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ABSTRACT

Medical intervention to restore motor function lost due to injury, stroke, or disease is in-

creasingly common. Recent research in this field, known as functional electrical stimulation

(FES), has produced a new generation of electrode devices that greatly enhance selectivity

of access to neural populations, enabling—for the first time—restoration of motor function

approaching what healthy humans enjoy. Research with these devices, however, has been

severely hampered by the lack of a stimulation platform and control algorithms capable of

exploring their full potential.

The following dissertation presents the results of research aimed at addressing this

problem. A major theme of this work is the use of software algorithms and analysis

principles to facilitate both investigation and control of the motor system. Though many of

the algorithms are well known in computer science, their application to the field of motor

restoration is novel. Associated with use of these algorithms are important methodological

considerations such as speed of execution, convergence, and optimality.

The first phase of the research involved development of a hardware and software platform

designed to support a wide range of closed-loop response mapping and control routines. Soft-

ware routines to automate three time-consuming tasks—mapping stimulus thresholds, map-

ping stimulus-response recruitment curves, and mapping electrode pair excitation overlap—

were implemented and validated in a cat model. Computer control, combined with the use

of an e�cient binary search algorithm, reduced the time need to complete required implant

mapping tasks by a factor of 4 or more (compared to manual mapping), making feasible—for

the first time—acute experiments investigating multi-array, multijoint experimental limb

control.

The second phase of the research involved investigating the influence of stimulus timing,

within multielectrode trains, on the smoothness of evoked muscle responses. A model for

predicting responses was developed and used, in conjunction with function optimization

techniques, to identify stimulus timings that minimize response variation (ripple). In-vivo

validation demonstrated that low-ripple timings can be identified, and that the influence of

timing on ripple depends largely on the response kinetics of the motor unit pools recruited



by constituent electrodes.

The final phase of the research involved using the response prediction model to simulate

the behavior of a feedback-based, stimulus-timing adjustment algorithm. Multiple simu-

lations were executed to assess the influence of three algorithm parameters—filter band-

width, error sampling delay, and timing adjustment gain—on two performance metrics—

convergence time and percent reduction in ripple. Results show that all parameters have

an influence on algorithm performance. Convergence speed is the metric most a↵ected by

parameter adjustment, improving by a factor of more than 3 (13 cycles to approximately 4

cycles). Ripple reduction is also a↵ected—exhibiting a 17% reduction with appropriate se-

lection of error sampling delay. These results demonstrate the value of using this simulation

approach for parameter tuning.

iv
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CHAPTER 1

INTRODUCTION

Before thought, there was movement. The human brain, pinnacle of evolution, began

with the simple need to move–towards light and away from dark, towards food and away

from foe. The exquisite precision with which we humans navigate our worlds, both physical

and mental, is the result of a long evolutionary progression towards ever greater control

over the appendages inherited from our genetic forefathers.

Though our minds have developed to be unlike any in the history of evolution, we

share, with our mammalian brethren, much the same means of moving our bodies. Over

time, evolution has arrived at a mammalian motor control system that is complex and

multifaceted, yet at the same time remarkably robust. It incorporates strategies both

centralized and distributed–relying on control systems that range from deliberate, conscious

planning to the instantaneous, dynamical properties of tendons and muscles. An internally

stored, implicitly represented library of musculo-skeletal dynamics is continuously plumbed

to generate best-guess motor commands. At the same time, adjustments are readily made

on the fly, as feedback informs the body of deviations from intent. For humans, this system

enables the repertoire of movements that define, at a fundamental level, who we are as

individuals and, in many ways, how we relate to our fellow humans. Though this system is

robust, it is not immune to injury.

1.1 A Chapter in the Human Story
The story of the human race is a story of our species’ ever advancing ability to shape

and control our world—including our own bodies. A central theme of this story is our

desire to understand and combat the deleterious e↵ects of age, injury, and disease. Over

the past 100 years especially—the approximate span of modern medicine–we have gained

tremendous insight into the complex mechanisms operating within our bodies. Over the

same period, other advances in science and technology have given us the ability to interact

with and manipulate many of these mechanisms. The dissertation contained herein is a
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continuation of this human story. It is a tale of the author and colleagues’ pursuit of a

platform and techniques for interacting with the human nervous system—of developing

an improved understanding of how electrical stimulation can be used to provide surrogate

motor function for individuals who have lost the ability to control their own bodies.

A major theme of the work presented in this dissertation is the use of software algorithms

and analysis principles to facilitate both investigation and control of the motor system.

Though many of the algorithms are well known in computer science, their application to

the field of surrogate motor restoration is novel. One simple example is the use of a binary

search strategy to e�ciently identify the electrical input level necessary to produce a de-

sired muscle output (the characteristic muscle force input-output function is monotonically

increasing, hence a binary search is optimal). Another example is the development of a

multi-input/output muscle response model and the application of function minimization

techniques to search model space for outputs with desirable characteristics. Associated

with all of these techniques are important methodological considerations such as speed of

execution, convergence, and optimality.

An important product of the research described in the following pages is a software

and hardware system that enables simultaneous, closed-loop interaction with hundreds of

discrete elements of the human neuromuscular system. The research has also produced

control algorithms capable of orchestrating activation across groups of these neuromuscular

elements to evoke smooth, fatigue-resistant forces in individual muscles. Ultimately, the

platform and algorithms were used together to achieve surrogate, bi-lateral sit-to-stance limb

movements in a cat model (a feat requiring simultaneous, coordinated control of the many

muscles needed to generate such movements). This work, combined with other ongoing

investigations in the field of motor function restoration, points to a bright and hopeful

future for individuals with paralysis and other motor deficits—and a new chapter in the

story of human existence.

1.2 The Human Motor System and Its
Pathologies

Broadly speaking, the human motor system consists of three main components: 1) the

musculo-skeletal system; 2) a↵erent and e↵erent elements of the peripheral nervous sys-

tem (PNS); and 3) various sensory, planning, motor-control, and reflex-circuit regions of

the central nervous system (CNS) [1]. Each of these systems is susceptible to various

types of disease and injury. For example, musculo-skeletal function can be a↵ected by

occupation-related overuse, trauma, and degenerative diseases (such as muscle dystrophy
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and osteoarthritis). Common causes of loss of peripheral nervous system function include

nerve palsy, trauma such as spinal chord injury (SCI), and various neuropathies such as

amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Motor function elements

of the central nervous system can be a↵ected by traumatic brain injury (TBI), stroke, and

degenerative diseases such as Parkinson’s and ALS. To varying degrees, medical intervention

can help restore or o↵set losses in motor function resulting from these various pathologies.

The work presented in this dissertation focuses on one such intervention—using electrical

stimulation of the peripheral nervous system to provide surrogate motor function for patients

with damage to upper motor neurons and (in the case of SCI) spinal interneurons.

1.3 The Peripheral Nervous System and
Neuromuscular Function

The somatic peripheral nervous system begins in the spinal chord where axons from

peripheral sensory neurons synapse on CNS sensory neurons and spinal interneurons, and

dendrites of motor neurons receive inputs from descending CNS motor neurons and spinal

interneuron circuits. On each side of the vertebral column, motor axon bundles exit from

the ventral side and, along with sensory nerve bundles from the dorsal side, coalesce into

large nerve trunks that extend distally to various innervation targets. In the human lower

limb, for example, neurons providing sensory and motor function are grouped in three main

nerve trunks (femoral, sciatic, and muscular branch of the sciatic) and a collection of smaller

bundles. Nerve structure is complex, consisting of an outer layer called the epineurium

which contains blood vessels and one or more subgroupings of neurons called fascicles.

Each fascicle consists of a membrane called the perineurium which, in turn, contains a set

of nerve fibers. For a detailed depiction of nerve organization see Figure 1.1.

As each main nerve trunk runs distally, groups of sensory and motor fibers branch o↵

towards their innervation targets. Each motor axon synapses, at its distal end, with at least

one muscle fiber, and often many. A motor axon, together with the set of muscle fibers it

innervates, forms what is called a motor unit . Individual muscles typically contain tens

to hundreds of motor units. Mammalian limbs, which are controlled by many muscles, can

contain many thousands of motor units. The human leg, for example, contains the tens of

thousands of motor units [2].

When a motor axon fires, it releases a neurotransmitter (acetylcholine) at every point

at which it synapses with a muscle fiber (neuromuscular junction). This action triggers a

chemical/electrical cascade (muscle action potential) in the muscle fiber that, mediated by

various sca↵old-like protein elements within the cell, leads to shortening of the fiber. Unlike
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Figure 1.1: Multilevel structure of the peripheral nerve. Groups of individual axons are
enclosed in perineurium to form fascicles, which are, along with blood vessels, enclosed by
epineurium to form the nerve body. (Gray’s Anatomy, public domain)

typical synapses, where axonal neurotransmitter release may or may not trigger an action

potential in the downstream neuron, firing of a motor axon always triggers a muscle action

potential. From the point in time at which the muscle action potential begins, the process

of muscle cell shortening reaches its peak e↵ect in tens of milliseconds—depending on fiber

type. In the absence of additional action potentials, a muscle fiber will relengthen to its

passive resting length within one hundred to several hundred milliseconds—again depending

primarily on fiber type. If enough muscle fibers shorten, all within a window of a few tens

of milliseconds, the muscle body will shorten enough to pull on the tendons that connect it

to the musculo-skeletal system—typically to a bone. As the tendon transmits an increasing

level of force from the muscle to the skeletal frame, the result result is a change in skeletal

geometry that, to the outside world, appears as limb movement.

1.4 Motor Function and the Impact of Disease
and Injury

Voluntary limb movement is the result of a complex interplay of multiple factors in-

cluding musculo-skeletal dynamics, external loads, and intrinsic forces produced by the

mass action of many motor unit contractions. In the context of a specific person and a

given movement goal, external loads and musculo-skeletal dynamics are, by definition, fixed

(though by no means constant). Control of limb movement, therefore, is achieved by the

modulation of motor unit behavior, and thus, ultimately, motor neuron firing patterns.

At its proximal end in the spinal chord, a motor neuron receives inputs to its dendritic

arbor from two sources, primary motor neurons descending from the cortex (and other

higher regions), and interneurons from various spinal circuits. Spinal circuits include
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reflex pathways and pattern generators, and serve to mediate various highly-stereotyped

movement patterns, such as withdrawing from a noxious stimulus or the sequential and

cyclical components of walking. Descending motor inputs serve to activate, suppress, or

modulate spinal circuit behavior, and, in some cases, directly control PNS motor axon

output.

Motor deficits resulting from stroke, trauma, and disease are commonly the result of the

death or permanent disabling of populations of upper motor neurons, and, in the case of

SCI, lesioning of spinal interneurons, and PNS motor axon cell bodies at the site of injury.

Lesions associated with SCI can extend through the entire cross section of the spinal chord,

though more often, they are ”incomplete,” leaving some of the neural elements intact. In any

case, there are a variety of motor deficits associated with these various pathologies. Stroke

typically results in varying degrees of weakness and lack of coordination of the limbs on the

a↵ected side of the body. Disease, such as MS, typically results in progressive weakening

and eventual loss of volitional control of all skeletal muscle function. Motor deficits from

SCI are often highly patient-specific, depending on the location and severity of the lesion.

In many cases, volitional control of lower limb and bladder and bowel function is impaired

or lost. For SCI in high cervical regions, upper limb and respiratory function can also be

lost. An important aspect of these various disease and injury modes is that, though control

signals from higher motor control centers are lost, spinal interneurons and lower motor

neuron cell bodies often remain fully functional. A negative consequence of this state is

that without descending inputs, which are in many cases inhibitory, spinal circuits often

become hyperactive, leading to involuntary muscle spasticity. On the positive side, the

presence of intact spinal and PNS elements provides an avenue in which to pursue medical

interventions for restoring lost function.

1.5 Motor Deficit Prevelance and Medical
Interventions

In the United States, approximately 10 million individuals live with long-term motor

deficits resulting from various forms of injury and disease. The major categories (as

mentioned above) include stroke (6,243,000), TBI (3,170,000), SCI (273,000), and MS

(211,000) [3–7].

There are various approaches, currently in clinical use, to treating and managing the

symptoms associated with loss of upper motor neuron and spinal interneuron function. For

example: Drugs are administered immediately post injury to minimize lesion extent, as well

as chronically, to reduce muscle spasticity. Surgery is used to ablate or alter residual neural
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circuitry in order to reduce spasticity and enhance or diminish reflex pathways. Surgery

is also used, in some cases, to alter musculo-tendon geometry to replace paralyzed muscles

with those still under volitional control. Rehabilitation techniques, including various forms

of physical therapy, are employed to help patients develop strategies for using their residual

volitional motor function to achieve movement goals. Wheelchairs and various orthoses (and

in cases of high cervical lesion, ventilators) are employed to provide function that cannot

be achieved through rehabilitation training alone. Finally, in a small number of patients,

surrogate activation of lower motor neurons via extrinsic electrical stimulation has been

used to restore, to a limited extent, lost motor function.

Although many of these approaches substantially improve the lives of individuals with

motor deficits, none restores the full range of function that healthy people enjoy. Truly

treating these various pathologies will, ultimately, require the ability to repair, regenerate,

and reintegrate lost neural elements at the site(s) of lesion. Until that goal has been

achieved, however, the treatment approach with the most potential for advancement in

improving the functional abilities of such patients is extrinsic electrical stimulation.

1.6 Biology of Electrical Stimulation
Extrinsic electrical activation of a PNS motor neuron can be achieved by the application

of a relatively short-duration (10-1000 ms) voltage gradient along the length of its axon.

If the gradient is su�cient to depolarize beyond “threshold,” a portion of the axonal

membrane—typically in the region nearest the cathode—a set of voltage-gated sodium ion

channels are activated triggering a large and rapid depolarization (i.e., an action potential)

at that point in the membrane. Once induced, the action potential propagates along

successive nodes of ranvier in a myelinated motor axon, as would an endogenous action

potential, though an electrically induced action potential travels in both directions from

the site of stimulation [8].

Electrical stimulation applications employ a variety of electrode geometries and posi-

tioning to achieve the requisite motor-axon-triggering voltage gradients. Electrode locations

used in clinical and research applications include the skin surface, muscle surface (epimysial),

muscle belly (intramuscular), nerve surface (epineural), and nerved interior (intrafascicular).

Typical electrode geometries include disk, wire, cu↵, and needle. Electrode geometry is to

a large extent dictated by electrode location. For example, surface and epimysial electrodes

often have a disc geometry, whereas intrafascicular electrodes typically have either a wire

or needle geometry. In addition to di↵erences in geometry and position, FES systems also
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employ greater or fewer numbers of electrodes, depending on the application. The more

selective is the access each individual electrode provides to the target neural population, the

larger is the number of electrodes that can be e↵ectively used. Given the large number of

motor units present in the PNS, an FES system intended to restore natural limb movement

would, ideally, employ a very large number of highly-selective electrodes.

1.7 Clinical Application of Electrical Stimulation
Across the clinical and research arenas, restoration of muscle function via electrical

stimulation of nervous tissue is referred to by various names, including electrical stimulation

(E-Stim), transcutaneous electrical nerve stimulation (TENS), functional neuromuscular

stimulation (FNS), and functional electrical stimulation (FES). Coined in 1967 to describe

electrical stimulation of the peripheral nervous system as an aid in rehabilitation treatment

after stroke [9], FES has become the term most commonly used today. However, its modern

usage has expanded to include pathologies beyond stroke and applications other than limb

movement.

Electrical stimulation of the nervous system is currently used in several highly e↵ective

and commercially successful medical interventions, including the cochlear prosthesis and

the cardiac pacemaker. Numerous other FES applications have received FDA clearance

and been employed in clinical research settings, to varying degrees of success. Phrenic

nerve stimulators have been used to restore diaphragm function for breathing (e.g., NeuRx

DPS Diaphragm Pacing System™). A sacral nerve stimulator, known as Finetech-Brindley

bladder control system, has been used to restore bladder voiding function. Peroneal nerve

stimulation systems (e.g., ODFS® Odstock Dropped Foot Stimulator) restore ankle dorsi-

flection to correct “foot-drop” resulting from stroke, palsy, or incomplete SCI [10]. There

are even multielectrode systems that provide limited restoration of lower and upper limb

and hand function (Sigmedics Inc. Parastep® I System, and the NeuroControl Freehand

System) [11].

Though these clinical research uses of FES have proven beneficial to patients, FES is still

not considered a mature technology by patients, researchers, or the medical establishment.

Quoting from a medical coverage policy [12] published in 2013 by Humana Inc. (a health

insurance company):

Humana members may NOT be eligible under the Plan for the use of FES
for any indications other than those listed above. This technology is considered
experimental/investigational as it is not identified as widely used and generally
accepted for the proposed use as reported in nationally recognized peer-reviewed
medical literature published in the English language.
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For FES systems to gain widespread acceptance, in the medical community and target

patient population, as a mature technology, they must first improve in a range of areas.

Chief among these are cost, usability, functionality, durability, social acceptability, and, for

implanted systems, ease of surgical procedure.

The performance of currently available FES systems, in these categories, is strongly

linked to the function(s) targeted for restoration. Implanted FES systems targeting func-

tions that are highly stereotyped—where volitional involvement is unnecessary, or limited

to simple on/o↵ control—are often able to restore a level of function close to normal, and

hence score much higher in the usability and functionality categories—the canonical example

being the cardiac pacemaker. It is likely that less established systems in this category, such

as phrenic pacing and bladder/bowel voiding, will gain increasing use and acceptance in the

medical community as issues of cost reimbursement and durability are addressed. Systems

targeting control of hand and limb movement (i.e., for reaching, grasping, standing, and

walking), however, score low in the functionality, usability, and ease of surgical implantation

categories. This is primarily because the motor patterns enabled by these systems are

typically preprogrammed, and what aspects are under volitional control, are unintuitive.

For example, such systems typically require patients to use some unrelated motor signal (i.e.,

contralateral shoulder position) to select from a limited number of preprogrammed motor

patterns. To attain widespread patient acceptance, these systems must provide access to a

greater range of movements in a much more intuitive manner.

The performance of an FES system, in these categories, is also determined, to a large

extent, by the choice of electrode and electrode location. For example, surface electrodes

are inexpensive, easily replaceable, and do not require surgery. However, they do require

daily donning, do�ng, and mapping/calibration procedures that can be impractical for

unassisted users. Additionally, such system do not always provide selective access, or in some

cases any access, to muscles necessary for the targeted function. Implanted epimysial or

intramuscluar wire systems do provide selective access to individual muscles, but implanting

them requires expensive and invasive surgical procedures. Such systems are also vulnerable

to lead breakage, though recent studies of such systems have demonstrated increased lead

longevity [11]. Ultimately, none of the electrode technologies presently used in clinical

research systems provides a specificity of access to the neuromuscular system anywhere

near what the human nervous system provides. This fundamentally limits their ability to

restore natural movement, and hence their ability to achieve widespread acceptance.
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1.8 Emerging Technologies in Electrical
Stimulation

In both clinical and academic communities, researchers are actively investigating new

methods to improve on the shortcomings of current FES systems. In the area of volitional

control of limb movement, much work has been done on decoding intent using electrodes

placed in the motor cortex. One group has even used decoded motor commands, computed

in real time, to control intramuscular electrical stimulation to produce grasping motion

in a primate model [13]. Several groups are investigating techniques for using epidural

and intraspinal stimulation to activate or facilitate activation of existing spinal circuits

that generate and modulate various coordinated limb movements, such as standing and

walking [14,15]. Encouraginly, in some patients with complete loss of motor function below

a spinal chord injury, this approach has been associated with reemergence—to varying

degrees—of volitional control of lost function. Yet other groups are investigating whether

feedback information from endogenous, biological limb-position and muscle-force sensors can

be reliably acquired from neural sensory pathways and used to enable closed-loop control of

movement; the goal being to obviate the need for extrinsic sensors, which have historically

exhibited low durability in the field, and, for cosmetic reasons, tend to decrease patient

acceptance [16]. Yet other groups have developed new electrode technologies that provide

more selective access to the peripheral nervous system [17–20], with the added benefit of

reduced surgical complexity. The ability to selectively activate small populations of motor

axons within a nerve trunk, provided (to a greater or lesser extent) by various incarnations of

this new class of electrodes, has enabled new approaches to functional electrical stimulation

[21]. The work presented in this dissertation focuses on various aspects of using of one of

these new electrode technologies, the high channel count penetrating microelectrode array,

to achieve functionally useful, multimuscle limb movement.

1.8.1 The High-Channel-Count Microelectrode Array

The three-dimensional penetrating microelectrode array, also known as the Utah Slanted

Electrode Array (USEA), was developed in collaboration at the University of Utah [19]. It

has a square (or rectangular) geometry, and consists of an array of electrically independent

silicon microelectrodes with thin (50 µm), insulated shafts of varying length (.5-1.5 mm),

each with a small metalized tip (Figure 1.2).

When an appropriately sized USEA is implanted into a peripheral nerve trunk, the

three-dimensional geometry of the array provides coverage for a large portion of the cross-
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Figure 1.2: Scanning electron microscope image of a 4 mm x 4 mm, 100-Electrode Utah
Slanted Electrode Array. (Reproduced with permission from Branner and colleagues [22])

sectional area of the nerve (Figure 1.3). This spatial arrangement of electrode tips enables

selective excitation of multiple, independent groups of motor units. Getting to the point

where this level of access can be e↵ectively employed, however, requires a nontrivial e↵ort.

1.8.2 Functional Response Mapping on a New Scale

With traditional electrode technologies (e.g., surface, epimysial, and intramuscular),

electrodes are placed in or near the target muscles. In such situations, it is clearly evident

which muscle is activated by which electrode. All that remains, then, is mapping, for each

electrode, how the target muscle response changes as the stimulus level changes. Given that

Figure 1.3: Diagram of the cross-sectional coverage of a nerve trunk by an implanted
100-Electrode USEA. (Reproduced with permission from Branner and colleagues [22])
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clinical FES systems employ at most a dozen or two electrodes (and often many fewer), this

task can be managed relatively quickly. In the case of an implanted USEA, however, it is

not evident which electrodes activate which populations of motor axons (i.e., which muscle

or set of muscles). Like traditional electrodes, is it also unknown how the set of activated

motor axons (i.e., the functional response) changes as the charge delivered by each electrode

is increased or decreased. Unlike traditional electrodes, however, populations of motor axons

activated by various USEA electrodes can overlap (i.e., because of the physical proximity

of electrodes, electrical fields from di↵erent electrodes can excite the same axon). Thus,

e↵ectively mapping the response characteristics of a USEA requires the additional step of

measuring how axonal excitation overlap between pairs of electrodes changes as stimulus

levels change.

Multiple researchers (including Branner, McDonnall, Dowden, and Frankel) have, in col-

laboration with others, reported detailed investigations of the various functional responses

that can be achieved with the USEA [19, 21–28]. For every USEA implant, in each of

these investigations, a preliminary step of mapping various, simple response characteristics

of individual electrodes and pairs of electrodes was necessary before investigation of more

complex stimulation patterns could be accomplished. For the research that preceded the

work presented in this dissertation, USEA implant mapping was carried out manually in a

process that proved long and painstaking. For Branner et al., this was more or less the point

of the experiments. For McDonnall et al., however, even though mapping simple response

characteristics was not the main focus of the study—they were investigating multielectrode

stimulation strategies—it consumed the lion’s share of the overall experiment duration. In

light of the experience garnered by this team, it was clear that manual response mapping

posed an impediment to conducting further research with the USEA in an expedient manner.

Though response mapping is necessary for any experiment involving stimulation with

the USEA, there is no obvious reason that it must be done manually. For some tasks, such

as distinguishing between various voices in a crowded and noisy environment, computers

(i.e., software algorithms) are not yet able to replicate human performance. Automating

the task of response mapping with software algorithms, however, is an entirely approachable

problem (though the implementation details are not obvious). The main prerequisite for

implementing such algorithms is a software and hardware platform that provides closed-

loop, programatic, access to the stimulus-response cycle. That is, for software automation

of mapping to be possible, the algorithm must have control of stimulation and access

to response metrics. The manual limb palpation technique used by Branner et al. to
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detect muscle twitches is (obviously) not appropriate for mapping automation; however,

the digitized, single-axis force signals used by McDonnall et al. are perfectly su�cient.

1.8.3 Interleaved Intrafascicular Multielectrode
Stimulation (IIFMS)

It was initially thought that the proximity of various USEA electrode tips to individual

motor axons might provide selective access to slow-twitch motor units, and hence enable

stimulation strategies that mimicked natural recruitment order. Ultimately, this proved

not to be the case. However, experiments did demonstrate that when implanted in a

main nerve trunk (for example the sciatic nerve of cat), the USEA typically provides a

half dozen or more electrodes, per each of the major muscles targeted by the nerve, that,

at low stimulus levels, selectively activate independent motor axon populations in those

muscles [22]. This level of access enabled the development of stimulation strategies that

mimic the asynchronous activation of motor units seen in the intact motor system [21].

In the intact human body, motor units are activated asynchronously at low frequencies

(8-24 Hz—with occasional high-rate bursts to achieve maximal force output) [29, 30]. The

lower the activation rate, the longer the metabolic mechanisms of the muscle fibers are

able to keep up with energy demands. At low, physiological rates, each activated motor

unit produces an unfused contraction (as described previously in this chapter). However,

because muscles have many motor units, and because the intact motor system activates

these motor units asynchronously with respect to one another, overall muscle force output

at the tendon is smooth—and thus, functionally useful.

In contrast, because electrical stimulation with surface, epimysial, and wire electrodes

is typically achieved with a single electrode per muscle, motor units within a muscle are,

of necessity, activated synchronously. Thus, much higher, aphysiologic rates of motor unit

activation are needed to achieve smooth forces. Higher rates of stimulation lead more rapidly

to muscle fatigue, and hence limit the duration of evoked movements [31,32]. Furthermore,

with a single electrode, recruitment order is always the same, leading preferentially to fatigue

of units recruited first.

Beginning with Rack and Westbury in 1969, several research groups have investigated

the possibility of producing smooth, long-lasting muscle forces by artificially activating

muscles in a biomimetic manner. The approach employed involves asynchronous activation

of independent motor-unit groups (Figure 1.4), with each group firing at a low rate [33,34] .

Results of these studies proved very encouraging; however, the techniques used to isolate

independent populations of motor neurons required invasive surgical exposure of ventral



13

nerve roots—an approach not well suited for clinical application. More recently, several

groups have explored the possibility of achieving asynchronous motor-unit activation with

less invasive, multielectrode intrafascicular interfaces (such as the 100-electrode USEA and

others) [21] [35–37]. These studies have shown that it is possible to achieve fatigue-resistant

muscle activation in a manner suited for human clinical application. This approach has

come to be known as interleaved intrafascicular multielectrode stimulation (IIFMS).

1.8.4 Challenges Associated with IIFMS

An important practical issue these studies encountered is the complexity of selecting

stimulation parameters for IIFMS trains, (as compared with selecting parameters for single-

electrode trains). These complexities are particularly evident when the issue of intraperiod

variation (ripple) in evoked force is considered. Ripple must be low for muscle forces to be

functionally useful—this is clearly evident when observing how ripple in the motor output

of Parkinson’s patients (called tremor in that patient population) dramatically impedes the

usefulness of movements. In FES applications, responses to single electrode stimulus trains

tend to be low-ripple, whereas IIFMS trains tend to elicit responses with high levels of

ripple—even when the composite frequency is such that, delivered on a single electrode,

it would evoke a low-ripple response (Figure 1.5). Achieving low-ripple responses with

single-electrode trains is simply a matter of increasing stimulus frequency until ripple falls

below the target level. In contrast, multielectrode trains have a much larger parameter

set, including electrode count, stimulus strength for each electrode, stimulus rate for each

electrode, and timing of stimuli across electrodes within a single period (Figure 1.6). The

interactions among these parameters—especially with respect to how they influence ripple—

are substantially more complex than those for single-electrode trains. Selecting from among

all possible stimulation parameter combinations in a way that consistently achieves smooth

muscle responses is a nontrivial task. This is especially true when faced with the constraint

of keeping stimulus rates low to delay the onset of muscle fatigue.

In IIFMS studies conducted by McDonnall, identifying stimulus parameters that achieved

low-ripple forces at a target level was a tedious trial-and-error process—conducted entirely

by hand—that often took many hours. McDonnall’s approach focused on searching for

stimulus levels that matched the force evoked by each electrode. While this worked in

many instances, achieving low-ripple responses by adjusting only stimulus strength was not

always possible.
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Figure 1.4: Schematic illustrating the asynchronous activation of four independent popu-
lations of motor axons within a single muscle, with an interleaved, four-electrode train.

Figure 1.5: Ripple in a response evoked by IIFMS with untuned parameters is higher
than ripple in a response evoked by single-electrode stimulation with the same composite
frequency. (a) Muscle response produced by stimulation at 32 Hz on a single electrode. (b)
Response produced by asynchronous stimulation on 4 electrodes, each electrode firing at 8
Hz, yielding a composite stimulation frequency of 32 Hz. For this particular asynchronous
stimulation case, no special e↵ort was made to optimize parameters. Even though the
composite stimulation rates are identical, the response to IIFMS (bottom trace) has a much
higher level of ripple than does the response to single-electrode stimulation (top trace).

1.8.5 Computer-Aided Approaches to IIFMS

Clearly, a manual approach to selecting and controlling IIFMS parameters, which is, at

best, time-intensive and error-prone, poses a major impediment to further research exploring

the application of IIFMS to larger FES goals, such as coordinated limb movement. As is the

case for functional response mapping, what is needed for IIFMS is a hardware and software

platform and additional software control programs for assisting or automating exploration

of the parameter space and control of individual parameters.

Significant progress has been made towards this goal, though it has yet to be fully

realized. Most notably, work accomplished (in conjunction with the work presented in
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Figure 1.6: Schematic representation of an asynchronous, IIFMS train with n electrodes.
For this particular train, the stimulus rate is the same on each electrode; however, the
stimuli are phased asynchronously across the n-electrode IIFMS cycle.

this dissertation) by Frankel et al. has demonstrated (and validated in-vivo) an approach

to controlling stimulus levels on individual electrode in an IIFMS train, to achieve target

isometric and time-varying forces and torques (Frankel et al.) [28, 38, 39]. Frankel’s work,

however, does not fully address the challenge of adjusting the relative timing of individual

stimuli within an IIFMS train. Use of IIFMS in clinical practice will, likely, require a system

capable of controlling both of these parameters, in real time, to achieve targeted functional

tasks.

The work presented in this dissertation directly addresses the challenge of adjusting

stimulus timing in IIFMS trains, as well as the burden of mapping stimulus-responses

relationships for the hundreds of electrodes present in a multi-array experiment. With

regard to the latter point, the work, described here, includes the development and in-vivo

testing and validation of a hardware and software platform that provides programatic,

concurrent control of stimulation on hundreds of electrodes, coupled with an ability to

monitor dozens of response metrics, such as muscle electrical activity, muscle forces, limb

torques, and limb end-point forces. The closed-loop platform developed in this work is

the first of its kind in motor-function restoration research. Importantly, the programatic

access to response information that it provides enables stimulus-response mapping to be

automated—i.e., controlled completely by software. To demonstrate this capability, three

specific stimulus-response mapping programs were implemented and executed (using the

platform) in an in-vivo animal model. At a prosaic level, these programs are valuable

because they relieve the experimenter/clinician of the arduous task of mapping electrodes



16

manually. More importantly, however, they greatly reduce the time needed to complete

the requisite mapping tasks, making it feasible (for the first time) to pursue multi-array

experiments investigating control of complex, multijoint limb movements.

The second part of the dissertation describes novel work in the area of optimizing and

controlling interelectrode stimulus timing in IIFMS trains. The first part of this section

presents a feed-forward algorithm for adjusting stimulus timings to minimize ripple in

isometric muscle contractions. The algorithm employs the use of known single-electrode

responses (measured in-vivo) combined with an IIFMS response prediction model to make

optimized timing predictions. This work represents the first published method for feed-

forward IIFMS timing adjustment. The algorithm was implemented in software and val-

idated in an in-vivo animal model using the closed-loop stimulation platform (described

above). The second part of this work, on interelectrode stimulus timing control, focuses on

optimizing a preexisting algorithm for feed-back based adjustment of this parameter. In this

part of the work, the response-modeling approach employed in the feed-forward algorithm

(described above) was used in a novel way to simulate the e↵ect, on response ripple, of

timing adjustments made over successive cycles of a continuous, free-running IIFMS train.

Building on this novel ability to simulate the timing-adjustment algorithm behavior, the

impact of various values of the algorithm parameters was explored and optimized values

identified.

All told, the platform and algorithms presented in this dissertation provide the researcher

and clinician with extremely useful set of tools for exploring IIFMS-based motor-restoration.

A concrete demonstration of this point is the successful use of these tools to achieve 6-joint

bipedal stance in an experimental cat model [52].

1.8.6 Organizatin of This Dissertation

The work described above is organized in the body of this dissertation, in the following

manner. Chapter 2 describes the methods employed for all in-vivo animal experiments.

Chapter 3 describes the design of the closed-loop FES platform used to execute response

mapping and IIFMS control algorithms. Chapters 4 through 6 describe the design and

in-vivo validation of the three automated response mapping programs. Chapter 7 presents

results of experiments measuring performance of the feed-forward IIFMS timing-adjustment

algorithm. Chapter 8 describes the results of work to simulate and optimize the feed-back

based IIFMS timing-adjustment algorithm. Finally, Chapter 9 discusses the importance and

shortcomings of all the work presented in this dissertation and identifies several remaining

hurdles hindering the wide-spread adoption of the IIFMS approach in clinical practice.



CHAPTER 2

EXPERIMENTAL METHODS

2.1 Animal Model
The work presented in this dissertation relies on data collected over the course of multiple

neuromuscular electrophysiology experiments involving adult cats. In many ways, the adult

cat provides an ideal model for investigating electrical stimulation of the neuromuscular

system. The morphology of the cat musculoskeletal and peripheral nervous systems is

highly consistent across specimens, thus reducing many potential sources of interexperiment

variability. Surgical access to lower-limb nerves trunks and musculature is expedient,

allowing for easy implantation of stimulating and recording electrodes, and other response

acquisition instrumentation. Additionally, cat neurophysiologic (and overall physiologic)

function is very tolerant of extended periods of anesthesia, allowing for complex, long-

running experiments. Finally, the cat model has been used extensively in motor-physiology

and neuromuscular stimulation research, thus it brings with it a rich context of previous

work in which our results can be rigorously analyzed and compared.

All work involving animals was done in accordance with procedures approved by the

University of Utah Institutional Animal Care and Use Committee. In all experiments,

animals were induced with telazol (10 mg/kg IM), intubated, and then mechanically venti-

lated. General anesthesia was maintained with isoflurane (1.5-2.5%). Vital signs, including

electrocardiogram, heart rate, expired CO2, blood pressure, and body temperature, were

monitored every 15 minutes. Fluid and blood sugar levels were maintained with an IV

drip of lactated ringer solution (15 ml/hr). All experiments were acute, and at the end of

experiments, animals were euthanized with an IV injection of potassium chloride (KCl).

2.2 Electrode Array Implantation
All results reported in this dissertation were achieved with the use of the Utah Slanted

Electrode Array (USEA) (described in Chapter 1). The USEA provides a means to selec-

tively excite multiple, independent groups of motor units belonging to individual muscles.
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Given this level of selective access to the peripheral nervous system, the USEA serves as

an ideal electrode interface for neuromuscular stimulation research. For the experiments

discussed in this dissertation, one or more 10x10 (100-electrode) USEAs were implanted into

lower limb nerve trunks including the main branch of the sciatic nerve, the muscular branch

of the sciatic nerve, and the femoral branch of the sciatic nerve. (At most one USEA was

implanted in any one trunk. See [40] for a complete description.) In every case, the USEA

was implanted into an exposed nerve with a pneumatic inserter, as described in [41]. Once

implanted, the USEA was secured in place by suturing the wire bundle to the epineurium.

Additionally, in many cases, the USEA was enclosed (along with the nerve) in a thin silicon

cu↵ to isolate it from movement of the overlying muscle (Figure 2.1) .

2.3 Methods Pertaining to Chapters 4-6
The close-loop stimulation platform introduced in the previous chapter (and described

in detail in Chapter 3) was created to provide programmable access to arbitrary sets of

independent stimulating electrodes and multiple varieties of electrical and biomechanical

response metrics. Chapters 4-6 describe the design and validation of various automated

routines that use the closed-loop platform to map, for each implanted electrode, a variety

of response metrics to a range of stimulus parameters. These routines were designed,

implemented, and tested in an iterative manner, sometimes spanning several experiments.

By design, specific methods di↵ered from experiment to experiment, but all involved implan-

tation of one or more USEAs into hind-limb peripheral nerves of cat, and instrumentation of

the hind limb with fine-wire EMG electrodes and torsional or axial load cells. Once surgical

preparation was complete, the implant was allowed a 30-minute period for neurologic

function to stabilize. Finally, the automated routines were executed at least once, and

often multiple times.

2.4 Methods Pertaining to Chapters 7-8
The work described in Chapters 7 and 8 presents data collected over the course of

two neurophysiology experiments. In both experiments, the animal was placed in a prone

position on a small raised platform on the surgery table. A skin incision was made on

the posterior aspect of the right leg from mid-femur to the calcaneous. The skin was then

removed from both the medial and lateral aspects of the leg musculature. Plantar flexors—

triceps surae (medial gastrocnemius, lateral gastrocnemius, and soleus) plus plantaris—were

freed of surrounding connective tissue and muscles. The proximal tip of the calcaneous was

removed from the foot with tendons still attached. A hole was then drilled through the
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Figure 2.1: 100-Electrode USEA implanted into the sciatic nerve of a cat.

calcaneous chip, allowing it to be connected (via high-strength steel cable) to a linear

force transducer (Model 31 - Honeywell Inc., Columbus, OH), mounted to the table, for

subsequent measurements of isometric forces evoked by nerve stimulation. Next, a skin

incision was made on the lateral aspect of the right thigh from iliac crest to knee. The

biceps femoris muscle was exposed and reflected to access the sciatic nerve. Bone pins

were inserted into the proximal and distal ends of the femur and rigidly attached to the

surgery table with the femur at an approximately 45 degree angle with respect to the plane

of the table. The sciatic nerve was then freed of surrounding connective tissue. Finally, a

10x10 USEA (median electrode impedance 150 k Ohms) was pneumatically inserted into

the sciatic nerve at mid-femur [41]. The lateral thigh incision was sutured closed over the

implanted USEA to preserve normal physiologic conditions for the nerve. A diagram of the

experimental setup can be seen in Figure 2.2. Following array implantation, the preparation

was left undisturbed for a period of approximately 30 minutes to allow for stabilization of

physiologic function. Subsequently, perithreshold, recruitment, and overlap routines were

executed to identify sets of 4 to 8 of low-overlap electrodes capable of evoking contraction in

the target muscles—the triceps surae. Finally, the main focus of the experiment—multiple

executions of the IIFMS parameter exploration software routine—was carried out.
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Figure 2.2: Overview of the closed-loop stimulation and recording experimental setup used
for gathering data presented in Chapters 7 and 8.



CHAPTER 3

A PLATFORM FOR MULTIELECTRODE

FES RESEARCH

3.1 Design Considerations
As described in Chapter 1, natural human movements and sensory perceptions result

from complex activity patterns distributed over large populations of neurons. For many

FES applications, eliciting truly natural movements or sensations via these large neural

populations will require neural interfaces with channel counts one or two orders of magnitude

greater than those used in clinical applications today [42]. The need for increased selectivity

of access to neural populations is being addressed by a new generation of high-channel-count

neural interface devices for stimulation and recording [43–47]. High-channel-count devices

(such as the USEA, described in Chapter 1) o↵er significant advantages over traditional

devices with regard to the breadth of sensory perceptions and motor responses that can

be elicited via a single implanted device [21, 22]. However, conducting neuromuscular

electrophysiology research with such devices—with the eventual goal of employing them

in clinical FES applications—poses a host of new challenges.

Before a neural interface device can be e↵ectively used, the response characteristics of

individual stimulation electrodes must be mapped. In present research, and clinical applica-

tions, this is typically done manually [45,48–50]. Mapping stimulus-response characteristics

of an neural interface electrode manually is a tedious and time-intensive process; it is barely

manageable for devices with channel counts of a few tens. For channel counts in the hun-

dreds, or potentially thousands, manual electrode mapping is not feasible in practice. Thus,

to make use of high-channel-count devices practicable, automating the task of mapping

the physiological response characteristics of individual electrodes is necessary. Given the

complexities of IIFMS trains, it is also necessary to have a system that is able to control the

large number of parameters associated with multielectrode stimulation patterns. Indeed,

the collective experience of the author and collaborators, using high-channel-count devices

in many neurophysiology experiments, confirms this assessment. Having spent hundreds
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of hours manually mapping implanted devices and tweaking parameters for multielectrode

stimulation trains, it has become clear that a system able to automate the process of

response mapping, and tune or control IIFMS train parameters, is critical to any attempt

at building a sophisticated, high-electrode-count prosthesis.

Providing automated response-mapping, and programatic IIFMS parameter control,

can be distilled to three system requirements. First, it is necessary to have stimulation

hardware capable of independently, and simultaneously, addressing hundreds of electrodes

(potentially across multiple implanted devices) [42]. Second, it is necessary to have the

ability to record a wide range of functional responses to stimulation. Third, the system

must provide programatic control of stimulation and access to response data.

The closed-loop FES platform presented in this chapter, and used to acquire the results

presented in this dissertation, was designed and built specifically to address these require-

ments. It is capable of generating complex sequences of electrical stimuli on hundreds of

channels while simultaneously measuring the corresponding physiologic responses—all in

a completely programmable manner. With the ability to both stimulate and record, the

platform can be programmed to perform a wide range of stimulus-response mapping and

multielectrode stimulation routines.

3.2 System Architecture
The closed-loop FES platform consists of four main components: 1) a control module,

2) a stimulation module, 3) a set of biometric devices, and 4) a data acquisition module (see

Figure 3.1). The control module is responsible for coordinating activity of the entire system.

It manages the stimulation module and the data acquisition module, analyzes response data,

and provides an interface through which users can configure, initiate, and visualize results

for response-mapping and multichannel stimulation routines. It consists of custom software

running on a desktop PC. The stimulation module consists of a custom designed and built

stimulation device capable of generating constant-voltage, biphasic stimulation pulses on up

to 1100 independent channels [51]. The stimulation hardware is operated via a high-speed

digital I/O card which is, in turn, controlled by custom software running on a PC. The array

of biometric devices consists of the set of analog or digital devices necessary to measure

physiologic responses relevant to stimulation. The data acquisition module records output

from the biometric device array. For this component, we used a commercial data acquisition

system.
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At a fundamental level, the FES platform is designed to function as a closed, stimulus-

response feedback loop (see Figure 3.1). Information flows around the loop, starting with

a stimulation command from the control module, continuing through each component, and

returning to the control module in the form of a response measurement. The following

sections present each component in detail, focusing on its design, its role in the feedback-

loop, and the means by which it communicates with other components.

3.2.1 Control Module

The control module consists of custom software running on a PC. The software is a

command-line-driven application written in C++ (compiled in Visual Studio 2005), de-

signed to run on any Windows™ PC with an ethernet adapter, a serial port (RS-232),

an appropriate processor (Intel P4 or later), and disk storage capacity of tens of giga-

bytes or greater. The software provides the user with an interface for configuring the

stimulation and recording modules and selecting, configuring, and running routines for

stimulus response-mapping (algorithms described in Chapters 4, 5, and 6), exploring the

influence of various IIFMS parameters (algorithms described in 8), or executing sequences

of multielectrode stimulation patterns in an open loop manner—for example, for eliciting

coordinated limb movements [52]. Response mapping and IIFMS parameter exploration

routines are implemented in the control module software and are executed an iterative series

of stimulus-response loops. After each loop, stimulation parameters are modified based on

an algorithmic analysis of previous responses. Loops are repeated until the specific aim

of the routine is achieved. The control software starts each stimulus-response iteration

by sending a digital output pulse to the data acquisition module instructing it to begin

recording response data to disk. The controller then sends, via the serial port, a stimulation

command, consisting of stimulus parameters specified in a high-level ASCII-based format,

to the stimulation module. Communication with the stimulation module is primarily

unidirectional, but can flow in the opposite direction in the case of error conditions. When

the stimulation is complete, the controller triggers the data acquisition system to stop

recording. The controller then copies the recorded data file from the data acquisition

system to a local drive, opens the file, and analyzes the response data. As a mapping or

multielectrode stimulation routine progresses, stimulus parameters and response metrics

are recorded to a delimited text file for later analysis. Additionally, during a routine, the

results of each stimulus-response iteration are plotted to the screen using Matlab® (called

from c++). When applicable, Matlab® plots are saved to file for later review.
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Figure 3.1: Detailed overview of the four main components of the closed-loop high-channel-
count FES platform. Stimulation commands and response information flow in a clockwise
direction, originating and terminating at the Control Module.
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3.2.2 Stimulation Module

The stimulation module consists of several subcomponents: a custom control program,

a high-speed digital I/O card (Adlink Technologies Inc.), a PC, and a custom, 1100-channel

stimulation device [51]. The stimulation module was designed to function as part of the

closed-loop FES platform, but can also function in a stand-alone, open-loop mode.

When operating as part of the closed-loop FES platform, the stimulation control program

first initializes the digital I/O card and then executes a continuous loop in which it waits

for high-level commands from the control module (or a keyboard command to terminate).

When a high-level command is received, the program translates it into low-level instruction

words and sends these to the stimulation hardware bus via the high-speed digital I/O card.

The stimulation hardware is designed in a modular way that allows it to operate with as

few as 100 stimulation channels installed. Stimulation channels (circuits are implemented

with discrete components on a custom-designed printed circuit board (PCB). Each PCB (or

“card”) provides 50 stimulation channels and can be interfaced via 2 26-pin connectors. As

output-channel requirements for a given FES application increase, more stimulation cards

(up to 60) can be added to the hardware. Any high-channel-count electrode array with

a compatible connector or connector adapter can be used with the stimulation hardware.

Experiments conducted for this dissertation primarily involved one or more 100-channel

10x10 USEA wired to “paddle-board” connectors (consisting of a PCB mounted with 4

IDC-26 connectors). Simple ribbon cables can be used to connect stimulation card outputs

to high-channel-count device connectors.

3.2.3 Biometric Device Array

The role of the biometric device array is to measure physiologic responses of interest

for the given FES application. Hence, this component will often consist of a heterogeneous

set of biosensors. With respect to system architecture, any device that produces a signal

compatible with the data acquisition module can be used. Additionally, the total number

of sensors is configurable up to the input channel capacity of the data acquisition module.

Typical biometric devices used in neuromuscular electrophysiology experiments conducted

for this dissertation include: fine-wire EMG electrodes, single-axis, and multi-axis force load

cells, torsion load cells, and goniometers.

3.2.4 Data Acquisition Module

The role of the data acquisition module is to record all signals produced by the biometric

device array. Hence, the main design/selection criterion for this component is that it be
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capable of recording the full range of outputs from the biosensors employed in the intended

FES application. Additionally, the data acquisition system must be able to handle the

number of response signals required for the particular application. For example, stimulus-

response mapping of a high-channel-count array implanted in a peripheral nerve trunk may

require simultaneous measurement of EMG signals from tens of muscles. Equally important,

the system must be able to sample response signals at rates appropriate to the frequency

bands of interest within those signals signals. For example, muscle action potentials have

a time course of a few milliseconds and relevant frequencies in the low kHz, necessitating

sample rates of approximately 10 k/sec. Finally, the system must be capable of recording

signals and exposing them to client applications via some persistent, o↵-line (i.e., hard disk),

or bu↵ered, real-time (i.e., dedicated RAM) interface.

To meet these needs, we selected a Cerebus™ data acquisition system (Blackrock®

Microsystems, Salt Lake City, UT). The Cerebus™ is capable of recording 128 channels

with input in the 1 µV to 8.9 mV range, 16 analog channels in 1 mV to 5V range, and

16 channels of digital TTL-compliant input. Additionally, it can record continuously at

sample rates up to 30 thousand samples per second (su�cient for frequencies associated

with muscle action potentials and motor responses, such as muscle EMG, muscle force, and

joint torque). Initiation and termination of recording on the Cerebus™ can be controlled by

a digital input signal. Recorded data are stored in a binary file format (NEV/NSx2.1) on

the hard drive [53].

3.3 Development and Testing
The closed-loop FES platform described above was developed and tested over the course

of a series of many neuromuscular electrophysiology experiments, all aimed at the long-

term goal of using multiple 100-electrode USEAs, implanted in lower limb nerve trunks, to

elicit coordinated stance behavior in an adult cat model. The first mapping routine to be

implemented employed a binary search strategy to identify the perithreshold stimulation

level (i.e., the minimum stimulus for consistently evoking a small motor response). The

second routine added the ability to identify response asymptote and to map the full stimulus-

response curve (from perithreshold to asymptote) for each electrode. The third routine

automated the task of measuring excitation overlap for stimulation on pairs of electrodes.

The fourth routine was implemented to test the accuracy of using single-electrode train

responses to optimize various multielectrode train parameters, and to asses the influence,

for IIFMS trains, of intraperiod stimulus timing on intraperiod response variation (ripple).
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An additional routine for executing complex multielectrode stimulation patterns for the

purpose of eliciting coordinated multijoint limb movements was also implemented, and

used extensively, though details are not discussed in this dissertation (see [52]). After the

initial algorithm development stage, each mapping routine was validated over the course of

hundreds of executions, in-vivo. The remainder of this dissertation describes, in detail, the

design and performance of these routines.



CHAPTER 4

PERITHRESHOLD MAPPING

4.1 Motivation
In the field of FES, mapping perithreshold stimulus levels of neural interface electrodes

serves as a standard first metric for assessing overall implant viability and muscle-activation

specificity [18, 20, 22]. For a given electrode-type (e.g., intraneural electrodes such as

the LIFE and USEA) a lower perithreshold stimulus level indicates closer proximity of

stimulating electrode to excited axonal populations—which typically enables higher muscle-

activation specificity. In previous studies, by the author’s group and others in the field,

[17, 22] threshold mapping was typically accomplished using manual palpitation, or force

measurements (i.e., from a load cell), as the response metric. Selectivity of muscle activation

was either determined via palpitation, or inferred from other indirect techniques, such

as measurement of excitation overlap (described in Chapter 6). To enable our group’s

long-term goal of using the closed-loop FES platform, together with high-channel-count

implants, to elicit functional, multijoint stance behavior (with the cat model), we needed an

approach to mapping that could asses both threshold and muscle specificity in an automated

manner, in both an isolated preparation and an intact neuromuscular system.

4.2 Design
To satisfy these requirements, the perithreshold mapping algorithm was designed in a

generic way to be capable of operating with a variety of di↵erent response types and with one

or multiple response channels. For example, the mapping routine was implemented to be

capable of using electromyographic (EMG) signals from multiple muscles (each instrumented

with a bipolar pair of fine-wire electrodes). In the case of EMG responses, the mapping

routine identifies, for a given stimulating electrode, the minimum stimulus level for which

perithreshold activation is detected by a single EMG sensor. Given a USEA implanted

in sciatic nerve trunk, the mapping routine identifies and reports which of the lower limb

muscles each electrode preferentially activates, and the minimum single-pulse stimulus level
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(in the case of the closed-loop FES platform, controlled by pulse-width) required to elicit a

perithreshold response. Perithreshold stimulus has been defined in di↵erent ways by various

groups. For our purposes, we define it as the stimulus level which consistently evokes

a specific, small but measurable response (i.e., 50 µV of EMG). Although the mapping

routine was designed to handle multiple response channels, it can operate with only a single

response channel (for example, from a force or torque load cell), or, for that matter, any

biopotential that exhibits a positive, monotonic relationship to stimulus level. To locate

the perithreshold stimulus level, the mapping routine employs a binary search algorithm,

outlined in Table 4.1.

The threshold mapping routine can be configured to use the threshold stimulus level for

the previously mapped electrode as the starting point for locating the threshold on the next

stimulation channel. This improves search e�ciency by taking advantage of the tendency

for thresholds to cluster—due to somatotopy at the site of device implantation, similarity

in electrode impedance, and/or other factors.

Table 4.1: Threshold Mapping Pseudo Code.

Initialization
1 pulse width = (set by operator)
2 pulse width limit = (set by operator)
3 accuracy = (set by operator)
4 low bound = 0
5 high bound = pulse width limit
6 threshold found = false
Loop
7 stimulate at pulse width
8 measure response
9 if (response < threshold)
10 low bound = pulse width
11 pulse width *= 2
12 else
13 high bound = pulse width
14 pulse width = (high bound - low bound)/2
15 if ((high bound - low bound) < accuracy)
16 threshold = high bound
17 threshold found = true
18 break
19 if (low bound >= pulse width limit)
20 break
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4.3 Results
To date, the automated calibration tool has been used to generate hundreds (possibly

thousands) of threshold maps. Figure 4.1 shows the sequence of single-pulse stimuli (and the

resulting EMG responses) generated by the mapping routine during perithreshold search on

a single electrode in an implanted 100-electrode USEA. Figure 4.2 shows stimuli sequences

generated during perithreshold mapping of an entire 100-electrode USEA. Figure 4.3 shows

the perithreshold stimulus levels, grouped by muscle, for a 100-electrode USEA implanted

into sciatic nerve (at mid-thigh) of a cat. For this implanted USEA, active electrode yield

was approximately 64%. (Note: for our purposes, “active” electrodes are those able to

evoke a perithreshold response in one of the instrumented muscles at a stimulus level at or

below the stimulus limit set, for safety, by the user.) On average, the automated routine

maps active electrodes in 16.4 seconds (n = 3200) and inactive electrodes in 3.6 seconds

(n = 1800). Extrapolating to a prosthesis involving 600 stimulation channels (for example

six 100-electrode USEAs), and an active electrode yield of 70%, the automated system

would complete perithreshold mapping for all arrays in around 126 minutes (2.1 hours).

By comparison, manually mapping perithreshold levels for a 100-electrode USEA takes

approximately 90 minutes (or 9 hours for 6 arrays). Thus by using the automated system,

time required for perithreshold mapping is reduced by 77%.

4.4 Discussion
There are several areas where improvements could be made to the perithreshold mapping

routine. Chief among them is execution speed. The speed of the routine is governed by two

factors: time required to complete an iteration of the stimulus-response loop, and number

of loops (stimuli) required, per electrode, to determine the perithreshold stimulus level.

The duration of the stimulus-response loop is governed by software-imposed delays, set

specifically to limit the frequency of muscle activation. Activation at frequencies of 2 Hz

and above have been shown to induce fatigue in skeletal muscle [54]. Thus, loop-completion

time has been set to a minimum of 0.5 seconds. However, for the typical high-channel-count

implant, not all electrodes activate the same muscle (indeed this is the whole point of such

implants). Thus, it might be possible, by carefully selecting electrodes which activate

di↵erent muscles, to reduce stimulation-response loop time, by mapping several stimulation

channels in an interleaved manner, without risking the possibility of muscle fatigue. Given

that EMG potentials dissipate rather quickly (on the order of milliseconds), it would, in

theory, be possible to stimulate on successive electrodes after only a few 10s of ms without
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Figure 4.1: Representative series of stimuli sent and responses recorded during execution
of the perithreshold search routine. The ordinate scale on the left-hand side of the figure
denotes the pulse-width of the stimuli in microseconds. Stimuli pulse-width values are
represented by squares. The ordinate scale on the right-hand side of the figure denotes the
recorded response in microvolts. Response values are represented by triangles. In total, the
search algorithm sent 12 stimuli of varying pulse-widths. It identified the eighth stimulus
(circled asterisks), with pulse-width 128 µs, as the smallest stimulus capable of evoking a
response above the predefined perithreshold activity level (50 µV).

risking response signal contamination. (This would clearly not be possible in the case of

force or torque responses where responses require 10s to 100s of milliseconds to dissipate).

The number of stimuli required to map an electrode reflects the e�ciency of the threshold

search algorithm. The mapping routine currently uses a binary-search algorithm, which is

optimal over the general set of monotonic functions. However, it may be possible to take

advantage of the characteristically sigmoidal shape of muscle response recruitment curves

(discussed in Chapter 5), for example, by iteratively fitting collected responses to a sigmoid

and then using the sigmoid to inform the selection of the successive stimulus level—ideally

enabling the algorithm to pick a level that is closer to threshold stimulus.
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Figure 4.2: Results of the automated perithreshold mapping routine after mapping an
implanted 100-electrode USEA. Shown in the figure are search sequences for which a
perithreshold response in an instrumented muscle was evoked with a stimulus pulse-width
less than 512 µs. Each line represents the search sequence for a single electrode. For
this USEA implant the automated perithreshold mapping routine was able to evoke a
perithreshold response via 58 of the 100 electrodes. Circled asterisks indicate perithreshold
stimuli. (Note: several groups of electrodes share the same threshold pulse-width value).
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Figure 4.3: Representative results from the automated threshold mapping of a 100-
electrode USEA implanted into a cat sciatic nerve. Each bar represents the mapping result
for a single electrode. Height of a bar indicates the pulse-width required to elicit muscle
activity greater than the perithreshold criterion. The bars/electrodes are grouped by the
muscle in which the activity is observed [Tibialis Anterior (3 electrodes), Lateral Gas-
trocnemius (15 electrodes), Soleus (22 electrodes), Medial Gastrocnemius (25 electrodes)].
Thirty-five electrodes did not elicit responses above the perithreshold criterion in any of
the four instrumented muscles (for pulse-widths less than 1024 µs). Total time to complete
map was 36 minutes.



CHAPTER 5

RECRUITMENT MAPPING

5.1 Motivation
Recruitment curves are another standard metric for assessing neural implant e�cacy [18,

20,22]. Employing a neural implant for FES research applications requires, at a minimum,

knowledge of the full range of responses that can be elicited (recruited) by each electrode. Of

particular interest is whether individual electrodes can selectively elicit a useful functional

response from a single muscle or agonist group without also activating spurious or opposing

responses (i.e., from an antagonist). The steepness of an electrode’s recruitment curve

indicates how practicable it will be to achieve “graded” responses with that electrodes

during functional stimulation. Electrodes for which the response range maps to a wide

range of stimulus levels are more useful because targeted response levels can be more reliably

achieved. As argued in Chapters 1 and 3, automation of the recruitment mapping process is

a practical necessity for neural implants with electrode counts in the 10s and 100s. Indeed,

automated recruitment mapping has proven to be an essential prerequisite to the author

and colleagues’ over-arching experimental aim of evoking graceful 3-joint stance with a

multiple-USEA-implant cat model.

5.2 Design
Recruitment mapping involves measuring some physiologic response to a set of stimuli

of increasing strength (charge). A naive approach to generating a recruitment curve might

involve simply delivering a series of stimuli, in which strength is increased by a constant

amount from one to the next. However, even assuming knowledge of the perithreshold

stimulus level, this approach would require many pulses (and hence time) to ensure adequate

coverage of the full response range. In the case of electrodes implanted in peripheral

nerves, muscle responses typically exhibit a sigmoidal relationship to linear increases in

stimulus strength [55]. Given this predictable pattern, it is possible to greatly improve on

the performance of the naive approach. The recruitment mapping algorithm, implemented
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for the closed-loop FES system, starts by first locating the stimulus level at which the

response reaches periasymptote, and then “fills in” the interior of the response curve with

a series of stimuli, starting below the perithreshold level (as determined by the method

described in Chapter 4) and continuing to periasymptote. The algorithm is designed to be

able to fill in the curve to a user-specified level of accuracy—as may be necessitated by the

particular FES application. Locating the periasymptote stimulus level is accomplished using

the algorithm outlined in Table 5.1. Filling in the curve is accomplished by a gap-bisection

method outlined in Table 5.2. Much like the threshold mapping routine, the recruitment

mapping routine is design to map recruitment using any of a variety of response metrics,

including force, torque, and EMG.

An additional consideration in recruitment mapping is the functional utility of elicited

muscle responses. Given the complex, anisotropic structure of the peripheral nerves, elec-

trodes of implanted USEAs exhibit a wide range of recruitment abilities. Many electrodes

lie in intrafascicular regions, in close proximity to motor axons. Some, however, end up in

interfascicular space, and others may, depending on the quality of the implant, fall altogether

outside of the epineurium. Thus, as a first step, the recruitment mapping routine checks, for

each electrode, that the response to a large stimulus exceeds some user-specified threshold.

For example, in a map of muscle force recruitment, the algorithm can be configured to first

send a 256 µs single-pulse probe stimulus on each USEA electrode. Recruitment curves

are then generated only on electrodes for which the probe stimulus elicits a peak twitch

response greater than some user-specified level—typically this value represents a minimum

bar for functional utility (e.g., 1N). Alternatively, the routine can be configured to only

generate recruitment curves for electrodes with perithreshold stimulus levels below some

user-specified level (e.g., 100 µs).

During the execution of the recruitment routine, algorithm parameters and stimulus

and response levels (as well as raw response waveforms) are saved to a series of files for

later, o✏ine analysis. Additionally, as the routine is executing, curves are visualized for

the user with Matlab™plotting functions (called from C++), and updated after each new

stimulus-response pair is generated.

5.3 Results
Figure 5.1 shows the results of the automated recruitment mapping routine for a single

electrode. Figure 5.2 presents the recruitment map for an entire 100-electrode USEA. In

the context of a high-channel-count electrode array, a recruitment “map” is simply the
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Table 5.1: Recruitment Routine - Asymptote Detection.

Initialization
1 pulse width = threshold pulse width
2 pulse width limit = (same as used in threshold routine)
3 threshold response = (same as used in threshold routine)
4 growth factor = 2.0
5 stimulus count = 0
6 previous 4 responses = [ 0, 0, 0, 0 ]
7 asymptote found = false
Loop
8 stimulate at pulse width
9 measure response
10 previous 4 responses[mod(stimulus count, 4)] = response
11 stimulus count++
12 if ((response < previous response*1.1)
13 && (response > threshold response*5))
14 growth factor = 1.1
15 if (max deviation(previous 4 responses) <
16 mean(previous 4 responses)*0.05)
17 asymptote found = true
18 break
19 else
20 pulse width *= growth factor
21 if (pulse width >pulse width limit)
22 break

collection of recruitment curves for all of the active electrodes. For the map depicted

in Figure 5.2, recruitment curves were generated for the 55 electrodes with perithreshold

stimulus pulse-widths below 100 µs. The map was generated in 45 minutes. Averaging

over a set of 155 curves (selected at random from a series of in-vivo experiments) it takes

the routine 11 stimulus-response iterations to identify response asymptote. Each iteration

takes approximately 0.87 seconds to complete. Thus, asymptote identification requires

roughly 9.6 seconds. Given this performance, a 15-point recruitment curve (su�cient to

give a reasonable picture of recruitment behavior) would take approximately 23 seconds to

complete (10 s for asymptote + 15 x 0.87 s for the curve). Assuming 50% of implanted

electrodes are capable of eliciting large enough responses to warrant stimulus-response

mapping, it would take approximately 115 minutes (1.9 hours) to generate the recruitment

map for a 600-channel prosthesis.
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Table 5.2: Recruitment Routine - Curve Filling.

Initialization
1 threshold pulse width = (determined in threshold routine)
2 threshold response = (determined in threshold routine)
3 asymptote pulse width = (determined in previous step)
4 asymptote response = (determined in previous step)
5 max response gap = (set by operator)
6 pulse width = (asymptote pw - threshold pw)/2
7 all pulse widths = [ . . . ]
8 all responses = [ . . . ]
Loop
9 stimulate at pulse width
10 measure response
11 all pulse widths.insert(pulse width)
12 all responses.insert(response)
13 if ((response - next lesser response) > max response gap)
14 pulse width = (pulse width - next lesser pw)/2
15 else
16 while ((next larger response - response) <
17 max response gap)
18 if (no larger response exists)
19 break:Loop
20 else
21 response = next larger response
22 next larger response = second larger response
23 pulse width = (next larger pw - pulse width)/2

5.4 Discussion
The recruitment mapping routine has been used in-vivo many hundreds of (possibly

over a thousand) times and has proven to be a truly invaluable tool for high-channel-count

research. An obvious potential improvement would be to integrate it with the perithreshold

mapping routine. Given that often a few super-threshold stimuli are delivered while map-

ping and electrode’s threshold, it makes sense to incorporate the responses to these stimuli

directly into the recruitment curve. This would reduce the total number of stimulus-response

iterations required to fully map an electrode (i.e., threshold and recruitment). To illustrate

the importance of improved mapping e�ciency, a reduction in average number of pulses

required to calibrate an electrode—from 65 (9 perithreshold, 56 stimulus-response) to 55

(7 perithreshold, 48 stimulus-response)—would yield an overall time savings of 15%. This

savings would be substantial when calibration for multiple devices requires hundreds of

minutes.
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Figure 5.1: Representative torque and EMG recruitment curves generated by the re-
cruitment mapping routine. (a) Joint-level responses, as measured by a torsional load
cell placed at the left hind-limb ankle, to a series of single-pulse stimuli of increasing pulse
width. (b) Individual muscle responses, to the same series of stimuli, as measured by bipolar
fine-wire EMG electrodes implanted in the three ankle plantar flexors, lateral gastrocnemius
(LG), medial gastrocnemius (MG), soleus (Sol), and the ankle dorsiflexor tibialis anterior
(TA). All stimulus pulse widths were selected by the mapping program without operator
guidance.

Another area for improvement is enhancing the the curve filling (gap bisection) al-

gorithm, to be able to handle shifts or variability of the muscle recruitment function

(resulting from micromovements of the interface device, shifts in response sensors position,

and/or actual changes in muscle force capabilities—from fatigue, etc.). The algorithm could

be modified to check for unexpected responses (i.e., responses that imply nonmonotonic

recruitment behavior) and then decide on an appropriate, corrective course of action such

as reconfirming previous, conflicting, points, switching to gap bisection with respect to a

best fit sigmoid or, in cases of large shifts, regeneration of the entire curve.
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Figure 5.2: The set of stimulus-response curves for the same 100-channel USEA implant
referenced in Figure 4.3 and Figure 5.1. (a) Each box represents the EMG recruitment
curves for a single USEA electrode. (Note: Abscissa scale is not the same for all plots).
Plots are displayed in a 10x10 grid representing the layout of the 10x10 USEA. Curves
were generated only for the 55 electrodes with perithreshold stimulus levels below 100 µs.
This criterion was chosen by the operator before the start of the routine. During the
routine, all stimulus pulse widths were selected and delivered by the mapping program
without operator guidance. The 55 recruitment curves were generated in approximately 45
minutes. (b) Detailed view of a recruitment curve generated by the system (same as shown
in Figure 5.1).



CHAPTER 6

EXCITATION OVERLAP MAPPING

6.1 Motivation
As described in Chapter 1, electrical stimulation of peripheral nerve via penetrating

microelectrodes is accomplished by creating a voltage gradient between an electrode and

the current return path. If the gradient is large enough, it will induce action potentials

in a set of motor (and sensory) axons–starting with those near the electrode tip and

extending out in a roughly spheroid manner as the current from stimulating electrode

to return is increased [17, 56]. In the case of intrafascicular (and epineural) stimulation

protocols involving asynchronous activation of multiple electrodes (IIFMS—described in

the next chapter) from a multielectrode neural interface, it is important to characterize the

interaction between axonal excitation zones of the electrodes involved. Specifically, it is

important to quantify, for various stimulation levels (ranging from threshold to asymptote),

the percentage of axons excited by more than one electrode. During asynchronous multi-

electrode stimulation, motor-units excited by more than one electrode will fire at a higher

rate than their peers causing them to fatigue faster. This leads to a decline in overall force

output (and an increase in intraperiod variation in force), ultimately defeating the purpose

of the multielectrode approach.

Over the past several decades, researchers investigating epineural and intrafascicular

multielectrode stimulation have converged on a standard approach to measuring excitation

overlap [17, 18, 21, 22]. The technique, which measures overlap between pairs of electrodes,

takes advantage of two important properties of the underlying neuromuscular system sys-

tem. The first is that neurons (in this case motor neurons) have an absolute refractory period

(⇠1 ms) following action potential, during which they cannot fire again [1]. The second is

that the force produced by the simultaneous, or nearly coincident (�t < 20ms), contractions

of independent motor units in the same muscle is summed by the muscle tendon. Overlap

for a given set of stimuli on two electrodes can be deduced by comparing the sum of the

force evoked by each stimulus independently to the force produced by the same stimuli in a
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doublet sequence (i.e., in series, o↵set by a short delay). The o↵set must be long enough to

electrotonic avoid summation of voltage gradients but short enough to lie within the neural

refractory period. The greater the overlap between the two excitation zones, the lower will

be the the doublet response as compared to the sum of the single-stimulus responses.

As is the case for threshold and recruitment mapping, measuring overlap by hand is, at

best, a tedious task—even for a single target response level on a single pair of electrodes it

can take tens of minutes. Manually measuring pair-wise overlap for a set of 8 electrodes is

at the limit of what can be accomplished by hand in an experimental or clinical setting [57].

Measuring overlap at multiple force levels, for many sets of electrodes, across multiple

implants is not feasible in practice.

6.2 Design
To address this issue, the author implemented a software routine that automates the

task of measuring excitation overlap. The routine works as follows. The user enters a

set of electrodes and a target single-electrode stimulus response level. The routine then

computes all possible pairs of electrodes. A set of 10 electrodes, for example, would have
�10
2

�
= 45 pairs. For each electrode of each pair, a response-targeting routine (similar to

the threshold routine described in Chapter 4) searches, to within a user-specified accuracy,

for the stimulus level that elicits the target response. Even though electrodes belong to

multiple pairs, the stimulus level is always redetermined before testing each pair because

the response to a given stimulus can change over time (due to various factors, including

electrode movement and muscle fatigue). Once the appropriate stimulus level for each

electrode is identified, the overlap routine is executed as follows. For a pair of electrodes

(a,b), first a set of 20 stimuli, consisting of 5 on each electrode and 10 doublets (where

the second stimulus is delayed 750 µs), are delivered in random order at 1-second intervals

(in five of the doublets, electrode a precedes electrode b, and in the other five the order is

reversed). Evoked muscle forces are recorded for each stimulus. Overlap is then calculated

as follows. Each group of five responses is averaged (f̄
a

, f̄
b

, f̄
ab

, f̄
ba

). The sum of the mean

singlet responses for the two electrodes (f̄
a+b

) is computed. The mean doublet response (f̄
d

)

is computed. The di↵erence between the singlet response sum and mean doublet response

(f̄
a+b

- f̄
d

) is computed. Finally, percent overlap is calculated as this di↵erence divided

by the mean doublet response. 0% overlap indicates that the two stimuli excite completely

independent populations of motor units, whereas 100% overlap indicated that they excite

the same population.
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When overlap measurement for all pairs is complete, the routine prints out, for various

overlap cuto↵ levels (i.e., 10%, 20%, etc.), the sets of electrodes, for which all pairs in the

set have overlap below that cuto↵ level. The interface also provides the operator an option

to enter a specific overlap cuto↵ for which to generate sets.

f̄
a+b

= f̄
a

+ f̄
b

(6.1)

f̄
d

=
f̄
ab

+ f̄
ba

2
(6.2)

%Overlap = 100 ⇤ f̄
a+b

� f̄
d

f̄
d

(6.3)

6.2.1 Novel Methods

Historically, overlap measurement has involved averaging the isometric force responses to

many repetitions of the same stimulus (up to 64 [17]), typically with a delay between stimuli

of a second or more. An obvious shortcoming of this approach is the time it takes (even

when the process is automated) to execute the necessary series of pulses. Another, more

serious problem involves the nature of muscle force recruitment. In an acute preparations,

force is typically measured by removing the distal muscle tendon from its insertion point and

attaching it to a force transducer. When the muscle is instrumented in this way, measured

twitch forces represent a combination of the action of the contractile muscle fibers and the

elastic properties of the tendon. During a twitch contraction, not all of the contractile action

of the activated muscle fibers is translated into force at the transducer; some is “absorbed”

by lengthening of the tendon. The e↵ect of tendon elongation, on force, decreases during the

course of a tetanus as the tendon lengthens. This phenomenon has the problematic e↵ect of

increasing the response to doublets, as compared to singlets, making overlap appear smaller

than it actually is. To address this issue we implemented, in the routine, an approach to

measuring overlap that employs rapid trains of pulses instead of single pulses. The routine

allows the operator to set train parameters—typical values used are 40 Hz for 500 ms or

1 s. By limiting analysis to the force level within the window of response plateau, the e↵ect

of tendon stretch on the overlap computation is minimized. An additional benefit of this

approach is that overlap can be determined more quickly, as response measurement does

not require the execution of multiple trials.

Another problem with the standard method of overlap measurement is that it requires

invasive, and irreversibly destructive, surgical intervention to instrument the muscle for force

transduction. Such an approach is, by definition, not suitable for actual FES applications



43

involving intact musculoskeletal systems. To address this practical consideration, we devised

a method of measuring overlap that uses a multidimensional force transducer attached to

the foot to measure responses. Conceptual aspects of this approach were developed in

collaboration [27]. Implementation of the approach, in software, was completed by the

author.

6.3 Results
The mean time required to measure overlap for a pair of electrodes using the single

twitch method is 36.9 s (n=153). For the pulse train method, the average time to measure

pairwise overlap is 26.5 s (n=316). For a USEA implant in a cat lower limb nerve trunk,

typically between 4 and 12 electrodes are able to selectively activate each major muscle.

For this range of electrode set sizes, the corresponding times required to measure pairwise

overlap with the twitch method would be 3.7 and 40.6 minutes, per muscle, and from 2.7 to

29.2 minutes for the train method. Figure 6.1 shows a typical matrix of pair-wise overlap

values measured by the routine. Figure 6.2 shows a typical plot generated by the routine

when using 3-dimensional force responses.

6.4 Discussion
Given that measuring overlap for a pair of electrodes manually takes several minutes

(at the fastest), the automation of this task saves a tremendous amount of time. In acute

experiments, which have a fixed limit on duration, shortening the overlap mapping task by

several hours is critical to ensuring su�cient time to accomplish the larger experimental

goals. Perhaps more importantly, it frees the experimenter to focus his/her mental energy on

experimental aims—overlap mapping is an incredibly tedious and exhausting task that can

consumes a significant portion of the experimenter’s ultimately finite attention. Currently,

a substantial portion of the algorithm execution time is spent reverifying response levels for

each electrode before the start of the single-pulse or train overlap stimuli. In the case of a

chronic implant, where the electrode interface has stabilized, it may be possible to remove

the reverification step from the routine—hence making it more e�cient.

A question often raised, regarding overlap assessment, is whether the presence of inter-

action among sets larger than two electrodes (i.e., triplet and quadruplet overlap) exists

and exerts an influence on output of mulitelectrode trains, and if so, whether these kinds of

interactions should also be measured. The answer to the first question is yes—as stimulus

levels increase on all electrodes, there will undoubtedly be motor units that are activated by

more than two electrodes. If these electrodes and stimulus levels are used in a multielectrode
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Figure 6.1: Matrix containing all pair-wise overlap values (in %) for a set of 10 electrodes
(45 pairs). This representative data set was collected in 34 minutes.

train, the resulting triple and quadruple activation will cause motor units to fatigue at an

even faster rate than those activated by only two electrodes. There are three reasons,

however, why the overlap routine described in this chapter does not measure interaction

among sets larger than two. The first is that, for biological reasons measuring overlap is

technically challenging for sets of three electrodes and impossible for sets of four or more.

Given that the refractory period of a motor unit is approximately 1 ms and the electronic

decay of a stimulus pulse is approximately 400 microseconds [44], at most three pulses can

be delivered that are guaranteed both not to electrically summate and not to activate any

axons multiple times (i.e., the prerequisite for overlap measurement). The second reason is

that if, as is the goal, all pair-wise overlap measurements are zero, is is logically impossible

for there to be any zones of triple, quadruple, etc. overlap; hence, there is no need to

measure these interactions. The final reason is that, in practice, if the number of motor

units activated by several electrodes in a multielectrode train is small, then neither their

initial nonlinear force contributions, nor the subsequent loss of their output (resulting from

rapid fatigue) will have a large e↵ect on the overall muscle output.
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Figure 6.2: Plot representative of output from excitation overlap routine using the 3 force
components of a 6-axis load cell. (Note: annotated for clarity in black-and-white format).



CHAPTER 7

RIPPLE REDUCTION VIA

FEEDFORWARD TIMING

ADJUSTMENT

7.1 Motivation
Chapter 1 introduces the emerging field of IIFMS, and some of the encouraging ex-

perimental results that have been achieved by various groups. An important practical

issue that has not been fully addressed, however, is the complexity of selecting stimulation

parameters for IIFMS trains (as compared with selecting parameters for single-electrode

trains). These complexities are particularly evident when the issue of intraperiod variation

(ripple) in evoked force is considered. Ripple must be low for muscle forces to be functionally

useful; however, IIFMS-evoked responses tend to elicit responses with high levels of ripple

(even when their composite frequency would, on a single electrode, evoke a low-ripple

response) (Figure 1.5). Achieving low-ripple responses with single-electrode trains is simply

a matter of increasing stimulus frequency until ripple falls below the target level. In contrast,

multielectrode trains have a much larger parameter set, including electrode count, stimulus

strength for each electrode, stimulus rate for each electrode, and timing of stimuli among

electrodes (Figure 1.6). The interactions among these parameters—especially with respect

to how they influence ripple—are substantially more complex than those for single-electrode

trains. Selecting from among all possible stimulation parameter combinations in a way that

consistently achieves smooth muscle responses is a nontrivial task. This is especially true

when faced with the constraint of keeping stimulus rates low to delay the onset of muscle

fatigue.

In early studies involving multielectrode stimulation, the task of selecting parame-

ters to achieve low-ripple forces at a target level was typically accomplished by hand

in a trial-and-error manner. E↵orts to minimize ripple often focused on searching for

stimulus levels that matched the peak force evoked by each electrode. For one group

(McDonnall, personal communication) identifying low-ripple stimulus parameters often took
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hours. Further, achieving low-ripple responses by adjusting only stimulus strength was not

always possible. More recently, Frankel has demonstrated a method for control of stimulus

strength, to achieve time-varying force trajectories [28]. Little work, however, has been

done investigating the influence intraperiod stimulus timing on response ripple.

This chapter presents the results of studies investigating the relationships between var-

ious IIFMS parameters and response ripple. Also presented are results of studies assessing

the feasibility of using a simple response-prediction model to identify IIFMS timings that

minimize response ripple. The model takes single-electrode responses, measured in-vivo,

as inputs and predicts the response to a composite IIFMS train as the linear sum of the

single-electrode responses, shifted by the given IIFMS timings (Figure 7.1). Although a

linear tendon-force-summation model is not accurate under all conditions, it has been shown

to be largely valid for short-duration isometric muscle contractions, specifically during

constant-force periods of the response [58].

Given this response prediction model, the e↵ect of a large number of timings can be

explored in silico rapidly using a small set of actual single-electrode responses, recorded in-

vivo in a relatively short time. Function optimization techniques can be used, in conjunction

with the model, to methodically search the parameter space for timings that minimize ripple.

Figure 7.1: The IIFMS response prediction model. (a) In-vivo responses to single-electrode
trains on each of the four electrodes. (b) Stimulus times for the IIFMS train. (c) Predicted
response to the IIFMS train given the times specified in (b). The predicted response is
generated by shifting the single-electrode responses by the specified times and summing the
shifted waveforms.
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Exploring the parameter space in silico is several orders of magnitude faster than doing so

in-vivo, making this approach to tuning IIFMS timings practical in an experimental settings.

Experiments were conducted in-vivo to explore the e↵ects of IIFMS parameters on

response ripple, and to validate the response prediction model and timing-optimization

approach. In these experiments, motor axons were stimulated via a 100-electrode (10x10)

USEA implanted into the sciatic nerve, and evoked isometric force responses in the isolated

plantar flexors were measured with a linear force transducer [22] . Model predictions

for IIFMS trains, covering a wide range of stimulus parameters, were compared with

actual responses measured in-vivo. Performance of the model-based function-optimization

technique, at identifying stimulus timings that reduced response ripple, was assessed. Two

supplemental analyses were conducted to quantify other aspects of the stimulus timing op-

timization method. The first looked at its e↵ect on the power spectral density (PSD) of the

muscle response waveform. The second investigated the relationship between dissimilarity

in individual electrode evoked-response kinetics and the e�cacy of the optimization method.

7.2 Methods
The data presented in this chapter were collected in two neuromuscular electrophysiology

experiments with an acute cat model. For a detailed description of surgical preparation and

electrode implantation, see Chapter 2. After the USEA was implanted in the sciatic nerve,

automated stimulus-response mapping routines, as described in Chapters 4, 5 and 6, were

executed to identify electrodes that elicited functionally-useful force levels and then to select

a subset that exhibited minimally overlapped axonal excitation fields. All experimental ma-

nipulations were controlled by the closed-loop stimulation platform described in Chapter 3.

7.2.1 Data Collection

A series of trials involving IIFMS parameter exploration and timing optimization were

executed with an automated software routine implemented by the author to run on the

closed-loop FES platform. The routine accepts three input parameters: a set of low-overlap

electrodes, a target single-electrode-train peak response range (e.g., 2-7 N), and a set of

one or more IIFMS periods (e.g., 80, 100, 120 ms). The routine first determines, for each

(electrode, period) combination, the stimulus levels that elicit the low and high bounds of

the target response range. Then, for each IIFMS period, the program executes a series of

parameter exploration iterations (PEIs) consisting of the following steps (described in detail

in the following sections). First, for each individual electrode, the response to a short train

is measured in-vivo. Next, the response to an IIFMS train with even stimulus timing is
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measured in-vivo. Then, optimized IIFMS stimulus timings are predicted using the linear

response model and function optimization method. Finally, the IIFMS train with optimized

timings is executed in-vivo and the response measured.

All results reported here involve stimulus trains that were between 1000 ms and 1500

ms in duration. Single-electrode train response targeting was accomplished with a binary

search algorithm similar to the one described in Chapter 4 and [59].

7.2.1.1 Single-Electrode Trains

In the first step of each parameter exploration iteration, pulsewidths are selected for

each of the N electrodes randomly from within the pulsewidth range determined in the

force targeting step. Then, one single-electrode pulse train is executed for each electrode,

with approximately 5 seconds rest between trains. Responses to these single-electrode trains

are recorded and saved for use in subsequent steps.

7.2.1.2 IIFMS Train with Even Stimulus Timing

In this step, the program constructs an IIFMS train with evenly timed stimuli by

combining the single-electrode trains from the previous step, with a time shift between

trains of 1/Nth of the IIFMS period (see Figure 1.6 for illustration of N-electrode cycle).

The timing of stimuli in the resulting IIFMS train is the same as that produced by the

rotary method described in [33] and the interleaved form described in [37] and [21]. An

important point to note is that the rate of stimuli on each individual electrode remains

the same within the IIFMS train as it was for the single-electrode trains delivered in the

previous step. After creating the IIFMS train, the program executes it in-vivo and records

the response.

7.2.1.3 Ripple Quantification

For responses to single-electrode and IIFMS trains, ripple is measured as follows. The

force waveform is first divided into segments corresponding to the length of the IIFMS

period (Figure 1.6). Next, for each period, ripple is computed as the range of the response

divided by the mean. Finally, the overall response ripple is computed as the mean of the

ripple values for all periods within the region of response plateau (Figure 7.2).

7.2.1.4 Timing Optimization and In-Vivo Validation

Ripple is measured in the same way, for predicted responses, as it is for actual responses,

recorded in-vivo. Thus, given a set of N single-electrode responses, the e↵ect of a particular
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Figure 7.2: Ripple calculation for a representative response to an IIFMS train. The
response waveform is divided into regions corresponding to the IIFMS period. Inset: ripple
for each period is calculated as 100 times the range over the mean. Main figure: ripple for
the entire train is computed as the mean of the ripple for each period during the response
plateau.

stimulus timing, on ripple, can be predicted by first predicting the IIFMS response waveform

(Figure 7.1), and then computing ripple for that waveform. In the context of optimization,

the combination of the response prediction step and the ripple computation step can be

formulated as an objective function (f ) that takes a vector of stimulus o↵sets as input, and

returns ripple (r) as a scalar output (equation 7.1 and equation 7.2).

ō = (o1, o2, o3, ..., on) (7.1)

r = f(ō) (7.2)

A function-minimization algorithm can then be applied to this objective-function to

search for o↵sets that minimized response ripple. Typically, function-minimization algo-

rithms evaluate the objective function repeatedly, each time with slightly modified input

arguments, eventually honing in on inputs that minimize the function output. This study

used the fminsearch routine available in Matlab®, which employs a simplex search algorithm

(described in detail in [60]). As part of each PEI, fminsearch is used to identify optimized

IIFMS timings for the given set of electrodes and the single-electrode train response wave-

forms for those electrodes (previously recorded in-vivo). The IIFMS train with optimized
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timings is then executed and the response is recorded. The in-vivo IIFMS response is used

later to assess the performance of the optimization technique.

7.2.2 Data Analysis

The responses from all PEIs across all experiments were combined, and the following

analyses were conducted.

7.2.2.1 Model Accuracy

Three metrics quantifying the accuracy of the response prediction model were computed:

1) correlation between predicted and actual raw force waveforms (as determined by a

sample-by-sample comparison); 2) correlation between predicted and actual force ripple;

and 3) correlation between predicted and actual mean force (in the region of response

plateau) (Figure 7.3).

7.2.2.2 Parameter Influence

The influence, on response ripple, of three di↵erent IIFMS parameters, stimulus strength,

mean interphase interval (IPI—i.e., composite frequency), and stimulus timing was assessed.

To quantify the influence of stimulus strength, correlations between percent ripple in IIFMS

train response and two metrics of variance in the set of single-electrode train responses—

coe�cient of variation (Cv) and relative range (range/mean)—were computed. To evaluate

the influence of mean IPI, percent ripple in IIFMS responses were compared to mean IPI. To

asses the e↵ect of stimulus timing, the distribution of ripple in the set of responses to trains

with evenly-timed stimuli was compared to the distribution of ripple in the corresponding

set of responses to trains with optimized timing.

7.2.2.3 Supplementary Data Analyses

To better understand the e↵ects of stimulus-timing optimization, we performed two

additional analyses. First, we looked at its e↵ect on the power spectrum of the IIFMS

train response. Given that the musculotendon system acts as a low pass filter, the low

frequency components of the ripple waveform are the most problematic (in the context of

functional movement). Thus, it is useful to know what e↵ect timing optimization has on

the frequency components of the force waveform. Second, we conducted directed analyses

to determine whether ripple reduction occurred preferentially when responses evoked by

constituent electrodes were kinetically dissimilar.
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Figure 7.3: A simple, linear summation model accurately predicts response waveforms.
Example of an actual IIFMS-evoked response overlaid on top of the response predicted by
the linear summation model. The high correlation between the two responses (shown in
detail in inset) suggests that linear summation of single-electrode responses is a reasonable
approach to predicting responses to IIFMS trains.

7.2.2.4 Meta Analysis of Function Minimization Method

As mentioned previously, optimization of the ripple function was achieved with an

out-of-the-box function optimization method fminsearch supplied by the Matlab ® analysis

environment. The fminsearch function uses the Nelder-Mead simplex algorithm to find a

local minimum of the objective function around a supplied starting vector [60]. Given that

the result is not guaranteed to be a global minimum, it is likely that a single execution

of the minimization function with a single starting point will not always identify the best

electrode timing values. To address this possibility, a meta analysis was conducted to

asses the performance of the minimization method, and determine how many executions

of the optimization method are necessary to ensure a near-optimal result. The analysis

was conducted as follows. For various-sized sets of actual single-electrode train responses,

the minimization method was executed a large number of times, each time with a di↵erent

random starting point (i.e., a set of stimulus timings randomly selected from 0 to the

IIFMS period length). The results were then pooled and subsets of various size (i.e.,

representing di↵erent number of executions of the minimization function) were selected.

For each execution set the best result was identified. The distribution of these best values

for all execution sets of a given size were plotted. Finally, the distributions for each execution

set size were compared.
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7.3 Results
Results show that, in general, a simple linear summation model accurately predicts

IIFMS-evoked responses under isometric and isotonic conditions. Model accuracy is suf-

ficient for the model to be used to search for IIFMS timings that reduce response ripple

(compared to similar IIFMS trains with evenly spaced electrode timings). IIFMS timings

can be adjusted to reduce ripple even when responses evoked by individual electrodes are

kinetically dissimilar to one another. Unexpectedly, we found that optimizing stimulus

strengths—by minimizing variance in single-electrode train peak response level—proved

to be less e↵ective at reducing IIFMS response ripple than optimizing stimulus timing.

Generally, decreasing mean IPI (increasing stimulus frequency) lowered response ripple;

however, the e↵ect was not as strong as expected.

7.3.1 Data Summary

160 PEIs were completed in which a total of 320 IIFMS trains and 760 single-electrode

trains were executed and responses measured. Train duration ranged from 1000 ms to 1500

ms. Electrode group size ranged from 4 to 8. Single-electrode periods ranged from 160

milliseconds to 70 milliseconds (6.2 Hz to 14.3 Hz). Mean interpulse periods for IIFMS

trains ranged from 30 ms to 17.5 ms (33.3 Hz to 57.1 Hz) (Table 7.1). Mean response

plateau values for single-electrode trains ranged from 0 N to 5.26 N. Mean response plateau

values for IIFMS trains ranged from 3.15 N to 25.3 N.

7.3.2 Model Accuracy

In many PEIs, predicted waveforms matched actual waveforms extremely well (Fig-

ure 7.3), and, overall, the linear-summation model produced accurate predictions of response

waveform shape (mean r2 predicted vs. actual = 0.7, n = 360; Figure 7.4). There were also

high correlations between ripple in predicted and actual responses (r2 = 0.84), and between

predicted and actual mean plateau force (r2 = 0.98; Figure 7.4). We found that predicted

ripple and predicted mean force consistently di↵ered slightly from the model-predicted val-

ues, suggesting a small nonlinear component to tendon force summation. This observation

is consistent with [58].
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Table 7.1: Stimulation Parameters for All PEIs

Set Number Electrode Count N-Electrode Period (ms) Mean IPI (ms) PEI Count

1 4 70 17.50 5
2 4 100 25.00 10
3 4 120 30.00 50
4 4 100 25.00 10
5 4 80 20.00 10
6 5 100 20.00 10
7 4 100 25.00 14
8 4 120 30.00 15
9 8 150 18.75 15
10 6 120 20.00 15
11 8 160 20.00 5

Figure 7.4: IIFMS response prediction model is highly accurate; group data. Results
computed for a set of 320 predictions. (a) Distribution of correlation values between
predicted and actual response waveforms (within the region of response plateau). The inset
shows grouped data. The mean of 0.7 indicates that the actual waveform is highly correlated
with the prediction, suggesting that the model will be useful in optimization routines. (b)
Predicted peak-to-peak ripple versus actual ripple. The high correlation suggests that the
model is a good predictor of actual response ripple. (c) Predicted mean response level versus
actual level. The correlation between these two data sets is very high, indicating that the
linear summation model is a very good predictor of actual response force.
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7.3.3 Stimulus Level

Counter to our initial expectations, we found that adjusting stimulus strengths to

minimize variance in single-electrode-train peak response level (across electrodes in the

IIFMS set) did not usually produce the lowest-ripple IIFMS response. Figure 7.5 presents a

clear example in which the response to an IIFMS train with matched single-electrode-train

response levels has greater ripple than the response to an IIFMS train constructed from

single-electrode trains with unmatched responses. To assess the e↵ect of single-electrode

response variability on ripple, we plotted IIFMS response ripple against the coe�cient of

variation (Cv) and relative range of the single-electrode response peaks. Additionally, we

computed the associated correlations (Figure 7.6). We found that for the range of single-

electrode response levels examined (which included di↵erences between greatest and smallest

response of up to a factor of 3.1), neither metric of variance among single-electrode-train

responses correlated strongly with ripple. This was true for IIFMS trains with even stimulus

timings (r2 Cv vs. % ripple = 0.00, r2 relative range vs. % ripple = 0.22), as well as IIFMS

trains with optimized stimulus timing (Figure 7.6). This result is contrary to assumptions

underlying approaches used in previous multielectrode FES studies, and indicates that,

within a broad range of values, adjustment of stimulus strength alone is not a particularly

e↵ective approach to achieving low-ripple in IIFMS responses. The factors underlying this

apparent mismatch were, subsequently, investigated further, as detailed in a later section.

7.3.4 Mean Interpulse Interval

Unexpectedly, over the range of IPIs tested, ripple in IIFMS-evoked responses did not

decrease uniformly as a function of IPI (i.e., frequency). For the set of responses to timing-

optimized IIFMS trains, ripple was somewhat correlated with IPI (generally increasing as

IPI increased). The distribution of means for ripple in all IIFMS train responses was plotted

vs. mean IPI. For trains with even electrode timing, the mean ripple ranged from 14.2 to

22.6%. For trains with optimized electrode timing, the mean ripple ranged from 6.4 to 18.1%

(Figure 7.7). The likely explanation for this unexpected result is that response kinetics

were not well controlled across PEIs. For a stimulus train of a given frequency, motor unit

groups with di↵erent kinetics will exhibit responses with di↵erent levels of ripple. Thus, any

variation, across PEIs, in the average response time of activated motor-unit groups, would

influence ripple independently from IPI—potentially confounding the correlation between

IPI and ripple.
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Figure 7.5: Matching forces on individual electrodes does not necessarily yield minimal
ripple in IIFMS responses. Example of detailed response waveforms recorded during an
iteration of the parameter exploration routine. (a) Actual response waveforms for the 6
electrodes used in the IIFMS train. (b) The response waveforms for the same 6 electrodes
after they were scaled so that their peak response amplitude is equal. (c) The actual and
predicted IIFMS train responses given the unbalanced single-electrode responses shown in
(a). (d) The predicted IIFMS train response, given the normalized single-electrode train
responses shown in (b). Note higher ripple in (d) compared with (c).

7.3.5 Stimulus Timing

In contrast to stimulus strength, stimulus timing proved to have a large influence on

IIFMS response ripple. To quantify the e↵ects of optimizing stimulus timing, we plotted

the distribution of response ripple for even-timing IIFMS trains and the distribution of ripple

for optimized-timing trains, for all 160 PEIs (Figure 7.8). The mean response ripple for the

even-timing trains was 19.1%, whereas the mean response ripple for the optimized-timing

trains was only 12.9%. The di↵erence in the means of the two distributions was statistically

significant (P=0.000). We also computed the e↵ect of optimizing stimulus timing on power

in the response waveform. This was accomplished by first band-pass filtering the signal

(1 Hz to 100 Hz), and then computing the Welch power spectral density estimate. The

power reduction ratio (optimized/even) due to stimulus timing optimization was computed

for each of the 160 PEIs within a low-frequency band (defined, for our purposes, as 1

Hz to two times the constituent frequency). An example of this computation for a single
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Figure 7.6: Ripple in IIFMS-evoked responses is not correlated with variations among
forces evoked by individual electrodes. (a) Ripple in responses to IIFMS trains versus
coe�cient of variation (Cv) for the set of single-electrode response peaks (for trains with
a mean IPI of 20 ms). (b) Shows ripple values for the same set of trains vs. range/mean
for single-electrode response peaks. Both plots show data for trains with even stimulus
timings (circles) and trains with optimized stimulus timings (dots). Low variability in
single-electrode response peaks (i.e., unmatched peaks) did not correspond to a low-ripple
composite response. Quite the opposite, low-ripple responses could be elicited even when
single-electrode response peaks were not matched.

Figure 7.7: Decreasing IPI generally reduces ripple for IIFMS trains with optimized
timings. Additionally, timing optimization decreases IIFMS ripple across a range of di↵erent
IPIs. Mean response levels (and standard error of mean whiskers) for sets of N (N = 5,
15, 40, 35, 65) in-vivo responses for IIFMS trains with various mean IPI values. For each
IPI, the left bar shows ripple for even-timing trains and the right column shows ripple for
optimized-timing trains.
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representative PEI is shown in Figure 7.9, and a histogram of the results for all PEIs is

plotted in Figure 7.10. As can be seen from these two figures, optimizing stimulus timing

substantially reduced power in the low-frequency range (mean reduction=55.8%).

7.3.6 The E↵ectiveness of Timing Adjustment Arises from
Compensation for Dissimilar Response Kinetics

As noted above, time shifting the stimuli in an IIFMS train was relatively e↵ective

in reducing response ripple, whereas adjusting stimulus strengths to produce matched

single-electrode-train response peaks was not. Supplementary analyses were conducted to

investigate the factors underlying these e↵ects, and to account for these nonintuitive results.

Observing that response kinetics varied widely across individual electrodes used in

the PEIs, we posited that this factor might explain the greater e↵ectiveness of tuning

stimulus timing (as compared to stimulus-strength) for reducing IIFMS response ripple.

Two subsequent analyses were performed to examine this hypothesis. As a first, quantita-

tive test, the question of whether optimization produced a greater reduction in ripple for

responses that had dissimilar kinetics, compared with responses that had similar kinetics was

examined. This was indeed the case (Figure 7.11). The 16 PEIs in which single-electrode

response peaks had been matched were divided into two equal-sized groups on the basis of

their single-electrode response waveform kinetics. One group had relative similar response

kinetics, and the other group had relatively dissimilar response kinetics. For responses with

similar kinetics, timing optimization did not significantly reduce ripple (6.5% decrease,

paired t7 = 0.56, p = 0.59), relative to ripple produced with even timing. In contrast, for

responses with dissimilar kinetics, timing optimization produced a 33.1% decrease in ripple

(paired t7 = 7.89, p = 0.000). The di↵erence in ripple reduction between the two groups was

significant (unpaired t14 = 2.33, p = 0.036). These results indicate that timing optimization

has a greater e↵ect on reducing response ripple in IIFMS trains when constituent electrode

response kinetics are dissimilar.

As a second quantitative test, simulations were conducted in which the timing opti-

mization algorithm was employed on sets (n=10,000) of single-electrode-train responses,

selected randomly from the entire group of responses collected across all PEIs. Responses

to even-timing and optimized-timing IIFMS trains were predicted and ripple was computed.

Additionally, the kinetic similarity of each set of electrodes was quantified. Group results

were analyzed to determine whether the size of the mean timing shift necessary to minimize

ripple was positively correlated with the dissimilarity among constituent electrode response

kinetics. This was found to be the case (Figure 7.12). As the dissimilarity of waveforms
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Figure 7.8: Optimization of stimulus timing e↵ectively reduces ripple (group data). (a)
Summary of data for electrode stimulus timing optimization. (b) Distribution of stimulus
timing optimization results with fitted Gaussian curves. Stimulus timing optimization
achieved a 32% reduction in ripple for all IIFMS trains.

Figure 7.9: Optimization of stimulus timing reduces power in a low-frequency range
(single, representative PEI). Left column: Filtered, demeaned, 800-ms portion of responses
to IIFMS trains with even timings (a) and optimized timings (c). Right-hand column:
Welch power spectral density estimates for the corresponding responses shown in the left
column.

increased, the mean timing shift necessary to minimize ripple also increased. However, as

might have been expected, time shifting was not always necessary for minimizing ripple

of kinetically dissimilar electrode sets. One possible explanation for this finding is that

serendipitous ordering of kinetically similar pairs of responses (from a set of responses that

is, overall, dissimilar) can produce antiphase parings that result in a low ripple even-timing

IIFMS response—in such situations no time shift would be required.
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Figure 7.10: Optimization of stimulus timing reduces power in the low-frequency range
(group data). Summary of power reduction data for all 160 PEIs. Each data point is
computed as power in the low-frequency range for the optimized-timing IIFMS-evoked
response divided by power in the same range for the even-timing IIFMS-evoked response.
The preponderance of power ratios less than one indicates that the power of the low
frequencies, corresponding to ripple, was e↵ectively reduced by optimization of stimulus
timing.

Figure 7.11: Timing optimization produces a greater ripple reduction when responses
evoked by individual electrodes have dissimilar kinetics. Data shown here are taken
from the 16 PEIs in which single-electrode response peaks were matched. The data were
further subdivided into two groups based on similarity of single-electrode response waveform
kinetics. The left pair of bars shows data for the group with similar single-electrode
waveform kinetics, and compares response ripple for IIFMS trains with even-timing with
ripple for IIFMS trains with optimized timing. (The data in each even-optimized pair are
normalized to the even-timing ripple value.) For responses with similar kinetics, timing
optimization did not significantly reduce ripple. The right pair of bars shows the same
comparison for the set of PEIs with dissimilar single-electrode waveform kinetics. Timing
optimization significantly reduced ripple, and this ripple reduction was greater than that
obtained for responses with similar kinetics. These results demonstrate that ripple reduction
due to timing optimization is greater for sets of electrodes with dissimilar response kinetics.
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Figure 7.12: Mean timing shift necessary to minimize ripple correlates with waveform
dissimilarity. Results obtained from 10,000 timing-optimization simulations. For each
simulation, optimized timings were computed for a set of 4 normalized single-electrode
responses (randomly selected from a set of 40). Dissimilarity between single-electrode
waveforms (defined as the mean, over all pairs, of the RMS di↵erence between each pair of
responses) was also computed. Mean timing shift was computed as the mean of the absolute
value of the di↵erences between optimized timings and even timings. Results indicate that
as the dissimilarity of waveforms increased, the time shift that was necessary to minimize
ripple also increased.

Taken together, these results demonstrate that time shifting stimuli can e↵ectively

reduce response ripple for IIFMS trains, particularly when the responses to stimuli on

constituent electrodes have substantially di↵erent kinetics.

7.3.6.1 Meta Analysis of Function Minimization Method

Results of the meta analysis of the function minimization method are presented in

Figure 7.13. As might be expected, the more times the minimization function is called with

di↵erent, random starting points, the higher is the likelihood of identifying a near-optimal

solution. From the figure, it is apparent that the improvement in performance achieved

by increasing the number of executions is asymptotic. Given the specific results, it seems

that much of the gain in performance is achieved by increasing execution count from 8 to

32. Considering that executions of the fminsearch algorithm are relatively time consuming,

these meta analysis results suggest that 32 executions represents a reasonable trade o↵

between execution time and optimality.
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Figure 7.13: Distributions of best result for various numbers of executions of the function
minimization routine with di↵ering, randomly selected starting points. As the number
of executions increases, the best-of-set result improves. Performance improvement appear
asymptotic with respect to increase in set size.

7.4 Discussion
IIFMS o↵ers several potential advantages over single-electrode FES, chief of which is

increasing the fatigue resistance of evoked responses. The work described in this chapter

study demonstrates that, under certain conditions, a simple model can accurately predict

IIFMS-evoked responses, and thus, could be used to explore and optimize an important part

of the large and complex IIFMS parameter space in a timeframe applicable to a research

setting. Results indicate that stimulus timing has a much greater influence on response

ripple than was previously appreciated. This novel approach to stimulus timing selection

was consistently able to achieve a significant reduction in IIFMS train response ripple

(compared to standard even-timing IIFMS trains). This was true even when constituent

motor unit groups exhibited dissimilar kinetics—a feat not achievable through stimulus

strength adjustment alone. The ability to utilize multimuscle, multielectrode activation even

when single-electrode responses are kinetically dissimilar extends the range of circumstances

under which IIFMS may be usefully employed. Although there are still many challenges to

applying IIFMS in a clinical setting, the approach presented here o↵ers a meaningful, and

practical contribution to the emerging use of multielectrode FES.
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7.4.1 Relevance of Other Timing Optimization Methods

At least one other method of optimizing timings has been proposed [61]. This method,

which involves using the response waveform from a period of stimulation to derive timing

adjustments for stimuli in the next period, is not applicable to short-duration contractions as

it requires multiple stimulation periods to converge to a low ripple state (i.e., the contraction

might be over before ripple is reduced to a useful level). Given that short-duration muscle

contractions are used in an important subset of the human movement repertoire—including

sit-to-stance, gait, cycling, and various muscle-strengthening exercises—having a technique

that is uniquely applicable to short-duration movements is quite valuable. Also, given that

the isometric response measurement conditions employed in this study can be achieved easily

in a research and clinical settings, the technique presented here is practical to employ.

7.4.2 Impact of Response Kinetics on Ripple Reduction

An interesting yet potentially counter-intuitive result of research presented here is that

matching force levels across electrodes does not necessarily lead to an IIFMS train with a

minimal-ripple response. One possible reason that this phenomenon has not been reported

previously is that the majority of previous studies, unlike the present work, involved com-

bining individual responses that had similar kinetics. For example, several prior studies

with multielectrode trains have utilized isolated ventral root stimulation [33, 34]. This

experimental approach has allowed researchers to elicit responses with similar size and

shape by carefully selecting the population of motor axons activated by each stimulating

electrode. Additionally, stimulation was typically super-maximal, and often restricted to

activation of a single muscle. In cases where evoked response kinetics are similar across

electrodes, even distribution of stimuli across the IIFMS period is likely to be close to

optimal—with respect to response ripple. Consequently, the importance of timing may not

have been readily apparent.

In contrast, with intrafascicular multielectrode interfaces, such as the USEA, implanted

in main nerve trunk, a multielectrode train will typically activate multiple muscles, each with

a slightly di↵erent fiber-type compositions (and hence response time), all in a sub-maximal

manner. In such situations, the e↵ect of variation in response kinetics among electrodes

becomes much more evident—as the task of minimizing response ripple can no longer be

accomplished solely by matching force peaks. As demonstrated above, adjusting stimulus

timing o↵ers a new means of reducing ripple in such situations. The timing optimization

process described in this paper, in fact, minimizes ripple from both kinetic and force

imbalances at the same time.
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The ability to elicit low-ripple responses, despite dissimilar individual electrode response

kinetics, might be very useful in a clinical FES setting, because it would enable control of

muscles with di↵ering kinetics (such as the four plantar flexors), with the same multielec-

trode IIFMS train. For a given functional goal, distributing stimulation across multiple

muscles would reduce the force requirement on any one, and, hence, provide a means of

further delaying the onset of fatigue.



CHAPTER 8

OPTIMIZING A FEEDBACK-BASED

TIMING ADJUSTMENT

ALGORITHM

8.1 Motivation
As described in Chapters 1 and 7 interleaved intrafascicular multielectrode stimulation

(IIFMS) is a promising approach to fatigue-resistant motor function restoration [21,33,37] .

A major practical problem associated with IIFMS, however, is that without proper param-

eter selection, muscle contractions can display high levels of ripple. Chapter 7 discusses

the influence of various IIFMS parameters on response ripple, and presents a feedforward

technique for selecting IIFMS timings to reduce ripple. Unfortunately, because this tech-

nique is based on response characteristics that, while known initially, tend to change in

unpredictable ways over the course of long contractions, it is, ultimately, only useful for

short-duration muscle contractions. If the value of IIFMS is to be fully explored in research

settings, and employed in clinical applications, a feedback-based approach to minimizing

ripple during long-duration movements is necessary.

Frankel et al. demonstrated a means of using feedback control to adjust stimulus

levels to achieve low-ripple force trajectories over long duration trains [28]. Although this

work represents a major contribution to the field of IIFMS, there are several scenarios in

which stimulus level adjustment alone may not be su�cient for achieving desired response

trajectories, while maintaining low ripple levels. The first is characterized by di↵erential

fatigue of the activated motor unit groups. If several groups fatigue to the point where

they are not able to produce the requisite contribution to the overall force output, ripple

in the response waveform will grow. As stimulus levels are increased on electrodes with

fatigued motor units—to compensate for their decline in force recruitment—those electrodes

will eventually begin to recruit the same motor units as their nonfatigued neighbors (i.e.,

activation overlap will increase). Multiple activations of motor units within each cycle of an

IIFMS train will lead to rapid fatigue, causing the overall force output to fail. The second
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scenario in which feedback control of stimulus level may be insu�cient to control ripple

is when the recruited motor unit groups have di↵erent kinetics (described in detail in the

previous chapter).

To address the problem of ripple from force and kinetic imbalance, one group (Wise et

al. [61]) has devised an approach to adjusting IIFMS timings in real time. This approach—

applicable to trains longer than a few seconds—represents significant progress towards mak-

ing IIFMS control practical in experimental and clinical environments. As it is presented,

however, the specific steps of the approach are not entirely clear. Additionally, no values

are given for the various algorithm parameters, and its performance and optimality are not

characterized—indeed they are uncharacterizable, except for in an empirical, trial-and-error

manner. These shortcomings seriously impair the ultimate utility of the approach.

The work presented in this chapter focuses on enhancing the value of the Wise approach

by producing an explicit, parameterized implementation of the iterative stimulus timing

adjustment algorithm (ISTAA), simulating the performance of the implementation under

various conditions, and optimizing the three parameters associated with this implementa-

tion: response filter bandwidth, error sampling delay, and response adjustment gain. The

IIFMS response prediction technique described in Chapter 7 and [62] provides the corner-

stone of the approach presented here. It enables simulation of arbitrarily long sequences of

ISTAA iterations, and hence, measurement the algorithm’s behavior for various parameter

values. The ability to simulate algorithm behavior enables a thoroughness of parameter

space exploration and testing of the ISTAA performance that would be not practicable

in-vivo in a research or clinical setting. Detailed exploration of the parameter space provides

a means of identifying parameter values that optimize algorithm performance. Ultimately,

the work presented here contributes to the potential utility and e↵ectiveness of this approach

in research and clinical FES applications.

8.2 Methods
The results presented here employ muscle response data recorded in-vivo during the

same series of neuromotor electrophysiology experiments described in Chapter 7. In those

experiments, muscle responses were collected from isolated plantar flexor (soleus, medial

and lateral gastrocnemius, and plantaris) preparations in two cat (surgical methods are

described in detail in Chapter 2 and [62]). To summarize, muscle contractions were evoked

via constant-pulse-width, constant-frequency stimulation trains delivered on individual elec-

trodes within a Utah slanted electrode array (USEA) implanted in the sciatic nerve. Re-
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sponse waveforms were measured by a single-axis force transducer attached to the achilles

tendon and recorded by a commercial data acquisition system.

8.2.1 IIFMS Response Modeling

The IIFMS trains used in this study, to simulate algorithm performance, were composed

of actual single-electrode trains with known responses—recorded in-vivo (as described in

the previous step). The predicted muscle response to an artificially constructed IIFMS train

was computed by shifting each of the single-electrode train responses a number of samples

corresponding to the time-shift specified in the IIFMS train and then summing the shifted

waveforms. The validity of predicting IIFMS response as the linear sum of constituent

electrode-train responses was demonstrated in work presented in the previous chapter.

8.2.2 Ripple-Reduction Algorithm

The ISTAA was implemented in the following steps (depicted in Figure 8.1):

1. Start with a period-long segment of the IIFMS response waveform corre-

sponding to the most recently completed stimulation cycle.

2. Bandpass filter the segment from frequency band f
low

to f
high

, where f
low

= f
constituent

x (1-↵) and f
high

= f
constituent

x (1+↵), and ↵ is 1/2 of the

filter width expressed as a fraction of the constituent frequency. (Note:

The filter was a 3rd-order Butterworth, applied in both directions for zero

phase distortion).

3. Remove any remaining DC o↵set.

4. Normalize the adjusted segment to the mean of the original segment. The

resultant waveform is the error signal.

5. Sample the error signal at t
delay

ms after each electrode stimulus.

6. Multiply all of these error-sample values by some gain g.

7. Adjust each interelectrode time by the corresponding error value. (Limit

the minimum time to 0 and the maximum time to the cycle length)

8. Repeat 1-8 after the next stimulation cycle.
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Figure 8.1: Diagram of the iterative stimulus timing adjustment algorithm (ISTAA). a)
The stimulus timing, within one IIFMS cycle, for each of 8 electrodes (filled squares). b)
The predicted IIFMS response. c) The last 3 periods of the response. d) The filtered,
demeaned, and normalized response segment. e) The error signals to be used for updating
the timings.

8.2.3 Simulating Algorithm Behavior

Behavior of the algorithm, over multiple iterations of a long-running IIFMS train, was

simulated using a novel approach that employs the response modeling technique described in

Chapter 7 combined with previously-recorded responses to short-duration, single-electrode

trains. It is important to note that there is no known method to accurately predict

actual responses to long-duration IIFMS trains. As a real IIFMS train progresses, forces

contributed by constituent electrodes vary over time (increasing and decreasing as a result of

secondary factors such as potentiation and fatigue). The approach employed here does not

purport to predict these time varying components of IIMFS responses. Rather it attempts

to simulate the timing-adjustment algorithm behavior over successive periods of an IIFMS

response, where the waveform for each period is generated with the model, using fixed,

period-long segments from previously recorded sets of single-electrode train waveforms.

In each successive iteration, the same period of the single-electrode responses is used to

generate a new period-long segment of IIFMS response for analysis.
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During simulation runs, each sequence of iterations started with an IIFMS train with

evenly distributed stimulus timing. The predicted response was computed, and the timing

adjustment algorithm was executed. Successive algorithm iterations were simulated until the

change in response ripple from one iteration to the next converged to below a predetermined

threshold (less than 5% of previous value). If convergence was not reached within 200

iterations the simulation was terminated.

8.2.4 Optimizing Algorithm Performance

Algorithm performance was measured in two dimensions: number of iterations required

to reach convergence, and percent ripple in the steady-state response. The e↵ect of each

parameter, on performance, was evaluated by simulating algorithm behavior for various

values of the parameter while holding the other two parameters constant. E↵ects of each

parameter were evaluated for multiple electrode set sizes (4, 5, 6) and many unique sets of

single electrode responses (n = 19,320).

8.3 Results
Simulation results demonstrate that the algorithm implementation described above,

does, as expected, reduce response ripple (Figure 8.2). Additionally, results suggest that,

over a wide range of parameter values, the algorithm converges (Figure 8.3). Each of the

parameters exhibited a measurable impact on algorithm performance. Values for the three

ISTAA parameters that minimize both steady-state ripple and time to convergence are

as follows: 1) response filter band is most e↵ective when set to 80%-120% of constituent

stimulation frequency, 2) error-sampling-delay has the greatest e↵ect at 15 ms, 3) a timing-

adjustment-gain of 0.5 achieves rapid convergence without overshoot.

8.4 Discussion
The results presented here, specifically those displayed in Figure 8.3, demonstrate that

there is significant potential for optimizing the ISTAA algorithm as originally presented

in [61]. Overall, convergence speed was the performance metric most a↵ected by changes in

algorithm parameter values. For example, changing the timing adjustment gain from 1.0 to

0.5 decreased the average number of cycles to convergence from approximately 13 to 4. For

IIFMS cycle times of 100 ms (10-Hz constituent frequency), this would yield a reduction in

convergence time from 1300 ms to 400 ms—valuable from both a controls perspective and

that of improving the FES patients subjective experience.
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Figure 8.2: Five example iterations of the timing-adjustment algorithm. (a) Predicted
response to the IIFMS train with evenly-distributed stimulus times. Ripple for this train is
13.7%. (b) Change in error signal over 5 iterations of the algorithm. (c) Predicted response
to IIFMS train with optimized stimulus times. Ripple for this train is 5.1%.

Response ripple was also a↵ected by modulation of algorithm parameters (though the

e↵ects were not as large as those for convergence). As might be expected, delaying the

error sample time decreased the steady-state ripple—though without the ability to simulate

algorithm behavior for various delays, it would have been di�cult to determine that the

most e↵ective delay is 15 ms, and that using this value improves the steady state ripple by

approximately 17% as compared with a delay of 0 ms (note: error sampling delay was not

specified in the algorithm description, as originally presented in [61]).

One possible criticism of the work presented in this chapter is that the linear summation

model may not be su�ciently accurate to allow for realistic simulation of algorithm behavior.

This is a possibility, and indeed, the results presented here should, ideally, be confirmed

in-vivo. However, although the response modeling technique is not exact, it has been shown

to be quite accurate for isometric contractions [58,61,62]—which are the very sort targeted

by this approach to stimulation control.
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Figure 8.3: Performance of the ISTAA algorithm for various parameter values. Top row
shows algorithm performance in terms of steady-state response ripple (i.e., after algorithm
convergence) normalized to ripple at start of algorithm. Dashed line shows ripple for optimal
stimulus timing (as determined by a ripple-reduction algorithm described in [62], that,
unlike the present algorithm, uses a prior knowledge of individual response waveforms to
search for optimized timing). Bottom row: algorithm performance in terms of iterations to
convergence. Left column: change in algorithm performance for various filter bandwidths.
Middle column: algorithm performance for various error sampling delays. Right column:
algorithm performance for various timing adjustment gains.

Ultimately, the specific optimizations presented here, and more generally, the use of

IIFMS response modeling for purposes of parameter optimization, represents valuable con-

tributions to the nascent field of asynchronous multielectrode FES.



CHAPTER 9

DISCUSSION

9.1 Summary
For individuals who have lost motor faculties as a result of injury, stroke, or disease,

surrogate electrical activation of the nervous system, especially via emerging techniques

such as IIFMS, o↵ers the potential for significant improvements to quality of life. This

dissertation presents the design and use of a hardware platform and software algorithms

that greatly facilitate IIFMS motor-restoration research.

A major motivation for building this platform was to create an environment that pro-

vides programmatic control of the electrical-stimulation/muscle-response feedback loop.

This seemingly basic ability enables implementation of a variety of software programs

to map and explore a virtually unlimited range of physiological responses to stimulation.

To demonstrate the value of the platform, three routines were implemented to automate

response-mapping tasks (prerequisites to planning sophisticated stimulation patterns) that

had previously been accomplished by hand in a time-consuming and painstaking manner.

All three software algorithms—one for mapping perithreshold stimulus levels, another for

mapping stimulus-response curves, and a third for mapping axonal excitation overlap—were

validated in-vivo, in neuro-motor electrophysiology experiments involving 100-electrode

USEAs implanted in to lower-limb nerve trunks. All three routines employed well-known

software algorithms and principles to accomplish various aspects of the mapping tasks.

For example, identifying periasymptote stimulus levels was accomplished with a modified

binary search algorithm. Recruitment curve asymptotes were identified by testing successive

responses for convergence. Filling recruitment curves was accomplished with a gap bisection

algorithm that is, in essence, a modified form of a binary search. Ultimately, for each of these

response mapping tasks, application of the appropriate algorithms resulted in an overall

routine that executed e�ciently, and in a time frame practical for complex neuro-motor,

electro-physiology experiments.

Another major motivation for building the platform was to conduct experiments ex-
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ploring the impact of the various IIFMS parameters on muscle response characteristics,

and to develop an approach for feed-forward control of short-duration muscle contractions.

A software routine to explore the influence of stimulus level, stimulus frequency, and

stimulus timing on intraperiod response variation (ripple) for IIFMS trains, and for selecting

intraperiod stimulus timings that minimize ripple, was implemented, and then executed,

using the platform in a series of in-vivo experiments. A major conceptual component

of the feedforward, stimulus-timing-selection algorithm is an IIFMS response-prediction

model. The model relies on the assumption that the net force (at the tendon) of a set of

independent pools of motor units firing at the same time is simply the linear sum of the

forces produced by each pool. Though other research has demonstrated the validity, under

certain conditions, of this assumption, it was not known if it would prove accurate enough

to support the use of a function minimization technique. Ultimately, experimental results

proved the model su�cient to allow the stimulus-timing space to be explored in silico, thus

reliably enabling the identification of stimulus timings that elicit low-ripple responses.

Finally, a technique for modeling the e↵ect of stimulus-timing changes on isometric

responses to long-duration IIFMS trains was developed. This technique is based, in part,

on the assumption that the e�cacy of a timing-adjustment algorithm is not dependent on

the specific responses of the constituent motor unit pools (i.e., the algorithm is applicable,

at any time, regardless of the constituent response values). The technique employs fixed,

single-period segments of single-electrode train responses to simulate successive periods of

a long-duration IIFMS train response. This technique was used to provide a novel method

for simulating the behavior of a previously published, feedback-based control algorithm

for IIFMS response-ripple reduction. An explicit, parameterized version of the control

algorithm was implemented, and a series of simulations with varying algorithm parame-

ters was executed. As expected, the results of these simulations indicate that algorithm

performance—as measured by cycles to convergence and ripple reduction—is a↵ected, in

some cases substantially, by parameter values. Ultimately, the approach provides a practical

solution to tuning IIFMS control algorithm parameters that can be used in a research or

clinical environment.

9.2 Impact
The closed-loop platform and response-mapping algorithms have been successfully used

for 5 years in over a hundred neuro-motor physiology experiments spanning two research

institutions. Together, they have played a substantial role in facilitating at least two
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successful doctoral research projects [40, 63]. Coupled with the work done by Dowden,

on the use of noninvasive techniques for response measurement, the work presented here,

on platform and mapping algorithms, demonstrates, to the broader FES community, that

high-channel-count neural interfaces can be practicable in a clinical setting.

The work on stimulus timing adjustment quantifies, for the first time, the influence of this

parameter on response ripple, and highlights its importance in specific conditions—namely

varying response kinetics among the activated motor-unit groups. The results presented here

should serve to inform current and future research on real-time IIFMS control techniques.

As an example, Frankel preferentially employed electrodes with similar response kinetics to

minimize, for the purposes of his study, the potentially negative influence of this factor on

ripple, in the context of the evenly distributed stimulus times used by his algorithm [64].

Additionally, even in situations where kinetics are the same, it is the case that motor unit

groups, recruited by individual electrodes in the IIFMS set, may fatigue di↵erentially (as

shown by Wise et al. [61]). In such situations, timing adjustment would allow a controller

to maintain a higher mean force output while still preserving low ripple.

Another demonstration of the impact the closed-loop FES platform, and mapping and

stimulation-control algorithms, have had on the field of surrogate motor restoration is

that they were used by the author, and colleagues, to achieve—for the first time ever

with IIFMS—control of coordinated uni-lateral and bi-lateral sit-to-stance movements in

a cat model [65]. Given that the sit-to-stance movement involves muscles innervated by

three main nerve branches in each leg, this feat necessitated implantation and mapping

of 3-6 USEAs (300 to 600 electrodes—for the uni-lateral and bi-lateral cases, respectively)

and parameter selection for multiple IIFMS patterns. Furthermore, it required careful

orchestration of multiple IIFMS patterns (involving stimulation across 10s of electrodes) to

produce the complex, coordinated muscle firing patterns needed to drive the sit-to-stance

movement. Accomplishing this goal would not have been possible (especially in a timeframe

practical to acute experiments) without the work presented in this dissertation.

9.3 Shortcomings
The closed-loop platform, as it was implemented, has a variety of shortcomings, two

of which are significant enough that they should be mentioned here. The first is the

command-line user interface. Though this type of interface is expedient from a development

perspective, it has, ultimately, proven unsatisfactory, from a usability perspective, in an

experimental setting. Mapping tasks are characterized by a large enough set of parameters,
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that having to enter them by hand (repeatedly for remapping) in a serial manner, was

(perhaps a bit ironically) time-consuming and error prone. As evidence of the unsuitability

of the command-line interface, other individuals have, over the course of several years,

replaced it with a graphical one—though the actual mapping algorithms have remained

intact. Another shortcoming of the platform is the lack of real-time capabilities. This

deficiency does not limit its ability to support iterative, closed-loop algorithms (such as

those for mapping, described in Chapters 4 , 5 , and 6, or those for parameter exploration,

described in Chapter 7); however, it does preclude the ability to execute any real-time

control algorithms (such as the one modeled in Chapter 8).

Though this work demonstrates the importance of stimulus timing in IIFMS, the specific

technique presented for adjusting this parameter (described in Chapter 7) is of limited

utility in clinical practice—that is, only in very specific and controlled FES applications will

constituent electrode responses be available before execution of the the target movement

goal. Though the algorithm (and optimizations) presented in Chapter 8 does provide a

real-time means of adjusting stimulus timing, it has only been shown to work when stimulus

levels are held constant. Thus, until this approach can be adapted to nonconstant force

trajectories, it is useful in only a limited set of FES applications (i.e., those involving

primarily static behaviors, such as postural control).

9.4 Future Challenges in IIFMS
It is tempting to believe that what is truly needed, to advance the use of IIFMS in clinical

practice, is a control algorithm capable of simultaneously manipulating all IIFMS param-

eters independently. Though such an achievement might be useful in certain situations,

there are several reasons why it may not be worth pursuing at the present time.

One important practical reason is that deployment of a clinical FES system often involves

an initial period of muscle conditioning, during which motor units in the target muscles

convert from a fast-twitch to slow-twitch phenotype. The main motivation for this process is

that it results in muscle forces that last longer under FES control—both because slow-twitch

fiber are more fatigue resistant and because tetanus can be achieved at a lower, less fatiguing,

rate. This process is relevant to the work, presented here, in that conversion of a muscle’s

motor units to a single type results in a single kinetic profile of responses, thus reducing the

need for stimulus timing adjustment. However, the possibility of di↵erential fatigue across

electrodes during an IIFMS train would still present a situation where time shifting is

useful. Ultimately, in clinical IIFMS applications, with appropriately conditioned muscles,
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a control algorithm such as Frankel’s will likely be largely su�cient.

Another potential development that would obviate the need for an algorithm capable of

controlling IIFMS intraperiod timings would be the emergence of neural interface devices

with yet higher channel counts than those available today. If very-high channel count

access to the peripheral nerve becomes available, IIFMS ripple reduction will cease to be an

issue, because asynchronous activation of several dozen small populations of motor units (as

compared to the half dozen provided by a typical USEA implant) will produce a low-ripple

response naturally. Given such an interface, what would be needed is an algorithm capable

of dynamically adding and removing electrodes from the IIFMS set, and controlling stimulus

rate. The high-density USEA, a device with 4 times the spatial resolution of the standard

USEA, is an example of a newly developed neural interface device that begins to provide

this level of specificity.

From a broader perspective, there are other obstacles blocking the path to use of IIFMS

in clinical applications that are more deserving of attention from the research community.

Among these are poor biocompatibility of existing high-channel-count interfaces, lack of a

wireless, high-channel count stimulation platform, lack of a platform for robustly acquiring

multiple feedback modalities, and finally, lack of control algorithms that integrate feed-

forward and feedback approaches (this applies to all FES systems). As Frankel and others

have shown, the response bandwidth of the neuromuscular system limits the size of feedback

gains that can be employed and hence the speed of motions that can be accomplished with

feedback control alone. Providing a range of movement patterns, similar to natural human

abilities, will require FES control techniques with a sophisticated feed-forward component.

The advent of clinically approved devices, for wirelessly recording motor intent from the

cortex, will enable patients to provide some of these higher-level, feed-forward control

signals. However, given that movements like walking are often accomplished with limited

direct conscious involvement, feed-forward control algorithms will likely continue to be an

important component of clinical FES systems. Such feed-forward control algorithms will

need to have the ability to implicitly acquire a model of musculo-skeletal dynamics, tailored

to a specific individual, and adapt that model as the patient’s functional abilities change

(due to conditioning, age, or other ongoing processes). Research involving such feedforward

techniques will require a long-term IIFMS model. Some encouraging work has been done on

this front; and as more of the technologies mentioned above become available, better, more

stable chronic IIFMS models will become possible. Such models will provide an exciting
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opportunity for developing and testing integrated feed-forward and feedback IIFMS control

techniques.
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