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ABSTRACT 

The sintering of nanosized particles (or nanosintering) is an approach to the 

manufacture of bulk nanocrystalline materials. The goal of nanosintering is to achieve 

fully densified parts with grain size less than 100 nm. However, in practice, it is very 

difficult to reach. Due to the extremely small size and the high surface to volume ratio of 

nanosized powders, nanosintering exhibits a number of different phenomena compared to 

the sintering of coarse powders. For example, it is generally found that the sintering 

temperatures of nanosized particles are drastically lower than those of their micron or 

submicron sized counterparts, and grain growth during heating up is considerably rapider 

for nanosized powders in comparison with micronsized powders. In order to obtain a 

comprehensive understanding about these different phenomena during nanosintering, this 

study, by using tungsten as the example material, aims to examine size dependence of the 

sintering behavior and further explore the characteristics of densification and grain 

growth of nanosized powders, especially during initial and intermediate stages of 

sintering. The nanosized tungsten powder was produced by high energy mechanical 

milling. It is demonstrated that the sinterability of nanosized tungsten powder, compared 

with that of coarser powder, is significantly enhanced at lower sintering temperatures, 

and the enhancement of sintering at low temperatures for nanosized powders can be 

rationalized by Herring scaling law. The characteristics of densification and grain growth 

during nanosintering are examined by both nonisothermal heating up and isothermal 
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holding experiments. The experimental results show linear densification behavior during 

the initial stage of sintering at low temperatures when density is less than ~50% relative 

density. Grain growth also exhibits a linear behavior during initial and intermediate 

stages of sintering. The mechanisms for linear densification and linear grain growth 

during early stage of sintering of nanosized tungsten powder are discussed based on 

kinetic analysis of experimental data.  The evaluation results show surface diffusion is the 

mass transport mechanism for linear densification and linear grain growth. On the basis 

of the understanding of the densification and grain growth mechanisms, the general 

principles for inhibiting grain growth during nanosintering are proposed.  
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CHAPTER 1 

INTRODUCTION 

Nanomaterials are defined as those which have structured components with at least 

one dimension less than 100 nm. Nanomaterials can be categorized into four groups with 

respect to dimensions: 0 dimension (e.g., nanoparticle), 1 dimension (e.g., nanowire), 2 

dimension (e.g., nanofilm), and 3 dimension (bulk nanocrystalline materials).  Bulk 

nanocrystalline materials are solids composed of crystallites (grains) with a characteristic 

size of a few nanometers [1]. The sintering of nanosized powders is a viable approach to 

the manufacture bulk nanocrystalline materials. Therefore, since the emergence of 

nanoscaled science and technology, nanosintering has been a topic of both scientific and 

technological importance.  

In the context of engineering processes, sintering implies the bonding of solid 

particles to each other. The sintering process can be regarded as consisting of two 

intertwined processes: densification and grain growth. Although the sintering of 

nanoparticles shares the same principles as that of the sintering of coarser particles, a 

number of issues and challenges are unique to nanosintering. For example, the driving 

force for nanosintering is extremely large, calling into question the use of conventional 

sintering doctrines based on linear diffusion theories. A nonlinear diffusion behavior 

leads to different kinetics of diffusion, which in turn would result in different rates of 

sintering. Another unique issue of nanosintering is that nanoparticles almost always 
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experience extremely rapid grain growth during sintering, rendering the loss of 

nanocrystalline characteristics at fully sintered state. With respect to the manufacture of 

bulk nanocrystalline materials from nanoscale particles, the objective of nanosintering is 

to achieve maximum densification while retaining nanoscale grain sizes. This goal, 

however, has been very difficult to reach. In fact, it is a glaring technological challenge 

for many materials.  

In order to find solutions to control and optimize densification and grain growth, this 

study will focus on understanding the characteristic behaviors of nanoparticles, 

particularly the size dependent properties and their effects on nanosintering. Based on 

literature research and experiments, the differences in sintering of nanoparticles versus 

that of coarser particles will be highlighted from the perspectives of grain growth and 

densification. The characteristics and mechanisms of densification and grain growth 

during nanosintering will also be discussed. 

1.1 References 

[1] Gleiter H. Nanostruct Mater 1995;6:3. 
 
 
                                                                         
 



 

 

 
 
 
 
 

CHAPTER 2 

LITERATURE REVIEW  

Bulk nanocrystalline materials, characterized by the grain size which is less than 100 

nm, have unique properties due to the small grain size and high surface/interface volume 

fraction, e.g., transition from brittle materials to ductile materials, transition from opaque 

materials to transparent materials, etc. Manufacture of bulk nanocrystalline materials can 

be divided into two categories: top-down approach and bottom-up approach. Top-down 

approach includes severe plastic deformation such as equal channel angle pressing 

(ECAP) and controlling crystallization from amorphous phase. Bottom-up approach 

indicates consolidation of nanosized powder into bulk nanocrystalline materials. 

Therefore, since the emergence of nanoscience and nanotechnology, the sintering of 

nanosized powder has been a hot research topic.  

Owing to the importance of the sintering of nanoparticles, a large body of literature 

on nanosintering has been accumulated and published over the past 20 years. The 

literature on nanosintering can be classified into two groups: those focused on the 

densification and grain growth behavior during sintering at the nanoscale and those on 

innovative sintering technologies and processes. Fundamental studies included molecular 

dynamics (MD) simulations at the atomic scale, the kinetic studies of sintering using 

nonlinear diffusion theories, and the modeling of kinetic behavior based on generalized 

parabolic model of grain growth. In addition, a number of efforts have been directed 
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toward the grain growth of nanosized particles. This literature review will examine and 

summarize the characteristics of nanosintering from the perspectives of densification and 

grain growth. 

2.1 Densification During Nanosintering 

In general, the sintering of nanosized or nanocrystalline powders follows the same 

path as larger grain powders. However, compared to conventional micron sized or 

submicron sized particles, densification behavior of nanoparticles during sintering 

exhibits notably different behavior with respect to the rate of densification and the 

temperature range at which densification occurs. The densification of nanoparticles is 

strongly affected by agglomeration of particles, pores, and other processing variables. 

Although many of those factors also impact the sintering of conventional micron sized 

particles, those effects are more dramatic and magnified in the case of nanosized 

particles. The densification behavior of nanosintering can be analyzed from both the 

perspectives of the thermodynamics and kinetics of the process.    

2.1.1 Thermodynamic Driving Force of Nanosintering 

The thermodynamic driving force for sintering particles of any size is the reduction of 

surface energy. Based on conventional sintering theories, the driving force of sintering 

can be given by [1]  

)
11

(
21 RR

+== γγκσ                                                  (2.1) 
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where γ is the surface energy of the material, κ is the curvature of a surface, which is 

defined by 
21

11
RR

+=κ (for a convex surface, it is taken to be positive; for a concave 

surface, it is taken to be negative), R1 and R2 are the principal radii of the curvature. The 

driving force for the sintering of nanosized particles is, therefore, inversely proportional 

to the sizes of the particles. This relationship would lead to a much higher driving force 

for the sintering of nanosized particles compared to micron sized particles. For example, 

based on equation (2.1), the driving force for a 10 nm particle is two magnitudes higher 

than that for a one micron particle.  

The driving force of nanosintering is also affected by surface energy - γ.  The value of 

γ may change as a function of the particle size. Campbell et al. [2] studied the effect of 

size dependent nanoparticle energetics on catalyst sintering. By using microcalorimetric 

measuring the heat of adsorption of Pb onto MgO (100), they showed that the surface 

energy increases substantially as the radius decrease below ~3 nm.  Separately, Nanda et 

al. [3] also showed that the surface energy of nanoparticles is significantly higher, 

compared to that of the bulk by studying size dependent evaporation of Ag nanoparticles. 

2.1.2 Kinetic Behavior of Nanosintering 

2.1.2.1 Sintering Temperature 

Notably the sintering of nanosized particles occurs at lower temperatures than that for 

the sintering of conventional micron sized or submicron sized powders, as shown 

schematically in Fig. 2.1. Sintering temperature is, in general, a loose concept, referring 

to the entire temperature range of densification. In order to be specific and quantitative, 

the starting temperature is often used for comparison. However, because sintering and 
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densification is a continuous kinetic process, rigorously speaking, a single point 

demarcation for the starting temperature of sintering does not exist. Based on typical 

experimental behavior, the starting temperature can be defined as the temperature at 

which the rapid densification stage initiates, as marked on Fig. 2.1. In general, the 

densification versus temperature plot shifts to the left (lower temperature) when 

nanosized powders are used rather than micron sized powders. For example, several 

studies on the sintering of nano yitrium stabilized zirconia (YSZ) have shown that the 

sintering temperature of nanocrystalline ZrO2 initiates at a temperature 200 degrees lower 

than that of the microcrystalline powders [4-6]. An even greater temperature difference of 

sintering—400 oC--was reported by Mayo [7] for nanosized titania compared to 

Fig. 2. 1  Schematic diagram illustrating different onset temperatures of sintering of 
nano- and micron-sized particles 
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commercial TiO2 powders. Similar results were observed for sintering nanosized ceria[8] 

and nano titanium nitride powders [9].  

Relatively speaking, fewer systematic studies exist on the densification behavior of 

nanosized metal powders than on nanosized ceramic powders [10-12]. A direct and 

systematic study of the sintering of nanocrystalline Fe and Cu powder was reported by 

Dominguez et al. in 1998 [13]. Compared to micrometric powder, the rapid densification 

of nanosized Fe and Cu powders started at approximately 200°C lower temperatures. The 

reduction of the sintering temperatures was also reported for nanotungsten [14, 15]. The 

reported sintering temperature of nanosized tungsten powders produced by high energy 

mechanical milling was dramatically decreased from conventional temperature of 2500 

oC to 1700 oC. More surprisingly, Oda et al. [15] showed that the nanosized tungsten 

powders could be sintered even at 1000 oC by using spark plasma sintering. 

General sintering theories hold that a material’s sintering temperature is often 

correlated with the material’s melting. It has long been known that the melting 

temperature of very fine particles decreases with the size of particles [16-31]. For 

nanosintering, the decreasing onset temperature of sintering can be understood, therefore, 

on the basis of the lowered melting temperature of nanoparticles. Troitskii et al. [32] 

studied the initial sintering temperature of different sized TiN powders and found the 

relationship between initial sintering temperature Tis and particle size r is: 

   [ ]rrrcTrTis /)'(exp)()( −⋅−∞=                      (2.2) 
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where ( )∞T  is the initial sintering temperature of coarse particles; c is a constant 

determined by the properties of the material and the energetic state of the surface layer; 

'r  is arbitrary size. 

Jiang [33] ascribed size dependent initial sintering temperature of nanosized particles 

to the decreased melting temperature of nanosized particles based on the relationship: 










−

∞
−∞⋅==

1)/(

1

3

)(2
exp)(3.0)(3.0)(

0rrk

S
TrTrT m

mmis          (2.3) 

where )(∞mT  is melting temperature of the bulk material, )(∞vibS  is bulk melting 

entropy, r is particle radius, r0=3h (h is atomic diameter) for nanoparticles, k is Boltzman 

constant. Fig. 2.2 shows the predicted size dependent initial sintering temperature of 

some metallic powders by using equation (2.3) [33]. Note that the significant changes of 

the initial sintering temperature do not occur until the particle size is less than 

approximately 20 nm.  

2.1.2.2 Scaling Law 

In conventional sintering theories, the dependence of densification behavior on the 

size of particles is described by the scaling law. In 1950, Herring [34] first introduced the 

scaling law as follows: 

12 tt n∆=∆ λ                                                     (2.4) 

where 12 / RR=λ , R1 and R2 are particle radius, n depends on specific diffusion 

mechanisms of the densification. Specifically, n = 1 for viscous flow, 2 for evaporation 

and condensation, 3 for volume diffusion, and 4 for surface diffusion or grain boundary 
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diffusion. The scaling law states that the time required to sinter powders with particle 

radii of R1 and R2 is proportional to the ratio of the particle radius. Although the 

densification behavior of nanosized powders can be qualitatively understood on the basis 

of the scaling law, few direct analyses of experimental data exist in the literature. The 

few studies that applied the scaling law used the following expression to analyze the 

activation energies of the sintering of nanosized powders [35, 36]:  

 

Fig. 2. 2 Theoretical prediction of initial sintering temperature - Tis(r) - for selected 
metals in terms of equation (2.3). The experimental initial sintering temperature of 
W, Ni, and Ag are also plotted in the figure for comparison. (After Ref. 33) 
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]
11

[)ln(
122

1

TTR

Q

d

d
n −=                                                  (2.5) 

where d1, d2 are particle sizes, T1 and T2 are corresponding sintering temperatures, R is 

the gas constant, and Q is the activation energy. By using the above equation, some 

reported studies obtained activation energy values that are closer to grain boundary 

diffusion, while others obtained values closer to volume diffusion, which is believed to 

be unlikely at low temperatures for small particles. The discrepancies in the values of 

activation energies obtained using this method, therefore, raise questions on the validity 

of the scaling law for sintering of nanoscale particles. 

The derivation of scaling law is based on an assumption that the particle size of two 

different powder systems used for comparison does not change during sintering and 

microstructural changes remain geometrically similar for the two systems. This 

assumption leads to key limitations to the use of the scaling law because it is difficult to 

maintain the conditions in the assumption in real powder systems [37]. During 

nanosintering, particle size changes rapidly and some characteristics of nanoparticles, 

such as agglomeration and the nonuniformity of green density, increase the difficulty of 

maintaining similar microstrutural evolutions during sintering. In addition, because the 

classic scaling law was derived from linear equations, the validty of the scaling law 

during nanosintering is called into question. The nonlinear diffusion behavior of 

nanosintering [38] and the size dependent diffusion activation energies [39] will change 

the expression for calculating the diffusion flux. Furthermore, the scaling law considers 

different mechanisms separately. In practice, multiple mechanisms of sintering may occur 

simultaneously, especially in nanosintering.  
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2.1.2.3 Effect of Green Density, Agglomeration on Nanosintering 

In the practice of nanosintering, the densification behavior of nanoparticles is affected 

by not only the intrinsic nature of the nanoscale size of the particles,  but also by the 

processing conditions and related difficulties, such as green density, agglomeration. 

First, similar to powder compacts of micron sized powders, the densification of a 

powder compact depends significantly on the green density of the compact. The green 

density must be sufficiently high in order to achieve adequate densification under similar 

sintering conditions. On the other hand, the finer the particle sizes, the lower the green 

density of powder compacts assuming the compaction pressure is the same. Therefore, it 

is generally observed that the sintering of nanosized powders is affected by the 

compaction pressure [40-42].  

It has been widely recognized that agglomeration of nanoparticles has a critical 

impact on the sintering of nanoparticles. Due to the extremely fine size and the strong 

interactive force between particles, nanoparticles tend to form agglomerate. The size and 

the strength of the agglomerated particles affect the densification rate. The most direct 

investigation of the agglomeration of densification was summarized by Mayo [43] whose 

data were based on numerous published experimental results as shown in Fig 2.3.  

In essence, a powder compact can be viewed as consisting of a bilevel hierarchical 

structure: the compact is made of agglomerates which are made of nanosized particles. 

There is, therefore, a bimodel pore size distribution. The pores existing within 

agglomerates are finer than the pores between agglomerates. The densification of 

individual agglomerate is relatively easy, while the elimination the interagglomerate 

pores is more difficult. 
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 By tracking the evolution of pore size distributions, Peterson et al.  [44] studied the 

sintering of fine grain cemented tungsten carbide and cobalt system (WC-Co). They 

showed that during the intermediate stage of sintering, the considerable densification 

obtained is primarily connected to removal of small pores rather than shrinkage of larger 

ones.  

To sinter nanoparticles for fabrication of bulk engineering components, a colloidal 

solution must be dried; agglomerates will inevitably form. Ideally, the agglomerates are 

Fig. 2.3 Densification behavior of nanocrystalline TiO2 with three different 
agglomerate sizes: note that the larger the agglomerate size, the higher the sintering 
temperature (agglomerate size in bold, crystallite size in light). For the 
nonagglomerated (N/A) powder, sintering time is 120 min; for the 80 and 340 nm 
agglomerate powders, sintering time is 30 min. (After Ref. 43) 
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soft and the interagglomerate pores are small. Lange provided a more extensive 

discussion on ceramic powder processing techniques for avoiding agglomeration and 

achieving uniform pore distributions within a powder compact [45].  

2.1.2.3 Effect of Pores on Nanosintering 

A common thread for the effect of green density and agglomeration on sintering is the 

effect of pores on densification [46].  

A compact consists of particles and pores, and each pore has a volume, shape and 

coordination number. The pore coordination number is defined as the number of touching 

particles surrounding and defining each void space. A pore’s surface morphology is 

determined by the dihedral angle and the pore’s coordination number. In general, for a 

given dihedral angle, a critical coordination number, nc, exists that defines the transition 

of the pore surface morphology from convex (n>nc) to concave (n<nc). Kingery and 

Francois [47] first recognized that only those pores with n<nc are able to shrink during 

sintering because the concave surface morphology with negative chemical potential is 

thermodynamically unstable. As a result, atoms will diffuse to the pore surface and fill 

the void space. The stability of pores is dependent on the dihedral angles and the 

coordination number. For a given dihedral angle, which is dictated by the material, there 

is a critical coordination number below which the pores will shrink and above which the 

pores will grow.  

The effects of green density and agglomeration on densification can be explained by 

the pore coordination number theory. Higher green density and less agglomeration result 

in fine and uniform pores that shift the pore coordination number distribution from high 

values to low values, i.e., more pores fall into the category below the critical pore 
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coordination number. These pores are easily removed during sintering and, thus, lead to 

denser products. As for the large pores that are thermodynamically stable and have 

coordination numbers higher than the critical value, a process by which the coordination 

number can be reduced during sintering is essential, since the pores will again become 

unstable and the densification will then continue. Particle rearrangement and grain 

growth are the two processes that can play this role, creating a dilemma, of course, and 

difficulty for any attempt to achieve maximum densification without grain growth.  

2.1.3 Densification Mechanisms During Nanosintering 

2.1.3.1 Calculation of Activation Energy  

In order to understand the mechanisms of sintering, activation energy is commonly 

used as an indicator of the internal mechanistic process. In most cases, activation energy 

can be calculated from isothermal experimental data. A derivation by Johnson et al. [48] 

resulted in a densification equation based on two sphere models and both volume and 

grain boundary diffusion mechanisms. The initial stage sintering of a powder compact is 

described by Theunissen et al. [49] 

                                     )exp(]
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[ 0
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T
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=

∆
                                                  (2.6) 

where m is a constant characteristic for the sintering mechanism, i.e., 1/2 for volume 

diffusion and 1/3 for grain boundary diffusion, Ea is the apparent activation energy for 

densification, ∆ l/l0 is the relative shrinkage during continuous heat up and R and T are 

the gas constant and absolute temperature, respectively. Linearization of the equation 

results in [49] 
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On plotting (-ln[(∆ l/l 0)/T] ) vs 1/T, a straight line with slope mEa/R is obtained when 

only one single mechanism is operative. 

Obviously, isothermal relationships of densification as a function of time at several 

temperatures are required to obtain relatively reliable data of activation energy. An 

inherent assumption of this approach is that the mechanisms of densification, or any other 

process of interest, should not change within the temperature range of the experiments. 

Otherwise, the calculated value does not represent a single mechanism; rather, it is an 

effective activation energy that results from multiple mechanisms.  

As stated earlier, densification and grain growth during sintering of nanosized 

powders take place rapidly during the heating up process. In order to capture the changes 

during continuous heating, Dorn method [50] can be used to calculate activation energy. 

To determine the activation energy of creep, Dorn allowed a sample to deform under a 

constant tensile stress at a temperature T1 and then rapidly raised or lowered the 

temperature to a new value T2 where the sample was allowed to deform further. Then the 

deformation rates corresponding to the temperatures are determined for the time in which 

the temperature is changed. According to this method, the activation energy of the 

responsible mass transport phenomenon can be determined using the relationship 
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where T1 and T2 and are the temperatures of the sample before and after rapid heating, 

(de1/dt) and (de2/dt) are the respective shrinkage rates immediately before and after the 

temperature rise, R is the universal gas constant, and Q is the activation energy. The 

temperature difference between T1 and T2 should not exceed 50°C.  

To evaluate activation energies of kinetic processes during continuous heating, a 

number of other methods can be found in literature [51-53].   

 2.1.3.2 Analysis of the Mechanism of Densification  

Using the various methods described above, activation energies for sintering a variety 

of nanosized powders were reported. For example, a very low activation energy for 

densification is observed in initial sintering--about 234 kJmol-1 for nanocrystalline Al2O3 

and 96.2 kJmol-1 for nanocrystalline TiO2 [54], 268 kJmol-1 for nanocrystalline ZnO [55], 

66.2 kJmol-1 for nanocrystalline nickel [56], 82 kJmol-1 for nanocrystalline α titanium and 

49 kJmol-1 for nanocrystalline β titanium [57].  

Using these activation energy values to deduce sintering mechanisms has inherent 

shortcomings with respect to accuracy, because in almost all cases, multiple mechanisms 

may be operating simultaneously. Especially during the early stages of sintering, when no 

one clearly dominant mechanism can be identified, the activation energy values 

calculated using the kinetic data give an effective activation energy value that is the 

combined effect of multiple mechanisms.  

It can be seen from the data, however, that the majority of studies point toward lower 

activation energies for early stages of sintering. This is reasonable for the obvious reason 

of the huge surface areas and expected high activity of nanoparticles. Surface diffusion is 

one of the most cited mechanisms that contribute to the sintering of nanosized particles. 
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However, in conventional sintering theories, surface diffusion is believed to induce initial 

neck formation between particles, but not densification. In principle it is correct that 

surface diffusion will only cause the bonding of particles to each other, but not the 

dimensional shrinkage, i.e., the densification, of a multiparticle compact. This seemingly 

conflicting thought on the effects of surface diffusion on sintering of nanoparticles can be 

understood from a perspective of indirect roles of surface diffusion to densification.  

The indirect role of surface diffusion on densification can be understood based on 

theories of the relationship between coarsening and sintering of particles [58-61]. As 

discussed earlier, effects of pores on nanosintering, according to theories first proposed 

by Kingery and Francois and further elaborated by Lange et al. [46, 47], a pore will 

shrink during sintering only if the coordination number of the pore is smaller than a 

critical value n<nc because only then is the surface of the pore concave. Thermodynamic 

driving force dictates that mass will diffuse from convex surfaces to concave surfaces. 

Initial sintering of a compact will develop an equilibrium configuration at which the 

driving force for further sintering is zero. Grain growth, or coarsening, will perturb the 

equilibrium configuration to reinitiate neck growth (sintering) and densification. In other 

words, at a critical value of coordination number, a pore is at equilibrium. The shrinkage 

of the pore, i.e., sintering will no longer progress until the equilibrium condition can be 

tipped in favor of sintering again by grain growth. With respect to the mechanisms of 

densification of nanosized particles, surface diffusion can cause the coarsening of 

nanoparticles which, in turn, contributes to the process of densification.  Therefore, it can 

be stated that the surface diffusion contributes indirectly to densification by inducing 
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coarsening. Further discussion on the relationship between grain growth and densification 

will be given later. 

 Surface premelting is another mechanism that could lead to rapid densification at low 

temperature during nanosintering. As a result of large surface to volume ratio in 

nanoparticles, surface premelting can happen at low temperature, and under this 

condition, particle rearrangement is facilitated by sliding, rotation, or viscous flow. 

Alymov et al. [10] calculated the dependence of the melting point of a particle as a 

function of its size using the following equation:  

( ) ( )[ ]lsslsm rrQTT ρρσδσρ /1/21/ 1
lg

11
0 −+−−= −−−              (2.9) 

where 0T  is the bulk melting point of the solid, Q  is its latent heat of fusion. slσ  and lgσ  

are the interfacial surface tensions between the solid and the liquid and between the liquid 

and its vapor respectively, and sρ  and lρ  are the densities of the solid and liquid 

respectively, r  is the radius of particle, and δ  is the thickness of melted layer on a 

particle surface.  

Based on the relation that sintering temperature is proportional to the melting point, it 

was suggested that as the melting point decreases, the sintering temperature decreases. It 

was stated that the melting of a particle with diameter d will result in its coagulation with 

its neighbors and will become the center of a new big particle. In an independent study of 

the sintering of nanometric Fe and Cu, Dominguez et al. [13] attributed the initial 

densification to surface melting mechanisms because the activation energies that were 

obtained from either constant heating or isothermal experiments were too small to 

ascertain lattice diffusion mechanisms. In fact, Dominguez et al. claimed that the 
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activation energy measured in the course of their experiments is very small, compared to 

the values published for the self-diffusion of the metal in the liquid state. Therefore, it 

was reasoned that the presence of a liquid-like layer on the surface of the nanometric 

particles during sintering could simultaneously explain such phenomena as high 

diffusivity, enhanced grain growth at a narrow temperature range.  

Although surface melting is a reasonable mechanism for sintering nanosized particles, 

no direct experimental evidence supporting the formation of liquid phase has been 

published to date. In fact, because the formation of any liquid at temperatures below 

equilibrium melting point will be thermodynamically unstable, there could be only 

transient liquid which makes experimental verification of the presence of liquid phase 

even more difficult.  

A more generally applicable theory that explains the rapid densification of nanosized 

particles is based on the hypothesis of nonequilibrium high concentration of vacancies at 

the interparticle grain boundaries. In 1974, Vergnon et al. studied the “initial stage for the 

sintering of ultrafine particles TiO2 and Al2O3” [54]. Using flash sintering and isothermal 

experimental techniques, it was shown that during the first 20 seconds, a fraction up to 

95% of the total observed shrinkage was registered [54]. There was an initial loss of 

surface area, before the shrinkage starts during the heating of the compact to the desired 

temperature, a process which requires only a few seconds. It was reasoned that this 

almost instantaneous loss of the surface area corresponds to the formation of junction 

zones between particles of the compact. The fast formation of the junctions between 

particles, before the shrinkage onset, involves the creation of a high concentration of 

vacancies inside these junctions. The shrinkage of the compact results then from a 
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decrease of the distance between the centers of particles due to annihilation of the trapped 

vacancies in the junction zone. Because the concentration of trapped vacancies inside the 

junction zone largely exceeds the thermodynamic equilibrium concentration, the 

diffusion can be considered as independent of time and controlled only by the probability 

of jumping of ions, as long as the concentration of vacancies exceed the equilibrium 

content. Any further sintering, after the initial nonequilibrated concentration of vacancies 

is exhausted, corresponds with the diffusion of equilibrated vacancies.  

Also based on the theory that there is excessive concentration of vacancies (c>10-4), 

Trusov et al. [12] stipulated that there appears the possibility of liquid like merging 

(coalescence) of particles into large ones. Liquid-like coalescence as well as slippage 

causes the ultrafine particles’ compact shrinkage.  

In another study focusing on size dependent grain growth kinetics observed in 

nanocrystalline Fe, Krill et al. [62] also established their model on the basis of existence 

of excess volume at the grain boundaries. The “excess” volume is in the form of 

vacancies, which leads to a nonequilibrium vacancy concentration. The issues of grain 

growth of nanoparticle during sintering will be further discussed in later sections of this 

review. 

Finally, the rapid densification mechanisms of nanosized particles are also related to 

the preferential crystalline orientations. In loose nanocrystalline powders, it has been 

observed that the first neck formation occurs not randomly between particles, but by the 

orderly mating of parallel, crystallographically aligned facets on the particle surfaces [63, 

64]. Some nanocrystalline powder compacts also appear to reflect a kind of ordered 
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structure resulting from less than random type matings of particles during the initial stage 

of sintering [65].  

2.1.3.3 Kinetic Theories, Modeling and Simulations of Nanosintering  

Given the unique physics when sintering nanosized particles, considerable work has 

also been reported on theoretical modeling of thermodynamics and kinetics of sintering 

of nanosized particles. In one of the more significant studies, Pan recognized that the 

rapid kinetic rate of sintering is a direct result of the large driving force for sintering of 

nanosized particles, and revised the two-sphere sintering model by using nonlinear 

diffusion law [38]. Because the diffusion is the result of jumping atoms, the flux of 

diffusion as a function of the frequency of jumping (f), volume atomic concentration 

(Csolid), and the atomic spacing (a) can be given by 









Ω

=
kT

aF

a

D
J

2
sinh

2
                       (2.10) 

where D is the diffusion coefficient; Ω is the atomic volume; a is the atomic spacing; F is 

the driving force for diffusion; k and T are the Boltzmann constant and absolute 

temperature, respectively. Pan pointed out that this equation reduces to linear diffusion 

law, when aF≤kT, then sinh(aF/2kT)≈aF/2kT. However, when particle sizes are in the 

range of nanometers, the linear approximation is no longer reasonable. Then, the 

diffusion equation becomes a nonlinear equation that can only be solved via numerical 

methods. Applying this approach to the case of sintering two particles, the ratio of the 

neck to particle radius as a function of the time at a given temperature was calculated and 

the rate predicted by nonlinear solutions is larger than that predicted by linear solutions 
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during initial stage of sintering. But the differences between the two diminish as sintering 

time increases. The distinction between linear and nonlinear solutions also diminishes as 

particle size increases.  

The rapid rate of sintering based on the rapid rate of diffusion is also supported by 

recent studies that indicate that the coefficient of diffusion, D, is size dependent as shown 

in equation 2.11 [39]:  
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where D0 is preexponential constant, )(∞E  is bulk activation energy, )(∞vibS  is bulk 

melting entropy, r is particle radius, r0=3h (h is atomic diameter) for nanoparticles, R is 

ideal gas constant, T is absolute temperature. 

The dependence of the coefficient of diffusion on particle size is attributed to the fact 

that, as the size of the nanocrystals decreases, the activation energy of diffusion decreases 

and the corresponding coefficient of diffusion increases based on the Arrhenius 

relationship between them. Together these theories, based on nonlinear diffusion law and 

the increase of the coefficient of diffusion with decreasing particle size, convincingly 

argue for the rapid formation of necks bonding neighboring particles together.  

With the development of modern tools of computational materials science, 

considerable effort has been made toward numerical simulation of the sintering of 

nanoparticles. One of the most notable works was published by Zhu and Averback [66, 

67] in 1995, who simulated the sintering of YSZ using molecular dynamics (MD) 

approach. MD simulations of sintering have been conducted on numerous other materials 
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as well [68-73] The basic approach toward simulating sintering using MD method 

involves tracking the motion of atoms under the stress that is caused by surface or 

interfacial energy. The kinetics of sintering is given as the rate of decreasing distance 

between two atoms in the middle of two particles in contact.  It was shown that the 

sintering of nanosized particles at the atomic level can be accomplished by dislocation 

motion and grain boundary rotation, as well as other mechanisms. It was further predicted 

that the sintering time of nanoparticles would be in the range of a few hundred 

picoseconds. Although the predicted sintering time is far from engineering reality, the 

results of the simulation can be used as a basis for understanding the initial bonding or 

formation of the necks between nanoparticles.  

Due to the limitations of studying sintering by using atomic scale simulation, 

multiscale simulation is considered a promising approach. Pan [74] categorized the 

simulations of sintering in three levels: atomic level, particle level, and component level. 

The primary method of atomic level simulation is MD, as mentioned earlier. In particle 

level simulation, which is also classified as mesoscale simulation [75], classic sintering 

models [1, 48, 49, 76-88] based on mass transport between two or multiple particles 

provide the basis of simulation. The kinetics of sintering densification depends on the 

kinetics of specific diffusion mechanisms that control the rate at this stage of the process. 

In Pan’s review, the typical numerical methods used in particle level simulations include 

finite difference method, variational calculus, and finite element method. To model the 

evolution of the microstructure during sintering, however, Monte Carlo method is often a 

popular choice [89-93]. The finite element method is the primary method for simulation 
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at the component level, which is chiefly concerned with macro scale shrinkage, 

distortion, and dimensional accuracy control.  

Overall, most published studies of simulations of sintering were not nanoscale 

specific, except for the MD simulations described above. Although these methods are 

arguably applicable to sintering of nanosized particles, especially during the later stages 

of sintering, further details on simulation of sintering is beyond the scope of this review, 

which focuses on the size dependent characteristics of sintering of nanoparticles. 

2.2 Grain Growth During Nanosintering 

2.2.1 The Issues of Grain Growth During Nanosintering 

A primary motivate for studying sintering of nanosized particles is rooted in the issue 

of rapid grain growth during sintering. In many cases, particularly when the goal is to 

produce nanocrystalline bulk materials, the objective of nanosintering is to not only 

achieve full densification but also retain nanoscaled grain structure in the sintered 

material. Research has generally shown that after sintering, nanosized particles lose 

nanoscale characteristics because grain size grows to greater than 100 nm. Therefore, 

understanding and controlling grain growth is a critical scientific and technical issue of 

nanosintering. 

In a systematic study of the stabilities of nanosized metal powders, Malow and Koch 

[94-96] reported that the rate of grain growth of nanocrystalline iron (Fe) powders made 

by ball milling is initially very rapid (<5 min) when annealed at various temperatures 

(Fig. 2.4). Grain growth then stabilizes during the extended isothermal holding (up to 142   
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hours). During the isothermal holding, grain growth follows a generalized parabolic grain 

growth law and is similar to that found in bulk materials. It is noted, based on Fig. 2.4, 

that at the first data point of the isothermal annealing curves at higher annealing 

temperatures (825 and 875 K), the grain sizes are already several times (3-6x) greater 

than the original as milled grain size (~8 nm). In other words, grains grow rapidly during 

heat up, prior to reaching the preselected isothermal holding temperature.  

Fig. 2. 4 Evolution of the grain size as a function of the annealing time at three 
annealing temperatures for nanocrystalline iron. The grain size was determined by 
the Scherrer equation. (Reprinted with permission from The Minerals, Metals & 
Materials Society) 
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In another study of the grain growth of nanocrystalline Fe using in situ synchrotron 

X-ray diffraction techniques, Krill et al. [62] further demonstrated that grain growth of 

nano Fe particles is comprised of three steps: the “initial growth spurt,” a linear growth 

stage, and then the normal parabolic stage, as shown in Fig. 2.5. Once again, the normal 

parabolic stage can be modeled using the classic grain growth parabolic law. However 

the “initial growth spurt” of nanocrystalline Fe during annealing was not captured by 

isothermal studies.  

 

 

Fig. 2.5 Size-dependent grain growth kinetics observed in nanocrystalline Fe
(Reprinted with permission from American Physical Society) 
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Grain growth during nanosintering is also a strong function of temperature. Fig. 2.6 

[97] shows the relationship between grain size and temperature during heat treatment of 

nanocrystalline cobalt powder. It is obvious that the grain growth is initially slow at very 

low temperatures and it accelerates dramatically when the temperature is above an 

apparent critical temperature range. Similar behavior has also been reported for sintering 

of other nanocrystalline ceramic, as well as for metallic powders [98-104]. It appears that 

a critical temperature exists, above which the grain growth accelerates dramatically as a 

function of temperature.   

 Fig. 2.6 Change of the mean grain size (the linear intercept) with annealing 
temperature, measured in pure nanocrystalline Co. (Reprinted with permission 
from Elsevier) 
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The unique issues of grain growth during sintering can be studied by examining the 

grain size versus relative density relationship. In one of the earliest studies of the 

sintering and grain growth of nanosized ceramic powders in the 1990s, Owen and 

Chokshi[105] and Averback et al. [106] showed that oxides densify without significant 

grain growth until the density reaches approximately 90% of the bulk density. Then the 

grain growth becomes very rapid. This phenomenon is observed in many different 

materials [40, 43, 107, 108]. A typical relationship between grain size and density during 

nanosintering is schematically shown in Fig. 2.7. This relationship implies that the grain 

growth during sintering consists of two stages: the early stages of sintering, before the 

Fig. 2. 7 Relationship between grain growth and densification during nanosintering. 
I. early stage of grain growth; II. late stage of grain growth 
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powder compact reaches 90% relative density; and the late stages of sintering, when 

relative density is greater than 90%. It is believed that the late stages of grain growth can 

be viewed as “normal” grain growth, similar to that in bulk materials by boundary 

migration, but incorporating the effect of pinning by closed pores. In contrast, the early 

stage of grain growth during sintering is often referred to as “coarsening”.  

Fig. 2.8 shows another example of grain growth versus densification during the 

sintering of nanocrystalline Y2O3 materials [109]. This work demonstrated that the 

normal grain growth stage during sintering, the mechanism of which will be discussed 

later in this section, can be controlled. The result also shows that at the starting point for 

Fig. 2. 8 Sintering trajectories for normal and two-step sintering. (a). Increasing 
grain size of Y2O3 with density in normal sintering. (Heating schedule shown in 
inset). Even with fine starting powders (30 nm), the final grain size of dense 
ceramics is well over 200 nm regardless of whether dopant was used. The shaded 
area indicates the grain size regime commonly defined as nanostructured materials. 
At lower densities, the mean grain (particle) size was estimated on the fracture 
surface. At higher densities, the grain size was obtained by multiplying by 1.56 the 
average linear intercept length of at least 500 grains. (b). Grain size of Y2O3 in two-
step sintering. (Heating schedule shown in inset.) Note that the grain size remains 
constant in the second sintering step, despite density improvement to 100%.
(Reprinted with permission from Nature Publishing Group) 
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the normal grain boundary controlled grain growth, grain size has grown to 4 to 6 times 

the initial grain size of the nanosized powder. This part of grain growth is attributed to 

coarsening.  

In short, from a kinetic perspective of grain growth as a function of time, 

experimental observations as described above suggest that the grain growth of nanosized 

particles during sintering can be treated as consisting of two steps: a dynamic grain 

growth process that occurs during heating up and at the beginning of isothermal duration, 

and the static grain growth during isothermal holding. From another perspective of the 

interrelations of grain growth to densification, the grain growth during sintering consists 

of two stages: first, when the relative density is lower; and, second, when the relative 

density is greater than 90%. It should be emphasized that although the late stage of grain 

growth, when relative density is greater than 90%, accounts for the majority of total grain 

growth, early stage grain growth that occurs during heating (when relative density is still 

lower than 90%) is significant and sufficient to reach beyond nanoscale. Thus, if grain 

size is to be maintained at nanoscale, this part of grain growth must be controlled. 

However, it appears from the search of open literature that although the early stage of 

grain growth process is critical to nanosintering, few published studies to date focus on 

this aspect of grain growth. In the following sections, the issues of grain growth during 

nanosintering in both the “normal” and “initial” stages will be examined.  

2.2.2 Normal Grain Growth During Nanosintering  

when Rel. Density >90% 

In general, when the relative density is greater than 90% during sintering of micron 

sized particles, bonding between powder particles by neck growth is well developed and 
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the majority of pores within a sintered body are closed and isolated. Grain growth during 

the continued sintering densification process is akin to that of bulk materials during heat 

treatment, although the remaining pores can still hinder the kinetic rate of grain growth 

during this stage. Consequently, this stage of grain growth is referred to as “normal” 

grain growth. Typically, because the properties of sintered materials depend on their final 

grain sizes, the final stage of grain growth during sintering has received, therefore, the 

most attention. 

2.2.2.1 Grain Growth Law – Kinetics of Normal Grain Growth 

Classic treatment of grain growth in solid materials was reviewed in several studies 

[37, 110, 111]. It is generally believed that the mechanism of grain growth in bulk 

materials is by curvature driven grain boundary migration. The basic assumption is that 

the driving force of grain growth is a function of the grain boundary curvature and the 

migration rate of grain boundary is proportional to the driving force [112] 

MFv =                          (2.12) 

where v is migration velocity of a grain boundary, which is related to the changing rate of 

grain size 
dt

dG
v∝ ; M is the mobility, and the mobility of a grain boundary is determined 

by the diffusivity of the material and temperature.; F is the driving force of grain 

growth GF 1∝ , G is the grain size. 

Hence,  
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where c is a constant. By integrating over time, the classic parabolic grain growth law is  

( ) ktGtG =− 2
0

2                        (2.14) 

where 






−=
RT

Q
kk exp0 is the rate constant of grain growth that is a function of the 

mobility of grain boundary; k0 is a constant; Q is activation energy for grain boundary 

migration; R is gas constant; T is absolute temperature. 

In practice, accounting for the fact that the experimental observed grain growth data 

do not always fit equation (2.14) with the exponent equals to 2, the parabolic grain 

growth law is usually generalized as  

( ) ktGtG nn =− 0                             (2.15) 

Equation (2.15) is thus termed as generalized parabolic grain growth model [113]. When 

n is variable, grain growth kinetics can be better described by equation (2.15).   

Considering the effect of factors such as segregation of impurities on grain 

boundaries that mitigate grain growth, the dependence of grain size on time is further 

modified as [114-116] 

kt
tGG

GG

G

tGG
=









−

−
+

−

∞

∞

∞ )(
ln

)( 00                (2.16) 

where ∞G denotes the grain size when the grains cease to grow at ∞→t . This is also 

termed as grain growth model with impediment [113]. 
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In the process of grain growth, the volume fraction of grain boundaries decreases; 

therefore, the concentration of solute and impurity atoms segregated to the grain 

boundary is expected to increase, resulting in a grain size dependent retarding force on 

grain boundary migration. On this basis Michels et al. [117] proposed a grain growth 

model with size dependent impediment.[113] 

( ) ( ) ( )ktGGGtG −−−= ∞∞ exp2
0

22                 (2.17) 

In a detailed study of the grain growth of nanocrystalline Fe prepared by pulsed 

electrodeposition, Natter [113] applied all three grain growth models to the data of grain 

size versus time as shown by Fig. 2.9. It was noted that the generalized parabolic growth 

model appropriately fits the data at low temperature, with unrealistically large grain 

growth exponents n>10. The growth model with impediment yields the best fit among the 

three models considered. Using the adjustable parameters contained in these models, the 

authors calculated the rate constants and, hence, the activation energies for grain growth 

of nanocrystalline Fe. It was concluded that, although the generalized parabolic model 

yielded a good fit with variable “n” values, the activation energy calculated based on that 

fit was unreasonably high (220kJmol-1) for what is assumed to be grain boundary 

diffusion in nanocrystalline Fe. Therefore, it was declared by the authors that the 

generalized parabolic model failed.  
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The activation energies calculated, based on the rate constant deduced from the 

impediment model, however, yielded an activation energy value of 170 kJmol-1, which is 

in agreement with other published values for grain boundary diffusion [118, 119]. Thus, 

based on the calculated activation energies, the authors summarized that the grain growth 

model with impediment was a good candidate for describing the isothermal kinetics of 

grain growth of nanocrystalline metals.  

Fig. 2. 9 Temperature and time evolution of the volume-weighted average crystallite 
diameters of nano-Fe; the lines represent fit with different kinetic grain-growth 
models. Dashed lines represent fit with the generalized parabolic grain-growth 
model; solid lines represent fit with the grain-growth model with impediment; 
dashed-dotted lines represent fit with size-dependent impediment. (Reprinted with 
permission from American Chemical Society) 
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As discussed earlier in this article, an approach that uses activation energy values to 

gain insight about the grain growth or densification mechanisms is inherently limited 

because the models contain varying parameters which can result in mathematical 

flexibility that would enable the model to fit almost any data. It is very difficult, however, 

to assign physical meaning to the parameters n and k. The fact that the grain growth of 

nanoparticles during sintering may be attributed to multiple mechanisms makes the 

matter even more complicated.  

In a different approach of applying the generalized parabolic grain growth models, 

Feng Liu et al. [120] analyzed grain growth data in separate “domains,” meaning 

different stages of grain growth at different sequential time periods. For each time period, 

a fixed value of n=2 and/or 3 is used in modeling. The overall grain growth equation is 

expressed as follows: 
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According to this model, the rate constant k and activation energies change as grain 

growth progresses. Specifically, activation energies increase as grain size increases. This 

is attributed to the increasing segregation of impurities on grain boundaries which 

reduces grain boundaries hence the driving force for grain growth. Within each growth 

time period, or “domain,” the activation energies and rate constants k hold constant. 

Compared to conventional parabolic models, this model takes into account the effect of 
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the changes in thermodynamic properties on the kinetics of grain growth. The assumption 

of the model is that the grain growth is fully accomplished by grain boundary diffusions. 

Direct evidence of the mechanisms of grain growth of nanoparticles during sintering is, 

however, still sorely needed.    

2.2.2.2 Effect of Pores on Grain Growth in the Late 

Stages of Sintering 

As in sintering of coarser particles, in the final stage of sintering of nanoparticles, 

grain growth will be affected by remaining pores that pin the grain boundaries and reduce 

the kinetic rate of grain growth. The effect of pores on grain growth during the final stage 

of conventional sintering is reviewed by Rahaman and Kang [37, 111].  

In the final stage of sintering, isolated spherical pores are situated at the grain 

boundaries, in particular, at triple junctions. Pores are considered to be a second phase 

with an inhibiting force against boundary movement. The interaction between pore and 

boundary determines the conditions for either pore attachment or separation, which, in 

turn, determines the rate of grain growth during the final stage of sintering. 

As grain grows, the moving boundary applies force on the pore at the final stage of 

sintering. As force is applied on the pore, the shape change, resulting in chemical 

potential difference between atoms at the leading and trailing surfaces, driving the flux of 

atoms from the leading surface to trailing surface.  Thus, the pore will migrate with the 

grain boundaries. The mechanism of pore movement includes surface diffusion, lattice 

diffusion and evaporation/condensation. 

Similar to grain boundary motion, the pore velocity vp is expressed as  
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ppp FMv =                         (2.19) 

where Mp is the pore mobility, which depends on the mechanism of pore migration [37, 

48, 111, 121, 122]. Fp is the driving force for the migration of pores. Due to the presence 

of the pores at grain boundaries, the driving force of boundary migration is decreased due 

to the inhibition force of the pore against boundary migration. Thus, the velocity of 

boundary migration can be written as  

( )pbbbb NFFMFMv −==                  (2.20) 

where Mb is the boundary mobility, and F is the effective driving force on the 

boundary ( )pb NFFF −= . Fb is the driving force of boundary migration with no pores at 

boundaries. N is the number of pores per unit grain boundary area. 

A comparison between the velocity of the pore migration and the velocity of the 

boundary migration reveals whether the pore attaches to the boundary or the pore 

separates from the boundary as grain grows during the final stage of sintering. The 

condition for pore attachment to the boundary is pb vv = , which can be expressed as  

( )pbbpppb NFFMFMvv −===                (2.21) 

and hence  

b
pb

bp
b F

MNM

MM
v

+
=                       (2.22) 
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Two limiting cases can be considered [121, 123]:  

a) A system containing many pores with low mobility, i.e., pb MNM >>  

b) A system containing fewer pores with high mobility, i.e., pb MNM <<  

In the first case, pore migration controls boundary migration, which is referred to as pore 

control. 

b
p

b F
N

M
v =                           (2.23) 

In the second case, the presence of the pores has almost no effect on the boundary 

velocity, so the migration of the grain boundary is controlled by its intrinsic mobility. 

This condition is referred to as boundary control. 

bbb FMv =                          (2.24) 

The condition under which a pore can separate from the boundary is bp vv < , which 

can also be expressed as  

( )pbbpp NFFMFM −<                    (2.25) 

Rearranging the equation, it can be written as  

p
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p
b FN

M
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F 








+>                     (2.26) 

Equation (2.26) reveals that the inhibition force of the pore cannot balance the driving 

force on the boundary; therefore, the separation of pore/boundary occurs. Once the 
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boundary breaks away from the inhibition of the pore, the rate of grain growth will 

significantly increase. 

Due to the presence of large number of pores in the system at the beginning of the 

final stage of nanosintering, the boundary is at first dragged by the pore and the rate of 

grain growth is slow. But as sintering proceeds, both the number and the size of the pore 

decreases as a result of densification. When the density reaches the specific point at 

which pore/boundary separation occurs, grain growth accelerates dramatically.  

2.2.2.3 Ostwald Ripening  

The generalized grain growth law describes another category of grain growth which is 

based on Ostwald ripening. The theory of Ostwald ripening was originally developed for 

the coarsening of precipitates in two phase materials. The mechanism of the coarsening 

of second phase particles is solution-and-reprecipitation. During liquid phase sintering, 

the solution-reprecipitation mechanism is responsible for increased average grain size due 

to the growth of larger particles at the expense of smaller particles. The term 

“coarsening” is also used in a more general sense to describe the increase of grain sizes, 

as well as particle sizes, during sintering. At isothermal conditions, the kinetics of grain 

growth by solution-reprecipitaiton is also given by the polynomial law as follows: 

( ) ktGtG nn =− 0                            (2.27) 

where n is the grain growth exponent. Usually n = 3 for diffusion controlled processes 

and n =2 for interface controlled processes.  
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2.2.2.4 Two Step Sintering: Decoupling of Grain 

Growth from Densification 

As an example of understanding and controlling normal grain growth during 

nanosintering, Chen and Wang [109] developed a clever approach to decoupling grain 

growth from densificaton of nanosized particles, using a pressureless sintering process to 

fully densify nanocrystalline Y2O3. In a simple two step process, the compact is briefly 

heated to 1310oC; the temperature is then lowered to 1150oC and held at that temperature 

for a long time. As a result, the material can be sintered to full density with minimum 

grain growth. If the lower temperature is applied at the onset, complete densification 

would not be possible. It is reasoned, then, that suppression of the final stage grain 

growth is achieved by exploiting the difference in kinetics between the grain boundary 

diffusion and the grain boundary migration. Grain growth requires grain boundary 

migration which requires higher activation energy than grain boundary diffusion. At a 

temperature that is high enough to overcome the energy hurdles for grain boundary 

diffusion, but low enough to deactivate grain boundary migration, the densification will 

proceed via grain boundary diffusion without triggering significant grain growth. This 

phenomenon was further studied in multiple publications of Kim et al.[124-126]  

It is noted, once again, that in this work to successfully decouple grain growth from 

densification by exploiting difference in grain boundary mechanisms, the authors 

explicitly showed that at the beginning of the second sintering step, the grain size 

increases 4 to 6 times larger than the original size of the powder, which is attributed to 

coarsening during the first sintering step (Fig. 2.8). The following section will focus on 

coarsening, or in other words, the initial grain growth of nanoparticles.  
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2.2.3 Initial Grain Growth (Coarsening) of Nanoparticles  

During Early Stages of Sintering (Rel. Density < 90%) 

The above discussion provides evidence of an initial stage of grain growth. This part 

of grain growth occurs in the beginning of the sintering, often during heating up when the 

relative density is less than 90%. In conventional sintering of micron sized powders, the 

initial stage of grain growth is not significant and is often ignored in the analysis of 

experimental data because its contribution to the final grain size is relatively minor, 

compared to normal grain growth during latter stages of sintering. For nanosintering, 

however, two important points must be made with regard to the initial stage of grain 

growth:  

1). The amount of grain growth during nanosintering is significant, and sufficient in 

many cases to cause the material to lose nanocrystalline characteristics;  

2). The initial grain growth can be described by the generalized classic parabolic grain 

growth law only if very large values of growth exponent are used, which represent no 

physical processes. This implies that the mechanism of grain growth in the initial stage 

may be different from that of the normal grain growth stage.  

2.2.3.1 Neck Formation and Coarsening of Contacting Nanoparticles 

To understand initial grain growth, the key issue is the interaction between ultrafine 

particles at the start of sintering. According to classical sintering theories by Kuczynski 

[88], Kingery [84], Coble [127], Johnson [128], necks will form and grow between 

adjacent particles, which are assumed to have equal diameter. Densification is modeled as 

the approach of the centers of the two particles. Under these situations, no grain growth 

occurs at the beginning of sintering. Fig. 2.10 illustrates that when very fine particles are 
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in contact, if the particle sizes are not uniform, interparticle diffusion will lead to 

coarsening of particles in addition to formation of the neck. Large particles will grow at 

the expense of small particles. The coarsening of particles can be understood using the 

criteria as shown by equation (2.28), which was first expressed by Lange [58] based on 

Kingery’s initial concept in pore stability [47].  

e
cR

φcos
1

−=                                         (2.28) 

Rc is called critical particle size ratio for boundary migration, eφ is the dihedral angle 

relating surface energy and grain boundary energy. Lange explained that when the size 

ratio between two particles is larger than the critical size ratio Rc, grain boundary 

migration will occur, resulting in grain growth. When actual size ratio is less than Rc, 

boundary migration will yield an increase in the grain boundary area and is energetically 

unfavorable. In this situation, interparticle mass transport will happen first to increase the 

size ratio between adjacent particles. This coarsening process will not stop until the size 

Fig. 2. 10 A linear array of two spheres of initial radii of r1 and r2 (r1 > r2): (a) just in 
touch without the formation of interface, (b) when r1/r2 <Rc, (c) r1/r2 =Rc , and (d ) 
r1/r2 >Rc. (After Ref. 59) 
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ratio R=r 1/r2 reaches Rc, then grain boundary migration will take over because the 

condition for grain boundary migration is now energetically satisfied. 

The studies by Lange and Kingery aimed to explain the stability of pores in the 

intermediate stage of sintering. Shi further applied the critical size ratio criteria to the 

initial sintering of ultrafine particles [59, 60]. It was shown that the driving force for neck 

growth and interparticle diffusion are given respectively is as follows 








 −Ω=∆
rXsn

11
γµ                                           (2.29) 









−Ω=∆

21

11
2

rrsc γµ                       (2.30) 

nµ∆ and cµ∆ are chemical potential for neck formation and mass transport between two 

particles; sγ is surface energy; Ω is atomic volume; X is radius of the neck; r is radius of 

particles (r1 and r2 are radii of two particles with different sizes). Equation (2.30) 

indicates that if a difference of the radius of curvature exists, mass transport would take 

place from the area of larger curvature to the area of smaller curvature. This process is 

related to the particle coarsening.  

Considering equations (2.29) and (2.30) together, both the neck growth and 

coarsening, driven by the surface tension between the particles, can take place 

concurrently. However, the magnitude of the driving force for the two processes is 

different. Assuming the interface energy is not considered, then ∆µn < ∆µc, which implies 

that neck formation takes place before coarsening.  
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On the other hand, if the interface energy between particles is considered in the 

analysis of the driving forces as an energy barrier to neck growth, Shi showed that 

equation (2.29) becomes 

( )ebsn rf
rX

φφγγµ ,,
11

' −






 −Ω=∆                  (2.31) 

where bγ is boundary energy, φ is the contact angle, φe is the equilibrium dihedral angle. 

From a thermodynamic point of view, when φ = φe, the driving force for the neck growth 

is zero. Intuitively it is possible under certain conditions when φ < φe, driving force for 

coarsening may equal that for neck growth. Hence, coarsening by interparticle mass 

transport may take place significantly prior to the achievement of the equilibrium 

dihedral angle and the beginning of grain boundary migrations.  

With regard to the issues of initial grain growth, a two step qualitative growth model 

was developed [129]. When particles of different sizes are in contact, the first step in 

grain growth is coarsening due to interparticle mass transport via the growth of larger 

particles into smaller particles, which result in the increase of the material’s average grain 

size regardless of whether the size ratio r1/r2 is larger or smaller than Rc. During the 

coarsening and sintering progress, the size ratio between particles can increase. When the 

condition of size ratio r1/r2 > Rc is reached, grain boundary migration will occur, leading 

to the second step of grain growth by the grain boundary migration. Fig. 2.10 and Fig. 

2.11 schematically illustrate the two step process.   
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The differences in grain growth kinetics at different stages of sintering suggest 

differences in grain growth mechanisms, which would also be a function of specific 

material systems. The mechanism for normal grain growth is widely believed to be grain 

boundary migration. However, as indicated in the above discussion, the mechanism of 

coarsening, or initial grain growth, could be different depending upon the specific 

situation with regard to relative particle size ratios and dihedral angles. Possible 

mechanisms of initial grain growth are discussed in the following sections.  

2.2.3.2 Initial Grain Growth Mechanisms 

Based on conventional grain growth theories, several possible grain growth 

mechanisms for grain growth during nanosintering exist, including: 1) grain boundary 

migration, 2). surface diffusion, 3). solution reprecipitation, and 4). coalescence. 

Fig. 2. 11 Particle configuration change after the formation of a dihedral angle 
shown in Fig 2.10: (a) the configuration when r1/r2 <Rc (boundary cannot move); (b) 
the configuration resulted from the mass transport between particles before 
boundary motion; (c) the transient configuration after boundary motion where r1/r2 

becomes >Rc; (d) final configuration either directly by mass transport or by 
combined mass transport and boundary motion. (After Ref. 59) 
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Understandably, surface diffusion is expected to be a highly probable mechanism, due to 

the extremely fine particle sizes.  

It has been demonstrated that surface diffusion leads to grain growth of nanosized 

particles. In a study of the sintering BaTiO3, Shi observed that the contacting particles 

become one particle via surface diffusion as shown in Fig. 2.12 [61]. Surface diffusion 

transported the atoms from the dissolving small particle to be redeposited on the surface 

of the larger particle. This is direct evidence of the role of surface diffusion in the 

coarsening of nanoparticles at the beginning of sintering. Although surface diffusion 

induced grain growth is not a widely recognized grain growth mechanism, it could play 

an important role in the initial grain growth. It is noted that surface diffusion causes 

coarsening of larger particles by consuming small particles, i.e., grain growth without 

requiring either grain boundary migration, rotation, or grain boundary diffusion.  

Considering that the initial grain growth during sintering is the result of the 

coarsening of nanoparticles due to interparticle diffusions, there are other interparticle 

diffusion mechanisms, other than surface diffusion, that could also contribute to 

coarsening of particles. In particular, there is a relaxation period for migration, 

redistribution, and annihilation of the defects due to the fact that nanoparticles are usually 

not at equilibrium states and are likely to contain excess amounts of various defects that 

are created during the production of nanoparticles. Owing to the nonequilibrium structure 

of nanoparticles, diffusivity is dramatically enhanced during the relaxation process [130-

133]. This may contribute to dynamic grain growth at the beginning of sintering. 

Dynamic grain growth usually dominates during the heat up stage and the first few 

minutes after reaching a preset isothermal holding temperature. Therefore, rapid dynamic 
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grain growth accounts for the experimental observation that the first data point during 

Fig. 2. 12 Observations of the grain growth in BaTiO3 powder at different 
temperatures from 940oC (a), 950oC ((b), (c)) to 960oC ((d) to (o)). Grains grow
through reduction of smaller grains and enlargement of larger ones. The distance 
between the particle centers decreases simultaneously. (Reprinted with permission 
from Springer Science and Business Media) 
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isothermal holding is several times of the initial grain size. The relaxation time depends 

on materials, nanoparticles production methods, and temperature.  

The role of grain boundary migration should also be considered in discussing the 

initial grain growth during nanosintering. Grain boundary migration is, of course, the 

most recognized grain growth mechanism for solid bulk monophase materials. The 

driving force for grain boundary migration is the curvature of grain boundaries. Grain 

boundaries migrate in the direction of the center of the curvature. Grain boundary 

migration can be accomplished by either volume or grain boundary diffusion. The 

activation energy is primarily determined by the volume diffusion. For single phase 

materials at later stages of sintering, when relative density is great than 90%, grain 

boundary migration is the most logical mechanism of grain growth as that for in bulk 

single phase materials. Grain boundary migration has also been observed during early 

stages of sintering of nanosized Al2O3 [64]. 

Coalescence is another grain growth mechanism that is often cited to explain rapid 

grain growth qualitatively. Coalescence is a term that is often loosely used to describe 

various phenomena. For example, coalescence is sometimes used interchangeably with 

the term “sintering” to describe the growth of particles during particle synthesis and 

growth process [134-137]. For clarity in this article, coalescence is used strictly to 

describe the increase of grain size due to the merging of two grains by eliminating the 

common grain boundaries between them. Differing from other grain growth processes 

which may also be described as the merging of two grains, the two original grains should 

not demonstrate significant change from their morphology prior to coalescence.    
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The term coalescence, as defined above, describes a unique way of grain growth, 

which is accomplished only through various diffusion mechanisms. Possible mechanisms 

for coalescence include grain boundary diffusion, dislocation climb along grain 

boundaries, or even grain rotations. In liquid phase sintering systems, it is believed that 

the solution-reprecipitation mechanism may also help facilitate the coalescence of grains. 

Direct evidence of coalescence is, however, very difficult to get identify. Fang et al. [138] 

studied the grain growth of nano WC during sintering, and found the growth of nanosized 

tungsten carbide grains with aggregates via coalescence, as shown in Fig. 2.13. It has 

been speculated that when nanoscales are approached, atomic mechanisms become more 

obvious. For example, the rotation and alignment of nanosized grains may be easier than 

Fig. 2. 13 Coalescence of two platelet shaped grains of a nanocrystalline WC-Co 
compact heated up to 1200 ºC at a heating rate of 10 ºC/min. and held for 1 min.
(After Ref. 138) 
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coarse grains [40]. Kumar and Fang’s analysis of the sintering of WC-Co composites 

suggests that the lattice shift along low-energy CSL grain boundaries is a viable 

mechanism for materials with high degree of crystallographic anisotropy [139].  

2.2.3.3 Effects of Agglomerates on Initial Grain Growth 

Another important factor in grain growth mechanisms during nanosintering is the role 

of agglomerates in grain growth. Mayo [43] pointed out that grain size is often related to 

the size of agglomerates at the beginning of sintering. As Mayo summarized, the larger 

the agglomerate size, the higher the sintering temperature required to eliminate the large 

interagglomerate pores. By contrast, the crystallite size has little effect on the temperature 

required to reach full density. The same temperatures, however, promote grain growth to 

such an extent that the grain size can easily balloon to the agglomerate size.   

To explain the effect of agglomerates, Lange [46] classified the structure of a powder 

compact as a hierarchical structure of agglomerates, domains, and primary particles, as 

shown by Fig. 2.14. Defining the coordination number as the number of particles 

surrounding the pore, Lange explained that pores within domains have the lowest 

coordination number, pores between domains have higher, and pores between 

agglomerates have the highest coordination number. Fig. 2.15 shows schematically the 

volume distribution of the three classes of pores as a function of coordination number. 

When N<Nc, a pore is unstable. Otherwise, grain growth, or coarsening of particles 

within agglomerates, will be necessary for elimination of the pore and continuation of the 

sintering. This explains the correlation between grain growth and the size of 

agglomerates.   
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Fig. 2. 15 Schematic of pore coordination number distribution of agglomerated 
powder indicating three classes of pores, i.e., those within domains, those between 
domains, and those between agglomerates. (R stands for coordination number). 
(After Ref. 46) 

Fig. 2. 14 Schematic diagram of the hierarchical structure of agglomerates (large 
circle), domains (small circle), and primary particles (dots within small circles). 
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CHAPTER 3 

RESEARCH SCOPE AND OBJECTIVES  

Sintering of nanosized powders is a viable approach to manufacture of bulk 

nanocrystalline materials. The goal of sintering of nanosized powders is not only to 

achieve full densification but also to retain nanoscale grain size at full densification. 

However, the challenge of sintering of nanosized powder is the rapid grain growth during 

consolidation, leading to loss of nanocrystalline grain size after sintering. Therefore, the 

densification and grain growth behavior during sintering of nanosized powders have to be 

clearly understood including their kinetics and mechanisms, as well as their differences 

from those of micronsized powders. Then strategies to enhance densification and inhibit 

grain growth can be provided.  

In order to examine the characteristics of densification and grain growth of nanosized 

powders, and identify the differences in sintering behavior between nanosized powder 

and coarse sized powder, this study is designed using tungsten as an example material to 

investigate the following issues: 

1. Experimental examination of effects of particle size on sintering behavior 

2. Experimental examination of the characteristics of densification and grain 

growth of sintering nanosized powders 

3. Analyze and understand the characteristics and the origin of the differences in 

sintering behavior between nanosized and micronsized powders 
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4. Provide more insights into the densification and grain growth process for 

future solutions to inhibit grain growth during sintering of nanosized powder, 

especially the initial and intermediate stages when the sintered densities are 

less than 90% relative density. 

For the purpose of this research, a number of sintering experiments are designed and 

carried out under various conditions. The detailed experimental processes are given in 

Chapter 4 and the results are provided in the following chapters. Chapter 5 deals with the 

effects of particle size on sintering behavior using different sized tungsten powders. 

Chapter 6 focuses on densification and grain growth of nanosized tungsten powder in 

order to identify the characteristics of nanosintering. Chapter 7 concentrates on kinetics 

analysis and mechanisms of densification and grain growth in order to understand  

nanosintering. Chapter 8 concludes the research with proposing method for reducing 

grain growth during nanosintering. 



 

 

 
 
 
 
 

CHAPTER 4 

EXPERIMENTAL  

This chapter describes experimental procedures for studying the effects of particle 

size on sintering and further examining the characteristics of densification and grain 

growth of nanosized powders. The experimental procedures included preparation, 

compaction and sintering of nanosized tungsten powders as well as characterization of 

powders and sintered samples. 

4.1 Production of Nanosized Tungsten Powders 

Production of nanosized powders was accomplished using a unique one-of-a-kind 

planetary ball milling machine (Fig. 4.1).  With its large gyration radius and independent 

controlled motors for gyration and revolution, the milling energy potential reaches 60g 

force under normal conditions. The machine is capable of 100g acceleration force. 

Compared to commercial high energy ball milling machines such as Fritzsch planetary 

ball mills and Union Process attritor mills, the custom designed planetary mill, has much 

higher milling energy and efficiency, which in turn translates into unique opportunities 

for effective reduction of particles size to nanoscale.  
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Fig. 4. 1 The dual drive planetary ball milling machine for nanoparticle production 

 

 
 

For this study, tungsten was selected as an example material, and high energy milling 

technology was applied to produce nanosized tungsten powders. The purpose of the study 

was to examine the following issues: 

� Effects of particle size on sintering  

� The characteristics of grain growth and densification of nanosized powders. 

Various tungsten powders with different particle sizes were prepared by high energy 

milling. The detailed preparation processes are described as follows: 

1. Preparation of powders for examining effects of particle size on sintering 
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Two raw tungsten materials provided by Kennametal Inc. were used for studying the 

effects of particle size on sintering. Both of the raw materials were produced by the 

reduction of tungsten oxide. One had a particle size of ~500 nm (“C500”, “C” denotes 

“chemical synthesis”); the other had a particle size of ~50 nm (“C50”). Both C500 and 

C50 powders were put into separate canisters with milling media and the canisters were 

filled with heptane. The powders were then subjected to ultra high energy milling for 6 

hours using the high energy planetary ball milling machine. Tungsten carbide balls were 

used as milling media and the ball-to-powder weight ratio was 6:1. The milled powders 

were denoted as “MC500” and “MC50” respectively (“M” stands for “milled”). The two 

raw W powders, C500 and C50, and the two milled W powders, MC500 and MC50, were 

used for studying effects of particle size on sintering behavior. The designations of all 

four powders and their preparations are tabulated in Table 4.1. 

• C500:  the as received chemically synthesized submicron powder;  

• C50:  the as received chemically synthesized nanosized powder;  

• MC500:  the high energy milled C500 powder;  

• MC50:  the high energy milled C50 powder. 

 

Table 4. 1 The designations of the powders for examining effects of particle size on 
sintering  

  

Raw tungsten powder High energy milled powder-6 hours 

C500 MC500 

C50 MC50 
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2. Preparation of powders for examining densification and grain growth of nanosized 

powders 

C50 powder was selected as the starting material for studying the characteristics of 

densification and grain growth of nanosized powders. In order to further reduce particle 

size and enhance the sinterability, the as received C50 tungsten powder was subsequently 

subject to high energy ball milling for 12 hours. The milling of the as received powder 

was carried out in canisters filled with heptane. Tungsten carbide balls were used as 

milling media with ball-to-powder weight ratio 6:1. In addition to 12 hours milling, 6 

hours milling was also carried out in order to examine the effects of milling time on 

sintering and grain growth of nanosized tungsten powders. Table 4.2 list the powders 

used for studying the densification and grain growth of nanosized powder.  

� A-W: as-received C50 W powder 

� M6-W: 6 hours milled C50 W powder 

� M12-W: 12 hours milled C50 W powder 

 The 12 hours milled powder “M12-W” are focused to examine the characteristics of 

densification and grain growth of nanosized powder.  

 

Table 4. 2 Nanosized tungsten powders produced for studying densification and 
grain growth during sintering.  

 

Milling time 
Raw materials 

6h 12h 

C50        (A-W) √       (M6-W) √      (M12-W) 
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4.2 Compaction and Sintering of Tungsten Powders 

The milled tungsten powders were dried in a vacuum at room temperature for 12 

hours to allow for evaporation of heptane. The dried powders were collected for 

subsequent compaction and sintering. Compaction and sintering experiments were 

conducted to study effects of particle size on sintering and examine densification and 

grain growth of nanosized powders. The experiments were conducted as follows. 

1. Compaction and sintering for studying effects of particles size on sintering 

The powders in Table 4.1 were compacted under a uniaxial pressure of 240 MPa. 

Each sample was 10 grams in weight. The compacted specimens were round pellets 

16.22 mm in diameter and 4-7 mm in height depending on different powders. Sintering 

was carried out in a flowing hydrogen atmosphere at temperatures of 1100 ºC, 1250 ºC 

and 1400 ºC. The heating rate for all sintering temperatures was 10 ºC /min. The 

specimens were held at each temperature for 0, 30 and 60 minutes. The MC50 powder 

was also heated up to 1000 ºC without being held at the temperature in order to examine 

the entire densifications during the heating up process. Table 4.3 lists the sintering 

conditions for this set of experiments. 

 

Table 4. 3 Designed sintering conditions for examining the effects of particle size on 
sintering behavior 

                  t (min) 
T (ºC) 

0 30 60 

1000 √ (MC50 only)   
1100 √ √ √ 
1250 √ √ √ 
1400 √ √ √ 
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2. Compaction and sintering for studying densification and grain growth of nanosized 

powders 

The nanosized powders listed in Table 4.2 were consolidated into green compacts 

using a uniaxial press machine. Each sample was 5 grams in weight. Due to the 

extremely fine particle size, very large friction forces were present among the nanosized 

powders and between powders and inside wall of the die. As a result, the typical green 

density for both 6 hours-milled (M6-W) and 12 hours-milled (M12-W)  nanosized 

tungsten powders was only about 36% theoretical density of tungsten material under a 

pressure of 140 MPa. The dimensions of the compacted specimens were round pellets 

16.22 mm in diameter and about 3.5 mm in thickness. In order to study the effects of 

green density on sintering and grain growth, other green densities, 31% and 40%, were 

also obtained for M12-W powder using different compaction pressures 50 MPa and 240 

MPa. Further increasing compaction pressure did not increase green density but led to 

cracking problems in the green compacts, so higher pressures were not applied in this 

study.  

Sintering studies were carried out in a tube furnace. The compacted samples were 

heated in a flowing hydrogen atmosphere with constant heating rate 10 ºC/min to 

different temperatures. A series of experiments was designed and carried out to study 

densification and grain growth of nanosized powder during early stage of sintering, 

including both nonisothermal and isothermal sintering experiments. The nonisothermal 

experiments were carried out by heating the green compacts to preset temperatures and 

then shutting down the furnace without holding at the temperature. The following 

temperatures were selected: 800 ºC, 900 ºC, 950 ºC, 1000 ºC, 1050 ºC, 1100 ºC, 1250 ºC 
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and 1400 ºC. Isothermal sintering was conducted at different temperatures to obtain 

detailed densification and grain growth behavior of nanosized powder. The temperatures 

for isothermal sintering were 950 ºC, 1000 ºC, 1050 ºC, 1100 ºC and the holding times 

were 15, 30, 45 and 60 mins at each temperature. The detailed sintering temperature and 

time are listed in Table 4.4. For comparison, both M6-W and M12-W powders were 

sintered with same sintering conditions to study effects of milling time on sintering 

behavior. Further, the effects of different green densities on the sintering and grain 

growth behavior of nanosized powder were also examined through nonisothermal heating 

experiments using M12-W samples. The detailed information is listed Table 4.5. 

4.3 Characterization of Powders and Sintered Samples 

The following section describes methods used in this study for characterizing 

powders and sintered samples. These methods included X-ray diffraction (XRD), 

Scanning Electron Microscope (SEM), BET method, Light scattering method, 

Archimedes method. Each is described below. 

 

Table 4. 4 Designed sintering temperature and time for studying densification and 
grain growth of nanosized tungsten powder 

t (min) 
T (ºC) 

0 15 30 45 60 

800 √     
900 √     

950 √ √ √ √ √ 

975 √ √ √ √ √ 

1000 √ √ √ √ √ 

1050 √ √ √ √ √ 

1100 √ √ √ √ √ 

1250 √     
1400 √     
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Table 4. 5 Designed experiments for studying effect of green density on densification 
and grain growth of nanosized tungsten powders 

 
 
 

XRD. To determine the grain sizes of as received and milled powders, the X-ray 

diffraction line broadening techniques was applied. Due to the intense mechanical energy 

input during milling, strain energy was inevitably stored within the crystal lattice. In 

order to quantify the grain size accurately considering the effects of the internal strains, 

Williamson-Hall method [1] was applied using the following formula:  

θε
θ
λ

βββ ε tan4
cos

89.0
+=+=

dd                                           (4.1) 

where β is full width at half maximum (FWHM) of the diffraction peak after instrument 

correction; βd and βε are FWHM caused by small grain size and internal stress, 

respectively; and d and ε are, respectively, grain size and internal stress or lattice 

distortion. The experimentally determined line broadening was corrected for Kα1-Kα2 

separation and instrumental line broadening using coarse W powder (average grain size 

t (min) 
 
T (ºC) 

0 

Effect of green density 

31% 36% 40% 

800 √ √ √ 

900 √ √ √ 

950 √ √ √ 
1000 √ √ √ 

1050 √ √ √ 

1100 √ √ √ 

1250 √ √ √ 
1400 √ √ √ 
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about 40 µm). To determine both d and ε from equation (4.1), line broadening data 

corresponding to several 2θ values were used. Grain size and internal strain were 

calculated by plotting βcosθ vs. sinθ. The grain size and lattice strain were obtained from 

the intercept and the slope of the linear plot.  In this study, XRD method (Siemens D5000 

X-ray Diffractometer) was applied to the following samples: C50, MC500, MC50, A-W, 

M12-W. 

SEM. A high resolution scanning electron microscope (FEI Nova NanoSEM 630) was 

used to characterize the morphology of the milled powder as well as the sintered samples. 

Grain sizes of the powder and sintered samples were calculated quantitatively using 

linear intercept method. For each sample, three fracture images were used for grain size 

measurement. A total of more than 600 grains were measured for each sample and the 

mean grain size value was used as the grain size for this sample (G sample). Further, the 

distribution of grain sizes was also obtained for each sample. The error bar for each grain 

size data was determined by the differences between G sample and G image (G image is mean 

grain size for each field of view). All the samples in this study were characterized by 

SEM method. 

BET. C500, C50, MC500 and MC50 powders were characterized using a BET surface 

area analysis instrument (Micromeritics ASAP 2010). Particle size of the powders was 

calculated based on the BET specific surface area using a modified formula that 

incorporates surface roughness and pore area factors,  

( )densitySDkd BETBET ××= /6)2/(                                           (4.2) 
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where dBET is calculated particle size, k is a constant related to pore area (equal to 1.5 

[2]), D is fractal dimension value of surface roughness (equal to 2.58 [2]), SBET is specific 

surface area, density is theoretical density of a material. The particle size was also 

determined by SEM method dSEM for comparison.  

Light scattering. A light scattering method was used for examining the agglomerates 

of powders. This technique is not available in our lab, so in this study, the powders A-W 

and M12-W were sent out for doing this examination. 

Archimedes method. In this study, green density was determined by calculating the 

weight divided by the volume of the specimens, while sintered density was determined 

using the Archimedes method. It follows the principle that the partial loss in weight of the 

material in water due to buoyancy effect is a measure of the volume of the material. 

Porous samples were soaked in oil in vacuum before density measurements was taken so 

that the pores were sealed with oil. The density, ρ, is given by the relation: 

water
wateroil

air

ww

w
ρρ ×

−
=

                    (4.3) 

where wair is the weight in air of the sample, woil, is the weight after oil infiltration, and 

wwater, is the oil infiltrated sample immersed in water. Care was taken to dry the sample of 

oil after infiltration, to ensure accurate weight measurement. 

The samples and the corresponding characterization methods used in this study are 

listed in Table 4.6. 
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Table 4. 6 A summary of different characterization methods used in this study 

4.4 References 

[1] Williamson GK, Hall WH. Acta Metallurgica 1953;1:22. 

[2] Jiqiao L, Baiyun H. Int J Refract Met Hard Mater 2001;19:89. 

 
 

Sample 
 
 

Method 

For studying particle size effects For studying nanosintering and 
grain growth  

C500 C50 MC500 MC50 Sintered 
sample 

A-W M6-
W 

M12-
W 

Sintered 
sample 

XRD  √ √ √  √  √  
BET √ √ √ √      
SEM √ √ √ √ √ √ √ √ √ 
Light 

Scattering 
     √  √  



 

 

 
 
 
 
 

CHAPTER 5 

EFFECTS OF PARTICLE SIZE ON DENSIFICATION  

BEHAVIOR OF TUNGSTEN POWDERS  

5.1 Introduction 

This chapter deals with the effects of particle size on sintering behavior of tungsten 

powders. Before going to the detailed results, I will firstly introduce the background and 

importance of studying size effects on tungsten sintering.  

Tungsten, the example material for this study, is an excellent candidate for many 

applications owing to its attractive properties such as high melting point and high density 

[1]. However, the sintering of tungsten powders is usually very difficult because of its 

high melting point. For example, tungsten powder with a particle size of 1.8 µm can be 

sintered to only 76% of its theoretical density at 1650 ºC [2]. Often temperatures well 

over 2000 ºC must be utilized to manufacture bulk tungsten materials by sintering [2-7].  

There are typically two approaches to improve the sinterability of tungsten. One is by 

the addition of small amount of transition metals such as Ni, and Pd [8-11] as activators, 

which can reduce the sintering temperature to the range of 1200 to 1500 ºC. However, 

since the addition of transition metals could alter properties of sintered tungsten, this 

approach has limited applications. The other approach is by particle size refinement. The 

sintering temperature of tungsten was reported to decrease with decreasing particle size 

[2, 12-14]. For example, Staab et al. [2, 14] and Vasilos et al. [2, 14] found that fine 
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tungsten powders with particle sizes from 400 nm to 800 nm could be sintered to over 

90% theoretical density at around 1700 ºC. Malewar et al. showed that the sintering 

temperature of nanosized tungsten powders produced by high energy mechanical milling 

was 1700 ºC compared to 2500 ºC for conventional powders with 95% theoretical density 

after sintering [12]. Further, Oda et al. showed that nanosized tungsten powder could be 

sintered at 1000 ºC under pressure of 200 MPa using a SPS sintering technique [13].  

As shown above, the sintering of tungsten is very sensitive to the particles’ size. In 

order to further explore the effects of particle size on densification of tungsten powders as 

well as the effects of mechanical milling, the sintering of tungsten with different particle 

sizes prepared by either chemical methods (C500, C50) or high energy milling (MC500, 

MC50), are investigated and discussed in the following.  

5.2 Results and Discussion 

5.2.1 Powder Characteristics 

Fig. 5.1 shows SEM images of the four different sized tungsten powders: C500, C50, 

MC500, and MC50. The figure shows that the particle sizes of the milled powders –   

MC500 and MC50 – are, as expected, much smaller than their corresponding original 

powders. The grain sizes, lattice strains, specific surface areas and particle sizes of all the 

powders are summarized in Table 5.1. Calculated particle sizes from specific surface area 

dBET are listed in comparison to that of by SEM method dSEM. It is evident that the values 

of dBET particle sizes are close to that of dSEM. In this study, dSEM was used for discussion 

hereafter. The as received submicron powder C500 had the largest grain size, particle size 

and lowest specific surface area, while the milled powder, MC50, had the smallest grain 

size, particle size and highest specific area. It is noted that the milled submicron powder 
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(MC500) and the as received 50 nm (C50) had similar specific surface areas (around 10 

m2/g) and particle size, but the grain size of MC500 was smaller than that of C50. 

Further, the two milled powders MC500 and MC50 have approximately equal grain size, 

while the specific surface area of MC50 was much higher than that of MC500. Based on 

Table 5.1, the relative comparison of the particle sizes of the four powders were 

PMC50<PMC500≈PC50<PC500, and the relative comparison of their grain sizes 

wereGMC50≈GMC500<GC50<GC500.  

100 nm 

100 nm 

100 nm 

1000 nm 

(a) (b) 

(d) (c) 

Fig. 5. 1 SEM micrographs of different sized tungsten powders: (a) C500; (b) C50; 
(c) MC500; (d) MC50 
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The comparison of lattice strains in all powder samples shows, however, that the 

differences between different powders are relatively small, especially that the lattice 

strains in C50, the 50 nm powder produced by chemical method, are only slightly lower 

than those of milled powder MC500 and MC50. This is consistent with the findings by 

Staab et al. that dislocation density in chemically produced W has strong dependence on 

particle sizes [2]. In their study, the results showed that a submicron powder reduced at 

lower temperature may have one magnitude higher dislocation density than that of a 

micron sized powder reduced at high temperatures. Therefore, the powders produced by 

chemical method could also present a number of defects when the reaction temperature is 

very low. Nanosized powders need to be produced at low temperatures during chemical 

synthesis, so they might contain many dislocations after reaction. 

Table 5. 1 Grain size, lattice strains, and specific surface area of as received and 
milled W powder 

Sample Production 
method 

Grain Size 

(nm) 

Lattice Strain  

(%) 

Specific 
Surface Area  

(m2/g) 

Particle size 
(nm) 

     dBET dSEM 

C500 Chemical 
synthesis 

260  –  2.93 205 260 

MC500 High energy 
milling 

21  0.135 10.33 58 52 

C50 Chemical 
synthesis 

45  0.095 9.39 64 57 

MC50 High energy 
milling 

19  0.107 16.79 37 36 
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5.2.2 Isothermal Sintering Behavior 

Fig. 5.2 shows the evolution of sintered densities as functions of time at various 

temperatures from 1100 ºC to 1400 ºC. At 1100 ºC (Fig. 5.2 (a)), submicron sized 

powders C500 did not experience densification. The MC500 and C50 had only moderate 

densification after extended holding time. Compared to the as received 50 nm powder 

C50, the milled submicron powder MC500, which has similar particle size as C50, had 

relatively higher density after holding for 1 hour; yet, the density of the sintered MC500 

is still only 75% of the theoretical density of tungsten. In contrast, the relative density of 

the milled nano powder (MC50) reached 97% after holding at 1100 ºC for 1 hour. 

Clearly, MC50 had superior sinterability compared to the other three powders. This result 

for the first time shows that tungsten powder can be sintered to near full density at a 

temperature as low as 1100 ºC using a conventional pressureless sintering process in a 

hydrogen atmosphere.   

The sintering behaviors at 1250 ºC and at 1400 ºC are shown in Fig. 5.2 (b) and Fig. 

5.2 (c). The figures show that the as received C500 and C50 powders were still not well 

densified at these relatively high temperatures, though the relative density of sintered C50 

powder (91%) was slightly higher than that of sintered C500 powder (89%) after holding 

for one hour at 1400 ºC. In contrast, the milled powders, both MC500 and MC50, 

achieved near full densification after sintering at these temperatures. Specifically, the 

relative density of both sintered MC500 and MC50 powders reached 97-99% of the 

theoretical density of tungsten. According to Fig. 5.2, MC 50 has the best sinterability; 

C500 has the worst sinterability; MC500 and C50 have moderate sinterability, but the 

sinterbility of MC500 is better than that of C50. 
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Fig. 5. 2 Evolution of relative densities of different sized tungsten powders sintered 
at various temperatures.  (a) 1100 ºC; (b) 1250 ºC; (c) 1400 ºC 
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The above results suggest that the densification of tungsten powders is affected by 

two factors – particle size and milling. The poor sinterability of C500 can be attributed to 

its relatively coarse particle size. The poor sinterability of C50, however, was unexpected 

considering the fact that the original particle size of C50 powder was 50 nm. As shown in 

Table 5.1, C50 had similar particle size to that of MC500 which is the milled submicron 

powder. After sintering at 1400 ºC for 1 hour, however, C50 did not achieve high density, 

while MC500 had extensive densification (99%) when sintered at 1400 ºC. This suggests 

strongly that milling is a critical factor affecting the sintering of nanosized W powders. 

Specifically, the ultrahigh energy milling method that was used to prepare MC500 and 

MC50 greatly enhanced the sinterability of tungsten. The effect of milling may be 

partially attributed to the deagglomeration of particles, in addition to continued refining 

of particle and grain sizes of the powder. However, because both MC500 and C50 

powders were still agglomerated after synthesis based on SEM images (Fig. 5.1 (b) and 

(c)), milling may also have additional effects on sintering. Furthermore, comparing the 

results of MC50 and MC500, it seems that the particle size of raw materials before high 

energy milling also plays an important role in affecting the sinterability of the milled 

powders. The finer the initial particle size is, the better the sinterability of the milled 

powder will be. 

5.2.3 Nonisothermal Sintering Behavior 

To further understand the sintering behavior of nanosized W powders, the 

densification of the powders as a function of temperature was examined with respect to 

densification during the heat up stage of a sintering cycle as well as the onset temperature 

of densification. First of all, Fig. 5.3 shows significant differences among the four 



79 

 

powders with respect to the densification that was achieved during the heat up stage of 

the sintering. Specifically, most of the densification of MC50 was achieved during 

heating up before reaching 1100 ºC, while other powders did not have significant 

densification before 1100 ºC. In addition, it is noted that green densities of the tungsten 

powders after compaction varied from 0.53 for C500 to 0.36~0.38 for C50, MC500 and 

MC50 due to different initial particle sizes.  

Figure 5.3 also shows that the onset temperatures of the sintering of powders with 

different initial particle size are significantly different. Onset temperature of sintering is 

Fig. 5. 3 Densification evolution of different sized tungsten powder during 
heating up process 
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defined as the temperature at which sintering starts and proceeds. In this study, the onset 

temperature is determined as the temperature at which 10% relative fraction of 

densification is achieved, i.e., when %10)()( 00 =−− ρρρρ th , whereρ , 0ρ and thρ are 

sintered density, green density and theoretical density, respectively. Based on this 

definition and the data in Fig. 5.3, it is clear that C500 has the highest onset temperature; 

MC500 and C50 have intermediate, and MC50 has the lowest onset temperature. The 

onset temperature of sintering is related to particle size and the dependence of the onset 

temperature of sintering on particle size can be described by the following expression 

[15-17]: [ ]dkdTonset /exp)( −∝ , where Tonset is onset temperature of sintering; d is particle 

size; k is a constant determined by the properties of the material. This relationship 

predicts a sharp decrease of the onset temperature of sintering as particle size decrease to 

the nanoscale.  

5.2.4 Scaling Law 

The effects of particle size on sintering behavior can be further elucidated by 

examining the dependence of sintering temperature on particle size using the scaling law. 

In this study, the sintering temperature is defined as the temperature at which over 95% 

relative sintered density can be achieved by holding for less than 1 hour. The scaling law 

describes the relationship between sintering temperature and particle size by the 

following equation [15, 18, 19]: 

    ]
11

[)ln(
122

1

TTR

Q

d

d
n −=                                               (5.1) 
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where d1, d2 are particle sizes, T1 and T2 are corresponding sintering temperatures, R is 

the gas constant, Q is the activation energy, and n is an exponent dependent of diffusion 

mechanisms: n=1/2 for volume diffusion and n=1/3 for grain boundary diffusion. With 

respect to sintering of tungsten powder, the dominant mechanism for densification is 

grain boundary diffusion based on reported studies in literature [14], thus n is taken as 

1/3. By regression fitting of experimental data to equation of sintering shrinkage, 

German[20] and Johnson[21] calculated the value of Q/R for tungsten sintering to be 

4407 K. Another reported study in the literature [2] found that tungsten powder with a 

particle size of 400 nm was able to be sintered to over 95% theoretical density at 1650 ºC 

within one hour. Based on the above data, the dependence of sintering temperature on 

particle size is analyzed and illustrated in Fig. 5.4. It shows that the sintering 
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Fig. 5. 4 Dependence of sintering temperature of the milled tungsten powder on 
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temperatures of MC50 and MC500 powders in this study are very close to the prediction 

of the scaling law by using the above equation. Therefore, the scaling law is applicable to 

study the relationship between sintering temperature and particle size of high energy 

milled tungsten powders.  

Finally, the sinterablity of a powder depends not only on its particle size, but also on 

its grain size and internal strains. Comparing the as received 50 nm powder (C50) to the 

milled submicron powder (MC500) which has almost the same particle size (similar 

specific surface area) and the same onset of sintering temperature, one can see that the 

sinterability of MC500 is better than that of C50 (see Fig. 5.2 (b) and (c), Fig. 5.3). This 

result can be explained in terms of the grain size of these two powders. After milling, 

although the particle size of MC500 is similar to that of C50, the grain size of MC500 is 

smaller than that of C50 (Table 5.1). The smaller grain size results in more grain 

boundaries, hence more grain boundary diffusion during sintering of MC500 powder than 

during sintering of C50 powder, which leads to higher relative density for sintered 

MC500 than for C50. Further, because the MC500 powder was produced by ultrahigh 

energy milling, it is reasonable to expect that the MC500 powder had a large amount of 

internal strain energy. However, the data in Table 5.1 showed that the differences of 

lattice strains in these two powders were relatively small suggesting that the internal 

strain energy was not the most critical factor that determined the differences in their 

sintering behaviors. Nonetheless if a powder has all the attributes that are favorable for 

sintering, including the nanoscale particle size, nanoscale grain size, and internal strain 

energy, the sinterability of the powder would be most enhanced. The MC50 powder in 

this study is such an example with the most enhanced sinterability. 
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5.3 Conclusion 

In summary, the present work, for the first time, showed that nanocrystalline tungsten 

powders can be pressurelessly sintered to near full density at a temperature as low as 

1100 ºC under a hydrogen atmosphere. The ultrahigh energy method of milling was 

found to be critical to the sinterability of the powder. Ultrahigh energy milled nanosized 

tungsten powder exhibited extraordinary sintering enhancement compared to chemically 

synthesized nanosized tungsten powder. The enhanced sinterability can be attributed to 

the combined effects of nanoscaled particle size, grain size, deagglomeration, and internal 

strain energy.  
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CHAPTER 6 

SINTERING AND GRAIN GROWTH OF NANOSIZED  

TUNGSTEN POWDERS  

6.1 Introduction 

Chapter 5 discussed the size dependence of sintering behavior for different sized 

tungsten powders produced by chemical synthesis and mechanical milling. The results 

indicate that the particle refinement by high energy milling is a very effective approach to 

enhancing densification of tungsten powder, and the sinterability of nanosized tungsten 

powder produced by high energy milling is evidently superior to that of coarse tungsten 

powders. But, in Chapter 5, the detailed information regarding densification and grain 

growth of nanosized tungsten powder was not revealed. Therefore, in this chapter, the 

sintering and grain growth behavior of nanosized tungsten powder are examined and 

highlighted in order to identify the uniqueness in sintering of nanosized powder. Since 

most kinetic processes during sintering of nanosized powder have been completed before 

reaching normal sintering temperature (e.g., MC50 in Fig 5.3), this chapter place a great 

emphasis on studying densification and grain growth during early stage of sintering at 

low temperatures.  
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6.2 Powder Characteristics 

As introduced in Chapter 4, the powders used for this section are A-W: as-received 

tungsten powder, M6-W: 6 hours milled tungsten powder and M12-W: 12 hours milled 

tungsten powder. The characteristics of “A-W” and “M12-W” powders are compared 

with respect to particle morphology, particle size and agglomeration.  

Fig. 6. 1 contains SEM images of A-W and M12-W powders showing particle size 

a.A-W b.A-W 

c.M12-W d.M12-W 

 

Fig. 6. 1 SEM images of both A-W powder (a, b) and M12-W powder (c, d) with 
different magnifications 

1µm 

500nm 

100nm 

200nm 



87 

 

and particle morphology. The A-W powder exists in two forms (Fig. 6. 1 a): one consists 

of some relative large particles (< 500nm); the other is agglomerates of very fine particles 

(the agglomerate size is about 1 micron), and this form is more common. The fine 

particles in an agglomerate are outlined in Fig. 6. 1 b and its size is less than 100nm. 

After milling, both particles and agglomerates in A-W were crushed down to extremely 

fine powders (Fig. 6. 1 c). But agglomerates are still present, with size reduced from 1~2 

µm to approximate 200 nm (Fig. 6. 1 d).  

The A-W and M12-W powders were also subject to light scattering examination for 

particle size distribution and the result is shown in Fig. 6.2. It is clear that the A-W 

sample contains much coarser particles than the M12-W sample and the particle size 

Fig. 6. 2 Size distribution curves based on light scattering examination of A-W 
and M12-W 
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distribution is bimodal and wide in the A-W sample in contrast to unimodel and sharp 

distribution in the M12-W sample. The detailed information is summarized in Table 6.1. 

The b80 in the Table 6.1 is an indicator of the width of distribution, the larger the value 

the wider the distribution. It can be seen that the results of light scattering test reasonably 

reflected the observation results on SEM images in Fig. 6.1 as discussed above. 

The bimodal distribution in the A-W sample corresponds to the two forms of particle 

morphology in A-W: large particles and agglomerates of fine particles respectively. Fig. 

6.1 a and Table 6.1 show that mode 0.528-µm corresponds to large particles in A-W and 

mode 2.07-µm reflects agglomerates in A-W. It can be seen that the mode 2.07-µm, i.e., 

agglomerate, plays major role in A-W due to its high volume percentage (>80%). For the 

milled powder M12-W, the dominent mode 0.177-µm (>97 volume percentage) in Table 

6.1 is related to the agglomerates observed in Fig. 6.1 d, with the agglomerates’ size by 

Sample 

Microtrac, (µm) 

10% 50% 90% Distribution b80=(b90-
b10)/b50  

A-W 0.546 1.69 6.01 

bimodal  

Mode 2.07-µm (82.1 vol.%), width 3.85-µm 

Mode 0.528-µm (17.9 vol.%), width 0.22-µm 

3.23 

M12-W 0.122 0.180 0.366 

«almost» unimodal  

Mode 48.6-µm (3.2 vol.%), width 23.8-µm 

Mode 0.177-µm (96.8 vol.%), width 0.14-µm 

1.356 

Table 6. 1 Agglomerate size distribution measured by light scattering method 
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SEM observation corresponding well to mode size. Based on the light scattering results 

and SEM observation, it can be concluded that light scattering method can reflect 

precisely agglomerate size instead of primary particle size. The primary particle size 

needs to be determined using SEM images. In the following text, “agglomerate size” 

refers to the light scattering results and “particle size” refers to SEM results which will be 

discussed below.  

Table 6.2 lists particle size and grain size of A-W and M12-W powders by SEM and 

XRD measurement. It can be seen that particle size by SEM is similar to grain size by 

XRD method for A-W powder, implying each particle is a single crystallite. But for M12-

W powder, the measured particle size by SEM is little larger than the calculated grain 

size by XRD. The difference between XRD results and SEM results for M12-W powder 

may be due to the measuring error for SEM method because the extremely tiny particles 

are not clearly shown in SEM images. However, it can be seen that the difference 

between SEM and XRD is small and in the range of measuring error, so the starting grain 

size of M12-W powder can be reasonably believed to be around 20~30 nm in the 

following study. Comparing M12-W with A-W, we can see that milling process reduced 

both particle size and grain size from about 50 nm to 20~30 nm and crushed 2 µm 

Sample Particle size (nm) by SEM Grain size (nm) by XRD 

A-W 42 45 

M12-W 30 18  

Table 6. 2 Particle size by SEM and grain size by XRD 



90 

 

agglomerates down to 200 nm. The refinement by milling is very important in enhancing 

sinterablity of milled powder as described in Chapter 5.  

 

6.3 Densification of Nanosized Tungsten Powders 

Densification behavior is a primary concern for producing bulk nanocrystalline 

materials via sintering of nanosized powder because the purpose of sintering is to achieve 

fully densified parts. It has been usually found that due to the high surface to volume 

ratio, the densification behavior of nanosized powders is different from that of micron 

sized powders, e.g., the lower onset temperature of sintering, the faster densification rate. 

Besides these commonly observed differences, however, it is still necessary to further 

explore the detailed sintering behavior of nanosized powder and to determine if there is 

any other uniqueness or any different mechanism involved during sintering of nanosized 

powder. With this concern, the detailed densification process of nanosized tungsten 

powders (M12-W) during both nonisothermal heating process and isothermal holding 

period is presented in the following. Attention is paid to the unique characteristics during 

the early stage of sintering process. In addition, the effects of milling time and green 

density on densification of nanosized powder are also provided. 

6.3.1 Nonisothermal Densification 

Fig. 6.3 shows the change of the relative density of nanosized tungsten powder (M12-

W) compacts upon heating from 800 ºC to 1400 ºC. The density vs. temperature curve 

exhibits the typical “S” shape, illustrating the slow densification at low temperatures, 

very rapid densification after the temperature reaches above 1000 ºC, and the final stage 
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during which the rate of densification slows considerably after the relative density 

reaches above 90% at high temperatures (>1100 ºC). 

Based on Fig. 6.3, the evolution of density as a function of temperature can be viewed 

as consisting of three stages similar to sintering of micron sized powders: the initial, 

intermediate, and final stages. As shown in Fig. 6.3, the initial stage of sintering refers to 

the gradual increase of density at temperatures below 1000 ºC. The corresponding density 

change during this period is from 36% (green density) to 50%. The intermediate stage 

includes the rapid densification period between 1000 ºC and 1100 ºC. The majority of 

densification are completed during this stage, density being increased from 50% to 90%. 

 Fig. 6. 3 Nonisothermal densification behavior during heating up nanosized 
tungsten powder from 800 °C to 1400 °C 
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The final stage of sintering involves the continued densification with a decreased 

densification rate. Full or near full densification is achieved during this stage.  

One surprising result from Fig. 6.3 is that, with such a low green density (~36%), the 

compact can be sintered to near full densification. The low green density is the typical 

characteristic of nanosized powders. Unlike micron sized powder which can usually 

obtain more than 60% green density, nanosized powder can only achieve 30%-40% green 

density. The differences in green densities between micron sized powder and nanosized 

powder lead to different initial compact structures: micron sized powders have a 

relatively dense compact structure while nanosized powders have a very porous compact 

structure. So it is reasonable to believe that nanosized powders might have a different 

densification process compared with micron sized powders in the initial stage of 

sintering. Traditionally, the initial stage of sintering is considered to be a neck building 

process for micron sized powders, but for nanosized powders, the initial stage of sintering 

should experience not only neck bonding process but also other processes owing to the 

very porous initial structure. This issue will be further examined in following isothermal 

densification section. 

6.3.2 Isothermal Densification 

In order to further understand the sintering behavior of nanosized tungsten powders, 

isothermal experiments were carried out at different temperatures so that different 

sintering stages could be revealed, particularly initial stage. The isothermal densification 

evolution at different holding temperatures is shown in Fig. 6.4. The obvious feature in 

Fig. 6.4 is the clearly different sintering behaviors at low temperatures compared with 

high temperatures. At low sintering temperatures 950 ºC and 975 ºC, the sintered 
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densities increase slowly with a nearly linear relationship between sintered densities and 

holding time, implying an almost constant sintering rate during this period. This linear 

increase in density with time is uncommon and cannot be explained by traditional 

sintering theories. This phenomenon indicates that the initial stage of sintering of 

nanosized powders, as discussed in the previous section, is indeed different from that of 

micron sized powders due to the low green density. It can be seen that the sintered 

densities are still low after one hour’s sintering at these low temperatures, 51% for 950 ºC 

and 67% for 975 ºC. At high temperatures 1050 ºC and 1100 ºC, the sintering curves 

Fig. 6. 4 Isothermal densification behavior of nanosized tungsten powder at 
different holding temperatures 
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appear to be normal, with densification rate decreasing with time. For example, at the 

beginning of sintering at 1050 ºC, the densification rate is very rapid, then decreases 

continuously with time, and finally becomes close to zero when near full densification is 

achieved after 30 minutes holding. At 1100 ºC, full densification is able to be obtained 

within only 15 minutes holding. Again, it should be emphasized that sintering at low 

temperatures shows very different densification behaviors compared with sintering at 

high temperatures. 

Besides the sintering temperatures 950 ºC, 975 ºC, 1050 ºC, 1100 ºC, a very special 

temperature needs to be discussed separately, i.e., 1000 ºC. Unlike the sintering behavior 

at either low temperatures 950 ºC, 975 ºC or high temperatures 1050 ºC, 1100 ºC, the 

densification curve at temperature 1000 ºC appears to be a combination of densification 

behaviors at both lower temperatures and higher temperatures. It can be seen that the 

curve at 1000 ºC exhibits linear densification at the beginning of holding and then 

transforms into normal densification after a transition period. Fig. 6.4 shows that the 

transition from linear densification to normal densification seems to be occurring at 

around 50% density which actually corresponds to transition from initial stage of 

sintering to intermediate stage of sintering illustrated in Fig. 6.3. Accelerated 

densification starts after the transition. The sintered density at 1000 ºC starts with a value 

about 45% and ends with a value close to 90% after 1 hour holding, which exactly covers 

two stages of sintering – initial stage before 50% density and the entire intermediate stage 

between 50% and 90% densities. 

Based on the above results, we can summarize the characteristics of densification 

behavior during sintering of nanosized tungsten powders: 
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1. Nanosized powders have very low green densities which affect densification 

behavior during sintering, especially initial stage of sintering. 

2. Sintering of nanosized powder can also be divided into three stages – initial 

stage, intermediate stage and final stage, but each stage may be different from 

that of micron sized powder due to the low green densities and small particle 

sizes.  

3. During initial stage of sintering at low densities (<50% relative density), the 

kinetics of densification appears to be linear, which is different from the kinetics 

at intermediate and final stages of sintering when density is higher than 50%.  

4. A transition from the nearly linear densification behavior to normal densification 

behavior can be found between initial and intermediate stages of sintering, which 

may indicate different mechanisms for these stages.  

5. Intermediate stage of sintering is very rapid and majority of densification is 

completed during this stage. 

6. Full densification can be achieved even with very low initial green densities 

(e.g., 36%). 

6.3.3 Effects of Milling Time on Densification 

In order to explore the effects of milling time on densification, 6 hours milled powder 

(M6-W) and 12 hours milled powder (M12-W) were sintered under the same 

nonisothermal and isothermal conditions for comparison. 
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Fig. 6.5 shows the nonisothermal densification behaviors for both powders from 800 

ºC to 1400 ºC. It can be seen that both powders have similar densification behaviors, 

especially during initial stage of sintering before 1000 ºC and final stage of sintering after 

1250 ºC. The main difference results from the intermediate stage of sintering, during 

which the acceleration of densification for 6 hours milled powder is behind that for 12 

hours milled powder, implying sinterablility is more enhanced for 12 hours milled 

powder. But with respect to final sintered densities, both powders can achieve same and 

near full densification after being heated to high temperatures. Based on the 

nonisothermal experimental results, the effects of milling time on sintering are primarily 

Fig. 6. 5 Effects of milling time on densification during nonisothermal heating 6 
hours and 12 hours milled powders 
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located at intermediate stage of sintering, and there is no effect on final sintered densities.  

The effects of milling time on densification were further examined by isothermal 

sintering experiments. The isothermal sintering behaviors for both powders are compared 

in Fig. 6.6. It can be seen that both powders show nearly the same linear densification 

behaviors at 950 ºC, indicating linear densification behavior during initial stage of 

sintering is not affected by milling time. At 1000 ºC, both powders also exhibit similar 

sintering behavior – initially linear densification at the beginning of holding and then 

normal densification behavior after transition from initial stage of sintering to 

intermediate stage of sintering. However, 12 hours milled powders can reach higher 

Fig. 6. 6 Effects of milling time on isothermal densification at different holding 
temperatures for 6 hours and 12 hours milled powders 
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sintered densities than 6 hours milled powders especially during intermediate stage of  

sintering, which is in accordance with the findings in Fig. 6.5 for nonisothermal 

densification behavior. The differences in sintered densities during the intermediate stage 

of sintering are also observed at 1050 ºC and 1100 ºC. Nevertheless, when the sintered 

density exceeds 90%, the differences in sintered densities for the two powders diminish 

and both powders can reach full densification at the same time (see the curves at 1050 ºC 

and 1100 ºC in Fig. 6.6).   

In short, based on the above results, the overall sintering behaviors for 6 hours milled 

powder and 12 hours milled powder have no substantial differences, and the milling time 

has only limited effects on the intermediate stage of sintering and no effect on the final 

sintered density. 

6.3.4 Effects of Green Density on Densification 

The effect of green density on sintering behavior was examined by heating samples 

with different green densities (31%, 36%, 40%) to a series of temperatures then cooling 

down directly without holding, see Table 4.5. Using this method, the density evolutions 

as a function of temperature for the samples during heating up are recorded and compared 

in Fig. 6.7.  

It can be seen from Fig. 6.7 the initial differences in green density remained very well 

at the beginning of sintering before 1000 ºC; then once the intermediate stage of sintering 

started after 1000 ºC, accelerated densification decreased partial differences in density 

between temperature 1000 ºC and 1100 ºC; finally the differences in density were 

diminished and eliminated after 1250 ºC during late stage of sintering. According to this 

result, it can be summarized that the effect of green density on sintered density is 
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apparent during initial and intermediate stages of sintering, the higher green density 

leading to the higher sintered density during these processes; while the initial differences 

in green density are depleted during late stage of sintering, resulting in convergence of 

three curves in Fig. 6.7 eventually. It should be mentioned that all the samples can 

achieve nearly full densification at 1400 ºC regardless of initial different green densities, 

which indicates the excellent sinterability of high energy milling treated tungsten powder.  

In addition to the above results, Fig. 6.7 also shows another phenomenon that needs 

to be discussed here. Even though green density has some effects on densification 

especially during initial and intermediate stages of sintering, the overall densification 

behaviors are not altered significantly due to the three different starting densities. This 

Fig. 6. 7 Effects of green density on densification during heating up process 
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may be attributed to the fact that the difference in green densities (~10%) is not large 

enough to dramatically change sintering behavior of the nanosized tungsten powders. In 

this study, the highest green density is 40%, which is still too low to overcome the initial 

slow densification period before reaching 50% density, see Fig. 6.7. The author believes 

that if the green density is high enough to surpass the initial stage of sintering, e.g., at 

least larger than 50% according to Fig. 6.7, the overall sintering behavior would be 

evidently changed. However, increasing green density over 50% is a big challenge for the 

nanosized tungsten powder used in this study.  

6.4 Grain Growth of Nanosized Tungsten Powders 

Grain growth is a critical factor in producing bulk nanocrystalline materials from 

sintering nanosized powders. The goal of sintering nanosized powders is not only to 

accomplish fully desified sintered parts but also to retain nanoscaled grain size after 

sintering. However, this goal has hardly been reached in practice during the past two 

decades because rapid grain growth during sintering always leads to loss of nanoscaled 

grain size. Grain growth and densification are two very important processes during 

sintering. Section 6.3 discussed the densification process and showed that the 

densification of nanosized tungsten powder was greatly enhanced and full densification 

could be achieved. In order to understand and control grain growth process, this section 

will focus on investigating the grain growth behavior during sintering of nanosized 

tungsten powders. The grain growth during both nonisothermal heating and isothermal 

holding processes will be examined, with special emphasis on grain growth during initial 

and intermediate stages of sintering. Further, the effects of milling time and green density 

on grain growth will also be inspected.  
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6.4.1 Nonisothermal Grain Growth 

Grain growth during heating up nanosized tungsten powders from 800 ºC to 1400 ºC 

is illustrated in Fig. 6.8. The corresponding density curve is also shown in Fig. 6.8 in 

order to clarify the grain growth characteristics during different stages of sintering. The 

initial grain size of the milled powder is around 20~30nm, which remains unchanged up 

to 800 ºC. From 800 ºC to 1100 ºC, which corresponds to initial and intermediate stages 

of sintering, the grain growth is slow, see Fig. 6.8; but once density exceeds 90% after 

1100 ºC, grain size rapidly increases and final grain size reaches around 5 µm after 

heating up to 1400 ºC, indicating very rapid grain growth during final stage of sintering. 

As Fig. 6.8 demonstrates, the grain growth before 90% density (hereafter denoted as 

Fig. 6. 8 Grain growth during nonisothermal heating nanosized tungsten powder 
from 800 °C to 1400 °C 
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“initial grain growth”) is minor compared with the grain growth after 90% density 

(hereafter denoted as “normal grain growth”), so more attention should be paid to the 

latter one in order to control grain size in the sintered state. This explains why most 

traditional literature dealt with normal grain growth during final stage of sintering after 

90% density and why many theories have been developed for this part of grain growth. 

However, for sintering of nanosized powder, even though the initial grain growth is small 

and slow compared with normal grain growth, it may still be sufficient to lead to loss of 

nanoscaled grain size. For example, in this study, grain size was increased from about 20-

30 nm to more than 400 nm during initial and intermediate stages of sintering before 

reaching 90% density, which sufficiently exceeds the required grain size for 

nanocrystalline materials. This phenomenon implies that the initial grain growth is also 

crucial for sintering of nanosized powder and can not be neglected. However, the process 

of the initial grain growth has been rarely studied, so the details of this part of grain 

growth need to be revealed. 

The detailed process of initial grain growth is shown as a function of temperature 

during heating up in Fig. 6.9. It can be seen that grain growth is relatively slow at the 

beginning of sintering at low temperatures, although the grain size increased from 20-30 

nm to about 100 nm when the temperature reached 1000 ºC; and then accelerated grain 

growth occurred resulting in the loss of nanoscale grain sizes. This initial grain growth 

behavior apparently has the same feature as the normal grain growth process. However, it 

is not clear if the mechanisms and kinetics of the initial grain growth are the same as the 

normal grain growth. Because of the large surface area to volume ratio of nanosized 

powders and the extremely porous structure of green compacts of nanosized powders, it 
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is reasonable to expect the mechanisms and kinetics of the initial grain growth process 

may be different from those in less porous or near dense materials during the final stage 

of sintering. A more detailed analysis of the kinetics and mechanisms of the 

nonisothermal initial grain growth process will be presented in Chapter 7.  

6.4.2 Isothermal Grain Growth 

Although the nonisothermal sintering experiments as described above provide a 

realistic view of the grain growth process during sintering of nanosized powders, it is 

difficult, however, to study the kinetics of the grain growth directly using the 

nonisothermal experiments because both temperature and time change simultaneously. 

Isothermal sintering experiments were thus designed and carried out at different 

Fig. 6. 9 Grain growth during initial and intermediate stages of sintering before 
90% density 
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temperatures to gain more insights on the kinetics of the initial grain growth process and 

compare the differences of kinetic behaviors between the initial grain growth and normal 

grain growth processes. Fig. 6.10 shows the results of isothermal sintering and grain 

growth experiments at 950 ºC, 1000 ºC, 1050 ºC and 1100 ºC, respectively. The 

corresponding density changes are 40%-51% at 950 ºC, 45%-89% at 1000 ºC, 60%-98% 

and 90%-98% at 1100 ºC, respectively.  

The sintering was in the initial stage at 950 ºC, initial to intermediate stage at 1000 

ºC, intermediate to final stage at 1050 ºC, and final stage at 1100 ºC. Fig. 6.10 shows that 

Fig. 6. 10 Grain growth during isothermal holding at different temperatures 
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grain growth appears to be linear with time at low temperatures 950 ºC, 1000 ºC, and 

1050 ºC, but becomes normally parabolic when the temperature surpasses 1100 ºC. These 

results imply that the kinetics of grain growth during the initial, intermediate and even the 

beginning of the final stages of sintering is different from that of the grain growth during 

the final stage of sintering at high temperatures. The difference in kinetic behavior 

between initial and normal grain growth during isothermal sintering is a significant 

finding that may suggest different mechanisms of grain growth during the initial stages of 

sintering. In Chapter 7, detailed analysis of the grain growth data will be carried out to 

shed more light on the exact kinetic behavior of the initial grain growth process and 

possible corresponding mechanisms.  

6.4.3 Effects of Milling Time on Grain Growth 

The effects of milling time on grain growth were examined by comparing 6 hours 

milled powder with 12 hours milled powder, and both of them were sintered under the 

same conditions. Fig. 6.11 shows the nonisothermal grain growth behaviors for both 

powders from 800 ºC to 1400 ºC. It can be seen that the overall grain growth behaviors 

were similar for both powders during entire sintering process. The only difference is that 

the 12 hours milled powder starts leading in grain size compared to the 6 hours milled 

powder from 1000 ºC until temperature 1400 ºC where both powders reach similar grain 

size again. This lead in grain size for 12 hours milled powder is possibly related to its 

earlier occurrence of rapid densification during nonisothermal heating, see Fig. 6.5. 
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The effect of milling time on grain growth is further examined by isothermal 

experiments as well, see Fig. 6.12. It is clear that both powders show linear grain growth 

behavior at temperature 950 ºC, 1000 ºC, 1050 ºC and parabolic grain growth behavior at 

temperature 1100 ºC. The isothermal experiments show once again that the overall trend 

in grain growth is similar for both powders. It should be mentioned here that the 

uncommon linear grain growth behavior at low temperatures is present not only for 12 

hours milled powder but also for 6 hours milled powder. Fig. 6.12 also illustrates that, at 

1050 ºC and 1100 ºC, grain growth curves for 6 hours milled powder are deviated from 

those for 12 hours milled powder, which is also in accordance with the previous 

Fig. 6. 11 Effects of milling time on nonisothermal grain growth during heating 
up 
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nonisothermal results that 12 hours milled powder started leading in grain size once the 

intermediate stage of sintering began after 1000 ºC.  

In general, the effects of milling time on grain growth are not substantial. The grain 

sizes during intermediate stage of sintering are slightly affected by the milling time, but 

the overall grain growth behavior and the final grain size after sintering are insensible of 

milling time, especially at low temperature sintering.  

6.4.4 Effects of Green Density on Grain Growth 

Three different initial green densities, 31%, 36%, 40%, were used to examine the 

effects of green density on grain growth. The samples with different green densities were 

Fig. 6. 12 Effects of milling time on isothermal grain growth at different 
temperatures 
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heated up to a series of temperatures then cooled down directly without holding, and then 

the grain sizes were measured as a function of temperature (Fig. 6.13). Fig. 6.13 

illustrates the dependence of grain sizes on temperature for the samples with three 

different initial green densities. It can be seen that the grain sizes are similar at each 

temperature, which indicates that the effect of green density on grain growth is not 

obvious, or in other words, grain growth behavior is independent of green density. 

To further examine the effects of green density on initial grain growth at low 

temperatures, the grain growth during initial and intermediate stage of sintering before 

Fig. 6. 13 Effects of green density on grain growth during nonisothermal heating 
up process 
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1100 ºC is highlighted in Fig. 6.14. Fig. 6.14 shows effects of green density on initial 

grain growth are also negligible. In addition, Fig. 6.14 confirms the point that even the 

slow grain growth during the initial and intermediate stages of sintering can cause the 

loss of nanoscale grain size. 

6.5 Relationship Between Grain Growth and Densification 

In sections 6.3 and 6.4, the densification and grain growth behavior were described 

separately with respect to factors such as temperature and time, milling time and green 

density. During sintering, densification and grain growth are not independent processes, 

Fig. 6. 14 Effects of green density on grain growth during initial and intermediate 
stages of sintering before 90% density 
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and they take place concurrently and interact with each other. Understanding the 

correlation between these two intertwined processes is thus of importance for grasping 

the overall sintering process, especially for proposing strategies for inhibiting grain 

growth and enhancing densification, which are the keys to achieving the goal of sintering 

of nanosized powders – full densification without losing nanocharacteristic grain size. 

This section will focus on the relationship between grain growth and densification during 

sintering of nanosized tungsten powders. The relationship between grain growth and 

densification is typically studied by plotting grain size vs. density curve, usually called 

“sintering trajectory”. The following will examine sintering trajectories under different 

conditions, such as nonisothermal heating, isothermal holding, different milling time and 

different green densities. 

6.5.1 Nonisothermal Sintering Trajectory 

The sintering trajectory during nonisothermal heating of 12 hours milled tungsten 

powder from 800 ºC up to 1400 ºC is depicted in Fig. 6.15. The corresponding 

temperature for each data point is labeled in the figure too. Overall, Fig. 6.15 shows the 

typical features of grain size versus density trajectory, i.e., minor grain growth before 

reaching 90% relative density and major grain growth after reaching 90% relative 

density. It can be seen that 1100 ºC seems to be a critical point at which the density 

reaches 90% and the grain growth accelerates dramatically, suggesting a transition from 

the intermediate stage of sintering to final stage of sintering. Based on the grain size 

versus density trajectory (Fig. 6.15), the grain growth can be viewed as consisting of two 

stages: 1) initial grain growth during initial and intermediate stages of sintering before 

90% relative density, 2) normal grain growth during the final stage of sintering after 
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reaching 90% relative density. The small initial grain growth before 90% density is 

attributed to open and interconnected pores during the initial and intermediate stages of 

sintering, which impede grain growth by pinning grain boundaries from migration; 

whereas during late stage of sintering, the pores become closed and isolated after relative 

density >90%, losing the ability of pinning effects on grain boundary. Rapid normal grain 

growth thus begins by grain boundary migration. Although the normal grain growth 

during final stage of sintering is dominant in the grain growth process, the initial grain 

growth cannot be neglected because it is still sufficient to lose nanocharacteristic grain 

size. Therefore, it is meaningful to study the relationship between grain growth and 

densification during initial and intermediate stages of sintering and investigate the 

Fig. 6. 15 Grain size vs. density sintering trajectory during nonisothermal heating 
up from 800 °C to 1400 °C 
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interaction between them within this period. Fig. 6.16 illustrates the dependence of grain 

size on density during initial and intermediate stages of sintering. It shows grain size has 

a linear dependence on density, and grain size increases from about 20 nm to more than 

400 nm with density increase from 36% to 90%. The linear relationship between grain 

size and densification before 90% density has also been observed in the literature [1, 2]. 

6.5.2 Isothermal Sintering Trajectory 

The dependence of grain size on densification during isothermal sintering is plotted in 

Fig. 6.17. Similar to Fig. 6.15, Fig. 6.17 also shows small grain growth during the initial 

Fig. 6. 16 Grain size and density relationship during initial and intermediate 
stage of sintering 
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and intermediate stages of sintering before 90% density and significant grain growth 

during final stage of sintering after 90% density. But when highlighting the sintering 

trajectory during initial and intermediate stages of sintering before 90% density, see Fig 

6.18, we find that the curve in Fig. 6.18 is not a single straight line, which is different 

form that in Fig. 6.16. Instead the curve in Fig. 6.18 can be viewed as consisting of two 

straight lines with different slopes, and a turning point can be found at around 50% 

density. The line before 50% density corresponding to initial stage sintering has higher 

slope, and the line between 50% and 90% density corresponding to the intermediate stage 

 

Fig. 6. 17 Dependence of grain size on density during isothermal holding at 
different temperatures 
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sintering has lower slope. It can be seen based on Fig. 6.17 and Fig. 6.18 that the 

dependence of grain size on density is different for each stage of sintering, which may 

imply that the mechanisms for grain growth and densification are varied in different 

stages of sintering.  

6.5.3 Effect of Milling Time on Sintering Trajectory 

The effect of milling time on sintering trajectory is examined using 6 hours milled 

powder and 12 hours milled powder. The sintering trajectories for 6 hours milled powder 

and 12 hours milled powder during nonisothermal heating and isothermal holding 

processes are plotted in Fig. 6.19 and Fig. 6.20, respectively.  Both figures show that the 

Fig. 6. 18 Relationship between grain size and density during initial and 
intermediate stages of sintering 
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Fig. 6. 19 Effects of milling time on grain size vs. density sintering trajectory 
during nonisothermal heating 

Fig. 6. 20 Effects of milling time on grain size vs. density sintering trajectory 
during isothermal holding at different temperatures 
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milling time has no effects on sintering trajectories because the shape of curves or the 

slope of lines remain the same for both powders. In addition, Fig. 6.20 also exhibits the 

dependence of sintering trajectory on sintering stages, different shapes being found 

corresponding to different sintering stages. 

6.5.3 Effect of Green Density on Sintering Trajectory 

The effect of green density on sintering trajectory is also examined in Fig. 6.21 by 

nonisothermal heating up. Since neither grain size nor sintered density is vulnerable to 

Fig. 6. 21 Effects of green density on sintering trajectories during initial and 
intermediate stages of sintering 
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green density during late stage of sintering, Fig. 6.21 focuses only on the sintering 

trajectory during initial and intermediate stages of sintering. It is clear that grain size and 

density have a linear relationship before 90% density regardless of initial green densities. 

Each green density corresponds to a straight line and the lines are separate but parallel to 

each other, implying that green density does not change the slope of the lines but only 

shift them. The shifting direction depends on the initial green densities, high green 

density shifting the line to right side and low green shifting it to the left. This shifting can 

be explained by the fact that sintered densities inherit the initial differences in green 

densities during the initial and intermediate stages of sintering but grain growth is 

independent of green densities. Therefore, with similar grain size, higher green density 

can yield higher sintered density, which accordingly shifts the grain size vs. density line 

to the right side, see Fig. 6.21.  

Overall, the effects of green density on densification and grain growth can be 

summarized as follows: 

� Densification is very sensitive to the initial green density with higher green 

density leading to higher sintered density;  

� Grain growth is not affected by green density, which is dependent on 

temperature;  

� Green density does not change the slope of sintering trajectory during initial and 

intermediate stages of sintering, but shifts the trajectory to the higher density side 

for the sample with higher green density.  
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These results advise us that the green density should be as high as possible so that 

high sintered density can be obtained with limited grain growth after the initial and 

intermediate stages of sintering.  

In summary, this chapter described the experimental results for densification, grain 

growth and sintering trajectory during nonisothermal heating and isothermal holding of 

the milled nanosized tungsten powders. The results revealed some characteristics of 

sintering of nanosized powders. The sintering of nanosized powders can be divided into 

three stages and each stage possesses its own features. During the initial stage of 

sintering, both grain growth and densification are slow and show an abnormally linear 

increase with time, which may be due to the initial low green density. During the 

intermediate stage of sintering, grain growth is still linear but densification becomes 

normal, indicating the change of mechanisms for densification during the intermediate 

stage of sintering. During the final stage of sintering, grain growth becomes normal 

parabolic while densification slows down due to the exhausted driving force at high 

densities, leading to the slope of sintering trajectory increasing rapidly and becoming 

infinite at near 100% density.  

Based on the above results, it seems that grain growth and densification during the 

final stage of sintering can be explained by the traditional sintering theories. However, 

the traditional theories fail to explain the linear grain growth behavior during initial and 

intermediate stages of sintering and the linear densification behavior during initial stage 

of sintering. The kinetics and mechanisms for these unique behaviors in grain growth and 

densification will be examined in Chapter 7.    
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CHAPTER 7 

KINETICS AND MECHANISMS OF DENSIFICATION AND GRAIN  

GROWTH OF NANOSIZED TUNGSTEN POWDER  

7.1 Introduction 

In Chapter 6, the experimental results for sintering of nanosized tungsten powder 

have been introduced with respect to basic characteristics of densification and grain 

growth under different conditions such as nonisothermal heating, isothermal holding. 

Further, the effects of milling time and green density on sintering and grain growth were 

also mentioned. In general, these results show the sintering of nanosized tungsten powder 

also consists of three sintering stages: initial stage, intermediate stage and final stage. But 

the initial stage is different from the traditional initial stage of micron sized powder due 

to the low green density of nanosized powders. The low green density results in very 

porous structure in green compact and thus affects the densification and grain growth 

behaviors during initial stage of sintering. The densification during the initial stage of 

sintering appears to have a linear densification behavior, which is a phenomenon that 

cannot be explained by classical sintering theories. Besides this phenomenon, grain 

growth also exhibits uncommon behaviors. The entire grain growth can be divided into 

two stages: initial grain growth during initial and intermediate stages of sintering and 

normal grain growth during final stage of sintering. The initial grain growth shows 

unusual linear grain growth behavior while the normal grain growth shows normal 
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parabolic grain growth behavior. The linear initial grain growth in this study is another 

phenomenon that can not be explained by traditional grain growth theories. So this 

chapter will focus on understanding these unique phenomena during sintering of 

nanosized tungsten powder. It should be noticed that the uniqueness in densification and 

grain growth for sintering of nanosized powder is mainly present during initial and 

intermediate stages of sintering. Accordingly, the densification and grain growth during 

initial and intermediate stages of sintering will be primarily analyzed in the following 

sections.  The kinetics of densification and grain growth will be evaluated respectively 

and the corresponding mechanisms for densification and grain growth will be discussed 

based on the kinetic analysis. Further, the microstructure evolution during sintering will 

also be revealed.     

7.2 Kinetic Analysis of Densification  

Before analyzing the densification results, the traditional sintering theories will be 

firstly introduced in order to provide the background on sintering kinetics. 

7.2.1 Brief Review of Sintering Theories  

Sintering kinetics has been a primary concern in powder metallurgy and the ceramic 

field because it can be used to predict sintering progress and direct practical manufacture. 

Since the 1950s, there have been many studies dealing with sintering kinetics in order to 

understand and predict the sintering process, so there have been accumulated numerous 

knowledge on sintering models, sintering rate equations and so on. Generally, these 

theories treated sintering as consisting of three stages – initial, intermediate, final – based 

on characteristics of microstructure evolution in the process of sintering, each stage 
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corresponding to some specific microstructure features. The initial stage of sintering 

features rapid interparticle neck growth process at the beginning of sintering with relative 

density increasing from green state up to 65%; the intermediate stage of sintering features 

continuous porosity with equilibrium pore shape during density change from 65% to 

90%; the final stage of sintering includes the rest of sintering after 90% density where the 

typical microstructure is the closed and isolated porosity. Since the microstructure 

characteristics are different for these stages, different sintering models have been 

developed corresponding to the different sintering stages.  

Kingery and Berg [1] developed the very famous two sphere model in 1955 to 

describe the kinetics of neck building process between two equal sized particles, which is 

usually used to analyze initial sintering kinetics. The general result derived from two 

sphere model for the initial sintering kinetics is: 
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where ∆L/L0 is the linear shrinkage, G is grain size, t is time, n is the exponent depending 

on the mechanism responsible for shrinkage, m is called Herring scaling law exponent, k 

is constant depending on temperature and the model geometry. The exponents m and n 

are important because their values can be used to determine the mechanism for sintering. 

Table 7.1 lists the values for n and m corresponding to different mechanisms. Obviously, 

if the values of m and n are known based on experimental data, the mechanism can be 

determined for the sintering. 
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In practice, density is more commonly used than shrinkage for kinetic analysis, so it 

is necessary to translate linear shrinkage into density. For isotropic densification, the 

linear shrinkage equation (7.1) can be translated into density change as the following 

expression: 

  
n

m
t

G

k

L

L







=
−

=
∆

=
∆

ρ
ρρ

ρ
ρ 0

0 3

1

3

1
                                          (7.2) 

where ρ is sintered density at time t, ρ0 is the sintered density at t=0. The equation (7.2) is 

usually used to evaluate n value by plotting 






 −

ρ
ρρ 0ln  v.s ln(t) according to following 

expression:  

Mechanism n m 

Surface diffusion 2/7 4 

Boundary diffusion  1/3 4 

Lattice diffusion from surface 1/2 3 

Lattice diffusion from grain boundary 2/5 3 

Vapor transport 2/3 2 

Viscous flow 1 1 

Table 7. 1 Possible value for n and m with respect to different mechanisms 
during initial stage of sintering  
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 n is obtained from the slope of line. It should be noted that the above equations (7.1~7.3) 

were derived based on initial stage of sintering, but many studies in literature expanded 

their applications to intermediate and final stages of sintering [2], which is inappropriate. 

The model for intermediate stage of densification was derived by Coble [3]. In this 

model, the typical microstructure for this stage was represented using tetrakaidecahedra 

with pore channels distributed along the edges. Based on this geometrical model, the 

rates of densification corresponding to grain boundary diffusion and lattice diffusion are 

expressed as follows, respectively: 

( )
( ) 42/11

*

G

TkA

dt

d

ρρρ
ρ

−
=                                                   (7.4) 

( )
3

*

G

TkA

dt

d

ρρ
ρ

=                                                          (7.5) 

where ρ is sintered density, t is time, A is constant, G is grain size, k(T) is constant related 

to temperature. Equation (7.4) corresponds to grain boundary diffusion dominated 

sintering and equation (7.5) corresponds to lattice diffusion dominated sintering. Since 

the relationship between G and ρ remains unknown, equation (7.4-7.5) cannot be 

integrated. So there is no analytical expression for the intermediate stage of sintering. 

The model for final stage of sintering was also developed by Coble [3] using similar 

approach to that for intermediate stage of sintering. But different from intermediate stage 

of sintering, the geometrical model for the final stage of sintering is the 
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tetrakaidecanhedron with spherical monosize pores at the corners, in contract to 

cylindrical pores along the edges for intermediate stage of sintering. Using this model, 

the kinetics of the final stage of sintering for grain boundary diffusion and lattice 

diffusion are obtained as: 

  
( )
4

*

G

TkA

dt

d

ρρ
ρ

=                                                      (7.6) 

( ) ( )
3

3/11*

G

TkA

dt
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ρ
ρ

ρ
ρ −

=                                           (7.7) 

Equation (7.6) is for grain boundary diffusion and equation (7.7) is for lattice diffusion. 

Again, without knowing the dependence of G on ρ, it is impossible to integrate the above 

equations and obtain analytical expressions for the final stage of sintering.    

Based on Kingery’s and Coble’s models, there have been many further explorations 

to sintering kinetics in literatures. These studies used the same strategies as Kingery and 

Coble but with more delicate considerations from both geometrical and mechanistic 

aspects [4-7]. For example, Zhao and Harmer [4] introduced a parameter of the number 

of pores per grain to their model for the final stage of sintering; Chu et al. [5] proposed 

the sintering stress parameter in the expression for densification rate; Hansen et al. [6] 

proposed a combined stage sintering model intending to describe the entire sintering 

process from initial to final stage. Although these explorations improved sintering models 

to some extent, all of these models yield the similar results to the Coble’s model except 

for more parameters included in the expressions. This implies that the primary factors 

that affect sintering kinetics are same for all of these models. So a general form can be 
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extracted to describe the sintering kinetics by summarizing the main factors for 

densification.  

The general form for sintering kinetics was firstly proposed by Wang and Raj [8] 

based on Young and Culter [9]: 

 
( ) ( )

nG

TkfA

dt

d ** ρρ
=                                                 (7.8) 

where A is a constant, G is grain size, 
( )

T

RTQ
Tk

/exp
)(

−
=  is temperature related 

function, f(ρ) is an unknown function of density, and n is the scaling exponent – 3 for 

lattice diffusion and 4 for grain boundary diffusion. According to equation (7.8), it can be 

concluded that the densification rate is mainly dependent on three factors: density, grain 

size and temperature. This simplicity is the result of using the unspecified f(ρ), which 

actually contains all the complex parameters in the model. Since f(ρ) is unknown and 

complex, it is usually assumed to be unchanged during sintering in practical kinetic 

analysis, especially for intermediate stage of sintering [6]. Further, if the empirical power 

law grain growth tTkGG nn )('0 +=  is introduced and the initial grain size G0 is 

negligible comparing with G, the equation (7.8) can be expressed as: 
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dt
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*
==

ρ
                                            (7.9) 

where ( )ρfAC *=  and
( )

)('
)(

Tk

Tk
TK = . After integration, a simple expression is obtained 

for isothermal sintering kinetics: 
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( )00 /ln ttk+= ρρ                                                    (7.10) 

where ρ0 is the density at an initial time t0, ρ is the density at time t, and k is a temperature 

dependent parameter. In practice, equation (7.10) is widely used to analyze isothermal 

sintering kinetics and found to be very successful in fitting the experimental data. 

The traditional sintering kinetics have been briefly described from above 

introduction, and next section will examine the sintering kinetics of nanosized tungsten 

powder to determine if the traditional sintering kinetics is applicable for analyzing 

kinetics of nanosized powder, and then the differences/uniqueness for nanosized powder 

will be identified.  

7.2.2 Analysis of Nonisothermal Densification  

This section will evaluate the kinetics of nonisothermal sintering during heating up 

process. The sintering behaviors have been introduced in section 6.3.1 (Fig. 6.3). The 

experimental data for the samples with initial green density 36% are chosen here for 

kinetic analysis. 

For nonisothermal sintering, the kinetics can be analyzed using equation (7.8). If the 

heating rate is a constant “c”, the general sintering kinetics equation (7.8) can be 

expressed as: 
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                                       (7.11) 
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Assuming f(ρ) is a constant, the activation energy Q can be obtained using the below 

equation by plotting 




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At each temperature T, the grain size G and densification rate dρ/dT are known based on 

experimental results, and if the value of n is also known, then the activation energy Q 

could be determined by plotting equation (7.12). Based on traditional sintering models, 

the value of n could be 3 for lattice diffusion and 4 for grain boundary diffusion, both of 

them being used for the following kinetic analysis.  

Applying both n values for equation (7.12), the fitting results are shown in Fig. 7.1. It 

can be seen that, for each n value, there is no single line which can fit all the data, and the 

data need to be treated as two parts, those at low temperatures (900 ºC -1000 ºC) and 

those at high temperatures (1050 ºC - 1250 ºC). As discussed in Chapter 6, the low 

temperatures before 1000 ºC represent the initial stage of sintering and high temperatures 

correspond to the intermediate and final stages of sintering. The fitting results show that 

the activation energy for high temperatures sintering (intermediate and final stages of 

sintering) is about 308 kJ/mol if n=3 and 498 kJ/mol if n=4; and the activation energy for 

low temperature sintering (initial stage of sintering) is 565 kJ/mol if n=3 and 662 kJ/mol 

if n=4. Comparing to the activation energy values reported in literature – 268~327 kJ/mol 

for surface diffusion [10-13], 383~460 kJ/mol for grain boundary diffusion [14, 15] and 

507~640 kJ/mol for lattice diffusion [16-18], the following remarks can be made with 

respect to the nonisothermal sintering kinetics of nanosized tungsten powders:  
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Fig. 7. 1 Evaluation of nonisothermal densification kinetics during heating up 
process by assuming (a) lattice diffusion and (b) grain boundary diffusion 



130 

 

1.) During intermediate and final stages of sintering at high temperatures, the activation 

energy 498 kJ/mol obtained using n=4 is reasonable because it is comparable to 

literature data for the grain boundary diffusion. Therefore, grain boundary diffusion  

should be believed to be the dominant mechanism for densification during 

intermediate and final stages of sintering. 

2.) For the initial stage of sintering at low temperatures, both n=3 and n=4 yield very 

high activation energies, the values corresponding to lattice diffusion which is not 

reasonable for sintering tungsten at such low temperatures. Thus, the traditional 

sintering models fail to explain the experimental data for the initial stage of sintering 

of nanosized tungsten powder in this study. 

The failure of traditional sintering models for analyzing the initial stage of sintering 

implies that initial sintering kinetics in this study does not follow the traditional sintering 

theory and should be explained using different doctrine. As the experimental results 

shown (see Fig. 6.4), the densification during initial stage of sintering appeared to exhibit 

a unusual linear behavior which can not be explained by traditional sintering models. In 

order to explore the mechanism for the densification during this stage of sintering, the 

linear sintering kinetics is used to evaluate this stage of sintering. The linear sintering 

kinetics can be expressed as: 
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where K(T) is a function of only temperature, C is a constant. So by plotting the 

following relationship, the activation energy can be obtained.  
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The fitting results using the above equation (7.14) are shown in Fig. 7.2. It is interesting 

to find that the data at high temperature (>1050 ºC) show a negative activation energy, 

which indicates that the linear sintering kinetics is not suitable for high temperature 

sintering, i.e., intermediate and final stages of sintering. On the other hand, the linear 

sintering kinetics fits well with the initial sintered densities at low temperatures, and the 

activation energy for the initial sintering is evaluated to be 284 kJ/mol. This activation 

energy value corresponds to surface diffusion according to literature data. Therefore, 

surface diffusion is believed to be the dominant mechanism for the initial linear 

densification, which is reasonable for the low sintering temperature. But traditional 

Fig. 7.2 Evaluation of nonisothermal densification kinetics using linear 
densification behavior 
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sintering theories believe that surface diffusion does not contribute to densification. This 

conflict will be discussed later in section 7.2.4. 

7.2.3 Analysis of Isothermal Densification  

After analysis of nonisothermal sintering kinetics, the primary mechanisms for 

different sintering stages have been recognized. This section will continue to evaluate the 

isothermal sintering kinetics in order to compare the analyzing results with nonisothermal 

sintering kinetics and further understand the sintering process at different stages. The 

experimental sintered density data at different holding temperatures were given in 

Chapter 6, see Fig. 6.4.   

First, the traditional sintering equations are used to evaluate the experiment results to 

check their validities. As described previously in section 7.2.1, traditionally, the 

isothermal sintering kinetics is usually evaluated using equation (7.3) and (7.10), so these 

two equations are used to fit the isothermal sintered data in this study. The fitting results 

using both equation (7.3) and equation (7.10) are shown in Fig. 7.3 (a, b) by plotting 

ln[(ρ-ρ0)/ρ] vs. ln(t) and ρ vs. ln(t), respectively. It is very clear, except for the data at 950 

ºC in Fig. 7.3 (a), that both equations are not satisfied with respect to fitting the 

experimental data into a straight line for the holding temperatures. For the data at 950 ºC 

in Fig. 7.3 (a), the linear fitting yields a value of n = 0.6692, which corresponds to vapor 

transport mechanism according to Table 7.1. However, since tungsten has the lowest 

vapor pressure among the family of pure metals [19], it is believed that vapor transport is 

impossible to be the mechanism for sintering and densification of tungsten material. 

Thus, Fig. 7.3 demonstrates that the traditional fitting equations cannot be employed to 

evaluate the isothermal sintering data in this study. 
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Fig. 7. 3 Analysis of isothermal densification data using traditional fitting sintering 
equations: (a) equation (7.3); (b) equation (7.10) 
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Second, since the initial sintering kinetics appears to be linear based on 

phenomenological observation (see Fig. 6.4), the following equation is applied to 

evaluate initial stage of sintering data: 

tTk )(0 += ρρ                                                    (7.15) 

Using the above equation to fit the sintered density data at 950 ºC, 975 ºC and the 

beginning sintered densities at 1000 ºC before transiting to intermediate stage of 

sintering, three different k(T) values are obtained corresponding to each temperature. 

Then by plotting ln[k(T)] vs. (1/T), the activation energy for initial stage of sintering is 

gained, see Fig. 7.4. The resultant activation energy is calculated to be 288 kJ/mol, which 

Fig. 7. 4 Evaluation results on densification during initial stage of sintering using 
linear sintering kinetics 
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is in accordance with the evaluated activation energy result from nonisothermal sintering 

data, both confirming that surface diffusion is the mechanism responsible for the initial 

linear sintering densification. 

Third, for intermediate stage of sintering, since there is no integrated analytical 

equation available to analyze the experimental data as described in section 7.2.1, another 

method is introduced here in order to evaluate the isothermal sintering data. By 

rearranging the equation (7.8), the following expression is achieved: 

( )
tTkd
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*

=



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


∫ ρ

ρ
                                            (7.16) 

For the same density ρ, the left side of the equation (7.16) can be regarded as a constant 

by assuming that grain size G is only dependent on density ρ which is, in fact, 

approximately true based on literature [20, 21] and the results in this study. By the way, it 

should be mentioned that the equation (7.16) is actually the essential idea for the concept 

of master sintering curve proposed by Su and Johnson [20], i.e., separating microstructure 

from kinetic parameters by putting all the microstructure related factors (e.g., G, ρ) on 

one side and all the experimental parameters (e.g., T, t) on the other side. The term k(T)t 

on the right hand side of equation (7.16) is called “master variable”. The mastering 

sintering curve states that the sintered density is only dependent on “master variable” 

which can have different combinations of k(T) and t.   

At different holding temperatures, the time needed to reach certain density is varied 

depending on the holding temperature. The dependence of holding time on temperature is 

described as following equation: 
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Based on equation (7.17), the activation energy is able to be assessed by plotting –ln(t) 

vs. (1/T). In this study, due to the limited experimental data, the time needed to reach the 

density ρ = 67% at different temperatures is chosen to evaluate the activation energy of 

intermediate stage of sintering, and the fitting results is shown in Fig. 7.5. The activation 

energy is found to be 495 kJ/mol for intermediate stage of sintering, indicating that grain 

boundary diffusion is the mechanism for intermediate densification. The same conclusion 

is also obtained from analysis of nonisothermal sintering kinetics. 

 

 

 

Fig. 7. 5 Calculation of activation energy for intermediate stage of densification 
using the data at 67% density 
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7.2.4 Sintering Mechanisms  

On the basis of the above discussions for both nonisothermal kinetics and isothermal 

kinetics, the sintering process and the mechanisms can be summarized here. 

The entire sintering process of nanosized tungsten powder in this study experiences 

three stages: initial, intermediate and final. Due to the characteristics of low green density 

of nanosized powder, the initial stage of sintering is exceptionally prolonged for sintering 

of nanosized powders which is an intrinsic difference in comparison with sintering of 

micron sized powders. The sintering kinetics during initial stage of sintering appears to 

be linear and the kinetic analysis shows surface diffusion is the mechanism responsible 

for the densification. These findings do not agree with the traditional sintering theories 

because linear sintering kinetics is not expected in traditional sintering experiences and 

surface diffusion does not contribute to densification based on the existing sintering 

models. Therefore, in order to explain the finding in this study that the surface diffusion 

contributes to linear densification phenomenon, the role of surface diffusion in sintering 

needs to be revisited. Actually, in recent years, some researchers have already noticed the 

effects of surface diffusion on densification of nanosized powders and claimed that 

surface diffusion can also lead to densification. Shi [22] did an in situ experiment of 

heating nanosized particles in TEM and observed that particle coarsening and sintering 

shrinkage occur as a result of surface diffusion. Chen [23] attributed the initial 

densification upon sintering of nanosized powders to surface diffusion by proposing a 

mechanism called “coarsening motivated repacking”. For this mechanism, Chen claimed 

whether or not particle coarsening can lead to repacking depends on if the solid frozen 

sintering skeleton is formed. For micron sized powders, the sintering skeleton is frozen 
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shortly upon sintering start because of the high compact green density. Once the solid 

sintering skeleton is formed, surface diffusion only changes the surface morphology of 

pores and has little effect on densification. However, the green density of nanosized 

powder is very low and a certain period of time will be required to form a solid sintering 

skeleton after sintering initiation. In this situation, the densification during this period is 

believed to be particle rearrangement induced by particle coarsening in the very porous 

compact state. It is reasonable for nanosized powders that surface diffusion is the 

predominant mechanism for particle coarsening at low temperature. Therefore surface 

diffusion is able to indirectly contribute to densification during sintering of nanosized 

powders. In this study, the finding that surface diffusion is responsible for the initial 

linear densification can also be rationalized using the mechanism of particle 

rearrangement by coarsening.  

For intermediate and final stages of sintering, the analysis of sintering kinetics shows 

grain boundary diffusion is the dominant mechanism for densification of sintering of 

nanosized tungsten powders. According to literature, grain boundary diffusion was also 

found to be responsible for the densification of micron sized tungsten powder [15, 24-

26]. Therefore, there are no substantial differences in densification mechanisms between 

nanosized powder and micron sized powder during intermediate and final stages of 

sintering. If the controlling mechanisms for densification are the same for both micron 

sized powder and nanosized powder, then the benefits in sintering behavior for nanosized 

powder can be explained by the Herring Scaling Law, which has been mentioned in 

Chapter 5. For example, nanosized powder has a lower onset of sintering temperature 

than micron sized powder, or nanosized powder can achieve full densification at lower 
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temperature comparing with micron sized powder. The advantage of using nanosized 

powder can be understood using the following scaling law equation: 

     
nG

Tk

dt

d )(
∝

ρ
                                                            (7.18) 

where n is the scaling exponent depending on mechanism, usually n = 3 for lattice 

diffusion and n = 4 for grain boundary diffusion. It can be seen that, for same 

densification rate, the smaller the particle sizes are, the lower the sintering temperatures 

are. 

Overall, the sintering mechanisms of nanosized tungsten powder in this study are 

surface diffusion for the linear densification during initial stage of sintering, and grain 

boundary diffusion for normal densification during intermediate and final stages of 

sintering with the benefits from fine grain size according to scaling law. 

7.3 Kinetic Analysis of Grain Growth   

It is well known that the goal of sintering of nanosized powder is not only to obtain 

full densification but also to remain nanosized crystallites. In order to achieve this goal, 

both densification and grain growth should be profoundly understood. The densification 

behavior and mechanisms have been analyzed and discussed in section 7.2, so the 

following context will be focusing on evaluating and analyzing the kinetics and 

mechanisms of grain growth process, starting with a brief review on classical grain 

growth theories.  



140 

 

7.3.1 Brief Review of Grain Growth Theories  

Classical grain growth in a single phase bulk material has been theoretically studied 

since the middle of last century. The thermodynamic driving force for grain growth in 

single phase bulk materials is the reduction of total grain boundary areas by grain 

boundary migration. As discussed in a very famous classic paper of the early 1950s by 

Burke and Turnbull [27], the kinetics of grain growth was firstly deduced from analyzing 

the movement of grain boundaries with assumption that the velocity of grain boundary 

movement (v ) is proportional to the product of grain boundary mobility ( M ) and driving 

force (F ): 

MFv∝                                                           (7.19) 

where v is velocity of grain boundary movement which is taken to be proportional to 

instantaneous rate of grain growth dG/dt (G is grain size, t is time); M is grain boundary 

mobility, M=D/(kT) (D is diffusion coefficient, k is Boltzman constant, T is absolute 

temperature); F represents driving force for boundary migration which is proportional to 

curvature of grain boundary ~1/G in a single phase bulk material, then  

GkT
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where A is a constant, and kG(T)=AD/k.  
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Equation (7.21) is the typical rate equation of grain growth for normal grain growth in 

a single phase bulk material. For isothermal holding, equation (7.21) can be integrated 

into the common parabolic grain growth law: 

KtGG =− 2
0

2                                                       (7.22) 

where K=kG(T)/T, G0 is initial grain size at t=0. Equation (7.22) is usually followed in the 

case of pure single phase bulk materials. However, equation (7.22) is not omnipotent to 

describe all experimental grain growth data due to the fact that grain growth behavior in 

reality is determined not only by curvature of grain boundary but also by many other 

factors such as impurity, second phase, vacancy, porosity etc. For example, the effects of 

remaining porosity on grain growth during final stage of sintering had been studied 

extensively in literature [28-32]. The interaction between pores and grain boundaries 

results in two situations: one is that boundary and pore attach together and move forward 

at the same time; the other is boundary can break away from pore and migrate as in single 

phase bulk materials. Obviously, the latter case has the same grain growth behavior as 

equation (7.22) for a bulk material, but in the first case, grain growth kinetics is chiefly 

dependent on pore migration kinetics. The mechanisms for pore migration could be 

surface diffusion, vapor transport or lattice diffusion which are different from that of 

boundary migration. Accordingly the grain growth kinetics is changed to be controlled by 

the mechanisms of pore migration. Interestingly, no matter whether the grain growth is 

pore control or boundary control, the kinetics of grain growth is found to follow a 

generalized power law grain growth equation which, by using different n values, can fit 
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all the situations and describe the grain size data successfully in almost all the isothermal 

experiments, i.e., 

KtGG nn =− 0                                                     (7.23) 

where n varies depending on several factors such as material systems, temperature, 

impurity, second phase, porosity and so on. Table 7.2 summarizes the exponent n for the 

various mechanisms [32]. For instance, the exponent n was reported to be either n = 3 or 

4 in literature [30, 31, 33, 34] for the final stage of sintering. Recently, it was also 

revealed that grain growth kinetics needs to be described by noninteger exponents, 

somewhere between 3 and 4 [35].   

It should be noticed from the above contents that the grain growth has been 

intensively studied in bulk materials or in final stage of sintering. According to grain size 

vs. density trajectory, it has been always shown that grain growth in the final stage of 

sintering is significant and accounts for the majority of grain growth during sintering. So 

it is reasonable that grain growth in the final stage of sintering has been focused on in the 

literature in order to control final grain size in the sintered components. This is especially 

true in the case of sintering coarse sized particles where grain growth in initial and 

intermediate stages might be neglected. Nevertheless, for sintering of nanosized powder, 

although grain growth in final stage of sintering is still dominant during the entire grain 

growth process, the amount of grain growth in initial and intermediated stages is not 

negligible but sufficient in many cases to cause the material to lose its nanocrystalline 

characteristics. 
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Table 7. 2 Grain growth exponent n in the equation Gn - G0
n = Kt for various 

mechanisms 

 

Mechanism Exponent m 

Pore control  

     Surface diffusion 4 

     Lattice diffusion  3 

     Vapor transport (vapor pressure p = constant) 3 

     Vapor transport (p = 2γsv/r) 2 

Boundary control  

     Pure system 2 

     System containing second-phase particles  

          Coalescence of second phase by lattice diffusion 3 

          Coalescence of second phase by grain boundary diffusion 4 

          Solution of second phase 1 

          Diffusion through continuous second phase 3 

     Doped system  

          Solute drag (low solubility) 3 

          Solute drag (high solubility) 2 



144 

 

In contrast to grain growth in the final stage of sintering, the grain growth in the 

initial and intermediate stages of sintering has seldom been studied and is not of course 

well understood. Because the characteristics of microstructure in initial and intermediate 

stages of sintering are interconnected open pores instead of isolated close pores in final 

stage of sintering, grain growth process in initial and intermediate stages of sintering 

could be different from that in the late stage. Greskovitch and Lay [36] and Lange and 

Kellett [37] proposed a two step grain growth mechanism qualitatively describing the 

grain growth process in very porous compact during initial and intermediate stages of 

sintering. In very porous compacts, grain boundary is pinned by the neck groove and its 

motion induces an increase in its area and is not energetically favorable. The first step in 

the coarsening is to fill the neck and increase the size ratio between the adjacent particles 

by interparticle mass transport, and the second step will start until the size ratio reaches a 

critical value which enables grain boundary migration without increasing its area. This 

model did not provide quantitative kinetics of grain growth for initial and intermediate 

stages of sintering. To the best knowledge of the author, there have so far been no 

specific models that are designed to quantitatively describe grain growth kinetics during 

initial and intermediate stages of sintering, as a result, the general power law grain 

growth equation (7.13) has been still commonly employed to fit any stage of grain 

growth for simplicity.    

Greskovitch and Lay [36] showed that the classical power law grain growth equation 

was still applicable to fit the experimental Al2O3 data using exponent n values from 2 to 

3, but Shi [38] reported that grain size data in TZP and YSZ compacts cannot be fitted 

with the powder law grain growth equation, but with a linear relation between grain size 
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and logarithm of time. This discrepancy indicates the complexity of the grain growth 

during initial and intermediate stages of sintering. 

In this study, we will put emphasis on evaluating grain growth during initial and 

intermediate stages of sintering and try to explore the mechanisms for this period of grain 

growth. Grain growth in the final stage of sintering is not the focus of this study since it 

had been studied well in literature. Both nonisothermal grain growth and isothermal grain 

growth will be examined during initial and intermediate stages of sintering using 

generalized grain growth equation (7.23). Based on equation (7.23), the generalized grain 

growth rate equation can be written as: 

11

)(
−−

==
n

G
n TnG

Tk

nG

K

dt

dG
                                              (7.24) 

For isothermal condition, integration of equation (7.24) returns to equation (7.23). 

However, for nonisothermal grain growth, e.g., constant-rate-heating experiment, the 

integration of equation (7.24) is more complicated than that in the case of isothermal 

kinetics. Therefore, the following discussion focuses on developing mathematical 

methods for kinetic analysis of nonisothermal grain growth with constant heating rate. 

7.3.2 Analysis of Nonisothermal Grain Growth 

Using the generalized grain growth rate equation (7.24) and substituting β = dT/dt to 

the equation, where β is the constant heating rate, a universal expression of grain growth 

rate as a function of temperature is shown as equation (7.25) 
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where QG is the activation energy for grain growth. Equation (7.25) will be used for 

following discussion of kinetic analysis of nonisothermal grain growth. By collecting 

grain size data at different temperatures from nonisothermal grain growth experiments, 

the kinetic parameters (e.g., n and QG) for grain growth can be simply determined using 

the following two mathematical methods – differential method and integral method. 

Differential method. Differential method is referred to using differential equation, i.e., 

rate equation, e.g., equation (7.25), directly to obtain kinetic parameters n and QG. In this 

method, equation (7.25) needs to be rearranged to form equations as following: 
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By plotting ( ) 
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.ln1ln based on equation (7.27) using different n 

values, the best linear fitting regression identifies the value of n, and the activation energy 

QG is determined from the slope of linear line. 

Integral methods. Integral method indicates that an analytical equation deduced from 

integration of a differential equation is used to evaluate kinetic parameters. The 

traditional isothermal grain growth kinetics is typically analyzed using this method. In 
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case of isothermal kinetics of grain growth, the analytical equation (7.23) is commonly 

applied to obtain the values of n and K at different temperatures, and then the activation 

energy is determined by utilizing the linear relationship between ln(K) and 1/T. However, 

in the case of nonisothermal kinetics of grain growth, to obtain an analytical equation 

similar to equation (7.23) is a challenge since the temperature integral on the right side of 

below equation (7.28) is unable to be analytically solved.  

dT
RT

Q

T

k
GG

T

T

GGnn ∫ 







−=−

0

exp
10

0 β
                                     (7.28) 

In order to use this method for nonisothermal kinetics of grain growth, the integration 

of temperature integral has to be provided. Actually, the temperature integral has been 

studied in many literatures on phase transformation, chemical reaction analysis, thermal 

decomposition etc. [39-44], and various approximation forms were deduced in order to 

precisely represent the temperature integral. According to literature [45], in case of the 

activation energy QG>>RT and T>>T0, the temperature integral can be expressed in the 

following term without sacrificing precision.  
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Then an analytical equation (7.30) can be obtained and this equation acts as description 

of grain growth behavior as a function of temperature in a constant heating experiment.  
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After rearrangement of equation (7.30), the value of n and QG can be easily determined 

by plotting 







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 −

T
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GG nn 1
.ln 0  according to equation (7.31). Similar to the discussion in 

the section of differential method, n is evaluated based on the best linear regression 

coefficient, and QG is calculated from the slope of the linear line. 

In this investigation, both differential method and integral method will be applied to 

examine the nonisothermal kinetics of grain growth during heating up of nanocrystalline 

tungsten powders at 10 ºC/min. 

The kinetics of nonisothermal grain growth during initial and intermediate stages of 

sintering is evaluated using the grain size data from 800 ºC to 1100 ºC in Fig. 6.9. Both 

differential method and integral method described above are applied by plotting 

“ln(TdG/dT)-(1-n)lnG v.s 1/T” and “ln[(G n-G0
n)/T] v.s 1/T” respectively using different 

grain growth exponent “n”  values. The linear regression fitting results for “n”  ranging 

from 1 to 5 are summarized in Table 7.3. It can be seen that both methods yield the same 

conclusion: the best fitting is gained when n = 1. This conclusion means linear grain 

growth behavior in the initial and intermediated stages of sintering process. The fitting 

results for both methods with n = 1 are demonstrated in Fig. 7.6. The activation energies 

are calculated to be 186 kJ/mol using differential method and 226 kJ/mol using integral 

method. Both values are close to but lower than the activation energy of surface diffusion 
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Grain growth exponent n=1 n=2 n=3 n=4 n=5 

Differential method 0.9997 0.9813 0.9642 0.9523 0.9439 

Integral method 0.9850 0.9843 0.9673 0.9517 0.9399 

Fig. 7. 6 Analysis of the kinetics of nonisothermal grain growth during initial and 
intermediate stages of sintering by using both (a) differential method and (b) 
integral method 

Table 7. 3 Regression fitting coefficient <R2> using different grain growth 
exponent values for both differential method and integral method 
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in pure tungsten, the latter being reported in literature to be 268-327 kJ/mol [10-13]. The 

low activation energy in this study may be attributed to nonequilibrium microstructures 

arising from high energy mechanical milling. Overall, surface diffusion can be regarded 

as responsible for the grain growth process during initial and intermediate stages of 

sintering.      

7.3.3 Analysis of Isothermal Grain Growth 

In order to further understand grain growth behavior of nanosized tungsten powders 

during sintering, kinetics of isothermal grain growth are analyzed for comparison with 

nonisothermal grain growth results. The grain size data have been given in Fig. 6.10. 

According to the fitting results using “(Gn-G0
n) vs. t” with different n values, it turns out 

that n = 1 is the best fit for grain growth at 950 ºC, 1000 ºC and 1050 ºC, and n = 2 

becomes the best fit at 1100 ºC. These results indicate that grain growth is linear during 

initial and intermediate stages of sintering and then transforms to parabolic grain growth 

law during final stage of sintering at high temperatures. It is in accordance with the 

analysis of nonisothermal grain growth results showing a linear grain growth behavior in 

the very porous compacts before 90% relative density.  

It should be noted that isothermal grain growth kinetics is usually analyzed using the 

initial grain size at room temperature as the starting data point G0 for all the holding 

temperatures in most studies without taking into account the grain growth during heating 

up process to the preset isothermal holding temperature. This approximation may stand 

for when grain growth during heating up is negligible, but in the case of nanosized 

grain/particles, it is not holding because sufficient grain growth will occur during the 

heating up process. For example, if the initial grain size at room temperature is used as G0 
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in this study, the grain growth curves with a constant starting point are shown in Fig. 7.7. 

For comparison, grain growth curves with consideration of grain growth during heating 

up are also displayed in the same figure. Obviously the grain growth curves exhibit 

nonlinear growth behavior at 950 ºC and 1000 ºC when constant G0 is used, and 

analyzing results show the best fit goes to n = 2 (dot line) instead of n = 1 if grain growth 

during heating up is considered (solid line). The comparison in Fig. 7.7 shows that 

neglecting grain growth during heating up could yield misleading information regarding 

Fig. 7. 7 Comparison of the fitting results for isothermal grain growth at low 
temperatures with or without consideration of grain growth during heating up 
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the grain growth during initial and intermediate stages of sintering. Therefore, it is 

important for nanosize grains to consider the grain growth during heat up and incorporate 

them into isothermal kinetic analysis in order to acquire correct information for better 

understanding the process. 

 In order to explore the mechanisms for the linear grain growth during initial and 

intermediate stages of sintering, the isothermal grain growth data are evaluated using the 

following equation: 

KtGG += 0                                                     (7.32) 

where G is grain size at time t, G0 is initial grain size at t = 0, K = K0exp[-Q/(RT)] is 

dependent on temperature T. Equation (7.32) is used to fit grain size data at temperature 

950 ºC, 1000 ºC and 1050 ºC, then the value of K for each temperature can be obtained. 

Based on the dependence of K on temperature T, the activation energy Q is able to be 

derived by plotting ln(K) vs. (1/T), see Fig. 7.8.  The result shows that the activation 

energy is about 299 kJ/mol and surface diffusion should be accordingly the dominant 

mechanism for the linear grain growth during initial and intermediate stages of sintering.  

7.3.4 Grain Growth Mechanism 

Since grain growth in final stage of sintering has been considerably studied in 

literature, the current study set focus on exploring mechanisms for grain growth during 

initial and intermediate stages of sintering. Using nanosized tungsten powders, the grain 

growth during initial and intermediate stages of sintering has been investigated using both 

nonisothermal heating approach and isothermal holding approach. Based on the above 
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kinetic analysis, the evaluation results from both nonisothermal and isothermal grain 

growth confirm a fact that grain growth is linear and surface diffusion is responsible for 

this linear grain growth during initial and intermediate stages of sintering. This finding 

can not be explained by the traditional grain growth theories described in section 7.3.1. 

For example, in Table 7.2, only “solution of second phase” predicts linear grain growth, 

which obviously does not fit the situation for this study; further, if surface diffusion is the 

controlling mechanism, the grain growth exponent should be 4 instead of 1 according to 

Table 7.2. Therefore, the surface diffusion controlled linear grain growth in the very 

porous compact is still an unanswered question in the field of grain growth and a new 

grain growth model may be necessary to describe it in future. 

Fig. 7. 8 Evaluation result of the kinetics of initial grain growth using linear grain 
growth law 
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7.4 Microstructure Evolution During Sintering  

In general, microstructure of a material defines its properties, consequently 

microstructure evolution during materials processing and manufacturing processes is 

extremely important and should be substantially understood in order to tailor or optimize 

the materials properties. With respect to the sintering process, microstructure evolution 

involves densification and grain growth which are two intertwined processes taking place 

concurrently. In the current study, microstructure evolution during sintering of nanosized 

tungsten powders can be described by viewing it as three stages i.e., initial stage, 

intermediate stage, and final stage.  

Based on density vs. temperature curve during heating up Fig. 6.3, initial stage is the 

slow densification at low temperatures (<1000 ºC) and then accelerated densification 

occurs in intermediate stage between 1000 ºC and 1100 ºC, followed by final stage after 

1100 ºC. The microstructure evolution during initial and intermediate stages of sintering 

is exhibited in Fig. 7.9. At low temperatures between 800 ºC and 950 ºC, microstructures 

are extremely fine, but not uniform. Especially at 800 ºC and 900 ºC, extremely small 

grains can be seen in the powder compact. With increasing temperatures, the 

microstructure experienced slow coarsening and a gradual change to becoming more 

uniform, as shown in (Fig 7.9 c) at 950 ºC. After that, a “chain-like” microstructure was 

developed at 1000 ºC with clear outlines of each individual grain which is a result of 

progressive coarsening. Much more significant coarsening was observed at 1050 ºC 

before the microstructure became faceted at 1100 ºC. 
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It is important to note that the morphology of grains at 1050 ºC is considerably more 

rounded. Each grain seemed to be coated with a smooth and round surface layer. This 

phenomenon is called "surface rounding" hereafter in this study. We believe this is an 

indication of surface transporting phenomenon. Surface diffusions are extremely active 

during this period leading to dramatic reductions of total surface energy. The surface 

rounding process is followed by grain faceting and rapid densification at high 

temperatures, all contributing to decreasing the system’s total energy.    

After 1100 ºC, the grains remain faceted in shape, but grain size grows rapidly with 

temperature, see Fig. 7.10.  

The more details on microstructure evolution can be found in Fig. 7.11 for isothermal 

holding experiments. It shows the same characteristics as described above for each stage 

of sintering. For example, slow coarsening during the initial stage of sintering is clearly 

500nm 

(b) 

500nm 

(c) 

500nm 

(d) 

500nm 

(e) 

500nm 

(a) 

500nm 

(f) 

Fig. 7. 9 Microstructure evolution during heating up to different temperatures: (a) 
800 °C; (b) 900 °C; (c) 950 °C; (d) 1000 °C; (e) 1050 °C; (f) 1100 °C 
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1250 °C 1400 °C 

Fig. 7. 10 Microstructure during final stage of sintering after 1100 °C 

5min,43%,63 60min,51%,150 45min,48%,133 30min,46%,102 15min,44%,73 

5min,47%,105 60min,89%,309 45min,83%,285 30min,74%,226 15min,55%,163 

5min,69%,214 60min,98%,1123 45min,98%,831 30min,97%,634 15min,89%,336 

5min,93%,451 60min,99%,2082 45min,98%,1847 30min,98%,1635 15min,98%,1110 

(a) 950 °C 

(b) 1000 °C 

(c)   1050 °C 

(d)   1100 °C 

Fig. 7. 11 Microstructure evolution during isothermal holding nanosized tungsten powder 
at different temperatures – (a) 950 ºC, (b) 1000 ºC, (c) 1050 ºC and (d) 1100 ºC, with 
holding time, relative sintered density and grain size (nm) labeled on each picture 
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observed at 950 ºC holding; the faceted grains and fast grain growth are seen at final 

stage of sintering, e.g., at 1100 ºC holding; rapid densification and surface rounding 

phenomena are shown during intermediate stage of sintering at 1000 ºC. But it is 

necessary to discuss more on the microstructure evolution at 1000 ºC because the 

transition from linear densification to normal densification takes place at this temperature 

according to Fig. 6.4. By comparing the two figures (Fig. 6.4 and Fig. 7.11), it is found 

that the transition from linear densification to normal densification accompanies “surface 

rounding” phenomenon, so this phenomenon signifies the densification mechanism is 

changed and the system starts rapid densification after initial stage of sintering. The 

reason for this phenomenon will be discussed later.        

In order to study the characteristics of microstructure during the initial grain growth 

process further, the evolution of grain size distribution as a function of temperature is 

illustrated in Fig 7.12. It shows that the grain size distribution is initially wide at low 

temperatures, becoming narrower with increasing temperature, finally reaching a steady 

state distribution after 1000 ºC. These results reflect the observations in Fig. 7.9. The 

wide grain size distribution indicates the initial inhomogeneous microstructures at low 

temperatures, which is common for powders produced by high energy ball milling. The 

steady state size distribution was reached at 1000 ºC corresponding to a more uniform 

microstructure as shown by the micrographs of high temperatures in Fig. 7.9. The 

changes of grain size distribution are consistent with the general theory of the effects of 

particle size distribution on sintering [46, 47]. Based on Fig. 6.9, Fig. 7.9 and Fig. 7.12, it 

can be concluded that the initial stage of sintering is a homogenizing process of 

microstructure by coarsening which sharpens size distribution until reaching a steady 
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state as a result of the extremely small particles in the as produced powders consumed by 

large particles. At the same time, densification is slowly proceeding by “coarsening-

induced particle rearrangement” mechanism as described in section 7.2.4, so we assume 

that the densification kinetics is dependent on coarsening kinetics i.e., 
dt

dG

dt

d
∝

ρ
. As a 

result, the linear coarsening kinetics results in the linear densification kinetics at the 

initial stage of sintering.    

After the initial stage of sintering, homogeneous grain size distribution and certain 

density are achieved. With further sintering, grain size and density keep on increasing 

and then very rapid densification takes place under some conditions usually between 

Grain Size/Mean Grain Size 

Fig. 7. 10 Evolution of grain size distribution as a function of temperature during 
heating up process 
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50%-70% relative densities, indicating the transition from the initial stage to the 

intermediate stage of sintering. The most prominent feature during intermediate stage of 

sintering is the rapid and significant densification along with surface rounding 

phenomenon. Based on kinetic analysis for this stage of densification, grain boundary 

diffusion is the dominant mechanism, see section 7.2. Therefore, surface rounding 

phenomenon may indicate that grain boundary diffusion starts playing distinguished role 

in the system.  

The occurrence of “surface rounding” can be explained by the following discussion. 

With increased density after the initial stage of sintering, connectivity among particles 

increases accordingly and more and more grain boundary areas are formed in the 

compact. As a result, the contribution of grain boundary diffusion to the system becomes 

competitively outstanding. Meanwhile, surface diffusion is still very active to induce 

coarsening. So the system is at a very activated state where a large number of atoms are 

transported by surface diffusion and boundary diffusion simultaneously during this stage. 

The plenty of transported atoms are kinetically unable to be accommodated into the 

lowest energy’s positions on particle surfaces, so instead they form smooth and round 

layer on the particle surfaces in order to minimize the system’s total free energy. 

Consequently, the surface rounding layer is observed during sintering of nanosized 

tungsten powders in this study, see Fig.7.9 (e) and Fig. 7.11 (b).  

After the surface rounding process, the density of the compact is greatly increased, 

and then a grain faceting process is followed at the end of intermediate stage of sintering. 

This is because most surface areas have been consumed during the rapid densification 

process, and at the end of intermediate stage of sintering, boundary energy becomes the 
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dominant component for the total system energy instead of surface energy. Thus grain 

faceting happened in order to reduce the boundary energy. And with further sintering, the 

system is approaching the final stage of sintering. 

During the final stage of sintering, the pores are closed and sitting at grain boundaries 

and triple junctions of the faceted grains. Densification dramatically slows down as a 

consequence of high density, but grain growth accelerates rapidly by grain boundary 

migration in order to reduce the total boundary energies.   

Overall, microstructure evolution during sintering of nanosized tungsten powders in 

this study starts with a homogenizing process in which slow densification and slow grain 

growth via surface diffusion occur at the beginning of sintering. Then the compact goes 

through a very rapid densification process via both surface diffusion and boundary 

diffusion during intermediate stage of sintering. And finally following the grain faceting 

process, the system experiences very rapid grain growth by boundary migration and slow 

densification in final stage of sintering. Eventually nearly full densification is obtained 

after sintering.  

7.5 Possible Mechanism for Linear Grain Growth  

Based on the above kinetic analysis, the interesting finding in this study is that the 

initial grain growth of nanosized tungsten powder follows linear kinetic behavior and 

surface diffusion is responsible for this linear grain growth. The traditional grain growth 

theory states that the grain growth exponent n should be 4 if the grain growth mechanism 

is surface diffusion controlled pore migration. In this classical grain growth model, the 

grain boundaries are pinned by spherical and isolated pores, and grain growth rate is 

controlled by pore migration rate. There are several mechanisms for pore migration such 
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as surface diffusion, lattice diffusion and vapor transport. If surface diffusion is 

responsible for pore migration, the resultant gain growth exponent is derived to be 4 

according to this model. So the linear grain growth behavior found in this study cannot be 

explained by the traditional pore-controlled grain growth models.  

Recent developments on grain growth either by experimental test or by simulation 

have also found the linear grain growth behavior in nanocrystalline materials [48-56]. 

Some theoretical explanations have been proposed. For example, Krill et al. [51] and 

Estrin et al. [48-50] found linear grain growth behavior in fully dense Fe materials and 

attributed this linear grain growth to excessive vacancies dragging effects on grain 

boundary migration; Zhou et al. [54] and Farkas et al. [55] simulated grain growth in thin 

film and bulk nanocrystalline Ni, respectively, using molecular dynamics method, and the 

results also showed a linear grain growth behavior which was explained by the authors 

considering size effects on the grain boundary mobility; Gottstein et al. [52, 53] proposed 

a grain growth model in bulk nanocrystalline materials based on the consideration that 

the motion of a grain boundary is driven by grain boundary curvature with triple and 

quadruple junctions, and if the grain boundary motion is controlled by the mobility of 

triple junctions, a linear grain growth results. Another study by Klinger et al. [56] also 

provided a model for grain growth in porous nanocrystalline materials and showed that 

for a polycrystal with subcritical pores the average grain size increases linearly with time 

during initial stage of growth. It should be noted that all of the above studies focused on 

fully dense nanocrystalline materials or near fully dense nanocrystalline materials, while 

with respect to grain growth of nanosized particles in the very porous state, i.e., initial 

grain growth, the linear grain growth has been seldom reported in literature. 
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Nevertheless, according to the above reported linear grain growth in nanocrystalline 

materials, a general principle is able to be extracted from these studies, i.e., there exist 

huge dragging forces for the grain growth in nanocrystalline materials from either 

vacancies, triple junctions, porosities or free surface grooves, which slow the boundary 

migration leading to a linear grain growth behavior. This principle is believed to be also 

shared in the case of grain growth in the very porous compact during initial and 

intermediate stages of sintering considering the fact that there exists substantial inhibition 

force for grain boundary migration by extensive porosities and neck grooves in the very 

porous microstructure. But the detailed process regarding the initial grain growth during 

sintering is still a scientific issue that needs to be explored further by proposing certain 

specific models so that the linear grain growth behavior can be explained.    
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CHAPTER 8 

CONCLUSIONS  

Sintering of nanosized powders is one of the primary approaches to manufacturing 

bulk nanocrystalline materials. Because of their small size and large surface to volume 

ratio, which distinguish them from micron sized powders, nanosized powders exhibit 

some different behaviors during sintering. In this study, the characteristics during 

sintering of nanosized powder were studied by using nanosized tungsten powders with 

respect to effects of particle size on sintering, densification and grain growth of nanosized 

powders, and the relationship between densification and grain growth. Based on the 

experimental results, the following conclusions can be drawn:  

1. Particle size has evident effects on sinterability. Fine particles show enhanced 

sinterability at low sintering temperature. The dependence of sinterability on particle 

size can be quantitatively described by the Herring Scaling Law. 

2. Densification of nanosized tungsten powder can be divided into three stages in this 

study: initial stage (from green density to ~50% relative density), intermediate stage 

(~50% to ~90% relative density) and final stage (~90% to 100% relative density).  

3. The initial stage, due to the low green density (30%~40% relative density), shows 

unusual linear densification behavior which can be attributed to the particle 

repacking process induced by coarsening. The mechanism for initial stage of 

sintering is evaluated to be surface diffusion. Further, the initial stage sintering is 
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also a process during which grain size distribution becomes narrower with sintering 

and reaches a steady state at the end of this stage, resulting in uniform 

microstructure.  

4. The intermediate and final stages have similar densification behavior to those of 

micron sized powder but with rapid sintering rate due to small particle size. The 

mechanism for intermediate and final stages of sintering is calculated to be grain 

boundary diffusion. 

5. Grain growth during sintering of nanosized tungsten powder can be viewed as 

consisting of two parts based on grain size vs. density trajectory: initial grain growth 

before 90% relative density and normal grain growth after 90% relative density. The 

normal grain growth is faster compared with the initial grain growth, and accounts 

for majority of entire grain growth. But the initial grain growth is not negligible 

because it can usually increase grain size beyond nanoscale (e.g., from 20nm to 400 

nm in this study).  

6. In contrast to the parabolic grain growth behavior of normal grain growth, the 

kinetics of initial grain growth shows unusual linear grain growth behavior. The 

mechanism for the linear grain growth is evaluated to be surface diffusion. The linear 

grain growth cannot be explained by traditional grain growth model, and a new 

model is necessary in the future for analyzing detailed process.  

In order to achieve the goal of sintering nanosized powder, i.e., full densification and 

nanoscale grain size, the following strategies are proposed based on the present study for 

pressureless sintering: 

� Powder: the starting powder should have sharp particle size distribution, i.e., 
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uniform particle size, to reduce the initial coarsening activities due to size 

differences. 

� Powder processing: some processing methods such as colloidal processing, 

slip/tape casting are necessary to deagglomerate powders and obtain uniform 

pore size distribution. 

� Compaction: new techniques are needed for compacting nanosized powders in 

order to gain high green density. It can be seen in this study that the 

characteristics of nanosized powder during sintering is related primarily to the 

low green density, e.g., linear densification and/or linear grain growth. 

Ultrasonic compaction may be a candidate in this case. 

� Sintering design: optimized sintering cycles should be designed to enhance 

densification and inhibit grain growth. One example is the two step sintering, 

which achieved full densification without final grain growth. New sintering 

design is necessary to inhibit both initial and final grain growth. 

In summary, the sintering of nanosized powder is a challenge with respect to retaining 

nanoscale grain size. There is no simple answer to this difficulty, but it is possible that the 

bulk nanocrystalline materials can be successfully produced by careful treatments with 

powders, compaction and sintering process.  


