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ABSTRACT

Consisting of a single two-dimensional layer of Carbon atoms arranged in a hexagonal

lattice, graphene represents one of the most exciting recent developments in condensed

matter physics. With novel electronic and mechancial properties, graphene not only has

great potential with respect to technological applications, but also displays phenomena that

typically appear in relativistic quantum field theory. The low-energy electronic excitations of

graphene consist of two identical species of massless Dirac particles. Due to the small Fermi

velocity, these particles are strongly coupled through the Coulomb interaction. Although

various perturbative approaches have succeeded in elucidating many of the electronic prop-

erties of graphene, one would still like a nonperturbative study to address various questions.

In particular, the spontaneous breaking of chiral symmetry in the presence of an external

magnetic field, commonly known as magnetic catalysis, is one of these questions. Early

studies of this phenomenon in model relativistic field theories have posited the mechanism

to be universal. More recently, this mechanism of spontaneous symmetry breaking has been

studied in low-dimensional condensed matter systems. Due to the strongly-coupled nature of

the low-energy e↵ective field theory of graphene, nonperturbative methods of lattice gauge

theory can be used which are well suited to studying chiral symmetry breaking. Most

notably used to study the theory of the strong interactions, quantum chromodynamics,

these methods have proven successful in elucidating nonperturbative phenomena in cases

where perturbative methods fail. In this thesis, using these methods, evidence in favor of

magnetic catalysis in the graphene e↵ective field theory will be presented.
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CHAPTER 1

INTRODUCTION TO GRAPHENE

We briefly review the discovery and history of graphene. We then set about to describe

its unique electronic properties via the tight-binding description. From there, one is able

to gain information regarding graphene’s band structure. The appearance of the so-called

“Dirac points”, which are responsible for many of the novel electronic features of graphene,

is discussed. The low-energy excitations due to these special points is the basis for our

field theory description and nonperturbative study of the metal-insulator phase transition

in graphene.

1.1 History and Discovery
Graphene is a remarkable material with an even more remarkable history. Consisting of

a plane of Carbon atoms arranged in a hexagonal lattice, graphene is an allotrope of other

more familiar, everyday Carbon structures such as diamond and graphite. Even though

graphene is currently the subject of intense study and has spawned a rapidly increasing

literature, studies of graphene’s band structure date back to 1946 [2], when graphene was

classified as a semimetal due to the touching of the conductance and valence bands at

certain points in the Brillouin zone. Although not yet realized experimentally, this served

as a starting point for the study of the band structure of graphite which followed in the works

of McClure [3], and Slonczewski and Weiss [4]. Decades later, Novoselov and collaborators

were able to experimentally isolate graphene, exploiting an optical e↵ect it produced when

placed on a SiO2 substrate [5]. For their discovery, Novoselov and Geim were awarded the

2010 Nobel Prize in Physics. Since its discovery in 2004, graphene and its subfields have

grown tremendously.
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1.2 Electronic Properties of Graphene

1.2.1 Tight-Binding Description of Graphene

Graphene is a hexagonal lattice with Carbon atoms living at the vertices. The hexagonal

lattice is not a Bravais lattice in that not every Carbon atom can be reached by a linear

combination of primitive lattice vectors. Thus, one can think of graphene as a triangular

lattice with a basis of two atoms, each belonging to its separate sublattice (sublattices A

and B). The primitive lattice vectors are as follows:

~a1 =
a

2
(3,

p
3), ~a2 =

a

2
(3,�

p
3). (1.1)

where the interatomic distance a ⇡ 1.42 Å. One can construct the reciprocal lattice vectors

from the condition ~ai ·~bj = 2⇡�i,j [6], thus obtaining

~b1 =
2⇡

3a
(1,

p
3), ~b2 =

2⇡

3a
(1,�

p
3). (1.2)

The three nearest-neighbor vectors are given by

~�1 =
a

2
(1,

p
3), ~�2 =

a

2
(1,�

p
3), ~�3 = a(�1, 0). (1.3)

The nearest neighbors of a given site on a given sublattice belong to the opposite sublattice.

There are six next-to-nearest neighbors, ~�0i, whose vectors are given by appropriate combi-

nations of the primitive lattice vectors (±~a1, ±~a2, ±(~a1 � ~a2)) and connect sites belonging

to the same sublattice. In Fig. 1.1, the graphene lattice as well its reciprocal lattice are

depicted.

One can construct a tight-binding description of electrons hopping between nearest and

next-to-nearest neighbors. The Hamiltonian of this model is given by

H = � t
X

hi,ji,�

⇣
a†i,�bj,� + c.c.

⌘

� t0
X

hhi,jii,�

⇣
a†i,�aj,� + b†i,�bj,� + c.c.

⌘
, (1.4)

where the electron creation (annihilation) operator on sublattice A is given by a†i,� (ai,�)

with i labeling the site, � =", # label the spin, t(⇡ 2.8eV) is the nearest-neighbor hopping

parameter, and t0 is the next-to-nearest neighbor hopping parameter. One then obtains the

band structure by diagonalizing (1.4) in momentum space. First the spatial sums are recast
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Figure 1.1. (left) The hexagonal lattice of graphene is illustrated along with the near-
est-neighbor vectors, ~�i, i = 1, 2, 3, and the primitive lattice vectors, ~a1,~a2. (right) The
first Brillouin zone is depicted along with the reciprocal lattice vectors ~b1,~b2. Courtesy of
http://oer.physics.manchester.ac.uk/AQM2/Notes

into a sum over sites of a given sublattice and a sum over nearest or next to nearest-neighbors

i.e., for the nearest-neighbor term one has

X

hi,ji,�

⇣
a†i,�bj,� + c.c.

⌘
=
X

~x,�

X

~�
i

⇣
a†~x,�b~x+~�

i

,�
+ c.c.

⌘
(1.5)

One now goes to momentum space by using the Fourier representation of the creation and

annihilation operators

a~x,� =
1p
N

X

~k

ei
~k·~xa~k,�

a†~x,� =
1p
N

X

~k

e�i~k·~xa†~k,�. (1.6)

This allows one to rewrite the Hamiltonian as

H = � t
X

~x,�

X

~�
i

1

N

X

~k,~k0

⇣
a†~k,�b~k0,�e

i~k0·~�
i + c.c.

⌘
ei(
~k0�~k)·~x

� t0
X

~x,�

X

~�0
i

1

N

X

~k,~k0

⇣
(a†~k,�a~k0,� + b†~k,�b~k0,�)(e

i~k0·~�0
i + e�i~k0·~�0

i)
⌘
ei(
~k0�~k)·~x

= �
X

~k,�

⇣
�(~k)a†~k,�b~k,� + c.c.

⌘
�
X

~k,�

�(~k)
⇣
a†~k,�a~k,� + b†~k,�b~k,�

⌘
(1.7)

where in the second line, the identity
1

N

X

~x

ei~x·(~k�~k
0) = �~k,~k0 was used and the the following

quantities have been introduced

�(~k) ⌘ t
X

~�
i

ei
~k·~�

i , �(~k) ⌘ t0
X

~�0

2 cos(~k · ~�0i). (1.8)
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One can now diagonalize the Hamiltonian (1.7) most easily by introducing the following

matrix form, which will be useful later on

H =
X

~k,�

⇣
a†~k,�, b†~k,�

⌘
H(~k)

 
a~k,�
b~k,�

!
(1.9)

H(~k) =

 
��(~k) ��(~k)
��⇤(~k) ��(~k)

!
(1.10)

From the above expression, one can compute the band energies which are determined by

det
⇣
H(~k)� E(~k)1

⌘
= 0 (1.11)

E±(~k) = ±|�(~k)|� �(~k) (1.12)

For what follows, the next-to-nearest neighbor hopping will be neglected and thus one sets

�(~k) = 0 in (1.12), yielding E±(~k) = ±|�(~k)|. The band structure is illustrated in Fig. 1.2.

The “+” corresponds to the conduction band whereas the “�” corresponds to the valence

band. In neutral graphene, the valence band is filled while the conduction band is empty.

The conductance and valence bands touch at two (unique) points in the Brillouin zone,

which we label K and K 0. These points are given by

~K =

✓
2⇡

3a
,

2⇡

3
p
3a

◆
, ~K 0 =

✓
2⇡

3a
,� 2⇡

3
p
3a

◆
. (1.13)

One can indeed explicitly verify that the bands touch by noting that

�(~k = ~K) = �(~k = ~K 0) = 0. (1.14)

These points are referred to as Dirac points as the excitations close to them are described

by Dirac fermions. This can be seen in Fig. 1.3, where the Dirac cone is depicted. One can

see this by considering the conductance band at ~k = ~K + ~q

E(~k) = t
q
3 + 4 cos(

p
3/2kya) cos(3/2kxa) + 2 cos(

p
3kya)

E( ~K + ~q) = E( ~K) + ~q · @E
@~k

|~k= ~K
+O(q2)

✏(~q) = vF |~q|+O((q/K)2) (1.15)

where E( ~K) = E( ~K 0) = 0, and the Fermi velocity vF = 3ta/2 ⇡ c/300 has been introduced.

From this, one can see that although these low-energy excitations have a relativistic disper-

sion, one does not have Lorentz symmetry due to the small Fermi velocity. The dispersion

of these excitations di↵er from most metals where the conductance band has curvature and

the excitations have a quadratic dispersion ✏(~q) = q2/2m⇤, where m⇤ is the e↵ective mass
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Figure 1.2. The band structure of graphene. One can see the points where the two bands
touch, known as Dirac points.

of the quasiparticle. Furthermore, in the case of the low-energy excitations of graphene, the

Fermi velocity is constant whereas, in the quadratic case, it is momentum dependent i.e.,

v = @✏(~q)/@q = q/m⇤.

Other variations of graphene are interesting, both theoretically and experimentally, in

their own right. The simplest variation of single-layer graphene is bilayer graphene and

can be also understood within a tight-binding description [7]. The configuration of the two

layers in bilayer graphene is such that the A sublattices are stacked on top of each other

(known as AB or Bernal stacking). Considering only nearest-neighbor in-plane hopping as

well as hopping between the A sublattices of the two layers, one finds four bands, two of

which touch at the Dirac points ~K and ~K 0 and have parabolic dispersion. By applying a

voltage perpendicular to the graphene layers one can open and control a gap between these

two bands.

Doped single-layer graphene, trilayer, as well as graphite constitute other related sub-

fields. Despite being very active and containing many interesting avenues of research, this

thesis will not discuss them.

1.2.2 Dirac Fermions

In the previous subsection, the form of the tight-binding Hamiltonian in the limit of only

nearest-neighbor hopping was discussed and from that the band structure was derived. At
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kxa kya

E/vF

Figure 1.3. Close up of the Dirac cone, where the dispersion of the quasiparticles is given
by E(~k) = vF |~k|.

the Dirac points, one has massless particles with linear dispersion. One would like to take

this a step further and make fully clear the connection between the low-energy excitations

and the Dirac equation. To do this, one writes the Hamiltonian of the low-energy excitations

as the sum of two terms, one coming from K and one coming from K 0. After a unitary

rotation of basis which removes a phase, one obtains

H ⇡ HK +HK0

=  †
K,�

✓
0 (qx + iqy)

(qx � iqy) 0

◆
 K,� + 

†
K0,�

✓
0 (qx � iqy)

(qx + iqy) 0

◆
 K0,�

=  †
K,�~� · ~q K,� + 

†
K0,�~�

⇤ · ~q K0,� (1.16)

where the spinors  K(0),� =

 
 K(0),a,�

 K(0),b,�

!
have been introduced. Rearranging the basis,

one is able to write the Hamiltonian in the following compact form by introducing a tensor

product of sublattice, valley, and spin space,

H(~q) = vF� · ~q ⌦ 1⌦ 1. (1.17)

Thinking ahead to our staggered lattice fermion formulation of the theory which will be

analyzed in a chapter to come, one can think of the four-dimensional space of the sublattice

tensored with the valley degrees of freedom as comprising the normal Dirac spinor degrees of

freedom while the two-dimensional space of the electron’s spin comprises a flavor (referred
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to as “taste” in the language of staggered fermions) degree of freedom. The two-component

eigenfunctions of HK(~q), with energies given by E = ±vF q, can be written

 K,(±) =
1p
2

✓
e�i�

q

/2

±ei�q/2

◆
(1.18)

where �q = tan�1(qy/qx). An analogous expression can be constructed for the eigenstates

for valley K 0. Just as one would expect for massless, Dirac fermions in relativistic quantum

field theory [8], these states are chiral. We can verify this by noting the following

~� · ~q
q
 K,(±) = ± K,(±) (1.19)

In this case, chirality pertains to the sublattice degree of freedom, which is sometimes

referred to as pseudospin.

The formation of a gap at the Dirac points would require an additional term in the

Hamiltonian. One can show that a mass term is forbidden as a consequence of symmetry

considerations [9]. The e↵ect of time-reversal on the system exchanges Dirac points (can

take ~K 0 = � ~K) but does not a↵ect the sublattice degrees of freedom

THKT�1 = H⇤
K0 (1.20)

The e↵ect of spatial inversion exchanges both sublattice degrees of freedom as well as Dirac

points

IHKI�1 = �xHK0�x (1.21)

Invariance under the combined action of time-reversal and spatial inversion imposes the

following condition on the valley Hamiltonians

HK = �xH⇤
K�x (1.22)

If one writes down the most general 2⇥ 2 Hamiltonian as

H (k) = ~h (k) · ~�, (1.23)

where ~h (k) ⌘ (hx, hy, hz), inversion symmetry requires hz (�k) = �hz (k) while time-

reversal symmetry requires hz (�k) = hz (k). Thus, if both symmetries are present, one is

forced to require hz (k) = 0. A gap can form at the Dirac points if one of these symmetries

is violated. Inversion symmetry is violated if the two sublattices become inequivalent to
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each other. In the low-energy theory this is represented by adding a Dirac mass term to

(1.17) of the form

m (�z ⌦ 1⌦ 1) , (1.24)

where the unit matrices are in the valley and spin spaces. One can show that a gap of 2m

forms at each of the Dirac points. This is the usual mass term that appears in relativistic

field theory. If time-reversal symmetry is broken but spatial inversion is not, one can

introduce a mass term which is positive at one Dirac point and negative at the other,

m(K) = �m(K 0) = �m(�K). In the low-energy theory, this is represented by adding a

mass term of the form [10]

m (�z ⌦ �z ⌦ 1) . (1.25)

Both types of masses will be studied in this thesis.

The Hamiltonian in (1.17) also has the following symmetries associated with it

�3HK,K0(~k)�3 = �HK,K0(~k), (1.26)

�2H⇤
K,K0(~k)�2 = �HK,K0(~k). (1.27)

The implications of these relations is that given an eigenstate of the Hamiltonian  , with

energy E, there exist states �3 and �2 ⇤ which have energy �E. This follows from (1.26)

and (1.27), respectively. When a mass term of the form (1.24) or (1.25) is introduced, (1.26)

is no longer satisfied but the spectrum is still symmetric about E = 0 due to (1.27). This

symmetry is known as particle-hole symmetry. In the low-energy e↵ective field theory for

graphene, which will be used in this thesis, this symmetry relates particles and antiparticles.

In the coming chapters it will be convenient to bundle the Bloch components for a given

spin projection into a four-dimensional Dirac spinor

 >
� = ( KA�, KB�, K0B�, K0A�) , (1.28)

where K, K 0 refer to the Dirac points, � refers to the electron’s spin projection, and A,B

refer to the sublattice. In this basis, it is also convenient to describe the e↵ect of the

discrete symmetries. Ignoring spin, the action of time-reversal in the basis four-dimensional

sublattice-valley subpsace is as follows
0

BBB@

 A�( ~K + ~p)

 B�( ~K + ~p)

 B�( ~K 0 + ~p)

 A�( ~K 0 + ~p)

1

CCCA
!

0

BBB@

 A�( ~K 0 � ~p)

 B�( ~K 0 � ~p)

 B�( ~K � ~p)

 A�( ~K � ~p)

1

CCCA
(1.29)

= T �(�~p), (1.30)
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where  K(0),A/B,�(~p) ⌘  A/B,�( ~K
(0) + ~p), and the spinor has been written in momentum

space. One sees that the transformation interchanges Dirac points but leaves the sublattice

degree of freedom intact. Time-reversal acts on the spin projection in the following way

✓
 K,A/B,"
 K,A/B,#

◆
!

✓
 K,A/B,#
� K,A/B,"

◆
, (1.31)

= i�2

✓
 K,A/B,"
 K,A/B,#

◆
. (1.32)

Combining the action of time-reversal on both the four-dimensional sublattice-valley space

and on the two-dimensional spin space one obtains the following result in momentum space

 (~p) ! (T ⌦ i�2) (�~p). (1.33)

For the coordinate space spinor, time-reversal takes the following form

 (~x, t) ! (T ⌦ i�2) (~x,�t). (1.34)

One can then show that the Hamiltonian in this basis is left invariant by the following

transformations [11]

 (~x, t) ! (T ⌦ i�2) (~x,�t), (1.35)

 ̄(~x, t) ! � ̄(~x,�t) (T ⌦ i�2) , (1.36)

A0(~x, t) ! �A0(~x,�t). (1.37)

Spatial inversion acts on the four-dimensional spinor as follows

0

BBB@

 A�( ~K + ~p)

 B�( ~K + ~p)

 B�( ~K 0 + ~p)

 A�( ~K 0 + ~p)

1

CCCA
!

0

BBB@

 B�( ~K 0 � ~p)

 A�( ~K 0 � ~p)

 A�( ~K � ~p)

 B�( ~K � ~p)

1

CCCA
(1.38)

= P �(�~p), (1.39)

where the transformation was written in momentum space. A similar transformation exists

in coordinate space

 (~r, t) ! P (�~r, t). (1.40)

One sees that the transformation interchanges Dirac points as well as sublattices. Unlike

time-reversal, inversion does not act on the spin degree of freedom.



CHAPTER 2

EFFECTIVE FIELD THEORY

DESCRIPTION OF

GRAPHENE

In this chapter the philosophy of e↵ective field theory (EFT) in modern physics, particu-

larly in the context of condensed matter physics and graphene, is discussed. By considering

the low-energy excitations of graphene, one constructs a continuum gauge theory which

describes Coulomb interaction of Dirac fermions in (2 + 1) dimensions where the temporal

component of the gauge field, A0, lives in (3 + 1) dimensions. From an appropriate

rescaling of the continuum theory, one finds that the e↵ective coupling between the fermions,

↵g ⌘ e2/(✏vF 4⇡) > 1, where ✏ is the dielectric constant of the substrate. Thus, the strongly

coupled nature of the theory disfavors a perturbative analysis of the theory. Being a gauge

theory, the EFT can be studied using methods from lattice quantum chromodynamics

(LQCD), which are well suited to tackling nonperturbative questions.

2.1 Motivation and Uses of E↵ective Field Theory in
Physics

The idea of an e↵ective field theory that describes particular regimes of physics has been

a very useful approach that has been applied succesfully in high-energy as well as condensed

matter physics. Starting from an underlying, more fundamental theory, one can often

construct a simpler theory which aims at describing physical degrees of freedom appropriate

at a certain length or energy scale. One of the most famous examples of an e↵ective field

theory in twentieth-century physics is the Fermi theory of the weak interactions [12]. The

electroweak theory of Weinberg, Glashow, and Salam presumably describes physics up to

the unification scale, yet at low enough energies (⇠ 10 MeV) the Fermi theory accurately

describes nuclear beta decay. This is primarily due to the fact that the mass of the charged

electroweak boson, W±, which defines the scale of the electroweak theory, mW± ⇡ 80GeV,

is much larger than the energy at which the decay occurs. Thus, one has a separation
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of scales in which some degrees of freedom in the underlying theory do not appear in the

e↵ective theory (the electroweak gauge bosons). Another application of EFTs in high-energy

physics appears in the low-energy dynamics of the theory of the strong interactions, quantum

chromodynamics (QCD). The low-energy regime is dominated by pions, kaons, and the eta

for number of quark flavors Nf = 3. One can write down a theory based on the symmetries

of the underlying theory and the phenomenon of chiral symmetry breaking, which tells us

that the pions are Goldstone bosons [13, 14].

In condensed matter physics, one typically starts from a many-body Hamiltonian de-

scribing the electrons and their interactions. In certain instances, once the relevant physics

of the particular system has been identified, one can often write down a simpler theory which

describes these pertinent degrees of freedom and inherits their symmetries. One famous

example of this is the Bardeen-Cooper-Schrie↵er (BCS) theory of superconductivity [15]. In

metals, phonons can mediate an attractive interaction between certain electrons, leading to

the formation of Cooper pairs which bring about the transition to the superconducting state.

In the e↵ective theory, this is taken into account by introducing an attractive point-like

interaction between electrons. In graphene, one can look at regions close to the Dirac

points where the dispersion of excitations is relativistic. Counting the fermionic degrees of

freedom correctly, one e↵ectively is left with a theory of two identical flavors of massless

Dirac fermions that can interact electromagnetically. Naturally, one then introduces a gauge

field which mediates this interaction, leaving a variant of (2 + 1)-dimensional quantum

electrodynamics (QED). In the following sections, we realize this program and write down

the continuum EFT that we will later study on the lattice.

EFTs are not typically renormalizable in the sense of QED. One can think of the EFT as

an expansion in a momentum or energy, characterizing a typical process which it describes.

At each order in this expansion, one needs to introduce new parameters to keep the theory

finite. Although in the early days of quantum field theory this approach faced resistance,

with the advent of the renormalization group (RG) [16] a new undestanding of this type of

theory and what it meant gave new life to the technique of EFT. Namely, one could think

of the EFT as a low-energy theory obtained by taking the more fundamental theory valid

at higher energies, and “integrating out” the high modes. What one is left with is a simpler

theory where the physics at the scale of the cuto↵ would be encoded in the parameters

introduced in the e↵ective Lagrangian.
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2.2 Continuum EFT for Graphene
In this section, the continuum action for the fermionic degrees of freedom is introduced,

followed by the continuum action for the gauge field in the Coulomb approximation. This

is the form that will later be discretized upon moving to the cubic lattice.

2.2.1 Fermionic Sector

From the discussion in the previous chapter, it is evident that the low-energy excitations

consist of two species of massless four-component Dirac fermions (2 valley ⇥ 2 sublattice

⇥ 2 spin). One can immediately writef down the continuum Euclidean action describing

the fermions

SF =

Z
dtd2x

X

a=1,2

✓
 ̄a�0@0 a + vF

X

i=1,2

 ̄a�i@i a +m ̄a a

◆
(2.1)

where the index i runs over 1, 2, characterizing the spatial directions in the plane and the

Dirac matrices �µ, µ = 0, 1, 2, satisfying the Cli↵ord algebra {�µ, �⌫} = 2�µ⌫ have been

introduced. In (2.1), the four-component Dirac spinors are organized as in (1.28). The

mass term, m ̄ , has also been introduced in anticipation of our lattice formulation. As

will be seen later, this will act as an infrared regulator necessary to perform Monte Carlo

simulations of the theory.

The spinor representation of the Lorentz group, and thus the gamma matrices which

the generators are constructed from, is of dimension 2[d/2] [17]. One notes that in this

theory four-component spinors have been introduced instead of the assumed two-component

spinors. In doing so one constructs a reducible representation composed of the two inequiv-

alent, irreducible representations of the Cli↵ord algebra in odd Euclidean dimensions. One

thus can write

�µ =

✓
�µ 0
0 ��µ

◆
, µ = 0, 1, 2 (2.2)

where �µ refers to the Pauli matrices (�0 ⌘ �3), which form an irreducible representation of

the Cli↵ord algebra. The other irreducible representation can be taken as ��µ as implied

by the form in (2.2). In (3+1)-dimensions, one could identify a similarity transformation S,

S†�(1)µ S = �(2)µ , given by the familiar S = �5 = �†5 where {�µ, �5} = 0. By the very definition

of this matrix, �5 ⌘ C
dY

i=1

�i, with C a phase factor, one can verify that in odd Euclidean

dimensions �5 / 1 [18]. This issue is intimately related to chirality in odd-dimensional
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relativistic quantum field theory. One can also define an additional set of matrices which

generate symmetry transformations in the graphene EFT

�̃4 =

✓
0 1
1 0

◆
, �̃5 =

✓
0 1
�1 0

◆
(2.3)

�̃4,5 ⌘ ��̃4�̃5 =
✓

1 0
0 �1

◆
(2.4)

The continuum fermionic action listed in (2.1) has a U(4) flavor symmetry which can be

seen by using the four-dimensional gamma matrices defined in (2.3) and (2.4) to construct

the 42 = 16 generators of the group

1⌦ 1, 1⌦ �µ, �̃4,5 ⌦ 1, �̃4,5 ⌦ �µ (2.5)

�̃4 ⌦ 1, �̃4 ⌦ �µ, i�̃5 ⌦ 1, i�̃5 ⌦ �µ, (2.6)

where the four-dimensional sublattice ⌦ valley subspace has been tensored with the two-

dimensional spin subspace. The mass term of the form

Lm = m
X

a=1,2

 ̄a a, (2.7)

breaks the U(4) symmetry down to a U(2) ⌦ U(2) symmetry whose generators are given

by (2.5). Similarily, a formation of a nonzero value for the chiral condensate, h ̄a ai,
would signal spontaneous symmetry breaking, U(4) ! U(2)⌦U(2), which would imply the

appearance of 16� 2(22) = 8 Goldstone bosons which would parametrize the coset.

2.2.2 Gauge Sector

The Dirac-like quasiparticles of graphene are electrically charged and thus interact

electromagnetically. In the framework of our EFT, this would necessitate the introduction

of a U(1) gauge field, Aµ. The gauge field presumably would live in (3+1) dimensions (the

graphene sheet is embedded in our normal (3 + 1)-dimensional world) and would have an

action resembling that of electrodynamics

SG =
✏

4

Z
d3xdt (Fµ⌫)

2, (2.8)

where one has introducted the U(1) field-strength tensor Fµ⌫ ⌘ @µA⌫ � @⌫Aµ, µ, ⌫ =

0, 1, 2, 3, 4 and ✏ represents the dielectric constant of the material on which graphene is

embedded.

Recalling the analysis from the previous chapter, one notices that the excitations near

the Dirac point have a tiny Fermi velocity, vF /c ⇡ 1/300. This suggests that a valid
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approximation would be to neglect magnetic fields (Fij = 0) and to neglect electric fields

created by magnetic induction (@0Ai = 0) [19]. Applying this to (2.8) results in

SG =
✏

2

Z
d3xdt (@iA0)

2. (2.9)

One notices that the action in (2.9) is invariant under spatially uniform shifts of the gauge

potential, i.e., A0 ! A0+↵(t), where ↵(t) is a function of time only. This fact is equivalent

to the gauge invariance of the action. This also has consequences in the fermionic sector as

one must introduce interactions with A0. This is done in the usual way, @0 ! @0 � ieA0,

known as minimal coupling. This leads to an interaction term of the form

Sint = �ie

Z
dtd2x

X

a=1,2

 ̄a�0A0 a. (2.10)

It was previously mentioned that the graphene EFT is strongly coupled. One can easily

see this by defining the following rescalings [20]:

x0 = vF t, A0 =
vF
e
A0

0, D0 = @0 � iA0
0. (2.11)

Rewriting the action in terms of these quantities, one obtains

S =

Z
d3x

X

a=1,2

�
 ̄a�0D0 a +

X

i=1,2

 ̄a�i@i a

+
m

vF
 ̄a a

�
+
✏vF
2e2

Z
d4x

3X

i=1

(@iA
0
0)

2. (2.12)

From the form of the action in (2.12), one recognizes that the true fermion-fermion-photon

coupling is g2 ⌘ e2

v
F

✏ = c
v
F

4⇡↵, where ↵ is the fine structure constant of QED. This

suggests that perturbation theory is most reliable when ↵g ⌘ g2

4⇡ = ↵ c
v
F

⌧ 1, which

for graphene does not hold true due to the small Fermi velocity of the Dirac quasiparticles.

Although perturbation theory can be useful in certain instances, one might want to employ

nonperturbative techniques. For this reason, lattice Monte Carlo simulations are important

to gain insight into various aspects of graphene just as they have proved useful in studying

the theory of the strong interactions, QCD. In particular, lattice methods will be used to

study the formation of the chiral condensate, h ̄ i 6= 0, as well as a time-reversal odd

condensate, h ̄�̃4,5 i, as a function of the inverse coupling � ⌘ 1
g2

as well as a function of

an external magnetic field perpendicular to the sheet of graphene.



CHAPTER 3

MAGNETIC CATALYSIS IN GRAPHENE

The phenomenon of magnetic catalysis, first proposed by Miransky and collaborators

[21, 22, 23, 24], is a fascinating example of dynamical symmetry breaking. In (2 + 1)-

dimensions, an external magnetic field can be shown to be a catalyst for this symmetry

breaking that leads to dynamical mass generation for fermions even if they are weakly

interacting. First shown in the context of the Nambu-Jona-Lasinio (NJL) model [25, 26],

this phenomenon has been proposed for two-dimensional condensed matter systems as well,

including graphene. Although various approaches such as the Schwinger-Dyson equations

(SDE) have been employed to study and lend support to this phenomenon, it is also useful

to apply LQCD methods in the context of the graphene EFT to further the understanding

of this type of dynamical symmetry breaking in low-dimensional systems.

3.1 Dirac Fermions in a Magnetic Field
Before considering a full interacting theory such as the graphene EFT, one can start

from a free Dirac theory in a constant external magnetic field. Already from here, one

can begin to understand the mechanism for the catalysis which involves the dimensional

reduction D ! D � 2 [27].

The equation for a (3 + 1)-dimensional charged Dirac fermion in the presence of an

external constant magnetic field is given by the following

(i�µDµ �m) = 0, (3.1)

where Dµ = @µ � ieAµ. The gauge field Aµ describes the external magnetic field oriented

in the z-direction and in Landau gauge it is given by

Aµ = �µ,2Bx1, r⇥ ~A = Bẑ. (3.2)

The Dirac equation, HD = E , in the presence of the vector potential in (3.2), can be

written as two coupled equations
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~� · (~p� e ~A)� = (✏�m)�, (3.3)

~� · (~p� e ~A)� = (✏+m)�, (3.4)

where � and � are two-component spinors. Eliminating �, one is able to obtain

�
~p2 + e2B2x2 � eB (�z � 2xpy)

�
� =

�
✏2 �m2

�
�. (3.5)

Using the ansatz �(x, y, z) = ei(pyy+p
z

z)f(x) and defining the variable ⇠ =
p
eB (x� py/eB),

one can write an equation for f(x) that resembles the quantum harmonic oscillator

✓
� d2

d⇠2
+ ⇠2

◆
f = (a+ µ)f, (3.6)

a ⌘ E2 �m2 � p2z
eB

,

where f is an eigenstate of �z, �zf = µf with µ = ±. One then obtains

En(pz) = ±
p
m2 + 2|eB|n+ p2z, (3.7)

where n is a non-negative integer (n = 0, 1, 2, . . . ) labeling the Landau level [28]. One can

relate this index to contributions from the orbital motion and the spin, n ⌘ k + sz +
1
2 ,

where k = 0, 1, 2, . . . is the orbital quantum number and sz = ±1
2 is the projection of the

spin onto the direction of the external field.

There arise various distinctions between the lowest Landau level (LLL) (n = 0) and all

other Landau levels (n > 0). The first distinction is that the LLL corresponds to the lowest

orbital state k = 0 with sz = �1
2 only. This implies that the LLL is spin-polarized while all

other levels can be degenerate in the two spin projections (k, sz = +1
2 and k+1, sz = �1

2).

Another crucial distinction comes from the degeneracy of the LLL. For a fixed value of n

and pz, this degeneracy arises from the freedom to choose the center of the orbit in the

x-direction which is given by py/eB. This leads to a degeneracy per area in the xy-plane

which is given by |eB|
2⇡ for n = 0 and |eB|

⇡ for n > 0.

When one considers a Dirac mass, which is small with respect to the energy scale of

the Landau levels, m ⌧
p
|eB|, one can see that the low-energy dynamics are completely

dominated by the LLL. In this limit, the excitations have energy given by En=0(pz) =

±
p
m2 + p2z. One immediately notices that this is the dispersion relation for (1 + 1)-

dimensional Dirac particles. Thus by considering this limit, we have e↵ectively seen a

dimensional reduction, D ! D � 2.

Having solved the problem in (3 + 1)-dimensions, it is straightforward to obtain the

spectrum of Dirac fermions in a constant external magnetic field in (2 + 1)-dimensions.
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Using the reducible representation of the Cli↵ord algebra introduced in (2.2), one proceeds

analogously to obtain the energies given by

En = ±
p

m2 + 2|eB|n. (3.8)

This is the form in (3.7), having set pz = 0. Similar arguments made in the (3 + 1)-

dimensional case apply here as well regarding the low-energy behavior of the theory (LLL

dominance) and the degeneracy per area of the LLL as compared with the other Landau

levels. One thing of note, however, is that all particles in the LLL are degenerate, E0 = m,

due to the absence of pz. Furthermore, in the massless limit, m ! 0, the energy of this level

goes to zero and becomes degenerate with the negative energy state, formally at E0 = �m.

An interesting consequence of (2+ 1)-dimensional Dirac fermions in a constant external

magnetic field is the spontanous symmetry breaking characterized by the appearance of a

condensate, h ̄ i. This is true in the free theory and can be verified by calculating the

propagator using the proper-time representation pioneered by Schwinger [29]. As a result,

one can calculate the condensate which is given in (2 + 1) dimensions by [30, 31]

h ̄ i = � 1

2⇡


m
p
2eB⇣(12 , 1 +

m2

2eB ) + eB � 2m2

�
, (3.9)

where �(n) is Euler’s gamma function. Taking the chiral limit (m ! 0) of (3.9) one obtains

lim
m!0+

h ̄ i(B,m) = �eB

2⇡
, (3.10)

while the chiral limit of an analogous expression in (3+1) dimensions gives h ̄ i / m logm.

This hints that the phenomenon of dynamical symmetry breaking in the presence of an

external magnetic field is likely to occur in (2 + 1) dimensions.

One might initially think that the dimensional reduction, D ! D � 2, which is at

play in magnetic catalysis is at odds with the Mermin-Wagner-Coleman (MWC) theorem

[32, 33]. Spontaneous breaking of a continuous symmetry occurs in magnetic catalysis for

theories in which the reductions (3 + 1) ! (1 + 1) and (2 + 1) ! (0 + 1) take place. By

Goldstone’s theorem, the spontaneous breaking of a continous symmetry implies the exis-

tence of massless bosons [34, 35, 36]. However, the MWC theorem states that spontaneous

symmetry breaking is not possible in theories of dimension less than (2+1). The resolution

of this apparent contradiction comes from the fact that the Nambu-Goldstone (NG) bosons,

which appear due to the spontaneous symmetry breaking according to Goldstone’s theorem,

are charge neutral and thus do not experience a dimensional reduction while the charged

fermions and antifermions do. This follows from the fact that a charged particle’s motion
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is constrained in the plane perpendicular to the magnetic field while the motion of the

center of mass of the neutral NG bosons is not. A simple argument in the language of first

quantization can illustrate this fact [24]. One first defines the components of the canonical

momentum operator in the gauge (3.2)

P̂x = �i
@

@x
, P̂y = �i

@

@y
+ Q̂Bx, P̂z = �i

@

@z
, (3.11)

where Q̂ is the charge operator and each component commutes with the Hamiltonian.

Taking the commutator of each pair of operators one finds

P̂x, P̂y

�
= �iQ̂B,


P̂x, P̂z

�
=


P̂y, P̂z

�
= 0. (3.12)

From this it is clear that for neutral particles, all of the above commutators are zero, and

thus, all three components can be used to describe the dynamics. Thus, the NG boson

propagator has the full (3 + 1) or (2 + 1)-dimensional form in the infrared, which resolves

the contradiction with the MWC theorem.

3.2 Magnetic Catalysis and Applications
Various field theories and condensed matter systems have been predicted to exhibit

magnetic catalysis. Originally, the authors [21, 22, 23, 24] considered the NJL model,

as it was known to exhibit chiral symmetry breaking even without the external magnetic

field. After grasping the physics of the problem, in particular the concept of dimensional

reduction, the authors proposed that the phenomenon was in fact universal and carried out

studies of QED and eventually graphene.

3.2.1 NJL Model and QED

First introduced as a model involving the nucleons and the pions, the NJL model exhibits

dynamical symmetry breaking. The chiral symmetry is broken via an e↵ective four-fermion

interaction. The mechanism by which the chiral symmetry breaks is similar to that in

the BCS theory of superconductivity. The point-like interaction between fermions and

antifermions leads to a condensation of fermion-antifermion pairs in the vacuum and implies

the breaking of chiral symmetry and the generation of a dynamical fermion mass.

Knowing that external fields stabilize the condensate in the broken phase [37], one might

wonder how the phase diagram of the theory is changed in the presence of an external

magnetic field. One may start with a U(1)V ⇥ U(1)A invariant NJL Lagrangian in (3 + 1)

dimensions

L =
1

2
 ̄i 6D +

G

2


( ̄ )2 + ( ̄i�5 )

2

�
, (3.13)
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where one considers fermions with an additional “color” index ↵ = 1, 2, . . . Nc. The reason

for adding this extra index will be seen later on when one considers the large Nc limit

(Nc ! 1). This Lagrangian is invariant under the following transformations

U(1)V :  ! ei↵ ,  ̄ !  ̄e�i↵, (3.14)

U(1)A :  ! ei↵�5 ,  ̄ !  ̄ei↵�5 . (3.15)

One can rewrite the Lagrangian in (3.13) by introducing two auxiliary fields � and ⇡ via

the Hubbard-Stratonovich transformation [38], [39]

L =
1

2
 ̄i 6D �  ̄(� + i�5⇡) � 1

2G
(�2 + ⇡2). (3.16)

Using the equations of motion one can derive the following relations

� = �G( ̄ ), ⇡ = �G( ̄i�5 ). (3.17)

To examine the ground state properties of the theory one may calculate the e↵ective

potential. Considering only spatially uniform configurations in the large Nc limit, the

authors of [21, 22, 23, 24] obtained the following gap equation

⇢⇤2

✓
1

g
� 1

◆
= �⇢3 ln (⇤l)2

2 + �⇢3 + l�2⇢ ln (⇢l)2

4⇡ + 2l�2⇢ ln�(⇢
2l2

2 ), (3.18)

where the dimensionless coupling constant g ⌘ N
c

G⇤2

4⇡2 , is introduced. Taking the limit

B ! 0 (l ⌘ |eB|�1/2 ! 1), one can recover the familiar gap equation for the NJL model

⇢⇤2

✓
1

g
� 1

◆
= �⇢3 ln ⇤

⇢2
. (3.19)

One notes that a nontrivial solution of (3.19) only appears when g > gc = 1, as can be

easily verified by verifying that sign of the right hand side is always negative while that of

the left hand side depends on the value of the coupling g. Thus one sees that spontaneous

symmetry breaking is strictly a strong coupling phenomenon in the NJL model without an

external magnetic field. However, for the gap equation in (3.18), one can obtain a nontrivial

solution ⇢̄ ⌘ � = mdyn even in the weak coupling regime g ⌧ gc. In this regime, one obtains

a dynamical mass of the form

m2
dyn =

eB

⇡
e
� 4⇡2(1�g)

|eB|N
c

G . (3.20)

From the form of (3.20), one notices that an essential singularity exists at G = 0 and

thus the result is nonanalytic in the coupling. This is a sign that the generation of the

dynamical fermion mass is a truly nonperturbative phenomenon. It has been shown that
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the dominant contribution to this result comes from the LLL [24], further corroborating the

intuition gained from the free Dirac theory in an external field. One also notes that this

form for the dynamical fermion mass closely resembles the result obtained in the (1 + 1)

Gross-Neveu model [40], [41]

m2
dyn = ⇤2e

� 2⇡
N

c

G0 , (3.21)

where G0 is the coupling and ⇤ is the momentum space cuto↵. This fact further supports

the claim of dimensional reduction D ! D � 2 as one has a form for the dynamical mass

in the (3 + 1) NJL model which mirrors that of the (1 + 1) Gross-Neveu model. One can

also ask how the condensate is enhanced by the magnetic field for strong couplings g > gc?

In this regime one finds that for su�ciently weak fields the dynamical mass takes the form

m2
dyn ' (m(0)

dyn)
2


1 +

|eB|2

3(m(0)
dyn)

4 ln(⇤/m(0)
dyn)

2

�
, (3.22)

where m(0)
dyn refers to the solution of (3.19).

The NJL model in (2 + 1)-dimensions in the presence of an external magnetic field

can be studied with the same methods used in the (3 + 1)-dimensional version. Due to

the necessity of using a reducible representation of the Dirac algebra as discussed in the

previous chapter, one finds that the kinetic term has a U(2) flavor symmetry. One can then

construct a four-fermion interaction term which is also invariant under the action of the

flavor symmetry, leading to the following

L =  ̄i 6D +
G

2


( ̄ )2 + ( ̄�̃4 )2 + ( ̄i�̃5 )2

�
, (3.23)

where the conventions for the gamma matrices in (2.3) have been used. The appearance of a

mass for the Dirac fermion will break the U(2) symmetry down to a U(1)⇥U(1) subgroup,

leading to the appearance of NG bosons. The gap equation in this case takes the form

2⇤l

✓
1

g
� 1p

⇡

◆
⇢ =

1

l
+
p
2⇢⇣(�1

2 ,
(⇢l)2

2 + 1) +O(1/⇤). (3.24)

In the limit B ! 0 one obtains an expression that only admits a nontrivial value for the

dynamical mass when the coupling is su�ciently strong, g > gc ⌘ p
⇡. The external

magnetic field causes a dynamical mass to be generated even as g ! 0,

mdyn = ⇢̄ ' GNc
|eB|
2⇡

. (3.25)

This can be understood as the mean field value defined by mdyn = h0|�|0i = �Gh0| ̄ |0i.
Using the expression for h ̄ i calculated in the free theory (3.10), one obtains the above
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result (including a factor of Nc). Furthermore, one notices that the expression in (3.25) is

analytic in G, as opposed to the result obtained in (3.20). This suggests that perturbation

theory is valid at weak coupling in (2 + 1) dimensions.

Given that magnetic catalysis seems to rest upon general physical principles, one might

also ask whether it applies to gauge theories with long-range interactions such as QED. In

QED, one can study the bound state equation describing the NG boson in a magnetic field.

The formalism involves the Schwinger-Dyson equations, in particular the Bethe-Salpeter

equation (BSE). Using the BSE, one can transform the relativistic bound-state problem to

a two-dimensional Schrödinger-like equation. The result for the dynamical mass in (3 + 1)

QED takes the form

m '
p
|eB|F (↵)e

� ⇡

↵ ln(C/N

f

↵) , (3.26)

where C is a constant of O(1) and F (↵) / (Nf↵)1/3. One notices that this has the same

nonanalytic dependence on the coupling constant at ↵ = 0 as would the energy of the ground

state of a Schrödinger equation in two dimensions [42]. This makes clear the relationship

with dimensional reduction as a result of an external magnetic field.

3.2.2 Graphene and Condensed Matter Systems

In the presence of an external magnetic field, graphene exhibits an anomalous quantum

Hall e↵ect [43, 44], which is well understood from a theoretical point of view [45]. Assuming

that electron states which lie between Landau levels (LL) are localized due to disorder and

that the Fermi energy lies between Landau levels, the contribution to the Hall conductivity,

�xy, comes from each filled LL. Accounting for the additional four-fold degeneracy due to

the spin and valley degrees of freedom, one obtains

�xy = ⌫
e2

h
, (3.27)

where

⌫ = 4

✓
N +

1

2

◆
(3.28)

is the filling factor. Here N is an integer and the additional 1/2 is due to the zero-energy LL

which shared equally between electrons and holes. Thus, plateaus are expected to appear

at half-integer values of �xy as the carreir concentration is varied. Experimentally, this is

exactly what happens. For the case of bilayer graphene, the zero-energy level has double

the occupation as the single-layer case, and thus the plateaus appear at integer values with

the caveat that there is no plateau at zero. One can begin to see from the above discussion
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that the zero-energy level plays a crucial role in the observable properties of graphene in a

magnetic field.

In strong magnetic fields (B ⇠ 45 T), there appear additional Hall plateaus associated

with the breaking of the four-fold degeneracy of each LL [46]. The additional plateaus

appearing at ⌫ = 0,±1 are due to the splitting of the degeneracy of the LLL. The charge-

neutral state, ⌫ = 0, which one can access in lattice calculations at zero chemical potential,

is predicted to support a time-reversal odd, Haldane mass �H  ̄�̃4,5 [47, 48, 49, 50]. This

mass is a singlet under SU(2)�, whose generators are given by

�̃4 ⌦ P�, i�̃5 ⌦ P�, �̃4,5 ⌦ P�, (3.29)

where the spin projection operator, P� ⌘ 1
2(1 ± �3), has been introduced. The regular

Dirac mass is a triplet with respect to SU(2)� and breaks this symmetry to U(1)� with the

generator �̃4,5 ⌦ 1.

In the full continuum theory, an additional Zeeman term is needed to describe the

interaction of the electron’s magnetic moment with the external magnetic field. This term

takes the form

HZ = �µBB

Z
d~r  †�3 , (3.30)

where µB is the Bohr magneton and �3 acts in spin space. Including this term explicity

breaks the U(4) symmetry to U(2)"⌦U(2)#, whose generators are given by those in (3.29),

with the addition of 1⌦P�. However, although (3.30) lifts the spin degeneracy of each LL,

this perturbation is extremely small even in the presence of large magnetic fields. This can

be observed by noting

✏Z ⌘ µBB = 5.8⇥ 10�2B[T] meV, (3.31)

✏B ⌘
q

~v2F |eB|/c = 26
p
B[T] meV, (3.32)

where ✏B is the Landau energy and ✏Z is the Zeeman energy. For even the strongest magnetic

fields available in the laboratory (B ⇠ 45 T), ✏Z is only a fraction of ✏B. For the results

in this thesis, the Zeeman term has not been taken into account and thus the continuum

graphene EFT possesses the full U(4) symmetry.

Apart from the long-range Coulomb interaction considered in the continuum EFT pre-

sented in (2.1), (2.9), and (2.10), the complete hexagonal lattice theory includes numerous

short-range electron-electron interactions. These lattice-scale interaction terms are allowed

by the point group symmetry of the underlying hexagonal lattice, C6v [51]. As a result,
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these terms break the much larger U(4) symmetry present in the continuum EFT. The

couplings associated with these terms can vary in sign and are strongly renormalized at

energies on the order of the bandwidth, vF /a, where a is the spacing of the hexagonal

lattice [52]. Taking these renormalized couplings into account can have a decisive e↵ect on

the selection of the ground state in the full theory. As with the Zeeman interaction, this

thesis will neglect these lattice-scale interactions.

As first pointed out in [53, 47], and later in [48, 49], magnetic catalysis is thought to

be responsible for the lifting of the degeneracy of the first two Landau levels and thus the

appearance of the additional plateaus in the Hall conductivity that were observed in [46].

The authors of [48] considered the fermion gap equation in the Hartree-Fock approximation

�
G(u, u0)

��1
=

⇣
G(0)(u, u0)

⌘�1
+ igint�

0G(u, u)�0�(3)(u� u0)

� igint�
0Tr

⇥
�0G(u, u)

⇤
�(3)(u� u0), (3.33)

where u ⌘ (~r, t), and a contact interaction has been used, gint�(~r). In (3.33), G(u, u0) =

h0|T (u) ̄(u0)|0i represents the full quasiparticle propagator and G(0)(u, u0) represents the

bare quasiparticle propagator. The gap equation represents a self-consistent method for

determining the various condensates.

For the plateau at ⌫ = 0, which corresponds to a half-filled LLL, there are several

di↵erent solutions of the gap equations. The ground state is identified by computing the

free energy associated with each solution. It turns out that for chemical potential su�ciently

near the Dirac point, the ground state is the so-called singlet solution

�̃" = �̃# = 0, �" = ��# = M, (3.34)

where �̃� corresponds to the Dirac mass which is a triplet under SU(2)�, and �� corre-

sponds to the Haldane mass which is a singlet under SU(2)�. In (3.34) the dynamically

generated mass scale M =
p
⇡�✏B/(4(1� �)) is introduced where � ⌘ gint✏B/(4⇡3/2v2F ).

As mentioned previously, the Zeeman term is a symmetry breaking term which explicitly

breaks the U(4) symmetry of the EFT down to U(2)" ⇥ U(2)#. From the form of the

solutions in (3.34), where the two singlet masses have opposite signs, one can see that this

symmetry breaking is enhanced. In Fig. 3(b) of [48], which plots the order parameters of

the singlet solution versus temperature, one can see a crossover as T becomes greater than

the dynamical mass scale, M . For small chemical potentials, the solution closest in energy

to the singlet solution is the triplet solution, as one can see in Fig. 2(b) of [48]. The authors

calculate the di↵erence and show that

�⌦ = ⌦S1 � ⌦T = �✏ZeB
⇡~c , (3.35)
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where “S1” refers to the singlet solution and “T” refers to the triplet solution. One notices

that as the Zeeman energy vanishes (✏Z ! 0), these solutions become degenerate. Another

consequence of vanishing Zeeman energy can be seen in Fig. 3(a) of [48], which plots

the order parameters of the singlet solution versus temperature in the absence of Zeeman

splitting. One can see that without including the explicit symmetry breaking term, a phase

transition occurs at T ⇡ 0.9M .

Including a more realistic, long-range interaction complicates the gap equation. Due

to the nontrivial momentum dependence of the Coulomb interaction, one must introduce

various wavefunction renormalizations. In [49], the authors find that the singlet solution

described by (3.34) is still the ground state in the presence of Zeeman splitting and is

degenerate with the triplet solution in the absence of Zeeman splitting. However, there is

one qualitative di↵erence with the solutions obtained with the contact interaction. In the

presence of long-range, unscreened Coulomb interactions, the gap parameters decrease with

increasing LL index n, leading to the existence of ”running gaps”. It is of importance to this

thesis that the ground state of the graphene EFT be characterized using nonperturbative

methods and compared to the results of [48, 49].



CHAPTER 4

INTRODUCTION TO LATTICE FIELD

THEORY

In this chapter, the path integral approach to quantization, first introduced by Feynman

[54], will be discussed. A simple bosonic system, the relativistic scalar field, will be studied

via the path integral. Fermions will be incorporated into the formalism by introducing the

Grassmann calculus. After discussing the interpretation of the Euclidean path integral as

a statistical model for the given field theory, one is introduced to the lattice as a means of

regulating ultraviolet divergences. From here, one can discretize the continuum graphene

EFT introduced earlier and discuss the advantages and limitations of such a formulation.

4.1 The Path Integral
Originally carried out in the context of nonrelativistic quantum mechanics, the path

integral represents a view of time evolution as a weighted sum over paths. In this view,

complimentary to the commonly used Schrödinger and Heisenberg pictures, each path has

an associated weight, eiS/~, where S is the action for the given path between the spacetime

points (xi, ti) and (xf , tf ). One starts with the transition amplitude given by

hxi, ti|xf , tf i = hxi|e�i(t
f

�t
i

)Ĥ |xf i, (4.1)

where Ĥ = p̂2

2m + V (x̂) refers to the Hamiltonian of the system. Due to the fact that the

Hamiltonian is a sum of terms which do not commute, one must take care in order to express

e�iĤ⌧ , t̃ ⌘ tf � ti, in a form convenient for calculation of matrix elements. Considering

an infinitesimal interval ✏, one can write the following expression for the time-evolution

operator

e�i✏Ĥ = e�i✏V̂ /2e�i✏p̂2/2me�i✏V̂ /2(1 + O(✏2)), (4.2)

where V̂ ⌘ V (x̂). This form allows us to evaluate matrix elements of the time-evolution

operator

hx|e�i✏Ĥ |yi = e�i✏V (x)/2hx|e�i✏p̂2/2m|yie�i✏V (y)/2, (4.3)



26

where the matrix element on the right hand side of (4.3) can be evaluated by gaussian

integration yielding

hx|e�i✏p̂2/2m|yi =

Z
dp

2⇡
eip(x�y)e�i✏p2/2m

=
q

m
2⇡i✏e

im(x�y)2/2✏. (4.4)

One can construct the time-evolution operator on a finite interval by forming the product

of the infinitesimal form in (4.2) which gives the following

e�it̃Ĥ = lim
N!1

(e�i✏Ĥ)N , ✏ =
t̃

N
. (4.5)

One then uses this identity in (4.1), and inserting N�1 sets of intermediate position states,

one obtains

hxf |e�i⌧Ĥ |xii = lim
N!1

hxf |(e�i✏Ĥ)N |xii

= lim
N!1

Z
dx1 . . . dxN�1hxf |e�i✏Ĥ |xN�1ihxN�1|e�i✏Ĥ |xN�2i . . . hx1|e�i✏Ĥ |xii

= lim
N!1

CN

Z
dx1 . . . dxN�1 exp


i✏

N�1X

j=0

✓
m
2

(x
j+1�x

j

)2

✏2
� 1

2(U(xj) + U(xj+1))

◆�
,

where x0 ⌘ xi, xN ⌘ xf , and C =
p

m
2⇡i✏ . Taking the continuum limit, ✏! 0, one can write

(4.6) in the following, more physically intuitive form

hxf |e�i⌧Ĥ |xii =
Z

D[x(t)]ei
R
t

f

t

i

dtL(x,ẋ) (4.6)

where we have introduced the measure, D[x(t)] ⌘ lim
N!1

CN
N�1Y

1

dxi, and the Lagrangian,

L(x, ẋ) = 1
2mẋ2 � V (x). The argument of the exponent, S =

R t
f

t
i

dtL(x, ẋ), is the classical

action of the path taken from {xi, ti} to {xf , tf}. Thus, one is led to the interpretation of

(4.6) as a weighted average of paths connecting the fixed end points, with eiS (~ = 1) the

weight associated with each path. The dominant contributions to the path integral come

from the classical trajectories, as they correspond to the extrema of the action, �S�x = 0. One

is then led to interpret the trajectories that deviate from the classical ones as the quantum

fluctuations.

Although one can make use of this form of the path integral, one notices that the

integrand is oscillatory. A more useful form for what follows can be obtained by making a

Wick rotation to Euclidean space, t ! �i⌧ , replacing eiS with e�S
E , where

SE =
R
d⌧(12 ẋ

2 + V (x)). In this way, deviations from the classical trajectory are exponen-

tially suppressed, the integrand is real, and one can intepret the integrand as a probabilistic

weight, making it suitable for numerical calculations.
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The usefulness of the Euclidean path integral manifests itself in the way one can use it

to express thermal expectation values. Recalling from quantum statistical mechanics that

for a system at temperature T = 1/�, whose dynamics are governed by a Hamiltonian Ĥ,

the thermal expectation value of an observable O can be calculated as follows

hOiT ⌘ Z�1Tr {e��ĤO}, (4.7)

Z ⌘ Tr e��Ĥ (4.8)

where the trace is typically calculated using the complete set of eigenstates of Ĥ, and Z is

referred to as the partition function. Vacuum expectation values can be obtained in this

formalism by applying the limit � ! 1. Anticipating the observables of interest in a lattice

field theory, one considers the following vacuum expectation value

G(⌧1, ⌧2, . . . , ⌧n) = lim
⌧!1Z�1Tr{e�⌧Ĥ x̂(⌧1)x̂(⌧2) . . . x̂(⌧n)}

= h0|x̂(⌧1) . . . x̂(⌧n)|0i, (4.9)

where the state |0i refers to the ground state of Ĥ and the position operators are written in

the Heisenberg representation, x̂(⌧i) = e⌧iĤ x̂e�⌧iĤ . Taking the trajectories in our Euclidean

path integral to be periodic, one can express thermal expectation values in the language of

path integrals

h0|x̂(⌧1)x̂(⌧2) . . . x̂(⌧n)|0i =
R
D[x]x(⌧1) . . . x(⌧n)e�S

E

[x]

R
D[x]e�S

E

[x]
, (4.10)

where the x(⌧i) in the integrand on the right hand side are numbers and not operators.

Considering the right hand side of (4.10), one notices that it has the form of a Boltz-

mann distribution with e�S
E

[x] replacing the familiar e��H . Thus, one can clearly see the

connection between path integrals and quantum statistical mechanics.

One can generalize the previous discussion to the context of a field theory by making

the identification x(⌧) ! �(x), where �(x) is a spin-0 bosonic field. In particular one can

take the Klein-Gordon field which is described by the following action

SE =

Z
ddx

1

2


(@µ�)

2 +m2�2
�
. (4.11)

The form of the correlation functions, G(x1, x2, . . . , xn) , can be read o↵ from (4.10)

G(x1, x2, . . . , xn) ⌘ h�(x1)�(x2) . . .�(xn)i =
R
D��(x1) . . .�(xn)e�S

E

[�]

R
D�e�S

E

[�]
, (4.12)

D� ⌘ lim
N!1

NY

i=1

d�i,
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where the number of spacetime points, N , is taken to infinity in the continuum. The

calculation of correlation functions is aided by the introduction of the generating functional.

This is done by introducing a source J which couples linearly to the field �, yielding

Z0[J ] =

Z
D�e�

1
2�iAij

�
j

+J
i

�
i

= Z0[0]e
1
2JiA

�1
i,j

J
j , (4.13)

where the index i is a generic label and one generalizes the Gaussian integral used in (4.4).

One then computes correlation functions using the following identity

h�1�2 . . .�ni =
✓

1

Z0[J ]

�nZ0[J ]

�J1�J2 . . . �Jn

◆

J=0

(4.14)

For an interacting theory, one can write the action as S[�] = S0[�] + Sint[�], where S0

characterizes the free theory which is quadratic in the fields and Sint[�] represents the

interactions. One can then introduce interactions by writing

Z[J ] =
X

k

(�1)k

k!

Z
D�(Sint[�])

ke�
1
2�iAij

�
j

+J
i

�
i

=
X

k

(�1)k

k!
(Sint[

�
�J ])

kZ0[J ], (4.15)

and the correlation functions in the interacting theory can be calculated by using Z[J ] in

(4.14).

Incorporating fermions into the path integral is a bit more di�cult as one needs to

take into account statistics. Namely, correlation functions of fermionic operators should

be antisymmetric under the interchange of quantum numbers. This is done by introducing

Grassman variables  i,  ̄i which satisfy

{ i, j} = { ̄i,  ̄j} = { i,  ̄j} = 0. (4.16)

The rules for integration and di↵erentiation of Grassmann variables are given by [55]
Z

d i = 0,

Z
d i j = �ij , (4.17)

d

d i
1 = 0,

d

d i
 j = �ij . (4.18)

These rules make di↵erentiation and integration of a function with respect to the  i

relatively easy. One particularly useful application is the evaluation of a Gaussian integral

with Grassmann variables

ZF =

Z
d ̄Nd N . . . d ̄1d 1e

�P
N

i,j=1  ̄i

M
ij

 
j = det[M ]. (4.19)
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One can also introduce anticommuting sources for the fields {⌘i, ⌘̄i}. Using the above

identity, one can then introduce the generating functional for a system of free fermions

ZF [⌘, ⌘̄] =

Z
D ̄D e� ̄i

M
ij

 
j

+⌘̄
i

 
i

+ ̄
i

⌘
i

= ZF [0, 0]e
⌘̄
i

M�1
ij

⌘
j . (4.20)

Proceeding as in the bosonic case, one can compute correlation functions of the Grassmann

variables by taking derivatives of the generating functional with respect to the sources

h 1 2 . . . n ̄n+1 ̄n+2 . . .  ̄2ni = Z�1
F

Z ✓ NY

k=1

d ̄kd k

◆
 1 . . .  ̄2ne

� ̄
i

M
ij

 
j (4.21)

= (�)n
✓

1

ZF [⌘, ⌘̄]

�2nZF [⌘, ⌘̄]

�⌘̄1 . . . �⌘2n

◆

⌘=⌘̄=0

. (4.22)

One can see that in order for the correlation function to be nonvanishing, an equal number

of  i and  ̄i must appear.

4.2 Introducing the Lattice
One needs to give a more precise meaning to the path integral expressions in the

previous section. In particular, in order to calculate observables in a quantum field theory,

one needs an ultraviolet regulator. The regulator allows one to obtain finite expressions

free of infinities. In continuum field theory, dimensional regularization and Pauli-Villars

regularization are popular choices. One can also introduce a hypercubic spacetime lattice

with spacing a and points labeled by n ⌘ (n1, n2, n3, n4) which serves as a regulator, as all

momenta will now have an upper limit, |kµ|  ⇡/a.

To translate a continuum theory to the lattice, the field, �(x), let us say, is now defined

at the sites of the lattice, �n ⌘ �(na), the integral in the action becomes a sum and the

measure is D� ⌘
Y

n

d�n. One also needs to replace the derivative in the kinetic term of

(4.11) with a finite di↵erence in order to obtain the lattice action

SE = a4
X

n

1

2


� �n

X

µ

1

a2
(�n+µ̂ + �n�µ̂ � 2�n) +m2�2n

�
(4.23)

The expression has the correct (naive) cotinuum limit, a ! 0, as one can explicitly verify.

One can see that this theory correctly describes a spinless particle of mass m by examining

the propagator. One first uses the identity

h�n�mi =
✓
1

Z

�2Z

�Jn�Jm

◆

j=0

= A�1
n,m, (4.24)
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where (4.13) was used to express the propagator in terms of the inverse of A. By inspection

of (4.23) one can see that

An,m =
X

µ

(��n,m+µ̂ � �n,m�µ̂ + 2�n,m) +m2�n,m. (4.25)

Calculating the inverse of A, defined by
P
p
An,pA�1

p,m = �n,m, is easiest in momentum-space

where one has

An,m =

Z ⇡/a

�⇡/a
d4k

(2⇡)4
eik̂(̇n�m)Ã(k), (4.26)

as well as the identity

�n.m = a4
Z ⇡/a

�⇡/a
d4k

(2⇡)4
eik̂(̇n�m), (4.27)

where k̂µ ⌘ akµ. Using the above relations, one obtains

Ã(k) =
4

a2

X

µ

sin2
⇣
k̂µ/2

⌘
+m2. (4.28)

From here, referring back to (4.24), one arrives at the following form for the propagator

h�n�mi =
Z ⇡/a

�⇡/a
d4k

(2⇡)4
eik̂·(n�m)

P
µ k̃

2
µ +m2

, (4.29)

where k̃µ ⌘ 2
a sin

k
µ

a
2 . One can examine the large ⌧ ⌘ (n0 � m0) > 0 behavior of the

propagator by performing the integral over dk0. To do so, one considers

I =

Z ⇡

�⇡
dk̂0
2⇡

eik̂0⌧

2b� cos k̂0
, (4.30)

b ⌘ 1 +
1

2

 
m2 +

X

i

k̃2i

!
.

One then makes the change of variables, z = eik̂0 , and (4.30) becomes a counter-clockwise

contour on the unit circle

I = �
I

dz

2⇡i

z⌧

z2 � 2bz + 1
, (4.31)

where the integrand has two simple poles at z± = b ±
p
b2 � 1. One can express the poles

as z± = e±!, where ! = log
⇣
b+

p
b2 � 1

⌘
. The integral can be evaluated by the method

of residues by noting that the contour encloses z�, yielding the result

I =
e�!⌧

2 sinh (!)
. (4.32)
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Inserting this result into the expression for the progator in (4.29), one obtains, in lattice

units,

h�n�mi =
Z ⇡

�⇡
d3k

(2⇡)3
eik̂i(n�m)

i

�!⌧

2 sinh!
, (4.33)

where ! !
p
m2 + ~p2 in the limit a ! 0. At large ⌧ , the correlation function decays as

e�m⌧ , which imples the system has a correlation length ⇠ = 1/m.

Unlike the previous example of the free scalar field, the discretization of the Dirac

equation on the lattice is a tricky endeavor. A naive discretization entails replacing the

derivative with a symmetric finite di↵erence, yielding the following expression

SE = a4
X

n


1

2a

X

µ

 ̄n�µ( n+µ̂ �  n�µ̂) +m ̄n n

�
. (4.34)

The free fermion propagator can be expressed as the inverse of the Dirac operator using

(4.22)

G(n�m) = h n ̄mi = �
✓

1

ZF [⌘, ⌘̄]

�2ZF [⌘, ⌘̄]

�⌘̄n�⌘m

◆

⌘=⌘̄=0

= M�1
n,m, (4.35)

where Mn,m is the fermion matrix defined implictly in (4.34). Just as in the bosonic case,

one may invert this matrix by going to momentum-space

Mn,m =

Z ⇡

�⇡
d4k̂

(2⇡)4
eik̂(̇n�m)

 
i
X

µ

�µ sin k̂µ +m

!
. (4.36)

Thus one obtains the momentum-space propagator

G(k) =
�ia�1P

µ �µ sin k̂µ +m

m2 + a�2
P

µ sin
2 k̂µ

, (4.37)

which characterizes the excitations of our lattice Dirac fermions. One observes that the

lattice propagator has the correct naive continuum limit, a ! 0

lim
a!0

G(k) !
�i
P

µ �µkµ +m

m2 + k2
, (4.38)

which is reassuring. However, there exist unwanted degrees of freedom which can be seen

by examining the pole structure of the massless lattice propagator

G(k)m=0 =
�ia�1P

µ �µ sin k̂µ

a�2
P

µ sin
2 k̂µ

. (4.39)

There is a pole at p = (0, 0, 0, 0), which describes the single continuum fermion. Unlike the

continuum, there exist other poles which are located at the corners of the Brillouin zone

p = (
⇡

a
, 0, 0, 0), (0,

⇡

a
, 0, 0), . . . , (

⇡

a
,
⇡

a
,
⇡

a
,
⇡

a
). (4.40)

These 15 unwanted poles are referred to as doublers. In order to simulate the correct

continuum theory, one must find a way to remove the doublers.
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A solution proposed by Wilson [56], is to add a term of the form

m
X

n

 ̄n n !
X

n

 
m ̄n n +

X

µ

 ̄n@
2
µ n

!

=
X

n

✓
m+

4r

a

◆
 ̄n n � r

2a

X

µ

�
 ̄n n+µ̂ +  ̄n+µ̂ n

� �
,

to the action in (4.34). In momentum space, this has the form of a momentum-dependent

mass

M(k) = m+
r

a

X

µ

⇣
1� cos(k̂µ)

⌘
. (4.41)

One can see that for the doublers, which have one or more momentum components kµ = ⇡
a ,

M is on the order of the momentum cuto↵, ⇡/a, as long as r 6= 0. In the continuum limit,

a ! 0, the doublers become infinitely massive and decouple from the theory, leaving only

the correct, continuum mode. Although it elegantly solves the doubling problem, Wilson

fermions are not invariant under chiral transformations in the massless limit. In fact, the

term added to remove the doublers is the reason why this is so. A theorem proved by Nielsen

and Ninomiya [57] codifies the di�culties in removing the doublers while also implementing

chiral symmetry. This theorem states that, on the lattice, one cannot implement chiral

symmetry in a manner which is free of doublers.

In the continuum, chiral symmetry is encoded in the fact that �5 anticommutes with the

Dirac operator, 6D. On the lattice, Ginsparg and Wilson [58] proposed that the relationship

takes the form

�5 6D + 6D�5 = a 6D�5 6D, (4.42)

where the right-hand side is nonvanishing and involves a factor of the lattice spacing. Using

(4.42), one can define chiral transformations on the fields

 ! exp
⇥
i↵�5

�
1� a

2 6D
�⇤
 ,

 ̄ !  ̄ exp
⇥
i↵�5

�
1� a

2 6D
�⇤

, (4.43)

underwhich the massless lattice Dirac action is invariant. One notices that the chiral

transformation in (4.43) involves fields at neighboring sights as well as the gauge field, unlike

in the continuum, where chirality and chiral rotations are local properties and independent

of the gauge field. This class of chiral lattice Dirac operators has a spectrum that consists

of pairs of complex-conjugate eigenvalues as well as real eigenvalues corresponding to states
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with definite chirality. As a result, a lattice equivalent to the Atiyah-Singer index theorem

can be proven [59, 60].

In practice, there are two solutions of the Ginsparg-Wilson relation. The earliest known

formulation is the overlap operator, which is defined by

6Dov =
1

a
(1+ �5sgn[�5 6DW ]) , (4.44)

where 6DW is the Wilson Dirac operator introduced previously. Although it exhibits nice

chiral properties, the use of overlap fermions is costly as one must approximate

sgn[A] = A
�
A2
��1/2

by a polynomial or a ratio of polynomials. The other formulation

of chiral fermions on the lattice are the so-called domain wall fermions. This involves

introducing a five-dimensional Wilson-like theory, whereby in the normal (3+1) dimensions

one has chiral fermions. The advantage of this method is that tried and true methods used

for Wilson fermions can be extended to domain wall fermions. A drawback, however, is

the introduction of an extra lattice dimension, which significantly increases the cost of

simulation. The lesson learned from Ginsparg-Wilson fermions is that one must pay a hefty

computational price in exchange for their chiral properties.

Another formulation of fermions on the lattice, and one that will be used exclusively in

this thesis, are the so-called staggered fermions [61]. Starting from the action in (4.34), one

defines a transformation on the fields

 n ! ⌦n n,  ̄n !  ̄n⌦
†
n, (4.45)

⌦n ⌘ �n0
0 �n1

1 �n2
2 �n3

3 . (4.46)

Using the identity

⌦†
n�µ⌦n+µ̂ = ⌘µ(n), (4.47)

⌘µ(n) = (�)n0+n1+···+n
µ�1 , (4.48)

one can verify that this transformation leaves the action in (4.34) diagonal in spinor space.

Thus, one can immediately reduce the number of doublers by a factor of four by simply

writing the action in terms of single component spinors, �n, �̄n

SF = a4
X

n


1

2a

X

µ

⌘µ(n)�̄n(�n+µ̂ � �n�µ̂) +m�̄n�n

�
. (4.49)

To define electromagnetic interactions of the fermions, one needs a gauge-invariant formu-

lation for the U(1) field that reduces to (2.8) in the naive continuum limit, a ! 0. As

opposed to the lattice fermion and scalar boson fields, which live at the sites, the gauge



34

field, Uµ(n), lives on the link connecting sites n and n+ µ̂. This field is U(1)-valued and is

related to the continuum gauge field in the following way

Uµ(n) ⌘ e�ie
R
n+µ̂

n

dz
µ

A
µ

(z). (4.50)

Using the form by which Aµ(z) changes under a gauge transformation, Aµ ! Aµ � 1
e@µ⇤,

the link transforms as

Uµ(n) ! G(n)Uµ(n)G
�1(n+ µ̂), G(n) ⌘ ei⇤(n). (4.51)

One can verify from the transformation in (4.51) that only closed paths are gauge-invariant.

The simplest closed path is the plaquette, which is given by

U (p)
µ⌫ (n) ⌘ Uµ(n)U⌫(n+ µ̂)U †

µ(n+ ⌫̂)U †
⌫ (n). (4.52)

An acceptable lattice action is thus composed of closed paths constructed from the link

variables which reduces to the correct continuum form in the limit a ! 0. The simplest

form is constructed from the plaquette as follows

SG =
1

e2

X

n

X

µ<⌫

h
1� ReU (p)

µ⌫ (n)
i
, (4.53)

where “Re” represents the real part. A gauge-invariant interaction with the fermions can

be introduced by using a link to connect fermions at di↵erent sites in (4.49)

SF = a4
X

n


1

2a

X

µ

⌘µ(n)�̄n(Uµ(n)�n+µ̂ � U †
µ(n� µ̂)�n�µ̂) +m�̄n�n

�
. (4.54)

Using the fact that the fermions transform under a gauge transformation according to �n !
G(n)�n, �̄n ! �̄nG�1(n), the action in (4.54) is shown to be gauge-invariant. Expressing

the link variable Uµ, in terms of the gauge potential Aµ, and expanding, one obtains the

following interaction term

Sint = a4
(�ie)

2

X

n

X

µ

⌘µ(n) (�̄nAµ(n)�n+µ̂ � �̄nAµ(n� µ̂)�n�µ̂) + . . . , (4.55)

where vertices of higher order in a were neglected. One can verify that (4.55) reduces to

the correct form in the naive continuum limit.

In the preceeding discussion, the naive continuum limit, a ! 0, has often been referred

to. However, this limit is a bit more subtle. Namely, as one goes towards the continuum, one

must vary the bare parameters of the theory such that physical observables are independent

of a. This implies that our bare parameters are, in fact, complicated functions of the lattice
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spacing g(a), m(a), vF (a), etc. In the case of QCD with massless quarks, this dependence

is well understood. The “running” of the gauge coupling constant is encapsulated by the

beta function

�(g) ⌘ � @g

@ log a
= ��0g3 � �1g

5 +O(g7),

�0 =
1

(4⇡)2

✓
11

3
Nc �

2

3
nf

◆
, (4.56)

�1 =
1

(4⇡)4

✓
34

3
N2

c � 10

3
Ncnf � N2

c � 1

Nc
nf

◆
,

where Nc = 3. After integrating the above equation and then inverting, one obtains the

running coupling

g(a)�2 = �0 log
�
a�2⇤�2

L

�
+
�1
�0

log
�
log
�
a�2⇤�2

L

��
+O

�
1/ log

�
a�2⇤�2

L

��
. (4.57)

From the above discussion it is quite clear that as one pushes � ! 1, one obtains the

true continuum limit, a ! 0. In practice one chooses several values of � which give several

values of a. Keeping the physical volume constant, L = aNs, T = aN⌧ , one can observe the

lattice spacing dependence of physical observables and extrapolate them to the continuum.

4.3 Discretizing the Graphene EFT
Using the formalism and techniques introduced in the preceeding section, one can obtain

a discretization of the graphene EFT. Under the assumption that we are only working with

a Coulombic interaction characterized by the scalar potential A0, on the lattice one sets the

spatial links to unity, Ui(n) = 1. Doing so gives an action for the temporal links, U0(n),

given by

SG =
1

e2

X

n

3X

i=1

h
1� ReU (p)

i (n)
i
, U (p)

i (n) = U0(n)U
†
0(n+ î), (4.58)

where this formulation of the U(1) gauge action is referred to as the compact formulation.

This is due to the fact that the integration in the measure of the path integral is done over

a compact group manifold parametrized by an angular variable taking values in the range

[0, 2⇡]. This formulation has been shown to lead to an unwanted bulk phase transition as

a function of the coupling [62], and thus one can alternatively work with the noncompact

version. This is obtained by expanding the links in terms of the real-valued potential up to

quadratic order

S(NC)
G = a3sat

�

2

X

n

3X

i=1

1

a2s

⇣
✓(n)� ✓(n+ î)

⌘2
, (4.59)



36

where � ⌘ 1/e2 and one has introduced a lattice spacing in the spatial direction, as, as well

as in the temporal direction, at. Noting that the potential, ✓, has engineering dimension of

1, one can define a dimensionless field, ✓̂(n) ⌘ at✓(n). One then obtains the following

S(NC)
G =

as
at

�

2

X

n

3X

i=1

⇣
✓̂(n)� ✓̂(n+ î)

⌘2
, (4.60)

where the combination ⇠ ⌘ a
s

a
t

, known as the anisotropy parameter, appears in the action.

Using the staggered fermion formulation, one can discretize the fermionic contribution

to the continuum graphene EFT as given in (2.1). One thus obtains

SF = a2sat
X

n


1

2at
�̄n

⇣
U0(n)�n+0̂ � U †

0(n� 0̂)�n�0̂

⌘
+

1

2as
vF
X

i=1,2

⌘i(n)�̄n

�
�n+î � �n�î

�
+m�̄n�n

�
. (4.61)

The fermion fields have engineering dimension 1, and thus one can define dimensionless

fields, �̂n, ˆ̄�n ⌘ as�n, as�̄n. One then can write the fermion action as

SF =
X

n


1

2
ˆ̄�n

⇣
U0(n)�̂n+0̂ � U †

0(n� 0̂)�̂n�0̂

⌘
+

vF
2⇠

X

i=1,2

⌘i(n) ˆ̄�n

�
�̂n+î � �̂n�î

�
+m ˆ̄�n�̂n

�
, (4.62)

where it is clear that the combination vF /⇠ controls the anisotropy between the spatial and

temporal directions. Previous lattice studies have chosen ⇠ = vF [19, 20], which removes the

Fermi velocity from the action by choosing a large lattice spacing in the temporal direction.

In (2 + 1)-dimensions, each species of staggered fermions describes two identical, four-

component Dirac fermions. In the staggered fermion literature, this degree of freedom is

referred to as “taste”. Thus, the doublers have been reduced from 8 to 2 while still preserving

a remnant chiral symmetry. In LQCD simulations, one typically attempts to eliminate this

degree of freedom and simulate one staggered fermion species for each physical quark flavor

[63]. In the case of graphene, however, this taste degeneracy is a desirable feature, as one

is attempting to describe two identical massless Dirac species. The taste degree of freedom

becomes more apparent when one performs a change of basis on the one-component fields

within a cube

u↵a(y) =
1

4
p
2

X

⌘

�↵a⌘ �⌘(y), (4.63)

d↵a(y) =
1

4
p
2

X

⌘

B↵a
⌘ �⌘(y), (4.64)
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where one has introduced the operators

�⌘ ⌘ �⌘00 �
⌘1
1 �

⌘2
2 , B⌘ ⌘ �⌘00 �

⌘1
1 �

⌘2
2 , �µ ⌘ ��µ. (4.65)

In the transformations in (4.63) and (4.64), one notes that both irreducible representations of

the Cli↵ord algebra appear [64]. Furthermore, one now labels a lattice site by nµ = 2yµ+⌘µ,

where yµ is an integer that labels the corner of the cube, and ⌘µ = 0, 1 labels the sites within

the cube An analogous expression can be constructed for the transformation of �̄n. One

can invert the relations in (4.63) and (4.64) to obtain

�⌘(y) =
p
2
X

↵,a

(�⇤↵a⌘ u↵a(y) +B⇤↵a
⌘ d↵a(y)), (4.66)

�̄⌘(y) =
p
2
X

↵,a

(ū↵a(y)�↵a⌘ + d̄↵a(y)B↵a
⌘ ),

where one has employed the identity Tr (�†⌘�⌘0 +B†
⌘B⌘0) = 4�⌘⌘0 . Using the relation in

(4.54), one can rewrite the (2 + 1)-dimensional staggered action. For example, the mass

term becomes

a3m
X

y,⌘

�̄⌘(y)�⌘(y) = (2a)3m
X

y

✓
ū(y)(1⌦ 1)u(y) + d̄(y)(1⌦ 1)d(y)

◆
, (4.67)

where one has used the following identities

X

⌘

�↵a⌘ �
⇤�b
⌘ =

X

⌘

B↵a
⌘ B⇤�b

⌘ = 4�↵��ab, (4.68)

X

⌘

�↵a⌘ B⇤�b
⌘ = 0. (4.69)

The matrix structure in (4.67) represents the tensoring of the spin space with the taste

space, both of which are two-dimensional. Rewriting the kinetic term is a bit more di�cult.

One first expresses the shifted field as

�⌘+µ̂(y) = �⌘
µ

,0⌘µ(⌘)
p
2Tr

✓
�†⌘�µu(y) +B†

⌘�µd(y)

◆
(4.70)

+�⌘
µ

,1⌘µ(⌘)
p
2Tr

✓
�†⌘�µu(y + µ̂) +B†

⌘�µd(y + µ̂)

◆
,

where one uses the fact that �⌘±µ̂ = ⌘µ(⌘)�µ�⌘ andB⌘±µ̂ = ⌘µ(⌘)�µB⌘. A similar expression

can be written for the backwards-shifted field, �⌘�µ̂(y). Putting these expressions into
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the kinetic term and proceeding exactly as in [65], one obtains the following form of the

staggered action

Sst = (2a)3
X

y,µ

⇢
ū(y)(�µ ⌦ 1)@µu(y) + d̄(y)(�µ ⌦ 1)@µd(y)

+a[ū(y)(1⌦ �Tµ )@
2
µd(y) + d̄(y)(1⌦ �Tµ )@

2
µu(y)]

�

+(2a)3m
X

y

[ū(y)(1⌦ 1)u(y) + d̄(y)(1⌦ 1)d(y)], (4.71)

where �Tµ refers to the transpose, and derivative operators now act on a lattice of spacing

2a

@µq(y) ⌘ 1

4a
[q(y + µ̂)� q(y � µ̂)], (4.72)

@2µq(y) ⌘ 1

4a2
[q(y + µ̂)� 2q(y) + q(y � µ̂)]. (4.73)

The spin-taste basis shows that we have two copies of fermions which have two tastes as

well as two spin degrees of freedom. Referring back to the arrangement of the origional

graphene degrees of freedom in the construction of the four-component spinor (1.28), one

can see that the ”taste” degree of freedom is associated with the electron’s spin. One can

further elucidate the contents of the theory by bundling the two copies into a single field.

Namely, one defines the four-component Dirac spinor

 (y) =

✓
u(y)
d(y)

◆
. (4.74)

Using the reducible set of four-dimensional gamma matrices in (2.2) and (2.3), one can

write the staggered action in the spin-taste basis in the following compact form

Sst = (2a)3
X

y,µ

⇢
 ̄(y)(�̃µ ⌦ 1)@µ (y) + a ̄(y)(�̃5 ⌦ �Tµ )@

2
µ (y)

�

+(2a)3m
X

y

 ̄(y)(1⌦ 1) (y). (4.75)

One notices that the second derivative term in (4.75), which is suppressed by a factor of

the lattice spacing, is not invariant under a unitary rotation in taste space. Thus, one

expects that at finite lattice spacing, the taste symmetry of staggered fermions is broken

by contributions of O(a).

One would like to know which, if any, continuum symmetries are inherited by (4.62). In

the lattice theory, only a residual U(1)⌦ U(1)✏ of the original U(4) symmetry, as decribed
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by (2.5) and (2.6), remains at zero mass. Using the one-component form of the action in

(4.61), these symmetry operations are given by

�(x) ! exp(i↵)�(x), �̄(x) ! �̄(x) exp(�i↵), (4.76)

�(x) ! exp(i�✏(x))�(x), �̄(x) ! �̄(x) exp(i�✏(x)), (4.77)

where ✏(x) ⌘ (�1)x0+x1+x2 . In terms of the fields u and d, these become

✓
u
d

◆
! exp(i↵)

✓
u
d

◆
,

�
ū d̄

�
!
�
ū d̄

�
exp(�i↵), (4.78)

✓
u
d

◆
!
✓

cos(�) i sin(�)
i sin(�) cos(�)

◆✓
u
d

◆
,

�
ū d̄

�
!
�
ū d̄

�✓ cos(�) i sin(�)
i sin(�) cos(�)

◆
. (4.79)

Thus, in the lattice theory, the formation of a nonzero value for the condensate, h ̄ i,
breaks U(1)✏ and leads to the appearance of a single Goldstone boson.

One should also comment on discrete symmetries in (2+1) dimensions. In the continuum,

one can define time-reversal as the following transformation on the fermion fields

 (t, ~x) ! �i�̃5�1�2 (�t, ~x), (4.80)

 ̄(t, ~x) ! �i ̄(�t, ~x)�2�1�̃5. (4.81)

One can check that this leaves the contimuum Dirac Lagrangian in (2.1) invariant, which

follows from {�0, �̃4�1�2} = 0 and [�i, �̃4�1�2] = 0, i = 1, 2.

Before continuing, one should note the di↵erences between Euclidean and Minskowski

space with respect to time-reversal. In Minskowski space, for a fermion bilinear of the form

 ̄� , due to the fact that time reversal, T , is an antiunitary operator

 ̄� !
�
T  ̄T �1

�
�⇤
�
T  T �1

�
. (4.82)

However, in Euclidean space, time is not distiguished from spatial coordinates by a relative

minus sign in the metric. The consequence is that, for example in (3 + 1) dimensions,

time-reversal can be defined by the product of three successive reflection operations

 (x) ! �µ (Pµ(x)),

 ̄(x) !  ̄(Pµ(x))�µ, (4.83)

where Pµ(x) reverses the sign of all components except xµ. Thus, the Euclidean equivalent

of time-reversal can be represented by P1P2P3. The situation is a bit di↵erent in (2 + 1)
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dimensions, as (4.80) and (4.81) illustrate. This is due to the fact that two successive

reflections about the spatial axes leaves the time coordinate invariant.

Regarding the spinor indices as a row index and the taste indices as a column index,

one can project from spin-taste basis to the single-component basis in the following way

�⌘(y) =
p
2Tr

⇢⇣
�†⌘, B†

⌘

⌘✓ u(y)
d(y)

◆�
. (4.84)

Examining the continuum form of time-reversal in (2 + 1) dimensions given in (4.80) and

(4.81), one supposes that it acts in the same way on the four-component spinor in (4.74)

 (y0, ~y) ! �̃5�1�2 (�y0, ~y), (4.85)

=

✓
0 i�0

�i�0 0

◆✓
u(�y0, ~y)
d(�y0, ~y)

◆
,

=

✓
i�0d(�y0, ~y)
�i�0u(�y0, ~y)

◆
. (4.86)

To project back to the one-component basis, one takes the trace with
⇣
�†⌘, B†

⌘

⌘
. This

involves evaluating the following expression

Tr
⇣
�†⌘�0B⌘0 �B†

⌘�0�⌘0
⌘
. (4.87)

The result is nonzero only when ⌘0 = ⌘00±1 and ⌘i = ⌘0i, i = 1, 2. Here the ”+” corresponds

to ⌘0 = 0 and the ”�” corresponds to ⌘0 = 1. This gives

Tr
⇣
�†⌘�0B⌘0 �B†

⌘�0�⌘0
⌘

= 2(�)⌘0+⌘1+⌘2 Tr
⇣
�⌘22 �

⌘1
1 �

⌘01
1 �

⌘02
2

⌘
,

= 4(�)⌘0+⌘1+⌘2 . (4.88)

One thus obtains the following tranformation on the one-component spinor

�⌘(y0, ~y) ! i(�)⌘0+⌘1+⌘2�⌘̃(�y0, ~y), (4.89)

where ⌘̃ = (⌘0 ± 1, ⌘1, ⌘2). This time-reversal operation is intuitive in that it changes ⌘0

while keeping ⌘1 and ⌘2 fixed.

Parity in two spatial directions reverses only one of the spatial coordinates, as reversing

both would be equivalent to a rotation by ⇡ in the x � y plane. In the continuum, parity

operates on the fermion fields as follows

 (x, y, t) ! i�̃4�1 (�x, y, t), (4.90)

 ̄(x, y, t) !  ̄(�x, y, t)i�̃4�1. (4.91)

One can verify that this transformation also leaves (2.1) invariant as

[�̃4�1, �2] = [�̃4�1, �0] = 0. With respect to the original honeycomb lattice of graphene,
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this is related to the symmetry between the A and B sublattices. As shown above for

time-reversal, this induces a transformation on the staggered fermion fields in the spin-taste

basis

 (y0, y1, y2) ! i�̃4�1 (y0,�y1, y2), (4.92)

=

✓
0 �i�1
i�1 0

◆✓
u(y0,�y1, y2)
d(y0,�y1, y2)

◆
,

=

✓
�i�1d(y0,�y1, y2)
i�1u(y0,�y1, y2)

◆
. (4.93)

One follows the same procedure to project back to the one-component basis

Tr
⇣
B†
⌘�1�⌘0 � �†⌘�0B⌘0

⌘
. (4.94)

The result is nonzero only when ⌘1 = ⌘01±1 and ⌘i = ⌘0i, i = 0, 2. Here the ”+” corresponds

to ⌘1 = 0 and the ”�” corresponds to ⌘1 = 1. This gives

Tr
⇣
B†
⌘�1�⌘0 � �†⌘�1B⌘0

⌘
= 4(�)⌘1

One thus obtains the following tranformation on the one-component spinor

�⌘(y0,�y1, y2) ! (�)⌘1�⌘̃(y0,�y1, y2), (4.95)

where ⌘̃ = (⌘0, ⌘1 ± 1, ⌘2). It is known that a two-component massive spinor violates parity

in (2 + 1) dimensions [66], but the mass term in the lattice action (4.75) is invariant with

respect to this transformation due to the fact that it has four components.

4.3.1 Improved Lattice Action

Based on the discussion above, one sees that staggered fermions are cheap to simulate

(one-component in spin space, see (4.49)) and contain a remnant of chiral symmetry.

However, particularly in LQCD simulations, the violation of taste symmetry at finite lattice

spacing is troubling. For example, even on a fine lattice (0.05 fm), the splitting of the masses

of the pion taste-multiplet is O(100 MeV), which is close to the physical pion mass [67].

It was realized that taste violations occur due to the exchange of gluons with momentum

components that were on the order of the cuto↵, ⇡/a [68]. Thus, suppresssing the coupling

of the fermions to these modes should reduce taste violations [69].

Couplings to the high-momentum gauge fields are eliminated by a process of link “fatten-

ing”. This entails replacing the link, Uµ(n), used in parallel transport, with an appropriately
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weighted sum of paths connecting the sites n and n+ µ̂. The simplest of these paths is the

three-link staple which is given by

Uf3
µ (n) = a2

X

⌫ 6=µ

�l
⌫Uµ(n), (4.96)

where the fattening is performed by a Laplacian operator that acts on the link in the

following way:

�l
⌫Uµ(n) =

1

a2

h
U⌫(n)Uµ(n+ ⌫̂)U †

⌫ (n+ µ̂) + U †
⌫ (n� ⌫̂)Uµ(n� ⌫̂)U⌫(n� ⌫̂ + µ̂)

i
. (4.97)

By expanding the link variable in terms of the gauge potential Aµ, one can see that in

momentum space the fattening results in

Aµ(p) !
X

⌫ 6=µ

(2Aµ(p) [cos(p̂⌫)� 1] + 4 sin(p̂µ/2) sin(p̂⌫/2)Aµ(p)) . (4.98)

One can see that by making the replacement Uµ(n) ! c1Uµ(n) + c3U
f3
µ (n), with an

appropriate choice of the coe�cients c1 and c3, the coupling to photons with one momentum

component, p̂⌫ = ⇡ (one only needs to consider transverse components), can be eliminated.

This program can be extended to include a five-link staple, a seven-link staple, and an

additional five-link staple, known as the Lepage term, which corrects for the low-momentum,

O(a2) discretization errors introduced by the staples [70]. These terms are depicted in

Fig. 4.1. For complete O(a2) improvement, one must also improve the free staggered fermion

dispersion relation. This is done with the introduction of the so-called Naik term [71], which

is given by a third-nearest-neighbor coupling

@µ�(n) ! c̃1@
(f)
µ �(n) + cN

1

a
[Uµ(n)Uµ(n+ µ̂)Uµ(n+ 2µ̂)�(n+ 3µ̂)

�U †
µ(n� µ̂)U †

µ(n� 2µ̂)U †
µ(n� 3µ̂)�(n� 3µ̂)], (4.99)

where @(f)µ �(n) ⌘ 1
2a

⇣
U (f)
µ (n)�(n+ µ̂)� U (f)†

µ (n� µ̂)�(n� µ̂)
⌘

is the nearest-neighbor

term written in terms of the fat link U (f)
µ (n), which is a a weighted sum of the above-

mentioned staples. Finally, one has an action that is free of O(a2) discretization errors. The

choice of the coe�cients is determined by a system of equations which fixes the coupling to

the zero-momentum photons to one, the coupling to the high-momentum photons to zero,

and takes into account the introduction of the Lepage term as well as an appropriate choice

of c̃1 and cN to get the desired improvement of the free fermion dispersion relation. Noting

that the gauge group does not enter in the choice of the coe�cients and that the gauge field

in the graphene EFT lives in (3 + 1)-dimensions, the set of coe�cients chosen for LQCD

can be carried over to the graphene EFT.
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Figure 4.1. A pictorial representation of the links composing the asqtad improved
staggered Dirac operator. The first row shows the ”fat” links connecting site n with site
n+µ̂ (from left): single link, three-link staple, five-link staple, seven-link staple, and Lepage
term. The second row depicts the Naik term, which connects site n with site n+ 3µ̂.

Another way one can improve the staggered fermion action is to introduce the so-called

tadpole improvement [72]. This program is based on the observation that in lattice pertur-

bation theory, there are new vertices, not present in continuum perturbation theory, which

are suppressed by powers of the lattice spacing. This can be seen by expanding the link

variable

Uµ(n) = 1 + iagAµ(n)� a2g2Aµ(n)
2/2 + . . . (4.100)

These new lattice vertices, however, lead to UV divergent diagrams whose divergences are

cancelled by the lattice spacing dependence of the vertex. The result is that this class of

diagrams are not as small as one would hope as they contain factors of only the coupling

and not the lattice spacing. In the graphene EFT, one defines the tadpole factor, u0, in the

following way

u0 =
⇣
hU (p)i

⌘1/2
, (4.101)

where hU (p)i is the expectation value of the average of the space-time-oriented plaquette.

Tadpole improvement, then, consists of dividing all links by the tadpole factor. Thus, each

term in the O(a2)-improved fermion faction receives a factor of 1/uLt

0 , where Lt is the length

of the path in the temporal direction. This program has resulted in what is known as the

improved asqtad action.

In continuum gauge field theory, it is necessary to fix the gauge in order to obtain the

correct form for the gauge field propagator. This is done with the use of the Faddeev-Popov
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procedure [8]. On the lattice, however, there are finite degrees of freedom and thus gauge

fixing is not necessary when sampling the path integral. However, when calculating charged

propagators it is necessary to impose charge neutrality. This is done in the noncompact

formulation by imposing the condition

X

~n

✓(n0,~n) = 0, (4.102)

which is the requirement that the average gauge potential on a time-slice be zero. The

gauge condition (4.102) corresponds to a charged propagator moving in the background of

a spatially uniform background charge of opposite sign. This gauge-fixing procedure will

be necessary when one attempts to study the charged fermionic excitations of the system,

which are sensitive to the spontaneous breaking of the U(1)✏ symmetry.



CHAPTER 5

MONTE CARLO METHODS

The numerical sampling of the Feynman path integral is a long standing and challenging

problem in statistical physics and LQCD. Techniques and tools have been developed and

refined to deal with this problem, and go under the name of Monte Carlo methods. In this

chapter, the general principles and techniques are introduced, followed by the particulars

of the algorithms used to obtain the results of this thesis.

5.1 Introduction to Monte Carlo
The Euclidean Feynman path integral has a strong connection with the partition function

of a statistical system. This is clear from the expression for Z, as well as the calculation of

observables given by the expression in (4.12). For the results in this thesis, in particular,

one is interested in the evaluation of

hOi =
R
D [Uµ]Oe�S

eff

R
D [Uµ] e�S

eff

, (5.1)

where O is a generic observable constructed from the fields appearing in the lattice action

and the integration over the fermions has been performed, yielding

Seff ⌘ SG � Tr log [ 6D +m] . (5.2)

Although one would like a way to evaluate these correlation functions, even the most modest

volume would resist direct attempts at evaluation by today’s most powerful supercomputers.

The solution is importance sampling, whereby one samples the most important configura-

tions determined by the weight, which is proportional to e�S
E . By doing so in a manner

that is faithful, one would hope that by generating a sequence of Nconf link configurations

{U (i)
µ (n), i = 1, 2, . . . , Nconf}, the observable could be estimated by a simple average

hOi ⇡ 1

Nconf

N
confX

i=1

O(i). (5.3)
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One needs a way to construct such a sequence of configurations following the probability

distribution

P (U) =
e�S[U ]D[U ]R
D[U ]e�S[U ]

. (5.4)

The solution is a Markov process whereby one starts from a random configuration and

constructs a stochastic sequence of configurations that converges to (5.4). Markov chains

are characterized by a conditional transition probability

0  W (U ! U 0)  1, (5.5)
X

U 0

W (U ! U 0) = 1, (5.6)

where W (U ! U 0) represents the probability of a transition from one gauge configuration

{Uµ(x)}, to another {Uµ(x)0}. These probabilities have the Markov property in that

they only depend on U and U 0 and not on their position in the sequence of generated

configurations. One hopes that for well-chosen transition probabilities, the system reaches

equilibrium. For this to happen, one needs the probability entering a state to be equal to

the probability leaving that state

X

U 0

P (U 0)W (U 0 ! U) =
X

U 0

P (U)W (U ! U 0). (5.7)

Typically, one demands that the conditional transition probabilities satisfy this relation

term by term

P (U 0)P (U 0 ! U) = P (U)P (U ! U 0). (5.8)

This relation is known as detailed balance and is a su�cient condition for the Markov chain

to converge to the desired equilibrium distribution. In practice, when equilibrating from a

given initial gauge configuration, one determines if the distribution is close enough to the

equilibrium distribution by monitoring certain observables and correlations in simulation

time. In this thesis, the calculations monitor the Monte Carlo time histories of both the

average value of the space-time-oriented plaquette, hUpi, as well as the chiral condensate,

h ̄ i, in order to determine equilibrium as shown in Fig. 5.1 and Fig. 5.2. One must also

demand that the Markov chain can access any configuration in a finite number of steps.

This property is known as ergodicity and is an important consideration in the choice of

algorithm for a lattice simulation
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Figure 5.1. Time history of the space-time-oriented plaquette for lattice ensemble
82 ⇥ 10 ⇥ 120, � = 0.80, m = 0.05, �B = 0.125. Starting from a “cold” lattice where
all links are set to unity, one can see the value of the plaquette equilibrate at O(200)
trajectories. Note that the tadpole factor, u0, has been determined self-consistently from
the first 100 trajectories where the plaquette was measured after every trajectory.

It is convenient to express the transition probability W (U ! U 0) as a product of the

probability to propose a new configuration, Q(U ! U 0), with the probability to accept that

new configuration A(U ! U 0)

W (U ! U 0) = Q(U ! U 0)A(U ! U 0). (5.9)

Most algorithms demand that the function Q be symmetric, Q(U ! U 0) = Q(U 0 ! U).

This means that there is equal probability to propose U starting from U 0 as there is to

propose U 0 starting from U . In terms of these quantities, detailed balance becomes

P (U 0)A(U 0 ! U) = P (U)A(U ! U 0). (5.10)

A popular and widely used algorithm makes the following choice for the acceptance proba-

bility [73]:

A(U ! U 0) = min
�
1, e��S

�
, �S ⌘ S[U 0]� S[U ]. (5.11)

This is commonly known as a Metropolis step. One can easily verify that this satisfies

detailed balance by direct substitution into (5.10). Although it is straightforward to im-

plement the Metropolis approach for a gauge theory such as the one defined in (4.60) and
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Figure 5.2. Time history of the chiral condensate, � ⌘ h ̄ i, for lattice ensemble
82 ⇥ 10⇥ 120, � = 0.80, m = 0.05, �B = 0.125. One can also see the value of � equilibrate
at O(200) trajectories. The condensate has been measured every trajectory during the first
100 trajectories and every 10 trajectories afterwards. The discontinuity in the Monte Carlo
history that appears at a time of 100 is due to the introduction of the tadpole factor u0
calculated from trajectories 60� 100.

(4.62), where a given link appears only in a small number of terms in the action, more

sophisticated methods are needed to obtain high-quality results.

5.2 Hybrid Molecular Dynamics
Another solution in obtaining the desired Boltzmann distribution borrows ideas from

classical mechanics. Namely, one introduces a fictitious momentum conjugate to the gauge

field and integrates Hamilton’s equations to obtain the desired distribution. This type of

algorithm and its variants go under the name of molecular dynamics (MD) [74, 75]. One

considers the Hamiltonian defined by

HMD(p, U) =
1

2

X

n

p2n + Seff [U ], (5.12)

where Seff is the action defined in (5.2) and pn is a real momentum, living at site n, which is

canonically conjugate to the U(1) gauge link in the temporal direction, U0(n). The classical

partition function corresponding to (5.12) takes the following form

ZMD =

Z
D[p]D[U ]e�H

MD , (5.13)



49

where the integral over momenta is Gaussian, and thus adds a constant factor out in

front of the original lattice partition function. With this in mind, (5.13) can be used

to compute observables in the quantum theory. The trajectory that the gauge field and

its momentum take in their evolution in ”molecular dynamics time” is determined by the

following equations of motion

✓̇(n) ⌘ d✓(n)

d⌧
= pn, (5.14)

ṗn ⌘ dpn
d⌧

=
@Seff

@✓(n)
, (5.15)

where ⌧ refers to MD time. One can see that the term on the right hand side of (5.15)

resembles a ”force”, in analogy with classical mechanics. One can easily compute the

derivative with respect to ✓(n) of the gauge action in (4.60)

@S(NC)
G

@✓(n)
= �

X

i

⇣
2✓(n)� ✓(n+ î)� ✓(n� î)

⌘
. (5.16)

This is referred to as the ”gauge force” for the noncompact U(1) action. In order to obtain

the “fermion force” coming from the determinant of the Dirac operator, one needs to use a

fair amount of caution. This, along with the issue of how to properly integrate the equations

of motion, will be the subject of the following section.

5.3 �-Algorithm for Graphene EFT
Formally, the path integral of the discretized graphene EFT can be written as

Z =

Z
D[U ]e�S

G detM(U), (5.17)

where M ⌘ 6Dst +m. The unimproved staggered Dirac operator can be written in position

space as

( 6Dst)x,y =
1

2

X

µ

⌘µ(x)(Uµ(x)�y,x+µ̂ � U †
µ(x� µ̂)�y,x�µ̂). (5.18)

Any discussion of how to perform calculations involving dynamical staggered fermions

necessitates a discussion of the spectrum of the staggered Dirac operator. One takes note

that all lattice Dirac operators have the property of ”�5-hermiticity”, which translates to

6D† = �5 6D�5. (5.19)

It can be shown that this property leads to all complex eigenvalues of the Dirac operator,

�i, being paired

6D i = �i i, 6D (�5 i) = �⇤i (�5 i) , (5.20)
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where both  i and �5 i are eigenstates of the Dirac operator. It turns out that the staggered

Dirac operator is antihermitian, which thus implies that all of its eigenvalues are purely

imaginary. This property, coupled with �5-hermiticity leads to the following expression for

the determinant in (5.17)

detM(U) = m⌫
Y

pairs

�
�2i +m2

�
, (5.21)

where ⌫ represents the number of zero modes and the product is over eigenvalue pairs.

This expression demonstrates that the determinant is real and positive definite (for nonzero

mass), thus allowing (5.2) to be interpreted as a probability distribution. The next step in

dealing with the determinant is to note the following identity:

detM(U) =

Z
D[�†,�]e��†M�1�, (5.22)

where �†, � are complex bosonic fields living at each lattice site and commonly referred to

as “pseudofermion” fields. To reproduce the product of paired eigenvalues one first doubles

the degrees of freedom by writing

Z =

Z
D[U ]D[�†,�]e�(SG

+�†(M†M)�1�), (5.23)

where one uses the relation det( 6D† 6D) = [det( 6D)]2. Looking at the form of the staggered

Dirac operator in (5.18), one takes note that it only couples even lattice sites to odd lattice

sites and vice versa. This also holds true for the improved staggered Dirac operator in

the asqtad action. This even-odd property can be exploited as M †M decouples even and

odd sites and thus one can obtain the correct expression for the determinant by restricting

the pseudofermion fields to even or odd sites. One can readily generate a pseudofermion

field with the correct distribution by first generating a random complex Gaussian field ⌦,

and acting on it with M †. The algorithm used to generate the results of this thesis uses a

variant of the so-called �-algorithm [76]. In this approach, at the beginning of each MD

trajectory, one generates a vector � and then proceeds to integrate the equations of motion

for specified length, ⌧ = Ns✏, where ✏ is the integration step size and Ns is the number of

steps in the trajectory. The trajectory is typically taken to be unity and the step size is

varied in order to achieve the desired acceptance ratio for the Metropolis step.

5.3.1 Fermion Force

One now needs to address the fermion force, which is computed using the term in the

exponent of (5.23) involving the pseudofermion fields. One thus computes
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F (F )
n = ��† @

@✓(n)

⇣
M †M

⌘�1
�,

= �†
⇣
M †M

⌘�1 @
�
M †M

�

@✓(n)

⇣
M †M

⌘�1
�, (5.24)

where the computation of the fermion force involves the inversion of M †M , as opposed to

M . This is a much easier task as M †M is hermitian and positive definite. This allows one

to employ iterative methods such as the conjugate gradient (CG) algorithm which is used

in this thesis. Making the following definition:

Pi,j = XiX
⇤
j , X ⌘

⇣
M †M

⌘�1
�, (5.25)

where i, j label the lattice sites, one can write the force as

F (F )
n = Tr


U0(n)MP

@M †

@U0(n)
+ U0(n)PM † @M

@U0(n)
+ c.c

�
, (5.26)

where the trace operation is over spatial indices and one has traded derivatives with respect

to the potentials for derivatives with respect to the U(1)-valued links U0(n) and their

complex conjugates, U †
0(n). This is convenient because the staggered Dirac operator is

written in terms of the compact link variables as seen in (4.62). Computing the derivatives

of the asqtad Dirac operator with respect to the links is a formidable task as U0(n) can

appear in several places in both the fat- and long-link terms. To get an idea what one must

do to compute the fermion force for improved staggered actions, one can start by examining

the form it takes for the one-link unimproved staggered action. For this action the fermion

force takes the form

F (F )
n = �2U0(n)Im

2

4
X

⌫

U⌫(n+ 0̂)Pj+0̂+⌫̂,j �
X

⌫ 6=µ

U †
⌫ (n+ 0̂� ⌫̂)Pj+0̂�⌫̂,j

3

5 , (5.27)

on even sites and

F (F )
n = �2U0(n)Im

2

4
X

⌫

U⌫(n� ⌫̂)Pj+0̂,j�⌫̂ �
X

⌫ 6=µ

U †
⌫ (n)Pj+0̂,j+⌫̂

3

5 , (5.28)

on odd sites. In this expression, one has chosen � to reside only on even sites and the

staggered phases, ⌘µ(n), have been absorbed into the links. Notice that the above expression

contains links in the spatial directions. However, they do not have conjugate momenta

associated with them as they are not dynamical. The terms for both even and odd sites
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represent propagation of the fermions coupled with parallel transport between source and

sink to enforce gauge invariance. This can be seen by noting the identity

hPi,ji⌦ =
⇣
M †M

⌘�1

i,j
, (5.29)

where the average is over the Gaussian distribution for the complex random vectors ⌦.

Improved actions will involve contributions to the fermion force from terms where U0(n)

appears on the “sides” of a staple as well as from staples in the 0̂ direction. As one can

imagine based on the discussion above, the fermion force constitutes a major part of any

MD simulation involving dynamical fermions.

5.3.2 Integration Scheme

Integration of the first-order equations of motion is necessary to determine the trajectory

in phase space, given a starting configuration {p(0)n , U (0)
0 (n)}. One of the main requirements

one imposes on the chosen integration scheme is that it is invariant under a reversal of

molecular dynamics time. This is a consequence of requiring that the transition function,

Q(U ! U 0), be symmetric in its arguments. The integration scheme used in this thesis is

defined by the following equations

✓(i�1/2)(n) = ✓(i�1)(n) +
✏

2
p(i�1)
n ,

p(i)n = p(i�1)
n + ✏F (i�1/2)

n , (5.30)

✓(i)(n) = ✓(i�1/2)(n) +
✏

2
p(i�1)
n ,

where superscript labels the MD time, ⌧i = i✏, i = 1, . . . , Ns, with ✏ the time step. Notice

that (5.30) is written in terms of the potentials, which can then be exponentiated to

determine the U(1) links. This method is known as the leapfrog integration scheme and is

known to have discretization errors O(✏2).

In order to obtain accurate sampling of the path integral, one must either extrapo-

late observables to zero step size or correct for the discretization errors by introducing

an accept/reject step at the end of each trajectory. The latter property, along with a

refreshing of the momentum after each each trajectory, defines a class of algorithms known

as hybrid Monte Carlo (HMC) [77, 78]. Returning to the decomposition of the conditional

probabilities in (5.9), one identifies the MD trajectory with Q(U ! U 0) and the acceptance

probability, A(U ! U 0), with that of the Metropolis algorithm.



CHAPTER 6

COMPUTATION OF OBSERVABLES

Once the gauge configurations have been produced using the methods discussed in the

previous chapter, one then sets out computing observables of interest in the Euclidean

field theory. The simplest such observable is the plaquette, UP , which one must use to

self-consistently determine the tadpole factor, u0. Other observables of interest to this

study consist of the fermionic condensates that develop when the graphene EFT is subject

to an external magnetic field. Also, one can explore the excitations of the system, the Dirac

quasiparticle as well as the pseudoscalar Goldstone mode, using standard techniques of

lattice gauge theory spectroscopy. Finally, one must attempt to accurately estimate errors

on the quantities computed.

6.1 Magnetic Field on a Torus
Although one would normally have translational invariance in the continuum graphene

EFT, in the presence of a magnetic field, this is not so [79]. For a translationally invariant

system, the operator T~R = ei
~R·~p, ~ = 1, generates translations

T~Rf(~r) = f(~r + ~R.) (6.1)

This operator commutes with the Hamiltonian, which is invariant under translations

T~RH(~r) (~r) = H(~r + ~R) (~r + ~R),

= H(~r)T~R (~r). (6.2)

The set of these translation operators forms a group which follows from the relations

T~RT~R0 = T~R+~R0 , (6.3)

T~RT�~R = 1. (6.4)

However, one sees that with a vector potential of the form (3.2), one will no longer have

translational invariance of the Hamiltonian as ~A(~r) 6= ~A(~r+ ~R). Since the magnetic field is
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uniform, the vector potential is linear in the coordinates and thus one can deduce that the

vector potential changes in the following way under translation

~A(~r + ~R) = ~A(~r) + ~r⇠(~r). (6.5)

One can confirm this relation by noting that Bẑ = ~rr ⇥ ~A(~r) = ~rr ⇥ ~A(~r + ~R). For

Landau gauge, one can verify that ⇠(~r) = ByRx, where Rx is the x-component of the

translation vector ~R. Using this, one can construct an operator that commutes with the

Hamiltonian. It is known as the magnetic translation operator, and is a combination of a

gauge transformation and the applicaiton of the usual translation operator defined above

T~R ⌘ eie⇠(~r)T~R. (6.6)

One can see that this operator commutes with the Hamiltonian in the presence of the

vector potential (3.2) (or any other gauge-equivalent vector potential) by using the following

relations

T~RH(~p+ e ~A(~r)) = H(~p+ e ~A(~r) + e~r⇠(~r))T~R, (6.7)

H(~p+ e ~A(~r) + e~r⇠(~r)) = e�ie⇠(~r)H(~p+ e ~A(~r))eie⇠(~r). (6.8)

It is interesting to note that these operators do not commute

T~RT~R0 = eieByR
xT~Re

ieByR0
xT~R0 ,

= eieByR
xeieBR0

x

(y+R
y

)T~RT~R0 ,

= eieBR0
x

R
yT~R+~R0 (6.9)

This relation has interesting consequences for lattice calculations which are performed on

a torus due to the periodic boundary conditions imposed on the U(1) link variables. One

imposes this periodicity with the magnetic translation operator

TL
x

x̂ (x, y) = eieBL
x

y (x+ Lx, y) =  (x, y), (6.10)

TL
y

ŷ (x, y) = eieBL
x

y (x, y + Ly) =  (x, y), (6.11)

where  (x, y) is an eigenstate of the Hamiltonian in the presence of the magnetic field.

From physical considerations, it is obvious that a wavefunction on the torus must satisfy

the following relation:

TL
x

x̂TL
y

ŷ (x, y) = TL
y

ŷTL
x

x̂ (x, y). (6.12)
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Using this in conjuction with the relation in (6.9), one obtains

TL
x

x̂TL
y

ŷ = eieBL
x

L
yTL

y

ŷTL
x

x̂. (6.13)

Thus, for toroidal boundary conditions, one is led to the quantization of the magnetic flux

eBLxLy = 2⇡NB, (6.14)

where NB is an integer. This requirement is equivalent to imposing that the total flux

through the xy-plane is an integral number of flux quanta. Furthermore, NB enumerates

the degeneracy of each Landau level on the torus [80]. In lattice calculations, one typically

restricts NB to the range [81]

0  NB  NxNy

4
, (6.15)

where Nx and Ny refer to the number of lattice sites in the x and y directions. The

representation of (3.2) on the lattice in terms of the spatial links is given by

Uy(n) = eia
2
s

eBn
x , (6.16)

Ux(n) =

⇢
1 , nx 6= Ns � 1

e�ia2
s

eBN
x

n
y , nx = Ns � 1

. (6.17)

One should note that these links are static, unlike the dynamical time-like links. Here static

refers to the fact that they are not changed during the Monte Carlo updating process.

6.2 Condensates
As discussed in previous chapters, the characterization of the ground state of the graphene

EFT in the presence of an external magnetic field involves the calculation of fermionic

condensates. On the lattice, these condensates can be estimated on each gauge configuration

using random stochastic vectors.

We first discuss the meaning of the chiral condensate in terms of the degrees of freedom

on the hexagonal lattice. The appearance of a nonzero value for the chiral condensate,

h ̄ i, signals the appearance of a Dirac mass in the low-energy theory. This term has the

form

�̃� ̄P� = �̃ †�0P� , (6.18)

which is a triplet with respect to SU(2)� which breaks down to U(1)� with the generator

�̃4,5 ⌦ P�. Notice that the mass above contains an extra spin label. In general, the order

parameters of the graphene EFT can depend on the spin projection. For staggered fermions,
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this spin label corresponds to taste. In this thesis, all of the condensates measured are taste

singlets and thus do not allow an investigation of the spin degree of freedom in the graphene

EFT. Written in terms of Bloch components, the operator in (6.18) can be expressed as

�̃� :  †
KA� KA� �  †

KB� KB� +  †
K0A� K0A� �  †

K0B� K0B�. (6.19)

One can interpret a nonzero value for this order parameter as an imbalance of charge

between the A and B sublattices, which corresponds to a charge density wave (CDW).

To calculate the condensate h ̄ i on the lattice, one first translates this expression

to staggered fermion language. It is not di�cult to see that in the spin-taste basis it

corresponds to the operator  ̄(y)(1⌦1) (y), and in one-component form, using (4.63) and

(4.64), one can verify that this becomes
X

⌘

�̄⌘(y)�⌘(y) in one-component form. Next one

employs the identity

h�̄�i =
@ logZ

@m
=

1

Z

Z
DUµTr

h
( 6Dst +m)�1

i
e�S

eff

[U ], (6.20)

= hTr
h
( 6Dst +m)�1

i
i. (6.21)

where Z is the lattice-staggered partition function and we have introduced the staggered

Dirac operator

( 6Dst)x,y =
X

µ

(U (F )
µ (x)�y,x+µ̂ + U (L)

µ (x)�y,x+3µ̂

� U (F )†
µ (x� µ̂)�y,x�µ̂ � U (L)†

µ (x� 3µ̂)�y,x�3µ̂), (6.22)

where U (F )
µ (x) refers to the fat links and U (L)

µ (x) refers to the long links. In the above

expression, the staggered phases ⌘µ(x) have been absorbed into the links. The trace in

(6.22) involves calculating the fermion propagator from a given lattice site back to the same

site and repeating this for every site on the lattice. Needless to say, for even very modest

volumes, a direct estimation of the condensate on a lattice ensemble is impractical. The

solution to this problem is to estimate the condensate stochastically. Namely, one introduces

complex, Gaussian-distributed numbers �i, which satisfy

h�i�
⇤
j i� = �ij , (6.23)

where i and j refer to lattice sites and the average is performed with the Gaussian distri-

bution of the �’s. The trace now can be evaluated as follows

Tr
h
( 6Dst +m)�1

i
=
X

i,j

( 6Dst +m)�1 �ij ⇡
1

Nv

N
vX

k=1

�(k)† ( 6Dst +m)�1 �(k), (6.24)

where one has replaced the integration over the Gaussian distribution with an average over

Nv random vectors drawn from the distribution. In this thesis, O(100) stochastic vectors are
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used to give an accurate estimation of the chiral condensate. The behavior of the ensemble

average of the condensate as a function of the number of stochastic vectors is shown in

Fig. 6.1. The stochastic estimate on a given gauge configuration has a variance associated

with it. The behavior of the standard deviation of the stochastic estimate of the chiral

condensate on a single configuration is plotted versus the number of stochastic vectors in

Fig. 6.2. The behavior of the variance as a function of the number of stochastic vectors can

be described by the following expression

�2N
v

=
�21
Nv

+ �2g , (6.25)

where �21 is the variance associated with a stochastic estimate that uses a single random

vector and �2g is the variance associated with the gauge fluctuations.

Another condensate which characterizes graphene in the presence of an external mag-

netic field is a time-reversal odd condensate which in the low-energy energy theory corre-

sponds to the Haldane mass term. This mass term has the following form:

�� ̄�̃4,5P� = �� 
†�0�̃4,5P� , (6.26)

which is a singlet with respect to SU(2)� but is odd under time-reversal. In terms of Bloch

components, it is given by

�� :  †
KA� KA� �  †

K0A� K0A� �  †
KB� KB� +  †

K0B� K0B�.

Thus, this order parameter can be seen to represent a charge imbalance between the two

valleys, K and K 0. To discuss the calculation of the Haldane condensate, one first considers

the following staggered operator

 ̄(y) (�̃4,5 ⌦ 1) (y) = ū(y) (1⌦ 1)u(y)� d̄(y) (1⌦ 1) d(y), (6.27)

where the four-dimensional Dirac spinor space is tensored with the two-dimensional taste

space. Using the transformations (4.63) and (4.64), one can obtain the one-component form

ū(y) (1⌦ 1)u(y) = ū↵a(y)u↵a(y) =

✓
1

4
p
2

◆2X

⌘,⌘0

�̄⌘(y)�⌘0(y) Tr
h
�†⌘�⌘0

i
. (6.28)

The second term on the right side of (6.27) can be written in way similar to (6.28)

d̄(y) (1⌦ 1) d(y) =

✓
1

4
p
2

◆2X

⌘,⌘0

�̄⌘(y)�⌘0(y) Tr
h
B†
⌘B⌘0

i
. (6.29)

Taking the di↵erence of (6.28) and (6.29) and employing the identity

Tr
h
�†⌘�⌘0 �B†

⌘B⌘0
i
=

⇢
4i, ⌘µ 6= ⌘0µ, 8µ
0, otherwise

, (6.30)
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Figure 6.1. Value of the condensate, � ⌘ h ̄ ̄i, as a function of the number of stochastic
vectors, Nv, for lattice ensemble 82 ⇥ 10 ⇥ 120,� = 0.80,m = 0.05,�B = 0.125 with 189
gauge configurations.
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Figure 6.2. Error in the mean for the stochastic estimation of the chiral condensate on a
single gauge configuration as a function of the number of stochastic vectors, Nv, for lattice
ensemble 82 ⇥ 10⇥ 120,� = 0.80,m = 0.05,�B = 0.125.
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one can write the operator in (6.27) in the following form

 ̄(y) (�̃4,5 ⌦ 1) (y) =
i

8

X

⌘
µ

6=⌘0
µ

�̄⌘(y)�⌘0(y). (6.31)

One then takes the average of this operator over the entire lattice. A calculation of this term

would involve a procedure similar to that used to calculate h�̄�i. A qualitative di↵erence,

however, can be seen by inspecting the expression on the right-hand side of (6.31), where

one sees that this quantity involves the propagation of a fermion from each site within the

cube to its opposite corner. To evaluate this quantity stochastically, one first generates an

ensemble of Gaussian distributed complex victors satisfying (6.23) with support only on

sites with a given ⌘ = (⌘t, ⌘x, ⌘y), where ⌘µ labels a particular site within the cube. The

source is then shifted to the opposite corner of the cube using parallel transport:

�̃(k) =
1

6

X

P

ŜP
µ

ŜP
⌫

ŜP
�

�(k) (6.32)

where the sum is over the six permutations of paths that take the vector to the corner

opposite ⌘. Here Pµ, P⌫ , P� are permutations of ±t,±x,±y and the shift operators have

been introduced

⇣
Ŝ±µ�

⌘

i
=

⇢
U †
µ(x� µ̂)�i�µ̂ ,�

Uµ(x)�i+µ̂ ,+
. (6.33)

Using the source in (6.32), one can calculate the Haldane condensate as follows:

X

y;⌘
µ

6=⌘0
µ

�̄⌘(y)�⌘0(y) ⇡
1

Nv

N
vX

k=1

�(k)†M�1�̃(k). (6.34)

where the sum over ⌘ goes over all eight sites of the cube. Stochastic estimation relies on

cancellations of the noise to find the signal, which decays exponentially with the separation

between source and sink. Therefore, for operators such as the Haldane condenstate, which

are nonlocal, it can be di�cult to obtain a good signal to noise ratio. In order to overcome

this, the results in this thesis have been calculated using Nv ⇡ 1000 in (6.34). In Fig. 6.3

the error in the stochastic estimation is shown versus the number of stochastic vectors used.

One needs a large amount of random vectors in order to obtain a signal. This is evident

when looking at the time history for the real part of the Haldane condensate for an ensemble

in Fig. 6.4.

6.3 Spectroscopy
The computation of the spectrum of a Euclidean field theory is one of the areas where

lattice methods excel. For LQCD, an extensive amount of work has been done calculating
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Figure 6.3. Error in the mean for the stochastic estimation of the real part of the Haldane
condensate on a single gauge configuration as a function of the number of stochastic vectors,
Nv, for lattice ensemble 82 ⇥ 10⇥ 120,� = 0.80,m = 0.05,�B = 0.125.

the masses of the hadrons and their excited states. In this section, the construction

of operators with the correct quantum numbers, such as spin and parity, is discussed.

Subsequently, the numerical calculation of the propagators is touched upon, followed by a

discussion of how one extracts a mass from the correlators.

6.3.1 Fermion Propagator

The spontaneous breaking of the U(1)✏ symmetry due to magnetic catalysis has con-

sequences for the Dirac quasiparticles in graphene. Namely, one expects these excitations

to be gapped in the broken phase. It is for this reason that one would like to study the

fermion propagator defined as

GF (x, y) ⌘ h�(x)�̄(y)i = 1

Z

Z
D[Uµ] ( 6Dst +m)�1

x,y e
�S

eff . (6.35)

From the expression above, one sees that the calculation involves the inversion of the Dirac

operator on each gauge configuration. In a lattice calculation, one does not direclty obtain

the matrix M�1 ⌘ ( 6Dst +m)�1, but uses the concept of a source to cast the problem into

a linear system of equations of the form Ax = b. In this way, one is able to use iterative

techniques which are much more e�cient [82]. The equation to be solved is

Mx,yGy = Sx, (6.36)
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Figure 6.4. Monte Carlo time series for the real part of the Haldane condensate for lattice
ensemble 82 ⇥ 10⇥ 480,� = 0.80,m = 0.05,�B = 0.125 using 101 configurations.

where G is a row of the propagator and S is the source vector. For the purpose of this

thesis, it is typically su�cient to use what is known as a point source

S(x0)
x ⌘ �x0x, (6.37)

where x0 is the location of the source. The solution of (6.36) gives the vector G which

describes the propagation of a fermion from site x0, where the source is located, to all other

sites. Other types of sources exist which attempt to optimize the overlap of a given operator

with the physical state described by the same quantum numbers [83].

One typically is interested in a propagator with a definite spatial momentum. On the

lattice the spatial momenta are given by

~p ⌘ 2⇡

Ls
(nx, ny), nx, ny ✏ Z, (6.38)

where Ls is the lattice extent in the spatial direction. These discrete momenta are dictated

by the periodic boundary conditions for bosonic and fermionic quantities in the spatial

direction. The quasiparticle propagator in the time-like direction with a definite momentum

~p is given by

G(t)
F (~p, ⌧) =

1p
Vs

X

~r

e�ia
s

~r·~pGF (~r, ⌧), (6.39)
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where Vs represents the spatial lattice volume and ~r represents the spatial coordinates of

the lattice site. One can also do the same for a particular spatial direction:

G(x)
F (x, py,!l) =

1p
NsN⌧

X

y,t

e�ia
s

yp
y

+ia
t

t!
lGF (~r, ⌧), (6.40)

where !l = (2l + 1)⇡/N⌧ is a fermionic Matsubara frequency. From the behavior of (6.39)

and (6.40) as a function of the temporal and spatial separations, respectively, one can

extract the energy levels of the fermion. The form of the free staggered fermion propagator

gives a clue how to do so

G(t)
F (~p, ⌧) =

⇢
cosh (Et (⌧ �N⌧/2)) [cosh (EtN⌧/2) cosh (Et)]

�1 , ⌧ odd
�2m sinh (Et (⌧ �N⌧/2)) [cosh (EtN⌧/2) sinh (2Et)]

�1 , ⌧ even
,(6.41)

G(x)
F (x, py,!l) =

⇢
sinh (Es (⌧ �Ns/2)) [sinh (EsNs/2) cosh (Es)]

�1 , x odd
�2m sinh (Es (x�Ns/2)) [sinh (EsNs/2) sinh (2Es)]

�1 , x even
,(6.42)

where

Et,s = sinh�1(!t,s) = log
⇣
!t,s +

q
!2
t,s + 1

⌘
, (6.43)

!2
t =

X

k=1,2

sin2(pk) +m2, !2
s = sin2(!l) + sin2(py) +m2. (6.44)

One can use the form in expressions (6.41) and (6.42) to deduce a fit form for the Monte

Carlo data. An example which illustrates the behavior of the temporal propagator is given

in Fig. 6.5. In this thesis, correlators at zero spatial momentum are of interest and can be

represented by

G(t)
F (⌧, ~p = 0) =

At

2
(1 + (�)⌧ )

⇣
e�m

F

⌧ + e�m
F

(N
⌧

�⌧)
⌘

+
At

2
(1� (�)⌧ )

⇣
e�m

F

⌧ � e�m
F

(N
⌧

�⌧)
⌘
, (6.45)

for the temporal propagator and

G(x)
F (x, py = 0,!0) =

Ae,s

2
(1 + (�)x)

⇣
e�m

(s)
F

x + e�m
(s)
F

(N
s

�x)
⌘

+
Ao,s

2
(1� (�)x)

⇣
e�m

(s)
F

x � e�m
(s)
F

(N
s

�x)
⌘
, (6.46)

for the spatial propagator, where !0 = ⇡/N⌧ represents the lowest fermionic Matsubara

frequency. In the above expressions the masses mF and m̃F have been introduced which

represent the mass of the fermion in Coulomb gauge (assuming the gauge fixing procedure

introduced earlier) and the screening mass, respectively. The screening mass proves useful

in determining the e↵ects of a finite spatial volume on the calculations performed in the

graphene EFT on the lattice.
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Figure 6.5. Zero-momentum Dirac quasiparticle propagator in the temporal direction for
lattice ensemble 82⇥10⇥120,� = 0.80,m = 0.05,�B = 0.125 with 800 gauge configurations.
One can see the propagator’s periodic behavior for odd ⌧ and antiperiodic behavior for even
⌧ .

6.3.2 Pseudoscalar Goldstone Mode

As was mentioned in previous sections, the appearance of a nonzero chiral condensate,

h ̄ i 6= 0, signals the spontaneous breaking of the staggered U(1)✏ symmetry and thus, the

appearance of a pseudoscalar Goldstone mode. This state is similar to the almost massless

pion that appears in QCD due to the spontaneous breaking of chiral symmetry. Using

this analogy, one can think of the Goldstone mode in the graphene EFT as a pseudoscalar

fermion-antifermion bound state. The construction of meson operators in LQCD, which

represent bound states of quarks and antiquarks, involes determining the fermion bilinear

with the appropriate quantum numbers. For staggered fermions in particular, this is a

much more di�cult task than for, say, Wilson fermions, due to the fact that spin-taste basis

fields involve a linear combination of the one-component fields at the corners of the cube.

Furthermore, for the graphene EFT, the fact that the fermions live in (2 + 1) dimensions

makes the task even more di�cult.

One can start with a general bilinear in the spin-taste basis

OS,T =  ̄(y) (�S ⌦ �⇤T ) (y), (6.47)

where �S and �T are gamma matrices acting on the Dirac and taste indices respectively.

In (3 + 1) dimensions, choosing �S = �T gives local operators in the one-component basis.
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For the Goldstone mode in (2 + 1) dimensions, it turns out that the relevant operator is

given by

 ̄(y) (�̃4 ⌦ 1) (y) = ū(y)d(y) + d̄(y)u(y) =
1

8

X

⌘

✏(⌘)�̄⌘(y)�⌘(y), (6.48)

where ✏(x) ⌘ (�)x0+x1+x2 , and the following identity was used

Tr
⇣
�†⌘B⌘0 +B†

⌘�⌘0
⌘
= 4✏(⌘)�⌘,⌘0 . (6.49)

In Table 6.1, the commonly used staggered fermions in (2 + 1) dimensions are listed along

with their associated phase and alternating partner state, which will be discussed later.

The zero-momentum temporal correlator for the bilinear in (6.48) is given by

CPS(~p = 0; ⌧) =
X

~y

hOPS(~y, ⌧)O†
PS(~y, ⌧)i,

= �
X

~y

X

⌘,⌘0

(�)⌘�⌘
0
GF (⌘

0, 2y + ⌘)GF (2y + ⌘, ⌘0), (6.50)

= �
X

~y

X

⌘,⌘0

(�)⌘�⌘
0
G†

F (2y + ⌘, ⌘0)GF (2y + ⌘, ⌘0), (6.51)

where in the last step, path-reversal symmetry of the propagator has been applied, GF (x, x0) =

(�)x�x0
G†

F (x
0, x). Notice that the operator in (6.48) involves mulitiple time slices. Thus,

the temporal separation of the correlator in (6.51) is ambiguous. In order to involve only a

single timeslice, one introduces a new operator which is a linear combination of the original

operator and an additional operator with a di↵erent spin and taste content. For the case

of the pseudoscalar, consider the following operator:

 ̄(y)
�
�µ�⌫ ⌦ �⇤µ�

⇤
⌫

�
 (y) = ū(y)

�
�µ�⌫ ⌦ �⇤µ�

⇤
⌫

�
u(y) + d̄(y)

�
�µ�⌫ ⌦ �⇤µ�

⇤
⌫

�
d(y),

=

✓
1

4
p
2

◆2X

⌘,⌘0

�̄⌘(y)�⌘0(y) Tr
h
�†⌘�µ�⌫�⌘0�⌫�µ

i

+

✓
1

4
p
2

◆2X

⌘,⌘0

�̄⌘(y)�⌘0(y) Tr
h
B†
⌘�µ�⌫B⌘0�⌫�µ

i
,

=
1

8

X

⌘

✏(⌘)(�)⌘0�̄⌘(y)�⌘(y), (6.52)

where in the last line the following identity was used

Tr
h
�†⌘�µ�⌫�⌘0�⌫�µ

i
+Tr

h
B†
⌘�µ�⌫B⌘0�⌫�µ

i
= 4✏(⌘)(�)⌘0�⌘,⌘0 , µ, ⌫ 6= 0. (6.53)

Adding (6.52) to (6.48), gives a new operator which only lives on sites of the cube with

⌘0 = 0, but excited two separate states. This is one of the prices that one must pay for using
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Table 6.1. Listing of common staggered bilinear operators in (2 + 1) dimensions. They
are written in terms of their spin-taste representation as well as their one-component
representation which is encoded in the phase factor. Single time-slice correlators imply an
additional alternating state which is listed in the third column for each channel. Adapted
from [1].

Staggered Fermion Bilinears in (2 + 1) Dimensions
Direct Phase Alternating

pseudoscalar �̃4 ⌦ 1 (�)x0+x1+x2 �µ�⌫ ⌦ �⇤µ�⇤⌫
scalar 1⌦ 1 1 �̃4�µ�⌫ ⌦ �⇤µ�⇤⌫
local vector �µ�0 ⌦ �⇤3�⇤µ (�)x0+x1 + (�)x0+x2 �̃4�µ�0 ⌦ �⇤3�⇤⌫
conserved vector �µ ⌦ 1 �̃4�µ ⌦ �⇤3

staggered fermions. In (3 + 1) dimensions, the additional, alternating state is the parity

partner of the original operator defined on the entire hypercube. An analogous procedure

can be followed for other channels, with the results displayed in Table 6.1. Constructing

basic interpolating operators for lattice fermions that keep the Dirac spinor structure intact,

such as Wilson fermions, is straightforward and closely resembles the procedure that one

would perform in the continuum.

As in the case of the Dirac quasiparticle, one must perform a fit of the correlator to a

functional form in order to obtain energies for the pseudoscalar particle in both the temporal

and spatial directions. For this thesis, one is interested in zero-momentum correlators, which

for the temporal direction are fit to the following form

C(t)
PS(~p = 0, ⌧) =

X

~x

C(t)
PS(~x, ⌧),

= A
⇣
e�m

⇡

⌧ + e�m
⇡

(N
⌧

�⌧)
⌘

+ (�)⌧ Ã
⇣
e�m0

⇡

⌧ + e�m0
⇡

(N
⌧

�⌧)
⌘
, (6.54)

where m⇡ and m0
⇡ refer to the masses of the pseudoscalar state and its partner, respectively.

An example of a pseudoscalar correlator is shown in Fig. 6.6. An analogous expression exists

for the correlator in the spatial direction

C(x)
PS(x, py = 0,!0 = 0) =

X

y,⌧

C(t)
PS(x, y, ⌧),

= A
⇣
e�m

(s)
⇡

⌧ + e�ms

⇡

(N
⌧

�⌧)
⌘

+ (�)⌧ Ã

✓
e�m

(s)0
⇡

⌧ + e�m
(s)0
⇡

(N
⌧

�⌧)
◆
, (6.55)
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Figure 6.6. Zero-momentum pseudoscalar correlator in the temporal direction for lattice
ensemble 82 ⇥ 10⇥ 120,� = 0.80,m = 0.05,�B = 0.125 with 800 gauge configurations.

with the caveat that due to the fact that OPS is a bosonic operator, one can project to

zero Matusbara frequency, !0 = 0 and ms
⇡, ms0

⇡ are the pseudoscalar screening masses. In

the expression (6.54), one can include additional sets of terms representing excited states.

Excited states are notoriously di�cult to obtain and require methods that are beyond the

scope of this thesis [83].

6.4 Analysis of Correlators
After obtaining the correlator by performing the appropriate inversions and momentum

projections, one then must extract an energy from its behavior as a function of time (space)

separation. In the previous section, the appropriate fit forms were discussed for the Dirac

quasiparticles as well as the NG mode. Before performing a fit, one must find an appropriate

fit range which is determined by the demands of the problem. For this thesis, one is only

interested in the ground state in a given channel, and thus one needs to determine the range

where this term dominates and all excited states are strongly suppressed. A good indicator

for identifying this region is the e↵ective mass

meff (⌧) =
1

4


log

✓
C(⌧)

C(⌧ + 1)

◆
+ log

✓
C(⌧ � 1)

C(⌧)

◆
+ log

✓
C(⌧ � 2)

C(⌧ � 1)

◆�
, (6.56)

where C(⌧) is a two-point correlator in the temporal direction and the three terms are

included due to the oscillations in (6.51). When the excited states have e↵ectively died out,
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the e↵ective mass plateaus, and is a guide to choosing the fit range for the Monte Carlo

data. An example for the pseudoscalar is shown in Fig. 6.7. To determine the ground state

mass and its associated uncertainty from correlator data, one needs to perform a nonlinear

least-squares analysis that takes into account correlations between points at di↵erent time

separations. This is done by introducing the correlation matrix, which is defined by

Ci,j =
1

N(N � 1)

NX

k=1

h
C(k)(⌧i)� C̄(⌧i)

i h
C(k)(⌧j)� C̄(⌧j)

i
, (6.57)

C̄(⌧i) ⌘ 1

N

NX

k=1

C(k)(⌧i), (6.58)

where N is the number of configurations and ⌧i = iat, i = 0, 1, . . . , N⌧ � 1. The diagonal

elements of the correlation matrix give the variance of the correlator values, while the o↵-

diagonal elements give information regarding correlations between measurements at di↵erent

time separation. One can employ the correlation matrix in constructing a modified chi-

squared functional that is to be minimized in order to obtain the desired fit parameters

�2 ⌘
X

i,j

⇥
C̄(⌧i)� f(i, {m})

⇤ ⇥
C�1

⇤
i,j

⇥
C̄(⌧j)� f(j, {m})

⇤
, (6.59)

where f(i, {m}) is the fit function evaluated at time ⌧i, with {m} representing the fit

parameters. The error on the mass can be determined in the same way as for uncorrelated

nonlinear least-squares fits. For a large number of degrees of freedom d, one expects a good

fit to yield �2 = d ±
p
2d. There still arises the question of how one chooses the fit range

[⌧min, ⌧mas]. In practice, one can examine the e↵ective mass to get an initial estimate of the

fit range and then refine the fit window until one obtains the best chi-squared value.

6.5 Estimation of Errors
In a Monte Carlo calculation, one has to be aware of autocorrelations in order to

accurately estimate the statistical uncertainties associated with the observables that are

computed. In the course of performing a Monte Carlo calculation, there exist correlations

between neighboring configurations in the Markov chain, or more specifically, between

neighboring MD trajectories. What one hopes to estimate, for any observable computed

using MC methods, is the variance in the mean. However, the aforementioned correlations

between configurations in simulation time make this process much more subtle. The naive

variance of the mean for an observable O is given by

�(0)2mean =
1

N

⇣
hO2i � hOi2

⌘
. (6.60)
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Figure 6.7. E↵ective mass of the pseudoscalar correlator in the temporal direction for
lattice ensemble 82⇥10⇥120,� = 0.80,m = 0.05,�B = 0.125 with 800 gauge configurations.
At several time slices away from the source, one can notice the formation of a plateau
indicating the dominance of the ground state.

This estimate, often biased by autocorrelations, can be corrected. One first introduces the

autocorrelation function

C(⌧) = hÕ(i)Õ(j)i, (6.61)

Õ(i) ⌘
⇣
O(i) � hOi

⌘
/�(0), (6.62)

where ⌧ ⌘ (i�j)�t is the separation of the two measurements in MC time which is typically

given in units of MD trajectories and the average is performed over the the entire ensemble.

Imagine, now, that one knew the value of the slowest decay mode of (6.61), which one refers

to as the autocorrelation time, ⌧AC . Now, if one constructed well-separated blocks of M

measurements, such thatM > ⌧AC , one could compute the true variance using these blocked

values. Namely, one could use the following expression to determine the true variance

�2mean = h
 

1

M

X

i

Õ(i)

!2

i = �(0)2mean

"
1 + 2

X

i>0

C(i�t)

#
. (6.63)

The correction factor in (6.63) accounts for the autocorrelations and can be estimated

directly. An alternative method involves constructing blocks of successive measurements

and obtaining the variance as a function of block size nb
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�2mean(nb) =
n2
b

N2

X

i

(hOii � hOi)2 , (6.64)

where hOii is the average in the ith block. One finally attemps to extrapolate to infinite

block size using a linear form for �(nb) as a function of 1/nb. Other, more sophisticated

methods are available which attempt to obtain accurate estimates of the correction factor

on the right hand side of (6.63). These methods have found success in LQCD simulations

where slow modes appear due to the autocorrelation of the topological charge [84, 85].



CHAPTER 7

RESULTS

In this chapter, the results of the lattice simulation of the graphene EFT in the presence

of an external magnetic field will be discussed. First, the semimetal phase, characterized

by a vanishing of the chiral condensate in the limit m ! 0, will be identified in the absence

of the magnetic field. Then, introducing a magnetic field, the phenonemon of magnetic

catalysis will be studied. As shown in previous studies [21, 22], magnetic catalysis is a

property of the ground state of the field theory and thus should be present at T = 0.

Taking the zero-temperature limit, which on the lattice consists of taking N⌧ ! 1, one is

able to isolate the ground state and then investigate the spontaneous symmetry breaking

as the explicit symmetry breaking parameter, m, is removed.

7.1 Chiral Condensate
In this section, the calculation of the chiral condensate will be discussed. This quantity

signals the spontaneous breaking of the remnant U(1)✏ symmetry which characterizes the

phenomenon of magnetic catalysis in the lattice version of the graphene EFT.

7.1.1 Identifying the Semimetal Phase

At large values of the inverse coupling �, the graphene EFT describes a semimetal with

gapless fermionic excitations and a vanishing value of the condensate, h ̄ i, in the chiral

limit, m ! 0. As one increases the coupling, the theory has been shown to undergo a

phase-transition to an insulating phase characterized by gapped fermionic excitations and

a nonvanishing value of the chiral condensate, h ̄ i 6= 0. Various aspects of the transition

have been studied using lattice methods [19, 86, 87, 88]. The transition is believed to be

second-order according to the results of [19].

To identify the semimetal phase, one needs to look at the behavior of � ⌘ h ̄ i as a

function of the bare fermion mass m, at fixed coupling. The fermion mass, introduced as an

infrared regulator needed in order to perform inversions to compute the fermon propagator,
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explicitly breaks the U(1)✏ symmetry present in the massless staggered fermion action.

In the symmetric (semimetal) phase, one expects that for su�ciently small values of the

fermion mass, � will vanish linearly in m. This can be seen in Fig. 7.1, where � is plotted as

a function of m in the semimetal region at zero magnetic field (black points). As the inverse

coupling decreases, one eventually encounters the critical coupling �cr, which separates the

semimetal from the insulating phase.

The situation changes significanly after an external magnetic field is introduced. Namely,

the critical coupling �cr, which determines the boundary between the two phases, shifts to

larger values. This was shown in the lattice study performed in [89]. In this study, the

authors, using unimproved staggered fermions, obtained a phase diagram in the (B,�)-

plane. One expects that this phase boundary has a temperature dependence. In the limit

T ! 0, the authors of [21, 22, 23] predict that an infinitesimal interaction between fermions

and antifermions will lead to pairing, and thus magnetic catalysis. Another early analysis

of a graphene-like theory showed that at extremely weak coupling, a nonzero condensate

was obtained in the chiral limit [90].

After identifying the semimetal region, one can then introduce the external magnetic

field and perform a similar calculation at fixed �. In Fig. 7.1 one can see that after the

external magnetic field is introduced, � increases and exhibits a nonlinear behavior as a

function of m (blue points). However, just as is the case at zero magnetic field, � vanishes

as the explicit symmetry breaking parameter m is removed. One must, therefore, reconcile

these results with the predictions from the infinite-volume continuum EFT.

7.1.2 Finite-Volume E↵ects

Typically, behavior of the type exhibited in Fig. 7.1 is associated with the restoration

of symmetry due to the finite spatial extent of the box. One recalls that spontaneous

symmetry breaking only exists in the infinite volume limit and thus one is obligated to

perform an infinite-volume extrapolation in order to obtain information on the catalysis.

In Fig. 7.2, one can see the behavior of � versus m for a number of spatial extents, Ns, at

magnetic flux �B = 0.125. For a large range of spatial extents Ns, the condensate shows

little variation. This can be explained by noting that the magnetic length, lB ⌘
p
~c/eB,

which characterizes the quasiparticle’s cyclotron orbit, satisfies 1 < lB < Ls, in units of as.

An independent check for finite volume e↵ects can be performed by calculating the

screening masses of the fermion quasiparticle and the pseudoscalar. Expected to be the

lightest excitations of the theory, the Compton wavelengths associated with their screening

masses could be compared to Ns in order to characterize the e↵ect of a finite spatial volume.
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Figure 7.1. The chiral condensate � ⌘ h ̄ i as a function of the bare fermion mass at zero
field (black points) and at magnetic flux �B = 0.125 (blue points), where flux is measured
in units of a2s. We report the volumes in the form N2

s ⇥ Nz ⇥ N⌧ . One can note that �
vanishes with m at zero field as well as at nonzero external field. The vanishing of the
condensate in the presence of the magnetic field is argued to be a thermal e↵ect. The error
bars on each point are not visible on this scale.

The screening masses are obtained by computing the spatial correlators defined in (6.46)

and (6.55). The result of this calculation is that the screening masses satisfy M (s)Ls > 1

where Ls = Nsas and M (s) represents a screening mass. In particular, for the pseudoscalar,

m(s)
⇡ Ls ⇡ 18� 20, for the ensembles with volume 202 ⇥ 10⇥ 60 and flux �B = 0.125 while

for the fermion propagator, m(s)
F Ls ⇡ 11�14, for the same ensembles. Typically, in LQCD,

leading finite-volume corrections are of the form e�M
s

L
s . Thus, these results give further

confirmation that finite-volume corrections are under control.

7.1.3 Finite-Temperature E↵ects

Thermal e↵ects are also known to a↵ect lattice simulations due to the finite extent of

the box. The temperature of the system is inversely proportional to the extent of the box in

Euclidean time, T = 1/N⌧at. In order to isolate the ground state of the system, one must

make sure that N⌧ is su�ciently large. The e↵ects of temperature on the chiral condensiate

� are exhibited in Fig. 7.3. One can see that at large values of the ratio T/m, the chiral

symmetry is restored. As T/M approaches small values, the condensate obtains a finite

value in the zero-temperature limit.
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Figure 7.2. The chiral condensate � as a function of fermion mass with varying spatial
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s for magnetic flux �B = 0.125. The lattice volumes are listed in the form
N2

s ⇥ Nz ⇥ N⌧ where the fermions live in the xy-plane and the gauge field is present
throughout the entire volume.

The predictions of magnetic catalysis in the continuum, for example in [21], are state-

ments about the ground state of the theory. One has seen that in (2 + 1) dimensions, even

in the free theory, a finite value for the condensate is obtained. This derivation, in fact,

already assumes that one has isolated the ground state of the theory, or equivalently, one

has already performed the zero-temperature limit before taking the bare fermion mass to

zero. This fact suggests that in order to obtain information on magnetic catalysis for the

data reported above, one must first perform the T ! 0 limit before taking the chiral limit,

m ! 0.

For a given bare mass, one can see from the data pictured in Fig. 7.3 that as small

temperatures are approached, the value of � reaches a plateau. Due to the fact that one

does not have an analytic formula to guide the zero-temperature extrapolation, a polynomial

extrapolation was used. For the points residing on the plateau, for example the first two

points at bare mass m = 0.05, a fit to a constant was used. Adding a third point at higher

T , a fit to a polynomial, �(T ) = c0+c1T +c2T 2 was performed. These two approaches were

used in order to estimate a systematic error associated with this extrapolation due to the

lack of an analytic formula for a guide. The systematic error is taken to be the di↵erence in

the central values obtained for the two extrapolations described above. One assumes that



74

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5

σ

T/m

m=0.05
m=0.02
m=0.01

m=0.00167

Figure 7.3. The chiral condensate � plotted as a function of the ratio T/m for the
ensembles with �B = 0.125 and Ns = 8, Nz = 10. One can see that at small values of
T/m, the condensate increases and tends towards a nonzero value.

this error adds in quadrature with the statistical error, thus giving a total error which is used

in later results. The results for the extrapolations performed at magnetic flux �B = 0.125

for bare mass m = 0.05 are shown in Fig. 7.4

Once the zero-temperature extrapolations have been performed, one can then take the

chiral limit. In Fig. 7.5, the chiral condensate at T = 0 is plotted as a function of the bare

mass at �B = 0.125. One can see that a linear extrapolation in the mass gives a nonzero

value for the condensate. After performing the same extrapolations for three fluxes, one

is able to obtain the behavior of the zero-temperature, chirally extrapolated condensate as

a function of the magnetic flux, �B. The results are shown in Fig. 7.6. The relationship

between the condensate and �B is fit to the form �T=m=0 = c1�B + c2 (�B)
2. This is

motivated by the fact that at zero magnetic flux, the condensate should vanish in the chiral

limit. The errors on the points in the plot are those calculated in the chiral extrapolation.

7.2 Haldane Condensate
The situation for the time-reversal-odd Haldane condensate is less clear than that of

the chiral condensate. This has much to do with staggered fermions and the issue of the

taste degree of freedom. In the simulations with staggered fermoins, only taste-singlet

operators have been used. This has consequences for the original hexagonal lattice degrees



75

0.342

0.344

0.346

0.348

0.35

0 4e-03 8e-03 1.2e-02 1.6e-02

σ

T=1/Nτ

82x10xNτ, β=0.80, ΦB=0.125

Figure 7.4. The chiral condensate � plotted as a function of the temperature T for the
ensemble with �B = 0.125, Ns = 8, Nz = 10, m = 0.05. The constant function (black curve)
gives an intercept of 0.3483(2) with �2 ⇡ 0.13. The quadratic (red curve) gives an intercept
of 0.3475(8). The di↵erence between these values gives an estimate of the systematic error
associated with the extrapolation.

of freedom, as these simulations cannot distinguish spin components. Furthermore, taste-

nonsinglet operators have zero expectation value as the vacuum has zero taste quantum

numbers. This situation is unfortunate, and makes a comparison with the continuum results

di�cult. In the continuum, the Zeeman term in (3.30) explicitly breaks the U(4) symmetry

to U(2)"⇥U(2)#. Noting that in the ground state solution described by (3.34), the Haldane

masses for the two spin projections are opposite in sign, one can see that the Zeeman

spin splitting is enhanced. In the absence of the Zeeman term, the solution described by

(3.34) signals the spontaneous breaking of the U(4) symmetry and implies a nonzero value

for the condensate h ̄ (�̃4,5 ⌦ �3) i. However, the staggered lattice action only contains a

remnant U(1)⇥U(1)✏ symmetry and does not distinguish spin projection. Thus, unlike the

case of the chiral condensate, the appearance of a nonzero value for the time-reversal-odd

condensate, h ̄ (�̃4,5 ⌦ 1) i, does not lead to spontaneous symmetry breaking.

The time-reversal-odd condensate was measured on the lattice ensembles with the largest

magnetic flux, �B = 0.125 for a⌧T = [0.002, 0.016]. These temperatures are su�ciently

small that if the ground state did support a Haldane condensate, these temperatures would

be su�ciently small and the magnetic flux su�ciently large to observe this. The results,
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Figure 7.5. The zero-temperature extrapolated chiral condensate � plotted as a function
of the bare mass m for magnetic flux �B = 0.125 and lattice size Ns = 8, Nz = 10. The
linear chiral extrapolation gives an intercept of 0.2721(7) with �2/d ⇡ 0.6.

however, do no support a nonzero Haldane condensate. In Fig. 7.7, the real part of the

Haldane mass is plotted versus the temperature for N⌧ = 480, �B = 0.125. In this calcu-

lation, each point was computed with 1000 stochastic sources on 100 gauge configurations.

The results seem to be consistent with zero. The results for larger temperature at the same

value of the flux also are consistent with zero as one would expect.

When interpreting these relations for the Haldane condensate, one must keep in mind

that taste-nonsinglet operators have zero expectation values. In particular, this means that

h ̄ (�̃4,5 ⌦ �3) i is exactly zero due to taste symmetry. To address spontaneous symmetry

breaking due to the appearance of a nonzero value for h ̄ (�̃4,5 ⌦ �3) i, one would need to

include a term in the action that breaks this symmetry explicityly and in the usual way,

take in the infinite volume and zero-temperature limits followed by removing the symmetry

breaking term. This is what was done for the Dirac mass.

7.3 Spectrum
In this section, the spectrum of the graphene EFT will be discussed. In the absence of an

external magnetic field, one expects to be firmly in the semimetal phase at the fixed coupling,

� = 0.80. This should be reflected in the dynamical mass of the Dirac quasiparticle. Namely,

one expects a nonperturbative calculation of the temporal fermion propagator, represented
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Figure 7.6. The zero-temperature, chirally extrapolated chiral condensate �, plotted as a
function of the magnetic flux �B = eB/2⇡. The points at �B = 0.0625 and �B = 0.125
have a spatial size of Ns = 8, while those at �B = 0.056 and �B = 0.083 have a spatial
size of Ns = 12. The errors on the points were obtained from the chiral extrapolations at
T = 0. The data have been fit to a quadratic which passes through the origin. The fit has
parameters c1 = 2.38(2) and c2 = �1.6(2) with a �2/d ⇡ 3.6/2.

in (6.39), to yield a mass, mF , that vanishes in the chiral limit. The situation is expected

to change drastically in the presence of an external magnetic field. Namely, one expects a

nonzero value for the dynamical mass in the chiral limit. Furthermore, the pseudoscalar

mode, studied via the correlator in (6.51), is predicted to be a Goldstone mode due to the

spontaneous symmetry breaking that occurs.

7.3.1 Dirac Quasiparticle

As discussed in the previous chapter, the spectrum can give additional information

characterizing the spontaneous breaking of the U(1)✏ chiral symmetry. As a consequence

of the acquisition of a nonzero value for the chiral condensate, one expects the fermions

to acquire a dynamical mass which is nonzero as the bare mass vanishes. Obtaining an

accurate extrapolation in the bare mass can be di�cult, as illustrated in Fig. 7.8. One can

see that a simple linear extrapolation in the bare mass for the nonperturbative points seems

to suggest a nonzero value for the dynamical mass in the chiral limit. In order to further

investigate this, a calculation of the fermion pole at O(e2) in lattice perturbation theory was

performed. This calculation used a one-link unimproved staggered action which included a



78

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  0.01  0.02  0.03  0.04  0.05  0.06

Re
∆

H

m

82x10x480, β=0.80, ΦB=0.125

Figure 7.7. The real part of the Haldane condensate as a function of the fermion bare
mass m for 82 ⇥ 10⇥ 480,� = 0.80,�B = 0.125.

perturbative value of the tadpole factor to the same order in the coupling. Further details

of this calculation can be found in Appendix A. The perturbative result for the pole of the

fermion propagator shows that as one reaches very small bare masses, the curve develops

large curvature and eventually vanishes at the origin. This can be better seen in Fig. 7.9,

where the perturbative result is shown in a region near the origin. Using this result as a

heuristic explanation of the results obtained at zero magnetic field, one might expect the

same to happen in the chiral limit for a nonperturbative calculation.

For the case of nonzero magnetic field, the results for the dynamical fermion mass are

encouraging, as seen in Fig. 7.10. One notices that at a given bare mass, the dynamical

mass increases with the magnetic flux, which is also illustrated in Fig. 7.11 at a fixed bare

mass. Furthermore, the plot suggests that all four ensembles extrapolate to nonzero values

in the chiral limit. However, in light of the behavior observed in the zero-field case, one

might want to be cautious in predicting the behavior at bare masses smaller than those

plotted.

7.3.2 Pseudoscalar

The pseudoscalar mode in the graphene EFT is predicted to be the Goldstone mode

resulting from the spontaneous chiral symmetry breaking. As discussed previously, this

mode is analogous to the pion in QCD which is also a Goldstone boson in the limit of
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Figure 7.8. The dynamical fermion mass as a function of the bare fermion mass at
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determination have been included. The solid line represents the location of the free fermion
pole, log(m +

p
m2 + 1). One can see that perturbative result heuristically explains the

nonperturbative result.

vanishing quark mass. To determine the pseudoscalar mass, a fit of the temporal two-point

function was performed using the form listed in (6.54). The results are seen in Fig. 7.12,

where the mass of the pseudoscalar is plotted as a function of the bare mass. One should

first point out that these results, in conjunction with those in Fig. 7.10, determine that the

pseudoscalar mode is indeed a bound state. The fermion-antifermion scattering state has

energy 2mF (at zero spatial momentum), which is higher than m⇡ for all simulated bare

masses. One can also see from the results of Fig. 7.12 that the pseudoscalar mass shows

little variation in flux. This in contrast with QCD, where electrically charged pions couple

to the external magnetic field and their mass recieves a contribution due to this interaction

[91].

One can see that the mass of the pseudoscalar seems to vanish linearly with the bare

mass. However, in analogy with chiral symmetry breaking in QCD, one expects a Gell-

Mann-Oakes-Renner relation between the pion mass and the fermion mass, m2
⇡ ⇠ m [92].

A possible reconciliation of these two comes from the fact that spatial box size is not

large enough to properly characterize the relation between the pseudoscalar mass and the

fermion mass. Namely, one typically wants the spatial box size to be larger than a certain
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multiple of the pion’s Compton wavelength measured in lattice units, which in this case is

�⇡ ⌘ 1/(m⇡at) = [9, 74]. Noting that the spatial box sizes used in this study are Ns = 8, 12,

one can imagine that finite volume corrections are hampering the verification of the Gell-

Mann-Oakes-Renner relation which is an infinite-volume result.



CHAPTER 8

CONCLUSION AND OUTLOOK

In this chapter, conclusions are drawn regarding the lattice study of the graphene EFT.

Finally, future works are discussed as well as an outlook for the field in general.

8.1 Conclusion
Through a thorough, full nonperturbative study of the graphene EFT, the existence

of spotaneous symmetry breaking due to an external magnetic field has been shown. This

represents an important step in the study of magnetic catalysis in condensed matter systems.

The ground state of the system has been characterized by performing a zero-temperature

extrapolation of the observables, in particular the chiral condensate. Furthermore, the

di�culties in studying the Haldane mass with staggered fermions has been commented on.

This study has shown evidence for a dynamically generated Dirac mass for the quasiparticle

as well as the nonzero value for the chirally extrapolated, T = 0 chiral condensate. As

a result, one obtains strong evidence that indeed, magnetic catalysis is occuring in the

graphene EFT. The study of the pseudoscalar mass was able to determine that it is indeed

a fermion-antifermion bound state. Furthermore, the vanishing of its mass in the chiral limit

showed that it is indeed the Goldstone boson that results from the spontaneous breaking

of the lattice U(1)✏ symmetry.

8.2 Outlook
The use of lattice methods in studying the graphene EFT in the presence of a magnetic

field has proven to be quite successful. For a fixed temperature, the authors of [89] have

mapped out a phase diagram of the theory in the (�, B)-plane. The results showed that

the magnetic field shifts the critical coupling, �cr, to larger values. One possible extension

of this work which could lend support to the results of this thesis would be to map out the

temperature dependence of this phase line. One would expect that at as the temperature
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decreases, the line would move closer to the �-axis. Thus, for a given coupling, the external

magnetic field needed to put the system into the insulating phase would decrease.

Another continuation of this work on the graphene EFT would be a more precise study

of the order of the zero-field transition from a semimetal to an insulator. Although the zero

magnetic field phase transition from a semimetal to an insulator has been previously studied

[19], a more thorough analysis is needed to determine precise values of critical exponents as

well as the critical dielectric constant, ✏cr. Previous studies found large finite volume e↵ects

in the insulator phase, which necessitates a careful scaling analysis in order to determine

the parameters characterizing the phase transition.

Finally, a further direction to investigate would be the exploration of the e↵ects of

adding more species of Dirac fermions to the graphene-like theory studied in this thesis.

One would like to see if there exists a critical number of fermion species above which the

theory is always in the semimetal phase. Early work in this direction studied a model

similar to the graphene EFT in the limit of strong coupling and large Nf [93]. In this limit,

the theory is tractable and a renormalization group analysis was employed. Other studies

have provided estimates for the critical number of flavors [94, 47]. These studies have used

a Schwinger-Dyson approach in the instantaneous approximation and concluded that the

critical number of species is Ncr ⇡ 2.55. Using staggered fermions in (2+1) dimensions, one

can easily simulate an even number of flavors. Odd integers can be simulated by employing

rooted staggered fermions which although controversial in the context of LQCD, would be

necessary here in order to determine the critical number of fermion species.



APPENDIX

PERTURBATIVE CALCULATION OF

FERMION POLE

In this appendix, the calculation of the fermion pole in lattice perturbation theory will

be discussed. First, a quick introduction to the conventions and Feynman rules for the

graphene EFT on the lattice are given. This is followed by the calculation of the fermion

self-energy to O(e2). Using this result, one can extract the pole of the fermion propagator

to the same order in the coupling.

A.1 Conventions and Feynman Rules
To derive the Feynman rules, which are illustrated in Fig. A.1, one first starts with the

lattice action for the graphene EFT

S = S(NC)
G + SF , (A.1)

where S(NC)
G is the noncompact gauge action given by (4.60) and here SF is taken to be the

naive fermion action with tadpole improvement

SF = a2sat
X
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where u0 = hUP i1/2 is the tadpole factor calculated from the average of the space-time-

oriented plaquette, UP . Notice that in the above expression for the fermion action, the link

variable has been expressed in terms of the continuum gauge potential, A0(n). Expanding

the link variables up to terms quadtratic in the coupling, the fermion action becomes

SF = S(0)
F + S(1)

F + S(2)
F +O(a2t ), (A.3)

where
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Figure A.1. In (a), the familiar photon-fermion vertex is depicted. In (b), the two-pho-
ton-fermion vertex is shown. This is a lattice artifact that vanishes in the naive continuum
limit a ! 0. In (c) and (d), the fermion and photon lines are shown which are associated
with the appropriate propagator.
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is the free fermion action and

S(1)
F = a2sat
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The terms in (A.5) and (A.6) give rise to the fermion-gauge-field interactions. In the naive

continuum limit, a ! 0, the former reduces to the continuum interaction term given by

(2.10). The coupling of two photons to the fermions is described by (A.6) and has no

continuum analog. This term is present as a result of the lattice regularization and vanishes

as a ! 0 [95].

To derive the Feynman rules, one first goes to momentum space where the fields have

the following Fourier decompositions

Â0(n) =

Z

BZ

d4k

(2⇡)4
Â0(k)e

ik·(n+0̂/2), (A.7)

 ̂n =
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d3k

(2⇡)3
 ̂(k)eik·n, (A.8)

ˆ̄ n =
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where dimensionless lattice fields have been introduced and the integral is over the Brillouin

zone in dimensionless lattice momenta. One also notices that in (A.7), the gauge poten-

tial has been defined at the midpoints of the links connecting neighboring sites. Fourier

transforming the terms in (A.5) and (A.6), one obtains the following vertices

�(1)0 (p0, p, k) = � ie

u0
(2⇡)3�(p� p0 + k)�0 cos((p+ p0)/2), (A.10)

�(2)0 (p, p0, k, k0) =
iate2

u0
(2⇡)3�(p� p0 + k + k0)�0 sin((p+ p0)/2), (A.11)

where �(p) is the periodic delta-function, p and p0 are the incoming and outgoing fermion

momenta, respectively, and k and k0 are the incoming photon momenta. For each fermion

or photon line, one associates the corresponding propagator. The fermion and photon

propagators can be obtained from (4.60) and (A.4). The fermion propagator is given by

G0(p) =
�i�0p̃0 � ivF s

P
i �ip̃i +m

m2 + p̃20 + vF
P

i p̃
2
i

, (A.12)

where p̃µ ⌘ sin(pµ). At zero spatial momentum, the pole of the free fermion propagator is

located at log(m+
p
m2 + 1). The photon propagator is given by

D(p) =

Z ⇡

�⇡
dpz
2⇡

D̃(p), (A.13)

D̃(p) ⌘ 1

p̄2z +
P

i p̄
2
i

, (A.14)

where p̄µ ⌘ sin(pµ/2).

A.2 Fermion Self-Energy
As discussed earlier, the mass of the fermion is associated with the pole of its propagator.

Using the Feynman rules discussed in the previous section, one would like to perturbatively

determine the e↵ects of interactions on the fermion mass. To begin, one first notes that the

full fermion propagator can be written

G(p) =
1

i�0p̃0 + ivF
P

i �ip̃i +m0 � ⌃(p)
, (A.15)

where ⌃(p) is the self-energy determined from the one-particle irreducible diagrams with

two external fermion lines [8]. At O(e2), the self-energy is given by the graphs depicted in

Fig. A.2. Using the Feynman rules, one writes

⌃(2)(p) = ⌃(2)
a (p) + ⌃(2)

b (p), (A.16)

where the contributions from the two graphs are given by
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Figure A.2. The fermion self-energy at O(e2) in lattice perturbation theory. (left) The
”sunset” graph familiar from continuum perturbation theory. (right) The ”tadpole” graph
that appears on the lattice due to the two-photon-fermion vertex.
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where k̃µ ⌘ sin(pµ + qµ). In the expressions (A.17) and (A.18), the integrals over the

spatial lattice momenta have been replaced by sums. This is due to the fact that the lattice

calculations of Chapter 7 are done at finite volume, which restricts the momenta to discrete

values. For the sum in (A.17), this restricts the momentum to be

qi =
2⇡ni

Ns
, nµ = �Ns/4,�Ns/4 + 1, . . . ,�1, 0, 1, . . . , Ns/4� 1. (A.19)

This particular set of values for the momentum reflects the fact that in order to include the

e↵ect of staggered fermions, one shrinks the size of the Brillouin zone by a factor of two.

This is due to the fact that the spin-taste basis for staggered fermions is defined on a lattice

of spacing 2a. The sum in (A.18) involves a photon loop and thus

q0µ =
2⇡n0

µ

Nµ
, n0

µ = �Nµ/2,�Nµ/2 + 1, . . . ,�1, 0, 1, . . . , Nµ/2� 1, (A.20)

where the zero-momentum mode, qµ = 0, 8µ, is excluded in the sum due to the gauge-fixing

condition (4.102). The integral over the zeroth component of the loop momentum has been

kept as one assumes a zero-temperature formalism.

To determine the shift in the mass due to interactions, one sets ~p = 0 and looks for

the pole of the propagator. The most general form for the self-energy based on lattice

symmetries takes the form

⌃(p0, ~p) = i
X

µ

�µ sin(pµ)Fµ(p0, ~p) +moH(p0, ~p), (A.21)



89

where Fµ and H are functions determined perturbatively in the coupling. In this thesis,

one is interested in the dynamical mass of the fermion. The dynamical mass is the pole of

the zero-momentum propagator, which at O(e2) is determined by

⇣
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where F (2)
µ andH(2) are the self-energy terms at O(e2). The above condition was determined

after rationalizing the fermion propagator in (A.15). To find the pole in the interacting

theory, one writes p0 ! i!̃, and (A.23) becomes

sinh2(!̃) = m2
0

⇣
1� 2e2H(2)(i!0,~0) + 2e2F (2)

0 (i!0,~0)
⌘

(A.24)

where the replacement p0 ! i!0 has been made in the functions F (2)
0 and H(2) as one is

only working at O(e2). The pole, !̃, can thus be written as

!̃ = log
⇣
⌦̃+

p
⌦̃2 + 1

⌘
, (A.25)

⌦̃ = m0

q
1� 2e2H(2)(i!0,~0) + 2e2F (2)

0 (i!0,~0). (A.26)

To determine these functions, one considers (A.17) and (A.18) at zero spatial momentum.

One finds that

F (2)
0 (p0,~0) =

1

u0N2
s

X

~q

Z
dq0
2⇡

cos(q0) + sin(q0) cot(p0)

sin2(p0 + q0) +
P

i sin
2(qi) +m2

0

cos2(p0 + q0/2)D(q)

+
1

u0N2
s

X

q0
i

D(q0), (A.27)

H(2)(p0,~0) = � 1

u0N2
s

X

~q

Z
dq0
2⇡

1

sin2(p0 + q0) +
P

i sin
2(qi) +m2

0

⇥ cos2(p0 + q0/2)D(q). (A.28)

To proceed, one makes the substitution p0 ! i!0 in the functions F (2)
0 and H(2) and

evaluates the integration over q0 in the above expressions using the method of residues.

One first considers the general expression

I =

Z
dq0
2⇡

f(q0, i!0)

sin2(q0 + i!0) +
P

i sin
2(qi) +m2

0

, (A.29)



90

where f(q0, i!0) is a regular function of q0. One can employ the mapping z = eiq0�!0 which

maps the integral over q0 into a closed contour in the complex z plane. This contour is a

circle of radius e�!0 . The expression in (A.29) thus becomes

I = �4

I
dz

2⇡i

zf(z)

z4 � 2bz2 + 1
, (A.30)

b ⌘ 1 + 2

 
X

i

sin2(qi) +m2
0

!
. (A.31)

The integrand has poles at ±z+ and ±z� where

(z±)2 = b±
p
b2 � 1, z± = e±!, (A.32)

cosh(2!) = b, sinh(!) =

sX

i

sin2(qi) +m2
0. (A.33)

The roots ±z� lie within the contour, thus one can evaluate I via residues, obtaining

I = �4

I
dz

2⇡i

zf(z)

(z � z+)(z � z�)(z + z+)(z + z�)
,

=
f(z�) + f(�z�)

sinh(2!)
. (A.34)

From the expression for H(2)(i!0, 0), one makes the identification f(q0) = cos2(i!0 + q0/2).

Changing variables to z results in

f(z) =
1

4

✓
z1/2e�!0/2 +

1

z1/2
e!0/2

◆2

. (A.35)

One can use the result in (A.34) to obtain

H(2)(i!0, 0) = � 1

u0N2
s

X

~q

D(q)

sinh(2!)
. (A.36)

From the expression for F (2)
0 (i!0, 0), one makes the identification

f(q0) = [cos(q0)� i sin(q0) coth(!0)] cos2(i!0 + q0/2). Changing variables to z results in

f(z) =
1

8

✓
ze!0 +

1

z
e�!0

◆
�
✓
ze!0 � 1

z
e�!0

◆
coth(!0)

�

⇥
✓
z1/2e�!0/2 +

1

z1/2
e!0/2

◆2

. (A.37)

One can use the result in (A.34) to obtain

F (2)
0 (i!0, 0) =

1

u0N2
s

X

~q

D(q)
cosh(! + !0)

sinh(2!)
(cosh(! � !0) + sinh(! � !0) coth(!0))

+
1

u0N2
s

X

q0
i

D(q0). (A.38)

Finally, the expressions in (A.36) and (A.38) have been used to numerically evaluate the

mass shift depicted in Fig. 7.8 and Fig. 7.9.
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The tadpole factor used in this calculation was also calculated perturbatively. From its

definition one can write

u0 ⌘ RehUP i1/2 ⇡ 1� 1

2V
e2a2

X

n

hA0(n)A0(n)i

+
1

6V
e2a2

X

i

X

n

RehA0(n)A0(n+ î)i, (A.39)

UP (n) ⌘ 1

3

X

i

U0(n)U
†
0(n+ î) =

1

3

X

j

eie(A0(n)�A0(n+î)) (A.40)

where V is the volume and the space-time plaquette has been expanded in terms of the gauge

potential. The second and third terms on the right-hand side of (A.39) can be represented

at lowest order by the following expression

1

V

X

n

hA0(n)A0(n)i =
1

N2
s

X

q0

D(q0) +O(e2), (A.41)

1

3V

X

i

X

n

RehA0(n)A0(n+ î)i = 1

3N2
s

X

i

X

q0

D(q0) cos(q0i) +O(e2) (A.42)

One finds that the value of tadpole factor calculated in lattice perturbation theory is close

to the nonperturbative value used in obtaining the results of Fig. 7.10. This reflects the

fact that the tadpole factor has a weak dependence on the bare fermion mass.
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