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ABSTRACT 
 
 
 

 This dissertation discusses various transmission line forward modeling techniques 

in both time and frequency domains.  Although time domain methods offer simplicity in 

most cases, the computational inefficiency and lack of fidelity make these methods less 

attractive.  Therefore, the more efficient frequency domain technique is emphasized - a 

modified transmission matrix (also known as ABCD) method. 

 One of the most difficult problems in electrical wire fault location nowadays is 

detecting and locating frayed wiring, where the wire is only partially damaged.  This type 

of fault can be very small and extremely difficult to detect.  Most inversion schemes used 

to locate faults require forward models that accurately represent detailed reflections.  

Resolving these very small faults requires an especially accurate forward model where 

not only the fault but also all the other very small changes caused by normal aspects of 

the wiring system are included. 

 A very high resolution Finite Difference Time Domain (FDTD) method can be 

used to simulate this type of fault and details of the surrounding wiring system with 

enough fidelity to distinguish the small fault.  However, this is very costly in terms of 

computational resources.  This dissertation demonstrates a quick way of building the fray 

profile that significantly reduces the simulation time.  

 Finally, the ultimate goal of the highly realistic forward modeling is the inversion, 

in which a set of measured data is given and the inversion algorithm interprets the 
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location and the nature of fault on the wire.  Multiple iterations are typically required, and 

thus, high efficiency is necessary.  A new method introduced in this dissertation is 

capable of identifying multiple unknown parameters in just a few steps.  



 
 

 
 
 
 
 

TABLE OF CONTENTS 
 
 

 
ABSTRACT …………………………………………………..…………………………iii 

 
Chapter 
 
1 INTRODUCTION ........................................................................................................... 1 
 

1.1 Background ............................................................................................................... 1 

1.2 Overview ................................................................................................................... 5 

 
2 WIRE FAULT LOCATION TECHNIQUES .................................................................. 9 
 

2.1 Overview ................................................................................................................... 9 

2.2 Transmission Line Basics........................................................................................ 11 

2.3 Time Domain Reflectometer ................................................................................... 14 

2.4 First Generation Forward Methods ......................................................................... 16 

2.5 Second Generation Forward Methods ..................................................................... 23 

2.6 Third Generation Forward Method ......................................................................... 31 

2.7 Summary of Existing Forward Modeling Methods ................................................ 36 

 
3 MODULARIZED FORWARD MODELING TECHNIQUES ..................................... 38 
 

3.1 Overview ................................................................................................................. 38 

3.2 Signal Flow Graph .................................................................................................. 40 

3.3 Extended Signal Flow Diagram .............................................................................. 42 

3.4 ABCD Parameters ................................................................................................... 46 

 
4 AN INTERPOLATION APPROACH OF BUILDING CHAFED WIRE PROFIELS 
   AND PREDICTING WIRE FAULT SIGNATURES ................................................... 57 
 

4.1 Overview ................................................................................................................. 57 

4.2 Approach ................................................................................................................. 57 

4.3 Analysis ................................................................................................................... 59 



 
 

vi 
 

4.4 Results ..................................................................................................................... 64 

 
5 INVERSE SOLUTION .................................................................................................. 66 
 

5.1 Overview ................................................................................................................. 66 

5.2 Analytical Inverse Solution ..................................................................................... 68 

5.3 Scanning Approach ................................................................................................. 72 

5.4 Iterative Inversion ................................................................................................... 79 

5.5 Summary of the Inversion Methods ........................................................................ 92 

 
6 CONCLUSIONS............................................................................................................ 93 
 

6.1 Potential Applications ............................................................................................. 94 

6.2 Future Work ............................................................................................................ 96 

 
REFERENCES ................................................................................................................. 98 

 
 



 
 

CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

1.1 Background 
 
 Electrical wires are to instruments and equipment as the nerves and veins are to 

human body.  Signals, commands and power are delivered to their destinations via these 

wires.  In critical applications, such as spacecraft or aircraft, faulty wires can cause total 

loss of investment, catastrophic damage to the equipment, injuries and loss of human 

lives.  Many of these tragedies could be preventable if we understand what the wiring 

system is telling us.  The system constantly signals us where the problems are, but not in 

ordinary human language.  In the past, these messages have been overlooked, since it is 

too costly either in time or money or simply just too difficult to understand, until the 

catastrophe happens.  

Studies indicate that the crashes of both TWA 800 off  New York’s Long Island 

in 1996 and Swissair 111 near Nova Scotia in 1998 were strongly correlated to the faulty 

wiring systems onboard [1].  With an average age of more than 22 years [2], the United 

States Air Force fleet is suffering from readiness problems.  Many of the aircraft and 

spacecraft have served well beyond the age they were designed for, which is typically 15 

to 20 years.  The virtually invisible wire faults make these aged work horses prone to 

disasters.  Although wire faults are found more frequently in aging aircraft, newer
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designs are not immune to wiring problems.  Airbus’s flagship A380, for example, had to 

delay its delivery schedule due to wiring problems [3] and the price tag for that incidence 

was six billion dollars [4].  Fortunately the problem was discovered before hitting the 

market.  In May of 1986, a NASA Delta 3925 rocket booster carrying a GOES 

(Geostationary Operational Environmental Satellite) weather satellite failed due to a 

momentary short caused by a chafed wire.  An Air Force Titan 4B broke up when a short 

circuit occurred, and 13 years earlier, the failure of another Delta was also due to a chafed 

wire that caused short circuits [5].  Numerous incidents like these have happened and 

billions of dollars have been wasted.  It was not until the TWA tragedy in 1996 that the 

government and industry started seriously looking for solutions to this problem. 

The wiring fault is an old problem, one that needs new solutions. 

Hard faults, in which the wire is short circuited or completely break apart, are 

relative easy to detect and locate.  The impedance (either near zero or very high) is 

beyond the tolerance of the system.  Capacitance sensing or various types of 

reflectometry can locate this type of fault quite precisely.  For smaller faults; however, 

the change in characteristic impedance is often not measurable easily.  Traditionally, wire 

fault troubleshooting relies on experienced technicians to inspect the suspected areas 

visually.  In addition to the inability of inspecting hidden spots, physically searching 

through bundles of already bridled wires on an aged aircraft can often cause even more 

unintended damages.  That is on top of the cost of grounding the aircraft.  Therefore, 

newer methods are needed to mitigate these problems.   

Reflectometry has become a popular technology that provides effective and 

reliable results if properly understood.  The measured results are often difficult to 



3 

 
 

interpret, and computational algorithms are often required to interpret the results.  These 

algorithms need two types of simulation.  Forward modeling is used to simulate the 

transmission line and predict the outcome of the reflectometry response.  Inverse 

modeling takes these forward simulations, often runs with many different parameters, 

compares them in some way to the measured data, and determines the most likely 

forward model that matches the measured data, thus determining the wiring system and 

location and severity of the wiring fault. 

Time domain transmission line modeling has been one of the main techniques for 

the existing forward simulation methods.  The simplicity of programming makes many of 

the simple transmission line simulations possible.  However, the demand of 

computational resources makes these methods less valuable in more complex scenarios 

and inverse simulations.  This is especially true for those algorithms that synthesize the 

result with three-dimensional models (i.e., some types of FDTD simulations).  

Additionally, existing methods are often inflexible and need much reprogramming for 

different configurations.  A more efficient simulation method in time domain is needed.  

This dissertation introduces a new time domain method that does the reconfiguration 

processes graphically and with very little reprogramming.   

In addition to its inefficiency, pure time domain methods are difficult to use to 

model nonlinear behavior and frequency dependent parameters such as characteristic 

impedances and complex propagation constants.  Most of the time domain simulation 

methods idealize these parameters in order to simplify the process.  The simplification 

often loses the fidelity that is critically needed in more realistic models.  A work around 

to this problem is to simulate the transmission line in the time domain, transform the 
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result from time domain to frequency domain in order to apply frequency domain 

parameters and then convert it back to time domain.  Although this can be very inefficient, 

it is probably one of the better solutions available.  The drawback is that the frequency 

domain process is typically a blanket solution in which the algorithm applies to the entire 

transmission line system.  In the real word, the transmission line systems are rarely 

identical in every section.  Therefore, this method also has its limitations. 

In order to solve these problems, this dissertation demonstrates several methods in 

the frequency domain that do not require back and forth time/frequency domain 

conversions.  Instead, they simulate the transmission lines directly in the frequency 

domain.  The ABCD method in particular, can simulate realistic results within seconds 

and each section can have its own frequency properties.  The simulation time of this 

method is independent of the wire length, since it is an analytical solution.  Therefore, it 

does not have the common numerical method problems, in which the simulation time can 

grow linearly or even exponentially with the length and complexity of the transmission 

line. 

Most of results in this dissertation will be demonstrated with time domain 

reflectometer (TDR).  This is the primary tool that our sponsors (Boeing Co. and NASA) 

use, and it provides a recognizable baseline for anyone working in reflectometry.  

However, the application is not limited to TDR.  It works for STDR, SSTDR [6] and 

other types of reflectometry, as well. 

Finally, one of the most difficult tasks is the inversion, in which we need to 

interpret a set of given or measured data into a possible configuration or a fault.  One 

approach is to compare the data against a library of data from known models.  To 
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generate this library, a common approach is to measure all the interested fault scenarios.  

This is very commonly used in the military radar industry, in which the model airplane or 

even real airplane is constantly being measured, and the signatures are recorded and 

stored in a huge library for target recognition.  Given enough data gathered, a pattern of 

an object may be revealed.  Even with abundant financial and technical resources, the 

military radar industry often has to rely on some type of simulation to assist on the 

building of the library.  Thus, radar target generators (RTG) are frequently used to 

simulate reflected radar signals for calibration and training purposes.  This is similar to 

what could be required for wire fault location.  However, the faults on a transmission line 

do not have a fixed size, shape or location, and every wiring system is different.  

Therefore, creating such an inclusive library by measurement is nearly impossible.  In 

order to identify the nature of a fault on a transmission line, an efficient and realistic 

forward method is needed, and a systematic inversion algorithm is also required. 

 
 

1.2 Overview 
 

The objective of this dissertation is to develop forward simulations and inversion 

algorithms to locate small faults in electrical wiring systems.  This required efficient 

forward simulations of high fidelity, and very accurate inversion algorithms.  Several 

novel methods were developed and compared, and the best combination of methods was 

selected. 

Chapter 2 reviews and discusses various existing forward modeling techniques.  

These techniques are categorized into three generations.  The first generation methods 

can be represented by the bounce/lattice diagram and the Bergeron method [7].  These 
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methods typically provide quick estimations where accuracy is not required.  They are 

also used in textbooks frequently due to their intuitivism.     

The second generation methods rely on numerical techniques and are mostly 

accomplished in the time domain.  These methods trace the waveform propagation 

numerically.   FDTD and Generalized Bounce Diagram (GBD) [8], [9] are often used to 

model simple transmission lines. 

The third generation method is led by the well-known microwave technique, the 

scattering parameters, or S-parameters.  Various high profile publications [10] - [13] have 

used this method as the foundation for solving transmission line or geophysical forward 

problems. 

Chapter 3 discusses the problems of the existing methods.  Additionally, this 

dissertation demonstrates a few techniques that can mitigate some of these problems.  

Signal flow diagram (SFG) and the extended signal flow diagram (ESFG) are introduced 

to provide a systematic way of solving cascading transmission line modeling problems.  

With proper configurations, using these methods can be as easy as building Lego® 

blocks.  Thus, the simplicity makes this technique very attractive for those who need to 

analyze transmission lines in the field. 

Most of the second generation methods are capable of producing decent results; 

however, are not sufficient for small fault inversion purposes.  Additionally, the speed of 

these numerical methods is often too slow for real world applications.  Therefore, the 

third generation methods are introduced to mitigate the problems.  The ABCD parameter 

method [14] , [15] is discussed in this chapter.  It is capable of modeling frequency 

dependent parameters and components such as characteristic such as characteristic 
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impedances, complex propagation constants and reactive loads.  Furthermore, this 

method is very computationally efficient and suitable for inversion purposes.  

Chapter 4 introduces a quick way of estimating chafe profiles using commercial 

software packages [16].  CST’s Microwave Studio was chosen due to its capability of 

simulating three-dimensional bodies.  Like most of the similar 3D products, CST 

Microwave Studio does a great job simulating the electromagnetic models, but suffers 

from slow performance and heavy computational resource requirements.  We overcome 

this limitation by interpolating only a few simulated results, so the profile of a chafe can 

be quickly formed.  This fault profile can further be represented with an analytical 

equation using curve fitting method.  Thus, the nature of the fault can be determined by a 

simple search on the profile.  The fault signatures and probing techniques are also 

discussed. 

Chapter 5 demonstrates a few different approaches for inversion, all of which rely 

heavily on the forward method.  For simple structures, the analytical inverse solution was 

derived and can be applied.  However, this method often fails on many of the real world 

situations, such as multisection configurations or noisy environments.  The second 

inversion approach utilizes scanning algorithms that can often find the fault, but at the 

cost of computational time.  For complex structures, this method can be extremely 

inefficient.  An iterative inversion method [17], [18] is introduced as the third approach.  

With the assistance of realistic forward model and optimization techniques, the inverse 

result can be determined with only a few iteration steps. 

Chapter 6 summarizes this dissertation and comments on possible future research 

effort, and hence to improve the capability and performance of transmission line 
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modeling.  The major technical contributions of this dissertation are the development of 

highly efficient forward models with sufficient fidelity to model small, frequency 

dependent faults, and the development of associated inverse models to determine the 

location of small faults in wiring systems.  These methods are significant improvements 

over previously available methods, and can provided far better resolution for small faults 

than ever before.  However, they are still limited by the basic stability of the wiring 

system.  If a fault signature and the signature of normal variation on the wire (due to 

moisture, vibration, etc.), these two may not be distinguishable.  Hence, if the system is 

set with sufficiently low tolerance to locate the fault, it will also suffer from false 

positives caused by the ordinary changes.  This limits the faults that can be found to those 

above the noise margin of the system. 

 

 

 



 
 
 
 

 
 

CHAPTER 2 
 
 
 

WIRE FAULT LOCATION TECHNIQUES 
 
 
 

2.1 Overview 
 

The objective of this dissertation is to develop forward simulation models and 

inversion algorithms to locate small faults in electrical wiring systems.  This requires 

efficient forward simulations of high fidelity, and very accurate inversion algorithms.  

This chapter reviews the methods that have previously been used, and ways in which they 

may be modified for our application. 

Numerous transmission modeling techniques have been used.  In general, these 

techniques can be categorized into three different approaches.  The first generation 

modeling techniques utilize graphical approaches to trace the wave propagation.  These 

methods are able to perform quick estimation graphically with little training.  Therefore, 

they are presented in many of the textbooks to teach students and engineers about signal 

propagation in wiring systems.  However, the capabilities of these graphical methods are 

limited to very simple cases.  Additionally, the idealized wave propagations rarely 

provide sufficient fidelity to match real world measurement results with the level of detail 

needed to locate small faults. 

The second generation techniques enhance the wave tracing capabilities by 

logically dividing the transmission lines into a number of small sections or grids.  With 
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the assistance of modern computing power, these methods can model much more 

complicated fault scenarios such as multisections and branched networks.  One of the 

biggest drawbacks for these methods is inefficiency.  Since the wires are divided into 

many small subsections, increasing resolution to model small faults increases the 

computational burden substantially and slows the process dramatically.  This is especially 

serious for long wires with very small faults where high resolution is needed.  Another 

problem for these second generation methods is that the modeling is often performed in 

time domain, so many of the frequency dependent parameters are not properly 

represented. Although time domain methods have frequently been used for simulation 

purposes [19] - [21], these methods are rarely used for inversion purposes, in which high 

fidelity and high efficiency are both needed. 

 The third generation modeling methods are generally performed in the frequency 

domain.  The result may be later transformed back into the time domain.  Since the 

modeling is performed in the frequency domain, the frequency dependent parameters are 

taken into account.  Without having to divide the wires into many small sections or 

meshes, the resolution has less impact on the overall efficiency of the method.  Therefore, 

the third generation methods are typically much more efficient and the results come much 

closer to the detailed measurement data. 

 The three generations of the forward modeling methods are discussed in this 

chapter.  Table 2.1 summarizes the various techniques that are applied to these 

forwarding modeling methods. 
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Table 2.1 Forward Modeling Techniques 
 

Forward Modeling Techniques 
Generation Method Applied Techniques 

First 
Bounce/Lattice Diagram Graphical 
Bergeron Diagram Method Graphical 

Second 

Finite Difference Time Domain 
(FDTD) Discrete, Time Domain 
Generalized Bounce Diagram (GBD) Discrete, Time Domain 

Signal Flow Graph (SFG) 
Analytical & Graphical in Time 
Domain 

Extended SFG 
Analytical & Graphical in Time 
Domain 

Third 
S-Parameters Discrete, Frequency Domain 
ABCD Parameters Discrete, Frequency Domain 

 
 
 

2.2 Transmission Line Basics 
 

The main difference between circuit theory and transmission line theory is the 

electrical length, in which the physical length of the medium is expressed in number of 

wavelengths.  When the physical length of a medium is much smaller than the electrical 

wavelength, the transmission line effects may be ignored.  However, once the signal 

frequency increases or the wavelength shortens, the transmission line effects need to be 

accounted for.  In general, when the ratio of physical length to the wavelength is greater 

than 0.01 [22], the transmission line effect cannot be ignored. 

Most of the common transmission lines operate in Transverse ElectroMagnetic 

(TEM) mode, where the electric field and the magnetic field are transverse, or 

perpendicular, to the direction of wave propagation.  There are transmission lines, such as 

hollow waveguides and optical fibers that operate in higher order modes; however, they 

are beyond the scope of this dissertation. 
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A TEM transmission line can be represented with the lumped element circuit 

model [22] as shown in Figure 2.1, where 'R
 
is the combined resistance per unit length 

( z∆ ), 'L  is the combined inductance per unit length, 'G  is the combined conductance 

per unit length and 'C
 
is the combined capacitance per unit length.  These basic elements 

are often called the transmission line parameters and the equivalent circuit model built 

using these basic parameters are called lumped element circuit. 

The complex propagation constant ( )γ of a transmission line is defined as (2–1), 

where real part ( )α  is the attenuation constant with the unit of Neper/m and imaginary 

part ( )β  is the phase constant with the unit of rad/m.  The characteristic impedance 0( )Z

is defined as (2–2). 

 
 

 
 
 

 
 
 
At very high frequencies, where ω  dominates, or lossless conditions, where 'R  

and 'G  can be neglected, (2–2) can be simplified to (2–3). 

 
 

 
Figure 2.1  Transmission line lumped element circuit model. 
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  0
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ω
ω
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=

+
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Unlike steady state, the transient response of an electrical signal on a transmission 

line bounces back and forth between the sending and receiving ends.  If there is an 

impedance mismatch on the transmission line, a portion of the energy transmits through 

and the rest reflects back off the impedance mismatch.  Thus, multiple reflections occur 

and the wave propagates in different directions simultaneously.  Unless the impedances 

of the signal source, the transmission line, and the load are all perfectly matched, the 

transitional signal bouncing behavior is inevitable.  It is this transient behavior that brings 

back the information on the wire health condition to where the test source is.  Although 

this transient behavior can be observed using either current or voltage signals/pulses, 

most applications use voltage since it is easier to measure and interpret.  Therefore, 

reflectometry is also often referred to as voltage reflectometry. 

Figure 2.2 shows an incidental signal propagating along a transmission line with 

the characteristic impedance of Z0 and a load with characteristic impedance of ZL.  The 

magnitude of the signal that is being reflected and transmitted can be calculated with the 

voltage reflection coefficient (Γ ) and voltage transmission coefficient (T ), which are 

defined in (2–4) and (2–5).  

The main task of reflectometry is to track the propagation of the waves as they 

bounce back and forth on the transmission line.  Without a proper method, this task can 

be tedious and yet complex on a multisection configuration.  The next section of this 

dissertation introduces various forward modeling techniques. 

 

  0

'

'

L
Z

C
=  (2–3) 
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Figure 2.2  Reflection coefficient and transmission coefficient on a transmission line with 
load 
 
 
 

 
 
 

 
 
 

2.3 Time Domain Reflectometer 
 
 A typical TDR includes two essential elements: a signal generator and a high 

speed data sampler.  The type of signal generator may vary depending on the 

manufacturers.  3M Advanced System Tester - 900AST for example, uses pulses with 

various widths as the signal source.  Campbell Scientific TDR100 as shown in Figure 2.3, 

on the other hand, utilizes a sharp rising step function as its signal source.  For simplicity, 

this dissertation has chosen TDR100 as the primary equipment for the data measurement. 

 A typical TDR internal circuit is displayed in Figure 2.4 [23].  A step signal 

source with 50Ω  impedance is connected to a high speed data sampler with 1MΩ  

impedance in parallel.  Since the 1MΩ  data sampler has much higher impedance than the 

50Ω  source impedance, it is essentially an open to the signal source and the load effect 

can be ignored.  The equivalent circuit is displayed in Figure 2.5. 

  0

0

L

L

Z Z

Z Z

−
Γ =

+
 (2–4) 

  1T = +Γ  (2–5) 
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Figure 2.3 Campbell Scientific TDR100 time domain reflectometer. 
 
 
 

 
Figure 2.4 A typical TDR circuit with a load (ZL) at the end of wire under test (Z0).  The 
data sampler with 1MΩ  impedance acts like an open to the step generator. 
 
 
 

 
Figure 2.5 The equivalent circuit of the TDR with wire under test (Z0) and load 
impedance of ZL. 
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2.4 First Generation Forward Methods 
 

2.4.1 Bounce/Lattice Diagram 
 

The bounce diagram, also known as the lattice diagram, provides a systematic 

way of tracing the wave propagation on a transmission line in a graphical manner.  This 

methodology is called the bounce diagram since it represents the electromagnetic waves 

that bounce back and forth at the impedance discontinuities of the transmission line.  

Figure 2.6 shows the typical voltage bounce diagram [22] that represents the transient 

voltage at a quarter (/ 4l ) of the total wire length with an incidental voltage signal of V+. 

 

 

Figure 2.6  An example of a single section bounce diagram at length 
4
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Both voltage and current of the electromagnetic wave bounces off the 

discontinuities, but we are more interested in the voltage since it is easier to measure. 

There is a voltage reflection coefficient at each end of the transmission line, SΓ  at the 

source and LΓ at the load.  The source and load reflection coefficients can be calculated 

as (2–6) and (2–7), where 0Z represents the transmission line characteristic impedance, 

SZ denotes the source characteristic impedance and LZ is the characteristic impedance of 

the load.  The zigzag segments represent the transient voltages at / 4l  on the 

transmission line, in which the amplitudes of the voltages change by a factor of the 

reflection coefficient at either end of the transmission line.  The vertical axis of the 

voltage bounce diagram is the time it takes to travel, with a normalized unit of period (T).  

T shows the time it takes the signal to propagate from one end of the transmission line to 

the other.   

 
 

 
 
 

 
 

At the point of interest on the transmission line, in this example, a quarter of the total 

length, draw a vertical line from the point of interest on the transmission line to the 

bounce diagram and sum up all the transient voltages that intersect with the vertical 

dashed line in Figure 2.6.  This way the total transient voltage response can be obtained.   

  0

0

S
S

S

Z Z

Z Z

−
Γ =

+
 (2–6) 

 
 

0

0

L
L

L

Z Z

Z Z

−
Γ =

+   
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Consider sending a sharp rising step voltage signal down the line, the result of 

time domain wave propagation observed at / 4l can be displayed in Figure 2.7.  This step 

function response is the signal that would be measured with so-called time domain 

reflectometry (TDR).   

This graphical representation of wave tracking method is very intuitive and it is 

often used in textbooks.  However, most of the practical applications are much more 

complicated than just a single section of wire.  Instead, it can be many cascaded sections 

or networks.  Tracking the wave in these configurations with bounce diagrams may be 

possible, but is a daunting task.  Thus, the simple bounce diagram method is rarely used 

in real world problems. 

 

 
Figure 2.7  TDR response at / 4l

 
using the simple bounce diagram method 
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2.4.2 The Bergeron Diagram Method 
 

In a system where the load is not linear, that is, the relationship between the 

current and voltage at the source or load is not linear, the simple bounce diagram method 

no longer works since it uses the superposition methodology to track the wave 

propagation.   

The Bergeron diagram method [7] is another graphical way of tracking the wave 

propagations.  Figure 2.8 shows a single section transmission line terminated with a load 

(ZL).  At t=0, the switch closes and the voltage source (VS) with an internal impedance 

(ZS) induces a voltage signal down the transmission line.   

The Bergeron diagram method starts with the steady-state (t = ∞ ), and thus the 

characteristics of the transmission line can be ignored temporarily and circuit theory can 

be used.  The next step is to derive the receiver (load) input characteristic or the load line 

equation, which is displayed as (2–8). 

 
 

 
 
 

 
Figure 2.8  A step voltage source is induced to the single section transmission line with a 
load of ZL. 
 
 

  B B LV i Z=   (2–8) 
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 The load line slope of (2–8) is ZL.  Similarly, the characteristic of the output of 

the driver (source) can be written as (2–9) with a slope of –ZS. 

 
 

 

 
The next step is to plot the lines derived in (2–8) and (2–9) on a voltage-current 

diagram as shown in Figure 2.9.  Since the slope of (2–8) and (2–9) are different in 

polarity, the two lines will intersect at a point Q.  When t → ∞ , a steady-steady condition 

is reached.  Thus, the voltages at A and B are the same as the source VS. Likewise, the 

current at the source is the same as at A, B and the load (ZL).  Therefore, the intersection 

point of Q is called the quiescent point. 

 
 

 
Figure 2.9  The driver output characteristic equation ( A S A SV V i Z= − ), receiver input 

characteristic equation (B B LV i Z= ), quiescent point intersection (Q) under steady-state 

condition  
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By starting at (V,I) = (0,0), plotting the wave propagation in a fashion of ZL 

and  –ZS in slopes, a zig-zag Bergeron Diagram is developed as shown in Figure 2.10.  

To find the transient voltage response at the load (ZL), we can extend the intersections 

between the zig-zag pattern and VB using (2–8).  The TDR response at the load is 

demonstrated in Figure 2.10.  Similarly, the TDR response at the source can be found by 

extending the intersections between the zig-zag pattern and VA with (2–9).  The result is 

displayed in Figure 2.11. 

For transmission line configurations that are not linear, the simple bounce 

diagram typically fails.  However, with the Bergeron diagram method, the process is 

similar to what have been described, except that the limiting lines are curved rather than 

straight.  One can simply plot the nonlinear receiver and driver equations to replace (2–8) 

and (2–9).  The rest of the steps remain the same as demonstrated.  An example of 

nonlinear load transmission line analysis using the Bergeron’s diagram method is 

displayed in Figure 2.12. 

 
 

 
Figure 2.10  Transient voltage at the load (ZL) using the Bergeron diagram method 
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Figure 2.11  Transient voltage at the source (ZS) using the Bergeron diagram method 

 
 
 

 
Figure 2.12  Transient voltage at the source (ZS) with nonlinear load (ZL) using the 
Bergeron diagram method.  
 
 
 
 
 
 
 

 

I (Current)

A S A SV V i Z= −

( )Bτ

Q
V

 (
V

o
lt

a
g

e
)

(3 )B τ
(5 )B τ

(0)A

(2 )A τ

(4 )A τ
(6 )A τ

(7 )B τ

( 0)t<

( )timeτ

1 2 3 4 5 6 7 8 9 10 11

B B LV i Z=

Sslope Z=−

Lslope Z=

AV

I (Current)

A S A SV V i Z= −

( )Bτ

Q

V
 (

V
o

lt
a

g
e

)

(3 )B τ

(5 )B τ

(7 )B τ

( 0)t<

( )timeτ
1 2 3 4 5 6 7 8 9 10 11

( )B B LV f i Z=
BV



23 

 
 

2.5 Second Generation Forward Methods 
 

First generation forward methods trace the propagation of idealized waveforms 

graphically.  These methods provide conceptual results and intuitive steps in general; 

however, the waveforms are rather idealized.  They are a good approximation to real 

world situations, but are not sufficiently detailed to provide the forward solutions for 

locating small faults.  Additionally, for more complicated transmission line configuration 

(e.g., multiple sections), these first generation (graphical) forward methods become 

impossibly cumbersome to solve.  Therefore, some of the better solutions have been 

developed.  This section describes the next generation of methods for predicting 

reflectometry responses of wires and wiring systems. 

 

2.5.1 Finite Difference Time Domain (FDTD) 
 

The finite difference time domain method has been one of the most popular 

techniques for computational electrodynamics modeling.  The FDTD concept was first 

introduced by Kane Yee in 1966 [24], but it was not widely used until the 1990s due to 

the extensive computational resources required.  This method solves Maxwell’s equations 

in the time domain by converting the differential equations to difference equations and 

iteratively resolving these difference equations. 

One-dimensional (1D) FDTD can be used to solve any problem that is uniform in 

two dimensions and the wave propagates in the third dimension. This applies to 

many/most wiring simulations.  Assume a TEM wave propagates in x-direction, the 

electric field is z-polarized and the magnetic field is y-polarized as shown in Figure 2.13. 
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Figure 2.13  Electric and magnetic fields propagating in the x-direction in TEM mode 
 
 
 

Maxwell’s equations in differential form shown in (2–10) and (2–11) govern the 

time varying electromagnetic fields in free space.  Equation (2–10) is also known as 

Ampere’s law, and (2–11) is Faraday’s law [22]. 

When Maxwell’s differential equations (2–10) and (2–11) are examined, it can be 

seen that the change in the E-field in time (derivative) causes the change of the H-field 

across the space (curl).  On the other hand, the change in H-field in time causes the 

change of E-field across the space.  If only one dimension is considered, equations (2–10) 

and (2–11) can be written as (2–12) and (2–13). 
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Equations (2–12) and (2–13) can further be arranged in the scalar terms as (2–14)  

and (2–15). 

 

 

 

By applying the central finite difference (CFD) [25] approximation, (2–14) and 

(2–15) become (2–16) and (2–17) 
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where t∆  is the time step while x∆  is the cell size.  Finally, (2–22) and (2–23) can be 

rearranged as (2–18) and (2–19). 

 

 

 

From (2–18), the future state of the electric field can be obtained from the 

previous states of electric and magnetic fields.  Likewise, (2–19) indicates that the future 

state of magnetic field can be derived from the previous magnetic and electric fields.  

This leapfrog style of algorithm goes on continuously until the system reaches steady-

state.  In the case where the wave hits an impedance discontinuity, it will reflect from the 

interface and (if applicable) propagate into the media at a different magnitude and 

velocity of propagation. 

 With proper discretization of the model, FDTD can be used to trace the 

complicated electromagnetic wave propagation numerically. FDTD is a grid-based 

computational electrodynamics modeling technique in the time domain.   It simplifies the 

complex electromagnetic problems by defining the electric field vector and magnetic 

field vector components in a volume of space 
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At any point in the spatial volume, the updated E-field and H-field values depend 

on the previous values stored in the memory.  In order to achieve high resolution, a very 

fine grid structure is typically implemented.  This translates to a very large computational 

resource.  Thus, this method is usually not feasible to implement in transmission line 

systems with fine and detailed fault models, where the structures are typically thin and 

long.  

In general, the FDTD algorithm can be summarized as the flow diagram shown in 

Figure 2.14.  The fact that the FDTD is capable of solving complex electromagnetic 

differential equations in time domain with gridded cells makes this method highly 

popular.  It is especially true when the high performance computers are made widely 

available.  FDTD records the wave propagation, E-field and H-field during the process.  

This feature also enables the animated display of electromagnetic wave propagation.  

Additionally, with resolution high enough, the gridded structure is capable of modeling 

structures with complex geometric shapes.  Such flexibility is another attractive feature 

among researchers. 

FDTD requires to grid or discretize the entire computational model, in which 

often requires excessive amount of computational resources for the fields to move along 

these cells.  This phenomenon is particularly obvious on models with long and thin 

features.  Unfortunately, most electrical wires belong to this category.   
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Figure 2.14  A general FDTD algorithm flow chart diagram of FDTD. 
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2.5.2 The Generalized Bounce Diagram 
 

Although the simple bounce diagram method is hardly ever used for simulation 

purposes, the generalized bounce diagram may be.  This method utilizes a similar concept 

with blend of a numerical technique that makes this legacy method much more powerful 

[8].  The generalized bounce diagram (GBD) divides the transmission line into numerous 

tiny elements and puts them into arrays or matrix form.  Figure 2.15 shows a simple 

branched network with each arm of the network divided into numbers of small elements.  

Each of these small elements has the same electrical length, that is, the physical lengths 

of these elements may be different, but it takes the same amount of time for the signal to 

travel through each small element.   

The input signal scatters through the system by passing the signal to the next 

element during the iteration.  At the junctions or locations where impedances do not 

match perfectly, the boundary condition rules apply.  Figure 2.16 demonstrates an 

impedance mismatch at point P.  A portion of the incidental signal reflects back with the 

magnitude of Γ  and transmits through P at the magnitude of T, where Γ and T are the 

reflection coefficient and transmission coefficient as defined previously.  After summing 

all the signals per element, the total response at the particular time is defined and ready 

for the next iteration. 

The GBD method normally uses an impulse signal and propagates down the wire.  

Iterating over time and applying the boundary conditions, we are able to obtain the 

impulse response of the system.  From signal and systems theories, we can convolute the 

input signal with the system impulse response in order to obtain the reflectometry output 

of the system.  This result is often called the signature of the reflectometry. 
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Figure 2.15  An example of a simple branched network using generalized bounce 
diagram. 
 
 
 

 
Figure 2.16  Boundary condition of an impedance mismatch in GBD algorithm, where T 
denotes the transmission coefficient while Γ  represents the reflection coefficient.  
 
 
 

A step function is frequently used as the signature profile in a TDR system.  By 

convolving this step function with the system impulse response acquired with GBD, the 

TDR response (signature) can be obtained.  Sequence Time Domain Reflectometry 

(STDR) and Spread Spectrum Time Domain Reflectometry (SSTDR) results can also be 

achieved with the similar fashion.  The signature profile of these systems is convolved 

with the impulse response result from GBD to obtain the S/SSTDR signatures. 
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For more rigorous forward solution requirements, the attenuation constants of 

each transmission line can be distributed evenly into the small elements of the GBD.  

Additionally, a low pass filtering effect can be applied in order to make the result more 

realistic.  

The GBD technique essentially converts a 3-D problem into 2-D (matrix) or even 

1-D (array) problem.  Although this method reduces the computational resources 

dramatically, in applications with long transmission lines that require high resolution, this 

method can still eat up a lot of computer time. 

 
 

2.6 Third Generation Forward Method 
 

As we have seen in the previous sections, the graphical first generation methods 

do not provide realistic results, and tracking the wave propagation in complex structures 

with these legacy methods can be a daunting task.  The second generation methods have 

improved capabilities by using numerical techniques.  With proper setups and fine 

resolutions, the results from these second generation methods have much better fidelity 

than the earlier methods.  However, these second generation methods often require 

significant computational resources.  This is seen more clearly for configurations with 

long wires requiring high resolutions such as small faults (high fidelity) on long wires.  

Moreover, the frequency dependent parameters are not properly accounted for in these 

methods unless the results are converted between the time and frequency domains where 

filtering can be applied.  In order to accommodate the high efficient and frequency 

dependent properties that are needed for high fidelity inverse solutions, new methods 

have been used.  Most of the newer methods are based on the scattering parameters (S-
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parameters), which offer excellent fidelity and computational efficiency.  This 

dissertation expands upon some of these methods. 

Scattering parameters (S-parameters) have been widely used in microwave 

applications [26] - [28].  Scattering analysis is a very powerful tool that provides the 

system parameters of an N-port network.  The S-parameters relate the incidental voltage 

waves to the reflected voltage waves.  This provides the reflectometry wire fault 

information, which is carried by the reflected waves.  However, without simplification S-

parameters may be too cumbersome to apply directly to large scale reflectometry 

applications.  S-parameters are defined as (2–20) [26] 

 
 

 
 
 
where the “+” sign indicates the incidental voltage signal and the “-“ sign represents the 

reflected voltage signal. 

Although a simple transmission line can be represented as a two-port network, for 

reflectometry, we need only single-port information at the input end where the reflected 

signal is acquired.  Thus, in (2–20) when i=j=1, the S-parameter becomes (2–21). 

 
 

 

 

  
0

i
i j

j
kv fork j

V
S

V

−

+
+= ≠

=   (2–20) 

  1
11

1
2 0v

V
S

V

−

+
+=

=   (2–21) 



33 

 
 

Equation (2–21) fully describes the relation between the reflected signal (V1
-) and 

the incidental signal (V1
+).  This is sufficient for reflectometry purposes.  

Figure 2.17 shows a simple single-section setup terminated with a load ZL and 

input impedance Zin at the beginning of the wire with lengthl .  From [22], the equivalent 

input characteristic impedance (Zin) of such a configuration with lossless transmission 

lines can be calculated as (2–22).   

 
 

   

 
 

In the case where the transmission line is lossy, (2–22) can be rewritten as (2–23) 

 

 
 
 

 
Figure 2.17  The equivalent input characteristic impedance observed from a distance l
away from the load ZL. 
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where γ  is the complex propagation coefficient that includes both attenuation constant 

and phase constant. 

This concept can be extended to multisection configurations.  As shown in Figure 

2.18, an n-section cascaded TDR setup is terminated with a load ZL.  Each section has an 

arbitrary length of 1l , 2l , …, nl .  Likewise, the characteristic impedance of each section 

can also be arbitrary as 0(1)Z , 0(2)Z , …, 0( )Z n .  The input characteristic impedances 

(1)inZ , (2)inZ , …, ( )inZ n , are defined as the look-in impedance at the beginning of the 

section, which includes all the cascaded characteristic impedances up to the end of line 

(the load). 

From (2–22) and (2–23), the equivalent input impedance at section n can be 

calculated as (2–24) [10]: 

 
 

 
 
 

Likewise, substituting (2–24) as the load impedance of section (n-1), Zin(n-1) can 

be calculated as (2–25). 

 
 

 
 
 

Thus, at the beginning of the transmission line, the input characteristic impedance 

Zin(1) can be calculated as (2–26). 
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Figure 2.18  An n-section cascaded configuration with load impedance of ZL and source 
impedance of ZS. 
 
 

 

 
 
 
 Therefore, the reflection coefficient S11 right after the TDR tester can be 

calculated as (2–27). 

 
 

 
 
 

Note that the equations above are defined in the frequency domain.  Therefore, 

they cannot be used directly to obtain the time domain reflectometry result.  As a 

standard practice, the time domain result can be calculated as (2–28) 
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where S(f) is the incidental signal in frequency domain.  For TDR, most systems use a 

sharp rise step function, pulse or impulse signal as the input. 

With proper modification of S-parameters, this method can be flexible and 

efficient to obtain the reflectometry forward method.  Yet, there is a simpler way of 

handing the cascaded configurations. 

 

2.7 Summary of Existing Forward Modeling Methods 
 
This chapter summarizes some of the most frequently used forward transmission 

line modeling techniques.  The bounce diagram, the Bergeron diagram, the generalized 

bounce diagram, the finite difference time domain method and the S-parameter methods 

were discussed.  Each of these methods has its advantages and limitations. 

The bounce diagram method provides graphical procedures to trace the 

propagation of electromagnetic waves on transmission lines.  The Bergeron diagram 

expands the nonlinear transmission line modeling capability while retain the graphical 

features.  These first generation methods help new learners to understand the transients 

intuitively, but they cannot be used for inversion due to lack of fidelity. 

The FDTD method opens new possibilities by modeling electromagnetic waves 

numerically, but the inflexibility of building wire sections makes this method less 

attractive.  The GBD method simplifies the FDTD by using strictly the time and space of 

the wave propagation.  Without having to calculate the electric field and magnetic field, 

GBD outperforms the FDTD in speed.  However, it loses the critical frequency dependent 

parameters. 
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The popular S-parameter has a proven history of being used in inversion for 

geophysical applications.  This frequency domain method offers high fidelity without 

sacrificing efficiency.  Different from geophysical applications, transmission line 

modeling often requires flexible multisection cascading features.  Therefore, the next 

chapter will introduce a new method that allows such features to be implemented 

conveniently. 

 



 

 
 

CHAPTER 3 
 
 
 

MODULARIZED FORWARD MODELING TECHNIQUES 
 
 
 

3.1 Overview 
 
 Chapter 2 reviewed methods that are commonly used for today’s forward 

transmission line modeling.  All of these methods may be effective, but none are ideal for 

modeling small faults with high fidelity on long transmission lines.   In this chapter, we 

will introduce some newer forward modeling techniques that are better suited to small 

faults on long wires.   

One of the problems with existing modeling techniques is flexibility.  For each 

different wiring configuration, traditional techniques require significant overhaul or even 

reprogram of the entire model.  A method that enables the user to configure model setups 

like building LEGO® blocks is greatly needed.  Therefore, this chapter discusses these 

newer modularized methods that provide the ease of modeling construction without 

sacrificing performance and accuracy.  

Each element in the wiring configuration (the good wire, the fault, connectors, 

branches, etc.) will be either measured or simulated independent of the rest of the system.  

These independent modules will be combined to obtain the response of the total system 

using any combination of measured or simulated results for each module. 
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The first generation forward modeling techniques are essentially tracing 

propagating waves on the wire graphically.  It becomes very complicated and difficult to 

trace all the forward and reflected propagating waves on configurations that are more 

than just a few sections.  Therefore, several improved methods have been proposed to 

solve this problem.  

 In the second generation methods, the transmission line is logically dissected into 

numerous small sections.  Instead of tracking the wave propagation analogously over the 

entire transmission line system, these newer methods monitor the condition only on each 

of the small sections and then combine them into the larger system.  Thus, the analysis is 

simpler at this microscopic level point of view.  At each of the time step, or clock, the 

signals on the wire pass along forward or reversely.  Therefore, the total system response 

can be obtained at a preset simulation time. 

It is also important to include the frequency dependent parameters into the 

simulation model.  Parameters such as characteristic impedances, attenuation constants 

and phase constants are all functions of frequency.  Without these critical features, the 

model cannot retain its fidelity for realistic simulation.  Most second generation methods; 

however, solve problems at time domain one single frequency each time.  

A remedy to this problem is to simulate the transmission line model multiple 

times at broad frequencies of interest.  Unfortunately, this approach makes it even more 

inefficient for most of the second generation methods.  Therefore, third generation 

methods were created to provide further remedies by modeling the transmission line 

directly in the frequency domain. Therefore, inefficient time domain processes can be 

eliminated. 
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3.2 Signal Flow Graph 
 

One method of calculating the response of a transmission line with modular 

components is to utilize the signal flow graph (SFG).  This method is commonly used to 

evaluate a feedback control system.  In fact, the signal propagating on a transmission line 

is a great example of a feedback system where the output is a function of the input and 

reflected signal.  As shown in Figure 3.1, a single section TDR functional block diagram 

is demonstrated.  The equivalent signal flow graph for this system is shown in Figure 3.2, 

where 0Γ  is the initial reflection coefficient at the TDR.  01T is the transmission 

coefficient from TDR to the line.  10T  is the transmission coefficient from the line to TDR.  

10Γ is the reflection coefficient that describes the signal reflection back to the line at the 

junction of the TDR and 12Γ is the reflection coefficient at the end (load) of the 

transmission line.  The signal propagation time delays in the forward and reverse 

directions are assumed to be identical.  Finally, the input and output terminals are both 

physically located at the beginning of the transmission line. 

 
 

 

Figure 3.1  A single section TDR representation showing the feedback system on a 
transmission line 
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Figure 3.2  The equivalent signal flow graph of a single-section transmission line. 
 

 
 
The reflection and transmission coefficients are defined as (3–1) and (3–2). 
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transmission line at the magnitude of 10Γ .  The complete wave propagation steps are 

shown in the signal flow diagram in Figure 3.2. 

Once the signal flow graph is obtained, the block diagram can be simplified 

algebraically using Mason’s gain rule [29], [30], a legacy formula that describes the 

relationship between any two nodes of a linear network.  It is often used to solve the 

system transfer function, which is the relationship between the output and input.  

However, with the modern graphical programming languages such as Matlab’s Simulink 

® or National Instrument’s LabVIEW ®, this simplification process can be replaced by 

making the transmission line signal flow graph into a logical block. 

 
 

3.3 Extended Signal Flow Diagram 
 

The complicity of the SFG can grow almost exponentially if components and 

blocks are not carefully placed.  This section demonstrates a systematic way of 

organizing the SFG blocks.  Figure 3.3 shows an example of a two-section transmission 

line setup.  The equivalent SFG can be represented as shown in Figure 3.4 where each 

dashed box represents the individual transmission line.   

 
 

 

 

Figure 3.3  An example of a cascaded two-section transmission line system 
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Figure 3.4  The equivalent signal flow graph of a two-section transmission line. 

 

 
If the elements in the dashed boxes are consolidated as blocks, the SFG 

demonstrated in Figure 3.4 can by simplified as shown in Figure 3.5, where the upper box 

represents the second section of wire and the lower box is the first section of the 

transmission line.  Thus, by rotating the blocks by 90o clockwise, a cascaded N-section 

configuration SFG is displayed in Figure 3.6. 

This extended SFG concept can further be applied on a Y-junction setup depicted 

in Figure 3.7 and the equivalent block diagram is shown in Figure 3.8.  Figure 3.9 shows 

a more complicated branched network example and the simulation result is demonstrated 

in Figure 3.10.  As we can see, the simulated result matches with the measured data very 

closely. 
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Figure 3.5  The block diagram representing a cascaded two-section setup. 

 
 
 

 

Figure 3.6  The block diagram of an n-section transmission line setup. 
 
 
 

 
Figure 3.7  An example of a Y-junction transmission line setup. 

 
Tester 
(TDR) 

Z0 

1Z

2Z

11Γ

21Γ

31Γ

22Γ

12T

10T

01T

3Z

21T

13T
31T

32Γ

32T

23T

12Γ

0Γ

1in

1out

2out

2in

1in

1out

2out

2in

1in

1out

2out

2in

1L 2L
NL

1in

2in2out

1out

1in

2in2out

1out
2L

1L
input output



45 

 
 

 
Figure 3.8  The block diagram representation of a Y-junction transmission line setup. 
 

 
 

 
Figure 3.9  An example of a complex RG58 branched network configuration consists 
different wire lengths. 
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Figure 3.10  The simulated and measured results of the complex branched network 
configuration 

 
 
 

3.4 ABCD Parameters 
 

3.4.1 ABCD Matrix Review 
 

 This section describes the ABCD method, which is commonly used to evaluate 

serial sections of RF devices.  The ABCD method provides a transmission matrix which 

is often called the ABCD matrix [26].  Figure 3.11 shows a two-port network M with I1 is 

defined as the current flowing into the network while I2 is defined as the current flowing 

out from the network.  V1 at port 1 is defined as the input voltage while V2 at port 2 is 

defined as the output voltage. 
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Figure 3.11  A two-port network representing by M. 
 
 
 
 The two-port network M shown in Figure 3.11 can be represented with an ABCD 

matrix defined as (3–3): 

 
 

 
 
 

Figure 3.12 shows an n-section cascading two-port network expressed with 

ABCD matrices M1, M2, M3…Mn.  The consolidated transmission parameter is 

represented by multiplying their ABCD matrices sequentially from the right to the left as 

shown in (3–4). 

 
 

 
 
 

 
Figure 3.12  An n-section cascading two-port network representing by M1, M2,…, Mn. 
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Therefore, a system of n-section two-port network can be written as (3–5). 
 
 
 

 
 

 
where Vn and In represent the output voltage and current at the end of the n-section two-

port network while V1 and I1 are the incident voltage and current at the beginning of the 

n-section two-port network.  For reflectometry purposes, we are particularly interested in 

the voltages at either end of the network.  From (3–5), we know that for an n-section two-

port network, the incident voltage is (3–6), 

 

 
 
 

in which the element-A of the consolidated ABCD matrix fully describes the relationship 

between the incidental voltage (V1) and the output voltage (Vn) at the end of the network 

where In=0.  This stands true regardless of the number of sections in the two-port network.  

Therefore, element-A of the consolidated ABCD matrix is the only parameter of interest.  

Computing only this parameter saves about ¾ of the calculation time, and makes the 

ABCD approach particularly nice for transmission line reflectometry analysis. The term 

In=0 in (3–6) will always hold since the final section of a two-port network can be treated 

as a shunt in air with zero length, which has a unity matrix.  Therefore, this term is 

satisfied both physically and mathematically.   
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3.4.2 Using ABCD Method in Reflectometry 
 

Figure 3.13 shows a TDR tester connected to a transmission line as a signal 

source while a load with a characteristic impedance of ZL is connected at the end of wire.  

The TDR has an internal source impedance of ZS in series with the signal source V1.  The 

transmission line has a characteristic impedance of ZT, length l  and complex 

propagation constant of γ .  This configuration can also be represented as an equivalent 

circuit shown in Figure 3.14, where V1 is the incidental voltage while V2 is the output 

voltage measured at the load.  The source, transmission line and the load can be 

represented as M1, M2 and M3 respectively. 

 
 
 

 
Figure 3.13  A single-section transmission line with characteristic impedance of ZT, 
length of l and the complex propagation coefficient of γ .  The load is represented as ZL 
and the source impedance is ZS. 
 
 
 

 
Figure 3.14 – The equivalent circuit representation of a single section transmission line.  
The source, transmission line and load are represented as M1, M2 and M3 respectively. 
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There are several possible two-port network parameters that can be used to 

describe the system.  However, the ABCD method is best known for its convenience in 

cascaded two-port structures.  From [26] and [31], the source (M1), the transmission line 

(M2) and the load (M3) can be represented as ABCD matrices as shown in (3–7) through 

(3–9). 

 
 

 
  

 

 

 

 

 
 
 
 The consolidated matrix can be written as (3–10) 
 
 
 

 
 
 
where χ , ξ  and ψ  denote the elements that are not of interest for reflectometry purposes.  

For the lossless case, (3–8) can be replaced as (3–11). 
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and the consolidated ABCD matrix is (3–12). 
 
 
 

 
 
 

The transfer function, which is defined as the ratio between the output (V2) and 

input (V1), is actually the so-called TDT (Time Domain Transmission).  To use the 

ABCD method in TDR, we need to consider the wave propagation of the reflective path.   

As shown in (3–12), element-A of the consolidated matrix is the only parameter 

we are interested in.  Therefore, we do not need to derive elements B, C and D and they 

can be ignored.  The matrix leads us to (3–13) and (3–14). 

 
 

 
 
 

  
 
 

The usefulness of (3–13) and (3–14) may not be realized at first glance since they 

are in the frequency domain.  However, with the following example, we will find that it 

provides the so-called TDT (Time Domain Transmission) response.  Figure 3.15 shows a 

TDT example with four cascaded sections.  The lengths of the transmission lines are 
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2.2m (RG62), 3.7m (RG58), 2.77m (RG59) and 17.2m (RG58), respectively.  A scope 

with one mega ohms probe is connected at the end of the wire in which the high 

impedance acts as an open load and has little effect on the transmission line system.  A 

one volt step source with an impedance of 50 ohms is connected to the beginning of the 

wire as the signal source.  The measured data versus simulated result are displayed in 

Figure 3.16.  The result demonstrates that the ABCD method can precisely model the 

TDT transmission line effects on this multisection configuration. 

The difference between TDT and TDR is that the TDR measures the reflected 

signal at the beginning of the wire while TDT measures the transmitted signal at the end 

of wire.  Therefore, the reflected signal has to travel “almost” twice as far.  In most cases, 

we measure the reflected TDR signal right at the test equipment.   

Figure 3.17 shows an n-section configuration with M1 being the TDR source 

while Mn represents the load.  The TDR signal is typically acquired between the internal 

impedance (M1) and the beginning of a transmission line (M2).  In this example, it would 

be V2.  The TDR algorithm, or the transfer function, is the relationship between the 

source V1 and the data captured at V2, which is the signal reflected from the very end of 

the line. 

The forward path (TDT) from V1 to Vn can be described as (3–15) and the reverse 

path from Vn to V2 is written as (3–16) 
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Figure 3.15 A four cascaded sections TDT example 
 
 

 

 
Figure 3.16 The result of the four cascaded sections TDT example 

 
 
 

 

Figure 3.17  n-section TDT and TDR paths 
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where [M]A denotes the element-A of the ABCD matrix M.  Therefore, the TDR transfer 

function can be calculated as (3–17) , or an easier to understand term shown in (3–18). 

 

 
 
 

 
 
 

The time domain expression is simply the inverse Fourier transform of the 

product of the transfer function and input signal S (typically a step function) in frequency 

domain as displayed in (3–19). 

 
 

 
 
 
Figure 3.18 shows a complex configuration with multiple sections of transmission 

lines and a load consisting of a 1nH inductor and a 47pF capacitor.  The configuration 

also includes an internal impedance of 50 ohms and o.1 uF coupling capacitor within the 

TDR tester. 
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Figure 3.18  A TDR example of multisection transmission lines with reactive load of 1nH 
and 47pF. 
 
 
 

This configuration can be very difficult to model with legacy methods.  By using 

the ABCD method in the frequency domain, and converting the data to the time domain, 

the result demonstrated in Figure 3.19 can be obtained within a fraction of a second using 

a standard home PC. 

The result of ABCD method clearly shows its capability in modeling complex 

transmission line configurations.  In the above example, there are multiple section 

transmission lines along with a reactive load.  The ABCD method simplifies the 

transmission line structures by representing each line section, whether it is a transmission 

line, fault, source impedance or a load, with a single ABCD matrix.  Thus, modeling a 

cascaded transmission line is easily done by connecting the modularized blocks.  It is 

demonstrated that this frequency domain method is accurate, computationally efficient 

and therefore superior to the earlier techniques presented. 
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Figure 3.19  The TDR result of multisection transmission line with reactive load. 
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CHAPTER 4 
 
 
 

AN INTERPOLATION APPROACH OF BUILDING CHAFED WIRE  
 

PROFILES AND PREDICTING WIRE FAULT SIGNATURES 
 
 
 

4.1 Overview 
 

A method of building a chafed wire profile and predicting fault signature is 

presented in this chapter.  For simplicity, an RG-58 coaxial cable is demonstrated. This 

method can also be applied to other transmission lines with different geometries.   

The demonstrated method constructs a fault profile that covers a wide range of 

frequencies and fault severities, making a quick assessment of the fault severity possible.  

This efficient mathematical/numerical expression is important for future inverse solution 

purposes. 

 
 

4.2 Approach 
 

Hard wire faults including opens and shorts have been well studied.  These faults 

are easier to find than intermittent faults or less severe faults with minimal impedance 

change. Most of reflectometry measurements have been demonstrated to be effective on 

hard faults.  However, the partial faults (chafes) are the ones that are more difficult to 

identify since the system usually does not show any noticeable symptom until the fault is 

more severe.  



58 
 

 
 

Chafes are the result of improper workmanship, abrasion or vibration against 

other wire or structural members [32].  Chafes expose the conductor, and their severity is 

likely to worsen over time.  Like human health, early detection of aircraft wiring fault 

typically gives a much better chance of resolving the problem and preventing catastrophic 

failures.  Early detection of chafed wires often results lower repairing and maintenance 

cost. 

      Various techniques [33], [18] have been used to model chafes on electrical wires. 

Signals propagating in a pure TEM mode are typically assumed.  However, for shielded 

wires, once the shield is damaged the signal no longer propagates entirely in the TEM 

mode and the analysis can be much more difficult due to the higher order modes.  

Although these higher order modes do not play a significant role when the fault is small 

and the frequency is low, once the fault is severe or the frequency is high enough, the 

effect can be negatively noticeable (making it potentially detectable by reflectometry).  

Analytical electromagnetic modeling does not work effectively on multiple modes with 

arbitrarily geometric variations.  Thus, modern modeling techniques use numerical 

methods to synthesize the reflectometry results.  A common drawback among these 

numerical techniques is the heavy burden of the computational resources.  This is 

especially true when 3D techniques are employed. 

      CST Microwave Studio offers a powerful 3D Quasi-TEM mode [34] simulation.  

This is useful for frayed wires where the electric field or magnetic field has longitudinal 

components along the direction of propagation.  In other words, both TEM and higher 

modes exist on the frayed wire.  Like most iteration-based (e.g., FDTD, FEM) 

commercial software packages [35], CST is painfully slow at high resolution or where the 
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point of interest is small but the wire is long.  This is because the transmission line is 

divided into many small cells/grids with equal sizes.  Passing the numerical information 

along through these enormous is computationally extensive.  Although these numerical 

modeling software packages produce precise results, relying entirely on them to generate 

a wide range of profile is not feasible. 

 
 

4.3 Analysis 
 

Figure 4.1 shows the electric field and magnetic field inside an RG58 coaxial 

cable.  Based on the definition described in [22], the signal is propagating in the TEM 

mode since the electric field and magnetic field are perpendicular to the direction of wave 

propagation. 

However, once the shield is damaged, the field lines start to bend and the 

characteristic impedance calculation is no longer as simple as it is shown in (2–2).  Figure 

4.2 demonstrates the electrical field and magnetic field with 60-degree, 5 cm cutaway in 

the shield of an RG58 coaxial cable at 5GHz. 

To determine the characteristic impedance of a chafe, a technique proposed in [36] 

utilizes the 2-D finite difference method (FDM) to estimate the effective capacitance (Ceff) 

of the frayed wire section.  The effective characteristic impedance Zeff can be derived as 

(4–1) and (4–2) 

 

 

                                                                                     

 

  
1

eff
p eff

Z
V C

=  (4–1) 



60 

 
 

 

        
 

Figure 4.1  (a) Electric field and (b) magnetic field in a coaxial cable 
 
       

 

       
Figure 4.2  (a) Electric field and (b) magnetic field in a coaxial cable with 60o 5 cm long 
cutaway 
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 where VP is the velocity of propagation, ε  is the dielectric constant of the insulation 

material and 0µ is the permeability. 

 With CST’s Quasi-TEM mode simulation, which combines the effects of both 

TEM and higher order modes, instead of using multistage processes (such FDM to 

calculate effective capacitance and derive the characteristic impedance), we can obtain 

the characteristic impedance of the fault directly.  As shown in Figure 4.3, 13 different 

damages to the shield varying from 0 degree to 359 degrees were obtained using CST.  

By employing the polynomial curve fitting algorithm [37], we can plot the profile that 

represents the properties of the faulty shield.  This profile represents the prediction of the 

fault severity of the chafed RG58 coaxial cable.  A ninth order polynomial expression 

derived by Matlab® curve fitting toolbox can be written as (4–3) 

 

                                       
 

where θ is the cutaway angle in degrees and p0~p9 are constant coefficients. 
 
     Since the characteristic impedance is frequency dependent, we can generate a few 

more sets of data at different frequencies of interest and use the similar polynomial 

surface fitting algorithm to obtain the frequency depended characteristic impedance 

profile (3D) of the faulty RG58 as shown in Figure 4.4.  Similarly, a characteristic 

impedance function of cutaway angle and frequency can be obtained as (4–4). 
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Figure 4.3  2D impedance profile of RG58 coaxial cable at the frequency of 5GHz. 
 
 
 

 
 
 
Once this fault profile is defined, it can be reused again and again without further 

time-consuming simulations or calculations.  This type of simple expression is 

particularly useful in inverse simulations that require hundreds or thousands of forward 

simulations.  Additionally, field technicians can estimate the severity of the fault based 

on the fault profile equation (or chart) of each type of cable. 

After the chafe profile is identified, the fault signature with TDR (or other 

reflectometries) can be predicted.  A simple test setup is shown in Figure 4.5.  A 

Campbell Scientific TDR100 is used as the test source.  A shield cutaway 5 cm long and  
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Figure 4.4  3D impedance profile of RG58 coaxial cable with frequency range from 
1MHz to 5GHz 
 
 
 

Figure 4.5  5 cm long, 120o cutaway shield damage at 6.5 feet on a 12 feet long RG58  
 
 
 
120o wide at 6.5 feet of a 12 feet RG58 coaxial cable is demonstrated.  To synthesize the 

TDR result of a chafed wire, one can launch a full 3D FDTD method for the entire wire.  

However, a more efficient frequency-domain ABCD method is used for this work.  

Instead of discretizing the wire into numerous FDTD cells, the ABCD method simply 

divides the entire structure into three sets of ABCD matrices, the good wire before the 

chafe, the chafe itself and the good section after the chafe.  Other sections such as 

different types of wires, loads and connectors, could also be included. 
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4.4 Results 
 

The TDR signature of the chafed wire is presented in Figure 4.6.  The agreement 

between the measured and simulated results is excellent.  If this simulation was done 

entirely in the 3D finite integration technique such as CST or HFSS, it would takes from 

minutes to hours to complete depending on the resolution and computer performance.  

With the defined fault profile and the assistance of the frequency domain ABCD method, 

the polynomial profile building method took less than a second to perform the same task.  

Additionally, with the defined fault profile, we can easily plot the prediction of 5 cm 

chafes of various angle cutaways on an RG58 cable at 6.5 feet.  This is shown in Figure 

4.7. 

A simple yet effective wire fault profile building technique has been presented.  

Although only RG58 coaxial cable was demonstrated, this method can be applied to other 

types of transmission lines as well.  Numerical modeling of multimode chafed 

transmission lines in 3D is a slow process, but it is one of the most precise techniques 

available for the quasi TEM mode.  Once the simulation has been completed, the results 

can then be used to efficiently provide the values for inverse solutions. 

  The demonstrated method provides a quick solution for building a fault or chafe 

profile that can be used in libraries for forward or inverse solutions.  The ABCD method 

can be combined with this approach to solve wire fault location problems quickly and 

efficiently  Finally, efficient forward modeling is one of the key elements for the success 

of any inversion technique.  With this profile building technique, numerical iterations can 

be reduced or possibly eliminated, where most of the inversion effort is spent.  
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Figure 4.6  5 cm, 120o shield cutaway at 6.5 feet on a 12 feet long RG58 coaxial cable. 
 
 

 

  
Figure 4.7  Prediction of fault signatures on a chafed RG58 cable with 5 cm long cutaway.  
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CHAPTER 5 
 
 
 

INVERSE SOLUTION 
 
 
 

5.1 Overview 

 Transmission line fault location typically requires an accuracy of a few inches (at 

most, 2 feet) while the total wire length can be longer than a few hundred feet.   On top of 

these, the fault location and the nature of the fault are often unknown.  For live wire 

applications, the magnitude of test signal is limited and destructive tests are usually not 

permitted.  These requirements make a small fault on a long wire very difficult to detect 

and identify since the small reflections are often treated as noises. 

When reflectometry is used, we need to be able to pull the reflection information 

from the fault (often small) out of the noise and other signature reflections from the 

normal wiring system.  This requires an algorithm to ‘invert’ the data, identify the normal 

signature, and identify and diagnose the fault signature.  This chapter is about possible 

inversion algorithms for wire fault location. 

 A great deal of work has been published in layer peeling model inversions in 

geophysical applications [38] - [40].  These algorithms are used to identify properties of 

an object that is deep in the ground.  We will consider some of these techniques for wire 

fault location inversion algorithm. 
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A classical inverse problem can be described by an operator equation as (5–1) 

[41]. 

 
 
 

 
 
 
where D is the space of data, M is the space of model parameters and A is the operator of 

the forward model that calculates the proper data ∈d D for the given model parameter 

∈m M .  In transmission line reflectometry, D can be a collection of measured TDR, 

STDR or SSTDR signature/data.  M could be the physical wire/fault properties such as 

wire length, impedance or wire size.  The model operator, in this example, would be the 

forward modeling technique such as the ABCD method, S-parameters or bounce diagram. 

In a forward problem, the goal is to obtain the data d (reflectometry signature) 

with given model parameter m (the physical properties of a wire system including fault).  

In contrast, the goal of an inverse problem is to obtain the model parameter m with given 

data d.  A well-posed problem defined by Hadamard [42] must meet all three of the 

following conditions: 

1. The solution exists.  (We can define a wire system that produces the measured 

reflectometry signature.) 

2. The solution is unique.  (There is only one system that could produce this 

signature and it is not true for symmetrical systems.) 

3. The solution depends continuously on the data.  (There is no element of the 

wiring system that does not contribute to the reflectometry response.  For 

  , ,= ∈ ∈Am d m M d D  (5–1) 
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instance, parts of the system that are beyond a break of short circuit will not 

show up.) 

For a well-posed problem that meets all three Hadamard’s conditions, the model 

parameter m can be obtained inversely as displayed in (5–2). 

 
 

 
 
 
where 1−A  is the inverse operator of the problem.  Although it may not always be trivial, 

the inverse solution can be found mathematically if Hadamard’s well-posed definitions 

are met.  A noiseless single-section TDR inverse problem with only one unknown 

parameter (length) is usually one of the more trivial well-posed inverse problems and the 

solution can be found analytically.  Unfortunately, most practical inverse problems 

including those in wire fault location are ill-posed, in which at least one of the 

Hadamard’s conditions is not met.  A common solution is to utilize some type of iterative 

numerical method where highly efficient forward solution is used.  This chapter discusses 

both analytical and numerical inversion techniques and their applications to both well-

posed and ill-posed problems found in wire fault location.  

 
 

5.2 Analytical Inverse Solution 
 

The inverse solution, which takes the measured reflectometry data and determines 

the location and nature of a wire fault, is much more difficult than a forward problem (a 

wiring system is given, and the nature and location of the fault is known), where finding 

the expected reflectometry response is the main task.   

  { }1−=m A d
,
 (5–2) 
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In this section, we will use an analytical expression for the expected reflectometry 

response and solve it directly (analytically) for the transmission line system.  This is 

feasible only for very simple transmission line systems, but it provides a good start for 

many reflectometry analyses. 

Figure 5.1 shows a simple single section open-ended RG59 coaxial cable of 

length l  (2.8 meters).  In this simple inversion, we will assume the length (distance to 

the open circuit, which might be a break in the wire) is unknown and needs to be 

identified.  From (3–17), the TDR transfer function of a single-section configuration can 

be derived as (5–3) 

 
 

 
 
 
where 
 
 
 

 
 
 

 
Figure 5.1  A simple single section of 2.8 m long RG59 coaxial cable configuration with 
an open end 
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The physical properties of the transmission line are identified; thus R’, L’, G’ and 

C’ can be calculated accordingly.  The only unknown parameter in (5–3) is the wire 

lengthl ,which can be solved analytically as (5–8).  Since the transfer function H is a 

function of frequency, each frequency may produce a slightly differentl , this dissertation 

handles this by taking the average of l  produced by all the frequencies. 

 
 

 
 
 

For a simple single section setup with low or no noise, this inversion problem is 

well-posed and the analytical inverse solution can be derived mathematically.  However, 

in real world applications, the measured data are noise contaminated.  As shown in Figure 

5.2, analytical inverse solutions were performed on this single section setup at the signal 

to noise ratio (SNR) equals to 100dB to 45dB with a step of -5dB. Each solid dot 

represents the average (mean) for the step, which includes 100 inverse solutions.  The 

upper end of the vertical error bar shows the maximum length revealed during the 100 
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Figure 5.2  The result of single section analytical inversion - noise contaminated.  Each 
step from SNR=100dB to 45dB represents 100 tests.  The solid dots represent the mean 
of each step.  The upper end of the vertical error bar indicates the maximum calculated 
length while the lower end of the error bar show the minimum calculated length. 
 
 

inverse solutions while the lower end of the vertical error bar indicates the minimum 

length revealed within the 100 inverse solutions.  The fault location can be retrieved 

precisely up to an SNR equals to about 55dB. 

This example shows that the performance of this (and any other) inversion 

technique depends heavily on the SNR.  The noise contributed here can come from the 

signal source, external interference coupling, variability in the test hardware, or from 

other normal reflections on the wire.  The first three can be reduced by averaging and 

filtering, but the last one cannot.  Therefore, the application of this theoretical method is 

limited at a low noise environment in simple configurations. 
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5.3 Scanning Approach 
 

5.3.1 Linear Search Method 
 

Although the analytical inversion method can come in handy for simple 

configurations, it would not be feasible to calculate the inverse functions analytically for 

more complicated setups since the mathematical difficulty can grow dramatically. Figure 

5.3 shows a two-section setup with both wire lengths unknown.  Its transfer function is 

shown as (5–9). 

 
 

 
 
 

Solving the inverse function analytically in this example is no longer feasible 

since there are two unknowns (1l and 2l ) with only one equation.  One way to find the 

two unknowns with only one equation is to scan the possible values of 1l and 2l

successively and plug them back into (5–9).  With the transfer function and possible 1l

and 2l  values, we can further utilize the ABCD forward method to generate an array of 

forward solutions.  Finally, by comparing the correlation (similarity) between the 

simulated reflectometry result and measured data, a map of correlation can be generated 

as shown in Figure 5.4.   

This is a 2-D scan showing possible choices of 1l and 2l  in addition to the 

correlation between the measured and predicted reflectometry responses.  It can be seen 

that the highest correlation points follow a line.  This is not a coincidence as this line 

represent the total length of the wire (1l + 2l ). 
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Figure 5.3  Two section configuration with both wire lengths ( 1l and 2l ) unknown. 
 
 
 

 
Figure 5.4  Two section inversion result of two-dimensional scanning method. 

 
 
 

If we then have a wire with N sections, the total number of scans needed to check 

every possibility becomes N2.  However, if we scan only the values along the total length 

of the line (either measure of known priori the total length of the wire), the number of 

scans and calculations can be reduced to N.  This is a linear search inversion method.  In 

cases where noise exists, we can expand the line (search a wider region around this line) 

and it can still significantly reduce the number of calculations.   
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This linear search is one of the easiest inversion methods to apply in numerical 

techniques.  Although it is not very efficient, given sufficient resolution, this method is 

still capable of finding the solution if it exists. This linear search method was tested on a 

configuration shown in Figure 5.5.  There is a single section 12-foot long RG58 cable.  A 

5 cm long 60o chafe is made in the shield 6.5 feet from the TDR tester (TDR100). 

A trivial way to find the fault location is to scan linearly from the beginning to the 

end of the RG58 coaxial cable.  Assuming the fault size (5 cm) is known or estimated, 

with the resolution of 10 cm per step, a 12 feet (3.68 m) wire would take 368 scans (steps) 

in order to identify the fault location.  At each step, the forward result (predicted 

reflectometry response for that configuration) is generated and compared with the 

measured data and the correlation coefficient is recorded.  Figure 5.6 shows the 

correlation coefficient of this linear search approach.  The result demonstrates that the 

correlation coefficient peaks at 6.5 feet.   

  From the outcome of the linear search, a forward model is created as shown in 

Figure 5.7.   This linear search method seems to work for simple cases.  However, in 

complicated problems (e.g., multisection configuration or long wire with small faults), 

this method is not very efficient.  Therefore, a more efficient method is desired. 

 
 

 
Figure 5.5  A 5 cm long, 60o shield cutaway at 6.5ft on a 12-foot RG58 coaxial cable 
 



75 

 
 

  
Figure 5.6  The correlation result of the linear scan method on a 5 cm, 60o cutaway at 6.5 
feet on a 12-foot-long RG58 coaxial cable. 
 
 
 

          
Figure 5.7  The simulated and measured result of a chafe on an RG58 coaxial cable. 
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5.3.2 Progressive Binary Search Method 
 

To improve the efficiency of the search algorithm, a progressive binary search 

method is used.  It is similar to the binary search in computational data structures [43].  

Without knowing the fault size, we can start with a large estimated fault size and coarse 

resolution.  For the same example presented in Figure 5.5, say we start with an estimate 

fault size to be 2 feet long and the scanning resolution to be 1 foot long.  The correlation 

coefficient is shown in Figure 5.8 for various assumed locations of the fault. 

Instead of 6.5 feet where the fault is actually located, the peak correlation 

coefficient is shown at 5 feet.  That would be an acceptable error, using a resolution of 

one foot and the initial (incorrectly) assumed fault length of 2 feet long.  With this 

combination of assumptions and resolutions, we should expect a maximum error of 3 feet.  

The reconstructed TDR result after the first iteration of the progressive binary search 

method is shown in Figure 5.9. 

 

  
Figure 5.8  First iteration with 2 feet long fault size and 1 foot long step resolution. 
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Figure 5.9  The first iteration TDR result of the progressive binary search method. 

 
 
 
If the reconstructed result has a greater fault (higher reflection) than the measured 

data, this is clear from the overestimate of the size of the peaks in the predicted 

reflectometry response.  We then reduce the fault width to half in the next iteration; 

otherwise, the fault width remains the same.  Additionally, by searching the locations 

with the highest 50% of the correlation coefficient, we can reduce the scanning effort by 

50% for the next iteration.  The correlation coefficient and reconstructed results after the 

second, third and fourth iterations are shown in Figure 5.10. 

The number of scans required for the progressive binary search is 36 compared to 

the previous linear search method, which needs 368 scans.  This binary search method is 

significantly more efficient than the linear search method.  The flow chart of the 

progressive binary search method is displayed in Figure 5.11.  This method significantly 

improves the efficiency over the linear scan method.  However, for more complicated 

problems, this method often fails.  Therefore, a more robust method is needed. 

0 10 20 30 40 50
-0.5

0

0.5

1

1.5
Estimated 2 ft fault with 1 ft each scan

Length (ft)

R
ef

le
ct

io
n

 c
o

e
ffi

ci
e

nt

 

 

measured
simulated



78 

 
 

(a) Second iteration – correlation coef. 
 

(b) Second iteration 

(c) Third iteration – correlation coef. 
 

(d) Third iteration 

(e) Fourth iteration – correlation coef. 
 

(f) Fourth iteration 

Figure 5.10  Correlation coefficient and reconstructed signal after the second, third, 
fourth binary search iterations for a 12 feet wire with a 5 cm, 60o chafe at 6.5 feet. 
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Figure 5.11  Flow chart of the progressive binary search method. 
 
 
 

5.4 Iterative Inversion 
 
 The iterative inversion and reconstruction algorithm block diagram is shown in 

Figure 5.12.  To an extent, it is similar to some of the other numerical inversion methods 

described in [44] - [46].   

An efficient and accurate forward solver that can produce high fidelity forward 

results is critical for this iterative method (also most other inversion methods).    This 

forward solver simulates the “behavior” of the system.  Thus, once we plug in the proper 

system parameters, the outcome of the forward solver and the measured data should be 

highly alike.  Ideally, with a noise-free measurement and perfect forward model, they  
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Figure 5.12  Iterative inversion and reconstruction algorithm block diagram 
 
 

would be identical.  From the previous chapters, the ABCD forward modeling 

method has proven to be efficient and accurate, and it will be used in this section of the 

dissertation.  

The velocity of propagation (VoP) is the traveling speed of electromagnetic 

waves in a transmission medium.  The VoP in free space (vacuum) is the speed of light as 

shown in (5–10), where0µ is the permeability in the vacuum and 0ε is the permittivity in 

the vacuum.   
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The electromagnetic waves also propagate at different speeds in different 

mediums.  Most of the transmission line materials have the same permeability as in the 

vacuum.  (5–10) can be rewritten as (5–11) where rε  is the relative permittivity 

(dielectric constant) of the transmission line material. 

 
 

 
 
 
RG58 coaxial cables typically use polyethylene (PE) as the dielectric insulator.  

The dielectric constant of the polyethylene is 2.25 [47].  That makes the velocity of 

propagation on an RG58 coaxial cable to be 66% of the speed of light (0.66*c).  In this 

chapter, we shall use the VoP on an RG58 as the basis, or normalization factor for all 

wire sections. 

Consider a multisection transmission line setup with a total “normalized length” 

of 10.9 m as shown in Figure 5.13.  Note the normalized length does not always equal the 

physical length of the wire since wires may have different velocities of propagation.  In 

this case, the velocity of propagation is assumed to be 0.66*c, where c is the speed of 

light. 

The number of sections, length of each section and characteristic impedances are 

all initially assumed to be unknown.  Only the load (open) and total length are known.   
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Figure 5.13  A multisection configuration.  From left to right: RG58 (3m), RG62 (1.9m), 
RG59 (2.4m) and RG58 (4m) respectively – All lengths and characteristic impedances 
are assumed to be unknown. 
 
 
 

  
Figure 5.14 Measured TDR result on the multisection configuration. 
 
 
 
These parameters can either be previously determined or estimated from the measured 

TDR data.    

A 50-ohm TDR tester (Campbell Scientific TDR100) that generates a sharp rising 

edge step signal is used as the signal source and the measured result is displayed in 

Figure 5.14.  The objective is to identify the number of sections, length and characteristic 

impedance of each section of the cable based on the measured data.   
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The inversion process starts off by dividing the transmission line into numbers of 

small segments as shown in Figure 5.15.  For simplicity, the 10.9 m long wire is divided 

into 109 10-cm long segments.  This number can be further increased if higher resolution 

is needed. 

Next, we assume each of the 109 segments has uniform characteristic impedance, 

say 60 ohms.  Although the initial characteristic impedance can be any reasonable 

positive real number, an educated guess would improve the convergence performance. 

Ideally, instead of assuming a blanket value of characteristic impedances across 

all the frequencies on all wire segments, it would be the best if we can specify the 

characteristic impedances as functions of frequency.  This is due to the characteristic 

impedances of electrical wires are frequency dependent.  However, since the physical and 

electrical properties of the wire segments and the size of the fault are all unknown, it 

would not be possible to produce such frequency dependent functions.  Therefore, the 

best approach is to assume the characteristic impedances are constant across the 

frequency band of interest. 

The initial estimation of length L and characteristic impedance Z profile is shown 

in Figure 5.16, and the reconstructed signal (using ABCD forward method) versus 

measured result is shown in Figure 5.17.  Not surprisingly, the initial reconstructed signal 

has little similarity to the measured result.   

 
 

 
Figure 5.15 Dividing the wire into numerous small sections. 
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Figure 5.16  L (length) and Z (characteristic impedance) profile of the initial estimation 

 
 
 

 
Figure 5.17  Measured result (dashed line) versus first iteration result (solid line) with 
Z=60 ohms assumed for sections. 

 

0 2 4 6 8 10 12
50

55

60

65

70

Length (m)

Im
pe

d
an

ce
 (o

hm
s)

L-Z profile

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Round-Trip Reflection Coefficient

length(m)

R
e

fle
ct

io
n 

C
o

e
ffi

ci
e

nt

 

 

Measured
Reconstructed



85 

 
 

For each of the 109 individual small segments, we compare the reconstructed 

signal (dashed) against the measured result (solid).  If the reflection coefficient of the 

reconstructed signal is smaller than the measured result, it indicates that the characteristic 

impedance of such section was under estimated.  Thus, we need to increase the 

characteristic by a certain amount, say one ohm, for that segment in the next iteration.  In 

contrast, if the reflection coefficient of the reconstructed signal is greater than the 

measured data, it shows that the characteristic impedance was over estimated.  Therefore, 

we have to decrease the characteristic impedance in the next iteration.  If the difference 

between the reconstructed signal and measured data is within a preset error, the 

characteristic impedance is kept intact for the next iteration. 

After 50 iterations, the length and characteristic (L-Z) profile is shown in Figure 

5.18, which has revealed a four-section structure with lengths of L1=3m, L2=1.5m, 

L3=2.4m and L4=4m respectively.  The characteristic impedances of Z1=51 ohms, Z2=92 

ohms, Z3=73 ohms and Z4=51 ohms are also revealed.   

The reconstructed and measured results are shown in Figure 5.19 and very good 

agreement is obtained.  Note that the second section of the reconstructed signal is 

identified to be 1.5 m instead of 1.9 m, its actual length.  This is due to the fact that RG62 

used in this section has higher velocity of propagation (VoP) than RG58, which is 66% of 

the speed of light (c).  Instead of VoP=0.66*c in RG58 and RG59 cables, RG62 has a 

VoP of 0.84*c. The physical length is then found denormalizing the wire length.  In this 

case, by multiplying the calculated length of 1.5 m by 0.84/0.66, the correct physical 

length of 1.9 m is obtained. 
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Figure 5.18  The L-Z profile (estimated length and impedance) after 50 iterations with 1 
ohm per step. 
 
 
 

  
Figure 5.19  The measured result versus reconstructed result after 50 iterations 
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5.4.1 Applying Steepest Descent Optimization Method 
 

The iterative inversion method described above gives good inversion results with 

reasonable efficiency as long as we start with a good initial guess.  If we start with a poor 

guess, especially for a complicated system with many sections, this method breaks down.  

Additionally, the L-Z profile tends to oscillate with this method, especially toward the 

end of wire.  If the impedances in the sections closest tester are not perfectly predicted, 

this causes incorrect multiple reflections in the later sections.   

In addition to the fluctuation, the convergence efficiency of the iterative inversion 

method is quite low.  That is, we can approach our objective linearly only by 1-ohm per 

iteration.  If the initial estimation was way off, it would take a very long time to converge.   

A classical, but effective steepest (gradient) descent optimization method [47] can 

resolve many of these problems.  For a defined and real function F, in the neighborhood 

of a point x in the direction of the negative gradient of ( )x F x−∇ , we can find an  

 
 

 
 

 

where the step size γ  is a real number that determines the speed of convergence.  If γ  is 

too small (underestimated), this method converges slowly.  On the other hand, if γ  is too 

large (overestimated), the convergence may oscillate or may not converge at all.  

Therefore, choosing a proper γ   is critical for optimization.   For TDR inversion, our 

changing variable is the characteristic.  The steepest descent function in (5–12) can be 

rewritten as (5–13). 

 

  1 ( ), 0n n n nx x F x nγ+ = − ∇ ≥  (5–12) 
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   Applying the steepest descent method with the step size γ =110, the convergence 

efficiency has improved significantly over the iterative inversion discussed in section 5.4.  

As shown in Figure 5.20, after only 10 iterations, the L and Z profile has achieved the 

result that is better than the iterative method with 50 iterations shown in Figure 5.18.   

The reconstructed and measured data also match better, as shown in Figure 5.21 (for 

steepest descent) compare to Figure 5.19 (for straight iterative method). 

 
 

  
Figure 5.20  L and Z profile after 5 iterations using steepest descent optimization with 
converging constant γ  = 110. 
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Figure 5.21  The measured versus reconstructed result after 5 iterations using steepest 
descent with converging constant γ  = 110. 
 
 
 

5.4.2 Using Iterative Inversion on Frays 
 

Frays on transmission lines are more difficult to identify than the large reflections 

caused by changes in wire types or significant loads, breaks or short circuits.  In addition 

to their small reflection coefficients that might be buried in measurement noise, the short 

lengths of most frays also make the detection challenging.  A very high frequency TDR 

would be needed to identify frays.  The maximum wire length that could be tested would 

be reduced, because the high frequencies needed for the fault resolution attenuate quickly 

on wires, but for now, we will assume a good match between TDR frequency, fault size 

and distance to fault exists, and concentrate on the algorithm that could be used to locate 

the fault. 
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Because the fray is small in size, we must increase the resolution in the search 

algorithm.  Figure 5.22 shows a 3.59 m long RG58 coaxial cable with a chafe that is 1.9 

m away from the TDR tester (beginning of the wire).  The chafe is 5 cm in length and 

120o cutaway on the shield.  The iterative inversion algorithm divides the entire wire into 

359 1-cm-long sections.  As before, we start with an initial guess of uniform 

characteristic impedance of 60 ohms for all sections.  After 10 iterations, the L and Z 

profile is shown in Figure 5.23, which identifies a small fault of 5 cm located at 1.9 m 

from the TDR.  The L-Z profile reveals that the characteristic impedance of the fray is 

roughly 60 ohms.  This inversion method shows the characteristic impedance, but not the 

physical size or the nature of the fault.  By evaluating the width of the L-Z profile at 

length of 1.9 m, a fault size of 5 cm long, 60 ohms impedance is discovered.  From [16], 

we can quickly determine the damage to be 120o cut on the shield.   Figure 5.24 shows 

the comparison between the measured and reconstructed result.  The results are closely 

matched even with the small reflection coefficient in a noisy measured data. 

 
 

 
Figure 5.22  A 5 cm long, 120o shield cutaway at 1.9 m on a 3.59 m long RG58 coaxial 
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Figure 5.23  L- Z profile after 10 iterations on the frayed RG58 coaxial cable. 
 
 
 

   
Figure 5.24  The measured vs. reconstructed result on the frayed RG58 coaxial cable. 
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5.5 Summary of the Inversion Methods 
 

Solving the inverse function analytically shows effective only on simple 

configurations without noise.  In many practical cases, the inverse functions do not exist 

mathematically.  Additionally, the capability of this method is very limited since real 

world applications are typically more complicated and rarely noiseless.   

The linear search method uses correlation coefficient to determine if the 

maximum likelihood is found between the simulated and simulated result.  However, it 

can be very inefficient in multisection scenarios or long wires with small faults.  

Progressive binary search method significantly improves the efficiency, but it may not 

work properly in complex (e.g., multisection) configurations or wires with more than one 

fault or discontinuities. 

Finally the iterative inversion algorithm that employs ABCD method as the 

forward solver is very accurate and efficient even in multisection and multiple unknown 

variable scenarios.  As the example of 3.59 m RG58 cable shown in section 5.4, this 

inversion method is capable of determining the location and nature of the fault as small as 

5 cm long, 120o fray on the shield that is 1.9 m from the source.  The small fault created 

by the fray only produces a reflection coefficient that is smaller than 0.07.  This type of 

fault is typically difficult to detect especially on a long transmission line where the high-

bandwidth rise step signal loses its energy.   

Although the performance may vary with different type of transmission lines or in 

different environment, this iterative inversion method is demonstrated to be effective and 

capable of providing accurate inverse solution in locating small faults on transmission 

lines.  



 
 

 
 

CHAPTER 6 
 
 
 

CONCLUSIONS 
 
 

 
 Various existing forward modeling techniques have been presented in this 

dissertation.  In general, the first generation methods use a graphical representation that 

provides visual aids to monitor the idealized electromagnetic wave propagation on 

transmission lines.  The lack of fidelity makes these methods inappropriate for inversion 

purposes.  The second generation methods employ numerical techniques for wave tracing, 

but the need of excessive computational resources lowers the inversion algorithm 

performance.  The third generation method, primarily S-parameters, has shown promising 

performance and results among geophysical applications.  Although it can also be used in 

wire fault location, a more convenient and modularized method is needed. 

 This dissertation introduced the signal flow graph method that enables 

modularized solutions by simply connecting the predefined blocks.  It is also capable of 

solving branched network problems using graphical manners.  Compared to the previous 

second generation methods, SFG makes wire fault modeling much easier and more 

deployable in the field.  Instead of having to reprogram each of the different scenarios, 

field technicians can simply drag and drop the icons that represent different type of 

transmission lines and the simulation result can be generated accordingly.  The modified 

ABCD method offers very high fidelity with exceptional efficiency.  In addition to its
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convenience, this frequency domain method is capable of modeling frequency dependent 

parameters and reactive loads.  Therefore, it is suitable for iterative inversion in which the 

performance of the forward solution directly relates to the inversion outcome. 

 One of the goals of this research is the inversion algorithm for transmission line 

fault location.  Analytical as well as numerical methods have been presented.  Most of 

these methods can solve only simple configurations.  However, the iterative inversion is 

capable of solving transmission line fault problems with multiple unknown variables (e.g., 

lengths and characteristic impedances) all together.  It is also able to reveal chafes with 

very small reflections. 

 

6.1 Potential Applications 
 
 Some of the contributions of this research include modularized forward modeling 

algorithms (signal flow graph and ABCD method), the quick profile building technique 

using commercial software and the iterative inversion method for wire fault location.  

With this advancement in both forward and inverse modeling techniques, numbers of 

potential applications that may be benefited including transmission line fault signature 

generator, high performance transmission line simulation/design tool and enhanced 

TDR/STDR/SSTDR line tester. 

 
 

6.1.1 Transmission Line Fault Signature Generator 
 

Radar target generators are often used as an input signal source for radar 

equipment.  This instrument has been used for radar calibration or to train radar operators.  

It can also be used to generate radar signal signatures for the library.  A similar concept 
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can be applied in transmission line fault location, which is essentially the radar signal that 

propagates on the wire.  The modularized algorithms presented in this dissertation can be 

a suitable fit in both software or hardware approaches.  A common problem with 

software approach is the performance, where many of unnecessary threads are used by 

the operating systems.  The hardware approach, on the other hand, can generate the 

simulated data with much better performance.  The SFG and extended SFG methods are 

built with blocks, which can be replaced with physical hardware such operational 

amplifiers, delay lines and synchronization clocks.  Analog to digital converters, digital 

to analog converters and microcontrollers can also be utilized to improve the flexibility 

for varies transmission line configurations. 

 
 
6.1.2 High Performance Transmission Line Simulation and Design Tool 

 
In addition to aircraft and spacecraft applications, many of the high end analog 

circuit simulators and printed circuit board (PCB) design software packages (e.g., Linear 

Technology LTspice®, Cadence Allegro and Mentor Graphics Expedition) include 

limited transmission line effect simulators.  These tools provide some simple preliminary 

predictions on the signal outcome before the products are manufactured.  This capability 

is particularly critical for high speed digital applications where the transient effects can 

scramble the signal transmission.  However, the performance of the existing products is 

limited and often not capable of providing accurate results without sacrificing 

computational resources.  With the frequency domain modeling techniques introduced in 

this dissertation, the high performance transmission line simulation can be a great value-

added tool that assists in the design of critical circuitry. 
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6.1.3 Enhanced TDR/STDR/SSTDR Line Tester 
 

Most concurrent wire testers offer graphical display on the test results.  However, 

it is difficult to interpret correctly for inexperienced users.  For some complicated setups 

or faults that are very small, even experienced operators may not identify the faults 

properly.  With the iterative inversion method introduced in this dissertation, the newer 

equipment would be able to quickly pin-point the location and nature of the fault on the 

wire.  This type of maintenance tool is especially important for technicians of aircraft 

manufacturers, such as Boeing and Airbus, to reduce the costly grounding of the aircraft.  

Military aircraft maintenance technicians can also utilize such tools to improve the 

readiness of the fighter planes.  Additionally, aging aircraft wires cannot handle excessive 

and unnecessary trial and error methods of troubleshooting.  Many of the new faults are 

invoked due to these unintentional activities. 

 
 

6.2 Future Work 
 

Although the ABCD method discussed in this dissertation shows its excellent 

fidelity and efficiency in cascaded two-port network structure, like other methods, it does 

have its limitations.  For configurations that are not two-port structure or cannot be 

simplified into two-port structure, this method fails.  Bundle wires and branched 

networks, for example, are some of the problems that the ABCD method cannot be 

applied to directly.  Therefore, an updated algorithm that can solve these problems is 

needed. 

Most wires do not break or become shorted abruptly.  Instead, the insulation and 

conductors degrade over time due to corrosion or vibration against other wires or 
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structure members.  A known good status, or a baseline data, is critical for detecting very 

small faults.  Without this baseline information, some of the small fault signatures are 

buried in the environmental noise.  Thus, continuing research on the noise effect will 

improve the determination of the small wire fault location, which is still difficult to find 

with the techniques available today. 
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