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ABSTRACT 

 

This dissertation aims to develop an innovative and improved paradigm for real-time 

large-scale traffic system estimation and mobility optimization. To fully utilize 

heterogeneous data sources in a complex spatial environment, this dissertation proposes 

an integrated and unified estimation-optimization framework capable of interpreting 

different types of traffic measurements into various decision-making processes.   

With a particular emphasis on the end-to-end travel time prediction problem, this 

dissertation proposes an information-theoretic sensor location model that aims to 

maximize information gains from a set of point, point-to-point and probe sensors in a 

traffic network. After thoroughly examining a number of possible measures of 

information gain, this dissertation selects a path travel time prediction uncertainty 

criterion to construct a joint sensor location and travel time estimation/prediction 

framework.  

To better measure the quality of service for transportation systems, this dissertation 

investigates the path travel time reliability from two perspectives: variability and 

robustness. Based on calibrated travel disutility functions, the path travel time variability 

in this research is represented by its standard deviation in addition to the mean travel time. 

To handle the nonlinear and nonadditive cost functions introduced by the quadratic forms 

of the standard deviation term, a novel Lagrangian substitution approach is introduced to 
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estimate the lower bound of the most reliable path solution through solving a sequence of 

standard shortest path problems. To recognize the asymmetrical and heavy-tailed travel 

time distributions, this dissertation proposes Lagrangian relaxation based iterative search 

algorithms for finding the absolute and percentile robust shortest paths. Moreover, this 

research develops a sampling-based method to dynamically construct a proxy objective 

function in terms of travel time observations from multiple days. Comprehensive 

numerical experiment results with real-world travel time measurements show that 10-20 

iterations of standard shortest path algorithms for the reformulated models can offer a 

very small relative duality gap of about 2-6%, for both reliability measure models. 

This broadly-defined research has successfully addressed a number of theoretically 

challenging and practically important issues for building the next-generation Advanced 

Traveler Information Systems, and is expected to offer a rich foundation beneficial to the 

model and algorithmic development of sensor network design, traffic forecasting and 

personalized navigation. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Background 

The goal of Intelligent Transportation Systems (ITS) is to improve the transportation 

safety, mobility and environment through a wide range of advanced information and 

communication technologies. Among many ITS applications, Advanced Traveler 

Information Systems (ATIS) work closely with drivers by providing accurate and real-

time traffic information, and have been implemented in practice for decades. Most 

commonly applied ATIS systems include in-vehicle routing and navigation systems, 

advanced roadway guidance signs (e.g., Variable Message Signs (VMS)), and traffic 

information services (e.g., 511 traveler information systems).  

It has been well recognized that traffic congestion in metropolitan areas is difficult to 

mitigate due to the lack of mechanisms to (1) reliably measure and estimate network-

wide traffic patterns and (2) effectively inform and divert travelers to avoid recurring and 

nonrecurring congestion. From this point of view, the success of ATIS deployment relies 

on research and practical developments on the following three components: traffic 

observability, estimation/prediction, and information dissemination.  
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1.1.1. System-wide Traffic Observability 

Based on the types of measurement data, traffic sensors can be categorized into three 

groups, namely point sensors, point-to-point sensors, and probe sensors. A small subset 

of freeway links is typically instrumented with in-pavement and road-side traffic 

detectors, which experience significant failure rates, to estimate travel time and traffic 

flow. Accurate travel time and traffic flow information on ramps and arterial corridors are 

critically needed, but very costly to collect with the nation’s existing infrastructure. 

Overall, limited point measurements from the current traffic sensor infrastructure are 

unable to provide sufficient spatial and temporal coverage to measure complex traffic 

flow patterns in a traffic network.  

An effective ATIS program should use data from multiple sources to enhance the 

system-wide observability for an entire traffic network. Many Automatic Vehicle 

Identification (AVI) and Automatic Vehicle Location (AVL) technologies, such as toll 

tags and Bluetooth signal reading, provide new possibilities for traffic monitoring to 

semi-continuously obtain detailed passing time and location information along individual 

vehicle trajectories on both freeway and arterial corridors. As the personal navigation 

market grows rapidly, probe data from in-vehicle Personal Navigation Devices (PND) 

and cell phones become more readily available for continuous travel time measurement. 

By estimating network-wide traffic states from multiple data sources, the data mining 

engines in ATIS applications can further extract useful traffic pattern information to 

provide accurate recurring and nonrecurring traffic congestion information. 
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1.1.2. Travel Time Estimation/Prediction Accuracy 

Most travelers, especially commuters, are constrained by their arrival time. The 

typical departure-time strategy for a commuter is to subtract the expected trip time from 

the required arrival time, plus an additional amount to account for the uncertainty of that 

expectation. Network instability at the point of congestion causes a large variability of 

operation and high uncertainty in a travel time expectation. Thus, many commuters are 

forced to significantly increase the time they allot to their commute in order to reliably 

arrive on time. Traditionally, transportation modelers and policy makers declare success 

if the commuter arrives early, whether or not the commuter can be productive with that 

extra time. By considering this potential lost productivity, the accuracy of the predicted 

trip time becomes as important to most travelers as its magnitude, and most travelers 

would accept a somewhat longer average trip time if it came with a guarantee.  

 

1.1.3. Intelligent Information Provision and Diversion Strategies 

An effective ATIS should provide (1) Pretrip time-dependent travel time information 

based on specific origins, destinations and departure times for both recurring and 

nonrecurring congestion conditions, and (2) En-route travel time updates based on real-

time traffic, weather, work zone, and incident data. In its current implementation, 

travelers, as the ultimate consumers, have not significantly benefited from the existing 

ATIS. Specifically, travelers lack the means to understand and estimate the impact of 

nonrecurring congestion on their travel time. For example, web-based map services from 

Google, Yahoo, and MapQuest only provide static information on routing and average 

traffic time – they do not supply any travel time reliability-related information for 
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travelers to make better route or departure time decisions. Transportation agencies are 

very limited by how they inform and deliver effective travel time and reliability 

information to travelers, primarily relying upon posting travel time messages on dynamic 

message signs. However, existing travel time messages usually have “fixed” origins and 

destinations with limited reliability information. 

 

1.2. Motivations and Challenges 

Focusing on improving the mobility and reliability for ATIS systems, this 

dissertation will discuss the following three practically important and theoretically 

challenging questions in information-driven sensor network design, traffic estimation and 

prediction, and route guidance applications. A list of estimation and optimization targets 

for each problem is shown in Table 1.1, along with the expected products for three 

models.  

 

Table 1.1: List of estimation, optimization targets and model products for three problems 

 Estimation Component 
Optimization 
Component 

Model Product 

Sensor 
Network 
Design 

Uncertainty propagation, 
quantify value of 

information 

Scenario-based sensor 
network optimization 

Information-oriented 
sensor placement plan 

Traffic 
Prediction 

Traffic estimation with 
heterogeneous data 

sources 

Prediction error 
minimization 

Accurate traffic 
prediction under 

nonrecurring congestion 

Route 
Guidance 

Travel time reliability 
with spatial correlation 

Solve nonadditive and 
nonlinear objective 

functions with 
Lagrangian relaxation 

method 

Desirable route that 
minimizes (1) the mean 

and standard deviation of 
travel time, (2) absolute 

and percentile robust 
travel time 
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1.2.1. Challenges on Sensor Network Design  

How to determine what sensor investments should be made, as well as when, how, 

where and with what technologies, in a transportation network design application?  

Traffic monitoring systems provide fundamental data inputs for public agencies to 

measure time-varying traffic network flow patterns and accordingly generate coordinated 

control strategies. This dissertation will focus on a series of critical and challenging 

modeling issues in traffic sensor network design, in particular, how to locate different 

types of detectors to improve path travel time estimation accuracy, as reliable end-to-end 

trip travel time information is critically needed in ATIS applications. 

While significant progress has been made in formulating and solving the sensor 

location problem for travel time estimation, a number of challenging theoretical and 

practical issues remain to be addressed. 

First, the optimization criteria used in the existing sensor location models typically 

differ from those used in travel time estimation. Due to the inconsistency between two 

models, the potential of scarce sensor resources might not be fully achieved in terms of 

maximizing information gain for travel time estimation. For example, a sensor location 

plan that maximizes sensor coverage does not necessarily yield the least end-to-end travel 

time estimation uncertainty. As a result, a unified travel time estimation model for 

utilizing different data sources is required as the underlying building block for the sensor 

network design problem. 

Second, most of the existing studies do not explicitly take into account various 

uncertainty sources in the travel time estimation process, e.g., prior travel time mean 

estimate and the corresponding errors in a historical travel time database, and sensor 
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measurement errors that depend on the size of samples collected and sensor quality. To 

seamlessly integrate diverse sources of measurements, a desirable travel time estimation 

framework should be able to recognize error sources associated with individual sensors, 

and possible error correlation between new and existing sensors. 

 

1.2.2. Challenges on Traffic Estimation and Prediction  

How to estimate and predict real-time travel time at system bottlenecks using 

multiple types of measurement?  

Traffic delays are usually categorized as recurring congestion and nonrecurring 

congestion. Recurring congestion is caused by excessive regular traffic volumes or 

limited capacity at bottlenecks, thus the resulting traffic delay is well perceived and can 

be reasonably estimated by commuters traveling at the same locations at similar times. 

On the other hand, travelers might lack a clear understanding of the source, magnitude 

and frequency of nonrecurring congestion, which are associated with short-term and 

unexpected events, such as incidents, special events, severe weather conditions and work 

zones. This study will focus on estimating and predicting the travel time caused by 

nonrecurring congestion at highway bottlenecks and try to address the following 

theoretical and practical challenges.  

First, to provide high quality travel time estimation and prediction, the proposed 

approach will utilize heterogeneous measurements from different traffic monitoring 

sources. Several types of measurements are currently available in practice, including 

traffic volume counts, point speed and lane occupancy from loop detectors, point-to-point 

travel time from AVI and probe sensors with limited market penetration rates. How to 



7 

 

 

 

fully leverage available data sources to improve the network-wide travel time estimation 

and prediction becomes an emerging research challenge.  

Second, nonrecurring congestion may cause challenging problems to the traffic 

prediction. More specifically, a reliable travel time prediction relies on the knowledge of 

future network demand and supply. For nonrecurring cases, changes in traffic volume and 

road capacity from various congestion sources need to be considered in order to provide 

accurate traffic prediction.  

Third, the quality of travel time prediction should be well managed and evaluated in 

the proposed method. As real-world measurements usually contain errors and are limited 

in their spatial coverage, the uncertainty propagation within a prediction model could 

highly affect the final confidence level of the forecasting results. To quantify and reduce 

the error propagation, parsimonious models with fewer parameter inputs are considered 

in this study.  

To address the above research challenges, a travel time estimation/prediction 

approach based on simplified queueing models is proposed in this study. From a 

queueing theory perspective, the impacts of various nonrecurring congestion sources can 

be integrated into demand (as incoming flow) and capacity (as outgoing discharge rate). 

Moreover, with the travel time, counts and queue length can be connected through a 

cumulative flow count curve diagram, traffic measurements from heterogeneous data 

sources are fully utilized in the travel time estimation/prediction.  
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1.2.3. Challenges on Route Guidance 

 How to rapidly find the most reliable routes in a large-scale regional network?  

Travel time reliability has been widely recognized as an important element of a 

traveler’s route and departure time scheduling. In recent years, operating agencies have 

begun to shift their focus more toward monitoring and improving the reliability of 

transportation systems through probe-based data collection, integrated corridor 

management and advanced traveler information provision. With a growing trend of 

incorporating trip time variability into traffic network analysis models, finding reliable 

path alternatives motivates substantial algorithmic development efforts. 

For many common route finding criteria, such as physical distance and travel time, 

the (generalized) path cost functions are linear and additive across different links, so the 

resulting optimization problem can be directly solved by the standard label correcting or 

label setting shortest path algorithms. In an early study by Sen et al. (2001), the path 

travel time reliability is modeled as a linear combination of travel time mean and variance, 

and the resulting 0-1 quadratic integer program is solved by as a sequence of parametric 

subproblems. However, most end-to-end trip reliability measures, as discussed below, 

lead to nonlinear and nonadditive cost functions, which considerably increase the 

complexity and impose challenges for the path search procedures. A wide range of 

definitions and formulations have been proposed to measure travel time reliability, 

including (1) 90th- or 95th-percentile travel time, buffer and planning time index, (2) on-

time arrival probability, (3) travel time variation expressed in terms of standard deviation 

or coefficient of variation. Figure 1.1, adapted from a recent FHWA report (Cambridge 

Systematics, 2005), shows a distribution of travel times on eastbound State Route 520 in  
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Figure 1.1: Travel time distribution for the eastbound lanes of State Route 520, Seattle, 
adapted from FHWA report (Cambridge Systematics, 2005) 

 
 

Seattle, based on 3096 observation samples taken on weekdays between 4:00 to 7:00 pm. 

In the heavy-tailed travel time distribution along this 11.5-mile corridor, the mean and the 

standard deviation statistics (i.e., 15.9 min and 5.5 min) are insufficient to fully measure 

the extreme delay during the daily commutes, where contributing factors may include 

traffic crashes or severe weather conditions. In particular, the worst or absolute robust 

travel time is about 31.5 min (during the survey period of 4 months), while the 95% 

percentile travel time is around 22.5 min. 

The first two definitions (1 and 2) are built on the probability distribution function of 

travel time. The absolute robust shortest path (ARSP) problem under consideration aims 

to find the path that minimizes the maximum path travel time over all samples. Similarly, 

the α-percentile robust shortest path (PRSP) problem is defined as the path that 

minimizes the travel time within which α-percentile trips in all samples are completed.  
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The on-time arrival probability measure, on the other hand, considers the percentage of 

trips that are completed within a reasonable buffered travel time (e.g., average travel time 

plus 20% buffer). In a study by Fan et al. (2005a), a path finding algorithm was proposed 

to minimize the probability of arriving at the destination later than a specified arrival time. 

Recently, Nie and Wu (2009a) developed solution algorithms with first-order stochastic 

dominance rules for the routing problem with on-time arrival reliability. 

While ARSP emphasizes the extreme tail of the travel time distribution, PRSP is able 

to systematically balance the trade-off involving the overall reliability and low-

probability events. The latter solution also provides a better statistical measure to avoid 

possible outliers in the real-world data sample set, and meets the needs for travelers with 

different degrees of risk-avoidance preferences. On the other hand, from a trip planning 

point of view, the PRSP problem highlights travel time guarantees over uncertain traffic 

situations, while the on-time arrival probability or travel time variation emphasizes the 

probability of later arrivals for a given preferred arrival time or a given buffer time index. 

The third type of models, which characterizes the travel time reliability measure in 

terms of standard deviation, has been calibrated in various empirical studies (e.g., Small, 

1982; Noland et al., 1998; Noland and Polak, 2002), and the corresponding utility 

function is also incorporated in dynamic traffic assignment models (e.g., Zhou et al., 

2008). It is important to recognize that, within a Kalman filtering framework, which is 

the building block of real-time traffic state estimation and prediction systems (e.g., Ashok 

and Ben-Akiva, 1993; Zhou and Mahmassani, 2007), the variance of travel time 

estimates, and accordingly its standard deviation, can be analytically derived and 

calculated through a recursive estimation error propagation formula. In comparison, the 
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first two types of reliability measures must be assessed by relatively complicated 

numerical probabilistic methods.  

 

1.3. Overview of Proposed Methods 

To maintain the inherent consistency between the travel time estimation/prediction 

and its data measurement network, in Chapter 3, we jointly consider the sensor location 

problem with its underlying travel time estimation and prediction models. Expressly, by 

extending a Kalman filtering-based information theoretic approach proposed by Zhou and 

List (2010) for OD demand estimation applications, this research focuses on how to 

analyze the information gain for real-time travel time estimation and prediction problem 

with heterogeneous data sources.  Since the classical information theory been proposed 

by Shannon (1948) on measuring information gain related to signal communications, the 

sensor location problem has been an important and active research area in the fields of 

electrical engineering and information science. Various measures have been used to 

quantify the value of sensor information in different sensor network applications, where 

the unknown system states (e.g., the position and velocity of targets studied by Hintz and 

McVey, 1991) can typically be directly measured by sensors. In comparison, sensing 

network-wide travel time patterns is difficult in its own right because point sensors only 

provides a partial coverage of the entire traffic state. Using AVI data involves complex 

spatial and temporal mapping from raw measurements, and AVL data are not always 

available on a fixed set of links, especially under an early sensor network deployment 

stage.  
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There are a wide range of time series-based methods for traffic state estimation, and 

many studies (e.g., Okutani and Stephanedes, 1984; Zhang and Rice, 2003; Stathopoulos 

and Karlaftis, 2003) have been devoted to travel time prediction using Kalman filtering 

and Bayesian learning approaches. To extract related statistics from complex spatial and 

temporal travel time correlations, a recent study by Fei et al. (2011) extends the structure 

state space model proposed by Zhou and Mahmassani (2007) to detect the structural 

deviations between the current and historical travel times and apply a polynomial trend 

filter to construct the transition matrix and predict future travel time.  In this dissertation, 

we aim to present a unified Kalman filtering-based framework under both recurring and 

nonrecurring traffic conditions. More importantly, a spatial queue-based cumulative flow 

count diagram is introduced to derive the important transition matrix for modeling traffic 

evolution under nonrecurring congestions. Different from existing data-driven or time-

series-based methods, this dissertation derives a series of point-queue-model-based 

analytical travel time transition equations, which lay out a core modeling building block 

for quantifying prediction uncertainty. In addition, a steady-state uncertainty formula is 

presented to fully capture day-to-day uncertainty evolution and convergence of the sensor 

network in a long-term horizon. 

To allow further extensions in real-time traffic prediction and route guidance systems, 

two reliable path definitions are considered in this dissertation. In Chapter 4, this study 

considers the most reliable path problem with a linear disutility function of mean trip 

travel time and its standard deviation:  min mean var . In particular, this research tries 

to address two fundamental challenges introduced by this special functional form. First, 

the standard deviation of path travel time is not a linear summation of the standard 
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deviation of related link travel times. Second, the square root transformation associated 

with the standard deviation term is, in fact, a concave function, so it is difficult to directly 

apply many convex programming techniques in this application. Based on the variable 

splitting approach in the Lagrangian reformulation framework, we first replace the 

complex quadratic portion of the objective function with equivalent equality constraint(s) 

to remove the nonadditivity, and the auxiliary constraint(s) can be further dualized to a 

simplified objective function that leads to easy subproblems. In particular, one integer 

subproblem involving linear link cost functions can be efficiently solved by standard 

shortest path algorithms, while another subproblem containing the concave square root 

objective function with a single variable can be solved analytically by checking the 

boundary values in the feasible region. The similar bounding technique was used by 

Larsson et al. (1994). 

In Chapter 5, we will focus on the absolute robust shortest path and percentile robust 

shortest path problems. Using a sampling-based representation scheme, this research 

utilizes historical travel time records from multiple days of traffic measurements to 

capture day-by-day traffic dynamics and the complex spatial network correlations.  

Specifically, a scenario (corresponding to travel time samples on a day) is considered as a 

realization of random travel time distributions. In this research, we focus on how to 

efficiently find approximate solutions for the ARSP and PRSP problems, and a 

Lagrangian relaxation based algorithm is used to generate satisfactory feasible solutions 

and provide the corresponding quality evaluation on large-scale real-world networks.  In 

particular, we adopt a variable splitting approach to reformulate the minimax objective 

function of the ARSP problem and the percentile definitional constraint of the PRSP 
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problem.  The variable splitting approach was proposed by Joernsten and Naesberg (1986) 

and independently by Guignard and Kim (1987).  To reformulate a complex objective 

function, auxiliary variables and additional constraints are introduced so that easy-to-

solve subproblems can be constructed in a Lagrangian relaxation solution framework. 

 

1.4. Organization of the Dissertation 

This dissertation is organized as follows. Chapter 2 provides a comprehensive review 

and discussion on several topics related to sensor network design, traffic prediction and 

route guidance problems. In Chapter 3, a Kalman filtering based travel time estimation 

and prediction model is presented jointly with information measure models for the sensor 

location problem. Chapter 4 discusses the most reliable path problem using mean and 

standard deviation of path travel time as the disutility function. In particular, two 

different models are considered for the most reliable path problem: with and without link 

correlation. In Chapter 5, two models are proposed to evaluate the travel time robustness: 

absolute and α-percentile robust shortest path problems. Numerical experiments and 

results are presented following the methodologies and algorithms proposed in each of 

Chapters 3-5. Conclusions for all the proposed models under the integrated estimation-

optimization approach are discussed in Chapter 6.  

  



 

 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter reviews several topics relevant to system estimation and mobility 

optimization of the Advanced Traveler Information Systems. In Section 2.1, traffic 

surveillance and observation technologies are reviewed along with sensor location 

researches. Section 2.2 reviews major travel time estimation and prediction models. 

Section 2.3 provides a comprehensive review on the reliability and robustness related 

routing problems.  

  

2.1. Data Collection through Sensors 

Essentially, any application of real-time traffic measurements for supporting 

Advanced Traveler Information Systems and Advanced Traffic Management Systems 

(ATMS) functionalities involves the estimation and/or prediction of traffic states. 

Depending on underlying traffic process assumptions, the existing traffic state estimation 

and prediction models can be classified into three major approaches. (1) Approach purely 

based on statistical methods, focusing on travel time forecasting; (2) Approach based on 

macroscopic traffic flow models, focusing on traffic flow estimation on successive 

segments of a freeway corridor; (3) Approach based on dynamic traffic assignment 
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models, focusing on wide-area estimation of origin-destination trip demand and route 

choice probabilities so as to predict traffic network flow patterns for links with and 

without sensors. In this research, the researchers are interested in how to place different 

types of sensors to improve information gains for the first statistical method-based travel 

time estimation applications. 

In sensor location models for the second approach, significant attention (e.g., Liu and 

Danczyk (2009), Danczyk and Liu (2010), and Leow et al. (2008)) has been devoted to 

placing point detectors along a freeway corridor to minimize the traffic measurement 

errors of critical traffic state variables, such as segment density and flow. The traffic 

origin-destination (OD) matrix estimation problem is also closely related to the travel 

time estimation problem under consideration. To determine the priority of point detector 

locations, there are a wide range of selection criteria, to name a few, “traffic flow volume” 

and “OD coverage” criteria proposed by Lam and Lo (1990), a “maximum possible 

relative error (MPRE)” criterion proposed by Yang et al. (1991) that aims calculate the 

greatest possible deviation from an estimated demand table to the unknown true OD trip 

demand. 

Recently, based on the trace of the a posteriori covariance matrix produced in a 

Kalman filtering model, Zhou and List (2010) proposed an information-theoretic 

framework for locating fixed sensors in the traffic OD demand estimation problem. 

Related studies along this line include an early attempt by Eisenman et al. (2006) that 

uses a Kalman filtering model to minimize the total demand estimation error in a 

dynamic traffic simulator, and a recent study by Xiang and Mahmassani (2010) that 

considers additional criteria, such as OD demand coverage, within a multiobjective 
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decision making structure. This research will adapt and extend the information-theoretic 

framework from Zhou and List (2010) and further propose traffic measurement models 

and information quantification models specifically for path travel time estimation 

applications with heterogeneous data sources. 

Chen et al. (2004) studied the AVI reader location problem for both travel time and 

OD estimation applications. They presented the following three location section criteria: 

minimizing the number of AVI readers, maximizing the coverage of OD pairs, and 

maximizing the number of AVI readings. To maximize the information captured with 

regard to the network traffic conditions under budget constraints, Lu et al. (2006) 

formulated the roadside servers locating problem as a two stage problem. The first stage 

was a sensitivity analysis to identify a subset of links on which the flows have large 

variability of travel demand, and more links were gradually selected to maximize the 

overall sensor network coverage in the second stage. Sherali et al. (2006) proposed a 

discrete optimization approach for locating AVI readers to estimate corridor travel times. 

They used a quadratic zero-one optimization model to capture travel time variability 

along specified trips. 

This research adopts a Kalman filtering-based information theoretic approach to 

qualify the information gain for different sensor placement scenarios. The classical 

information theory proposed by Shannon (1948) aims to measure information gain 

related to signal communications. The sensor location problem is an important and very 

active research area in the fields of electrical engineering and information science. 

Various measures have been used to quantify the value of sensor information in different 

sensor network applications, and the unknown system states (e.g., the position and 



18 

 

 

 

velocity of targets studied by Hintz, 1991) typically can be directly measured by sensors. 

In comparison, sensing network-wide travel time patterns is difficult in its own right 

because point sensors only provides a partial coverage of the entire traffic state. Using 

AVI data involves complex spatial and temporal mapping from raw measurements, and 

AVL data are not always available on a fixed set of links, especially under an early 

sensor network deployment stage. 

 

2.2. Travel Time Estimation and Prediction 

Travel time estimation and prediction problems have been extensively studied in past 

decades. A variety of models have been proposed and developed with different 

theoretical foundations. Most of the travel time prediction models fall into one of the 

following groups: (1) time-series methods, e.g., Auto-Regressive Integrated Moving 

Average (ARIMA) models (Box and Jenkins, 1970), (2) state space methods, e.g., 

Kalman Filtering (KF) technique, which is first applied in traffic volume prediction by 

Okutani and Stephanedes (1984), (3) nonparametric methods such as K Nearest Neighbor 

(KNN) (Davis and Nihan, 1991) and Neural Network (Clark et al., 1993) approaches, and 

(4) traffic flow based methods.  

In traffic flow based estimation/prediction models, several methods have been 

widely used: cell transmission model (CTM), real-time simulation-based Dynamic 

Traffic Assignment (DTA) based model and Newell’s model. The cell transmission 

model, proposed by Daganzo (1994), decomposed a road corridor into multiple cells and 

estimate/predict traffic using density, flow of each cell and boundary conditions. 

Unfortunately, the numerical implementations of CTM in current real-time traffic 
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estimation/prediction applications are not consistent to the theoretical derivation of the 

shock wave propagation behavior. Real-time DTA based models consider user rerouting 

behaviors and can capture system-wide travel time estimation. However, the DTA based 

models have too many network-wide parameters to be estimated (such as dynamic origin-

destination demand matrix), which are difficult for decision support systems to maintain 

consistency between simulated states and reality.  

Nonrecurring congestion has been well known as one of the key factors influencing 

travel time reliability (Cambridge Systematics, Inc, et al., 2003). The impacts of various 

nonrecurring congestion sources have been decomposed and studied by Kwon et al. 

(2010). This study will extend Newell’s model to construct a real-time travel time 

estimation and prediction algorithm under nonrecurring congestion using heterogeneous 

data sources. 

In 1993, Newell (1993a, b, and c) proposed a simplified theory based on the classical 

traffic wave theory. In this model he used the cumulative count curves instead of flows 

for most of the calculations and a triangular flow-density relation to describe traffic flow 

(i.e., forward wave and backward wave) propagation. Newell’s model has been tested on 

freeway segments by Hurdle and Son (2000) and demonstrated the model’s 

computational efficiency and prediction results on severely congested cases. Along this 

line, a more complicated, but also more general, two-detector problem has been studied 

by Daganzo (2001).  
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2.3. Variability-oriented Routing Solution 

Several previous pioneering research efforts have been devoted to addressing 

computational issues caused by nonlinear, nonadditive or concave objective functions in 

the shortest path problem. The early work by Henig (1986) presented efficient 

approximate methods on the shortest path problem with two criteria, which are assumed 

to be quasiconcave or quasiconvex utility functions. Scott and Bernstein (1997) 

developed an iterative solution method for the shortest path problem where the value of 

time function is nonlinear and nondecreasing. In their algorithm, the search space is 

decomposed to a series of resource-constrained shortest path subproblems, which can be 

solved by the Lagrangian relaxation technique (Handler and Zang, 1980). Gabriel and 

Bernstein (2000) further proposed a path-finding heuristic algorithm for the nonadditive 

path problem using a linear approximation reformulation.  

By dualizing hard constraints to the objective function (Fisher, 1981), the Lagrangian 

relaxation method is a well-known solution procedure for integer programming problems. 

To further introduce separability in Lagrangian reformulations, one important extension 

of Lagrangian relaxation is the variable splitting and Lagrangian decomposition approach 

proposed by Joernsten and Naesberg (1986) and independently by Guignard and Kim 

(1987). This approach aims to split original variable x into the pair (x, y), and then link 

the auxiliary variable y with x through a linking constraint Ax=y, which will be further 

relaxed to the objective function. Larsson et al. (1994) adapted this problem restatement 

approach to decompose a minimum cost network flow problem with a concave objective 

function to a standard linear minimum cost network flow subproblem and an easy-to-

solve concave minimization problem. Along the same line, Tsaggouris and Zaroliagis 
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(2004) combined the Lagrangian relaxation and hull approach to solve the nonadditive 

shortest path problem with a nonlinear, convex and nondecreasing cost function. Readers 

interested in general Lagrangian relaxation methods are referred to the review paper 

written by Guignard (2003).  

In stochastic routing problems, spatial and temporal dependences have been 

exclusively studied by a number of researchers, and interested readers are referred to the 

comprehensive studies by Miller-Hooks and Mahmassani (2000) and Nie and Wu (2009a) 

on the a priori time-varying least travel time problem. Considering spatial dependence in 

terms of congestion level and state transfer probability, Fan et al. (2005b) proposed a 

multistage adaptive feedback control process to address shortest path problem with 

correlated link costs. Recently, limited spatial and temporal dependences have been 

considered by Boyles and Waller (2007) for the nonlinear disutility shortest path problem, 

and by Nie and Wu (2009b) for the reliable routing problem. Specifically, the above 

studies characterize the randomness of link travel time by using certain probability 

density functions abstracted from a historical database, and incorporate limited spatial 

correlation through a Markovian model that considers the transition probabilities of link 

states. 

The robust shortest path problem and its variants have been extensively studied in 

the last few decades. Murty and Her (1992) proposed a relaxation based label-correcting 

procedure to provide exact solutions for the ARSP problem. Specifically, two pruning 

techniques, namely one-row and Lagrangian-based relaxation, were used to improve the 

algorithm efficiency. Their approach was later enhanced by Bruni and Guerriero (2010) 

by using heuristic rules and evaluation functions to better guide the solution search 



22 

 

 

 

procedure. Yu and Yang (1998) studied both ARSP and robust deviation shortest path 

(RDSP) problems by using a set of scenarios to capture the uncertainty of travel time. 

They first proved that both ARSP and RDSP problems are NP-complete under limited 

scenarios and NP-hard for an unbounded number of scenarios, and then proposed 

dynamic programming algorithms with a pseudo-polynomial computational time and a 

few heuristic methods. Mainly focusing on the RDSP problem, Karasan et al. (2001) 

proposed a simple ARSP approximation algorithm by setting each link travel time to its 

upper bound over all scenarios/samples. Montemanni and Gambardella (2008) developed 

two algorithms for the ARSP problem, namely a Benders decomposition-based algorithm 

and a solution method by generating duality reformulation and solving through mixed 

integer linear programming techniques. 

There are also a number of other definitions related to robust shortest paths. For 

example, Yu and Yang (1998) considered the robust deviation shortest path problem that 

minimizes the maximum deviation of the path length from the optimal path length of the 

corresponding scenario, and Sigal et al. (1980) suggested using the probability of being 

the shortest path as an optimality index. 

  



 

 

 

CHAPTER 3 

 

HETEROGENEOUS SENSOR NETWORK DESIGN  

FOR ESTIMATING AND PREDICTING  

PATH TRAVEL TIME DYNAMICS 

 

This chapter proposes an information-theoretic sensor location model that aims to 

minimize information uncertainty from a set of point, point-to-point and probe sensors in 

a traffic network. Based on a Kalman filtering structure, the proposed measurement and 

information quantification models explicitly take into account several important sources 

of errors in the travel time estimation/prediction process, such as the uncertainty 

associated with prior travel time estimates, measurement errors and sampling errors. 

After thoroughly examining a number of possible measures of information gain, this 

dissertation selects a path travel time prediction uncertainty criterion to construct a joint 

sensor location and travel time estimation/prediction framework. The remainder of this 

chapter is organized as follows. The overall framework and notation are described in 

Section 3.1. In Sections 3.2 and 3.3, a Kalman filtering based travel time estimation and 

prediction model is presented for both recurring and nonrecurring traffic conditions. A 

comprehensive discussion of information measure models is presented in Section 3.4. 

Section 3.5 describes the beam-search based sensor design model and solution algorithms. 
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Finally, the proposed model is further extended to some complex cases considering AVI 

and AVL sensors in Section 3.6, followed by numerical experiment results on a test 

network shown in Section 3.7. 

 

3.1. Notation and Modeling Framework Overview 

We first introduce the notation used in the travel time prediction and sensor network 

design problems.  

 

3.1.1. Notation and Problem Statement 

Sets and Subscripts: 

N = set of nodes.  

A = set of links.  

m = number of links in set A. 

'A  = set of links with point sensors (e.g., loop detectors), 'A A . 

''N = set of nodes with point-to-point sensors, ''N N . 

'''A = set of links with reliable probe sensor data, '''A A . 

'A  = sets of links that have been equipped with point sensors, ' 'A A . 

''N  = sets of nodes that have been equipped with AVI sensors, ' 'N N . 

'n , ''n , '''n = numbers of measurements, respectively, from point sensors, point-to-

point sensors and probe sensors. 

n = number of total measurements, ' '' '''n n n n   . 

t  = time index for state variables. 
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h = travel time prediction horizon. 

d = subscript for day index. 

o  = subscript for origin index, o O , O = set of origin zones.   

s  = subscript for destination index, s S , S = set of destination zones.   

a,b  = subscript for link index, ,a b A . 

i, j = subscript for node index, ,i j N . 

k, λ = subscript for path. 

p(i,j,k) = set of links belong to path k from node i to node j. 

Estimation variables:  

,d at  = travel time of link a on day d.  

, , ,d o s kt  = travel time on path k from origin o to destination s, on day d,
 

, , , ,
( , , )

d o s k d a
a p o s k

t t


  .   

Measurements: 

,'d ay  = single travel time measurement from a point sensor on link a, on day d. 

, , ,''d i j ky  = single travel time measurement from a pair of AVI readers on path k and 

day d from node i to node j, where the first and second AVI sensors are located at nodes i 

and node j, respectively. 

,'''d ay  = a set of travel time measurements from a probe sensor that contain map-

matched travel time records on links a on path k and day d from node i to node j, where 

( , , )a p i j k . 

Vector and matrix forms in Kalman filtering framework: 
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Yd = sensor measurement vector on day d, consisting of n elements. 

Td = travel time vector on day d, consisting of m elements td,a. 

dT   = a priori estimate of the mean values in the travel time vector on day d, 

consisting of m elements. 

dT   = a posteriori estimate of the mean values in the travel time vector on day d, 

consisting of m elements. 

h
dT  = historical regular travel time estimates using data up to day d.  

Vd = structural deviation on day d. 

dP  = a priori variance covariance matrix of travel time estimate, consisting of (m × 

m) elements. 

dP = a posteriori error covariance matrix, i.e., conditional covariance matrix of 

estimation errors after including measurements. 

  = a priori variance covariance matrix of structure deviation, consisting of (m × m) 

elements. 

  = a posteriori variance covariance matrix of structure deviation. 

T  = vector of regular historical mean travel time estimates, consisting of m elements, 

0
hT T .  

P  = error covariance matrix of historical travel time estimate, consisting of (m × m) 

elements, 0P P .  

dH  = sensor matrix that maps unknown travel times Td to measurements Yd, 

consisting of (n × m) elements. 

Kd = updating gain matrix, consisting of (n × m) elements, on day d. 
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NR

dK = updating matrix for nonrecurring traffic estimations on day d. 

( , )dL t t h  = nonrecurring traffic transition matrix from time t to t+h on day d. 

wd = system evolution noise vector for link travel times, ~ (0, )d dw N Q . 

Qd = system evolution noise variance-covariance matrix, on day d. 

μd = nonrecurring derivation evolution noise vector for link travel times, 

(0, )~ NR

d dN Q . 

NR

dQ = nonrecurring derivation evolution noise variance-covariance matrix, on day d. 

,d aq = systematic travel time variance on link a. 

εd  = combined measurement error term, εd ~ N(0, Rd ) , on day d. 

Rd = variance-covariance matrix for measurement errors, on day d. 

Parameters and variables used in measurement and sensor design models: 

, , ,i j k a  = path-link incidence coefficient, , , ,i j k a =1 if path k from node i to node j 

passes through link a, and 0 otherwise. 

,'''d a  = stochastic link traversing coefficient for GPS probe vehicles, ,''' 1d a  if 

GPS probe vehicles pass through link a on day d, and 0 otherwise.  

, , ,d o s ke = path travel time estimation error on path k from origin o to destination s. 

, ,o s kf  = traffic flow volume on path k from origin o to destination s. 

dTU = total path travel time estimation uncertainty on day d. 

α = market penetration rate for vehicles equipped with AVI sensors/tags. 

β = market penetration rate for vehicles equipped with AVL sensors. 

l = subscript of sensor design solution index. 



28 

 

 

 

lX = lth sensor design solution, represented by  ', '', ''', ,lX A N A   . 

*X = optimal sensor design solution. 

( )lz X  = overall information gain (i.e., performance function) for a given sensor 

design scenario lX .  

Consider a traffic network with multiple origins oO and destinations sS, as well 

as a set of nodes connected by a set of directed links. We assume the following input data 

are available: 

(1) The prior information on historical travel time estimates, including a vector of 

historical mean travel time estimates T and the corresponding variance-covariance matrix 

P .  

(2) The link sets with point sensor and point-to-point AVI sensor data, specified by 

'A and "N . 

(3) Estimated market penetration rate α for point-to-point AVI sensors.  

(4) Estimated market penetration rate β for probe sensors, and set of links with 

accurate probe data '''A . 

The sensor network to be designed and deployed will include additional point 

sensors and point-to-point detectors that lead to sensor location sets of 'A  and ''N , where 

' 'A A , '' ''N N . In the new sensor network, through GPS map-matching algorithms, 

GPS probe data can be converted from raw longitude/latitude location readings to link 

travel time records on a set of links '''A . In this study, we assume that probe data will be 

available through a certain data sharing program (e.g., Herrera and Bayen, 2010), from 

vehicles equipped with Internet-connected GPS navigation systems or GPS-enabled 
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mobile phones. It should be noticed that, depending on the underlying map-matching 

algorithm and data collection mechanism, only a subset of links in a network, denoted by

'''A can produce reliable GPS map-matching results. For example, it is very difficult to 

distinguish driving vs. walking mode on arterial streets through data from GPS-equipped 

mobile phones, so typically only travel time estimates on freeway links are considered to 

be reliable in this case.  

One of the key assumptions in our study is that the historical travel time information 

can be characterized by the a priori mean vector T and the estimation error variance 

matrix P . If point sensor or point-to-point data are available from sets 'A and "N , then 

we can construct the mean travel time vector T , and estimate the variance of estimates in 

the diagonal elements of corresponding variance-covariance matrix P . For links without 

historical sensor measurements, the travel time mean estimate can be approximated by 

using national or regional travel time index (e.g., 1.2) and set the corresponding variance 

to a sufficient large value or infinity. One can assume zero for the correlation of initial 

travel time estimates. In the case of a complete lack of historical demand information, we 

can set 1( ) 0P   . 

It should be remarked that, measurements from a point sensor are typically 

instantaneous speed values observed at the exact location of the detector. Using a section-

level travel time modeling framework (e.g., Lindveld et al., 2000), a homogenous 

physical link can be decomposed into multiple cells or sections, with the speed 

measurement directly reflecting only the section where the sensor is located. In some 

previous studies, the link or corridor speed can be estimated using the section based 

speed, while cells without sensors using approximated values from adjacent instrumented 
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sections. As shown in Figure 3.1, the travel times on section A and D are directly 

measured using sensors 1 and 2, respectively. Meanwhile, the travel times for sections B, 

C and E, as well as the entire corridor, are estimated using upstream and downstream 

sensors. There are a number of travel time reconstruction approaches, such as constant 

speed based methods and trajectory methods (Van Lint and Van der Zijpp, 2003). 

In this study, for sections without point sensors, the above mentioned approximation 

error is modeled as prior estimation errors, which can be obtained through a historical 

travel time database by considering other related links such as adjacent links or links with 

similar characteristics. Furthermore, our proposed framework can be also easily 

generalized to a section-based representation scheme, where a section in Figure 3.1 can 

be viewed as a link in our link-to-path-oriented modeling structure. 

 

3.1.2. Generic State Transition and Measurement Models 

By adapting a structure state model for dynamic OD demand estimation by Zhou and 

Mahmassani (2007), this study decomposes a true travel time pattern into three modeling 

components:  

 

 

Figure 3.1: Section-level travel time estimation 
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true travel time = regular recurring pattern + structural deviations + random 

fluctuations.  

 

Under this assumption, travel time estimation/prediction can be studied in two 

categories: recurring traffic conditions and nonrecurring conditions. For travel time 

prediction under recurring conditions, structural deviation is considered as zero, and the 

regular travel time patterns/profiles can be constructed based on historical data for 

recurring traffic. On the other hand, for travel time prediction under nonrecurring 

conditions, the structural deviation is further modeled in this study as a function of time-

dependent capacity and time-dependent demand. Without loss of generality, this 

dissertation mainly focuses on time-dependent capacity reductions due to incidents, a 

major source of nonrecurring congestion. 

To further jointly consider both recurring and nonrecurring traffic conditions in the 

sensor location problem, the overall system uncertainty under a certain sensor design is 

modeled as a probabilistic combination of recurring and nonrecurring uncertainty 

measures: 

 

overall system prediction uncertainty =  

(1 )NR   uncertainty under recurring conditions + NR   uncertainty under 

nonrecurring conditions, 

 

where NR represents the given probability of nonrecurring events. 

The state transition model of the travel time is written as  
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( ) ( ) ( ) ,    (0, )h
d d d d d dT t T t V t w w N Q     (3.1) 

 

In Eq. (3.1), the travel time for each link is represented as a combination of three 

components: regular pattern, structural deviation and random fluctuation. The regular 

pattern ( )h
dT t  is the time-dependent historical travel time average which is determined by 

the day-to-day regular traffic demand and capacity. For nonrecurring traffic conditions, a 

structural deviation ( )dV t  exists due to nonrecurring congestion sources such as incidents, 

work zones and severe weathers. Considering a stationary congestion pattern, this study 

assumes that wd follows a normal distribution with zero-mean and a variance-covariance 

matrix Qd. Qd corresponds to random travel time variation magnitude, which is further 

determined by dynamics and stochasticity in the underlying traffic demand and road 

capacity supply. For example, the travel time variations are more significant on a 

congested freeway link with close-to-capacity demand flow volume, compared to a rural 

highway segment with low traffic volume and sufficient capacity where the speed limit 

could yield a good estimate most of the time. More specifically, qd,a , the (diagonal) 

variance  elements of the matrix Qd, exhibit the travel time variability/uncertainty of each 

individual link, while the covariance elements should reveal the spatial correlation 

relationship (mostly due to queue spillbacks) between adjacent links in a network. We 

refer readers to a study by Min and Wynter (2011) for calibrating spatial correlations of 

link travel times.  

In order to estimate the regular pattern ( )h
dT t  and structural deviation ( )dV t , a linear 

measurement model is constructed as:  
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( ) ( ) ( )d d d dY t H t T t    , where (0, )d dN R    (3.2)  

 

With the measurement model in Eq. (3.2), the travel times are estimated using the 

latest measurements Yd(t). Measurement vector Yd is composed of travel time 

observations from point sensors, point-to-point sensors and probe sensors. The mapping 

matrix Hd , with (n × m) elements, connects unknown link travel time Td to measurement 

data Yd. Particularly, each row in the mapping matrix Hd corresponds to a measurement 

and each column corresponds to a physical link in the network. For an element at uth row 

and vth column of the matrix Hd , a value of 1 indicates that the uth measurement covers or 

includes the travel time on the vth link of the network, otherwise it is 0. With the 

measurement equation, the historical recurring travel time pattern is then updated through 

the Kalman filtering process. A detailed discussion on the mapping matrix H and the 

measurement error term is provided in Section 3.2.  

 

3.1.3. Uncertainty Analysis under Recurring and  

Nonrecurring Conditions  

We now focus on the conceptual analysis of the uncertainty reduction and 

propagation. By assuming independence between different components in the structure 

state model (3.1), the total variance of the predicted travel time can be obtained by 

 

     var ( ) var ( ) var ( )h
d d d dT t T t V t Q     (3.3) 
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Under recurring congestion conditions, the structural deviation ( ) 0dV t  , which 

leads to 

 

   var ( ) var ( )h
d d dT t T t Q 

.
 (3.4) 

 

To reduce prediction error under recurring conditions (e.g., at the beginning of each 

day d for pretrip routing applications), we need to reduce the variance of the historical 

travel time estimates,  var ( )h
dT t , while the variance of inherent traffic process noises Qd 

(due to traffic demand and supply variations) cannot be reduced and sets a limit for travel 

time prediction accuracy. Along this line, this article will first focus on updating the 

historical travel time pattern and the uncertainty reduction due to added sensors under 

recurring conditions.  Under nonrecurring conditions, in addition to the above mentioned 

uncertainty elements  var ( )h
dT t  and Qd , the total prediction variance is mainly 

determined by the structural travel time deviation ( )dV t . Through a simplified spatial 

queue model, a detailed discussion is provided in Section 3.3, and we will focus on 

capacity reductions due to incidents.  

 

3.1.4. Conceptual Framework and Data Flow  

Focusing on predicting end-to-end path travel time applications and considering 

future availability of GPS probe data on links '''A , the goal of the sensor location problem 

is to maximize the overall information gain * argmin ( )l lX z X by locating point and point-

to-point sensors in sets 'A  and ''N , subject to budget constraints for installation and 
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maintenance. To systematically present our key modeling components in the proposed 

sensor design model, we will sequentially describe the following three modules.  

 

3.1.4.1. Link travel time estimation and prediction module 

Given prior travel time information dT   and dP , with traffic measurement vector dY

that includes ,'d ay ,
 , , ,''d i j ky  and ,"'d ay  from sensor location sets 'A , ''N and '''A , the link 

travel time estimation and prediction module seeks to update current link travel times dT   

and their variance-covariance matrix dP .  

 

3.1.4.2. Information quantification module 

With prior knowledge on the link travel time estimates T  and P ,  the information 

quantification module aims to find the single-valued information gain ( )lz X  for the 

critical path travel times  for a sensor design scenario lX , represented by location sets 'A , 

''N , '''A , as well as AVI and AVL market penetration rates α and β .  

 

3.1.4.3. Sensor network design module 

The sensor design module aims to find the optimal solution * argmin ( )l lX z X , 

subject to budget constraints for installation and maintenance. For each candidate 

solution Xl, this module needs to call the information quantification module to calculate 

( )lz X . The optimal solution *X  produces optimal location sets 'A  and ''N , for a 

predicted AVI and AVL market penetration rates α and β, and predicted location set '''A  

with reliable travel time map-match results.    
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Figure 3.2 illustrates the conceptual framework and data flow for the proposed 

modules.  From sensor network design plans in block 1, we need to extract three groups 

of critical input parameters: AVI/AVL market penetration rates α and β at block 2, 

measurement error variance-covariance R in block 3, and sensor location mapping matrix 

H in block 4. Location mapping matrix H is derived from the sensor location sets 'A , ''N  

and '''A . 

 

( )T T K Y HT    

( )P I KH P  

1( )T TP H HP H RK    

T 

P

 

Figure 3.2: Conceptual framework and data flow 
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The link travel time estimation module uses a Kalman filtering model to iteratively 

update the travel time (blocks 9 and 10) and the corresponding error variance matrix 

(blocks 7 and 8), where the critical Kalman gain matrix K, calculated in block 6, is 

applied to the above two mean and variance propagation processes. Based on the 

estimation or prediction error variance statistics in blocks 7 and 8, the information 

quantification module derives the measure of information in block 11 by representing the 

path travel time estimation/prediction quality as a function of P+ and P-. By minimizing 

the network-wide path travel time estimation uncertainty, the sensor network design 

module finally selects and implements an optimized sensor plan so that point sensor, AVI, 

and AVL measurement data in block 13 can be produced from the actual sensor network 

illustrated by block 12.   

One of the key features offered by the Kalman Filtering model is that although 

updating the travel time mean estimates from T  in block 9 to T  in block 10 requires 

sensor measurements Y, the uncertainty propagation calculation from block 7 to 8 (i.e., 

updating P from P ) does not rely on the actual sensor data, as the uncertainty 

reduction formula in block 8 is a function of three major inputs: a priori uncertainty 

matrix P , measurement error range R, and sensor mapping matrix H. In other words, if 

a transportation analyst can reasonably prepare the above three input parameters,  then 

he/she can apply the proposed analytical model to compute the information gain for a 

sensor design scenario and further assist the decision-maker to determine where and with 

what technologies sensor investments should be made in a traffic network.  
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3.2. System Process and Measurement Models for  

Estimating Historical Regular Patterns 

This section first introduces the travel time estimation and prediction model as the 

building block for the (upper-level) sensor design model. In particular, we want to 

highlight how a classical Kalman filtering model can be used to estimate link travel time 

using data from AVI and AVL sources, and further used to analytically estimate the 

uncertainty propagation associated with the travel time mean estimates. Additionally, the 

discussion focuses on how sensor mapping matrix H and measurement error matrix R 

should be constructed, as they form the basis for the proposed information measuring 

model. There are two essential sets of equations within a Kalman filtering structure: 

stochastic process model, detailed in Section 3.2.1, and measurement model, described in 

Section 3.2.2. 

 

3.2.1. Process Model of Day-varying Traffic System under  

Recurring Conditions 

In this study, link travel times are characterized as random variables through 

stochastic linear process models. Two modeling approaches are available to capture 

travel time variations with different settings of time horizon and resolution: within-day 

dynamic and day-to-day dynamic. Specifically, the within-day model estimates current 

travel time based on the travel time at the previous time interval(s) on the same day, with 

a typical time resolution of 5 or 15 min. Without loss of generality, this study ignores the 

time-dependent travel time dimension in the estimation equation below, and will discuss 

the time-dependent state transition equation in Section 3.3.  
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3.2.2. Measurement Model 

Shown in Eq. (3.2), a linear measurement model is used to map the measurement 

vector Yd to the travel time vector Td (as state variables) by taking into account 

measurement error term εd from variant sources.  

The following three equations show how Hd is constructed for a specific type of 

measurements on each day d. 

For a point sensor on link a,  

 

, ,' ' , 'd a a d ay t a A    .   (3.5)  

 

For a pair of point-to-point sensors that capture end-to-end travel time from node i to 

node j through path k,  

 

 , , , , , , , , ,'' '' , , ''d i j k i j k a a d i j k
a

y t i j N     . (3.6) 

 

For an AVL sensor/probe on link a, 

 

, , ,''' ''' ''' , '''d a d a a d ay t a A      .  (3.7)  

 

A measurement in this model might be referred to an average value of multiple raw 

samples within a certain time period (e.g., from 8:00 AM to 8:15AM).   The error term   
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in the above equations is a combined error term that reflects the overall effect of errors 

from the data conversion, measurement reading and sampling processes. 

Data conversion error: Typically, only time-mean speed data are available from a 

point sensor, and the travel time value (i.e., space-mean speed) needs to be inferred and 

approximated from a point speed reading. This introduces significant data conversion 

errors, depending on the placement of a point sensor on a link (e.g., the relative location 

with respect to the tail of a queue from the downstream node of a link). In addition, a 

single-loop detector has to use the observed occupancy and flow counts to calculate the 

point speed value, which leads to sensor measurement errors. GPS location data (in terms 

of longitude, latitude, point speed, bearing and timestamps) need to be map-matched to 

specific links in the study network to estimate corresponding link travel times. This map-

matching process again brings data conversion errors to the final link travel time 

estimates. 

Sensor reading error: Point sensors that are not carefully calibrated are more likely to 

generate large measurement noises. The detection rates of AVI readers are relatively low 

when vehicle tags are not powered by batteries. The data quality of GPS location 

readings depends on the number of satellites that a GPS receiver can find. 

Sampling error: As a measurement can come from multiple readings, the variance of 

sampling error, e.g., for an AVI measurement that is aggregated from , , ,''d i j kg samples, 

can be described as   

 

, , ,
, , ,

, , ,

var( )
var( '' )

''
d i j k

d i j k
d i j k

T

g
   (3.8)  
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If we assume there is no correlation between link travel times along path k from node 

i to node j, then 

 

, , , , ,
( , , ) ( , , )

var( ) var( )d i j k d a d a
a p i j k a p i j k

T T q
 

  
.
 (3.9)  

 

Assuming there are a total of , , ,d i j kf  vehicles traveling from node i to node j through 

path k, then the AVI market penetration rate α can be derived as , , , , , ,''d i j k d i j ka g f . That 

is, when the market penetration rate increases, the size of samples also becomes larger, 

leading to a smaller sampling error and a more reliable travel time measurement. 

In summary, the magnitude of the combined error εd is determined by a number of 

external factors, and there are also possible error correlations among different sensors 

depending on traffic conditions. For simplicity, the following analysis assumes the 

combined errors belong to a white normal probability distribution with zero-mean and a 

variance-covariance matrix R.  

As point and AVL detectors are installed at fixed locations, the corresponding sensor 

mapping matrices, denoted as  'dH  and ''dH , typically remain the same within the study 

horizon, that is ' 'dH H  and '' ''dH H .  Even with more accurate vehicle based link 

travel time samples, the AVL-based sensors still have two major limitations: low market 

penetration rate and stochastic temporal coverage. Specifically, similar to the point-to-

point AVI sensor, a large sampling error is introduced to probe sensor measurements 

under a low market penetration rate, as shown by , , ,var( ''' var( ) ''')d a d a d aT g  , where 
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,'''d ag  is the number of probe samples on link a on day d, and ,var( )d aT  is the systematic 

variance of link travel time on link a on day d. The same number of probe samples can 

generate smaller measurement errors on a link with low travel time variability compared 

to a link with highly dynamic traffic. Moreover, individual travelers with GPS probes can 

use different paths and links on different days, which leads to a day-varying and 

stochastic sensor mapping matrix '''dH  that consists of stochastic link traversing 

coefficient ,'''d a for GPS probe vehicles. 

 

3.2.3. Travel Time Estimation and Prediction Models  

Given above process and measurement models, we are ready to derive a Kalman 

Filtering based estimation and prediction model to update link travel times with different 

types of measurements.  

In the following discussion, we need to distinguish two states of each day d: (1) a 

priori state before the start of the current day (e.g., morning peak hour), corresponding to 

the predicted travel time dT  and uncertainty dP  , and (2) a posteriori state after the 

morning peak hour of current day, corresponding to estimated travel time dT  and 

uncertainty dP  after taking into account new measurements dY  available on day d. We 

further define the a priori estimate error dT  as the difference between the true travel time 

vector Td and the a priori link travel time estimate dT  , where d d dT T T   . The a 

posteriori estimate error dT  is the difference between the true travel time vector dT  and 

the a posteriori link travel time estimate dT  . Define d d dT T T   , correspondingly, the 
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variance-covariance matrices of the a priori and a posteriori estimate error are expressed 

as  

 

T T[ ] [( )( ) ] cov( )d d d d d d d d dP E T T E T T T T T T              (3.10) 

T T[ ] [( )( ) ] cov( )d d d d d d d d dP E T T E T T T T T T                (3.11)  

 

3.2.3.1. Travel time estimate updating 

In Kalman filtering, the a posteriori travel time estimate dT   is updated through a 

linear function of the a priori estimate dT  and a weighted difference d dY HT  , which is 

the error of a priori estimate, otherwise known as the innovation residual or measurement 

residual.  

 

( )d d d dT T K Y HT      (3.12) 

 

3.2.3.2. Kalman gain factor and uncertainty propagation 

By assuming the measurement error covariance Rd is uncorrelated to Kd and Yd, a 

general formulation for the variance-covariance matrix of the a posteriori estimate error 

can be derived (see appendix for equation derivation).  

 

T T( ) ( )d d d d d d dP I K H P I K H K RK    

 

(3.13) 
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The above equation shows the propagation of the estimation error covariance for any 

given matrix Kd. In Eqs. (3.12) and (3.13), matrix Kd is used as the gain factor to update 

the a posteriori estimation dT  and its error covariance dP  . In Kalman filtering, Kd is 

determined by minimizing the trace of a posteriori estimate error matrix, which is setting 

the first derivative of Eq. (3.13) to 0 as follows: 

 

 
     T T

trace
2 2 0

d

d d d d d d d
d

P
H P K H P H R

K


 


    

   (3.14)      

 

The optimal form of Kd is then derived as 

 

T T 1( )d d d d d dK P H H P H R      (3.15) 

 

Under the optimal formulation of the Kalman gain matrix in Eq. (15), a simplified 

expression for the estimation error covariance is derived as 

 

( )d d dP I K H P           (3.16) 

 

Other formulas of the estimation error covariance are available, for example, 

 

  1
1 1( ) T

d dP P H R H
       (3.17) 
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Consider a single link shown in Figure 3.3 where a link from a to b corresponding to 

sensor mapping matrix H = 1. In the historical travel time database, the estimated travel 

time follows a normal distribution with a mean of 15 min and a standard deviation of 5 

min (i.e . 25dP  ). Given a new measurement  20dY   min with a measurement error 

variance of 5 min, based on Eq. (3.15), we can calculate the optimal Kalman filtering 

gain factor as 25 (25 5) 5 / 6dK    . Then the travel time estimate is updated by Eq. (3.12), 

calculated as 15 (5 / 6)(20 15) 19.6
d

T      , and the posterior estimation variance is reduced 

to  1 (5 / 6) 25 1.8dP      .  

The calculation results are summarized in Table 3.1.  

 

3.2.3.3. Travel time prediction  

After updating travel time mean estimate and its covariance on day d, we now need 

to predict travel time and its uncertainty range for the same time interval of the next day, 

 

 

Figure 3.3: Single-link example 

 

Table 3.1: Calculation results of single-link example 

 Prior estimate Measurement Posterior estimate

Travel time (min) 15dT    20dY   19.6dT    

Variance (min2) 25dP   5dR   1.8dP   
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d+1. According to the system process equation (3.1), the mean estimate can be simply 

extended across days under recurring traffic conditions.   

 

1d dT T 
   (3.18) 

 

However, by taking into account the unpredicted random realizations of traffic 

demand and capacity, characterized by the system error matrix dQ , we have to increase 

the uncertainty estimate for 1dT 
  

 

+1d d dP P Q    (3.19) 

 

With the above measurement updating Eqs. (3.12-3.17) and prediction equations (18-

19), the Kalman filtering based travel time estimation and prediction model is able to 

recursively correct the link travel time estimate from streaming traffic measurements and 

dynamically adjust the error covariance matrix that indicates the uncertainty range of the 

prediction results. 

 

3.3. Travel Time Prediction under Nonrecurring Conditions 

Under nonrecurring congestion conditions, the structural deviation ( )
d

V t is considered 

under various demand/capacity changes.  The process equation of the structural deviation 

in real-time prediction applications can be written as a state space model:  
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( ) ( , ) ( ) ( ),    ( ) (0, )NR
d d d d d dV t h L t t h V t t h t h N Q          (3.20) 

 

In Eq. (3.20), the transition matrix L denotes the process matrix of the structure 

derivation. The process error 
d

 is considered as a normally distributed random noise. 

Following we will discuss the nonrecurring traffic estimation and prediction with and 

without sensor coverage, and present two case studies taking incident as a demonstration 

example.  

 

3.3.1. Traffic Estimation and Prediction Equations 

For links with sensor coverage, a measurement 
d

Y  is obtained for each time interval. 

Similar to the derivation for the regular pattern traffic, the estimation equations for the 

nonrecurring structural deviation and its uncertainty are 

 

( ) ( ) ( ( ) ( ) ( ) ( ) ( ))h
d d NR d d d dV t V t K Y t H t T t H t V t        (3.21) 

  11 1( ) ( ) ( )T
d d d dH t R H t

        (3.22) 

 

The Kalman gain factor KNR can be derived similar to the recurring traffic model.  

The prediction equations for the structural deviation and its uncertainty are 

 

( ) ( , ) ( )d d dV t h L t t h V t      (3.23) 

( ) ( , ) ( ) ( , )T NR
d d d d dt h L t t h t L t t h Q          (3.24) 
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With the derivation of the structural deviation, the predicted travel time variance 

under nonrecurring conditions is represented as  

 

1

1

( ) ( ) ( )

( ) ( , ) ( ) ( , )

d d d d

T NR
d d d d d d

P t h P t h t h Q

P t h Q L t t h t L t t h Q

  


 


     

       
  (3.25) 

 

Eq. (3.25) computes the prediction uncertainty at time (t+h). By comparing to the 

regular pattern uncertainty prediction in Eq. (3.19), we noticed that the uncertainty of 

nonrecurring conditions is considered as a linear combination of the regular pattern and 

the structural deviation.  

For links without sensor coverage, no measurement is available of the estimation for 

the structure derivation 
d

V . Therefore, predicted values for both structure derivation ( )
d

V t  

and link travel time ( )
d

T t will be biased, and an extra error has to be considered into the 

system uncertainty estimation and prediction. In this study we use the maximum 
d

V  

across all links with sensors from the historical database as a way to estimate the 

potential bias magnitude on links without sensors. As a result, the corresponding 

elements in the prior structure derivation uncertainty matrix  have large values for links 

without sensor coverage, and relatively small values for links equipped with sensors.  

 

3.3.2. Single Bottleneck Model with Incident 

We now shift our focus on how to compute the essential transition matrix ( , )
d

L t t h , 

with a single bottleneck case study. Newell’s kinematic wave model (Newell, 1993) is 
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used in this research to capture forward and backward waves as results of bottleneck 

capacities. Its simplified form of traffic flow models is particularly attractive in 

establishing theoretically sound and practically operational traffic transition models on 

bottlenecks. Interested readers are referred to a number of related studies on Newell’s 

kinematic wave model, e.g., the model calibration effort by Hurdle and Son (2000), 

extensions to node merge and diverge cases by Yperman et al. (2005) and Ni et al. (2006).  

Considering Figure 3.4, a recurring congestion is assumed with a constant queue 

discharging rate C. An incident under consideration begins at time s and ends at time e 

with a reduced capacity CR
 , and this capacity is restored back to C after time e.  In order 

to derive the transition matrix L for updating the structural deviation V(t), we further 

examine the additional delay in a detailed plot.  

 

 

Figure 3.4: Cumulative flow count curve for a single bottleneck with reduced capacity 
due to an incident 
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Shown in Figure 3.5, V(t) = t – t', where t' is the original leaving time from the queue 

under recurring congestion for the same vehicle. Δ is denoted as the number of vehicles 

can be discharged under recurring congestion from s to t', and we can derive 

( ' ) ( )RC t s C t s       . That is, ' / ( / )( )Rt s C C C t s     . Thus, the travel time 

structure deviation term can be determined as 

 

( ) ( ) ( ' ) ( ) 1
RC

V t t s t s t s
C

 
        

  . 
(3.26) 

 

After the incident ending time e, V(t) becomes a constant value   1
RC

e s
C

 
   

 
.    

We can further examine the transition matrix L in three cases (as shown in Figure 

3.4), with a predefined prediction period h (e.g., 15 min). According to the prediction 

equation (3.23) for the structure derivation, the transition matrix L (a single value in this 

example) is derived as the ratio of structure deviation terms between current time t and 

future time t+h. 

 

 

Figure 3.5: A zoom-in view on capacity reduction 
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( )
( , )

( )

V t h
L t t h

V t


 

 
(3.27) 

 

As shown in Table 3.2, with the prediction time stamp t is located in different time 

periods, the transition matrix L is derived in different forms. Figure 3.6 gives an 

illustrative example on how the transition coefficient L varies according to time t, by 

assuming the prediction period h = 15 min and a typical incident duration e – s = 30 min.  

The above example demonstrates how to derive the transition matrix L under 

nonrecurring conditions with short-term capacity drops. Similar matrices could be 

derived for severe weather and work zone cases. Obviously, L(t,t+h) is a time-dependent 

and situation-dependent variable that needs to determine in a case-by-case basis in real-

world travel time prediction applications. For the sensor location problem under 

consideration, we need to assume and use an aggregated transition matrix for simplicity. 

In our experiments for the sensor location problem, we consider the following typical 

case: average incident duration = (e-s) = 30 min, incident reporting period = (t-s) = 15min, 

 

Table 3.2: Derivation of transition matrix L for different time periods 

Scenarios t t+h V(t) V(t+h) L(t,t+h) 

Early 
Detection 

s < t < e-h s+h < t+h < e ( ) 1
RC

t s
C

 
   

 
 

( ) 1
RC

t h s
C

 
   

 
 

t h s

t s

 

 

Late 
Detection 

e-h < t < e t+h > e ( ) 1
RC

t s
C

 
   

 
   1

RC
e s

C

 
   

 
 

e s

t s




 

Post-
incident 

Detection 
t > e t+h > e+h   1

RC
e s

C

 
   

 
 

  1
RC

e s
C

 
   

 
 1 
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Figure 3.6: Illustration of time-dependent transition coefficient L 

 

and this leads to a typical value L = 2 which will be used in the experiments in Section 

3.7.  

 

3.4. Measure of Information for Historical Traffic Patterns 

One of the fundamental questions in sensor location problems is which criteria 

should be selected to drive the underlying optimization processes. Eqs. (3.13-3.17 & 

3.19) in the above travel time estimation and prediction model offer an analytical model 

for quantifying the estimation/prediction error reduction due to additional measurements 

provided by new sensors. As the process variance-covariance matrix is assumed to be 

constant, the travel time uncertainty measure in this section uses the a posterior 

estimation error covariance P+ as the basis to evaluate the information gain. A 
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challenging question then is how to select single-value information measures for a sensor 

design plan. To this end, we first examine two commonly used estimation criteria, 

namely, the mean-square error and entropy. We then propose total path travel time 

estimation variance as a new measure of information for end-to-end trip time prediction 

applications.  

 

3.4.1. Trace and Entropy 

As shown in Eq. (3.14), when selecting the gain factor K to utilize new 

measurements, the classic Kalman filter aims to minimize the mean-square error, i.e., the 

trace of dP  . The trace of the variance covariance matrix  dtr P is the sum of the 

diagonals of the matrix, which is equivalent to the total variance of link travel time 

estimates for all links: 

 

  , , ,
1 1

cov( , ) var( )
m m

d d a d a d a
a a

tr P t t t

 

    (3.28) 

 

While the trace does not consider the effects of correlation between travel times of 

adjacent links, an alternative measure of information is entropy which is commonly used 

in information theory applications. For a discrete variable, Shannon’s original entropy is 

defined as the number of ways in which the solution could have arisen. For a 

continuously distributed random vector T, on the other hand, the entropy is measured by 

(ln ( ))E f T , where f is the joint density function for vector T. If travel time T in our study 

is assumed to follow a normal distribution, then its entropy is computed as 
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1
ln(det( ))

2
d

P  , where θ is a constant that depends on the size of T, the total number of 

links in our study network. The entropy measure is proportional to the log of the 

determinant of the covariance matrix. By ignoring the constant θ and the monotonic 

logarithm function, we can simplify the entropy-based information measure for the a 

posteriori travel time estimate as det( )
d

P . The determinant of the variance covariance 

matrix, as a measure of information, is also known as the generalized variance. 

Mathematically, the trace and determinant of the variance covariance matrix dP  can be 

calculated from the sum and product, respectively, of the eigenvalues of dP  . Since the 

determinant considers the variance and covariance in the matrix, a smaller determinant is 

desirable because this indicates a more accurate estimate. 

 

3.4.2. Total Path Travel Time Estimation Uncertainty  

This study proposes a new measure of information to quantify the network-wide 

value of information, based on the travel time estimation quality of critical OD/paths. 

The travel time estimation uncertainty of path k from origin o to destination s can be 

calculated from the posterior travel time estimate variance-covariance matrix dP  : 

 

, , , , , ,
( , , ) ; , ( , , )

var( ) 2 cov( , )d o s k d a d a d b
a p o s k a b a b p o s k

e t t t
  

   
, 

(3.29) 

 

where var() and cov() are variance and covariance coefficients in the link travel time 

uncertainty matrix, respectively. Compared to trace or entropy based information 
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measures, the proposed path travel time based measure can better capture the possible 

correlation between traffic estimates along a path, with the covariance portion of the 

estimation error matrix.  

A similar equation can be derived for travel time prediction based uncertainty 

measure, using the travel time estimate variance-covariance dP  matrix. For sensor 

location decisions that jointly consider recurring and nonrecurring conditions, an 

integrated uncertainty matrix can be generated from recurring travel time uncertainty P  

and nonrecurring structure derivation uncertainty  : 

 

(1 )D incident workzone weather recurring incident incident workzone workzone weather weatherP P                   
 

Weighted by the path flow volume of different origin-destination pairs , ,o s kf , the 

overall estimation uncertainty of the network-wide traffic conditions on day d can be 

determined from the following equation:  

 

 , , , , ,
, ,

d d o s k o s k
o s k

TU e f 
 

(3.30) 

 

The above total path travel time estimation uncertainty measure includes three 

important components: (1) the sum of elements in the variance covariance matrix for link 

travel time estimates; (2) the sum of the travel time variance for each feasible or critical 

path in the network; and (3) weights of path flow volume for different paths. As the path 

travel time estimation accuracy (as opposed to individual link travel times) is the ultimate 
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information quality requirement by commuters traveling on various routes, this measure 

of information can capture the high-level monitoring performance of a sensor network. In 

relation to the trace and entropy measures, the total path travel time estimation 

uncertainty can be viewed as a more appropriate indicator for system-wide information 

gains. 

 

3.5. Sensor Design Model and Beam Search Algorithm 

The proposed sensor network design model is essentially a special case of the 

discrete network design problem, so an integer programming model, shown below, can 

be constructed to find the optimal sensor location solution.  

 

Min TU  

Subject to:  

(1) Budget constraint: 

 

' ' '' ''a i
a i

x x        (3.31) 

 

(2) Traffic pattern uncertainty propagation constraints under recurring and 

nonrecurring conditions (Eqs. 3.17, 3.19, 3.22, 3.24); 

(3) Sensor mapping matrix constraint: 

 

    ,' ' , '' '' , ''' , , 0,1,...,d a i d aH function A x N x d D     
 (3.32) 
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D = a sufficiently large day number for measure of information to reach convergence.  

'ax = 1 if a point sensor is installed on link a, 0 otherwise. 

''ix  =1 if an AVI sensor (point-to-point sensor) is installed on node i, 0 otherwise. 

' , ''  = installation and maintenance costs for point sensors and point-to-point 

sensors. 

 = total available budget for building or extending the sensor network.  

In the above objective function, the overall system uncertainty matrix DP   is 

calculated as a probabilistic combination of recurring and nonrecurring traffic variances. 

Structure derivations from different nonrecurring traffic conditions are considered in the 

total system uncertainty with corresponding probabilities. For links with sensors, the 

structure derivation uncertainty is aggregated and averaged from historical measurements 

(e.g., 95% or 2σ for normal distribution). For links without sensor, we will take the 

maximum of the structure derivation from limited historical database.  

dH is determined by the sensor location  set ' 'aA x     and '' ''iN x   , randomly 

generated link traversing coefficient for GPS probe vehicles ,
'''

d a
 ,  and AVI and AVL 

market penetration rates α and β. 

Essentially, the goal of the above sensor location model is to add sensor information 

from spatially distributed measurements to minimize the weighted uncertainty associated 

with the path travel time estimates. In this study, a branch-and-bound search procedure 

can be used to solve the integer programming problem. To reduce the computational 

complexity, a beam search heuristic algorithm is implemented in this study.  
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Given prior information on the link travel time vector and its estimation error 

covariance from historical database, the proposed algorithm tries to find the best sensor 

location scenario from a set of candidates under particular budget constraints. Based on a 

breadth-first node selection mechanism, the beam search algorithm branches from the 

nodes level by level. At each level, it keeps only φ promising nodes, and prunes the other 

nodes permanently to limit the total number of nodes to be examined. φ is typically 

referred to as the beam width, and the total computational time of the beam search 

algorithm is proportional to the selected beam width. 

 

Algorithm 3.1: Beam search algorithm 

Step 1: Initialization 

Generate candidate link set LC and candidate node set NC for point and point-to-

point sensors, respectively.  

Set the active node list ANL . Create the root node u with '( ) , "( )A u N u    , 

search level ( ) 0sl u  , where u is search node index. Insert the root node into ANL.  

Step 2: Stopping criterion 

Terminate and output the best-feasible solution under one of the following conditions:  

(1) If all of the active nodes in ANL have been visited, 

(2) The number of active nodes in memory is exceeded. 

Step 3: Node generation and evaluation 

For each node u at search level sl in ANL, remove it from ANL, and generate child 

nodes; 
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Scan through the candidate sets LC, if a link a is not in A'(u), generate a new child 

node v’ where '( ') '( ) , "( ') "( ), ( ') ( ) 1A v A u a N v N u sl v sl u    ; 

Scan through the candidate sets NC, if a node i is not in N''(u), generate a new child 

node v” where "( ") "( ) , '( ") '( ), ( ") ( ) 1N v N u i A v A u sl v sl u    ; 

For each newly generated node v, calculate the objective function through DP in Eq. 

(30). If the budget constraint is satisfied for a newly generated node, add it into the ANL.  

Step 4: Node filtering 

Select φ best nodes from the ANL in the search tree, and go back to Step 2. 

 

In the above beam search algorithm, the total computational time is determined by 

the number of nodes to be evaluated, which depends on the beam width φ and the size of 

the candidate sensor links/nodes. For each node in the tree search process, the complexity 

is determined by the evaluation of the objective function, which can be decomposed into 

three major steps: (1) calculating P  from 1TH R H , (2) calculating the inverse of the 

covariance matrix 1( )P  , and (3) calculating the path travel time uncertainty as a function 

of DP  . The first step involves two matrix multiplications: 1TH R  and 1( )TH R H . Because 

H is an (nm) matrix and R is an (nn) matrix, the first step has a worst-case complexity 

of O(m2n), and calculating the inverse of matrix  leads to an O(m3) operation if the 

Gaussian elimination method  is used.  

For a large-scale sensor network design application, we can adopt three strategies to 

reduce the size of the problem and therefore the computational time. First, one can focus 

on critical OD pairs with significant volumes. Second, one can aggregate original OD 
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demand zones into a set of super zones within a manageable size, with this strategy being 

especially suitable for a subarea analysis where many OD zones outside the study area 

can be consolidated together. Third, we can reduce the size of candidate AVL sensor 

nodes and point sensor links in order to decrease the number of search nodes to be 

evaluated. 

 

3.6. Complex Cases for Updating Historical Traffic Patterns 

3.6.1. Quantifying Steady State Information Gain  

To consider long-term information gains of a sensor network in monitoring the travel 

time dynamics, the following discussion aims to derive the steady-state results of 

uncertainty reduction associated with a fixed sensor network design plan. Considering 

both point and AVL sensors, we first assume constant Q, R and H across different days, 

the travel time estimation error covariance updating equation as seen in Eq. (3.33), which 

was combined from Eqs. (3.16) and (3.19),  

 

1 1( )d d dP I K H P Q 
     (3.33) 

 

Under steady state conditions, the travel time estimation error covariance will 

achieve a constant state as 1d dP P P 
   after a number of updates. By applying the 

optimal formulation of Kalman gain K in Eq. (3.15), the steady estimation error 

covariance P is rewritten as  
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1( )T TPH HPH R HP Q   (3.34) 

or  1( ( ) )T TP I PH HPH R H P Q     (3.35) 

 

Eq. (3.35) is known as Algebraic Riccati Equation. When numerically solving this 

equation, the steady-state travel time estimation error covariance matrix for a long-term 

sensor location problem is obtained. 

Figure 3.7 illustrates a day-by-day time series of the travel time estimation variance. 

Due to the presence of system evolution noise Q, the estimation variance always 

increases when we make a travel time prediction from day d to day d+1, that is, 

d d dP P Q   . After receiving traffic measurement available every day, the uncertainty 

associated travel time estimates is reduced through ( )d d dP I K H P   . The uncertainty 

reduction and the resulting information gain are very dramatic after the first few days of 

sensor deployment. After 5 or 6 days, this zig-zag pattern reaches a stable state when  

 

 

Figure 3.7: Steady-state travel time estimation variance 
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1d dP P 
  (corresponding to the upper portion of the time series) and 1d dP P 

  

(corresponding to the lower portion of the time series).  

Due to the stochastic coverage characteristic of AVL sensor data, we can use a 

sample-based iterative computation scheme to compute the stable-state posterior 

estimation covariance matrix P+. In particular, representative samples of ,'''d a  can be 

first generated for each day, and then applied into the update equations (3.16) and (3.19) 

over multiple days to check if det(P+) converges to a constant value . 

 

3.6.2. AVI Extension with Multiple Paths 

In the previous discussions, we assume that all AVI-equipped travelers use only a 

single path between each pair of AVI sensors.  In the following discussion, we shift our 

focus from a single path case to a more complex but realistic situation with multiple used 

paths between a pair of AVI sensors. For simplicity, we assume the route choice 

probabilities for those paths can be computed from a deterministic or stochastic traffic 

assignment program.  

This study adapts a multivariate normal (MVN) distribution to represent the route 

choice behavior. In particular, each route choice decision from an individual traveler can 

be considered as an independent Bernoulli trial from one of the K possible outcomes (i.e., 

paths) with probabilities p1, …, pk,…, pK
.   

Consider an example network shown in Figure 3.8, where two AVI sensors are 

located at nodes a and c. Travelers can take either of two routes through link sequence: 

(path k = 1)13 or (path k = 2) 23, where link 3 is shared by these two paths. We now  
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Figure 3.8: Two partially overlapping path between AVI readers at nodes a and c 

 

extend AVI measurement equation (3.6) from a single path to the following with two 

paths (subscripts d, i,j are omitted for notation simplicity). 

 

 
1

1 2 2 1 1 2 2 3

3

'' '' '' 1

t

y H T p p t p t p t t

t

    
 
           
    

(3.36) 

 

where p1 and p2 represent the route choice probability for link 1 and 2, with 1 2 1p p  , 

''y is the average travel time from travelers using two routes, the contribution from 

travelers using route 1 is  1 1 3( )p t t and the contribution from route 2 is 2 1 3( )p t t , 

 is the error term introduced by sampling variations due to multiple paths, 

 is the error term associated with using the sample average value to approximate the 

population mean value T, as described in Eq. (3.8).  

The variance of multichoice sampling variation   can be calculated by  

 

2 2
1 1 2 2 3 1 1 2 2 1 2 1 2var( ) var( ) var( ) var( ) 2 cov( , )p t p t t t p t p t t p p               (3.37) 
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Assuming there are g AVI samples observed between this AVI sensor pair, and xk 

use path k, we can derive E( ) E( )k k kp x g p  , 2var( ) var( ) (1 )k k k kp x g p p g   , and 

cov( , )k kh h p p g   . 

Thus, Eq. (3.37) is reduced to 

 

 2 1 2
2 1var( ) ( )

p p
t t

g
     (3.38) 

 

First, it is clear that the overlapping portion, link 3, does not affect the variance 

associated with the multichoice sampling error. Under perfect deterministic user 

equilibrium conditions, all of the used routes have the same travel time, so the var( )

further reduces to zero. Under a more realistic stochastic user equilibrium assumption, the 

travel time difference between different used routes will increase the range of the 

combined error var( '') var( )R      .  

We can further extend the two-path case to consider multiple paths on a corridor 

with K parallel nonoverlapping routes, shown in Figure 3.9. In general, the variance of 

the combined error increases as there are more used paths with significant travel time 

differences. 

 

2
1 1

, ,

1
var( ) var( ... ) ( )k k K K k k

k k

p t p t p t t t p p
g  

 




        (3.39) 
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Figure 3.9: Example network with three parallel paths 

 

3.7. Illustrative Example and Numerical Experiments 

3.7.1. Illustrative Example for Locating AVI Sensors 

In Figure 3.10, we present an illustrative example with a 6-node hypothetical 

transportation network to demonstrate how the proposed measures of information can 

systematically evaluate the trade-offs between the accuracy and placement of individual 

AVI sensors for path travel time estimation reliability. In Figure 3.10, subscript day d is 

omitted for simplicity. As shown in the base case, there are three traffic analysis zones at 

nodes a, d and b, and three major origin-to-destination trips: (1) a to b, (2) a to d and (3) 

d to b, each with a unit of flow volume. P- (e.g., obtainable from a historical travel time 

database with point detectors) leads to a trace of 12 and a determinant of 48. Among the 5 

links in the corridor, link 5 from node f to b has the highest uncertainty in terms of link 

travel time estimation variance. We can view node b as a downtown area, and the 

incoming flow from the other two zones creates dramatic traffic congestion and travel 

time uncertainty, first on link 5 and then on link 4. For the base case, we can calculate the 

variance of path travel time estimates for these three OD pairs, respectively, as 12, 3 and 

9, leading to a total path travel time estimation uncertainty (TU) as  TU = 24.  

 In both cases (I) and (II), two AVI sensors are first installed at nodes a and b. In  
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Figure 3.10: Example of locating AVI sensors on a linear corridor 
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case (I), an additional AVI sensor is located at node f so that we can obtain two pairs of 

end-to-end travel time measurements: from node a to node f, and from node f to node d. 

The second measurement directly monitors travel time dynamics on link 5. In this 

particular example along the linear corridor, the end-to-end travel time statistics from a to 

b can be explicitly determined from the above two mutually exclusive observations. In 

order to avoid double-counting the information gain for the same data sources, the 

information quantification module in this study only considers two raw measurements: 

from a to f, and from f to d, to update the link travel time variance covariance matrix from 

P  to P . To do so, the measurement error matrix is assumed to be 
1 0

0 1
R

 
  
 

, and 

the mapping matrix 
1 1 1 1 0

0 0 0 0 1
H

 
  
 

, where the first measurement from a to f 

covers links 1,2,3 and 4, and the second measurement from f to b covers link 5. As link 5, 

with the highest travel time uncertainty, is directly measured from AVI readings, its link 

travel time estimate variance is reduced from 4 to 0.8, but the resulting P  contains a 

large amount of correlation in its link travel time estimates for links 1 to 4. All the path 

travel time uncertainties for the three OD pairs have been reduced, and TU = 6.74.  

In case (II), the third AVI sensor is installed at node d to match the nature OD trip 

demand pattern, which produces sensor mapping matrix
1 1 0 0 0

  
0 0 1 1 1

H
 

  
 

. The 

resulting P  still contains two clusters of correlations corresponding to two individual 

measurements from a to d and from d to b. The path travel time estimate variances for the 

OD pairs from a to d and from d to b are dramatically reduced to 0.75 and 0.9. Although 
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link 5 still has a relatively large estimate variance of 2.4, its overall estimation error 

measure, total travel time estimation uncertainty TU is now 3.3, which is much lower 

than TU = 8.5 in case (I).  

In comparison, by locating and spacing AVI sensors to naturally match the spatial 

trip patterns of commuters, case (II) is able to systematically balance the trade-off 

between the needs for monitoring local traffic variations and end-to-end trip time 

dynamics. It is also important to notice that, both cases (I) and (II) have the same network 

coverage and generate the same number of measurements every day, but they provide 

different information gains from a commuter/road user perspective. Thus, simple 

measures of information, such as traffic network coverage and the number of 

measurements, might not be able to quantify the system-wide uncertainty reduction and 

information gain for traveler information provision applications. 

 

3.7.2. Sensor Location Design for Traffic Estimation with  

Recurring Conditions 

In this study, we examine the performance of the proposed modeling approach 

through a set of experiments on a simplified Irvine, California network, which is 

comprised of 16 zones, 31 nodes and 80 directed link. This study considers a single path 

between each OD pair in this simple network. 

All the experiments are performed on a computer system equipped with an Intel Core 

Duo 1.8GHz CPU and 2 GB memory. Shown in Table 3.3, a set of critical OD pairs with 

large flow is selected to estimate the network-wide path travel time based uncertainty.  
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Table 3.3: Critical path travel time estimation error under existing and optimized sensor 
location strategies  

 

Origin 
Destin
ation 

Hourly 
volume 

Prior path 
travel time 
estimation 
variance 
without 
sensor 

Posterior 
path travel 

time 
estimation 
variance 

with 
existing 
sensors 

% 
reduction 

in 
variance 
due to 
exiting 

sensors 

Posterior 
path travel 

time 
estimation 

variance with 
optimized 

sensor 
locations 

% 
reduction 

in 
variance 
due to 

optimized 
sensor 

locations 
1 16 4000 5.87 5.14 12.44% 3 48.89% 
16 4 6820 5.24 3.94 24.81% 2.8 46.56% 
12 4 1152 1.85 1.85 0 1.32 28.65% 
4 16 2480 5.23 3.54 32.31% 3.19 39.01% 
16 12 832 4.91 3.61 26.48% 3 38.90% 
15 4 880 2.81 2.6 7.47% 2.07 26.33% 
12 16 680 4.9 3.21 34.49% 3.21 34.49% 
16 1 4800 5.86 4.28 26.96% 3 48.81% 
4 15 604 2.81 2.81 0 2.47 12.10% 
4 12 444 1.85 1.85 0 1.5 18.92% 
 
 

Additionally, a beam search width of 10 is used in the beam search algorithm to 

reduce the computational complexity. The total number of nodes in the search tree is the 

number of additional sensors times the beam search width. In our experiments, with 

standard Matlab matrix calculation functions, it takes about 30 min to compute 160 nodes 

in the beam search tree for this small-scale network.  

In this section, we examine the proposed information measure model and sensor 

location algorithm for the estimation of recurring traffic conditions. With given OD flow 

and prior uncertainty information, three scenarios of sensor location plan are designed to 

compare with current sensor network.  

We first conduct experiments to compare the existing point sensor network (Figure 

3.11a) and an optimized point sensor network plan (Figure 3.11b), both with the same 

number (i.e., 16) of point sensors. Table 3.3 shows the critical path travel time estimation  
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Figure 3.11: Numerical experiment results for regular traffic pattern estimation 
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Figure 3.11, continued 
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errors under those two scenarios. The results show that the proposed optimization model 

can reduce the path travel time estimation variance by an average of 34.3%, while the 

existing sensor plan only reduces the same measure by about 16.5%.  By factoring in the 

OD demand volume (shown in the third column), we can compute the proposed measure 

of information: the total path travel time estimation variance. The base case with zero 

sensor produces TU_zero_sensor=114855, the existing locations reduce TU to 88878 

(77.3% of TU_zero_sensor), and the optimized sensor location scenario using the 

proposed model further decreases the system-wide uncertain to TU= 63586 (55.3% of 

TU_zero_sensor). This clearly demonstrates the advantage of the proposed model in 

terms of improving end-to-end travel time estimation accuracy. 

In the next set of numerical experiments, we compare two scenarios with additional 

sensors on top of the existing sensors.  

1) Add 4 point sensors on uncovered links still with large travel time variance, 

leading to a total 16+4=20 point sensors, shown in Figure 3.11(c); 

2) Add 6 AVI readers on major zones with large volume, leading to a network with 

16 point sensors and 6 AVI readers, shown in Figure 3.11(d). 

Figure 3.12 further compares the measure of uncertainty at different stages. It is 

interesting to observe that compared to the optimized scenario (from the scratch) with 16 

sensors, this additional point sensors scenario (with 20 sensors) does not offer a superior 

uncertainty reduction performance for different OD pairs. On the other hand, compared to 

adding four point sensors to cover highly dynamic links, installing additional 6 AVI 

sensors does not further improve the estimation performance dramatically. 
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Figure 3.12: Comparison of different sensor location schemes (for regular traffic 
estimation) 

 
 

3.7.3. Sensor Location Design for Traffic Prediction with  

Recurring and Nonrecurring Conditions 

Now we perform the proposed algorithm by considering both regular and 

nonrecurring traffic conditions. As discussed in Section 3.4, the total traffic prediction 

uncertainty is computed as a probabilistic combination of recurring and nonrecurring 

uncertainties. In this numerical experiment, we take the incident as a demonstration 

example, with the link based incident rates shown in Figure 3.13(a). The proposed sensor 

location algorithm is applied in three scenarios: (1) optimized sensor network with 16 

point sensors, (2) current network with additional four point sensors, and (3) current  
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Figure 3.13: Numerical experiment results for traffic prediction under recurring and 
nonrecurring traffic conditions 
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Figure 3.13, continued 
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network with additional 6 AVI sensors. Consequentially, these three sensor network 

design results are plotted in Figures 3.13(b-d). It is interesting to note that when 

considering nonrecurring traffic conditions (incidents), the optimized sensor locations 

(Figure 3.13b) are more focused on links with higher incident rates, compared to the 

regular pattern estimation based planning result in Figure 3.11(b).  

 

 

  



 

 

 

CHAPTER 4 

 

FINDING THE MOST RELIABLE PATH WITH AND WITHOUT 

 LINK TRAVEL TIME CORRELATION 

 

This dissertation investigates a fundamental problem of finding the most reliable 

path under different spatial correlation assumptions, where the path travel time variability 

is represented by its standard deviation. To handle the nonlinear and nonadditive cost 

functions introduced by the quadratic forms of the standard deviation term, a Lagrangian 

substitution approach is adopted to estimate the lower bound of the most reliable path 

solution through solving a sequence of standard shortest path problems. A subgradient 

algorithm is used to iteratively improve the solution quality by reducing the optimality 

gap. To characterize the link travel time correlation structure associated with the end-to-

end trip time reliability measure, this research develops a sampling-based method to 

dynamically construct a proxy objective function in terms of travel time observations 

from multiple days. In specific, Section 4.1 provides the formal problem statement and 

briefly discusses two different models for the most reliable path problem: with and 

without link correlation. Focusing on each of the two different models, Sections 4.2 and 

4.3 present the theoretical derivations and algorithmic development in detail, followed by 
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illustrative examples. Finally, Section 4.4 evaluates the performance of proposed 

algorithms through numerical experiments on a large-scale network. 

 

4.1. Problem Statement and Model Assumptions 

The following notation is used to represent variables in the problem formulation. 

β = reliability coefficient 

N = set of nodes 

A = set of links 

p = path index 

m = link index in a path  

pc  = travel time of path p  

pc  = mean travel time of path p  

i, j = subscripts for node index 

l = subscript for the index of a link in a path, l = 1, …, m 

la  = link in path p, with index l 

ija  = directed link from node i to j 

lc  = travel time of link la  

ijc  = travel time of link ija  

lc  = mean travel time of link la  

ijc  = mean travel time of link ija  

( )lf c = probability distribution function of lc  

( )ijf c = probability distribution function of  ijc  
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2
ij = variance of link travel time ijc  

ijx  = binary variable that indicates link ija  
is included in path solution if 1ijx   

X = set of binary variables { | }ijx ij A  

D = set of travel time measurement samples 

n = number of samples in set D  

d = subscript for samples, d = 1,…,n 

,p dc  = travel time of path p in sample d  

,l dc  = travel time of link l in sample d  

,ij dc  = travel time of link (i, j) in sample d  

 

4.1.1. Problem Statement 

Let G (N, A) represent a transportation network, where N is the set of nodes and A is 

the set of links. Each link can be denoted as either a directed link ija  from node i to j, or 

an indexed link la  in a path p with m links. Accordingly, the travel time of each link is 

denoted as ijc  or lc . The travel time of each link (i, j) can be described as a random 

variable with probability distribution function ( )ijf c  which has a mean of ijc  and a 

variance of 2
ij . Generally, the mean and variance of link travel times evolve considerably 

depending on the time of day and underlying traffic congestion levels. For simplicity, this 

study focuses on the static shortest path problem (to be used in static traffic assignment) 

and considers link travel times as time-invariant parameters in the underlying study 

horizon (e.g., morning peak hours).  
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Consider binary variable {0,1}ijx   that indicates the selection of link ija  for the 

optimal path solution, the least mean travel time problem for a prespecified OD pair (o, d) 

is described as  

 

* min ij ij
ij A

z c x


    (4.1) 

 

Subject to the following flow balance constraints: 

 

: :

1

0 { , }

1
ij ji

j ij A j ji A

i o

x x i N o d

i d 


   
 

    (4.2) 

 

The above integer linear program (4.1) can be solved using regular label correcting 

or label setting shortest path algorithms (Ahuja et al., 1993).  

In this dissertation, we formulate the most reliable path problem (P) as the following 

nonlinear integer programming problem by combining mean path travel time and its 

standard deviation in the objective function: 

 

* min var( )ij ij p
ij A

z c x c


  ,   (4.3) 

subject to  

: :
ij ji

j ij A j ji A

x x b
 

     (4.4) 



81 

 

 

 

where 
1

0 { , }

1

i o

b i N o d

i d


  
   

represents the flow status for each node i in the network, 

and   is the reliability coefficient, which reflects the significance of travel time 

variability. It can be derived as the ratio of Value of Reliability (VOR) and Value of 

Time (VOT). The reliability coefficient could also vary across different travelers and 

different trip purposes (e.g., business trip vs. recreational trip), and a typical value can be 

1.27, calibrated by Noland et al. (1998). 

Given link travel time statistics, the mean and variance of path travel time can be 

derived as  

 

1

m

p l
l

c c


  

 

2 1

2

0

2

1 2 1 20 0 0
1 1

var( ) ( )

... ( , ,..., ) ...
m

p p p p p

m m

l l m mc c c
l l

c c c f c dc

c c f c c c dc dc dc



  

  
 

 

   
 



   
 (4.5) 

 

Obviously, it is computationally intractable to obtain the multidimension probability 

distribution function 1 2( , ,..., )mf c c c  for each path p, especially when spatial correlation 

exists. Along this line, two different approximation modeling approaches are proposed 

below to calculate the path travel time variance, with and without link travel time 

correlation assumptions.  

 

4.1.2. Finding Most Reliable Path without Link Travel Time  
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Correlation: Independent Distribution based Model 

To consider travel time variance in the most reliable path problem, one simplifying 

approach is to assume that there is no spatial correlation among travel times on different 

links. That is, by assuming the link travel time distributions are independent, we can 

reduce Eq. (4.5) to 

 

 2

1 20
1

1

var( ) ( , ,..., )

var( )

l

m

p l l m lc
l

m

l
l

c c c f c c c dc

c








 



 


 

(4.6) 

 

so that the variance of the path travel time is now expressed as the sum of independent 

link travel time variances, which are relatively easy to measure based on historical traffic 

databases with multiday observations. Given independent link travel time distributions, 

the most reliable path problem (P) is then rewritten as 

 

 

2
1

: :

* min

s.t.      

ij ij ij ij
ij A ij A

ij ji
j ij A j ji A

z c x x

x x b

 
 

 

 

 

 

 
  (4.7) 

 

 

 

4.1.3. Finding Most Reliable Path with Link Travel Time  
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Correlation: Sampling-based Model 

In reality, travel times among different links could be highly correlated, e.g., due to 

the propagation of traffic congestion from a lane drop or merge bottleneck to its upstream 

links along a freeway or arterial corridor. In order to explicitly consider the link 

correlation in path travel time variable calculation, a sampling-based approximation 

method is adapted in this research to formulate the most reliable path problem.  

According to the Monte Carlo method, a continuous stochastic distribution can be 

approximated as a discrete function by taking n samples from its population: 

 

 2

,
1

2

,
1 1 1

1
var( )

1

1

1

n

p p d p
d

n m m

l d l
d l l

c c c
n

c c
n



  

 


     



  
  (4.8) 

 

That is to say, one can take n days’ samples from a multiday historical traffic 

database and use them to directly calculate the sample variance and sample standard 

deviation of path travel time. By doing so, the inherent correlation among link travel 

times has been automatically represented by the sample set without explicitly requiring 

the variance-covariance matrix.  

According to the sampling approach in Eq. (4.8), the most reliable path problem (P) 

that allows link travel time correlation is reformulated as 
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2

2 ,
1

: :

1
* min

1

s.t.      

n

ij ij ij d ij ij ij
ij A d ij A ij A

ij ji
j ij A j ji A

z c x c x c x
n

x x b


   

 

 
     

 

   

 
 (4.9) 

 

where ,
1

1 n

ij ij d
d

c c
n 

 
 
is the sample mean of link travel time.  

Compared to the model assuming independent link travel time distributions, the 

proposed sampling-based method obviously requires a much larger number of 

measurements across different days to reduce sampling error and capture any possible 

spatial correlation. This approach fully recognizes link travel time correlation in 

calculating path travel time variance, but it also considerably complicates the path search 

process, especially when an acceptable level of approximation accuracy is needed. For 

real-world applications lacking sufficient link travel time measurements, the first model 

without link travel time correlation is still a viable option, but we also need to recognize 

that it might not find the most reliable path (i.e., optimal solution) in a network with 

possible spatial correlation.  

For solving the two models proposed above, two separate lower bound algorithms 

are addressed with the similar Lagrangian relaxation-based approach in the next two 

sections. In particular, the complex quadratic parts of the two problems in Eq. (4.7) and 

(4.9) are first replaced with auxiliary variables and equivalent equality constraints. Then, 

based on Lagrangian substitution, the auxiliary constraints are further dualized into the 

simplified objective functions and lead to easy-to-solve and variable-independent 

subproblems. Specifically, the new set of subproblems contains one integer program with 
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linear and additive cost functions, one single-variable concave function that is solvable 

by checking the boundary values in the feasible region, and a set of convex subproblems 

particularly for the sampling-based model. Finally, the subgradient method is applied on 

both algorithms to update the lower bound.  

 

4.2. Algorithm for Finding Most Reliable Path without  

Link Travel Time Correlation 

In this section, an algorithm is presented for finding the most reliable path without 

assuming spatial dependency of link travel times. The Lagrangian relaxation-based model 

reformulation and derivation are first described in detail, followed by the subgradient 

method implementation and illustrative example demonstration.  

 

4.2.1. Model Reformulation Using Lagrangian Substitution Method  

As shown in the optimization program (4.7), the standard deviation of path travel 

time is a nonlinear, concave and nonadditive function of link travel time variance. The 

nonadditivity violates Bellman's Principle of Optimality, which forms the basis for 

standard label setting or label correcting shortest path algorithms. The overarching goal 

of the following model reformulation is to approximate the complicating nonadditive 

objective function by a linear additive cost function that is suitable for the regular shortest 

path algorithm. To remove the nonadditivity on decision variable x, we first introduce a 

nonnegative auxiliary variable y to the program (4.7) to convert the variance term to an 

equality constraint (4.11): 
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min ij ij
ij A

c x y


    (4.10) 

s.t.      
2
ij ij

ij A

x y



 

 (4.11) 

: :
ij ji

j ij A j ji A

x x b
 

  
 

0 'y y   

 

where 'y  is the path travel time variance of the least expected travel time path.  

Lemma 1: The feasible interval of optimal path travel time variance is [0, ']y , i.e., 

between 0 and the variance of the least expected travel time path 'y .  

Proof: Shown in Figure 4.1, for any optimal solution to the most reliable path 

problem, its mean travel time is no less than that of the least expected travel time path. 

Moreover, it cannot have a path travel time variance greater than the variance of the least  

 

 

Figure 4.1: Feasible region of optimal path travel time variance y. 
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expected travel time path. Otherwise, this path has worse mean travel time and travel 

time variance compared to the least expected travel time path, which means that it is 

dominated by the least expected travel time path and should not be the optimal solution 

for optimization problem  min mean var . Since the variance of path travel time is 

always greater than or equal to zero, the feasible region of y is an interval between 0 and 

the variance of the least expected travel time path y'. 

After the reformulation in Eqs. (4.10) and (4.11), the original optimization program 

is transferred to a constrained shortest path problem with a linear cost function ij ij
ij A

c x



and a univariate function ( )U y y  which is concave and monotonically increasing.  

In a Lagrangian relaxation modeling framework, we can further relax the equality 

constraint (11) to an inequality (with a larger feasible region for x): 

 

2
ij ij

ij A

x y


   (4.12) 

 

and then introduce a Lagrangian multiplier 0   to bring the definitional linear 

constraint back to the original objective function (4.10): 

 

2min ij ij ij ij
ij A ij A

c x y x y  
 

 
   

 
    (4.13) 

s.t. 
: :

ij ji
j ij A j ji A

x x b
 

    

0 'y y    



88 

 

 

 

By further regrouping variables, we can obtain the following Lagrangian dual 

function of the original primal problem (4.7),  

 

 2

: :

( ) min : ,0 'ij ij ij ij ji
ij A j ij A j ji A

L c x y y x x b y y   
  

 
        

 
    (4.14) 

 

The Lagrangian function (4.14) is called a dual problem, in contrast to the primal 

problem (4.7), which can be divided and solved by two independent subfunctions: 

 

( ) ( ) ( )x yL L L     
 (4.15) 

 

The first subfunction ( )xL   involves a linear combination of primal variables x with 

a new link cost function 2
ij ijc  , and the resulting additive shortest path problem can be 

solved efficiently using label correcting or label setting algorithms (Ahuja et al., 1993). 

  

 2

: :

( ) min :x ij ij ij ij ji
ij A j ij A j ji A

L c x x x b 
  

 
    

 
    (4.16) 

 

The second subfunction ( )yL   is a univariate concave minimization problem with 

respect to auxiliary variable y, and it can be solved through Lemma 1 by selecting the 

boundary value y'. The least expected travel time path can be obtained by solving the 

optimization problem with objective function (4.1) and constraint set (4.2). 
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 ( ) min : 0 'yL y y y y     
 
 (4.17) 

 

The optimal value of the concave function is  min 0, ' 'y y   because the optimal 

value of a concave function is attained at one of the extreme points of the feasible region 

(a similar modeling technique was used in Larsson et al., 1994), as shown in Figure 4.2. 

Note that, for a general multidimensional concave minimization problem, its optimal 

solution is found by enumerating a large number of extreme points, while our proposed 

solution algorithm takes advantage of the fact that the simple concave function in Eq. 

(4.17) only involves a single variable.  

 

 

Figure 4.2: ( )yL  as a function of y, and optimal value obtained at one of the extreme 

points. 
 

0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

y

L
y(
μ)

y'



90 

 

 

 

In the Lagrangian dual problem in Eq. (4.14), essentially, the original nonadditive 

and nonlinear integer program (4.7) is approximated (lower-bounded) by a shortest path 

problem with linear and additive cost functions and another concave problem. In this new 

problem, the Lagrangian multiplier µ corresponds to the weight of the travel time 

variance in its reconstructed objective function, and its optimal value can be identified by 

some iterative search methods to be described below.  

 

4.2.2. Subgradient Method 

For each positive value of the Lagrangian multiplier μ, the corresponding value of 

the Lagrangian function L(µ) provides a lower bound to the optimal objective function 

value z1* of the primal problem (4.7). Let us denote L* to be the maximum value of L(µ) 

according to µ: 

 

* max ( )L L    (4.18) 

 

Let us define ε as the gap or tolerance level between the lower bound L* and the 

upper bound of the optimal solution, while the upper bound UB can be derived based on a 

feasible solution. Since the true optimal solution to the primal problem must have an 

objective value within the lower bound L* and the upper bound, the approximation error 

of the current best solution (corresponding to the upper bound UB) is no larger than the 

gap ε with respect to the primal optimal value z1*. To reduce approximation error (UB – 

L*), the Lagrangian multiplier µ and the auxiliary variable y can be determined iteratively 

through the following subgradient method. 
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The search direction of µ is typically calculated from the subgradient of L(µ): 

 

2( ) ij ij
ij A

L x y 


  
 

 (4.19) 

 

Let k denote the iteration number in the subgradient method. Starting from any 

feasible initial choice of the Lagrangian multiplier, to update the Lagrangian multiplier 

k at iteration k, the subfunctions (4.16) and (4.17) must be solved first, with solutions 

denoted as k
ijx and ky , respectively. With solutions at iteration k, we calculate the value of 

the Lagrangian multiplier as follows: 

 

1 2( )k k k k k
ij ij

ij A

x y   



  
 

  (4.20) 

 

A heuristic algorithm can be used to update the step size k . 

 

2

2

( )k k

k

k k
ij ij

ij A

UB L

x y

 





  


 

 (4.21) 

 

In this expression, UB  is computed as the current best objective function value z1* in 

the primal problem and can be updated iteratively to speed up the optimization process. 

k  is a scalar chosen between 0 and 2 to adjust the step-size of the process and make sure 

no negative value appears in the cost function.  It should be noted that negative 
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Lagrangian multiplier values are not acceptable, and we can adjust the k  term in Eq. 

(4.20) to ensure the resulting multipliers are nonnegative.  

As illustrated in Figure 4.3, the overall algorithm for solving the most reliable path 

problem without link travel time correlation is described below. 

 

Algorithm 4.1:  

Step 1: Initialization 

Choose an initial Lagrangian multiplier µ > 0; 

Initialize iteration number k = 0; 

Solve the least expected travel time path problem, set its objective function value as 

UB, and set the variance of the least travel time path as y' . 

 

 

Figure 4.3: Subgradient algorithm for solving Lagrangian dual problems. 
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Step 2: Solve decomposed dual problems 

Solve ( )xL   using a standard shortest path algorithm; 

Solve  ( ) min 0, ' 'yL y y    ; 

Calculate primal, dual and gap values. 

Step 3: Update Lagrangian multiplier  

Calculate Lagrangian multiplier µ with Eqs. (4.20-4.21) 

Step 4: Termination condition test 

If maxk K or the gap is smaller than the predefined toleration gap ε, terminate the 

algorithm, otherwise go back to Step 2. Here, maxK  is a predefined number for the 

maximum of iterations. 

 

4.2.3. Relative Gap and Optimal Solution 

The duality gap is defined as the difference between the primal optimal value z1* and 

the dual optimal value L*, and it offers an important metric for evaluating the 

performance of solution methods. In the proposed algorithm, the duality gap is the 

maximum approximation error range in the linear approximation approach taken by the 

LR lower bound method. This means that the distance between the optimal solution and 

the best solution found in the proposed algorithm is no larger than the duality gap. 

Specifically, the duality gap may contain two types of approximation error: (1) error of 

solution quality (distance between the true optimal solution and the proposed best 

solution) and (2) approximation error due to the limitation of LR. If the duality gap is 

equal to zero, then the primal solution corresponds to an optimal solution.  



94 

 

 

 

In practice, the real primal and dual optimal values cannot be achieved directly. 

Therefore, at each iteration of the above searching process, we update the tight upper 

bound of the primal problem with the shortest path solution of the linear integer 

subproblem in Eq. (4.16). Upon the termination of the algorithm, the minimal value of 

the primal problem serves as the tightest upper bound (UB), while the maximal value of 

the dual problem serves as the best lower bound (LB). To evaluate the solution quality, 

we can define a relative optimality measure as  

 

'
UB LB

UB
 
 ,  (4.22) 

 

while 1

1

* *

*

z LUB LB

UB z


 , meaning that this relative gap is no less than the real gap 

between the optimal primal and dual values. With a reasonably small relative gap, we 

provide a satisfied solution quality guarantee on the suggested reliable routes. It is 

important to notice that, due to the nature of the approximation from the Lagrangian 

relaxation-based lower bound estimation method, there could still be a positive gap even 

if the optimal solution of the primal problem has been achieved.  

 

4.2.4. Illustrative Example 

Consider a single origin-destination pair with three parallel links/paths with the 

following path travel time data in Table 4.1. By simply comparing the values of objective 

function, it is obvious that path C is the most reliable path for objective function:  
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Table 4.1: Path travel time data  

Path  
Mean Travel 
Time  

Travel Time 
Variance  

Travel Time 
Standard Deviation  

Value of Objective 
Function (β = 1) 

A 35 0 0 35 
B 29 49 7 36 
C(opt)  31 4 2 33 

 
 

mean var . Figure 4.4 shows the relationship between the Lagrangian multiplier and 

the value of objective function. 

When the Lagrangian multiplier is equal to 0.142, the best lower bound is found at 

31.57, while the tightest upper bound is found at 33 for the primal problem. Path C, 

identified as the best solution by the proposed algorithm (with results in Figure 4.4), has a 

 

 

Figure 4.4: Solution results for independent distribution-based algorithm. 
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relative gap of 4.33% to the best lower bound (31.57). As mentioned previously, although 

path C is in fact the optimal solution in this example, there still exists a positive duality 

gap between primal and dual solutions, as the Lagrangian relaxation-based lower bound 

estimation method is, essentially, an approximation.  

 

4.3. Algorithm for Finding Most Reliable Path with  

Link Travel Time Correlation  

In last section, we presented the model reformulation and solution algorithm for the 

most reliable path problem without travel time correlation. In order to take the link travel 

time correlation into account, a Monte Carlo-based approximation method is used to 

propose the sampling-based model in Eq. (4.9). Along this line, given the same 

transportation network G (N, A), we construct a sample set D with n travel time 

measurements from the same time at the same day-of-week. The sample domain is 

denoted with the subscript d for variables. Similar to the independent distribution-based 

model, because of the nonlinear and nonadditive characteristics of the objective function, 

a Lagrangian substitution method is adapted here to solve the sampling-based model. 

 

4.3.1. Lagrangian Substitution 

In order to approximate the minimization problem (4.9) with a linear optimization 

problem, we implement a two-step Lagrangian relaxation approach with two sets of 

auxiliary variables:  

,      ij d ij ij ij d
ij A ij A

c x c x w d D
 

       (4.23) 
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After relaxing the equality constraints in Eq. (4.23) and (4.24) with inequality 

constraints, the minimization problem can be reformulated as  

 

2* min ij ij
ij A

z c x y


    (4.25) 

s.t. 

,      ij d ij ij ij d
ij A ij A

c x c x w d D
 

       (4.26) 

2

1

1

1

n

d
d

w y
n 


    (4.27) 

: :
ij ji

j ij A j ji A

x x b
 

    

0 'y y   

 

In this reformulation, n+1 auxiliary variables are introduced. The variable dw  for 

each sample d represents the difference between the mean path travel time and the path 

travel time on sample d. The variable y corresponds to the average path travel time 

deviation between samples and the sample mean, which defines the path travel time 

variance.  

Lemma 1 still holds when considering link travel time correlations for the most 

reliable path problem with time-invariant travel times. As the mean travel time of the 
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least expected travel time path is always the minimum among all the paths, the variance 

of the least expected travel time path still serves as an upper bound for the reliability 

component of the objective function. It should be remarked that, in order to approximate 

the unknown (true) spatial travel time correlation structure, this study uses multiday 

samples from the historical database and Eq. (4.8) to calculate the sample variance of the 

path travel time, instead of using the variance-covariance structure shown in Eq. (4.5).  

To further remove constraints in Eq. (4.26) and (4.27), a set of positive Lagrangian 

multipliers, denoted as d  and   sequentially, is introduced in order to move the explicit 

inequality constraints into the objective function (4.25): 

 

1

2
,

1 1

: :

( ,..., , )

1
min

1

            : ,0 '

n

n n

ij ij d ij d ij ij ij d d
ij A d ij A ij A d

ij ji
j ij A j ji A

L

c x y c x c x w w y
n

x x b y y

  

  
    

 

                 


    


    

 

 (4.28) 

 

By regrouping the variables, we will have a clearer view on the components of the 

dual problem:  

 

1

2
,

1 1 1

: :

( ,..., , )

1
min 1

1

            : ,0 '

n

n n n

d ij d ij d ij d d d
ij A d d d

ij ji
j ij A j ji A

L

c c x w w y y
n

x x b y y

  

     
   

 

                     


    


   

 

 (4.29) 
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The dual function (4.29) has a linear objective function corresponding to the primal 

variable X. For each link, the cost function is a combination of weighted sample travel 

times on different days. By adjusting the Lagrangian multipliers d  and  , we may 

iteratively construct an optimal linear cost function that will maximize the dual function 

and, more specifically, best approximate the nonlinear objective function in the primal 

problem.  

 

4.3.2. Dual Function Decomposition 

We decompose the dual function (4.29) into a set of subfunctions: 

 

1 ,
1 1 : :

( ,..., , ) min 1 :
n n

x n d ij d ij d ij ij ji
ij A d d j ij A j ji A

L c c x x x b    
    

           
    

      (4.30) 

2
1

1
( ,..., , ) min      

1dw n d d dL w w d D
n

          
 (4.31) 

 1( ,..., , ) min : 0 'y nL y y y y         (4.32) 

 

The first subfunction (4.30) can be easily solved using shortest path algorithms. 

Notice that in this subshortest path problem, the cost function for each link is a weighted 

combination of mean travel time and travel time of each day. In other words, the set of 

Lagrangian multiplier d  indicates the weights of the travel time variance for each 

sample. By adjusting the set of multipliers, the influences of different samples on the 

overall path travel time reliability measure are evaluated and assessed systematically at 

each iteration.  
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The second subfunction set (4.31) contains one convex minimization problem for 

each auxiliary variable dw  and can be solved using the first-order gradient: 

 

1( ,..., , ) 2
0

1

( 1)

2

dw n
d d

d

d
d

L
w

w n

n
w

  
 





  

 




  (4.33) 

 

The third subfunction (32) is a concave minimization problem for variable y. Since y 

represents the variance of the path travel time, the feasible region is between zero and the 

variance of the path with least travel time, and the minimization point locates at one of 

the extreme points of the feasible region, i.e.,  1( ,..., , ) min 0, ' 'y nL y y      .  

 

4.3.3. Subgradient Method 

The subgradient method is also used in the second algorithm considering spatial 

correlation. The search direction for each Lagrangian multiplier is found using the 

following equations. 

 

    2
1 ,1 1 ,

1

1
( , ..., , ) , ..., ,

1

n

n ij ij ij ij n ij ij n d
ij A ij A d

L c c x w c c x w w y
n

  
  

 
        

   (4.34) 

 1
,      

d

k k k k k
d d ij d ij ij d

ij A

c c x w d D  



 
      

 
  (4.35)

 

 21

1

1

1

n
k k k k k

d
d

w y
n  



 
    

   (4.36) 
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The step size of each iteration k is calculated using heuristic algorithms: 

 

 

1 1

2

,

( ,..., , ) ( ,..., , )
     d

d

k k k k
UB n nk

k k
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
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
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(4.37)

 

 
1 1
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L L
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      




  


 

 

(4.38)

 

 

Similar to Algorithm 4.1, an iterative algorithm for solving the most reliable path 

problem with link correlations are written as the following.  

 

Algorithm 4.2:  

Step 1: Initialization 

Choose initial values for the set of positive Lagrangian multipliers, d  and  ; 

Initialize iteration number k = 0; 

Solve the least expected travel time path problem, set its objective function value as 

UB, set variance of the least travel time path as 'y . 

Step 2: Solve decomposed dual problems 

Solve the first subfunction (4.30) using a standard shortest path algorithm; 

Solve the second subfunction set (4.31) using Eq. (4.33); 

Solve the third subfunction (4.32) with  1( ,..., , ) min 0, ' 'y nL y y      ; 

Calculate primal, dual and gap values. 
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Step 3: Update Lagrangian multipliers 

Calculate Lagrangian multipliers with Eqs. (4.35-4.38) 

Step 4: Termination condition test 

If maxk K  or the gaps are smaller than the predefined toleration gap, terminate the 

algorithm, otherwise go back to Step 2. 

It is possible that the link cost term ,
1 1

1
n n

d ij d ij d
d d

c c 
 

     
  

  in Eq. (29) becomes 

negative for certain conditions of d . Although the label correcting algorithm can handle 

negative link costs, in order to avoid detecting and handling possible negative cycles in 

the resulting shortest path problem, our implementation uses the following rule for 

simplicity: when a negative link cost occurs, the values of the Lagrangian multiplier step 

size  in Eq. (4.35) are adjusted proportionally until all link costs in the network are 

nonnegative.  

This proposed algorithm (for adjusting multipliers to force a nonnegative cost) can 

be viewed as a special version of the subgradient projection method (Bertsekas, 1999), 

where the Lagrangian multipliers are projected to a feasible search direction in order to 

maintain the nonnegative link costs. Different from a regular subgradient projection 

method which only adjusts variables with infeasible values, the proposed problem is quite 

complex as each link cost is associated with all the Lagrangian multipliers μ (in Eq. 4.30). 

Therefore, our implementation uses the above heuristic rule to adjust the values of the 

Lagrangian multiplier step size θ to avoid negative link costs while maintaining the 

original search direction for each Lagrangian multiplier. 
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This adjustment method cannot guarantee to generate iterates with decreasing 

function values of the dual model at each iteration, but descent is more likely with the 

diminishing step size rule. Interested readers are referred to the dissertation by Nedic 

(2002) for an overview of the subgradient projection method and related convergence 

analysis in a Lagrangian optimization framework. 

Furthermore, to avoid getting stuck in a suboptimal solution under a certain set of 

Lagrangian multipliers, we also use a multistart global optimization technique to 

randomly generate a new set of Lagrangian multipliers to restart the search process.  

 

4.3.4. Illustrative Example 

Consider a single origin-destination pair with three parallel paths, as shown in Figure 

4.5. All three paths share a common link A, with different spatial correlations within each 

path.  

As shown in Table 4.2, Path 1 is the least travel time path (3.75 min), with a positive 

correlation of 0.125 between two links; Path 3 is the most reliable path with negative 

correlation -0.25 between two links. In comparison, the two links on Path 2 have the  

 

 

Figure 4.5: Network of illustrative example 

A 

B 

C 

D 

Origin Destination 

cov(A,B) = 0.125 

cov(A,C) = 0 

cov(A,D) = -0.25 
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Table 4.2: Travel time samples of each path (min) 

Path 
Travel 
Time 

Day 

Ave. Var. Cov. 

Path 
Var. 
No 

Corr 

Path Var. 
with Corr., 
Covariance 

matrix 
based 

method 

Path Var. 
with Corr. 
Sampling 

based 
method 

Utility 
with 
Corr. 

1 2 3 4 

Path 1: 
positive 

corr., 
least 
travel 

time path 

A 2 3 2 3 2.5 0.25 

0.125 0.44 
0.25 + 0.19 
+ 2 × 0.125 

= 0.69 
0.69 4.58 

B 1 1 1 2 1.25 0.19 

Path 
total 

3 4 3 5 3.75 0.69 

Path 2: 
no corr. 

A 2 3 2 3 2.5 0.25 

0 0.5 
0.25 + 0.25 

= 0.5 
0.5 4.71 

C 2 2 1 1 1.5 0.25 

Path 
Total 

4 5 3 4 4 0.5 

Path 3: 
negative 

corr., 
most 

reliable 
path 

A 2 3 2 3 2.5 0.25 

-0.25 0.5 
0.25 + 0.25 
–2 × 0.25  

= 0 
0 4 

D 2 1 2 1 1.5 0.25 

Path 
Total 

4 4 4 4 4 0 

 
 

same mean and variance as those on Path 3, but with a zero spatial correlation. Now we 

systematically compare the following three approaches to computing the path variance.  

(1) Without considering spatial correlation, the path variance is calculated directly 

from the summation of link variances, e.g., var( ) var( ) var( )X Y X Y   . This approach 

finds Path 1 as the most reliable path.  

(2) Using the link covariance matrix, the path variance is calculated with Eq. (4.39). 

The best path found with the consideration of link travel time correlation is Path 3.   

 

var( ) var( ) var( ) 2 cov( , )X Y X Y X Y     (4.39) 
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 (3) Using the sampling approach proposed in this dissertation, the path variance is 

calculated through sample path travel times (Eq. 4.8). This method finds Path 3 to be the 

most reliable path. Notice that, in this example, we consider the four sample days as the 

entire population, so the path variance is calculated in terms of population variance, e.g., 

 
4 2

1

1PathVar PathTT mean
4 day

day
  . In practice, in order to achieve an unbiased 

estimation of the population, sample variance and sample standard deviation statistics 

should be calculated as shown in Eq. (4.8).  

Table 4.2 shows that the path standard deviation computed through the proposed 

sampling approach leads to the same result as the method based on the analytical link 

variance-covariance matrix. In other words, the spatial correlation can be incorporated 

into the path travel time standard deviation measure directly from samples. It should be 

pointed out that the covariance matrix-based method may require a large amount of 

memory to store the link-to-link correlation values, and, more importantly, it is difficult 

to be directly embedded into standard shortest path algorithms.   

Now we apply the proposed sampling-based approach in Algorithm 4.2 to find the 

most reliable path in the sample network. Table 4.3 shows some key intermediate 

computational results in the first few iterations of the search procedure.   

In this example, by disseminating different weights μ on different samples, the 

proposed approach successfully uncovers the optimal solution (Path 3) for the most 

reliable routing problem. Specifically, starting with uniform distributed values (1/4 = 

0.25), the weight set are adjusted (Eqs. 4.34, 4.35, 4.37) to improve the lower bound of 

the optimal solution. 
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Table 4.3: Results of first few iterations for Algorithm 4.2 

K 
μ Lx 

Lx Lw Ly L LB UB ε ε' (%) 
1 2 3 4 1 2 3

1 0.25 0.25 0.25 0.25 3.75 4.00 4 3.75 -1.88 0 1.88 1.88 4.58 2.70 59.05 
2 0.19 0.17 0.19 0.14 3.69 3.98 4 3.69 -0.80 0 2.89 2.89 4.58 1.69 36.99 
3 0.11 0.05 0.11 0.01 3.61 3.94 4 3.61 -0.13 0 3.47 3.47 4.58 1.11 24.18 
4 0.05 0.01 0.05 0.11 3.81 3.96 4 3.81 -0.05 0 3.76 3.76 4.58 0.82 17.86 
5 0.01 0.32 0.01 0.20 4.06 4.31 4 4.00 -0.17 0 3.83 3.83 4.00 0.17 4.22 
6 0.01 0.30 0.01 0.21 4.07 4.29 4 4.00 -0.15 0 3.85 3.85 4.00 0.15 3.78 
7 0.01 0.29 0.01 0.22 4.08 4.28 4 4.00 -0.14 0 3.86 3.86 4.00 0.14 3.43 

 
 

Notations in Table 4.3: 

K: number of iterations.  

μ: a set of Lagrangian multipliers to approximate the original nonadditive and 

concave objective function with a linear combination, generated iteratively with Eqs. 

(4.35) & (4.37). 

Lx1, Lx2, Lx3: subLagrangian function values for each path (Eq. 4.30). Lx is the cost 

of the shortest path using a linear link cost function. 

Lw: a summation of the equation set Eq. (4.31). 

Ly: the calculated value from Eq. (4.32). 

L: the value of the dual problem for each iteration (Eq. 4.29). 

LB: lower bound of the solution, obtained from the best dual value L. 

UB: upper bound of the solution, generated from the best primal value among the 

paths uncovered by Lx; the corresponding path is the most reliable path found at current 

iteration.   

ε : the gap between UB and LB. 

ε’ : relative gap, as defined in Eq. (4.22). 
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As shown in Table 4.3, the linear cost function-based shortest path problem Lx finds 

Path 1 during the first 4 iterations, while the lower bound LB is continually improving. 

Starting from iteration 5, Lx3 achieves the minimum value and the algorithm finds Path 3 

as the best solution with the lowest upper bound value, although the lower bound is still 

slightly increasing and the relative solution quality gap remains under 4%.  

Figure 4.6 shows the evolution of LB and UB in the first few iterations of the above 

example. Notice that, although the optimal solution was found, there still exists a quality 

gap between upper bound and lower bound. This is due to the approximate nature of the 

Lagrangian Relaxation method.  

 

 

Figure 4.6: Evolution of lower bound (LB) and upper bound (UB) in the first a few 
iterations of the example 
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It is interesting to note that, in this illustrative example, the Lx value for Path 3 does 

not change when the μ values are modified. This is because that path travel times for 

different days on Path 3 are the same (4 min), which result in a zero variance in the linear 

cost function Lx.  

 

4.4. Numerical Experiments 

4.4.1. Test Network Overview 

In this section, numerical experiments are conducted on a large-scale real-world 

transportation network for the Bay Area, California, which is comprised of 53,124 nodes 

and 93,900 links (Figure 4.7). Specifically, 8,511 links (9.1% of links) of the entire 

network are freeways with a total length of 1,774.8 miles (i.e., 15.8% of the total 

mileage); while 85,389 links (90.9%) are arterial roads with a total length of 9,431.8 

miles (84.2%). The algorithm is implemented in C# on the Windows Vista platform and 

evaluated on a personal computer with an Intel Core Duo 1.8GHz CPU and 2 GB 

memory.  

For the first model without considering link travel time correlation, the mean travel 

time and travel time variance for each link are calculated from available historical travel 

time records from the NAVTEQ traffic database, and the data used in this study (mainly 

from freeway segments) cover about 4.1% of the total mileage in the Bay Area as in 

Figure 4.7. Note that the underlying network includes a large number of major and minor 

arterial streets which do not have temporally continuous traffic observations for us to 

calculate variability statistics. For the second sampling-based model that recognizes 

spatial correlation, 73 days of travel time measurements between November 2009 and  
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Figure 4.7: Measurement coverage of travel time for Bay Area, California. Links with 
measurements are highlighted. A subcorridor on Bayshore Freeway from Mountain View 

to San Jose, California is enlarged. 
 
 

February 2010 are collected for the time interval of 9:00 AM to 9:15 AM of each sample 

day. For simplicity, this research does not remove traffic data from weekend days and 

holidays.  

 

4.4.2. Spatial Correlation Analysis 

This study extracts and examines the data from a segment of the Bayshore Freeway 

between Mountain View and San Jose, California. On this 11-mile freeway corridor, 6 

miles of links have travel time measurements, as enlarged in Figure 4.7. The spatial link 

correlation is visualized in Figure 4.8, where the planar xy coordinates represent the link  
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Figure 4.8: Partial link correlations on selected subcorridor 

 

sequence numbers along the corridor and the vertical z axis shows the value of 

correlation. As a simple verification test, the reliable routing algorithm for the model with 

link correlation is carried out from the origin to the destination of this subcorridor, 

leading to a relative gap of 3.5%.  

In our experiments, in order to correctly model the randomness of link travel time for 

links without measurements, random travel time values from a Normal distribution are 

generated in order to incorporate their variance. It is important to recognize that, if only 

single mean travel time values are used for links without measurements, then the 

calculated path travel time reliability measure would assume zero variability for those 

links, leading to potentially biased solutions. In this research, the travel time index 
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(calculated as the travel time divided by the free flow travel time of each link) is 

calculated first to capture the variance of the travel time index for links with 

measurements. The corresponding average variance of the travel time index is then 

applied to links without measurements to generate random travel times for each sampling 

day. It should be also noted that the randomly generated travel times in the above 

procedure are inherently independent and uncorrelated across different links, so the 

calculated path travel time reliability without complete data coverage is likely to be lower 

than the actual end-to-end travel time reliability measure experienced by commuters.  

 

4.4.3. Numerical Performance and Solution Quality Analysis 

As short-distance OD pairs might be covered by no or inadequate raw observations, 

and they typically have very limited alternative routes to examine, this study particularly 

imposes the following rules to select OD pairs to be tested: (1) the average path travel 

time is larger than 45 minutes, and (2) the measurement coverage on the least expected 

travel time path is larger than 30% in distance. As a result, an OD-pair set S containing s 

= 246 random OD pairs is generated from the Bay Area network. 

 The performance of our approach is assessed using the average relative gap, which 

is calculated as the average value of all 246 OD pairs under a predefined maximum 

number of iterations maxK  and reliability coefficient β in Eq. (3), e.g.,
max, ,od K

od S

s


 


. To 

consider the impact of the reliability coefficients on the experiment results, this study 

considers two sets of reliability coefficients: β = 1.27 as suggested in the travel time 

reliability study by Noland et al. (1998), and β = 4 as a comparatively large value for 
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testing purposes. The travel time reliability coefficient represents how much travel time 

reliability (in terms of standard deviation) the trip-maker is willing to trade for unit time 

saving.  

In this dissertation we adopt a utility function of travel time reliability from the study 

by Noland et al. (1998). They performed a state-preference survey that used a sample set 

of more than 700 commuters in the Los Angeles region to empirically estimate the user 

preferred value of travel time reliability. Specifically, among the 543 valid questionnaires 

collected in their survey, each respondent was ask nine stated preference questions each 

with two commute routes under different distributions of travel times and departure times. 

A value of 1.27 was calibrated in their study for the travel time reliability coefficient β. 

Additionally, we also test β = 4 in our study, by considering that some road users, such as 

commercial fleet companies, have larger values of travel time reliability, compared to 

regular commuters.  

As shown in Figures 4.9 and 4.10, the average gap decreases along with the increase 

of the predefined maximum number of iterations maxK . To characterize the statistics 

distribution of the optimality gap measure, the standard deviation of relative gaps under 

variant maxK  and β are calculated in Figure 4.11. Overall, the relative gap for the reliable 

routing algorithm without considering link travel time correlation is dramatically lower 

than the gap for the algorithm with correlation consideration, e.g., 1.7% vs. 5.4% when β 

= 1.27. It should be remarked that this difference does not indicate that the first algorithm 

is superior to the second one, as these two algorithms use different primal and dual 

objective functions (with vs. without spatial correlation).  
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Figure 4.9: Relative gap in model WITHOUT link travel time correlation. Beta is the 
travel time reliability coefficient. 

 
 

 

Figure 4.10: Relative gap in model WITH link travel time correlation. Beta is the travel 
time reliability coefficient. 
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Figure 4.11: Standard deviation of relative gaps for 246 OD pairs under two models and 
reliability coefficients. 
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For the proposed two algorithms, a more systematic comparison scheme should be 

the following: first, extract the route solutions (in terms of node sequence) from these two 

different algorithms, and then evaluate their solution quality in terms of the same travel 

time utility function with spatial correlation. Conceptually, possible solution quality loss 

occurs for those models that ignore the underlying correlations. This problem can be 

viewed as a special case of “price of correlation” in the field of stochastic optimization, 

as investigated recently by Agrawal et al. (2010).  

From Figures 4.9 and 4.10, we find that 20 maximum iterations will be sufficient for 

the model without correlation to achieve a solution with relatively small gap value, and 

the decreasing trends for the model considering spatial dependencies begin to slow down 

after 10 iterations. As mentioned previously, a small duality gap can still exist despite a 

considerably large number of iterations, mainly caused by the inherent limitation of 

Lagrangian lower bound estimation techniques. As expected, a larger travel time 

reliability coefficient, representing higher weight on the standard derivation, could result 

in larger relative gaps for both models.  

Clearly, the most computational consuming step of the proposed algorithms is the 

shortest path calculation in each iteration of the searching process. As a result, the 

average computational complexity of the algorithms is determined by the number of 

shortest path calculations. For the model without correlations with a maximum number of 

20 iterations (as the termination condition), the average computing time for finding the 

most reliable path for a single OD pair on our test network is 1.2 seconds (including 20 

shortest path calculations).  For the sampling-based model, about 0.7 seconds is needed 
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with 10 shortest path calculations (to gain significant optimality improvements), and 1.4 

seconds for at most 20 shortest path calculations. 

To further evaluate the solution quality of the proposed sampling approach, we 

compare the results (β = 1.27) with two computationally intensive path enumeration 

methods: (1) random draws and (2) least travel time path of individual day. For the first 

path generation method, 1,000 random draws are extracted from a normal distribution for 

each link, with mean and variance equal to the link travel time (Prato, 2009). In other 

words, to enumerate variant paths, 1,000 shortest path calculations are performed, each 

with different randomized link costs. The second path enumeration method finds the least 

travel time path of each individual day using day-specific travel time measurements. For 

instance, the numerical experiment in this dissertation uses 73 days of travel time 

measurements, corresponding to 73 day-specific shortest path calculations applied to 

generate a path set for evaluation purposes.  

We conduct the solution quality comparison by applying the three methods to all 246 

OD pairs randomly selected in the numerical experiment. As shown in Figure 4.12, the 

best solutions found in the proposed sampling-based LR method are generally close to or 

better than the results of both path enumeration methods.  

In particular, the sampling-based LR method finds the best available upper bound for 

78.5% of the OD pairs. Notice that only 10 shortest path calculations are used here for 

each OD pair in the sampling-based LR method, compared with computationally 

consuming 1,000 shortest path calculations for the random draws approach and 73 

calculations for the day-specific sampling approach. Table 4.4 shows the performance 

comparison of three methods over different comparison terms. Overall, the results show 
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Figure 4.12: Solution quality comparison of three methods: random draws, individual 
days and proposed sampling method 

 
 

Table 4.4: Solution quality comparison over three methods 

Comparison Terms 
Sampling 
based LR 

Random 
Draws (10 

Draws) 

Random 
Draws 
(1000 

Draws) 

Day-
specific 

Sampling 

Percentage of OD pairs 
found best available solution 

78.5% 0.8% 10.2% 49.2% 

Average objective function 
values for all OD pairs 

77.70 80.37 78.60 77.76 

Average relative gap 
comparing to best available 
solutions (average value of 
best available solutions is 
77.59) 

0.14% 3.55% 1.30% 0.22% 
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that the proposed sampling-based LR method is able to find the most reliable path 

solution with satisfactory quality and much lower computational costs.  It is interesting to 

notice that, if the random draws approach only uses 10 draws to reduce the overall 

calculation efforts, then only 0.8% of OD pairs can be found with the best available 

solutions and the average relative gap is 3.55% compared to the best available solutions.  

It should be remarked that, for the real-world network we used in the experiments 

(with 53,124 nodes and 93,900 links), a full path enumeration is nearly impossible. 

Therefore, we try to use the two stochastic path enumeration methods described above to 

generate a partial, but sufficiently complete, path set. To further illustrate the 

performance of the proposed algorithms, we extract a subnetwork with 312 nodes from 

the Bay Area highway system, and use a search tree-based algorithm to enumerate all 

simple paths of a certain OD pair (while the number of nodes in any simple path is no 

more than 312 in this case). A small-scale experiment with 7 OD pairs shows that the 

relative gaps between the proposed best solutions and the true optimal solutions are 

extremely small, as the resulting relative gap has an average of 0.29% and a maximum 

value of 4.7%. 

 

 

 

  



 

 

 

CHAPTER 5 

 

FINDING ABSOLUTE AND PERCENTILE  

ROBUST SHORTEST PATHS 

 

To model driver route choice behavior under traffic dynamic and uncertainty, and 

further provide better traveler information with travel time reliability, this dissertation 

proposed two models to evaluate the travel time robustness: absolute and α-percentile 

robust shortest path problems. To meet the computational challenges of the ARSP and 

PRSP problems, a Lagrangian relaxation based two-bound approximation approach is 

proposed in this dissertation. Expressly, to reformulate the minimax objective function in 

the ARSP problem, we applied a variable splitting and relaxation approach to generate a 

dual problem that provides tight lower bounds for the optimal solution. Furthermore, a 

subgradient method is adopted in the solution procedure algorithm to iteratively improve 

both upper and lower bounds of the original problem. Following the same modeling 

framework, the α-percentile robust shortest path problem formulated the selection of 

samples by introducing a set of auxiliary variables into the objective function. The 

remainder of this chapter is structured as follows. Sections 5.1 and 5.2 provide formal 

problem statements, theoretical derivations and algorithmic development for both 

absolute and percentile robust shortest path problems. Section 5.3 evaluates the 
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performance of proposed algorithms through numerical experiments on a large-scale 

network with real-world observation data.  

 

5.1. Finding Absolute Robust Shortest Path 

5.1.1. Problem Statement 

Consider a directed, connected transportation network G(N, A) consisting of a set of 

nodes N and a set of links A. In this study, we assume a set of link travel time samples or 

measurements is available for the same time period of D days, for example, for the peak 

hour from 8am to 9am over d = 1, …, D = 60 weekdays during a 3-month period, where 

d is the index of random scenarios (in a stochastic optimization framework) or the index 

of data collection days (from a traffic data mining perspective).   

With a sufficiently large sample set, the calculated path travel time measure is able to 

capture the inherent spatial and temporal correlation of link travel times. Interested 

readers are referred to a discussion by Xing and Zhou (2011) on different models for 

representing spatial correlation for link travel times.  For notational simplicity, this study 

considers time-invariant travel times during the analysis time period of individual days, 

but the presented solution framework can be extended to a space-time expanded network 

by adding unique physical path constraints, as illustrated in a recent study by Li et al. 

(2011). 

We further denote the link from node i to node j as a paired index of ij, and 

accordingly the travel time of each link ij at the sample day d is expressed as ,ij dc . For a 

given OD pair (r, s), a set of binary variables { | }ijX x ij A   represents the selection of 
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links on a path (i.e., a path solution). The travel time for a path X at sample day d is then 

written as: 

 

,d ij d ij
ij A

T c x


    (5.1) 

 

subject to a flow balance constraint 

 

: :
ij ji

j ij A j ji A

x x b
 

     (5.2) 

 

where 
1

0 { , }

1

i r

b i N r s

i s


  
   

represents the flow status for each node i in the network.  

Given a day-dependent sample set, the robust shortest path problem aims to find a 

single path solution X that satisfies a certain robustness criterion over all realized 

samples/scenarios from different days. Specifically, two types of criteria are considered 

for the evaluation of the path travel time robustness: absolute robust shortest path and α-

percentile robust shortest path. The ARSP problem is mathematically expressed as  

 

Problem P0:  0 ,min max ij d ijx d
ij A

z c x


   (5.3) 

 

subject to the flow balance constraint (5.2).  
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5.1.2. Variable Splitting-Based Model Reformulation 

To reformulate the proposed minimax objective function (5.3), a variable splitting 

approach is adopted in this study. Expressly, we first introduce an auxiliary variable y 

into the objective function,  

 

 ,max ij d ij
d

ij A

y c x


    (5.4) 

 

so the minimax problem is transformed to a standard minimization problem format as z = 

min y. The auxiliary variable y is defined as the maximum path travel time for the path X 

from r to s over all samples, and y also corresponds to the absolute robust travel time for 

a path solution X. 

Further, the maximization subproblem in Eq. (5.4) can also be equivalently 

expressed as a set of inequality constraints for y over different days d=1, …, D:  

 

 , ,ij d ij
ij A

y c x d


    (5.5) 

 

Consequently, the ARSP problem P0 is formulated as P1 

 

Problem P1: 1 minz y  (5.6) 

 

subject to constraints (5.2) and (5.5). 
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To further iteratively find solutions for P1 efficiently, a Lagrangian relaxation based 

approach is implemented. That is, we introduce a set of nonnegative Lagrangian 

multipliers d to relax and dualize the inequality constraint set (5.5) into the objective 

function (5.6). 

 

 ,min d ij d ij
d ij A

y c x y


 
  

 
   (5.7) 

 

By regrouping variables in Eq. (5.7), we now consider a Lagrangian problem:  

 

Problem L1 1 2 ,( , ,..., ) min 1D d ij d ij d
ij A d d

L c x y    


   
     

   
    (5.8) 

 

subject to constraint (5.2). 

For any feasible (nonnegative) value set of the Lagrangian multipliers d , the 

objective function value of the Lagrangian dual problem 1 2( , ,..., )DL    provides a 

lower bound to the optimal value z1* of the original problem P1. By iteratively adjusting 

the Lagrangian multiplier set for L1, we want to maximize the dual objective function in 

Eq. (5.8) and therefore improve the lower bound estimate of the primal problem. 

Additionally, we will use paths generated through solving the dual problem to discover 

better solutions, which can also reduce the upper bound to the optimal value z1* of the 

primal problem.  
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5.1.3. Lagrangian Decomposition 

In the dual problem L1, Eq. (5.8) can further be decomposed into and solved by two 

independent subproblems for primal variables x and auxiliary variable y, respectively.  

 

1 2 1 2 1 2( , ,..., ) ( , ,..., ) ( , ,..., )D x D y DL L L           (5.9) 

 

The subproblem 1 2( , ,..., )x DL    is a binary integer programming problem for the 

primal variable set x, and it can be solved efficiently using standard label correcting or 

label setting algorithms (Ahuja et al.,  1993) for new link cost values of ,d ij d
d

c 
 
 
 . 

Subproblem SP1:     

1 2 ,
: :

( , ,..., ) min :x D d ij d ij ij ji
ij A d j ij A j ji A

L c x x x b   
  

      
  

     (5.10) 

 

The second part of the dual problem in Eq. (5.9) is a linear minimization problem for 

the single variable y. As a linear function, the optimal value of Ly is achieved at one 

extreme point of the feasible range of y. 

 

Subproblem SP2:     1 2( , ,..., ) min 1y D d
d

L y    
  

 
   (5.11) 

 

To find the optimal solution for subproblem SP2, we need to consider a feasible 

range ,LB UBy y   for y and propose a solution procedure for Ly: 
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Proposition 1:  Depending on the value of  1 d
d

 , the variable y is selected at 

one extreme point of its feasible range for the optimal value of  Ly, e.g.,:  

 

 
      1 0

      1 0

LB
d

d

UB
d

d

y

y
y





  
 

 





 (5.12) 

 

By referring back to the definitional Eq. (5.4) for variable y, for any feasible path 

solution x of the primal problem, it corresponds to an upper bound on the optimal 

objective function. For example, we can find the shortest path (with a cost function as the 

path distance), and use the corresponding maximum day-specific travel time as the upper 

bound UBy .  In the iterative search process to be presented below, the upper bound UBy

can be updated once a new path is discovered with a lower value of the maximum day-

specific travel time compared to the current UBy .  

Essentially, LBy should provide a lower bound to the maximum day-specific travel 

time on the optimal path. In this study, we first compute  min
,minij d ij dc c as the least 

travel time of link (ij) across different days, and then use min
ij ij

ij A

c x

 as the objective 

function to find the least travel time path and the corresponding path travel time Tmin. As 

min
ijc  is the least possible travel time of each link, Tmin ≤ z1* for sure, for both ARSP and 

PRSP problems.   
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5.1.4. Subgradient Method 

Let us denote L* to be the maximum value of 1 2( , ,..., )DL     over different 

Lagrangian multiplier sets: 

 

1 2
1 2

, ,..., 0
* max ( , ,..., )

D
DL L

  
  


   (5.13) 

 

In order to find a tighter lower bound for the primal problem, we adopt a subgradient 

approach to iteratively search the Lagrangian multiplier set and the corresponding values 

of x and y.  

The search directions of µ are typically calculated as the subgradient of L: 

 

1 2 ,1 ,2 ,( , ,..., ) , ,...,D ij ij ij ij ij D ij
ij A ij A ij A

L c x y c x y c x y  
  

 
     

 
    (5.14) 

 

Let us use k to denote the number of iterations. Starting from any feasible initial 

value set, we first find solutions k
ijx and ky for subproblems SP1 and SP2, respectively. 

Then the values of the Lagrangian multipliers 1k
d
  at iteration k+1are updated using the 

following subgradient equation: 

 

1
,( )k k k k k

d d d ij d ij
ij A

c x y  



     (5.15) 

 



127 

 

 

 

where the step-size set k
d  can be updated by using the following heuristic algorithm 

 

1 1 2( , ,..., )k k UB k k k
d d Dz L        .

  (5.16) 

 

In Eq. (5.16), 1
UBz is the current best objective function value for feasible solutions in 

the primal problem and can be updated when a tighter upper bound is found. A scalar k
d  

chosen between 0 and 2 is used in this study to adjust the step-size k
d of the search 

process and ensure nonnegativity of Lagrangian multipliers.   

 

5.1.5. Solution Procedure 

The overall algorithm for solving the absolute robust shortest path problem is 

described below. 

 

Algorithm 5.1: 

Step 1: Initialization 

Set iteration number k = 0; 

Choose positive values to initialize the set of Lagrangian multipliers d ; 

Select initial values for UBy and LBy . The upper bounds and lower bounds of the 

original problem P1 are 1
UB UBz y and 1

LB LBz y  

Step 2: Solve decomposed dual problems 

Solve subproblem SP1 using a standard shortest path algorithm and find a path 

solution x; 
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Solve subproblem SP2 with Eq. (5.12) in Proposition 1 and find a value for y; 

Calculate primal, dual and gap values, and update the upper and lower bound of y. 

Step 3: Update Lagrangian multipliers 

Update Lagrangian multipliers with Eqs. (5.14-5.16) 

Step 4: Termination condition test 

If maxk K  or the gap is smaller than a predefined toleration gap, terminate the 

algorithm, otherwise go back to Step 2. maxK is a predetermined maximum iteration value.  

 

5.1.6. Solution Quality Measurement 

To measure the path solution quality, we define ε= UB LBz z  as the duality gap 

between the lower bound LBz  and the upper bound UBz  of the optimal solution. As a 

result, the gap between the optimal value *z  and the objective function value of the 

current best solution UBz  is no larger than the gap ε. To normalize the duality gap for 

comparison purposes, we can define a relative optimality measure as  

 

* *

*
'

UB LB

UB

z z z L

z z


 
  .  (5.17) 

 

With a reasonably small relative gap, we provide a satisfied solution quality 

guarantee on the suggested absolute robust path. It is important to notice that, due to the 

approximate nature of the Lagrangian relaxation estimator, there could still be a positive 

gap even if the optimal solution of the primal problem has been achieved. 



129 

 

 

 

The above proposed algorithm has a complexity of ( )O A K where K is the number 

of iteration (e.g., 10-20 for our experiments in Section 5.3), while the complexity of Yu 

and Yang’s heuristic solution algorithm is ( )O A D with D being the number of 

scenarios/days. Our algorithm is comparatively more efficient when a large number of 

scenarios (say D=50) is required to achieve a low sampling error in capturing the network 

travel time stochasticity and dynamics.  

 

5.2. Finding α-Percentile Robust Shortest Path 

An α-percentile robust shortest path problem aims to minimize the α-percentile path 

travel time among all feasible paths. For instance, given α = 0.9, each feasible path 

solution x of the given OD pair has a path reliability measure y(x) corresponding to 90th-

percentile travel time. This measure ensures that, over all D sample days, 90% of those 

days have day-specific path travel times less than y(x). Among all feasible paths, the path 

solution x*
 with a minimum 90th-percentile travel time is then considered as the 90th-

percentile robust shortest path.  As a special case, the absolute robust shortest path 

problem can be viewed as the 100th-percentile robust shortest path, where the path 

reliability measure y(x) is minimized and  ,( ) max ij d ij
d

ij A

y x c x


 
 

 

5.2.1. Problem Formulation 

The α-percentile represents the value below which α percent of the observations (in 

ascending order) may be found. To represent the α-percentile travel time over a finite 

number of days d=1, …, D, let us first denote the sorted path travel times of a path on 
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different days as 1 2 3 DT T T T    . The percentage α then corresponds to the nth 

value and Tn, where n D  .  For example, when considering α = 0.9 and D = 100 

sample days, n=90. If D  turns out to be a floating point number, especially when the 

sample size D is small, then the rank n can be obtained by rounding to the nearest integer 

of the value of D  .   

To model the α-percentile robust shortest path problem, we introduce the following 

formulation: 

 

Problem P2:   2 minz y  

subject to   

 , ,ij d ij d
ij A

c x y Mw d


     (5.18) 

(1 )d
d

w D    (5.19) 

 

where M is a sufficiently large number and wd is a binary variable for sample d.  

When dw is 0, then Eq. (5.18) reduces to  

 

 , ij d ij
ij A

y c x


  , (5.20) 

 

and this active inequality should be held for all day-specific path travel times Td  less than 

the α-percentile travel time.  When dw =1, Eq. (5.18) leads to an always-feasible and 

inactive constraint  
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 ,ij d ij
ij A

c x y M


   (5.21) 

 

To make sure Eq. (5.21) is valid for those sample days d on which Td  is greater than 

the final y* (i.e., the optimal α-percentile travel time), the parameter M should be 

sufficiently large. Furthermore, to ensure the robust path travel time measure y is larger 

than for a certain percentage of days, the variable set w is constrained by Eq. (5.19). For 

example, for α = 0.9 and D = 100, (1 0.9) 100 10d
d

w     , so there are a total of 10 

inactive constraints, and 90 active constraints. Because problem P2 needs to minimize the 

variable of y, the optimization result needs to select the n D   active constraints for 

travel time values on different days ranking from smallest to largest.  

 

5.2.2. Illustrative Example 

Consider a single origin-destination pair with two parallel paths, as shown in Figure 

5.1. In this illustrative network, both paths share a common link A.  

Table 5.1 shows the link and path travel times (min) over D=4 sample days. As 

calculated in this table, for the ARSP problem, path AB (along links A and B) has a 

minimax travel time of 12 min over four sample days. On the other hand, for a 75th-

percentile robust shortest path problem, each path can only have (1 75%) 4 1   day of 

sampled travel time greater than the variable of y. For path AB, only day 4 has a w =1, 

leading to its 75th-percentile travel time as 11 min. Path AC needs to set w =1 on day 3, 

leading to its 75th-percentile travel time as 10 min and therefore the optimal solution to 

the PRSP problem.  
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Figure 5.1: Network of the illustrative example 

 

Table 5. 1: Travel time calculation of the illustrative example 

Travel time Link A Link B Link C Path AB w for Path AB Path AC w for Path AC
Day1 3 5 6 8 0 9 0 
Day2 4 7 6 11 0 10 0 
Day3 5 6 8 11 0 13 1 
Day4 4 8 6 12 1 10 0 
100th 

percentile    
12 (ARSP 
solution) 

 13  

75th 
percentile    

11  
10 (PRSP 
solution) 

 

 
 

5.2.3. Lagrangian Relaxation and Decomposition 

Following the same Lagrangian relaxation modeling framework for the ARSP 

problem, we introduce a set of nonnegative Lagrangian multipliers d and v to relax the 

inequality constraint set (5.18) and (5.19) into the objective function: 

 

,min (1 )d ij d ij d d
d ij A d

y c x y Mw w D  


           
  

    (5.22) 
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By regrouping variables in Eq. (5.22), a Lagrangian dual problem is constructed with 

three sets of independent variables:  

 

Problem L2: 

   1 ,( ,..., , ) min 1 1D d ij d ij d d d
ij A d d d

L c x y M w v D       


            
   

    (5.23) 

 

We then divide the dual function into three independent subproblems. For notational 

convenience, we denote a constant variable  1h v D   .  

 

1 1 1 1( ,..., , ) ( ,..., ) ( ,..., ) ( ,..., , )
dD x D y D w D

d

L L L L h              (5.24) 

 

The first two subproblems in the dual function are identical to subproblems SP1 and 

SP2 in the ARSP problem, and both can be solved efficiently. The third part of the dual 

problem in Eq. (5.24) is a number of binary integer problems, each corresponding to a 

day d and a single variable dw .  

 

Subproblem SP3:  1( ,..., , ) ,    
dw D d dL M w d        (5.25) 

 

Proposition 2: for each univariate linear programming problem in subproblem SP3, 

the optimal value of binary variable dw  is determined according to the given values of d

and v, i.e.:  
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0      0

1      0
d

d
d

M
w

M

 
 
 
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5.2.4. Subgradient Method 

Similarly, we need to improve the upper and lower bounds of the primal problem by 

iteratively maximizing the dual problem in Eq. (5.23). The subgradient method is 

implemented here with two sets of Lagrangian multipliers µ and ν. 

 

 1 ,1 1 ,( ,..., , ) ,..., , 1D ij ij ij D ij D d
ij A ij A d

L v c x y Mw c x y Mw w D  
 

 
        

 
    (5.27) 

1
,     k k k k k k

d d d ij d ij d
ij A

c x y Mw d  



 
     

 
  (5.28) 

 1 1k k k k
d

d

w D     
    

 
   (5.29) 

 

A heuristic algorithm is used to update the step-size set k
d and k

  

 

1( ,..., , )      k k UB k k k
d d Dy L d          (5.30) 

1( ,..., , )k k UB k k k
Dy L           (5.31) 

 

5.2.5. Solution Procedure 

The overall algorithm for solving the α-percentile robust shortest path problem is 

described below. 
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Algorithm 5.2 

Step 1: Initialization 

Set iteration number k = 0; 

Choose positive values to initialize the set of Lagrangian multipliers, d  and  ; 

Select initial values for M, UBy and LBy . 

Step 2: Solve decomposed dual problems 

Solve Subproblem SP1 using a standard shortest path algorithm and find a solution x; 

Solve Subproblem SP2 with Eq. (5.12) in Proposition 1 and find a value for y; 

Solve Subproblem SP3 with Eq. (5.26) in Proposition 2 and find values for dw ; 

Calculate primal, dual and gap values, and update the upper and lower bounds of the 

optimization problem P2. 

Step 3: Update Lagrangian multipliers 

Update Lagrangian multipliers with Eqs. (5.27-5.31) 

Step 4: Termination condition test 

If maxk K  or the gaps are smaller than the predefined toleration gap, terminate the 

algorithm, otherwise go back to Step 2. 

 

5.2.6. Illustrative Numerical Examples  

Now we apply the proposed Lagrangian relaxation approach in Algorithms 1 and 2 

to find the ARSP and 75th-percentile PRSP in the sample network (Figure 5.1). Tables 5.2 

and 5.3 show some key intermediate computational results in the first few iterations of 

the search procedure. 
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Table 5.2: Results of first few iterations for Algorithm 5.1  

K μ1 μ2 μ3 μ4 y Lx1 Lx2 Lx Ly L LB UB ε ε' (%) 

1 0.25 0.25 0.25 0.25 8 10.5 10.5 10.5 0 10.5 10.5 13 2.5 19 
2 0.5 0.75 1.5 0.75 13 37.75 39 37.75 -32.5 5.25 10.5 12 1.5 12.5 
3 0.01 0.45 1.2 0.6 12 25.43 26.19 25.43 -15.12 10.31 10.5 12 1.5 12.5 
4 0.01 0.34 1.09 0.6 12 22.96 23.6 22.96 -12.42 10.54 10.54 12 1.465 12 
5 0.01 0.25 0.99 0.6 12 21.02 21.58 21.02 -10.31 10.71 10.71 12 1.2892 11 
6 0.01 0.19 0.94 0.6 12 19.6 20.1 19.6 -8.76 10.84 10.84 12 1.16 10 
7 0.01 0.14 0.89 0.6 12 18.51 18.95 18.51 -7.57 10.94 10.94 12 1.06 9 

 
 

Table 5.3: Results of first few iterations for Algorithm 5.2 

K μ1 μ2 μ3 μ4 v M y Lx1 Lx2 Lx Ly 
w 

Lw L LB UB ε 
ε'
%1 2 3 4

1 0.25 0.25 0.25 0.25 1.5 4 8 10.5 10.5 10.5 0 0 0 0 0 -1.5 9 9 11 2 18
2 0.25 0.85 0.85 1.05 1.3 4 11 33.3 32.3 32.3 -22 0 1 1 1 -8.4 1.9 9 10 1 10
3 0.05 0.35 0.65 0.55 1.5 4 10 18 17.9 17.9 -6 0 0 1 1 -3.3 8.6 9 10 1 10
4 0.01 0.35 0.58 0.25 1.58 4 10 13.3 13.6 13.3 -1.9 0 0 1 0 -2.3 9.1 9.1 10 0.89 9 
5 0.01 0.40 0.41 0.36 1.58 4 10 13.4 13.1 13.1 -1.9 0 1 1 0 -1.7 9.5 9.5 10 0.46 5 
6 0.01 0.31 0.39 0.36 1.6 4 10 12.1 11.9 11.9 -0.7 0 0 0 0 -1.6 9.6 9.6 10 0.44 4 
7 0.01 0.31 0.45 0.36 1.58 4 10 12.7 12.6 12.6 -1.3 0 0 1 0 -1.8 9.54 9.6 10 0.44 4 

 
 

Additional notations in Tables 5.2 & 5.3: 

K: number of iterations. 

Lx1, Lx2: objective function values of subproblem SP1 for paths AB and AC, 

respectively.  

Lx: the cost of the shortest path found in subproblem SP1. 

Ly: optimal value of subproblem SP2 at each iteration. 

Lw: optimal value of subproblem SP3 at each iteration. 

L: the value of the dual problem for each iteration. 

LB: lower bound of the solution, obtained from the best dual value L. 
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UB: upper bound of the solution, generated from the best primal value among the 

paths uncovered up to the current search iteration.   

ε: the gap between UB and LB.  

ε': relative gap: as defined in Eq. (5.17). 

 

In the above two examples, by iteratively configuring weights μ on different samples, 

the proposed approach successfully uncovered the optimal solutions (Path AB for ARSP 

and Path AC for PRSP). Specifically, starting with uniform distributed values (1/4 = 

0.25), the Lagrangian multipliers are adjusted to improve the lower bound of the optimal 

solution even after the optimal upper bounds have been achieved.  

It should be remarked that, although the optimal solution was found in both problems, 

a relative gap still exists due to the approximation nature of the Lagrangian relaxation 

method.  

In the proposed subproblem SP3, the parameter M is included in the dualized 

objective function (5.25). Given its corresponding negative sign, a larger value of M 

could lead to a lower value in the final optimal function for (5.25) and therefore a looser 

lower bound estimator.  Thus, we need to select a value for parameter M which is not 

only sufficiently large enough to make inequality (5.21) valid, but also small enough to 

construct a tight lower bound for function (5.25). In the illustrative example, M is 

selected to be 4 minutes so that it is larger than the maximum value of the gap between 

100% and 75% travel times, which is 3 minutes for Path AC.  
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5.3. Numerical Experiments 

5.3.1. Test Network Overview 

In this section, we conducted numerical experiments based on a large-scale real-

world transportation network of the Bay Area, California. The selected network is 

comprised of 53,124 nodes and 93,900 links. In this area, the freeway system has 8,511 

links (9.1% of links), and covers 15.8% (1,774.8 miles) of the entire network, while 

85,389 links (90.9%) are arterial roads with a total length of 9,431.8 miles (84.2%). The 

proposed algorithms are implemented in C# on a Windows platform and evaluated on a 

personal computer with an Intel Core Duo 1.8GHz CPU and 2 GB memory.   

The samples of link travel time are calculated based on available historical records 

from the NAVTEQ traffic database. In particular, 73 days of travel time measurements 

between November 2009 and February 2010 are collected for the time interval of 9:00 

AM to 9:15 AM of each sample day. As the observation data used in this study (mainly 

from freeway segments) cover about 4.1% of the total mileage in the Bay Area, random 

sample travel times are generated for links without data coverage. For simplicity, this 

research does not remove traffic data from weekend days and holidays. Figure 5.2 shows 

the test network and its sensor data coverage.  

As short-distance OD pairs might be covered by no or inadequate raw observations, 

and they typically have very limited alternative routes to examine, this study imposes the 

following rules to select OD pairs to be tested: (1) the average path travel time is larger 

than 45 minutes, and (2) the measurement coverage on the least expected travel time path 

is larger than 30% in distance. As a result, an OD-pair set U containing u = 246 random 

OD pairs is generated from the Bay Area network. The performance of the proposed  
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Figure 5.2: Sensor data coverage for Bay Area, California.  

 

algorithms is assessed using the average relative gap, which is calculated as the average 

value of the relative gaps for all 246 OD pairs under a predefined maximum number of 

iterations maxK , e.g.,
max

'
( , ),

( , )
r s K

r s U

u


 


. Additionally, the average objective function value 

of primal and dual problems among all OD pairs are also used to demonstrate the 

improvement of the solution quality over the iterative procedure.  
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5.3.2 Numerical Performance and Solution Quality Analysis 

As shown in Figure 5.3, the average gap decreases along with the increase of the 

predefined maximum number of iterations maxK . Figure 5.4 illustrates that, for both 

models, after about 5 iterations, the reduction of upper bound becomes very slow, while 

the lower bound keeps improving. The average gap of the 95% percentile robust path 

problem is larger than that of the absolute robust path problem, which can be explained 

by the difference in the constructed dual objective functions, and in particular the 

additional complexity in turning the parameter M for subproblem SP3.  

 

 

Figure 5.3: Relative gap for ARSP and 95% PRSP 
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Figure 5.4: Upper and lower bounds evolution for ARSP (top) and 95% PRSP (bottom) 
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Overall, our experiments indicate that 20 iterations are sufficient for both models to 

achieve relatively small gap values, and the solution quality improvement begins to 

diminish after 10 iterations. It should be mentioned that a small duality gap can still exist 

even when an optimal solution is found, mainly due to the inherent limitation of 

Lagrangian lower bound estimation techniques.  

 

  



 

 

 

CHAPTER 6 

 

CONCLUSIONS 

 

This chapter summarizes the major methodologies, algorithms and results proposed 

in this dissertation. In specific, Section 6.1 presents summaries and highlights for the 

topics discussed in this study, followed by the contributions of this research to the state of 

the art of Advanced Traveler Information Systems applications. Section 6.3 discusses 

further extensions and directions for future research in this area.  

 

6.1. Research Highlights 

This dissertation discusses a series of emerging issues in ATIS by proposing an 

integrated and unified estimation-optimization framework, including (1) design efficient 

and high-performance traffic monitoring network with heterogeneous sensors to 

accurately estimate and predict traffic under recurring and nonrecurring congestions in 

highway systems; and (2) provide route guidance with travel time reliability and 

variability information. 
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6.1.1. Heterogeneous Sensor Network Design for  

Travel Time Estimation and Prediction  

To provide effective congestion mitigation strategies, transportation engineers and 

planners need to systematically measure and identify both recurring and nonrecurring 

traffic patterns through a network of sensors. The collected data are further processed and 

disseminated for travelers to make smart route and departure decisions. There are a 

variety of traditional and emerging traffic monitoring techniques, each with ability to 

collect real-time traffic data in different spatial and temporal resolutions. This study 

proposes a theoretical framework for the heterogeneous sensor network design problem. 

In particular, we focus on how to better construct network-wide historical travel time 

databases, which need to characterize both mean and estimation uncertainty of end-to-end 

path travel time in a regional network.  

A unified Kalman filtering based travel time estimation and prediction model is first 

proposed in this research to integrate heterogeneous data sources through different 

measurement mapping matrices. Specifically, the travel time estimation model starts with 

the historical travel time database as prior estimates. Point-to-point sensor data and GPS 

probe data are mapped to a sequence of link travel times along the most likely travelled 

path. Through an analytical information updating equation derived from Kalman filtering, 

the variances of travel times on different links are estimated for possible sensor design 

solutions with different degree of sampling or measurement errors.  The variance of 

travel time estimates for spatially distributed links are further assembled to calculate the 

overall path travel time estimation uncertainty for the entire network as the single-valued 

information measure. The proposed information quantification model and beam search 
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solution algorithm can assist decision-makers to select and integrate different types of 

sensors, as well as to determine how, when, where to integrate them in an existing traffic 

sensor infrastructure.  

 

6.1.2. Providing Reliable Route Guidance under  

Stochastic Traffic Conditions 

To meet the emerging needs for modeling travel time reliability, especially in the 

area of spatial network analysis, this dissertation proposes two models for the standard 

deviation based most reliable path problem, each with a different spatial dependency 

assumption. The path travel time reliability measure in this research is expressed through 

the standard deviation of path travel time. The computational challenges introduced by 

this reliability functional form stem from the nonlinearity and nonadditivity of standard 

deviation, as well as the concave characteristics of the corresponding square root 

transformation.  

To tackle the above modeling and computational challenges, this study proposes two 

new approximation methods for solving the reliable path searching problem. First, 

focusing on the nonadditive and concave characteristics of the original reliability 

representation, a Lagrangian substitution-based lower bound approach is introduced to 

quantify the quality of solutions found by an iterative search process. More specifically, 

with efficient evaluation of feasible solutions and their dual problem results, a tight lower 

bound is achieved and a close-to-optimal solution can be obtained with a guaranteed 

level-of-service. Second, to incorporate the spatial correlation among link travel times, 

this dissertation constructs a sampling-based solution algorithm. Instead of relying on the 
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(independent or limited correlated) probability density functions of link travel times, a set 

of individual historical measurements are utilized to explicitly capture the inherent spatial 

correlation. Comprehensive experiment results on a large-scale network show that 10-20 

iterations of standard shortest path algorithms for the reformulated models can offer a 

very small duality gap of about 2-6%. 

 

6.1.3. Efficient Algorithms for Finding Absolute  

and Percentile Shortest Paths  

To model driver route choice behavior under inherent traffic system stochasticity and 

dynamics, and further provide better route guidance with travel time reliability guarantees, 

this dissertation proposes two models to evaluate the travel time robustness: absolute and 

α-percentile robust shortest path problems. A Lagrangian relaxation approach and a 

scenario-based representation scheme are uniquely integrated to develop efficient 

solution algorithms for the ARSP and PRSP problems. To reformulate the complex 

minimax objective function in the ARSP problem, we applies a variable splitting and 

relaxation technique to generate a dual problem that provides tight lower bounds for the 

optimal solution. Furthermore, a subgradient method is adopted in the solution procedure 

algorithm to iteratively improve both upper and lower bounds of the original problem. 

Along this line, the α-percentile robust shortest path problem is reformulated as a set of 

easy-to-solve subproblems by introducing auxiliary variables and additional definitional 

constraints.  The comprehensive experiment results on a large-scale network with real-

world travel time measurements demonstrates that 10 to 20 iterations of standard shortest 
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path algorithms for the reformulated models can offer a very small relative duality gap of 

about 3-6%. 

 

6.2. Summary of Contributions 

In the study of heterogeneous sensor network design, a Kalman filtering-based 

information-theoretic sensor location model that aims to minimize information 

uncertainty from a set of point, point-to-point and probe sensors in a traffic network. 

Major contributions of this study include: (1) the sensor location problem was jointly 

considered with its underlying travel time estimation and prediction model to maintain 

the inherent consistency of these two closely related problems. (2) a unified modeling 

framework was developed to consider the uncertainty reduction and propagation in a 

heterogeneous sensor network with point, point-to-point and probe sensor observations, 

as well as possible error correlations between new and existing sensors. (3) a new 

measure of information based on the travel time uncertainty of critical origin-to-

destination/paths was proposed to capture the network-wide end-to-end 

estimation/prediction quality, and (4) a series of close-form formulas was derived to 

quantify the information loss under both recurring and nonrecurring traffic conditions, 

and derived analytical travel time transition equations for nonrecurring traffic conditions. 

For the study of route guidance based on travel time reliability and variability, this 

dissertation proposes to seamlessly incorporate and significantly enhance several 

modeling/algorithmic components from several previous studies. Based on the variable 

splitting approach in the Lagrangian reformulation framework, this study improves the 

solution quality of reliable or robust routing problems with Lagrangian relaxation based 
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upper and lower bound estimation. Another significant contribution of this research is an 

efficient and practical incorporation of spatial network correlations. Different from 

traditional methods focusing on the probability density functions of link travel times, this 

dissertation proposes a sampling-based algorithm to consider the spatial dependencies 

among links. By directly utilizing readily available historical travel time measurements 

from traffic monitoring systems, the proposed approach can systematically incorporate 

the inherent spatial correlation into the reliable route searching process. 

 

6.3. Future Research 

For the research on network design problems, we plan to expand the research in the 

following ways. First, this study only focuses on the sensor design problem for estimating 

the mean of path travel time, and a natural extension is to assist sensor design decisions 

for other network-wide traffic state estimation domains, such as measuring and 

forecasting point-to-point travel time reliability, and incident detection probability. 

Second, under assumptions of normal distributions for most error terms, the proposed 

sensor location model is specifically designed for the minimum path travel time 

estimation variance criterion, and our future work should consider other crucial factors 

for real-world sensor network design, such as allowing log-normally distributed error 

terms and minimizing maximum estimation errors. Furthermore, the offline model 

developed in this study could be extended to a real-time traffic state estimation and 

prediction framework with mobile and agile sensors. The numerical experimental results 

(for a small-scale network) in this study also demonstrate computational challenges (due 

to heavy-duty matrix operations) in applying the proposed information-theoretic sensor 
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location strategy in large-scale real-world networks, and these challenges call for more 

future research for developing efficient heuristic and approximation methods. 

In the study of reliability-oriented route guidance problems, future research interests 

will cover four major extensions. (1) Expand the realm of application of these models 

from static travel times to time-varying travel times, and jointly consider temporal and 

spatial correlation in finding the most reliable path. (2) Extend current reliable routing 

algorithms from single OD case to the one-origin to all-destination application. Such one-

to-all most reliable path problem may serve an important role in the dynamic traffic 

assignment. (3) Incorporate proposed reliable and robust routing models into the route 

choice component for network-wide dynamic traffic assignment and flow management 

problems. (4) Apply distributed computing techniques such as cloud computing to 

improve the computational efficiency. 
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