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ABSTRACT

Railroad workersexperience a unique exposure to walking on ballast and uneven
ground walking is a possible risk factor for knee osteoarthritis. However, the effect of
ballast on workers is still not clear, especially for mechanical joint loads. Published
research on walking oballast principally examine&emporalgait parameters anjoint
kinematics. The aim of this research is to investigagectange of knee contact force
(KCF) during walkirg on ballastas surface condition, surface configuration, and uphill
downhill limbs by using amewOpenSim model

There are two signifemnt contributions of this research. Fisthew OpenSim gait
model with robust knee structures was developed, which included patella struatsixes,
degrees of freedom knee joint, and four main knee ligaments. SekK@&@fd, was
invesigated when walking o ballast. Temporal gait parametersvere found to be
different between uphill and downhill limbA. trend was observed that the second peak
KCF decreasedn ballast conditions compared with no ballast. Tineng of the first
peakKCF wasdifferent amongo ballast, main ballast amehlking ballast. Knee muscle
cocontraction was higher in walking ballast compared wilballast irboth peak KCFs
Knee muscle amntractionwas also higher fothe uphill limbthanthe downhill limb
Lateral collateral ligaent force was largeand medial collateral ligament force was
smalker for the downhill limbcompared withthe uphill limbin both peak KCFs. The

effect of surface configuration was significant for some ligammmdles including



anterior cruciate ligameérand medial collateral ligamenin the first peakkKCF, and
lateral collateral ligamenih the second peakCF.

There aréwo additional findingan this researchiirst, he ankle kinematics was
found to besensitiveto toe marker placement error antuscle forces responded the
residual variance opint kinematics in various degrees based on the muscle function.
Second a method taombineground reactiordata from different trialsvas described
which cansuccessfully simulatéhe gait cycleandobtan the results of joint momengnd

muscle forces in a certain acceptable range.
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CHAPTER 1

INTRODUCTION

Railroad workers who service trains experience gusiexposure to walking on
ballast, the rock that is used to support the rails and provide drainage. They work in
railroad yards or along tracks to makp trains, inspect cars, and pick up or drop off cars
at industrial siteq1, 2]. According to the FederdRailroad Administration (FRA)
walking contributed13.9% to 16.5% of all railroad worker injuries and accounted for
16.7% to 20.3% of the days absbetween 1998 and 20@BRA, 19992008). However,
the effecs on workers from wiking on ballastarestill not clear, especiallyegardingthe
mechanical joint loads. Given that walking on ballast is a significant part of some railroad
wo r k er @@ ungvenbgsound walking is a possible risk factor for knee osteoarthritis
(OA) [3], it is imperative to evaluate the kneentact force(KCF) in different ballast
conditionsfor this population.

Lower limb bionechanics for gait ohard, levelsurface are widely investigated,
including joint kinetics, muscleofcesand joint contact foree[4-10]. Analyses need to
be extended to irregular surface conditions since walking on ballast remains an important
topic of concern for safety and health professionals working with railroad workers.
Although KCF during walking onhard, levelsurfaceshasbeen reported fomany years,

most musculoskeletal models are oversimplified and fail to account for many factors
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including ligaments, complex knee joint articulations and other kinematic constraints.
Also, no researctn the published literatureredics KCF during walkng on ballast.
Therefore the aim of this research is to develop a musculoskeletal model with robust

knee structures to investigd{€F for different ballast conditions.

1.1 Knee Osteoarthritis

OA is the moscommon form of arthritis ani$ characterized by the degradation
of articular cartilagg11]. The knee is the weight bearing joint most commonly affected
by OA [12]. Knee OAcan cause several sevdumction limitations, such as waliig,
running and stair climbingThis may ultimately result in a total knee replacemjelg,
14]. Seveal factors have already been known to contribute to the development and
progression of kne®A. Knee OA increases in prevalence with afed] and female
gender[16, 17]. Obesity, as described by body mass index, is also significantly
associated with kne®A [18-21]. Other risk factorsnclude, but are not limited t&nee

injury history, heredity, high impact sports, occupationadioenand lifting[ 16, 22-27].

1.2Walking on Ballast

Railroad workers experience a unique exposure to walking and performing tasks
on ballast. Two ballast types are defined as walking ballast (WB), which is smaller rocks
used for walking, compared with main ballast (MB), which is used for trdck’ 28].

There is a paucity of rearch reporting the kinetic and kinematibaracteristics of
walking on ballastA study performed bylensen and Eenberg (1995) suggestedt th

walking over uneven ground was one of the possible risk factors for develo@adgOA
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[3]. Research by Andret al. (2005) indicatedthat greater rear foot range of motion
during walking on MB compared with wahg on either WB or no ballast (NB2]. A
casestudy, led byMerryweather (2008 reportedthatmean medial ground reaction force
(GRF) increased fothe downhill limband mean laterabRF increased fothe uphill
limb in slope configuration compared withe level configuratio{28]. A follow-up
study performedy Quincy (2009)further reportedhat the downhill knee joint had a
higher adduction moment compared with uphill knee joint duwadking on sloped
surfaceq29]. A recent studyconducted byvadeet al. (2010)suggestedhattemporal
gait parameters wersignificantly different for MB than for either WB or NBand

cocontractiorievels were significantly greater onllaat compared with NB1].

1.3 Technologwo PredictMuscleForce

Muscle force prediction is an important component in the study of injury
biomechanics. CGillis and Kerwin (1993) suggestetie intersegmental forces and
torques, calculated from inverse dynamics, were due to three contributors: snuscle
ligamens and joint contact fares [30]. Research by Herzog (2003) indicated that muscle
forces were the primary dgiminants of joint contact fors@ndthat correctly predicted
muscle forces should result in sensible estimates of joint contact[RHdslowever, to
date, accurate measurement and prediction of individual muscles farestill a major
challenge.

Three different strategies are typically used to predict individual muscle force.
The first method is to estimate muscle forces based on an objective function within an

optimization routine [8, 32, 33]. Traditional optimization criteria include static
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optimization and dynamic optimization. Usually, more muscles can be included in the
musculoskeletainodel when using atic optimization due to Eower computational cst
thandynamic optimization. However, the results of predicted muscle forces using static
optimization are easily influenced by the accuracy of the experimental data and
reconstructed joint kinemati¢84, 35]. Four common static criteria are generally applied

to estimate individual muscle force, includinginimization of total muscle forces,
minimization of total muscle momeés, minimization of total muscle stresses, and
minimization of total muscle activatior{84]. Dynamic optimization can pose a time
dependent performance criterion to reduce the influence of errors fromnesptally
derived data. However, the tremendous computational expense and correctness of
performance dterion are two main disadvantagesdynamic optimizatior{8, 32, 36].
Recently a new approactomputed mude control (CMC), can compute a set of muscle
excitations toreasonably predict muscle fordey combining proportionaderivative
control and static optimizatidi36, 37].

The second method is to reduce the number of unknown muscle forces to make
the number of equations equal to the number of unknowns, resulting in a determinate
system[38, 39]. The underlying assumption of this methodhiatcertain muscles do not
influence the systemgificantly and careitherbe excludd in the analysi®r grouped
with othermusclesto represena good estimate of the force acting within each separate
muscle[7].

The third method is to combimauscleelectromyography (EMGatawith an
appropriate musculoskeletal model to estimate muscle {840, 41]. It is assumed

thatthe EMG signal carpreciselyrepresent theactualmuscle activationHowever, the
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assumption is limited because the EMG signal acquires noise while travelling through
different tissues and surface EMG detectors usually record signals from multiple motor

units instead of asgle motor uni{42].

1.4 Technoloqgy to Predict KF

The determination dKCF is quite valudle for clinicians, researcheasd implant
designers to evaluate new knee replacementgjlaie orthopedic proceduregiedict
clinical outcomes and investigate loadmgchanisms #t may cause knee JA|.

Two techniques have alreadyedn used to determine joint contact loads.
Telemetry, which has been successfully used to estimat®o loads at the human hip
joint [43-45], cannot accurately predi¢{CF [46, 47]. Recently, instrumented knee
implants provide another direct way to meadki&F, but this method is limited by the
expensive cost and small sample sj2€, 48, 49]. The other technique is to create a
mathematical model to estimatgoint contact loads. The widelgpplied method to
calculateKCF is the vector sum of the knee joint reaction force using inverse dynamics
andthe compressive forces from the muscles crostsiagknee join{8-10, 49]. To date,
the range othe peakKCF for gait is reported betweend.7 to 7.1 body weightrom

differentstudieq7, 50, 51].

1.5Prediction of Muscle ForcdBuring Gait

Many researchers have already predicted lowar muscle forces during gait on

hard, levelsurfaces using mathematical models. However, predicted values vary widely.
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Sometimes even for the same muscle, the muscle-fioneeprofiles being reported are
quite different during the gait cyc|8, 34, 40, 52].

There are four main reasons that great variab#éitists in predicted muscle
forces First, different models contain different number of muscles, and no model
contains all the muscles in the lower body. This requires some muscles in the model to be
a combination of several anatomical muscles. Second, different optimization methods
may result in differentmuscle forcepredictions and verifyinghe methodsan be quite
challenging. Third, the accuracy of muscle parameter values has a significant mfluenc
on the predicted muscle forc&hese parameters included physiological €sestional
area, maximum isometriorce, mscley b e r  &nd tegdonhrest length. Fourth, the
diversity among individual€an cause different predictechuscle forcedor the same
activities[40, 53]

According to research by Anderson and Pandy (2001), static optimization and
dynamic optimization were practically equivalent for predicted muscle forces during gait
[8]. A study performedoy Li et al. (1999) suggested thdiifferent static optimization
criteria predicted nely identical muscle forces. ddvever, kinematic information

involved in the ptimization played an importanble in prediction of muscle fored 34].

1.6Knee Ligament Modeling

The knee ligaments, which attach the femur to the tibia or fibula, are very
important in stabilizing the knee joint apdeventing knee injuries. There are fourima
ligaments in the knee joint including) anterior cruciate ligament (ACL), whicds a

primary restraint ta@nterior tibial translation anskecondary restraint tiibia rotation, 2)
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posterior cruciate ligamen{PCL), which mainly restrains posterior translation of the
tibia, 3) medial collateral ligament (MCL), which counteracts valgus instability, Z9nd
lateral collateral ligament (LCL), whichrimarily restrains varus stress of the knee joint
andresistgtibial external rotation.

In the previous researckhe knee ligaments arepresented by either single line
elements or as multiple bundles of fascicles, with the path as a straigl§4i5€|. The
ACL and PCL are commonlyepresented by an anterior and a posterior bundle
respectively The MCL is usually separated into two portiontke superficial layer,
represented by an anterior bundle, an intermediate bundle, and a posterior buritiie; and
deep layer, represented by an anterior bundle and a postendieblihe LCL is
generallyrepresented by one bund®8-63]. The effet of ligamentbone contact was
considered in research by Hefzy and Grq@882) [64, 65], and by Blankevoot and
Huiskes(1991)[66]. However, the sensitivity analysis by Blankevoot and Huiskes (1991)
indicated that ligamerone contact had practically mdfect on the relative positioof
the bones during flexiof66].

In the literature, the ligamebundles wer@assumed to be nonlinear elastic which
meant that the tension in a ligament bundle was only a functios lelhigthLor st r ai n 0.

The ligamenstrain was defined blgquation 11[66].

R (Eq. 11)

in whichd was the zerdoad length of a ligament.
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The zereload length of a ligament bundle was determipgdquation 12 if the

reference lengthh and the reference strain of the bundle were available.

O O0T- p (Eq. +2)

The forcestrain relationship for ligaments bundle was described as quadratic for

low strain and linear for strain higher than a certain |5&|66]. Specific formulas were

enumerated in Equations3ithroughl-5.

N -Q F T - C- (Eq. 13)
N Q- - - C- (Eq. 14)
QT - M (Eqg. 15)

in which "Qwas the tensile force in a line eleméftyas the ligament stiffness, was the

linear strain limit, and was the strain in thégament calculated from Equationll

1.70penSim Simulation

OpenSim isopensource software used to studye tmusculoskeletal systeand
create dynamic simulatioof movement.Six steps are available to obtain gieed
muscle brce, which is shown in Figurel.

Since each individual has different anthropometry, a scale function is used to alter
the general model to match a participant. Each body segment is scaled by comparing the

relative distances between pairs of markers obtained from a motion capture sygtem an



inverse inverse
scale : : .
kinematics dynamics

static
optimization

computed residual reductio
muscle control algorithm

Figure 11: OpenSim Simulationt8ps

the corresponding virtual marker located in the modéle nverse kinematics step,
formulated as a weighted least squares problem, is used to reproduce the experimental
kinematics recorded for a particular subject. Inverse dynamics and static optimization are
optional steps fogait simulation.These stepsan yidd net momerg and forcs at each

joint and distribute the net joint force to individual muscle forces at each instant in time.
The residual reduction algorithm (RRA) step alters the torso mass center of the subject
model and then slightly varies the kinatics of the model in order to make body
kinematics moreconsistent with the dynamiGRF. The CMC step calculates muscle
activation and muscle forsdased on body kinematics a@RF from the previous steps

[67].

OpenSim haseyeral additional progranthat help users to analyze a dynamic
simulation. The body kinematics program can supply the position and orientation of each
body reference frame in the global frame or a special local frame of the bodies. The point
ki nemati cs pr ogr amositoaim any bodyixéd capndigate pyotime t 6 s
series. The joint reaction program can report either joint reaction loads or joint contact
loads, which are calculated as the forces and moments required to constrain the body

motions based on the input infoatron.
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1.8 Research Purpose

The aim of this research is to investigdd€F during walking on bllast as
surface conditionssurface configuratiorand uphill or downhill limbschange. The
independent variables beigntrolled in this research atteree suiace condions (MB,

WB and NB); two surface configurationsmooth level surface and a slanted surface with
a 7°slope in the transverse planand the effect of the uphill or downhill lirab

Following a general methods section for the fosdhstudyof this dissertatiomn
Chapter 2four sulstudies will be discussed in Chapter6,3vhich are written as stand
alone manuscripts as follows:

1 Chapter 3 (the first switudy) 7 Influence of toe marker placement error for lower
limb joint kinematics and muscferce during gait

1 Chapter 4 (the second sibdy) T A method to combine force platiata together
to simulategait cycle and predict muscle force

1 Chapter 5 (the third sshudy) 7 Developmentof a new OpenSim model with
robust knee structures

1 Chapter6 (the fourth subtudy) T Investigation of kneecontact forceduring
walking on ballast

Marker error exists when recording data using motion capture system
Misplacement of markers affects the accuracy of reconstruction and orientation body
segmerd in a mathematical model. Some previous research focused on the effect
marker placement on different casg8-70]. However, no research focused on the
fluctuation of lower limb joint kinematics and muscle far@m toe marker placement

error caused by footwear during gditie hypothesis for the first sstindywasthat toe
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marker placement error caused by footwear affected lower limb joint kinematics and
muscle forces during gait.

Successful trials are usually desired in order to predict muscle force in the lower
limbs during gait. The criterion for successful trialghat both feet must be perfectly
kept on two or more force plates during consecutive stance phases.tfatad® not
meet this crical criterion will be rejectedThis cansignificantly increase the total
number of trialgequiredto be collected71]. A method to combin®&rce plate data from
different trials can effectively reduce the number of trialdbeocollected and help to
predict lower limb muscle forcs for a full gait cycle The hypothesis fothe second
substudywas that the corresponding lower limb joint moments and mésdes in the
combined trial werenot significantly different compared with thariginal, successful
trial.

The KCF during walking onhard, levelsurfacs has been assessed in the
literature [4-10]. However, most of thexisting models includeonly muscles as force
contributors and limit the kngeint to one degree of freedof@®OF) in the sagittal plane
Some previous research indicated tK&F was underestimatefbr gait onhard, level
surfaces by excludingnee ligamentsespeciallythe ACL [4, 6, 9]. Also previous efforts
lacked body motions in the frontaplane and transverse planehich could cause
inaccurate musclandjoint reaction force due to the different muscle excitation pattern
[72, 73]. Therefore, a musculoskeletal model with robust knee structures was developed
in the third subtudy, which included four main knee ligaments, and multiple dego¢e
freedom for the knee joint, tprovide more reasonable muscle foscand joint contact

loads
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Railroad workers experienced a unique exposure to walking on ballast, which
may be a possible ris factor for knee OAA paucity of research reports the Kineand
kinematic characteristics during walking on ballast. However, the effect on workers is
still not clear. Also, no research was found to evalk&@& during walking on ballast.
Therefore,the changein KCF during walking on biéast were investigatecs surface
conditions,surface configuratiomnd uphill or downhill limbsn the fourth subtudy: It
was hypothesized thakKCF were significantly altered during walking on ballast
compared wit walking onhard, levelsurface. Additionally, it was hypothesized that
walking onMB alteredKCF more than walking otWB. The downhill limb was also
hypothesized thavehigherKCF than the uphill limb.

These chapters form a comprehensive body of research relative to modeling knee
structure, simuling ballast gait and predictingCF. The general conclusion of this
dissertation, Chapter 7, consists of a discussion of the research as a whole. Common
themes between chapters are addressed and directions for future work in this area are also

outlined.
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CHAPTER 2

METHODS

2.1 Experimental Design

The independent variables being controlled for this research were: surface
conditions, surface configurations, and uphill or downhitibs. Surface conditions
includedMB, WB andNB (hard surfacg surface onfigurations included a normal level
surface and a slanted surface with aslope in the transverse plafnée sloped surface
represented th@aximum slope ofailroad yard [1]

Two tracks, 0.76 m wide and 7.3 m long, weretdaithe Ergonomics and Safety
Laboratory in Universit of Utah, as shown in Figurel2.0One track was filled witiviB
and the other witWB. Each track was filled 230 cm deep with aggregate, which was
slightly compacted to minimize gting during data collectionA hard surface made from
structural plywood was placed over the walking ballast track tesbed for NB trials

The tracks wer@laced on the adjustable jacks so the same tracks couldede
for both the level configuration trials and the sloped configurdtiafs. One force plate
(model OR65-1000, AMTI, Watertown, MA) was embedded in the track. A custom
force plate isolon fixture, shown in Figure 2, was developed to prevent significant
dispersion of the surface force throudje taggregate to the force plaiée fixture was

found to effectively isolate the force plate and accurately record[GRF



Figure 22: Force Plate IsolatioRixture
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2.2 Data Collection

The study was appr ov e dinsbtytiondl ReviewBoardr er si t vy
(IRB). All the data were collected as part of a previous sfudly Participants were
brough to the Ergonomics and Safetglhoratory where they were interviewed to ensure
they met all enrollment requirements. Then participants were outfitted with reflective
marikers. Marker locations were based on a modified Helen Hayes Markgz] SEach
participant wasifted with and given a new pair of model 2408 Red Wuagk shoedor
study participation. The markers on the foot and ankle were placed oshties
bilaterally over the second metatarsal, heel, and lateral malleolus.

The combinations of surface condit®rand configurations were randomized.
Participants were allowed to walk on each surfacbeimome familiawith each setup.

This process also allowed researchers to find a suitable starting location on the track so
that the foot was likely to have a clesinike on the force platé=or each experimental
condition, five acceptable trials were collected for each limb. Acceptable trials had clean
force plate strikes. The walking direction was kept the same for all trials. This meant that
the right limb was ahays the uphill limb and the left limb was always the downhilblim

for the sloped configuratiorEach participant performed at least 60 trials (5 trials * 3
surface conditions * 2 surface configurations * 2 feet). An average of approximately 4
hours per s&sion was needed to collect acceptable trials for each combination of
conditions and configurations.

Motion data werecollected at 60 Hz using a five camera Vicon Motus Video
acquisition system (Vicon Motion Systems, Lake Forest, CA). Panasonic GS55 video

cameras wre used to capture the videthe force plategmodel OR65-1000, AMTI,
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Watertown, MA) recorded GRF data at 600 Hz. A fourth order zertag digital
Butterworth filter with a cutoff frequency of 6 Hz was used to condition the raw marker
positiondata. The global coordinate system was usedlfdrials with the positive Xaxis
in the diretion of motion, the positive éxis right to left, and the positive &is upward.

Calibration was done for each track condition prior to data collection.

2.3 Participant Inclusion Criteria

Eight railroad workers from Salt Lake City, Utah were selected to represent a
healthy population of railroad workers. The participants consisted of conductors,
switchmen, and other workers employed in positions involvingkimglon ballast in a
train yard on a regular basis. Each participant read and signed an informed consent form
approved by the IRB prior to participation. The study population demographics
shown in Table 4. The average participant was overweight gsmdeé by BMI. More
detailed information regarding data collection can be found in a publicatigdheof
previous studyl].

All participants met the following inclusion criteria:

A Ag€Q 18
B MI : Prefer249 y between 18.5
Railroad workers for minimum of 3 years

Nor matterngai t p

o Do Do Do

No abnormal foot physical features
U Club and flat feet

U Extreme valgus orarus
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Table 21: Study Population Demographics

Years with , Weightkg
Age (SD) Railroad (SD) Heightm (SD) (SD) BMI (SD)
39.17 (880) 9.79(8.30 1.76 (0.09) 82.71(14.14) 26.79(4.01)

2.4 Statistical Analysis

The mainvariables of interest in this studlyclude temporal gait parameters, the
magnitude andtiming of peak KCF, muscle cocontraction and ligament forces.
Descriptive statistics were obtained for temporal gait parameted peak KCF.
Additional statistichtests were performed, specific to the data taredyzed These tests
included ttest and analysis of variance (ANOVA). Results were considered statistically
significant whenp < 0. 05 ( @bservedOpovies Was also computdi.the
assumption o$phericity was violated, the Greenhoweisser correction was used. Post
hoc tests were performed using the Bonferroni adjustment to correct for multiple
comparisons. All the statistics were performed using SPSS (IBM Corporation, Armonk,

NY).
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CHAPTER 3

INFLUENCE OFTOE MARKER PLACEMENTERROR FOR LOWER

LIMB JOINT KINEMATIC S AND MUSCLE FORCE DRING GAIT

3.1 Abstract

Marker placement and movement artifacés besignificant sources of error in
biomechanics studies of human movement. Mabesed motion data is often collected
where participants are shod during gait. The magnitude d¢em®nd metatarsal) marker
placement error is amplified with footwear sinbe toe marker placement on the shoe
only relies on ampproximation of underlying anatomical landngrkimited research
has been published regarding the fluctuation of lower limb joint kinematics and muscle
force during gait resulting from toe marker @atent errarThe aim ofthe present study
is to assess the influence of toe maker placement error caused by different footwear on
lower limb joint kinematics and muscle force during gait.

Thestatic trialcombinedwith vertical height differences betweemrdé marker and
toe marker were used to generate a sulsjgetific model and determine the toe marker
placement in four footwear conditions aadbarefoot conditionA single dynamicgait
trial wasused to simulate these five conditions using OpenSimtairolmwer limb joint

kinematics and muscle forze
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The results showed that ankle dorsi/plantarflexion had a statistically significant
differencewhen comparingvork shoe, sports shoe and leather shoe condituathsthe
barefoot condition. Statistically significant diffeences were found for hip
flexion/extensioniliacus, psoas, rectus femoris, @a$, and tibialis posterior betwetre
work shoe condition anthe barefoot condition.

The present study suggestiht anké dorsi/plantarflexion wasensitve to toe
marker placement error. The influence of toe marker plaoéerror was relatively small
for hip abduction/adduction and knee flexion/extension compared with hip
flexion/extension andotation. The lower limb muscle forces respondedhe residual
variance ofjoint kinematics in various degrees based on the muscle function for specific

joint kinematics.

3.2Introduction

Gait analysis is widely used to investigate normal and pathological gait to
describe how humanwalk, and ha<linical value to rectify and refine treatment
programs for abnormal gdit-5]. The most commonly applied method of gaialgsis is
to structure around tracking clusters of reflective markers placed on the skin to identify
various anatomical landmarks. These markers are used to reconstruct body sagthents
to define orientation of segments in space. However, soraes exxi$ with this method
and have been recognized many occasionsy previous researens[6, 7]. Two of the
largest sources of errors are marker misplacementelative movemenbetween the
marker and the correspang anatomical landmark during the period of marker capture

[8-10]. The basiaequirementfor marker placement involves correct identification of a
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specific anatomical landmark on body segments. [Timamkers can be used to represent
anatomical landntés to create a mathematical model or generate a sulsjeetific
model.

Markerbased motion datareoften collected where participarase shod during
gait. Because of the obstruction from footwear, foot markers are usually placed on the
footwear instad of a more accurate location on anatomical landmarks. The magnitude of
marker placement error is amplified with footwear since the marker position on the shoes
only relies on arapproximation of underlying anatomical lanalrks, asshown in Figure

3.1.

Figure 31: Foot Marker Racement Error
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The darker markers (R P.a and Rg) and the light markers (B P>s and Rs) in
Figure 31 representanatomical positions and the approximate positionsa shog
respectively The ankle angleerrorin the sagittal plane s r epr e.Seaemanddetl by d
marker error between the anatomical position and the shod marker posiien
represented bgr and ;.

Some previous researdmas focused on the effestof marker placement on
different cases. A case study performed by Szczerbik and Kalinowska (2011) evaluated
the influence of knee marker placement error on gait kinematic parantbtrsmnain
finding was thakinematics for hip joint, knee joint and ankle joiss significantltered
when knee marker position was changed in a systematical[ Iy O'Connoret al.
(1993) carried out a study to investigate the effect of markeeplant error on spinal
motion. They found that marker placement hadigngicant effectfor measuring the
range motion of spindlexion/extension and lateral sibending[12]. A study led by
France and Nester (20Q0Bvaluate the effect of error in the identification of anatomical
landmarks for quadriges angle.Their finding indicatedthat the quadriceps anghas
highly sensitive to erroin the definition of the center of the patella and tibial tuberosity
[13]. However, noresearchwas found to focusn the fluctiation of lower limb joint
kinematics and muscle force on teecond metatarsatparker placement error caused
by footwear during gait.

The purpose of this study was to assess the influence of toe maker placement error
caused by footwear on lower limbipod kinematics and muscle forces during gait. It was
hypothesized that toe marker placement error caused by footvge#icantly affected

lower limb joint kinematicand muscle forces during gait.
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3.3Methods
3.3.1Experiment Data

The motion dataincluding markerbased video motion anm@RF, werecollected
as part of a previous studg4]. An 83yearold male,having aheightof 166 cm and
massof 68 kg was the subjedor hard, levelsurface gaitMarker motion was collected
at 120 Hz by using a l1camera motion capture system (Motion Analysis r&oopo
Santa RosaCA). Fortyfive and 31surface markers were attached to the subject in the
static trial and the dynamic triakespectively. The marker trajectory followed a modified
Cleveland Clinic marker seGRF data werecollected at 3840Hz by usjy four force
plates (AMTI Corporation, Watertown, MA).

Four typesof footwear were chosen in thistudy to determine physically
meaningful toe marker placement error as a function of common styles of fgotwear
which were shown in Figure 3.Z'oe marker placemenrfor the barefoot condition was
chosen as theeference positionThe heeland toe markarwere assumetb beat the
same level inthe sagittal plane inthe barefoot conditionThis meantthat theankle
dorsiflexion angle was zero ihe static barefoot conditionThe heights of heel andeo
markes in the sgittal plane were measurddr the four pairs of shoes. e height
differenceE was calculatedand is shown in Figure 3. The heights of heel and toe

markers in the sagittal plane weepresented bl and h.

3.3.2Data Process
Prior to runninghe OpenSim gait simulation, the motion data and GRF data were

processed using MATLAB (The Mathworks, Inc., Natick, MA), including cubic splin
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Figure 32: Four Types of Footwear
(A) work shoe (B) sports shoe (C) walking stipg leather shoe

Figure 33: Height Difference Btween Heednd Toe Markey
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interpolation, crossorrelation and filtering (4th order Butterworth) with a low pass cut
off frequency of 15 Hz and 100 Hz, respectively. The synchronized frequency for the

motiondata and GRF data were 200 Hz and 1000 Hz, respectively.

3.3.3Gait Simulation

OpenSim was used to generate 3D, sukgpetific, musclectuated simulation
for four footwear conditions and barefoot conditid®b]. The 3D modelusedin this
study consisted of 12 rigid segments, 2OFs and 54 muscle actuators. The knps
represented as a 3 D®Ball-andsocket joint, the knee was represented sisigle DOF
hinge joint andthe ankle was represented asigle DOF universal joint. This model
represented a simplified version of the lower extremity model proposed IpyeDal.
(1990)[16], and was modified to include a torso and back joint based on the model of
Anderson and Pand{1999)[17].

The static trial was firstused to generate a subjsgecific modeland locate
markes in the modelIn order to accurately locate toe maskand met the assumption
between toeand heel markerfor thebarefoot condition, the ankle dorsiflexion angle was
setto zero duringhe scaling process. Once toe marker position was found in the subject
specific model fothe barefoot condition, the position dfetoe marker irthe footwear
conditiors could be determined biyhe known the height differenceombined with the
assumptiorthat heel markermad a fixed positionin all five conditions. Thena single
dynamic trail andhe subjecspecific modelwere input into OpenSirfor simulation of

the five conditiors. The inverse iematics step wagmployedto determine gint

kinematicsbypsi ti oning the model as a fibest match
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expressed as a weighted least squares problem. Lower limb muscle forcespwee

afterrunningthe CMC step[15)].

3.3.4Statistical Analysis

The results of lower limb joinkinematics and muscle foreevere compared
between four footwear conditions and barefoot condition respéctiDescriptive
statistics wasbtained for joint kinematics and muscle force. Root mean square error
(RMSE) and normalized root mean square error (NMSE) were used to describe the error
magnitudeand the residual variance respectively. The formulas for RMSE and NRMSE
were shown in Equsn 31 and Equation -2. Results were considered statistically
significant when residual variance (NRMSE) above 10%. These statistics were performed

using SPSS (IBM Corporation, Armonk, NY).

YO'YO 2B B (Eq. 31)
652 - 3 %—— (Eq. 32)
3.4Results

Height differencebetweerheel and toe markem the sagittal planéor different
footwear andthe barefoot conditionswere reported in Table 3. The minimum and
maximum height differences for footwear were ¢mdfor the walking shoand 5.5cm

for the work shoe, respectively
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Table 31: Height Difference Btween Heel and Toe Markers

barefoot work shoe sports shoe leather shoe walking shoe
Ocm 5.5Cm 3.1cm 1.3cm 1.0cm

3.4.1Lower Limb Joint Kinematics

All the correspoding lower limb joint kinematiccurves inthe four footwear
conditions andthe barefoot condition were visually similar excepor ankle
dorsi/plantarflexion which was layered. The ankle dorgptarflexion curves were
significantly different when comparingthe work shoe (NRMSE43%), sports shoe
(NRMSE=25%) andeather shoe (NRMSHEA%) to thebarefoot condition. Work shoe
condition had a statistically significant differericehip flexion/extension compared with
barefoot conditiofNRMSE=14%) No statistically signitant differences were found in
hip abduction/adduction, hip rotati, and knee flexion/extensioifhese redts are

shown in Table 2, Figure 34 and Figure &.

3.4.2Lower Limb Muscle Force

Sixteen lower limb muscles havimgaxmum isometric force above 500N, were
chosen to compare between footwear conditionstl@tarefoot condition. Five lower
limb muscle forces wersignificanty differentin thework shoe conditiomompared with
the barefoot condition. These muscles were iliac(§RMSE=16%) psoas
(NRMSE=16%) rectus femoriSNRMSE=13%), soleus(NRMSE=12%6), and tibialis
posterior(NRMSE=1®6). No statistically significant differences were found for lower
limb muscle forcesn otherfootwear conditiongompared withthe barefoot condition.

Theseresults areshown inTable 33, Figure 3.6 and Figure B.
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Table 32: Kinematics Differences inlip, Knee and Ankldoints

mean RMSE NRMSE
work shoe 9.42 5.63 14% *
sports shoe 7.05 3.24 8%
hip flex'extension leather shoe 5.30 1.45 3%
walking shoe 4.99 1.13 3%
barefoot 3.87
work shoe .66 0.50 2%
sports shoe .85 0.27 1%
hip abdadduction leather shoe .94 0.11 1%
walking shoe .93 0.13 1%
barefoot -1.01
work shoe -5.16 1.94 10%
sports shoe -5.96 1.13 6%
hip rotation leather shoe -6.55 0.55 3%
walking shoe -6.77 0.32 2%
barefoot -7.08
work shoe 36.49 3.85 6%
sports shoe 34.98 2.23 3%
knee flexextension leather shoe 33.71 0.86 1%
walking shoe 33.35 0.49 1%
barefoot 32.93
work shoe 12.09 12.97 43% *
sports shoe 6.47 7.34 25% *
. ankle . leather shoe 2.14 3.00 11% *
dorsiplantaflexion -
walking shoe 1.36 2.22 8%
barefoot .85

The unitsfor mean and RMSE were degree
* Results were significant at the NRMSE >10% level
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Figure 34: Comparison ofHip Joint Kinematics
Work shoe (point black), leather shoe (dashed black), walking shoe (dashed gray), sports
shoes (solid gay) and barefodsolid black)
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Work shoe (point black), leather shoe (dashed black), walking shoe (dashed gray), sports
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Figure 36: Comparison oHip and Knee Joint Muscle Forces
Work shoe (point black), leather shoe (dashed black), walking shoe (dashed gray), sports
shoes (solid gray) and barefoot (solid black)
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Figure 37: Comparison ofAnkle Joint Muscle Forces
Work shoe (point black), leather shoe (dashed black), walking shoe (dashed gray), sports
shoes (solid gray) and barefoot (solid black)
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3.5 Discussion

Since one subject aralsingle dynamic gaitrital were used in the present study,
the inherentvariability between individuals and the differences among gait trials were
controlled. The same modehcorporatedidentical muscle parameters and identical
marker weight settirggfor all five conditions further removingther sources of error
which may irfluencethe computedoint kinematics and muscle forces. Therefore, the
differences of lower limb joint kinematics and muscle forces between footwear
conditions and barefoot condition were only a product of toe marker placement error.

One hypothesis of thpresent study wakattoe marker placement error caused
by footwear affected lower limb joint kinematics during gait. The hip joint and knee joint
kinematics were not statisticaltjifferent due tatoe marker placement error except for
hip flexion/extesionfor thework shoe condition. The hip joint and knee joint kinematics
were mainly determined by the markers locatedtlagh and shank However, other
markers and the weight of markers also played a functitimesgjoints because all joint
kinematicswere determined together as a marker weighted least square problem in
OpenSim. Therefore, toe marker placemerror theoretically affecte@ll the joint
kinematicsin OpenSim simulatiorthough the magnitudes were different. Tiesidual
variancef joint kinematics haa linear relationship with toe marker placement error for
all lower limb joints. The ankle joint kinematiegere more sensitive to the toe marker
placement error than hip joint and knee joint kinematics dime¢oe and heel marker
were main determinants for ankle dorsi/plantarflexion. This phenomenon was also
indicated by thdargest slope in residuakriance for ankle dsi/plantarflexon, which

was shown in Figure 8. Toe maker placement errof 1.1cm would cause 10% residual
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Figure 38: Joint Kinematics Residual Variarse

variance for ankle joint kinemati@nd result irstatistically significant differensan the
present study. The influena# toe marker placement erroragrelatively smallfor hip
abduction/adduction and knee flexion/extenstmmpared tchip flexion/extension and
hip rotation based on their residual iaaice slopes

The otherhypothesis of the present study what toe marker placement error
caused by footwear affectedwer limb muscle force during gait. Sixteen relatively
large muscles were chosen in this study since they were the main force corgribut
lower limb joints in thissubjectspecific model. Five lower limimuscle forces were
significantly different betwenthe work shoe condition anthe barefoot condition. The
significant differences for iliacus and psoas could be expldiyeitheir response tthe
residual variance for hip rotation thework shoe conditiosince iliacus and psoas were
the main functinal muscle for hip external rotationThe significant differences for

soleus and tibialis posterior resulted from the residual variance for ankle
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dorsiflexion/plantarflexion in the work shoe condition to prevent the body from falling
forward and to keepody stabilization. The significant difference for rectus femoris was

a compensation for the residual variance for knee flexion/extension and balanced the
additional knee joint torque in the work shoe condition generated by gastrocnemius,
which crosses lib the knee and ankle joints in the model. The present study agreed with
the conclusion from previous research that kinematic information played an important
role in prediction of muscle fordd.8]. The toe marker pcement error directly affected
lower limb joint kinematics and indirectgiteredmuscle forcen various degrees based

on the muscle function for specific joint kinematics.

Toe marker placement error significantly affecjeiit kinematics (hip and ankle
joints) and muscle forces (five muscles)the work shoe condition compared withe
barefat condition This error should be controlled ftre work shoe condition imard,
level surface gaitA previous study performed by Merryweather reported that lower limb
joint kinematics were similar when walking on ballast compared with [U§].
Therefore, tk effect of work shoes on predicteduscle forcesn the present study can
also be expected in ballast ga Adjustmentof the heel and toe markets the same
vertical heightin the model duringhe static trial could effectively reduce toe marker
placement error caused by footwedhis methodcould be used in ballast gait since

subjects wore work shoe during walking on ballast in the fautistudy

3.5.1Limitations
Some limitations existed in the present study. First, the change of gait pattern due

to the footwear was neglected. Previous resedciCedirc et.al (2009) indicatedatthe
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shoes restricted the natural motion of the barefoot and imposed a specific foot motion
pattern during the pustiff phase[20]. A case study performed Byatthew etal. (2005
indicated the texture of footwear influenced ankle kinematics and muscle acfiXifjes
Second, the knee and ankle joints were botideled asingle DOF joints in the sagittal

plane. Previous research indicatédtthe knee ahaction/adduction, knee rotation and
ankle rotation also existeduring gait[22-25]. Lack of DOFsof knee and anklgints

would limit the ability to detect toe marker placement error foreghes joints in the
coronal and transverse plaseand would further affect the correspondingfunctional
muscles of the kneeand ankle joirg in these two planeshird, the differeces of gait
paterns between elderlgnd young subjects were not considered in this study. Some
previous studies reported that elderly people had different temporal gait parameters,
decreased motion of the knee and hip joints compared with young syBeed. It is
unclear if the predictechuscle forces and associatedors from marker placement had

the same magnitude in youngealthy adults as was found with tB8yearold male

from this substudy Finally, the ma&s of footwear was neglected in this study, which

meant GRFs werhe same forall footwear conditions anthe barefoot conditian

3.5.2Conclusion
In conclusion, the hypotheses that toe marker placement error caused by footwear
affected lower limb joint kinematics and muscle forces during the gait cycle were
partially supported The ankle dorsi/plantarflexiorwas significantly different for the
work shoe, sports shoe atehther shoe conditions comparedthe barefoot condition,

Also, hip flexion/extension and five muscle forcas the work shoe conditionvere
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different whencomparedo thebarefoot conditionlt was found that the ankle kinematics
were very sensitive to toe marker placement error. The influences of the toe marker
placement errors were relatively small for the hip abduction/adduction and knee
flexion/extension compared with hip flexion/extension and hip rotation. The lower limb
musck forces respondetb the joint kinematics residual variante various degrees

based on the muscle function for specific joint kinematics.
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CHAPTER 4

A METHOD TO COMBINE FARCE PLATEDATA TOGETHER TO

SIMULATE GAIT CYCLE AND PREDICT MUSCLE FORCE

4.1 Abstract

Successful gait trials are important to clinical human walking research and related
biomechanical studieddore representative data ctypically be obtainecas more trials
are collected. Hbwever, due to the physical conditions of many clinical study subjects,
the luxury of collecting many gait trials is uncommon. The ability to combine force plate
data from different trials to obtain successful #ial meaningful and can sidi@antly
reduce theaotal number ofrials to be collectedThe aim ofthis study was to descrilze
methodto combineforce platedata from different trials tgenerate a combinedadr to
simulate full gait cycle biomechanics

The most similar two trials from five successful trials, based on foot marker
correlation, were chosen to generate a combined @RF and center of pressure (COP)
in the combined trial were generated by buildiagelationship between the chosen foot
maker andGRF or COPin the two chosentrials. OpenSim was used tsimulatethe
original trial andthe combined trial.The results of lower limb joint momesand knee
joint muscle force were comparedbetween the original trial anithe combined trailto

asesghemethodin this study.
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The results indicatethat GRF in the mediolateral direction and free torquéin
vertical direction wassignificantly different in the combined trial comparéad the
original trial. Statistically significant differences we foundfor hip abduction/adduction
moment, hip rotation moment knee flexion/extension momentand ankle
dorsi/pantarflexionmoment. The muscle forces generated by theeps femoris long
head, gastrocnemius and rectus femoris i@unad to besignificanty different between
the original trial andhe combined trial.

The method described in thssudy canbe successfullyused tocombineGRF and
COP from different trials a create asuccessful trial tosimulate the gait cycle
Furthermorejoint moments and muscle forcase able to be obtained witha certain
acceptable range. THimdings of the presenstudy depended on the repeatability of foot
marker placementamong the trials and the accepted level of residual variantdeein
specific rese@h. Thismethod could be applied to sevesitliations with populations
who wereunable to complete a large number of traslsch aghose impaired gaithe
elderly, amputes and pediatris. The proposed methocbuld significantly reducethe
total requred number of trialsto study lower limb biomechanics and movement

disorders

4.2 Introduction

GRF andCOPare commonly recorded in gait analysis using force gldieese
data allow the musculoskeletal model to calculate net joiotnents using inverse
dynamicsand to obtain muscle forceasing optimization methodgl, 2]. One of the

major challenges of capturing data with forcegplat i s t hat t he bsttubj ect so
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fall entirely onthe force plateluringthe corresponding stance phases. This situation can
significantly increase the number of rejected trials and total trials required to obtain the
desired number of successfulals. Research by Bates et al. (1983) reported that a
minimum of eight successful trials were necessary in order to achieve statistically stable
data, which was based on a normal subj8ctA case study performed by Hamill and
McNiven (190) examined the reliability of GRF time domain parameters over 20 trials,
the main finding washatat least 10 successful trials warecessary for stable GRF data
during walking[4]. Although the ente foot on the force plate is a critical criterion for
the successful trial, subjects usually are not instructed toabtile force plategr are not
made aware of the presence of the force plate in order to prevent targetiagesult,
many trials a@ rejectedwhich requiresmore repetition and incasradditional costs. A
common solution is to adjust the starting point at a distance from the force plate to
increase the possibility of an acceptable entire foot placementh® force plate.
However, clinical populationsoften include those whose physical condisomay not
tolerate numerous gait trials. Theabhumber of trials is limitednd any rejected trials,
by reason ofincompkte force plate data, represéimé¢ loss of a meaningful amount of
data[5]. Therefore, the development of a method to combine force plate data from
different trials has meaningjf potential and could significantly reduce the total number
of trials necessary to be collected.

The purpose of the present study was to describe a method to combine force plate
data from different trials tareate successful, sequential foot contach&via order to

simulate full gait cycle biomechanics. The hypothesistto§ study was thatthe
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correspondindower limb joint moments and knee joint muscle forces in the combined

trial were not significantly different compared with the original, sucoésshl.

4.3 Methods
4.3.1Experimental @ta

An 83yearold male,having aheightof 166 cm andmassof 68 kg was the
subject in this study. Five successful gait trialsadrard, level surface were collected as
part of a previous stugdyvhich wassame as described @hapter 36]. Markerbased
motion dda were collected by alcamera motion capture system (Motion Analysis
Corporation, Santa Rosa, CAjround reaction data were recorded byrfAMTI force
plates (AMTI Corporation, Watertown, MA)The force platesvere equally spaced
except that the st force plate was adjacent to the second force.pl&ee criterion for
successful triain this studywas that the subject hactkeanright foot strike on the force
plate3 and aclean left foot strike on the force plate 2 anavhijch was shown in gure
4.1. The global coalinate system was set as theXs pointedorward from the subject,

the Y axis pointed upward, andth@Z& i s poi nt edight o t he subject s

4.3.2Combination of Trails
This method comprisefive stepsto combineforce plate data to generate a
combined trial.1) Gait Event Identificationthe gait events ifive successfutrials were
detected includingheelstrike and toeoff. 2) Correlation Analysis: the correlation
coefficiens of 10 pairedoe ancheel markes from these five trials were calculatading

SPSYIBM Corporation, Armonk, NY. Thepairedtrials with the highest correlatioof





































































































































































































































































