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(Figure 3.2), but actually it is not. A similar problem has been addressed in [53] on

the asymptotic performance analysis of the general selection diversity scenarios. Here

we will present a particular explanation why this high SNR problem occurs in our

scheme.

Denoting the received SNR to be γ = ρ|f †H|2 = ρg, where g = |H†f̃ |2 is the

channel gain and its distribution is independent of ρ. The bit error rate(assuming

BPSK) can be expressed as

Pe =

∫ ∞

0

Pe(ρ, g)fG(g)dg (3.21)

where the conditional error probability Pe(ρ, g) = Q(
√
2ρg) =

∫∞√
2ρg

e−
x2

2 dx. We

numerically plot the pdf function fG(g) of the three codebooks in Figure 3.3.

Proposition 2 If ∃B > 0, s.t. fG,1(g) ≤ fG,2(g) for ∀g ≤ B and
B∫
0

fG,1(g)dg <

B∫
0

fG,2(g)dg, then we have lim
ρ→∞

Pe,1 < lim
ρ→∞

Pe,2

proof.

We have

lim
ρ→∞

Pe,1 = lim
ρ→∞

(

∫ B

0

Pe(ρ, g)fG,1(g)dg +

∫ ∞

B

Pe(ρ, g)fG,1(g)dg)

= lim
ρ→∞

(Pe(ρ, t1B)fG,1(t1B) +

∫ ∞

B

Pe(ρ, g)fG,1(g)dg)

= lim
ρ→∞

(Pe(ρ, t1B)fG,1(t1B) +O(Pe(ρ, t1B)))

(3.22)

where we applied the Tylor Theorem to obtain the second line, and 0 < t < 1.

Similarly, we have

lim
ρ→∞

Pe,2 = lim
ρ→∞

(Pe(ρ, t2B)fG,2(t2B) +O(Pe(ρ, t2B))) (3.23)

and from the given conditions, we have∫ B

0

Pe(ρ, g)fG,1(g)dg <

∫ B

0

Pe(ρ, g)fG,2(g)dg

Pe(ρ, t1B)fG,1(t1B) < Pe(ρ, t2B)fG,2(t2B)

(3.24)

We complete our proof by taking (3.24) into (3.22) and (3.23). �
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The above proof shows that, Pe is determined by the small value region of g when

ρ is large. According to Figure 3.3, fG(g) of both SNR-R and SNR-IR is greater than

that of the i.i.d. codebook below a certain threshold. Therefore, those codebooks

would have higher error probability than the i.i.d. codebook when the transmit SNR

ρ is high.

From the above analysis, we see that the SNR-R codebook has worse BER per-

formance than the i.i.d. codebook at high SNR region because it has ’a bigger tail’

at small value region of g. We propose several approaches to militate this high SNR

problem:

(1) Design a codebook with good BER performance. Since the average received

SNR is inconsistent with the BER at high SNR region. A straightforward solution

would be to directly design a codebook with good BER performance. While it is

hard to derive analytical solutions to BER-oriented codebook design, we proposed an

algorithm based on optimizing BER in the next subsection, and we will evaluate this

new design in our simulation part.

(2) Use modulations with higher constellation size. By increasing the constellation

size, we actually draw the transmitted bits to low SNR region. Since with fixed

transmit power per symbol, we are increasing the bits within a symbol. Thus, each

bit is transmitted at lower power. In this way, we make the high SNR problem occur

above a higher threshold, which could be out of the concern in a real communication

system.

(3) From Figure 3.3, we see that the inaccurate channel rotation makes the high

SNR problem much more severe. We derive the root codebook assuming the channel

distribution with given temporal correlation. However, the correlation is actually not

that high when we only know the quantized version of channel knowledge. In another

word, it would help if we generate the root codebook based on a more accurate channel

distribution model. A straightforward method is to employ a smaller correlation

coefficient, in order to compensate the quantization error of the channel vector. We

tried several coefficients of smaller α and confirmed it really brings improvement. The

figures are not posted here for brevity.
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(4) Introduce channel coding into the system. As shown in Figure 3.1, fG(g) of

the SNR-R codebook is more flat than that of the i.i.d. codebook, which indicates

the proposed codebook has higher temporal diversity. This is the reason why the

SNR-R gives worse performance than the i.i.d. codebook for large SNR values. Since

at the high SNR region, most errors that occur are due to small values of received

SNR (denoted by γ), i.e., when the channel is in outage. As shown in this figure, the

probability density function of the received SNR f(γ) of SNR-R is greater than that of

the i.i.d. codebook when γ is small. This is why even though the SNR-R has an higher

average received SNR, it still shows a higher BER (or a higher outage probability)

than the i.i.d. codebook. However, by introducing channel coding to exploit the

diversity, the system performance would be determined by the mean capacity instead

of the outage capacity, in which case SNR-R should outperform the i.i.d. codebook.

We will confirm this in our simulation section.

3.3.2 BER Based Codebook Design

As shown above, the criterion of GLA codebook design is to maximize the average

received SNR. However, the performance evaluation is usually based on the uncoded

bit or symbol error probability for the considered system. According to [41], GLA

codebook is suboptimal respect to the BER performance in the uncoded system.

Further, the situation is even worse that the GLA codebook shows a high SNR

problem under correlated channels, as we will show in our simulation. This promote

us to propose new criteria and design codebooks with good BER performance or

higher achievable capacity under correlated channels.

First let us reconsider the two steps of the GLA design. With given partitions

Ri, i = 1, · · · , Nb assigned by the nearest neighbor rule, the functionality of the

centroid condition is to find the codewords that maximize the average received SNR

in each individual partition. That is, for the ith codeword

f̂i = arg max
fi∈Ri
∥fi∥=1

E
[∣∣H+fi

∣∣2 ρ|H ∈ Ri

]
= arg max

fi∈Ri
∥fi∥=1

E [γ|H ∈ Ri]
(3.25)
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where γ = |H+fi|2 ρ denotes the instantaneous received SNR given a specific channel

realization H ∈ Ri.

However, our goal is to directly minimize the average BER instead of the average

received SNR. Assuming BPSK, we replace the optimization problem in (3.7) by the

following criterion

Fo = argmin
F

E [Pe(γ)]

= argmin
F

E
[
Q(
√
2γ)
]

= argmin
F

E

[
Q(

√
2
∣∣∣H+f̃

∣∣∣2 ρ)]
(3.26)

where Pe(γ) denotes the conditional BER function given the received SNR γ, and

Q(x) =
∫∞
x

1√
2π
e−

x2

2 dx. Accordingly, within the centroid condition, we should find

the codeword that minimize the average BER in the given partition. That is,

f̂i = arg min
fi∈Ri
∥fi∥=1

E [Pe(γ)|H ∈ Ri]

= arg min
fi∈Ri
∥fi∥=1

E

[
Q(

√
2 |H+fi|2 ρ)|H ∈ Ri

] (3.27)

While it is hard to find the optimal solution, we work on some simplifications.

Define

∆γ = γ∗ − γ

=
∥∥H†H̄

∥∥2 ρ− ∣∣H+fi
∣∣2 ρ

=
∥∥H†∥∥2 ρ− ∣∣H+fi

∣∣2 ρ
(3.28)

where γ∗ =
∥∥H†

∥∥2 ρ is the maximal received SNR when we apply the optimal

beamforming vector f = H̄. Now we expand the Q function to the second order

of ∆γ

Q(
√

2γ) = Q(
√

2(γ∗ −∆γ))

= Q(
√

2γ∗) +
1

2
√
πγ∗ e

−γ∗
∆γ +O(∆γ)

(3.29)

Ignore the high order components and bring it back to (3.27), we have
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f̂i = arg min
fi∈Ri
∥fi∥=1

E

[
Q(

√
2 |H+fi|2 ρ)|H ∈ Ri

]

=̇ arg min
fi∈Ri
∥fi∥=1

E

[
Q(
√

2γ∗) +
1

2
√
πγ∗ e

−γ∗
∆γ|H ∈ Ri

]

⇔ arg max
fi∈Ri
∥fi∥=1

E

− 1

2
√

π |H|2 ρ
e−|H|2ρ∆γ|H ∈ Ri


= arg max

fi∈Ri
∥fi∥=1

E[
1

2
√

π |H|2 ρ
e−|H|2ρr∗

− 1

2
√
π |H|2 ρ

e−|H|2ρr|H ∈ Ri]

= arg max
fi∈Ri
∥fi∥=1

E

 1

2
√
π |H|2 ρ

e−|H|2ρ∣∣H+fi
∣∣2 ρ|H ∈ Ri



(3.30)

This is a modified version of the centroid condition. Intuitively it can be viewed as

adding a weight factor to each channel realization according to how much this channel

realization contributes to BER. Those channel realizations with high error probability

would be assigned larger weight factors comparing to those with low error probability,

so that f̂i will end up being closer to them. In this manner, the averaged BER is

minimized instead of the average received SNR within the partition.

If we look at the nearest neighbor rule under the BER criterion, it should be

Ri =

{
Q(

√
2 |H+fi|2 ρ) ≤ Q(

√
2 |H+fi|2 ρ),∀j ̸= i

}
⇔Ri =

{∣∣H+fi
∣∣ ≥ ∣∣H+fi

∣∣ , ∀j ̸= i
} (3.31)

which means we can use the exactly same nearest neighbor rule as GLA.

3.3.3 Capacity Based Codebook Design

We could also apply the VQ-based approach [52] which maximizes the average

system capacity to design our root codebook. The optimization criterion becomes

Fo = argmax
F

E [C(γ)]

= argmax
F

E [log(1 + γ)]

= argmax
F

E
[
log(1 +

∣∣H+fi
∣∣2 ρ)]

(3.32)
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The corresponding centroid condition would be

f̂i = arg max
fi∈Ri
∥fi∥=1

E

[
|H+fi|2 ρ

2(1 + |H|2 ρ)
|H ∈ Ri

]
(3.33)

In the simulation part, we will compare the performance of this capacity-based design

with other designs that we mentioned before.

3.4 Performance Analysis

In this section, we examine performance of our proposed rotation-based beam-

forming codebook design. Two fading channels are considered: a slow fading channel

with fdT = 0.06 (corresponds to α = 0.9648) and a fast fading channel with fdT = 0.1

(corresponds to α = 0.9037). We assume that the number of transmit antennasNt = 4

and a single received antenna is used. We choose a 3-bit feedback rate, and all the

codebooks we design have a size of Nb = 8. We generate a long sequence of correlated

channel realizations {H(0), H(1), · · · , H(n), · · · , }, apply various codebooks (the pro-

posed codebook in Table 1, the i.i.d. codebook in, etc.) from which the beamforming

vector is selected, and observe the average received SNR, system capacity and bit

error rate under both coded and uncoded systems.

3.4.1 Average Received SNR

In Figure 3.2, we measure the average received SNR of SNR-R, CAP-R, BER-R

and the previously proposed codebooks in the slow fading channel (α = 0.9648).

The ’i.i.d. codebook’ refers to the GLA codebook [19] assuming the channel is i.i.d.

distributed. The ’ideal’ curve assumes that the transmitter knows perfect H so that

it uses the optimal beamforming vector f = H̄†. Figure 3.2 shows that the proposed

SNR-R, CAP-R and BER-R codebooks achieves almost the same average received

SNR, and outperform the i.i.d. codebook with a roughly 2dB gain. We perform the

same simulation for the fast fading channel (α = 0.9037) in Figure 3.4, and similar

observations are obtained, except that the gap between the i.i.d. codebook and the

proposed codebooks is reduced to around 1dB. We also calculate the capacity as

another performance measurement. The curves are consistent with the corresponding
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received SNR curves in Figure 3.2 and 3.4, so we will not post the figures here for

brevity.

3.4.2 BER in the Uncoded System

In this part, we would compare the uncoded BER performance of SNR-R, BER-R

and CAP-R codebooks. We assume BPSK modulation in order to be consistent with

our derivations in the BER root codebook design section. With the same system

configuration Nt = 4 and Nb = 8 as above, we plot the BER performance in Figure

3.5 for the slow fading channel where fdT = 0.06, α = 0.9648. and Figure 3.6 for the

fast fading channel where fdT = 0.1, α = 0.9037. As shown in Figure 3.5, the SNR-R

and CAP-R shows the high SNR problem in the region ρ ≥ 4.5dB, whereas BER-R

codebook always performs better than the i.i.d. codebook. In the low (transmit)

SNR region, BER-R achieves approximately 1.5dB gain over the i.i.d. codebook,

yet gap reduces as ρ increases. It is more obvious in Figure 3.6 that BER-R still

exhibits the high SNR problem somehow. There is a crossing that occurs at around

ρ = 10.5dB. The reason, as we can think of, might be that our proposed BER root

codebook design is based on the approximation of the Q function. Meanwhile, the

Lloyd algorithm itself is suboptimal. Hence we can not guarantee that our BER

root codebook optimize the average BER. However, this design still shows obvious

improvement, comparing to SNR-R and CAP-R codebooks, and it shows better BER

performance than the i.i.d. codebook at low SNR region.

3.4.3 BER in the Coded Systems

Many real communication systems utilize channel coding to achieve near-capacity

performance, so it is important for us to verify the performance of our proposed

codebooks in a coded system. During our analysis to the high SNR problem, we

expected that the high SNR problem would not exist in a coded system. We confirm

this by the following simulations. Assuming Nt = 4, Nb = 8 and QPSK modulation,

we consider a Turbo coded system with 1
2
coding rate and the coding length of 8192.

The generating functions for the recursive encoders are g1(D) = 1 + D + D2 and

g2(D) = 1 + D2 respectively. Since the performance of the i.i.d. codebook does
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not depend on the temporal correlation, we plot all the curves in one figure. The

’SNR-R fdT = 0.06’ curve denotes the BER performance of the SNR-R codebook

in the slow fading channel, and similarly the ’GLA fdT = 0.1’ curve is for the fast

fading fading channel. As shown in Figure 3.7 (for the slow fading channel) and

Figure 3.8 (for the fast fading channel), SNR-R codebook exhibits a 1.5dB gain in

the slow fading channel comparing to the i.i.d. codebook, while BER-R and CAP-R

codebooks obtain an extra 0.5dB gain, in the slow fading channel. In the fast fading

channel, the performance of BER-R and CAP-R only degrades slightly while SNR-R

codebook has about 1dB degradation, comparing to the curves in the slow fading

channel.

3.5 Conclusion

In this work, we show that by exploiting channel temporal and spatial correlation,

the gain of transmit beamforming can be effectively utilized based on limited feed-

back. In both slow fading and fast fading channel, the proposed beamforming design

demonstrates superior performance over existing designs that do not consider channel

correlation. Performance analysis of our design and its extension to more general

correlated fading channels including frequency selective channels are directions for

future research.
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Table 3.1. Steps of proposed beamforming codebook design for a temporally
correlated channel

Offline:
1.Randomly generate a Nt × 1 root channel direction f r ∈ Ω(Nt, 1);
2. Apply the Generalized Lloyd Algorithm to design a codebook for
time 0: Ffr

o , based on channel model (3.1)
Inline:
Time 0:

The receiver selects the best codeword f̃ (0) and feeds back the
codeword index to the transmitter. Find an unitary matrix U0 such that

f̃ (0) = U (0)f r. Let F (1) = U (0)Fof
r.

Time n-1 ...

Time n The receiver selects the best codeword f̃ (n) for time n and feeds back
the codeword index to the transmitter. Let F (n+1) = U (n+1)Fof

r

where f̃ (n) = U (n)f r

Time n+1 ...
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Figure 3.1. the probability density function of the received SNR for the proposed
codebook and the i.i.d. codebook
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Figure 3.2. Performance comparison of proposed codebook with the i.i.d. codebooks
that do not consider temporal correlation in the slow fading channels. Nt = 4,
a = 0.9648.
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Figure 3.3. BER performance of various codebooks under the slow fading channel
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Figure 3.4. Performance comparison of proposed codebook with the i.i.d. codebooks
that do not consider temporal correlation in the fast fading channels. Nt = 4,
a = 0.9037.
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Figure 3.5. BER performance of various codebooks under the slow fading channel
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Figure 3.6. BER performance of various codebooks under the fast fading channel
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Figure 3.7. BER curves for SNR-R codebook and the i.i.d. codebook in the coded
system assuming fdT = 0.06
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Figure 3.8. BER curves for SNR-R codebook and the i.i.d. codebook in the coded
system



CHAPTER 4

MARKOV CHAIN MONTE CARLO

DETECTION FOR FREQUENCY

SELECTIVE CHANNELS USING

LIST CHANNEL ESTIMATES

Turbo equalization (TEQ) is a powerful technique to combat intersymbol inter-

ference (ISI) resulting from multipath transmission. In a system that employs turbo

equalization, soft information about the transmitted bits is exchanged iteratively

between a soft-input/soft-output (SISO) equalizer and a SISO channel decoder such

that improved channel equalization can be achieved with the aid of soft information

from the channel decoder, and improved decoding thereby also results. The overall

performance approaches that of optimal maximum a posteriori (MAP) joint equal-

ization and decoding.

Most of the SISO equalizers that have been proposed in the literature are either

trellis-based [54–56], which aim to approximate the optimal MAP detection, or are

based on soft ISI cancellation [57] and linear filtering [58, 59]. For channels with

long memory or when the size of signal constellation is large, the complexity of

the trellis-based approach becomes prohibitive due to the exponential number of

states in the trellis. While it is possible to reduce the complexity of such algorithms

using state-reduction techniques [54, 60–64], much of the study is still limited to

channels with a moderate number of states in the trellis representation. The linear

filtering based SISO equalizers, such as the minimum mean-square-error (MMSE)

turbo equalizer [58, 59], have been widely studied in the literature due to their

excellent performance and lower complexity compared to that of the trellis-based

approaches. Such equalizers have been successfully applied to channels with long

delay spread, such as the underwater acoustic (UWA) channels where the ISI can
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span tens or even hundreds of symbol periods. The MMSE turbo equalizer, however,

and any suboptimal SISO equalizer, can incur performance loss compared to that

using the optimal MAP equalizer [58,59]. Recent work that applies TEQ techniques

to joint channel estimation and data detection include [65–68] for terrestrial channels,

and [69–71] for UWA channels. These approaches largely adopt the linear filtering

approach to combat ISI for channels with long memory.

In this work, we investigate a different class of SISO equalizers based on Markov

Chain Monte Carlo (MCMC) techniques [23, 26]. The MCMC detector adopts a

statistical method, called Gibbs sampling, to search for a small (to keep the com-

plexity low) but important (to achieve good performance) sample set containing the

most likely transmitted symbol vectors. The key point that makes MCMC attractive

for SISO detection over ISI channels is that, unlike the optimal MAP detector, its

complexity does not grow exponentially with the channel memory, yet its performance

remains close to that of the optimumMAP detector. Original versions of SISOMCMC

detectors have been developed in [27] for stationary frequency-selective channels,

assuming perfect knowledge of the channel impulse response (CIR) at the receiver. It

is shown in [27] that the MCMC detector can better approximate the optimal MAP

detector than the MMSE turbo equalizer [58,59] and achieve substantial performance

gains, which amounted to around 2 dB for the various ISI channels and conditions

considered.

In this work, we extend the work of [27] to develop new MCMC detectors for the

more challenging time-varying frequency-selective channels. Such channels require a

different design of MCMC detectors beyond those of [27] to facilitate joint channel

tracking and data detection. A main contribution of this paper is the development of

a new MCMC detector, termed MCMC with list channel estimates (MCMC-LCE),

for time-varying frequency-selective channels. A salient feature of the MCMC-LCE

detector is that it computes the log-likelihood ratio (LLR) of the coded bits based

on a list of estimates of the CIR. This allows for additional degrees of freedom in

the estimation of the CIR, and hence, can significantly improve the robustness of

the detector to channel uncertainty. Compared to existing detectors that operate

based on a single CIR estimate (which can be inaccurate), the MCMC-LCE detector
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demonstrates superior channel tracking capability and data detection performance.

The MCMC-LCE detector is driven by an adaptive variable step-size least mean

square (VSLMS) algorithm for channel estimation. The VSLMS algorithm does not

require prior information of the probability distribution of the CIR, and hence, is

particularly attractive for situations where a good statistical channel model is not

available. This is the case for UWA channels, whose study has been one of the main

motivations for the developments in this paper.

To demonstrate the effectiveness of the proposed MCMC-LCE detector, we pro-

vide performance comparisons with MMSE detectors over a set of synthetic ISI

channels and real UWA channel measurements from at-sea experiments. The UWA

channels feature large delay spread, frequency-dependent broadband Doppler, and

high time variability, and are considered to be one of the most challenging communi-

cation channels in use today [72]. Our results confirm that, for both synthetic channels

and UWA channels, the MCMC-LCE can offer significant performance improvements

over the MMSE-based detector. Various versions of MMSE-based detectors exist in

the literature, even though they all follow similar principles of TEQ. The differences

among them are mostly due to their specific implementation of the channel estimator,

e.g., the MMSE approaches of [66, 70, 71, 73] adopt symbol-wise channel refinement,

or employ a direct adaptive equalizer structure in which the channel is not explicitly

estimated but rather the coefficients of an equalizer are adaptively estimated, as in

an adaptive linear or decision feedback equalizer. The adaptive channel estimation

algorithms used may also vary, e.g., [66] uses a recursive least squares (RLS) algo-

rithm, while [70, 71] adopt the LMS algorithm. In [74, 75], the channel estimate is

assumed to be constant over a block of data. Since detailed comparisons of these

MMSE equalizers are outside the scope of this paper, we simply present performance

comparisons with the MMSE detectors similar to those in [66, 71, 73], with minor

modifications to optimize their performance for the channels considered in this work.

Applications of blind MCMC detection to stationary frequency-selective channels

have been considered previously in [76] for a single-carrier system, and later extended

to multicarrier systems [77,78]. In [76], the authors adopted a Gibbs sampler to gen-

erate a sample sequence of the transmitted data and estimated CIR in an alternating
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fashion. A probability distribution of the CIR is assumed to be known a priori, based

on which samples of the CIR are drawn. For a stationary four-tap ISI channel with

binary phase shift keying, [76] showed that good performance can be achieved with a

small number of samples. Moreover, the a posterior probabilities (APP) of the bits are

computed following a bit-counting approach. The MCMC-LCE detector considered

in this work is different from that considered in [76]. First, we are interested in a

time-varying channel with a potentially long CIR and in which a priori statistics might

not be available. This makes it difficult to directly apply the Bayesian framework

developed in [76]. Second, in order to reduce the number of samples required for

satisfactory detection performance under long CIR, we compute the LLR values of

the bits based on importance sampling, rather than bit-counting. It has been shown

in prior work [23, 26] that the former approach improves the reliability of the LLR

values with a greatly reduced number of samples. Third, due to the time-variability

of the channel, our design is adaptive in nature to enable reliable channel tracking.

The remainder of this chapter is organized as follows. In Section 4.1, we present

the system setup used herein. Section 4.2 presents a review of the VSLMS algorithm

and the rationale for adopting it to the specific application of interest in this paper.

The main contribution of the paper, namely, the proposed MCMC-LCE detector for

time-varying channels, is presented in Section 4.3. Numerical results and performance

analysis for the synthetic channel and the UWA channels are presented in Section 4.4.

Throughout this chapter, we use lower case bold letters to represent vectors, and

capital bold letters to represent matrices. The notation (·)T denotes the transpose

operator, and (·)∗ denotes conjugate transpose. We also let xi:j = (xi, xi+1, · · · , xj)
T

represent a partial sequence of vector x.

4.1 System Setup

4.1.1 Transmitter Structure

Figure 4.1(a) presents a block diagram of the transmitter of the communication

system considered in this paper. The vector b contains a sequence of (uncoded)

information bits. This is passed to a channel encoder that adds redundant bits to b.

The coded bits are passed through an interleaver whose output is the interleaved coded
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bit vector c. We consider a 2Q-ary symbol alphabet A = {v1, v2, · · · , v2Q}. Each

symbol vk consists of bits {vk,1, vk,2, · · · , vk,Q}, where vk,j ∈ {0, 1}. The modulation

block converts c to a vector of complex-valued symbols from the symbol alphabet A.

Periodically inserted pilot symbols are added and the result that we call x is passed to

the channel for transmission. We refer to x as a data packet. As presented in Figure

4.1(b), each packet consists of T frames, and each frame consists of a segment of pilot

symbols, followed by several segments of data symbols. We assume that the channel

variation over time is slow enough so that it can be approximated by a constant

matrix over the duration of each segment.

4.1.2 Channel Model

The communication link is a single-input multiple-output (SIMO) multi-path

channel with a single transmit element and K receive elements. The received signal

at the k-th receive element at time n, denoted by y
(k)
n , is given by

y(k)n =
L∑

p=0

h(k)
n,pxn−p + w(k)

n , k = 1, · · · , K, (4.1)

where n and p are time and path indices, respectively, h
(k)
n,p is the channel gain of the

p-th path between the transmitter and the k-th receive element, xn is the transmitted

signal, w
(k)
n is the channel noise.

For brevity, we let x denote the transmitted symbol vector, and denote the received

signal from the K receive elements as Y = (y(1), · · · ,y(K)) , where N is the number

of transmitted symbols and y(k) = (y
(k)
0 , y

(k)
1 , · · · , y(k)N−1)

T .

4.1.3 Receiver Architecture

A block diagram of the receiver architecture is shown in Figure 4.2. Based on the

packet format shown in Figure 4.1, we divide Y into a number of segments, say, Y0,

Y1, Y2, · · · , with Yi being the received signal of the i-th segment. The MCMC-LCE

is applied to each segment for joint data detection and channel estimation. The

MCMC-LCE is a soft-in soft-out detector. For segment l, its input is γ, the LLR

values of coded bits, provided by the channel decoder, and the initial channel estimate

Ĥl. We assume that the channel variation over time is slow enough so that it can be
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approximated by a constant matrix over segment l. Thus Ĥl is a constant channel

gain matrix given by Ĥl = (h
(1)
l , · · · ,h(K)

l ), where h(k) = (h
(k)
0 , h

(k)
1 , · · · , h(k)

L )T is a

column vector representing the CIR vector between the transmit element and the k-th

receive element. The derivation of Ĥl and the details of MCMC-LCE are presented

in Section 4.3. We apply MCMC-LCE over each segment l sequentially to generate

updated extrinsic LLR values of all coded bits, denoted by α, and these are passed,

after de-interleaving, to the channel decoder. Subsequently, after channel decoding,

the updated γ values are fed back to the MCMC-LCE to facilitate the next iteration

of joint data detection, channel estimation, and decoding.

4.2 Channel Estimation

Successful implementation of a TEQ to a great extent depends on the quality of

the channel estimator. Ideally, one wishes to use a perfect estimate of the channel.

However, this cannot be the case in practice, particularly, when the channel is time-

varying and noisy. An adaptive algorithm need to collect sufficient samples of the

underlying signals to find the channel that fit best to the signals statistics. This

introduces a lag in adaptation process, since the channel will be changed by the

time that the signals samples/statistics are collected, hence, the channel estimator

will suffer from an adaptation lag. The larger the adaptation lag, the worse will be

the channel estimate. To reduce the adaptation lag, one may reduce the number

of samples based on which the channel estimate is calculated. But, using a smaller

number of signal samples lead to a less accurate estimate of the channel. Hence, one

should choose the adaptation parameters to strike a balance between the adaptation

lag and the misadjustment arising from the lack of sufficient statistics. This concept

is well understood and been widely addressed in the literature within the general

frame of adaptive filters theory, e.g., see [79–81].

To elaborate the above points further, with direct reference to the common adap-

tive filtering algorithms, recall the least-mean square (LMS) algorithm update equa-

tion

wn+1 = wn + 2µenx
∗
n (4.2)
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where wn and xn are, respectively, the tap-weight and tap-input vectors, and µ is the

step-size parameter. A smaller value of µ results in a longer memory in considering the

underlying signals statistics, hence, a larger adaptation lag. Also, assuming that the

signals statistics (accordingly, the channel impulse response, in the case of interest to

this paper) are time-invariant, a smaller µ results in a channel estimate with a lower

misadjustment. Misadjustment arises because of the use of noisy samples of the

gradient in the LMS update equation. However, in the case of time-varying channels,

µ has to be chosen to strike a balance between the adaptation lag (i.e., the tracking

capability of the algorithm) and the misadjustment of the channel estimate.

For a given statistics of the gradient vector 2enx
∗
n in (4.2), a number of studies

have been performed to find the optimum choice of the step-size parameter µ that

optimizes the balance between the adaptation lag and misadjustment; e.g., [79, 82].

Moreover, a variable step-size LMS (VSLMS) algorithm that adaptively finds this

optimum choice of µ has been proposed, [82]. In [83], it has been noted that in some

cases, such as multipath channels, the statistics of the elements of the gradient vector

2enx
∗
n may vary significantly and thus a VSLMS algorithm with different step-size

parameters for various filter taps was proposed. Further development of this algorithm

was later reported in [84]. In our study of UWA channels, we have found that the

VSLMS algorithms of [83, 84] the best match. The impulse response of a UWA

channel typically consists of a few sparse multipaths (or cluster of multipths) each

with a different fading rate. Many taps in the impulse response may be zero, and

thus that are associated with the line-of-sight path or arise from reflections from the

sea-bed may vary slowly. Only the taps that are associated with the reflection from

the sea surface will be fast-fading. The use of VSLMS algorithms of [83, 84] will

lead to a self-optimizing channel estimator that without any prior knowledge of the

channel adapts to the various segments of the channel impulse response. In other

words, the VSLMS algorithm, in a very effective way, learns about the sparsity of the

channel as well as the fading rate of the various taps in the channel and adapts its

step-size parameters for a near optimum tracking of the channel impulse response.
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4.2.1 VSLMS Channel Estimation

A number of choices of the VSLMS algorithms have been suggested in [84].

Following the discussion and suggestions made in [84], we adopt the following in

this paper. We update the channel estimates as follows

ĥ
(k)
n+1,p = ĥ(k)

n,p + µ(k)
n,pe

(k)
n x∗

n−p. (4.3)

where µ
(k)
n,p is the step-size parameter at time n for the pth tap of the kth channel in

the UWA SIMO channel. The step-size parameter µ
(k)
n,p is updated as

µ(k)
n,p = (1 + ρ Re{e(k)n x∗

n−pϕ
(k)∗
n,p })µ

(k)
n−1,p, (4.4)

where

ϕ(k)
n,p = αϕ

(k)
n−1,p + en−px

∗
n−p−1, (4.5)

and ρ and α are the algorithm parameters that should be optimized empirically.

To give some insights to the mechanism of the VSLMS algorithm, we note that

ϕ
(k)
n,p indicates the average direction of the stochastic gradient enx

∗
n−p over the past

iterations. The update equation (4.4), effectively, compares the signs of the real

and imaginary parts of enx
∗
n−p and ϕ

(k)
n,p, and increases the step-size parameter if

on average these terms have similar signs, and decreases the step-size parameter,

otherwise; see [83] for my insight. When the VSLMS algorithm has converged to a

point close to the respective optimum tap weight, the signs of the real and imaginary

parts of enx
∗
n−p change more frequently and thus the step-size parameter is decreased.

4.2.2 VSLMS Under Decision-Directed Mode

For the data segment, the VSLMS algorithm operates based on soft estimates of

the transmitted symbols. We should replace xi in (4.4) by x̄i, which is defined as

x̄i = E(xi) =
∑
vk∈A

vkP (xi = vk). (4.6)

The computation of the symbol a posteriori probabilities P (xi = vk) depends on the

prior LLR for the bits {xi,j, j = 1, · · · , Q} that constitute xi. Let

λi,j = ln
P (xi,j = 0)

P (xi,j = 1)
, (4.7)



73

where λi,j is provided by the channel decoder, or by the MCMC-LCE. We obtain [59]

P (xi = vk) =

Q∏
j=1

P (xi,j = vk,j) =

Q∏
j=1

1

2
(1 + ṽk,j tanh(λi,j)), (4.8)

where

ṽk,j =

{
+1, vk,j = 0

−1, vk,j = 1
(4.9)

4.3 MCMC Detector Based on List

Channel Estimate

In this section, we present the proposed MCMC-LCE detector. The MCMC-

LCE detector generalizes and improves upon earlier versions of the MCMC detectors

presented in prior work [2, 85, 86]. Our study of the synthetic channels and UWA

channels shows that the MCMC-LCE detector developed here yields superior and

more robust performance as compared to these earlier versions.

4.3.1 MCMC-LCE as a Low-Complexity Approximation

to MAP Detection

First, we briefly review the optimal MAP detection and explain why MCMC-LCE

provides a low-complexity approximation to MAP detection. Let us consider MAP

detection over an arbitrary data segment l. For ease of presentation, we represent

xl, which is the transmitted symbol vector for segment l, by its corresponding bit

vector cl. For brevity, we ignore the subscript l in cl, and simply denote it by c.

Assume that the length of the bit vector c is B = QS, where S is the number of

coded symbols in the i-th segment, and Q is the number of bits in each constellation

point. The prior LLR for each bit in c, provided by the channel decoder, is given by

γ = (γ0, · · · , γB−1), where rm = ln P (cm=0)
P (cm=1)

, for every 0 ≤ m ≤ (B − 1). Assume that

Hl, the channel CIR for segment l, is perfectly known. The MAP detector computes

the extrinsic LLR of each bit cm as follows.
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α̂m = ln
P (cm = 0|Yl, γ,Hl)

P (cm = 1|Yl, γ,Hl)
− γm

= ln

∑
c:cm=0

P (c|Yl, γ,Hl)∑
c:cm=1

P (c|Yl, γ,Hl)
− γm

= ln

∑
c:cm=0

p(Yl|c,Hl)P(c|γ)∑
c:cm=1

p(Yl|c,Hl)P(c|γ)
(4.10)

Each summation in (4.10) is over a total of 2B−1 combinations of c. For typical values

of B which are in the order of at least few hundreds, this clearly is a prohibitive

complexity. The main idea of the MCMC-LCE is to use Gibbs samplers to find a

list of most likely pairs of transmitted sequences and CIR, and then approximate the

numerator and the denominator in (4.10) by summing over a much smaller number

of samples belonging to the list. The complexity of the MCMC-LCE is controlled by

the list size. In this work we will show that a very small list size is sufficient for the

MCMC-LCE to achieve good performance.

4.3.2 General Description of MCMC-LCE

A block diagram of the MCMC-LCE detector is presented in Figure 4.3. Here, we

consider the operations of MCMC-LCE over an arbitrary data segment l. The initial

channel estimate for the l-th segment is given by Ĥl. Details for computing Ĥl is given

in Section 4.3.4. Based on the received signal Yl, the initially estimated CIR Ĥl, and

the soft feedback γ from the channel decoder, the MCMC-LCE employs G parallel

Gibbs samplers (GS) to collect a list containing pairs of most likely transmitted

vectors and matching CIRs {x(i)
l , Ĥ

(i)
l }. Assume that we run a total of I iterations

within each GS, then a maximum of G · I sample pairs are collected. This list is used

to compute the LLRs of the transmitted bits, based on which we obtain a soft symbol

estimate x̄l. The extrinsic LLRs, α, will be passed to the channel decoder. Based on

x̄l, the VSLMS algorithm is applied to obtain an updated channel estimate Ĥf
l . This

channel estimate is then passed as an input to the MCMC-LCE detector for segment

l + 1. Next, we explain various blocks of the MCMC-LCE detector shown in Figure

4.3 in detail.
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4.3.3 Generation of a List Using Gibbs Sampler

We first explain how the Gibbs sampler works. At the beginning, the Gibbs

sampler generates an initial vector c(0) = (c
(0)
0 , c

(0)
1 , · · · , c(0)B−1) randomly. Then,

during the i-th iteration, the Gibbs sampler starts from the sample vector c(i−1),

the estimated CIR H̃
(i−1)
l , found during the (i− 1)-th iteration, and updates each of

the B bits sequentially to obtain a new vector c(i). Specifically, the m-th bit, c
(i)
m , is

generated according to its a posteriori probability (APP) distribution conditioned

upon the newly updated bits (c
(i)
0 , · · · c(i)m−1), that have already been generated during

the same iteration, and also bits (c
(i−1)
m+1 , · · · c

(i−1)
B−1 ) obtained from the (i−1)-th iteration.

Let

c̄m = (c
(i)
0 , · · · , c(i)m−1, c

(i−1)
m+1 , · · · , c

(i−1)
B−1 ).

We draw a sample c
(i)
m based on the LLR provided by the Gibbs sampler, denoted by

β
(i)
m , defined as

β(i)
m = ln

P (cm = 0|c̄m,Yl, γm, H̃
(i−1)
l )

P (cm = 1|c̄m,Yl, γm, H̃
(i−1)
l )

. (4.11)

Next, we describe how to compute β
(i)
m . For each a = 0, 1, we define

c[a] = {c(i)0 , · · · , c(i)m−1, a, c
(i−1)
m+1 , · · · , c

(i−1)
B−1 },

and let x[a] denote the symbol vector corresponding to c[a]. Assume that bit cm is

mapped to symbol xj. Also, let xn−L :n = (xn−L, xn−L+1, · · · , xn). Let h̃(i,k) denote

the k-th column of H̃
(i)
l . For each a = 0, 1, we obtain

β(i)
m = ln

K∏
k=1

p(y(k)|x[0], h̃(i,k))P (x[0])

K∏
k=1

p(y(k)|x[1], h̃(i,k))P (x[1])

= ln

K∏
k=1

j+L∏
n=j

p(y
(k)
n |x[0]

n−L:n, h̃
(i,k))

K∏
k=1

j+L∏
n=j

p(y
(k)
n |x[1]

n−L:n, h̃
(i,k))

+ ln
P (cm = 0)

P (cm = 1)
.

(4.12)

In (4.12), the subscripts l in y(k) and h̃(i,k) are suppressed for brevity.

In the following, we explain how to evaluate the probability density function

in (4.12). The key point is to compute an effective noise variance σ̃2
k which takes

into account both channel noise and channel estimation error. Detailed derivations

are given as follows. We assume that the channel is approximately constant within

segment l. Thus, even the actual channel is time-varying, the p-th tap of the estimated
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CIR at iteration i for channel k, denoted by h̃
(i,k)
p , does not depend on the time index

n. We then have

h(k)
n,p = h̃(i,k)

p + e(i,k)n,p , (4.13)

where e
(i,k)
n,p is the channel estimation error. Accordingly, the received signal can be

written as

y(k)n =
L∑

p=0

h(k)
n,pxn−p + w(k)

n =
L∑

p=0

h̃(i,k)
p xn−p + w(k)

n +
L∑

p=0

e(i,k)n,p xn−p. (4.14)

The effective noise becomes w̃
(i,k)
n = w

(k)
n +

L∑
p=0

e
(i,k)
n,p xn−p. We then estimate the

variance of the effective noise σ̃2
k = Var(w̃

(i,k)
n ) from the pilot segment as

σ̃2
k ≈ 1

Np

Np∑
n=1

∣∣∣∣∣y(k)n −
L∑
l=0

h̃(i,k)
p xn−p

∣∣∣∣∣
2

, (4.15)

where xn, n = 1, · · · , Np are pilot symbols. Assume that w̃
(i,k)
n is a complex Gaussian

random variable with zero mean and variance σ̃2
k, we can simplify (4.12) as

β(i)
m ≈

K∑
k=1

j+L∑
n=j

(
− 1

σ̃2
k

∣∣∣∣y(k)n −
L∑

p=0

h̃(i,k)
p x

[0]
n−p

∣∣∣∣2 + 1

σ̃2
k

∣∣∣∣y(k)n −
L∑

p=0

h̃(i,k)
p x

[1]
n−p

∣∣∣∣2)+ γm.

(4.16)

By the end of the i-th iteration of the Gibbs sampler, we obtained the LLR values

for all the bits in segment l. We then run the VSLMS under the decision-directed

mode, replacing the LLR values in (4.7) by β
(i)
1 , · · · , β(i)

B to obtain a sequence of

soft symbol estimates x̄(i). The VSLMS algorithm runs over x̄(i), starting from the

initial channel estimate Ĥl, to generate H̃
(i)
l . This forms a pair of samples (x̄(i), H̃

(i)
l ).

Subsequently, H̃
(i)
l will be used to generate new samples in the (i + 1)-th iteration.

The operation of the Gibbs sampler are summarized in Algorithm 3.

4.3.4 Computation of LLR Based on the List

Assume that bit cm is mapped to symbol xj, the received signals at the k-th

receive element that are affected by cm are y
(k)
j:j+L. Since y

(k)
j:j+L depends only on bits

{cn, j1 = Q(j − L) ≤ n ≤ Q(j + L+ 1)− 1 = j2}, we find that when computing the

output LLR for cm, it is sufficient to truncate each sequence in I to take into account
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Algorithm 3: Gibbs sampler combined with VSLMS channel estimation

generate an initial c(0)

for i = 1 to I
generate c

(i)
0 from distribution

P (c
(i)
0 = a|c(i−1)

1 , c
(i−1)
2 , · · · , c(i−1)

B−1 ,Yl,γ, H̃
(i−1)
l ) a = 0, 1

(This distribution is determined by β
(i)
0 using (4.12))

generate c
(i)
1 from distribution

P (c
(i)
1 = a|c(i)0 , c

(i−1)
2 , · · · , c(i−1)

B−1 ,Yl,γ, H̃
(i−1)
l ))

(This distribution is determined by β
(i)
1 using (4.12))

...
generate c

(i)
B−1 from distribution

P (c
(i)
B−1 = a|c(i)0 , c

(i)
1 , · · · , c(i)B−2,Yl,γ, H̃

(i−1)
l ))

(This distribution is determined by β
(i)
B−1 using (4.12))

Use LLR sequence {β(i)
1 , · · · , β(i)

B } to generate soft symbol sequence x̄(i)

H̃
(i)
l = VSLMS{Ĥl,Yl, x̄

(i)
l } (Run the VSLMS algorithm under

decision-directed mode using Yl, x̄
(i)
l and initial channel estimation Ĥl)

Put (cl, Ĥ
(i)
l ) into the list.

end for

only bits {cn, j1 ≤ n ≤ j2}. We denote the set that contains the truncated sequences

by Ij1:j2 . For each 0 ≤ m ≤ B − 1, we construct a larger set Im
j1:j2

which includes

all sequences in Ij1:j2 , together with new sequences that are obtained by flipping the

m-th bit of each sequence in Ij1:j2 . Duplicate sequences are removed from Im
j1:j2

.

Furthermore, we let Im,0
j1:j2

and Im,1
j1:j2

denote sequences in Im
j1:j2

whose m-th bit equals

0 and 1, respectively. The LLR value for bit cm is then computed as

αm=ln

∑
c
(i)
j1:j2

∈Im,0
j1:j2

K∏
k=1

p
(
y
(k)
j:j+L|c

(i)
j1:j2

, H̃
(i)
l

) j2∏
n=j1

P
(
cn|γn

)
∑

c
(i)
j1:j2

∈Im,1
j1:j2

K∏
k=1

p(y
(k)
j:j+L|c

(i)
j1:j2

, H̃
(i)
l )

j2∏
n=j1

P (cn|γn)
− γm. (4.17)

4.3.5 Bidirectional Channel Initialization

When processing the l-th segment, the initial channel estimate Ĥl is set to be

Ĥl =
Ĥf

l−1+Ĥb
l+1

2
, where Ĥf

l−1 is the updated channel estimate at the output of the

MCMC-LCE for the (l− 1)-th segment. Detailed derivations Ĥf
l−1 of can be found in

Section 4.3. The backward channel estimate Ĥb
l+1 is obtained by running the VSLMS
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algorithm [79] from the neighboring pilot segment to the immediate right of segment

l all the way to the left towards the l-th segment. For the data segment, the VSLMS

operates under decision-directed mode following techniques described in 4.2.2, where

the prior LLR in (4.7) is replaced by α, the feedback from channel decoder. Note

that for the first iteration of joint detection and decoding, since α is not available,

we simply set Ĥl = Ĥf
l−1. Due to the time variation of the channel, we find that the

bidirectional channel initialization improves performance compared to the one-sided

channel initialization using only Ĥf
l−1.

4.3.6 Multiple Runs of MCMC-LCE for the Same Segment

After obtaining Ĥf
l , before moving on to segment l+1 directly, we have empirically

found that it is often helpful to re-run the MCMC-LCE for the same segment l with

Ĥf
l replacing the initial channel estimate Ĥl. Intuitively, this improves detection

performance because in general Ĥf
l should be more accurate than Ĥl. We note that

the advantage of having multiple runs of MCMC-LCE over the same segment is more

pronounced as the Doppler rate of the channel increases, because in such scenarios

the initial channel estimate Ĥl is often poor. However, we observe that one should

not re-run the MCMC-LCE for too many iterations over the same segment, due to

the correlation between the estimated CIR and the data sequences.

4.4 Numerical Results

In this section, we provide performance comparisons of the MCMC-LCE detector

with the MMSE detector. For all channels considered, we let G = I = 10 for MCMC-

LCE. Larger values of G or I do not yield noticeable performance improvement. For

MMSE, we test both block-wise channel update and symbol-wise update and present

results for the superior version. For channel estimation, a good choice of the step-size

parameter µ of LMS algorithm in (4.2) was empirically found to be 0.025 and this

value was used for all the results presented here. The parameters of VSLMS are

chosen to optimize its performance in this scenario.
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4.4.1 Synthetic Channels

First, we consider a synthetic, sparse time-varying ISI channel. The synthetic

channel is generated as follows. We assume that there is a total of 12 channel taps

(L = 11), among which the 1st, 5-th, and 10-th taps are nonzero. Each nonzero tap

has an average power of 1/3. The 1st and 5-th taps are constant over each codeword

with a fixed magnitude of
√

1/3 and a uniformly generated phase. The 10-th tap

is time-varying. It follows a Rayleigh distribution and is generated using the Jakes’

model with normalized Doppler rates of fdT = 0.004 or fdT = 0.008.

Here, we use QPSK modulation. A rate 1/2 recursive convolutional code with

generator polynomials of (131, 171)8 is used. Each packet contains a total of 14400

coded bits, which spans over 48 frames. The segment size is 50 symbols. Each frame

consists of one pilot segment followed by three data segments, i.e., 50 pilot symbols

followed by 150 data symbols. We simulate multiple data packets, and the channel is

generated independently from packet to packet. Figure 4.4 presents the average bit-

error-rate (BER) of MCMC-LCE with VSLMS, MCMC-LCE with LMS, and MMSE

with LMS as a function of signal-to-noise ratio (SNR). For fdT = 0.004, we rerun

each MCMC-LCE detector 2 times for each iteration of joint detection and decoding.

For fdT = 0.008, we increase the number of reruns to 4 to optimize performance.

We observe that MCMC-LCE with VSLMS achieves the best performance for both

Doppler rates. For fdT = 0.004, the MCMC-LCE with VSLMS is about 2 dB better

than MCMC-LCE with LMS, and is about 3 dB better than MMSE with LMS. The

performance gap increases significantly for fdT = 0.008. It is shown that the MCMC-

LCE with VSLMS is about 3 dB better than MCMC-LCE with LMS, and is more than

6 dB better than MMSE with LMS. This suggests that the VSLMS is superior to LMS

in tracking the channel for the Doppler rates considered. Furthermore, the advantage

of the list-based joint data detection and channel estimation of the MCMC detector

becomes more pronounced with increasing Doppler rate, as shown in the larger gap

of the MCMC over MMSE for fdT = 0.008.

In Figure 4.5, we plot the bit error rate over turbo iterations for MCMC-LCE

with the normalized doppler to be fdT = 0.004. The figure shows that the curves

mostly turn flat after four or five iterations. However, for channels with high doppler,
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more number of iterations are required for the BER performance to converge. In

Figure 4.6 we examine the convergence behavior of MCMC-LCE at a doppler of

fdT = 0.008. In this case, if the convergence can be reached, for instance at SNR =

4dB, at least six iterations are needed to obtain the best performance. We also did

simulations for other doppler frequencies and confirmed that transmission can hardly

succeed with higher doppler rates. Therefore, in the following simulations, we apply

seven turbo iterations which should be sufficient in order to achieve convergence. The

figures also indicates that part of the performance gain comes from the first iteration,

when MCMC-LCE is capable of making better decisions in the first iteration, which

subsequently resulting in better performance over more iterations.

4.4.2 Experimental Data from Underwater Acoustic Channel

Next, we examine the performance of various detectors using data collected from

an at-sea underwater experiment, conducted off the coast of Martha’s Vineyard, MA

during Oct. 14th - Nov. 2nd, 2008. We processed the received data from both

60 and 200 meters of transmission. The 16QAM modulation is used. For 60-meter

transmission, one acoustic transducer and K = 4 receive hydrophones are used; for

200-meter transmission, one acoustic transducer and K = 2 receive hydrophones are

used. The data was modulated using a carrier frequency of 13 kHz, and a symbol rate

9.77k sym/sec. We compare the performance of different detectors over multiple data

files, which are transmitted 2 hours apart. Due to the change in weather conditions,

wind speed, wave height and other environmental factors during the course of the data

transmission, the channel conditions corresponding to each file can vary significantly,

resulting in variable BER performance for different files. We examine a total of 23

data files, with index from 1 to 23, corresponding to epoch 8 to 30 out of 149 total

epoches in the experiment [87]. The environmental data are exhibited in Table 4.1.

The table indicates that, data file 11-13 endure tougher weather than other files.

As we will confirm in the following simulations, weather conditions have significant

impact on the UWA transmission quality.

Some transmission parameters are listed in Table 4.2. The transmission format

is as follows. Each file contains seven independently coded packets. Each packet
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contains a total of 28800 coded bits, which spans six frames. The segment size is 400

symbols. Each frame consists of one pilot segment followed by three data segments,

i.e., 400 pilot symbols followed by 1200 data symbols.

In Figure 4.7, we present the BER of MCMC-LCE with VSLMS, and MMSE with

LMS after seven iterations of data detection and decoding. We rerun the MCMC-LCE

detector 2 times within each iteration. The x-axis is the index of the data file, and

the y-axis is the BER of each data file. As shown in Figure 4.7 (a), the MCMC-

LCE detector dramatically outperforms the MMSE detector for files 11-13, for which

the MMSE has high BER, and the MCMC-LCE has low BERs of below 5 × 10−4.

Furthermore, in order to show the performance difference of the two detectors for

other data files with low BER, a zoom-in figure is provided in Figure 4.7 (b) where in

the y-axis the largest value of the BER is set to be 2× 10−3. As shown in Figure 4.7

(b), for those data files that both detectors perform well (with a BER below 2×10−3),

MCMC-LCE performs better than the MMSE detector for files 1 2, 9, 15, and is only

slightly worse than the MMSE for files 7,10. The BER values are listed in Table 4.3.

To provide some insight into such performance difference, the estimated CIR

of data file 12, where the MCMC-LCE significantly outperforms MMSE, and the

estimated CIR of data file 1, where both MCMC-LCE and CR-MMSE perform

equally well, are presented in Figure 4.5. It can be seen that the CIR of data file

12 varies faster than that of data file 1, and the energy of the CIR is also more

spread out in time. The advantage of the MCMC-LCE becomes more pronounced for

such a channel because the list channel estimation provides superior channel tracking

capability compared to the MCMC, in which channel estimation is performed based

on a single estimated data sequence. In Figure 4.9, we plot the average mean square

error (MSE) of the estimated CIR with the genie-aided CIR as a function of each

iteration of joint detection and channel decoding. Here , the y-axis is the channel

estimate misalignment E(|ĥk
l − h̄k

l |2)/E(|h̄k
l |2), where h̄k

l is the genie-aided channel

estimation for the l-th segment and the k-th channel, obtained by running the VSLMS

over the perfectly known data sequence. The expectation is over all data segments

and all channels for data file 12. Note that within each each iteration, we run the

MCMC-LCE twice to improve performance. It is shown that, for data set 12, within a
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few turbo iterations, the MCMC-LCE with VSLMS with achieves a MSE of less than

7%. In comparison, for the MMSE detector, the MSE of the estimated CIR remains

as high as 38% after several iterations. The MCMC-LCE with LMS achieves a MSE

of about 15%, which is slightly worse than that of MCMC-LCE with VSLMS, but is

much better than the MMSE with LMS. This is in agreement with results shown in

Figure 4.7 that the BER of MMSE is very high (about 23%), while the MCMC-LCE

with VSLMS achieves almost zero error. The performance of MCMC-LCE with LMS

is only slightly worse than that of MCMC-LCE with VSLMS (not shown in the

Figure), but still much better than the MMSE.

In Figure 4.10, for data set 12, we plot the magnitude of the average step size of

the VSLMS for each channel tap. We observe that the step sizes are larger around

tap 5, tap 45 and tap 60. These correspond to taps that have larger time variations

(larger Doppler), as shown in Figure 4.5. For the taps with slow/no variation, the

step-size has approached a minimum value, set in the implementation of the VSLMS

algorithm.

In Figure 4.11, the bit error rate performance is plotted with the increase of turbo

iterations for the 60 meter transmission. Comparing to Figure 4.5 and Figure 4.6 for

synthetic channels, an interesting observation is that the two MCMC detectors shows

similar performance at the first iteration, and the gap enlarges over multiple turbo

iterations. This indicates that MCMC-LCE has better error correction capability

over iterations than SEM-MCMC when it starts out with similar erroneous detection

results.

In Figure 4.12, we plot the BER of the MCMC-LCE and MMSE detectors after

seven iterations of data detection and decoding for a 200 meter transmission. Similar

to that of the 60 meter transmission, MCMC-LCE performs significantly better than

the MMSE detector. As shown in Figure 4.12 (a), MCMC-LCE reduces the BER

substantially for data files 7, 11,12, for which the MMSE has high BER. It is also

observed from Figure 4.12 (b) that the MCMC-LCE performs better than the MMSE

for most of the other files where the BERs of both detectors fall below 2× 10−3. The

BER values are listed in Table 4.4.
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In Figure 4.13, the bit error rate performance is plotted with the increase of turbo

iterations for the 200 meter transmission. The setting is the same as in Figure 4.12.

The figure clearly shows that the two MCMC detectors have the same larger diversity

gain than the MMSE detector. After seven iterations, MCMC-LCE gives an order of

magnitude gain over the MMSE detector.

4.5 Conclusion

In this work, we developed a new MCMC-LCE detector for iterative channel

estimation and data detection over time-varying ISI channels. The approach taken

in this paper operates based on a list of data and channel estimates, and is driven

by a VSLMS algorithm for channel estimation. These lead to improved channel

tracking and data detection performance over existing approaches. The MCMC-LCE

yields superior performance to state-of-art turbo MMSE equalizers for both synthetic

channels and UWA channels. The proposed approach differs from existing works in

the literature that are largely trellis based, or are based on linear filtering. Hence,

this represents a new venue for turbo equalization through statistical data detection

and channel estimation. In particular, the approach of data detection based on a list

of channel estimates enables reliable channel tracking for fast time-varying channels.
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Table 4.1. Experiment environments and weather conditions

File index Wave height (m) Wave period (sec) Wind speed (m/s)
1 0.63 6.97 1.10
2 0.70 7.00 0.87
3 0.57 6.80 1.40
4 0.57 7.20 1.20
5 0.60 7.53 1.30
6 0.67 7.93 4.10
7 0.63 6.37 5.70
8 0.70 5.00 6.37
9 0.77 4.37 7.47
10 0.93 4.27 8.37
11 1.17 4.17 9.07
12 1.10 4.30 5.77
13 1.00 4.37 3.50
14 0.87 4.90 6.23
15 0.63 5.87 5.63
16 0.60 6.13 6.00
17 0.50 6.60 4.10
18 0.47 8.00 3.90
19 0.43 8.13 6.33
20 0.40 8.57 6.50
21 0.47 6.27 7.40
22 0.43 5.47 6.90
23 0.40 7.37 4.70

Table 4.2. Parameter setting for the SPACE08 experiment

Carrier frequency 13 KHz
Sampling rate 39 KHz
Symbol rate 9.77 KHz

Symbol interval 0.1 ms
Frame duration 0.16 s
Packet duration 0.98 s

No. pilots/frame 400
No. data/frame 1200

No. frame/codeword 6
Codeword length 28800
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Table 4.3. BER of 60 meter transmission over UWA channels, 16QAM modula-
tion, one acoustic transmit transducer and four receive hydrophones. seven turbo
iterations.

File index MMSE SEM-MCMC MCMC-LCE
1 1.7× 10−4 0 0
2 7× 10−4 2.9× 10−4 2.8× 10−4

3 ∼ 6 0 0 0
7 4.9× 10−5 1.1× 10−4 1.3× 10−4

8 0 0 0
9 7.9× 10−5 0 0
10 2.9× 10−5 2.7× 10−4 2.2× 10−4

11 0.12 7× 10−4 4.8× 10−4

12 0.23 1.8× 10−2 2.9× 10−4

13 4.9× 10−2 0 0
14 0 0 0
15 1.3× 10−3 3.0× 10−5 0

16 ∼ 23 0 0 0
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Table 4.4. BER of 200 meter transmission over UWA channels, 16QAM modulation,
one acoustic transmit transducer and two receive hydrophones. seven turbo iterations.

File index MMSE SEM-MCMC MCMC-LCE
1 3.0× 10−5 3.0× 10−5 0

2 ∼ 3 0 0 0
4 3.0× 10−4 3.5× 10−4 1.8× 10−4

5 5.0× 10−5 2.0× 10−4 4.0× 10−5

6 2.8× 10−4 6.0× 10−4 2.2× 10−4

7 1.4× 10−2 2.3× 10−3 5.4× 10−3

8 3.8× 10−3 5.7× 10−4 7.0× 10−4

9 1.3× 10−4 0 3.1× 10−4

10 6.0× 10−4 2.3× 10−4 4.7× 10−4

11 4.7× 10−2 2.1× 10−4 1.3× 10−3

12 4.7× 10−2 7.9× 10−5 6.0× 10−4

13 9.6× 10−4 3.0× 10−4 4.2× 10−4

14 8.9× 10−5 6.0× 10−5 1.1× 10−4

15 9.9× 10−5 3.6× 10−4 1.3× 10−4

16 1.7× 10−4 2.0× 10−4 1.1× 10−4

17 0 0 0
18 1.4× 10−4 2.4× 10−4 2.5× 10−4

19 2.2× 10−3 2.2× 10−3 3.1× 10−3

20 4.8× 10−4 4.3× 10−4 3.1× 10−4

21 6.9× 10−5 0 3.0× 10−5

22 1.3× 10−4 1.1× 10−4 1.3× 10−4

23 0 0 0
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Figure 4.1. Illustration of the packet transmission structure. (a) Transmitter block
diagram. (b) Packet format. A packet consists of T frames. Each frame is divided into
one pilot segment and several data segments. In this example, each frame contains a
pilot segment s0 and three data segments s1, s2, s3.
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Figure 4.5. Convergence analysis on VSLMS-LCE at different SNR points, with
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Figure 4.6. Convergence analysis on VSLMS-LCE at different SNR points, with
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(b) Zoom-in figure for the lower part of Figure 4.7 (a) for BER below 2× 10−3

Figure 4.7. BER of 60 meter transmission over a UWA channel, 16QAMmodulation,
one acoustic transmit transducer and four receive hydrophones. Each data file
contains 7 packets.
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(b) Zoom-in figure for the lower part of Figure 4.12 (a) for BER below 2× 10−3

Figure 4.12. BER of 200 meter transmission over a UWA channel, 16QAM
modulation, one acoustic transmit transducer and two receive hydrophones. Each
data file contains 7 packets.
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Figure 4.13. Bit error rate versus the number of turbo iterations. 200 meter
transmission over a UWA channel, 16QAM modulation, one transducer and four
receive hydrophones, seven iterations of joint data detection and channel decoding.

-- --- --- --- - - - - - ----- - - - - - - - ---••.•••.•••. ···~I~~I 



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we have conducted information-theoretical analysis of the capacity

and signaling design for the MIMO MAC channels under one of the most general and

practical channel models – the virtual representation model. The analysis developed

in this work is without the common simplifying assumption of Gaussian statistics and

Kronecker correlation for the channel matrix elements. We have provided practical

guidelines for signaling design based on beamforming, which requires only knowledge

of channel statistics at the transmitter. This effectively reduces the amount of channel

information that needs to be fed back to the transmitter for optimal signaling and

suggests that beamforming would be more robust to channel estimation errors at

the receiver. It is of interest to further study this robustness and compare optimal

signaling and beamforming in the presence of estimation errors. We also note that

the virtual representation model studied in the thesis is restricted to uniform linear

arrays of antennas at the transmitter and receiver. Extensions of the capacity analysis

and signaling design to arbitrary array geometries is of great interests.

A main contribution of this thesis is the development and validation of low-

complexity statistical detection methods for frequency-selective channels with inter-

symbol interference to approach the performance of the optimal maximum a poste-

riori probability detection. The proposed MCMC detectors are high performance,

low-complexity detectors that can significantly outperform state-of-the-art methods,

particularly, under the most challenging operating environments of UWA channels.

Our work demonstrates that MCMC detectors have the potential to revolutionize

receiver design in current UWA modems and achieve near-optimal detection that

would otherwise be infeasible using traditional, deterministic detection algorithms.

Directions for future work include further exploration of MCMC detectors for highly
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dynamic environments, in which joint MCMC detection, doppler compensation, and

adaptive channel tracking algorithms need to be developed jointly to further improve

receiver performance. Our preliminary results using high mobility data collected from

at-sea experiments have shown great promise along this line of research. While in this

thesis we have restricted our attention to single-carrier systems, in future work we

plan to extend our design to multi-carrier transmissions. It is expected that MCMC

detection will play an important role in improving the transmission range, rate, and

quality of underwater communications.
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