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ABSTRACT 

 

 In the current business world, data collection for business analysis is not difficult 

any more. The major concern faced by business managers is whether they can use data to 

build predictive models so as to provide accurate information for decision-making. 

Knowledge Discovery from Databases (KDD) provides us a guideline for collecting data 

through identifying knowledge inside data. As one of the KDD steps, the data mining 

method provides a systematic and intelligent approach to learning a large amount of data 

and is critical to the success of KDD. In the past several decades, many different data 

mining algorithms have been developed and can be categorized as classification, 

association rule, and clustering. These data mining algorithms have been demonstrated to 

be very effective in solving different business questions. Among these data mining types, 

classification is the most popular group and is widely used in all kinds of business areas. 

However, the exiting classification algorithm is designed to maximize the prediction 

accuracy given by the assumption of equal class distribution and equal error costs. This 

assumption seldom holds in the real world. Thus, it is necessary to extend the current 

classification so that it can deal with the data with the imbalanced distribution and 

unequal costs. In this dissertation, I propose an Iterative Cost-sensitive Naïve Bayes 

(ICSNB) method aimed at reducing overall misclassification cost regardless of class 

distribution. During each iteration,   nearest neighbors are identified and form a new 
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training set, which is used to learn unsolved instances. Using the characteristics of the 

nearest neighbor method, I also develop a new under-sampling method to solve the 

imbalance problem in the second study. In the second study, I design a general method to 

deal with the imbalance problem and identify noisy instances from the data set to create a 

balanced data set for learning. Both of these two methods are validated using multiple 

real world data sets. The empirical results show the superior performance of my methods 

compared to some existing and popular methods. 
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CHAPTER 1 

 

INTRODUCTION 

 

 With the development of technology, people are equipped with more abilities to 

analyze large data sets for business decision-making. In the real world, most business 

problems can be divided into two categories: classifying an observation into one of 

several predefined groups and estimating the occurrence probability of certain events. To 

this end, different predictive models were developed and applied to solve these business 

questions. Among these methods, data mining techniques have been realized to be 

efficient and effective tools in building predictive models, especially for the classification 

method. As a nontrivial process of discovering implicit, useful, and comprehensive 

knowledge on large amounts of data, the performance of data mining techniques has been 

illustrated in different domains, such as engineering, marketing, science, etc. In this 

dissertation, I focus on addressing two specific applications of data mining techniques: 

cost-sensitive learning and imbalance learning that arise from the real business 

environments. 
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1.1 Cost-sensitive Learning 

 As one of the primary tasks of data mining, classification has been one of the 

popular research topics in many areas, such as machine learning, statistics, etc. 

Traditional classification algorithms focus on maximizing the overall accuracy or 

minimizing the error rate and are evaluated by the overall accuracy or error rate. Turney 

(2000) discussed that during the classification learning procedure, many costs occur, such 

as misclassification cost, data acquisition cost, learner cost, etc. People are becoming 

more and more interested in reducing the expected cost instead of improving the accuracy. 

Especially, for business professionals, they are actually more concerned with the 

misclassification cost or the business loss due to the inaccuracy of prediction models. 

However, existing classification algorithms, such as the Naïve Bayes and Decision Tree 

are designed on the assumption of equal error costs and equal class distributions. Given 

that the equal costs are hard to hold in the real world, it is necessary to incorporate 

unequal costs into the learning process and extend the current classification algorithms 

for cost-sensitive learning (Domingos 1999; Elkan 2001; Turney 1995; Zhou and Liu 

2006).   

 Nowadays, many cost-sensitive classifiers have been developed, such as the cost-

sensitive Neural Network (Kulan and Kononenko 1998; Zhou and Liu 2006) and the 

cost-sensitive Decision Tree (Drummond and Holte 2000; Erray and Hacid 2006), etc. 

There are also some general cost-sensitive learning methods including stratification 

(over-sampling and under-sampling) and threshold adjusting. In stratification, the change 

of training data distribution through removing instances or replicating existing instances 

will impact the prediction in accordance with the cost ratio. Instead of using 0.5 as the 
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decision boundary, the adjusting method moves the decision threshold based on the given 

cost information. These general methods show some advantages in certain classifiers 

(like Decision Tree), but may not be appropriate to Naïve Bayes, which is very easy to 

use and has good classification performance as shown in previous studies. My study 

proposes a new Iterative Cost-sensitive Naïve Bayes (ICSNB) method. Applying the 

good performance of Naïve Bayes in the examples’ ranks and incorporating the   nearest 

neighbor method, my approach has an even lower misclassification cost than existing 

cost-sensitive learning methods. 

 

1.2 Imbalance Learning 

As discussed above, the underlying assumption of different classification 

algorithms is equal class distributions and error costs. Equal class distributions do not 

hold in the real world either. It is very common that people are more interested in rare 

events. For example, compared to the entire population, the number of loyal customers 

for certain brands or stores is small (King and Zeng 2000). Another typical example is the 

medical diagnosis, where cancer patients account for only a small part in comparison to 

the healthy people. The data set consisting of unequal-sized classes is called the 

imbalanced data set and then learning on the imbalanced data set is the imbalance 

learning (Barandela et al. 2004; Guo and Vikto 2004; Japkowicz and Stephen 2002).  

Unequal class distribution violates the basic assumption of traditional 

classification methods. When a data set is imbalanced, traditional predictive models and 

methods tend to favor the majority class, resulting in high overall accuracy, but detection 

rates with respect to the minority class often are not satisfactory. For instance, when a 
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model is trained on a binary data set with 1% of its examples from the minority class, a 

99% accuracy rate can be achieved by classifying all examples as belonging to the 

majority class. While a 99% accuracy is often considered excellent, such a model often 

has no practical value since our interests are often with the minority class. In the real 

world, people are frequently more interested in the minority class than in the majority 

class. Therefore, the existence of the imbalance problem in the real world and the target 

in imbalanced data force us to consider this issue when I build a classification model. 

Another problem in building a predictive model is noisy data. Noisy data can 

cause a negative impact on the classification performance and degrade the 

generalizability of a prediction model. Such data usually cause the prediction on its 

neighbors far away from their true values. Therefore, identifying noisy instances and 

removing them from input will be crucial in building an accurate classification model. 

Accordingly, it is necessary to develop a new learning method, which is sensitive to 

imbalance, noise, and cost issues. In the second study of this dissertation, I focus on the 

under-sampling method to solve the imbalance problem in large-scale data sets. More 

specifically, I use the predicted misclassification cost as the measurement to identify and 

remove most costly samples from the majority group and then create a new and less-

noisy training set for learning. 

 

1.3 Overview of Dissertation 

 This dissertation aims at developing new approaches in cost-sensitive Naïve 

Bayes learning and imbalance learning. The structure of the dissertation consists of four 

chapters. Chapter 1 gives the overall introduction to cost-sensitive learning and the 
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imbalance problem as well as a brief description of the proposed methods. Chapter 2 and 

Chapter 3 discuss the detailed method and experiment results as well as case studies. 

Chapter 4 summarizes the findings of the dissertation and discusses the directions for 

future work. More specifically, I highlight Chapter 2 and Chapter 3 as follows. 

Section 2.1 introduces the basic concept about the Bayesian theory and its 

applications. I then summarize related prior research in Naïve Bayes, cost-sensitive 

learning, imbalance learning and bagging in Section 2.2. In Section 2.3, the theoretical 

foundation and proof of the proposed method are discussed. To demonstrate the 

performance of the new method, I use Sections 2.4, 2.5, and 2.6 to describe the empirical 

experiment and discuss the results. In the cost-based under-sampling study, the 

introduction and related literature are discussed in Section 3.1 and Section 3.2. Then, 

Section 3.3 explains the detailed procedure of the cost-based under-sampling method. 

Three real-world business cases are discussed in section 3.4. I further conduct some 

additional experiments to verify the consistent performance through varying the class 

distribution and cost ratios in Section 3.5. Finally, the conclusions and limitations are 

discussed in Section 3.6. 

The main research question I explore is to develop some methods to solve cost-

sensitive and imbalance problems in the real business world. As shown in Figures 1.1 and 

1.2, at a high level, the first study iteratively generates a new training set to learn 

unsolved test samples, and the second study removes noisy samples from the training set 

to create a new balanced training set for learning. Both methods use the Nearest Neighbor 

theory during the learning procedure.  
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Figure 1.1: Process View of the Iterative Cost-sensitive Naïve Bayes Method (ICSNB) 

 

 

 

 

 

 

Figure 1.2: Process View of the Cost-based Under-sampling Method 
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CHAPTER 2 

 

ITERATIVE KNN-BASED COST-SENSITIVE 

NAÏVE BAYES LEARNING 

 

2.1 Introduction 

There are many real-world problems requiring people to answer questions, 

like whether a certain event will happen and how likely it is. Especially in the 

business world, people are interested in predicting whether a customer will return or 

how likely he or she will spend more than one hundred dollars. The more accurate this 

type of analysis is, the more profit business organizations can make on those target 

customers. To this purpose, the classification method has been developed to build 

predict models helping people make better decisions. The classification learning is a 

very basic task in the area of data analysis and pattern recognition, which requires the 

construction of a classifier and assigns a class label to instances described by a set of 

attributes. Many classification algorithms have been developed in the past few 

decades, such as Decision Tree, Naïve Bayes, Neural Networks, SVM, etc.  

Bayesian networks are often used for classification problems, in which a 

learner attempts to construct a classifier from a given set of training examples with 

class labels. Among different Bayesian network algorithms, Naïve Bayes is one of the 

most simple and effective inductive learning algorithms for machine learning and data 

mining. Researchers have found that Naïve Bayes is easy to use and quite robust in
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different domains (Friedman et al. 1997; Viaene et al. 2004). It is especially 

appropriate when the feature space is high (Hastie et al. 2009). 

Furthermore, applying the Bayesian theory to solve real-world business 

problems has been showing great advantages in different fields, such as marketing 

and Information Systems. As discussed in the study of Rossi and Allenby (2003), 

Bayesian decision theory is ideally suited for many marketing problems and has been 

widely used in different ways. The performance is excellent when it is applied to 

solving a range of marketing problems from new product introduction to pricing. For 

instance, Scott and Yalch (1980) used a Bayesian analysis model to predict consumer 

response to an initial product trial and found that the Bayesian model was quite a 

useful framework for investigating the acceptance of new information as a result of 

the consumer’s attribution process. Venkatesan et al. (2007) proposed a Bayesian 

decision theory-based selection strategy for identifying profitable customers. This 

Bayesian decision theory-based model provided better prediction accuracy than the 

benchmark model. The Bayesian method is also very easy to use with other methods 

so as to have even better performance than when used alone. Jen et al. (2003) 

proposed a model that combined the Bayesian method with the Poisson likelihood 

model. The model is used to predict the purchase frequency in the direct marketing 

and the performance demonstrates the advantage of using the Bayesian method 

relative to other approaches. 

The Bayesian model has also received much attention in the Information 

Systems field. Sarkar and Siram (2001) developed a Bayesian model for early 

warning of bank failures. In their study, interrelated variables were grouped as one 

variable to tackle the violation of independent assumption for input attributes. Also, 

simple Naïve Bayes is very popular in the machine learning or other IT related areas. 
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Seewald (2007) compared the performance of simple Naïve Bayes and two extended 

variants in spam filtering. The result showed that there was not much difference 

among these three methods and verified the excellent performance of simple Naïve 

Bayes.  

Although the excellent performance of the Bayesian model has been observed 

in many studies, most previous research focuses on improving prediction accuracy. 

The misclassification cost is another important factor or measurement that should be 

considered in the Bayesian model. Since uniform cost is not true in most business 

problems, for example, the benefit of correctly targeting a profitable customer is 

obviously higher than the average campaign cost. Therefore, people are more 

interested in how to minimize the cost in the Bayesian learning. This direction has 

drawn attention in machine learning research and has led to an increased interest for 

developing cost-sensitive classification methods (Turney 1997). Currently, there are 

only some general cost-sensitive methods that can be applied on Naïve Bayes, such as 

stratification (under-sampling and over-sampling), threshold adjusting, MetaCost 

(Domingos 1999), etc. But all these methods rely on probability estimations to make 

predictions. The major problem in the Naïve Bayes method is the unrealistic 

assumption of attributes independence, which causes high estimation bias. That the 

probability estimate in Naïve Bayes is unreliable has been verified theoretically and 

empirically (Friedman 1997; Bennett 2000; Frank et al. 2001). Although having the 

poor probability estimate, Naïve Bayes has a very strong feature in instances ranking 

that can tolerate the estimation error of class probabilities to some extent (Domingos 

and Pazzani 1997; Zhang and Su 2008). Using this feature, I develop a new iterative 

cost-sensitive Naïve Bayes method. The empirical experiments show the excellent 
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performance in reducing misclassification cost compared to some existing and 

popular cost-sensitive methods.  

 

2.2 Literature Review 

2.2.1 Naïve Bayes 

Naïve Bayes applies the Bayes rule in the prediction of classification problems. 

When applying the Bayes rule, the Naïve Bayes method will compute the 

probabilities of a given instance belonging to different classes and then assign the 

class label with the highest probability. Considering a simple classification problem, 

let X be a randomly selected sample from a data set and Y class label with k possible 

values. Estimating the probability (i.e.,         ) ) can help us predict which class 

X is more likely belong to through                . Applying the Bayes rule, 

we can have 

 

                                      
                

    
                         (2.1) 

 

For the consideration of convenient computation on          , the Naïve 

Bayes classifier has a very fundamental assumption, i.e., attributes conditional 

independence (Duda and Hart 1973; Good 1965). This assumption considers each 

input attribute is independent from one another given the class label. For instance, 

there are three attributes A, B, and C for the given data set. If we say A is independent 

of B and C, it means 

 

                                        (2.2) 
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Or, as shown in Figure 2.1, there are only relationships between class label 

attribute   and input attributes (                 ) if we assume all input attributes 

are independent. 

Given this assumption, then for the equation (2.1), if X consists of n 

independent attributes, the probability of a class label value    for an unlabelled 

instance X is given by 

 

               
                  

                     
                            (2.3) 

                     

 

If we have discrete value for the inputs, we can easily calculate the 

probabilities of each component of equation (2.3) through counting the number of 

instances of input containing specific attribute values. However, there is one danger of 

this counting method if there is no occurrence for certain attribute value in the training 

data, but in the testing data. If we still follow equation (2.3) to compute the 

probability, we may have zero estimation. To avoid that, there is a common method 

called “smoothing,” which adds in some values to the denominator and the numerator. 

Provost and Domingos (2000) suggest using the Laplace smoothing. It is given by 

 

               
                    

                        
     (2.4) 

 

where   is the number of distinct values of what    can take on, and   determines the 

strength of this smoothing. Usually,   is set to 1. For the two-class problem, 2 is 
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selected for  . Then, the Laplace smoothing method adjusts probability estimates to be 

closer to 0.5, which is actually not reasonable for an imbalance situation. 

Another smoothing method is called m-estimation, which is given by 

 

               
                      

                       
     (2.5) 

 

where   is the ratio of the target class and   is a parameter that controls how many 

scores are shifted towards  . Zadrozny and Elkan (2001) chose        in their 

paper and achieved a better performance. 

Although the assumption of conditional independence is almost always 

violated in the real world, practical comparisons have often shown that Naïve Bayes 

performs surprisingly well. For example, in a study of head injury problem, 

Titterington et al. (1981) found that the independence model yielded the overall best 

result. Similarly, Mani et al. (1997) found that the independence Bayes model did best 

in a study comparing classifiers for predicting breast cancer recurrence. Besides 

studies in medicine, other research (Cestnik et al. 1987; Cestnik 1990; Pazzani et al. 

1996; Frieman et al. 1997; Domingos and Pazzani 1997) also indicated that the 

independence Bayes model performed very well, often better than the alternatives.  

Research has shown that the good performance of Naïve Bayes in prediction is 

not from its accurate probability estimation, but from the accurate rank of testing 

instances. And actually Naïve Bayes has a worse performance in predicting 

probability. Given the accurate estimation in rank closing to real rank, Naïve Bayes 

can do well in classification in terms of accuracy if we can find the right decision 

boundary.  
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2.2.2 Imbalance Problem in Classification 

As I discussed above, Naïve Bayes does a good job in the ranking of testing 

instance. If we can find the optimal decision threshold/boundary, we still can have 

good prediction performance without accurate probability estimation. However, 

traditional Naïve Bayes chooses 0.5 as a decision threshold. For the two-class 

problem, it assumes the data set has an equal number of instances for each class. 

Actually, it is also an underlying assumption for different other classification 

algorithms. However, it is never true for any data set collected from the real world. 

When we want to predict a purchase decision from an individual level for existing 

customers, one inevitable problem is that customers with repeated purchase behavior 

are rare events for the whole customer base (King and Zeng 2000). Another typical 

example is the medical diagnosis domain, where sick patients are always a small 

group when compared to the entire population. We call this group of questions a class 

imbalance problem, and the data set is called imbalanced data, where the size of one 

class overwhelms that of the other class (Barandela et al. 2004; Guo and Vikto 2004; 

Japkowicz and Stephen 2002). This violates the basic assumption for applying 

traditional classification methods. When a data set is imbalanced, traditional 

predictive models and methods, such as classification methods, tend to favor the 

majority class, resulting in high overall accuracy, but detection rates with respect to 

the minority class often are not satisfactory. For instance, when a model is trained on 

a binary data set with 1% of its examples from the minority class, a 99% accuracy rate 

can be achieved by classifying all examples as belonging to the majority class. While 

99% accuracy is often considered excellent, such a model often has no practical value 

since our interests are often on the minority class. In the real world, there are many 

examples where people are more interested in the minority class, not the majority 
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class. This is also the reason why Laplace smoothing is not appropriate in correcting 

the Naïve Bayes probability estimation.  

To solve imbalance problems in building predictive models using traditional 

classifiers, the common method is to change the data distribution and then create a 

balanced data set, called stratification or resampling. Changing data distribution can 

be done from two directions: under-samplng and over-sampling. The under-sampling 

method removes majority instances from a data set until the sizes of the two groups 

are equal, while the over-sampling method generates more minority instances and 

keeps the majority group unchanged.  

 

2.2.3 Cost-sensitive Naïve Bayes 

Inductive learning techniques, such as Naïve Bayes and Decision Tree, have 

met great success in building classification models. However, many previous research 

studies have only focused on how to minimize the classification errors (Mitchell 1997; 

Quinlan 1993). People have found that minimizing the classification cost attracts 

more and more attention instead of classification accuracy. For example, a marketing 

manager is more interested in how much profit loss it might bring caused by a 

predictive model misclassifying returning customers as being leaving customers. To 

this end, researchers developed different cost-sensitive learning methods trying to 

minimize the overall misclassification cost. 

Cost-sensitive learning considers a variety of costs in various components and 

processes of learning (Turney 2000), with the goal of minimizing the costs 

individually or for the total cost. It is one of the most active and important research 

areas in data mining and machine learning, and it plays an important role in real-

world data mining and machine learning applications. Turney (2000) provided a 
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comprehensive survey of a large variety of different types of costs in data mining and 

machine learning, including misclassification costs, data acquisition costs (instance 

costs, attribute costs, and labeling costs), computation cost, human-computer 

interaction cost, and so on. The two most important types of costs are identified as 

misclassification costs and data acquisition costs. Misclassification costs are an 

extension of error rate as different types of errors (such as false positive and false 

negative) can have different costs. Data acquisition costs reflect how expensive it is to 

acquire extra information for assisting classification or building more accurate 

learning models (Weiss and Provost 2003; Yang et al. 2006; Zhu and Wu 2005). More 

and more research has been devoted to misclassification cost (Domingos 1999; 

Turney 1995; Zhou and Liu 2006). 

Without loss of generality, in this study I assume binary classification: 

positive/1 and negative/0, and people are more interested in a positive class. In cost-

sensitive learning, a cost matrix must be given. Table 2.1 is an example of a cost 

matrix. The first number in the parenthesis represents the predict value and the second 

number is the actual value. Thus, the same numbers mean correct prediction, 

otherwise, wrong prediction. 

Usually, the costs of misclassifying a positive example and a negative example 

are not equal. If we are interested in positive class (for instance, loyal customers, 

patients with lung cancer), then C(0,1) will have higher value than C(1,0). In Naïve 

Bayes, once we get the probability of an instance belonging to different class, then 

this instance should be classified into the class that has the minimum expected cost. 

For an instance x, the optimal prediction is class 1 if and only if the expected cost of 

this prediction is less than or equal to the expected cost of predicting cost 0, i.e., if and 

only if 
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                                                         (2.6) 

which is equivalent to  

 

            P*       (1-P)       P*                             (2.7) 

 

where          

Therefore, the optimal threshold is    such that 

 

                                                    
      

             
                                        (2.8) 

 

if we set        and        to be zero. 

Different cost-sensitive learning methods have been developed to extend 

existing classifiers, such as a cost-sensitive Neural Network (Kulan and Kononenko 

1998; Zhou and Liu 2006), a cost-sensitive Decision Tree (Drummond and Holte 

2000; Erray and Hacid 2006), etc.  

Once cost matrix is given,     can then be calculated and fixed. It is very 

intuitive to think about whether we can make    approach to    through altering the 

distribution of the training data set. This is the method I discussed above, called cost-

based resampling or stratification. Data resampling is a very common method in cost-

sensitive learning (Elkan 2001; Weiss et al. 2007; Zadrozny et al. 2005; Zhou and Liu 

2006), in which data distribution is altered artificially to reach the optimal threshold  

  . To change class distribution, we have two options as mentioned in the previous 

section, under-sampling or over-sampling, i.e., removing instances from the majority 

class or replicating instances for the minority class. Elakan (2001) gives us a general 
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formula for how to do sampling correctly. In his formula, the number of negative 

(majority) examples in the training set should be multiplied by 

 

                                                       
  

    

    

  
                       (2.9) 

 

In a special case, where       , equation (2.9) tells us that we need resample 

      

      
     negative examples to have a new training set so that it matches the optimal 

decision threshold   . 

Besides data sampling, another very popular and general cost-sensitive method 

is MetaCost (Domingos 1999). Considering the shortcomings of data sampling, 

information loss and overfitting, Domingos (1999) proposed the MetaCost method to 

make classification algorithms cost-sensitive without using sampling. He argued that 

the training examples should be relabeled with their optimal classes according to the 

cost matrix. Meanwhile, MetaCost, bagging (discussed next), is used as the ensemble 

method to learn class probability so as to improve probability accuracy.  

However, either for data sampling or MetaCost, once Naïve Bayes is used to 

compute class probability, we do not have enough confidence about the estimation 

accuracy caused by the intrinsic high bias associated with Naïve Bayes. Using 

equation (2.6) may not give us an accurate prediction on class label. 

 

2.2.4 Bagging 

Methods for voting classification algorithms, such as bagging and boosting, 

have been shown to be very successful in improving the accuracy of certain classifiers. 

Voting algorithms can be divided into two types: those that adaptively change the 

distribution of the training set based on the performance of precious classifiers 
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(boosting) and those that do not (bagging). In bagging, multiple versions of training 

data will be generated and used to have an aggregated classifier. Specifically, given a 

set  , of   tuples, bagging works as follows. For iteration              , a training 

set,    of   tuples is sampled with replacement from the original set of tuples,  . Each 

training set is a bootstrap sample. Because sampling with a replacement is used, some 

of the original tuples of   may not be included in   , whereas others may occur more 

than once. A classifier model,   , is learned for each training set,   . To classify an 

unknown tuple, X, each classifier,   , returns its class prediction, which counts as one 

vote. The bagged classifier counts the votes and assigns the class with the most votes 

to X.  

Breiman (1996a) indicated that a critical factor in whether bagging can 

improve accuracy is the stability of the procedure for constructing classifier    and 

bagging works well for unstable procedures. Meanwhile, Breiman (1996b) pointed 

out that most of classification models were unstable, such as Decision Tree, Neural 

Network, Naïve Bayes, except for k nearest neighbor. Especially for probability 

estimation, the evidence (Breiman 1996a) indicated that bagged estimates were likely 

to be more accurate than the single estimates.  

Not only in the machine learning area, but also in marketing research, the 

importance of the bagging method in improving the prediction performance has been 

realized. In the context of marketing research, Lemmens and Croux (2006) draw 

attention to the competitive performance of bagging, an easy-to-use procedure, by 

repeatedly estimating a classifier to bootstrapped versions of the calibration sample. 

The result shows a significant increase using different evaluation measurements 

compared to the single prediction. 
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2.3 Proposed Method 

Prior research has shown the high bias of probability estimation by the Naïve 

Bayes method empirically and theoretically (Friedman 1997; Bennett 2000; Frank et 

al. 2001). That is, probabilities estimated using the Naïve Bayes method are usually 

far away from actual probabilities, primarily due to the method’s “Naïve” assumption 

of attribute independence (Friedman 1997).  However, poor probability estimations 

may not lead to poor classification decisions, as illustrated in Figure 2.2. Let      be 

the actual probability of instance x belonging to the positive class and    be the 

optimal decision threshold. By (2.8), the optimal decision is to classify x as positive 

since        . Two probability estimations of instance x belonging to the positive 

class,       and      , are shown in Figure 2.2. It is clear that       is a much more 

biased probability estimation than      . However, the classification decision based 

on       (which is positive because         ) coincides with the optimal decision, 

while the classification decision based on       (which is negative because        

  ) does not.  

The example in Figure 2.2 shows that poor probability estimation does not 

mean poor classification decision; sometimes the contrary may be true. While a poor 

method for probability estimation, the Naïve Bayes method could be an ideal tool for 

classification. Indeed, prior research has empirically shown the superior classification 

performance of the Naïve Bayes method, when compared with other effective 

classification methods such as C4.5 (Langley et al. 1992; Domingos and Pazzani 

1997). Friedman (1997) theoretically explains the superior classification performance 

of the Naïve Bayes method. Friedman (1997) shows that as long as the prior 

probability π of the positive class equals the optimal decision threshold     the Naïve 

Bayes method is the ideal choice for classification because the over-smoothing nature 
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of the Naïve Bayes method causes probability estimations by the Naïve Bayes method 

shrinking toward π. In particular, the result of applying the Naïve Bayes method can 

be modeled as (Friedman 1997) 

 

                         ,                      (2.10) 

 

where       and      are the estimated and the actual probability of instance x 

belonging to the positive class, respectively, and      is the over-smoothing 

coefficient,   0≤    ≤1. 

 While the Naïve Bayes method is ideal for classification when     , the 

condition seldom holds in the cost-sensitive environment. An effective cost-sensitive 

Naïve Bayes method needs to be developed for     . Using the over-smoothing 

characteristic of the Naïve Bayes method, I first analyze some interesting properties 

regarding      , the Naïve Bayes estimated probability of instance x belonging to the 

positive class. 

Lemma 1: Given     ,  

(a) if         , we have        
; 

(b) if         , we have        
. 

Proof. Let us first prove (a). By (9),          means 

                         .                    

 Given     , we have 

                                                  

 That is, 

                                                  

 Hence,        .                      
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 We then prove (b). By (9),          means 

                       .                        

 The above inequality implies       .  Given     , we have 

        . This completes the proof. 

 By Lemma 1, given     , if the Naïve Bayes estimated probability       is 

less than or equal to the optimal threshold   , the actual probability      is less than 

   and the instance x is labeled as negative according to (2.8). On the other hand, if 

      is greater than or equal to the prior probability π of the positive class, the actual 

probability      is greater than    and the instance x is labeled as positive according 

to (2.8). As shown in Figure 2.3, using Lemma 1, I can determine labels for instances 

if their Naïve Bayes estimated probabilities       are above (or on) the line of π or 

below (or on) the line of   . However, for instances with        falling between    

and π, their labels cannot be determined by Lemma 1. 

Lemma 2: Given     ,  

(a) if        , we have        , 

(b) if         
,we have        . 

Proof. We first prove (a). By (9),         indicates 

                      ≤  .                      .                    

The above inequality implies that       .  Given     , we have         . 

We prove (b) next. By (9),           means 

                         .                    

Given     , we have 

                          .                    

Hence        . This completes the proof. 
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By Lemma 2, given     , if the Naïve Bayes estimated probability       is 

less than or equal to the prior probability π of the positive class, the actual probability 

     is less than    and the instance x is labeled as negative according to (2.8). On 

the other hand, if       is greater than or equal to the optimal threshold   , the actual 

probability      is greater than    and the instance x is labeled as positive according 

to (2.8). As shown in Figure 2.4, using Lemma 2, I can determine labels for instances 

if their Naïve Bayes estimated probabilities       are above (or on) the line of    or 

below (or on) the line of π. However, for instances with        falling between π and 

  , their labels cannot be determined by Lemma 2. 

Let U be the set of instances that cannot be labeled by applying Lemmas 1 and 

2, which consists of instances with        falling between π and   . These unlabeled 

instances need to be further learned with an appropriate training data set. I construct 

the training data set for U using the nearest neighbor approach (Cover and Hart 1967). 

The choice of the nearest neighbor approach is based on the fact that half information 

of an instance is contained in its nearest neighbor (Cover and Hart 1967). Further, 

prior research has shown that training data sets constructed using the nearest neighbor 

approach are effective for Naiva Bayes learning (Frank et al. 2003). Specifically, for 

each instance in U, its k nearest neighbors in the original training data set are 

identified. And the training data set for U consists of the k nearest neighbors of each 

instance in U. When identifying nearest neighbors, the distance between two instances 

is measured using the Euclidean distance (Frank et al. 2003; Han and Kamber 2005).  

The Euclidean distance        between an unlabeled instance x in U and an instance t 

in the original training data set is measured as  

 

                                          (2.11) 
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where n is the number of attributes of an instance. The k nearest neighbors of an 

unlabeled instance consist of its top- k closest instances in the original training data 

set. Once the training data set for U is constructed, I can apply the Naïve Bayes 

method to estimate probability       for each instance x in U and employ Lemmas 1 

and 2 to label instances in U. It is possible that there are still unlabeled instances left 

after the process. Therefore, I repeat the procedure of constructing training data for 

unlabelled instances and then labeling these instances using Lemmas 1 and 2 until 

there are no unlabeled instances left or there are some hard instances left that can 

never be labeled using the procedure. If there are hard instances left, I label them 

according to their probabilities       estimated during the final run of the procedure. 

In particular, a hard instance is labeled as positive if          and negative 

otherwise. 

 Based on the above discussion, I propose the Iterative Cost-sensitive Naïve 

Bayes (ICSNB) algorithm shown in Figure 2.5. The ICSNB algorithm takes the 

training data set L and the test data set T as inputs and assigns labels for each instance 

in T. The algorithm first employs the Naïve Bayes method to estimate probability 

      for each instance x in T. It then labels instance x according to       and Lemmas 

1 and 2. Instances that cannot be labeled by Lemmas 1 and 2 are added to U, the set of 

unlabelled instances. The nearest neighbor procedure, NN(), is invoked next to 

construct the training data set for U and the algorithm calls itself recursively. The 

ICSNB algorithm terminates if there is no unlabelled instance (i.e., U =  ) or there are 

only hard instances left. As shown in Figure 2.5, |U| =|T| indicates that none of the 

instances in the test data set can be labeled by Lemmas 1 and 2. Hence, all instances 

in the test data set are added to U and they are all hard instances. The hard instances 

are finally labeled using procedure Hard().  
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2.4 Data Sets and Empirical Experiment Design 

In this section, I describe how the experiment is designed to test my proposed 

iterative cost-sensitive Naïve Bayes method as well as how I select data sets and do 

data preprocessing or transformation. All the data sets used in the empirical study are 

from UCI Machine Learning Repository (Blake et al. 1999). In order to test the 

generality of my proposed method, I used several criteria in choosing experiment data 

sets. Table 2.2 gives the description for all the data sets used in the experiment. From 

Table 2.2, I can see that the data sets used in my empirical study have the following 

characteristics, 

 Data size ranges from small to large. The smallest data set is ionosphere 

with only 351 data points, while the largest one (magic gamma telescope) 

has 19,020 data points. I did not choose data sets that are too large for 

computation convenience. 

  Varied data dimensionality (number of attributes) from 6 attributes in car 

evaluation to 36 attributes in chess. 

 Two-class data sets and multiclass data sets: the first five data sets are 

two-class data sets and the remaining three data sets have multivalues 

class label attributes. 

 The selected data sets cover different domains, such as business (car 

evaluation), gaming (chess and tic-tac-toe), science (magic gamma 

telescope, ionosphere), etc. 

 Data sets with continuous attributes only, categorical attributes only, or 

mixed. 

For all these data sets, I have done preprocessing to clean the data before I put 

them into my experiment. As shown in Table 2.2, some data sets contain missing 
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values. Missing values need to be taken care of before any analysis. In my experiment, 

I chose the common approach to handling missing values and all the missing values in 

the data set are replaced by mean (for continuous attribute) or mode (for categorical 

attribute) using Weka filter function. Then, I transfer all continuous attributes to 

categorical attributes with ten bins using the Weka discretize function and also let 

Weka decide the optimal bins. After discretization, some attributes only contained one 

value across the entire data set. If all instances in a data set only had one possible 

value for certain attributes, these attributes will have no impact on computing 

posterior probability. Therefore, I removed all attributes with only one value after the 

discretization operation. If you compare the information in Table 2.2 to the raw data 

in UCI database repository, you will find some data sets have fewer attributes. 

In this study, I focused on binary or two-class problems. Some of the data sets 

used in the experiment are originally multiclass data sets and the class label attribute 

has more than two unique values. I converted multiclass data sets into two-class data 

sets through taking the interesting class as one class or target class and all other 

classes as the second class. This is a very convenient approach for solving the 

multiclass classification problem. Specifically, in data set image segmentation, I 

chosen “brickfact” as target (class 1) and the instances in the remaining classes are 

combined as one class (class 0). Similarly, I selected class 2 as the target class in data 

set annealing. But, in data set car evaluation, all acceptable cars including good and 

very good cars are used as target class. 

 Cost-sensitive learning is to minimize the overall misclassification cost for the 

given cost matrix. However, the UCI database repository does not provide any cost 

information for all eight data sets in my experiment. Therefore, I need to generate a 

synthetic cost matrix using certain mechanisms to compare cost reduction among 
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different cost-sensitive learning methods. Prior research (Zhou and Liu 2006;), chosen 

randomly, value from uniform distribution between 1 and 10.  

 

                                 for all                         (2.12) 

 

where   is the predict class and   is the actual label. And, I assume correct prediction 

will not cause any cost, i.e.,                . Following the same procedure, I 

generate five cost matrices as shown in Table 2.3. In this study, I always take the 

interesting or target class as class 1 and the other class as class 0, and I also assume 

misclassifying an instance in class will cost more than that in class 0, i.e.,        

      . 

Using a variety of learning methods, I conducted a traditional evaluation 

through random selection 2/3 of the entire instances for training and the remaining 

one-third data for the test (Domingos 1999; Abe et al. 2004). I repeated this procedure 

twenty times and the results were the average of twenty such runs. I used overall 

misclassification cost as a measurement to evaluate model performance. 

 

2.5 Experiment Results and Analysis 

In the experiment, the benchmark methods used to compare with my proposed 

method are Cost-sensitive Naïve Bayes (CNB), Random Under-sampling (RUS), 

Random Over-sampling (ROS), and MetaCost. For Cost-sensitive Naïve Bayes, I still 

use traditional Naïve Bayes to compute the probability, but consider the cost 

information when I predict class label. Equation (2.7) is used to help make decision. 

For Random Under-sampling method, I keep target class (class 1) unchanged and 

randomly remove instances from class 0 following the formula (2.9). In Random 
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Over-sampling, formula (2.9) is used to calculate how many more instances need to 

be replicated in class 1. I apply Naïve Bayes in MetaCost and follow the same 

procedure (Domingos 1999) to do 50 times 100% bagging.        

Table 2.4 is the summary of the overall comparison performance for all the 

data sets measured by misclassification cost through averaging costs over five cost 

matrices. The results show that the proposed method (ICSNB) outperforms all other 

benchmark methods. Comparing to other methods aiming to solve the cost-sensitive 

learning problem, my method can averagely reduce misclassification cost by 7.45% 

for CNB, 28.39% for RUS, 21.55% for ROS, and 44.89% for MetaCost, respectively. 

Not only on the two-class data sets, but also on multiclass data sets, the proposed 

method has a great advantage in reducing misclassification cost. As I describe before, 

I convert multiclass data sets into two-class data sets. Doing this transformation 

actually will increase the prediction difficulty since I combine multiple classes into 

one class. The involved instances may have totally different characteristics and some 

may be more close to the target instances. But, I artificially assign the same label to 

them and this may cause ever higher bias. It explains why the improvement is more 

significant for two-class data sets than for multiclass data sets between CNB and 

proposed method. Secondly, either for balanced or imbalanced data sets, my method 

shows consistent performance 

For data set ionosphere, I observe a slight improvement compared to CNB, not 

like other two-class data sets. It also happens on the multiclass data set image 

segmentation and annealing. So, I take a further look and try to find out what the 

possible underlying reasons causing insignificant improvement are. My method is 

actually trying to improve the prediction accuracy for those instances falling into the 

middle area. If the improvement is not significant, it means either proposed method 
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cannot give better prediction or there is no or very few instances for us to predict. 

After checking the performance of middle steps, I find that after the first cut using 

original   and   , there are only very few instances left in the middle area and leave 

us a very small space for the proposed method to improve the performance. Even I 

can make 100% prediction accuracy and still cannot reduce cost too much since the 

majority of input examples have been judged by traditional CNB.  

Table 2.4 also exhibits that CNB is apparently better than ROS, RUS, and 

MetaCost except on the data set magic gamma telescope. RUS and ROS get similar 

performance and do not make too much difference for all eight data sets. Surprisingly, 

MetaCost almost has the worst performance among all benchmark methods except on 

data sets tic-tact-toe and car evaluation. Therefore, I can say that in existing cost-

sensitive Naïve Bayes methods, traditional CNB usually can have better and 

consistent performance.   

Table 2.5 and Table 2.6 give the detailed performance information for each 

individual cost matrix and corresponding graphs are shown in Figure 2.8 and Figure 

2.9. These two tables help us further investigate the performance of the proposed 

method and the possible reasons explain the better performance in terms of 

misclassification cost reduction.  

I first look at the performance between CNB and the proposed method. Under 

what conditions does the proposed method outperform CNB? Or, when is the 

performance of the proposed method close to that of CNB? I find that on data sets 

chess and mushroom, the proposed method is just slightly better than CNB under cost 

matrix 4 and 5. Similarly, I observe that under cost matrix 3, the proposed method has 

the lowest improvement on data set tic-tac-toe. If I calculate    from the given cost 

matrix, I will see that when     is very close to original   and difference between     
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and    is very small, the improvement will be small. Different from the previous 

reason that only very few instances left in the middle area is caused by the data set 

itself, manually changing    and making it approach   can explain this insignificant 

performance. 

 Table 2.6 shows that my method even has more consistent performance on 

multiclass data sets than on two-class ones. Another interesting finding is that the 

MetaCost method does not display any benefit on cost-sensitive learning for all data 

sets and every cost matrix. This is because probability used in MetaCost to relabel 

class label is computed by Naïve Bayes. As I discuss before, probability estimation 

using Naïve Bayes is unreliable and with high bias. Given this high bias probability, 

the relabeling result is also questionable. 

 

2.6 Conclusion and Discussion 

 In this dissertation, I analyze past works on cost-sensitive learning and Naïve 

Bayes classifier. Based on these works, I identified the research gap between existing 

cost-sensitive learning methods and Naïve Bayes classifier. Then, a new cost-sensitive 

method, iterative cost-sensitive Naïve Bayes (ICSNB), is proposed. My method 

applies the characteristics of Naïve Bayes classifier, takes iterative learning approach 

to improve prediction accuracy and thus reduces the overall misclassification cost. 

The performance of the proposed method is tested on eight UCI data sets covering 

different domains. I compare my method with other popular cost-sensitive learning 

methods, like data resampling and MetaCost.  

The results suggest that the cost-sensitive method is easy and effective in 

reducing misclassification cost and has the consistent better performance across all 

the experimental data sets than the noncost-sensitive method. Especially, my proposed 
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method reaches the best performance among all cost-sensitive methods. Traditional 

cost-sensitive Naïve Bayes is in the second position through adjusting decision 

threshold so as to make the decision cost-sensitive. Meanwhile, CNB is a conservative 

method that rarely causes negative effect and is easier to use than other methods. 

Sampling methods, either random under-sampling or random over-sampling, are 

found to be ineffective in improving prediction performance compared to CNB. 

MetaCost is significantly worse than others. Different from the study of Domingos 

(1999) in which MetaCost is applied to Decision Tree, I combine MetaCost with 

Naïve Bayes and results indicate that MetaCost is not a general method that can be 

applied to different classification algorithms. 

In my proposed method, I do not specify how to find K to form a new training 

set. However, K is a very critical factor influencing the classification performance. 

The main difference between my method and common Naïve Bayes method is that I 

use KNN to have a new training set to learn the left over data samples. Therefore, 

choosing different Ks may have significantly different results that sometimes can be 

even worse than using Naïve Bayes only. Actually, in both case study and additional 

experiment, I did a greedy search between 1 and 100 to find an optimal K so as to 

have the lowest overall cost.  

According to the finding across ten UCI data sets, the optimal K is usually 

between 10 and 30 for most of data sets, except for data set magic gamma telescope, 

in which final K is 65. I found that when K increases to over 50, the total 

misclassification cost can be even higher than that of smaller K less than 20. This 

observation is different from prior research (Frank et al. 2003) in that the KNN 

method is said not to be particularly sensitive to the choice of K as long as K is not 

too small and actually larger K is preferred. KNN theory also discusses that the 
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performance of a classifier can be improved under larger K if given the infinite 

number of samples. However, I think in the real world K should not be selected as 

large as possible given the observations from my study. Choosing a large value of K 

may introduce noise into the new training set. I do not recommend using a large K, 

especially when the size of a given data set is small. Otherwise, it is very likely to still 

have the exact same training set as the original one and give the same result as using 

traditional Naïve Bayes method. Furthermore, it has been proved that the nearest 

neighbor (K=1) usually contains half the classification information (Cover and Hart 

1967). So, small K may be enough to provide us information on estimating the 

probability of a given target sample. In conclusion, I think there are several issues that 

deserve my attention and can help us find optimal K with more efficient ways. First, I 

need to check how many instances are left after the first iteration. If the size of 

original training set is   and the remainder is   , then K should not be greater than 

    . Second, data sets with high-dimensionality should consider smaller K than 

ones with low-dimensionality. For low-dimensionality data sets, most of K’s nearest 

neighbors may have similar distance to the target instance given large K. Hence, this 

may impose negative impact on classification performance.  

In summary, this empirical study suggests that 

1. The proposed iterative cost-sensitive Naïve Bayes (ICSNB) method 

has better performance in cost reduction than other cost-sensitive 

methods. 

2. ICSNB can be used in two-class and multiclass data sets, and 

transformation is needed to multiclass the data sets. The effect of cost 

reduction is similar on two-class data set and multiclass data set. 

3. Sampling methods do not show any advantage in Naïve Bayes learning.  
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4. MetaCost is found to be with the worst performance among all cost-

sensitive methods in this study.  

5. The choice of optimal   does not need to be very large. But I should 

consider relevant information, such as data size, class distribution, etc. 

 

2.7 Limitations and Future Directions 

This study also has its limitations that can be addressed by future studies. 

Considering the computational complexity, in this study, I discretize all continuous 

attributes. The key part of this study is to generate a new training set and therefore, 

the performance is obviously dominated by the distance measurement. As I discussed 

in previous sections, it is common to find more than   instances having the same 

distance to the target instance. Here, I just randomly select exactly K instances to 

form the new training set. Improvement can be made by using the actual attribute 

values. Also coming from the attribute transformation procedure, the probability 

estimation can be biased. I believe that there could be some potential space for 

performance improvement if continuous inputs are taken carefully using the Gaussian 

Naïve Bayes method.  

Exploring general   Nearest Neighbor literature will be another direction for 

future work. In this study, optimal is found by greedy search. If I can discover certain 

relationships between optimal K and data size, attribute size, or distribution, etc, it 

will reduce much computation work.                                                         
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Table 2.1: Example of Cost Matrix 

 

 Actual negative Actual positive 

Predict negative               
Predict positive               

 

 

 

Table 2.2: Description of Experimental Data Sets 

 

 

Data set 
Size 

# of 

attributes 

# of categorical 

attributes 

# of continuous 

attributes 

missing 

data 

Class distribution 

(class 0/class 1) 

Class distribution 

for class 1 (%) 

Chess 3196 36 36 0 N 1669/1527 47.78 

Mushroom 8124 22 22 0 Y 4208/3916 48.2 

tic-tac-toe 958 9 9 0 N 626/332 34.66 

Ionosphere 351 34 0 34 N 225/126 35.90 

magic gamma 

telescope 19020 10 0 10 N 12332/6688 35.16 

image 

segmentation 2310 19 0 19 N 1980/330 14.29 

Annealing 798 16 10 6 Y 710/88 11.03 

car evaluation 1728 6 6 0 N 1210/518 29.98 
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Table 2.3: Cost Matrix Generated from Random Number Generator 

cost matrix               

1 1.011261 6.072268 

2 2.739738 8.278665 

3 4.152623 9.063662 

4 5.784967 6.140660 

5 6.415876 6.464492 

 

Table 2.4: Comparison of Misclassification Costs Averaged by Five Cost Matrices 

Data set CNB RUS ROS MetaCost ICSNB 
CNB/ 

ICSNB 

RUS/ 

ICSNB 

ROS/ 

ICSNB 

MetaCost/ 

ICSNB 

Chess 636.24 739.45 757.51 1178.61 533.03 16.22% 27.92% 29.63% 54.77% 

Mushroom 71.47 87.36 67.35 1323.38 59.26 17.09% 32.17% 12.02% 95.52% 

tic-tac-toe 501.06 584.56 580.30 532.22 467.45 6.71% 20.03% 19.45% 12.17% 

Ionosphere 63.93 78.66 67.98 255.13 63.49 0.69% 19.28% 6.61% 75.11% 

magic gamma 

telescope 8355.62 8140.43 8123.74 9602.78 8071.78 3.40% 0.84% 0.64% 15.94% 

image 

segmentation 144.00 209.46 196.74 380.84 142.55 1.01% 31.94% 27.54% 62.57% 

Annealing 127.23 225.54 185.60 183.72 124.27 2.33% 44.90% 33.04% 32.36% 

car evaluation 186.74 328.28 290.23 183.72 164.13 12.11% 50.00% 43.45% 10.66% 
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Table 2.5: Average Misclassification Costs for Two-class Data Sets 

 

Cost 

Matrix 
CNB RUS ROS MetaCost ICSNB 

CNB/ 

ICSNB 

RUS/ 

ICSNB 

ROS/ 

ICSNB 

MetaCost/ 

ICSNB 

Chess 

1 264.76 347.97 345.04 379.08 152.12 42.55% 56.29% 55.91% 59.87% 

2 572.34 786.22 791.70 1004.03 390.71 31.73% 50.31% 50.65% 61.09% 

3 742.68 994.93 1027.53 1438.16 571.98 22.98% 42.51% 44.33% 60.23% 

4 765.22 746.81 794.80 1470.94 751.06 1.85% -0.57% 5.50% 48.94% 

5 836.17 821.33 828.48 1600.84 799.30 4.41% 2.68% 3.52% 50.07% 

Mushroom 

1 31.51 45.57 33.22 1088.99 20.13 36.11% 55.82% 39.40% 98.15% 

2 71.00 91.32 67.59 1507.82 47.58 32.99% 47.90% 29.61% 96.84% 

3 91.18 124.80 92.76 1675.82 66.47 27.10% 46.74% 28.34% 96.03% 

4 79.37 86.63 72.76 1144.33 78.77 0.75% 9.08% -8.26% 93.12% 

5 84.31 88.48 70.43 1199.92 83.34 1.15% 5.81% -18.32% 93.05% 

Tic-tac-toe 

1 165.30 212.72 213.02 213.02 130.21 21.23% 38.79% 38.87% 38.87% 

2 484.03 557.67 555.21 530.97 449.83 7.07% 19.34% 18.98% 15.28% 

3 663.06 762.90 749.42 713.23 637.90 3.79% 16.38% 14.88% 10.56% 

4 581.54 673.63 669.91 588.61 544.68 6.34% 19.14% 18.69% 7.46% 

5 611.35 715.89 713.93 615.25 574.62 6.01% 19.73% 19.51% 6.60% 

Ionosphere 

1 44.93 47.19 48.32 55.76 44.73 0.45% 5.20% 7.43% 19.78% 

2 67.54 87.63 70.83 82.09 66.99 0.81% 23.55% 5.42% 18.40% 

3 77.36 102.17 82.87 96.99 77.20 0.20% 24.44% 6.84% 20.40% 

4 62.76 76.74 66.32 83.02 62.11 1.04% 19.06% 6.35% 25.19% 

5 67.08 79.56 71.58 85.71 66.43 0.97% 16.50% 7.20% 22.50% 

Magic gamma 

telescope 

1 3728.38 4126.94 4134.92 3821.56 3829.08 -2.70% 7.22% 7.40% -0.20% 

2 7712.31 8391.25 8413.80 7869.77 7788.22 -0.98% 7.19% 7.44% 1.04% 

3 10469.76 9856.08 9787.66 11471.42 10498.68 -0.28% -6.52% -7.26% 8.48% 

4 9634.57 8791.93 8749.46 12029.80 8831.15 8.34% -0.45% -0.93% 26.59% 

5 10233.09 9535.95 9532.85 12821.33 9411.74 8.03% 1.30% 1.27% 26.59% 
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Table 2.6: Average Misclassification Costs for Multiclass Data Sets 

 

Cost 

Matrix 
CNB RUS ROS MetaCost ICSNB 

CNB/ 

ICSNB 

RUS/ 

ICSNB 

ROS/ 

ICSNB 

MetaCost/ 

ICSNB 

Image 

segmentation 

1 46.42 79.94 56.48 125.19 46.32 0.22% 42.06% 18.00% 63.00% 

2 112.47 162.60 148.09 291.37 112.06 0.37% 31.08% 24.33% 61.54% 

3 161.20 231.72 220.41 399.69 160.74 0.28% 30.63% 27.07% 59.78% 

4 191.39 272.76 266.47 516.31 188.32 1.60% 30.96% 29.33% 63.53% 

5 208.55 300.26 292.25 571.65 205.31 1.55% 31.62% 29.75% 64.08% 

Annealing 

1 47.94 104.51 65.23 74.38 47.13 1.69% 54.90% 27.74% 36.63% 

2 107.08 203.31 153.86 174.65 104.30 2.59% 48.70% 32.21% 40.28% 

3 144.72 266.49 215.28 228.44 137.78 4.79% 48.30% 36.00% 39.69% 

4 161.29 263.97 236.25 208.43 159.60 1.05% 39.54% 32.45% 23.43% 

5 175.14 289.43 257.36 232.69 172.54 1.48% 40.39% 32.96% 25.85% 

Car 

evaluation 

1 82.11 304.90 83.28 83.28 67.55 17.73% 77.84% 18.88% 18.88% 

2 190.69 225.62 225.62 225.62 169.73 10.99% 24.77% 24.77% 24.77% 

3 237.95 341.14 341.97 341.97 237.74 0.09% 30.31% 30.48% 30.48% 

4 197.08 378.05 395.11 290.08 167.63 14.94% 55.66% 57.57% 42.21% 

5 225.89 391.69 405.16 334.68 178.00 21.20% 54.56% 56.07% 46.81% 
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Figure 2.1: An Illustration of Conditional Independence 

  

 

                                                            
 

 

 

                                                    

   

                                                     
 

Figure 2.2: Poor Probability Estimation   Poor Classification Decision 
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Figure 2.3: Label Instances When       
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Figure 2.4: Label Instances When       
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ICSNB(L,T) 

L: training data set  

T: test data set  

 

U =  . 

NB(L,T).          //Run the Naïve Bayes method  

For each instance x in T 

 If (     and         ) or (     and        ) 

  Label x as negative.       //By Lemmas 1 and 2 

 Else if (     and        ) or (     and         ) 

  Label x as positive.       //By Lemmas 1 and 2 

 Else  

  Add x to U.     //Add unlabelled instances to U 

 End if 

End for 

If (U =  ) 

 Terminate. 

Else if (|U| = |T|) 

 Hard(U).     //Process hard instances 

 Terminate. 

Else  

 L  = NN(U, k).   //Construct the training data set for U 

 T  = U. 

 ICSNB(L,T). 

End if  

Figure 2.5: The Iterative Cost-sensitive Naïve Bayes Algorithm 

 

 

  Hard (U) 

U: the set of hard and unlabelled instances  

 

For each instance x in U 

 If (         )  

  Label x as positive.    

 Else 

  Label x as negative.        

 End if 

End for 

Figure 2.6: Procedure Hard() 
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  NN (U, k) 

U: the set of unlabeled instances  

k: the number of nearest neighbors  

 

Lc =  .    // Lc: the constructed training data set for U 

For each instance x in U 

 Find its k nearest instances in the original training data set. 

 Add the k nearest instances to Lc. 

End for 

Return Lc. 

Figure 2.7: Procedure NN() 

 

(a) 

 

 

(b) 

Figure 2.8: Cost Curve on Two-class Data Sets. (a) Chess; (b) Mushroom; (c) Tic-tac-

toe; (d) Ionosphere; (e) Magic Gamma Telescope 
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(c) 

 

(d) 

Figure 2.8: Continued 
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(e) 

 

Figure 2.8: Continued 

 

 

 

(a) 

Figure 2.9: Cost Curve on Multiclass Data Sets. (a) Image Segmentation; (b) 

Annealing; (c) Car Evaluation 
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(b) 

 

 

(c) 

Figure 2.9: Continued 
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CHAPTER 3 

 

COST-BASED UNDER-SAMPLING METHOD 

FOR IMBALANCE LEARNING 

 

3.1 Introduction 

In many real-world situations, making a managerial decision involves classifying 

an observation into one of several predefined groups. A typical case of this problem is 

binary classification in which an observation needs to be classified into one of two groups. 

This happens every day in our lives. For instance, a credit card company needs to make a 

decision whether an application should be approved. An Internet retailer wants to identify 

customers who will receive discount coupons as rewards based on their purchase histories. 

Besides business applications, other applications also face similar decision-making 

problems, such as disease diagnosis, detection of oil spills, detection of DDOS 

(Distributed Denial of Service), etc. The solution for solving this type of problem was 

first proposed by Fisher (1936) using a statistic method, Discriminant Analysis (DA). 

Since then, many methods have been developed for classification purposes. Today, 

various Discriminant Analysis methods still play significant roles in this area.  

With the development of computer technology in both hardware and software, 

especially with the emergence of Internet technology, large amounts of data and 

information are kept in database systems and it has become much easier to access data. 
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Moreover, more accurate decisions can be made with the greater data availability and 

accessibility. Thus, a new technique, data mining, has been found to be very effective in 

solving these types of decision-making problems. People have discovered significant 

advantages to using the machine learning method in terms of effectiveness and efficiency, 

especially when handling a large amount of data. Derived from machine learning 

techniques, data mining is an integration of machine learning, computer visualization, 

and statistics. Among all the methods in data mining, classification learning is specialized 

to deal with the decision-making problem.  

The underlying assumption of different classification algorithms is equal 

distributions and error costs among categories. However, this assumption is not 

consistent with the real business world. When we want to predict a purchase decision 

from an individual level for an existing customer, one inevitable problem is that 

customers with repeated purchase behavior are rare events for the whole customer base 

(King and Zeng 2000). Similarly, in the medical diagnosis domain, sick patients are 

always a small group when compared to the entire population. We regard this type of 

imbalance as a class imbalance problem, and the data set is called imbalanced data, where 

the size of one class overwhelms that of the other class (Barandela et al. 2004; Guo and 

Vikto 2004; Japkowicz and Stephen 2002). Such class imbalance violates the basic 

assumption for applying traditional classification methods. When a data set is imbalanced, 

traditional predictive models and methods, such as classification methods, tend to favor 

the majority class, resulting in high overall accuracy. But, in such cases, detection rates 

with respect to the minority class are often not satisfactory. For instance, when a model is 

trained on a binary data set with 1% of its examples from the minority class, a 99% 



45 

 

 

 

accuracy rate can be achieved by classifying all examples as belonging to the majority 

class. While 99% accuracy is often considered excellent, such a model often has no 

practical value since our interests are often on the minority class. In the real world, there 

are many examples where people are more interested in the minority class, not the 

majority class. For example, the majority of consumers simply ignore advertisement 

mails. But, the purpose of a mail campaign is to identify and focus on the minority of 

consumers who will respond to advertisement mails and make purchases subsequently, 

i.e., the minority class. The importance of the minority class and the existence of the 

imbalance problem in the real world encourage me to take data imbalance into 

consideration when building classification models. 

Given any data set, the second inevitable problem in building any predictive 

model is the noise of data. Noisy data can have a negative impact on classification 

performance and degrade the generalizability of a prediction model. It usually shows its 

effect through affecting class prediction of its neighbor instances away from their true 

class labels. Noisy instances can also negatively influence deciding decision boundaries, 

thus putting other instances into wrong groups. Due to these reasons I just discussed, 

identifying noisy instances and removing them from input data sets will be crucial in 

building accurate classification models.  

Furthermore, in many real-world applications, equal error cost cannot hold as well. 

Usually, misclassifying an instance belonging to the minority class incurs higher cost 

than misclassifying an instance belonging to the majority class. For example, 

misclassifying a potential purchaser as a nonpurchaser costs the entire revenue that could 

be realized from the potential purchaser. In comparison, the cost of misclassifying a 
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nonpurchaser as a potential purchaser costs only the production and delivery of an 

advertisement mailing. In certain situations, the difference between misclassification 

costs can be even larger. For instance, diagnosing a cancer patient to be healthy can be a 

fatal mistake since a patient can lose his or her life because of the delay in this incorrect 

diagnosis and treatment. 

Because of the violation of assumptions for the traditional classification method, 

it is necessary to seek a solution in building classification models sensitive to imbalance, 

noise, and cost issues. In this proposal, I develop a cost-based under-sampling method to 

significantly reduce the negative effects of those issues on the classification model. 

 

3.2 Literature Review 

3.2.1 Data Resampling 

To solve data imbalance problems in predictive models using traditional 

classifiers, the first direction is to change the data distribution and then create a balanced 

data set. Changing data distribution can be done through two ways: under-sampling and 

over-sampling. The under-sampling method removes majority instances from a data set 

until the sizes of two groups are equal, while the over-sampling method generates more 

minority instances and keeps the majority group unchanged. These two methods are 

called data resampling. To do data resampling, usually we can have two approaches, 

random resampling and intelligent resampling. In random over-sampling (ROS), 

instances of the minority class are randomly duplicated, while instances of the majority 

class are randomly discarded from the data set for random under-sampling (RUS). 
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Some researchers have also proposed intelligent resampling methods. Kubat and 

Matwin (1997) proposed a technique called one-sided selection (OSS), which is 

considered to be the most effective method for under-sampling and is used as baseline 

method in this dissertation. One-sided selection attempts to intelligently under-sample the 

majority class by removing the majority class examples that are considered to be either 

redundant or noisy. Barandela et al. (2004) used KNN techniques to classify each 

instance in the training set using all the remaining data and removing those majority class 

instances that are misclassified. For the intelligent over-sampling method, Chawla et al. 

(2002) proposed the Synthetic Minority Over-sampling Technique (SMOTE). SMOTE 

adds new, artificial minority instances by operating in feature space rather than data space. 

The synthetic samples are generated in the following way: first, SMOTE takes the 

difference between the feature vector (sample) under consideration and its nearest 

neighbor; second, this difference is multiplied by a random number between 0 and 1; 

third, the multiplied outcome is added to the feature vector under consideration. 

Depending upon the amount of over-sampling required, neighbors from the k nearest 

neighbors are randomly chosen. SMOTE has been demonstrated to perform well in 

several research studies (Zhou and Liu 2006; Hulse 2007). 

However, there are limitations for both over-sampling and under-sampling 

methods. Random over-sampling may increase the likelihood of occurring overfitting, 

since it makes exact copies of the minority class examples. In this way, a symbolic 

classifier, for instance, might construct rules that are seemingly accurate, but actually 

cover one replicated example (Batista el al. 2004). Another limitation associated with 

over-sampling is increasing computation cost with larger data size. Considering the 
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computing efficiency, people are always trying to select representative data examples and 

reduce sample size. But, over-sampling could increase sample size greatly for extremely 

skewed data sets. On the other hand, the major drawback of random under-sampling is 

that this method can discard potentially useful data that could be important for the 

induction process. Although researchers recommend intelligent resampling methods 

instead of random resampling to ease those limitations mentioned above (Batista et al. 

2004), even the intelligent under-sampling, such as OOS, still cannot make sure it does 

identify all useless majority instances. 

 

3.2.2 Cost-sensitive Learning 

3.2.2.1 Introduction to cost-sensitive learning: Classification is the most important 

task in inductive learning and machine learning. A classifier can be trained from a set of 

training examples with class labels, and can be used to predict the class labels of new 

examples. The class label is usually discrete and finite. Many effective classification 

algorithms have been developed, such as Naïve Bayes, Decision Trees, Neural Networks, 

and so on. However, most raw classification algorithms pursue minimization of the error 

rate, i.e., lowering the percentage of the incorrect prediction of class labels. They ignore 

the difference among misclassification errors. In particular, they implicitly assume that 

all misclassification errors cost equally.  

As I discussed already, in many real-world applications, this assumption is not 

true. The difference between different misclassification errors can be quite large. For 

example, in the medical diagnosis of a certain cancer, if the cancer is regarded as the 

positive class, and noncancer (healthy) as the negative, then, missing a cancer (the patient 
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is actually a positive sample but is classified as a negative sample; thus, it is also called a 

“false negative”) is much more serious (thus, expensive) mistake than the false-positive 

error. The patient could lose his/her life because of the delayed treatment caused by the 

incorrect diagnosis.  

There are a large variety of different types of costs in data mining and machine 

learning, including misclassification costs, data acquisition costs (instance costs, attribute 

costs, and labeling costs), computation costs, human-computer interaction costs, and so 

on (Turney 2000). Cost-sensitive learning considers a variety of costs in various 

components and processes of learning (Turney 2000), with the goal of minimizing the 

individual costs or the total cost. It is one of the most active and important research areas 

in data mining and machine learning and plays an important role in real-world data 

mining and machine learning applications.   

The two most important types of costs are identified as misclassification costs and 

data acquisition costs. Misclassification costs are an extension of error rate, since 

different types of errors (such as false positives and false negatives) can have different 

costs. Data acquisition costs reflect how expensive it is to acquire extra information for 

assisting classification or building more accurate learning models. Recent works have 

considered methods of acquiring attribute values during training (Melville et al., 2004; 

2005) and testing (Ling et al., 2004; Chai et al., 2004), for the purpose of reducing the 

misclassification cost. Melville et al. (2004) studied how to achieve the desired model 

accuracy by acquiring missing values in identified training examples with minimum cost. 

However, they did not minimize the total cost (misclassification and attribute costs) of 

testing examples with missing values. Actually, in many real-world applications, 
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especially in the e-commerce area, it is often not difficult to acquire training samples and 

label samples. Hence, I only consider misclassification cost in this dissertation.  

Elkan (2001) describes how the misclassification cost plays its essential role in 

various cost-sensitive learning algorithms. Without loss of generality, I assume binary 

classification (i.e., positive and negative class) in this chapter. In cost-sensitive learning, 

the costs of false positives (actual negative but predicted as positive; denoted as (FP)), 

false negatives (FN), true positives (TP) and true negatives (TN) can be given in a cost 

matrix, as shown in Table 3.1. In the table, I also use the notation C(i, j) to represent the 

misclassification cost of classifying an instance from its actual class j into the predicted 

class i. (I use 1 for positive, and 0 for negative). These misclassification cost values can 

be given by domain experts, or learned via other approaches. In cost-sensitive learning, it 

is usually assumed that such a cost matrix is given and known. For multiple classes, the 

cost matrix can be easily extended by adding more rows and more columns.  

Note that C(i, i) (TP and TN) is usually regarded as the “benefit” (i.e., negated 

cost) when an instance is predicted correctly. In addition, cost-sensitive learning is often 

used to deal with data sets with very imbalanced class distribution (Japkowicz and 

Stephen, 2002). Usually (and without loss of generality), the minority or rare class is 

regarded as the positive class. It is often more expensive to misclassify an actual positive 

example into negative than an actual negative example into positive. That is, the value of 

FN or C(0,1) is usually larger than that of FP or C(1,0). 

Given the cost matrix, an example should be classified into the class that has the 

minimum expected cost. This is the minimum expected cost principle. The expected cost 

R(i|x) of classifying an instance x into class i (by a classifier) can be expressed as:  
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where P(j|x) is the probability estimation of classifying an instance into class j. That is, 

the classifier will classify an instance x into positive class if and only if:  

 

P(0|x)C(1,0) + P(1|x)C(1,1) ≤ P(0|x)C(0,0) + P(1|x)C(0,1)        (3.2) 

 

Traditional cost-insensitive classifiers are designed to predict the class in terms of 

a default, fixed threshold of 0.5. Elkan (2001) shows that we can “rebalance” the raw 

training examples by sampling so that the classifiers with 0.5 thresholds are cost-sensitive. 

The rebalance is done as follows. If we keep all positive examples (as they are assumed 

as the rare class), then, the number of remained negative examples should be the number 

of raw negative examples multiplied by C(1,0)/C(0,1) = FP/FN, since usually FP < FN, 

the multiple is less than 1. This is thus often called “under-sampling the majority class.” 

This is also equivalent to “proportional sampling,” where positive and negative examples 

are sampled by the ratio. 

3.2.2.2 Cost-sensitive learning methods: Broadly speaking, methods of cost-

sensitive learning can be categorized into two categories. The first one is to design 

classifiers that are cost-sensitive in themselves. We call it the direct method. Examples of 

direct cost-sensitive learning are ICET (Turney 1995) and the cost-sensitive decision 

trees (Drummond and Holte 2000; Ling et al. 2004). The other method is to design a 

“wrapper” that converts any existing cost-insensitive classifiers into cost-sensitive ones. 
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The wrapper method is also called the cost-sensitive meta-learning method.  

The main idea of building a direct cost-sensitive learning algorithm is to directly 

introduce and utilize misclassification costs into the learning algorithms. There are 

several studies on direct cost-sensitive learning algorithms, such as ICET (Turney 1995) 

and cost-sensitive decision trees (Ling et al. 2004). ICET (Turney 1995) incorporates 

misclassification costs in the fitness function of genetic algorithms. On the other hand, 

cost-sensitive decision trees (Ling et al. 2004) use the misclassification costs directly in 

their tree building process.  

The cost-sensitive decision tree is a C4.5-like decision tree learning algorithm.  It 

uses the minimal total cost (or maximum cost reduction) as a tree-split criterion, similar 

to maximum information gain ratio. Traditional Decision Tree C4.5 uses the information 

gain to select the best attribute to split training data. The information gain is defined as 

the difference between the entropy before splitting and that after splitting. The goal of the 

traditional Decision Tree C4.5 is to minimize the sum of the entropy of all leaves in the 

tree. Instead of minimizing entropy in attribute selection as in C4.5, the cost-sensitive 

decision tree selects the best attribute to split input data based on the expected total cost 

reduction. That is, an attribute is selected as a root of the (sub)tree if it minimizes the 

total cost, which is the sum of misclassification costs and attribute costs. The cost 

reduction is defined as the difference between the misclassification costs before splitting 

and the sum of the misclassification costs and the test cost of all the examples. 

3.2.2.3 Threshold adjusting: Adjusting decision threshold to account for 

differential misclassification costs has been proposed and discussed by several 

researchers (Domingos, 1999; Provost 2000; Provost and Fawcett 2001), in which a new 
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threshold instead of 0.5 is used to classify examples into positive or negative using. 

MetaCost (Domingos 1999) is a threshold adjusting method. It first uses bagging on 

decision trees to obtain reliable probability estimations of training examples, relabels the 

classes of training examples, and then uses the relabeled training instances to build a 

cost-insensitive classifier. Provost and Fawcett (2001) proposed a ROC convex hull 

method by combining ROC analysis with decision analysis for comparing the 

performance of a set of classifiers and identifying the optimal classifier or a subset of 

potentially optimal classifiers. 

As I show in (3.2), we can have (3.3) if )1( xjPp 
 

 

)1,0()0,0()1()1,1()0,1()1( pccppccp                    (3.3) 

 

So, the threshold for making optimal decision is p* such that 

 

)1,0(*)0,0(*)1()1,1(*)0,1(*)1( cpcpcpcp          (3.4) 

 

and then  

 

)1,1()1,0()0,0()0,1(

)0,0()0,1(
*

cccc

cc
p




                             (3.5) 

 

If we have equal misclassification cost, which means )1,0()0,1( cc  , then 

5.0* p . If p is greater than p*, the optimal prediction would be class 1. However, we 
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usually have different misclassification costs and then p* is different from 0.5. Especially, 

in the real world, it is more likely that )1,0()0,1( cc   and 5.0* p . If we still use the 

default threshold of 0.5, the minority instances will be very difficult to be discovered. 

Therefore, we need to change the threshold of standard classifiers to meet the 

requirement of different cost ratio so that more minority instances can be identified under 

lower optimal threshold. This is how threshold adjusting works to meet the different 

misclassification costs.  

 

3.2.3 Research Gap Analysis 

I have discussed the three problems associated with data collected from the real 

world and used them to build predictive models. Among these three problems, imbalance 

is the main reason that causes low prediction performance of predictive models. To 

address the imbalance problem, researchers have proposed different resampling 

techniques to reduce the effect due to the under-represented interesting class. However, 

the limitation associated with the data resampling approach is that it might lose important 

or useful information in under-sampling and bring noise and redundant information into 

the data set in over-sampling. Especially for under-sampling, how to discover and remove 

redundant and noisy instances is the key issue that needs to be solved. However, even the 

most popular under-sampling method (OSS) is not good enough for removing noisy 

instances. The majority instances participating Tomek link may be useful when they are 

close to the decision boundary. 

Taking unequal misclassification costs into consideration has also been shown to 

be a good solution to the imbalanced data problem. However, cost-sensitive learning does 
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not change the training data. Thus, noisy or redundant data still exist. If we can 

incorporate the cost information into the process of identifying noisy instances, we may 

solve these limitations together. To my knowledge, there has been no research 

incorporating misclassification cost into the under-sampling method. This dissertation 

proposes a novel method in the under-sampling method: addressing the noisy and 

imbalanced data problems while being aware of different misclassification costs.  

 

3.3 Cost-based Under-sampling Method 

The noisy and the imbalanced data problems are closely related to each other. 

Noisy instances are more apt to be misclassified than others (Kubat and Matwin 1997; 

Kermanidis 2009). The negative effect of noisy instance can be demonstrated in Figure 

3.1. The predicted class labels of the examples close to noisy examples can be different 

from their actual class labels because of the noisy examples. The objective of under-

sampling is to remove the effect of noisy instances on classification learning. Removing 

all existing noisy instances from a given data set does not ensure a better classification 

performance for an imbalanced data set. On the one hand, even after removing noisy 

instances, the remaining data set might still suffer from the imbalance problem. On the 

other hand, the performance of a predictive model still suffers from noisy instances that 

remain in a balanced data set if we choose random under-sampling. Therefore, it is 

desirable to handle these two problems simultaneously. Specifically, I will determine the 

noise level of each majority instance in a data set first and then balance the data set by 

removing majority instances with top noise levels.  
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The noise level of an instance refers to how ineffective the instance classifying of 

other instances in a data set is. Particularly, the noise level of an instance A is determined 

by (a) the number of instances misclassified by A and (b) the number of instances 

correctly classified by A. I determine the noise level of an instance based on prior 

research on the nearest neighbor classification method (Cover and Hart 1967). For an 

instance A, let A.class denote the class A belonging to and A.class{majority, minority}. 

If the nearest neighbor of an instance B is A, by the nearest neighbor classification 

method, the predicted class of B is A.class. If A.class ≠ B.class, instance B is 

misclassified by instance A. Otherwise, instance B is correctly classified by instance A. 

Given that an instance A misclassifies n instances and correctly classifies m instances, 

where n and m are nonnegative integers, the noise level of A is measured as n-m.  

The noise level of an instance is further refined by incorporating different 

misclassification costs. Let c[majority][minority] denote the cost of misclassifying a 

majority instance as minority and c[minority][ majority] denote the cost of misclassifying 

a minority instance as majority. If A.class=majority, the noise level of A, A.noise, is 

measured as, 

 

A.noise = n× c[minority][ majority]−m× c[majority][minority]          (3.6) 

 

where nonnegative integers n and m denote the number of instances misclassified and 

correctly classified by A, respectively. In (3.6), n× c[minority][ majority] represents the 

misclassification cost caused by A while m× c[majority][minority] represents the 

misclassification cost avoided due to A.  
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If any instance in a data set could better classify other instances in the data set (i.e., 

more instances are classified correctly), a classifier learned from the dataset would be 

able to classify new instances better. Therefore, the proposed under-sampling method 

outlined below calculates the noise level of each majority instance according to (3.6) and 

removes majority instances with top noise levels. 

Below is the example showing the procedure of my proposed method. There are 

four examples in Figure 3.1, a, b, c, and A. A is the only nearest neighbor to a, b, and c in 

the data set. Data example c has the same class label as that of A while a and b have 

different labels.  

Given the cost matrix in Table 3.2, I can calculate the noise level of A as 12*2-

1=23. Similarly, I can calculate noise level for each majority in the given data set. Then, I 

can sort the minority examples based on their noise levels in descending order. To do 

under-sampling, I need to decide how many minority instances are to be removed and 

then drop minority instances based on their noise levels from high to low.  

 

3.4 Empirical Experiment 

3.4.1 Data Sets 

In my empirical experiment, three data sets are used to evaluate my proposed 

method. The first two data sets were collected at a leading online retailer in the U.S. One 

is an online transaction data set, including the transaction information for about 100K 

customers in 2004 and repurchase activity in 2005 as well. The other is online search 

keyword data collected from the same company, which includes characteristics of 2,000 

search keywords and revenue indicators for each keyword. The third data set is derived 
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from the study of Pant and Sheng (2009). There are 2,694 competitive companies 

extracted from the Russell 3000 Index. For each of the companies, a fixed number of 

competitors and noncompetitors were identified using Hoover’s API tools. There are 

32,970 pairs of companies across 2,694 companies, half of which are competitors and the 

other half of which are noncompetitors. 

The online transaction data set contains 99,998 individual customers and their 

purchase histories in twelve consecutive months from 1/1/2004 to 12/31/2004. To 

facilitate a marketing campaign launched by the online retailer, I used customers’ 

purchase histories data to predict their repurchase behaviors. To this end, I took those 

purchase data in 2004 to generate predictors and used customers’ repurchase activities in 

2005 as class labels (i.e., repurchase in 2005 or not). Specifically, each record has twelve 

predictor attributes and one class label attribute. Predictor attributes reflect purchase 

information made in 2004, such as total purchase amount, return amount, recency of 

purchase, coupon used or not, etc. The repurchase rate is 26.4% for my data set. In other 

words, 26.4% of customers who purchased in 2004 repurchased in 2005. Therefore, the 

repurchase group is the minority class and the nonrepurchase group is the majority class. 

Table 3.3 shows the descriptive statistics of all twelve independent attributes for online 

transaction data. 

For the online search keyword data, a web analytics tool, Omniture, is used to 

track users’ activities and record information about how users reached the website from 

organic and paid search results as well as via what search queries they visit the web site 

(which consist of one or multiple keywords). The total revenues generated from a given 

search query are also reported, and the data are aggregated to weekly summaries. I 
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randomly selected 2,000 search keywords (phrases) from those that appeared in 

sponsored search referrals during the one month prior to the start of the 10-week data 

collection period. For each search keyword (phrase), I identified whether this keyword 

(phrase) contained specific product information, store information, or product category 

information etc. The class label is whether these keywords can keep on generating 

revenue during the data collection period. Overall, only 17% keywords still generate 

revenue. I include the description and statistics of these attributes in Table 3.4 and Table 

3.5, respectively. 

The competitor identification data are obtained from the study by Pant and Sheng 

(2009).  In this data set, each company is measure by five web metrics as described in 

Table 3.6. The related descriptive statistics is shown in Table 3.7. To train the predictive 

model, 66% of randomly selected data (pairs) are used as training data sets and the 

remaining data for testing. To maintain the disjointed nature of the training and testing 

data sets, the pairs of competitors from the testing data whose reverse instances appear in 

the training data were removed. The above process was repeated 50 times to generate 50-

pair training and testing data sets. For each training or testing data set, 10% of company 

pairs indicate competitor relationships. 

 

3.4.2 Experiment Results and Discussion 

In the experiment, I compared my proposed method with OSS, a classic and 

effective under-sampling method, using six of the most popular classification methods: 

Bayesian Network, Decision Tree (C4.5), Logistics, neural network, and SVM. Weka 

was used to run predictive analysis. All experimental results were computed through 10-
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fold cross validation (except for competitor data): one tenth of the experimental data set 

as test data and the rest as training data. Training data were under-sampled and balanced 

using the proposed method or OSS. A model was then learned on the under-sampled 

training data using different classifiers. The learned model was subsequently applied to 

test data and misclassification cost was finally calculated. The final performance is the 

average across the ten performance results. 

Case study I - Target Marketing: Target Marketing is critical to the success of 

online retailers and has attracted researchers’ interests for several decades. Prior research 

has proposed statistical models (Rossi et al. 1996; Sismeiro and Bucklin 2004) and more 

recently data mining-based methods (Kim et al. 2005; West et al. 1997) to predict 

consumer behaviors. For the purpose of predicting future behavior, historical data are 

usually used to train the predictive model. I first ran the analysis using the actual cost 

information obtained from the retailer. For the online retailer studied in this research, the 

average marketing cost spent on a customer is $0.27 and the average revenue contributed 

by a customer is $104.20. Hence, I set the cost of misclassifying a nonrepurchase 

customer at $0.27 and the cost of misclassifying a repurchase customer at $104.20. As 

shown in Table 3.8, my proposed method reduces misclassification cost by 30.08% on 

average when compared to OSS. I also report misclassification costs resulting when no 

under-sampling method is applied to training data in the “raw” column of Table 3.8. My 

proposed method reduces misclassification cost by 41.79% on average when compared to 

the “raw.” This result verifies the improvement of under-sampling methods in reducing 

misclassification cost when dealing with noisy and imbalanced data. 
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I further examined whether my proposed method consistently outperforms OSS 

and raw data under different cost ratios. More experiments were conducted using 

different cost ratios (i.e., c[majority][minority]:c[minority][majority]). I repeated my 

experiments three times using artificial cost ratios 1:1, 1:10, and 1:100. The results are 

shown in Table 3.9 through Table 3.11. 

From the above results, I find that the under-sample method, especially my 

proposed method, always has better performance under cost ratio greater than 1:1. This 

finding is consistent with the cost-sensitive learning method, which is more effective 

given a higher cost ratio, or more sensitive to a higher cost ratio. 

In addition, more experiments were conducted to verify whether those instances 

removed by my method are high-cost instances. For this purpose, I combined the 

removed majority instances with the minority instances in the raw training set to form a 

new training set. Then I used these new training data sets to run classifier models and 

tested them on the same testing data sets. Figure 3.4 through Figure 3.7 present the results 

using the removed training data under cost ratio 1:1, 1:10, 1:100, and real cost.  

I observed a similar pattern from the above experiment result. For low-cost ratio, 

the proposed method did not show any advantage in reducing misclassification cost 

compared to raw data and removed data. Actually, the proposed method even has the 

highest misclassification cost when compared to raw data sets and removed data sets. 

However, once the cost ratio is over 1:1, the proposed method outperforms the other two 

data sets persistently, which further verifies my previous conclusion that the proposed 

method is more effective in dealing with imbalance learning with high-cost ratio. In 

addition, the removed data set also shows better performance than the raw data set, which 
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means the combined negative effect (raw data) is higher than the individual negative 

effect (removed data).  

Although very informative, the above results cannot explain what the possible 

reason that can explain the performance of the proposed method is. Therefore, I 

compared the mean difference of each attribute across these three data sets (raw data set, 

remained data set, and removed data set) to see whether the performance comes from the 

change of the distribution of the data. From Table 3.12, I found that the attributes mean 

values of majority class in the remained data set is far from the ones of the minority class 

comparing to raw data sets and removed data sets. It indicates that my method has 

removed those majority instances surrounding minority instances. Through my method, 

the data set has come to have a clear boundary to differentiate minority instances from 

majority instances. 

In the next two sections, I discuss the results of the proposed method based on the 

other two data sets, search engine marketing (SEM) and competitor identification, and 

three cost ratios, 1:1, 1:10 to 1:100, were used in the experiments. 

Case study II - Search Engine Marketing (SEM): Search Engine Marketing (SEM) 

has become an interesting research topic in the last decade. Through search engines, 

Internet retailers can easily reach potential customers with less cost. So, effective SEM 

strategy becomes very critical to the success of Internet retailers and it helps them 

achieve higher click-through rates and even higher conversion rates. In this second study, 

a search keyword data collected from an Internet retailer is used to test my method. 

Similar to the first study, I first compared the performance of my method, OSS, and raw 
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data measured by overall misclassification. Also, six classifiers have been used. The 

results are in Table 3.13 through Table 3.15. 

Furthermore, I combined the removed majority instances with the minority 

instances in the raw training set to form a new training set. Figures 3.8 to 3.10 show the 

misclassification costs for three data sets under different cost ratios.  

From all the above results, I can observe consistent result patterns with those I 

found in the online transaction data. The data set generated by the proposed method does 

not show any benefit as compared with the other two data sets under equal cost ratio. 

However, once the cost ratio is unequal, the proposed under-sampling method incurs the 

lowest misclassification cost. This result further verifies that my method is effective in 

lower misclassification cost when misclassification costs for two groups are different. 

Once again, Table 3.16 tells us that those majority instances close to minority are more 

likely to be identified and removed. 

Case study III - Competitor Identification: In the third study, I followed the same 

procedure as I did for the previous two studies. The only difference is that the class 

distribution and competitor identification data have a higher distribution skewness of 

10%. The misclassification cost comparison is shown in Tables 3.17 through 3.19 for 

three cost ratios, respectively. The observed patterns from previous studies still exist in 

this even more skewed (10%) data set. 

 Again, I used three training sets (raw, removed, proposed) to learn the test data 

and show the results in Figures 3.11 through 3.13. Similar patterns are observed to those 

in the previous two cases. The performance of my proposed method works better when 

the cost ratio is unequal.  
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Table 3.20 contains the comparison for mean of each attribute between raw 

training sets and remained training sets. The difference between majority class and 

minority class in the remained set is increased. 

 

3.5 Additional Experiments 

3.5.1 Experiment I 

In the previous chapter, I tested my proposed method on three real-world data sets. 

The results show that the proposed method outperforms the others. Using my proposed 

method, I identified and removed those noisy majority instances from the training data set 

to minimize the overall learning cost in the testing dataset. I verified that the removed 

samples can incur high costs, as shown in Figures 3.4 through 3.7.  

In this section, I conducted a new experiment to test the performance of my 

method on noisy data. For this purpose, the removed majority instances were combined 

with the minority instances from the training data set to form a new training data set. 

Using this newly formed training data set, I tested different data resampling methods on 

the same testing data set. This experiment is conducted based on online shopping data. 

Two under-sampling methods are compared in this experiment, proposed and RUS 

(random under-sampling) using the same classifiers. The comparison result is 

summarized in Table 3.21. 

Based on Table 3.21, the proposed method is slightly better than RUS under cost 

ratio 1:1, but it has a much more significant improvement when cost ratio increases. 

Furthermore, I found that using the removed instances as new training data can incur 
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higher overall misclassification costs for the same testing data set under unequal cost 

ratios.  

 

3.5.2 Experiment II 

In the previous experiments, I used three real data sets as a test bed and did not 

change class distribution. The true distributions of these three data sets are 10%, 17%, 

and 26.4%, respectively. Although the distributions have some diversity and the results 

show the excellent performance of the proposed method, it is not clear whether my 

approach can work well under diverse distributions or even skewed distribution. To 

further explore the performance of my proposed method in different distribution, I 

conducted another experiment using the online shopping data. Based on this data set, I 

controlled the number of majority examples in the training data set so as to change the 

class distribution. I manually removed the minority instances from training data sets and 

kept majority examples unchanged. The tested class distributions are 5%, 10%, 15%, and 

20%, and only cost ratio 1:10 and 1:100 are used in the experiment. The results are 

summarized in Table 3.22 and Table 3.23. 

Tables 3.22 and 3.23 show the misclassification costs of testing data sets using 

proposed method and random under-sampling for six different classifiers under different 

class distributions and cost ratios. Overall, my method generates lower cost when 

compared to RUS across all six classifiers. The result provides more support that the 

proposed method can achieve greater imbalance learning even with different class 

distributions.  
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3.5.3 Experiment III 

As I discussed in Section 3.2, data resampling is an effective method in 

alleviating the negative effect of imbalanced class distribution. In data resampling, there 

are two approaches, under-sampling and over-sampling. For under-sampling, people 

remove instances from the majority group to create a balanced input while adding 

instances to the minority group in over-sampling. Which sampling method is better is still 

under research. Therefore, in this experiment, I compared the performance of my method 

with one popular over-sampling method, SMOTE (Chawla et al. 2002). In SMOTE, noisy 

or costly examples are not identified and synthetic minority instances will be generated 

between any two randomly selected minority instances. Since this method is not cost-

sensitive, it should be worse if I use misclassification cost as measurement. The data set 

used in this experiment is still online shopping data and only here did I consider the 

natural class distribution. Six classifiers used before were also tested; the result is 

summarized in Table 3.24. 

From Table 3.24, I can see that my proposed method outperforms the SMOTE 

under high-cost ratios, both 1:10 and 1:100. Given the equal-cost ratio, SMOTE is better 

than my method except for SVM. As I discussed above, SMOTE is not a cost-sensitive 

resampling method and the experiment result further verifies my judgment. 

 

3.6 Conclusions and Limitations 

In this study, I developed a cost-oriented under-sampling method to address 

negative effects of noisy instances and imbalanced data on predictive performance. I 

incorporated misclassification cost into the procedure of identifying noisy instance when 
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conducting under-sampling. The proposed method was applied to three different online 

applications: target marketing, SEM, and competitor identification. Three real world data 

sets from these three applications were collected for the expirical tests. Extensive 

experiments including six classifiers have been done using my proposed approach. I also 

compared my results with ones using raw data and OSS, a widely used under-sampling 

approach. The results show that my approach outperforms others and demonstrates the 

effectiveness of my method in reducing overall misclassification cost incurred by noise 

and imbalance problems. The advantage of my approach is even greater when the cost 

ratio is higher. 

In addition, I performed three more experiments to test if the proposed method 

has consistent performance in different situations. I first used the removed examples to 

form new training data and tested them on the same testing data. I found that the training 

data using the examples removed by proposed method always generates higher cost when 

compared to the one by random under-sampling. It indicates that my method can really 

identify and remove most costly examples. Second, I created synthetic data sets with 

different class distribution as training data sets. Again, the proposed method shows better 

performance when class distribution is changed. Last, I compared my method with the 

over-sampling method, SMOTE. The result still favors the proposed method in terms of 

misclassification cost. 

The criteria used for removing majority instance were based on the noise level of 

each majority instance and the noise level is measured by how much misclassification 

cost it incurs. If the threshold of noise level is set to be zero, I may not get a balanced 

data set after removing all possible majority instances with noise levels greater than zero. 
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Either the majority class is still the majority class, or it becomes the minority class. To 

generate a balanced data set, in the first case, I may have to discard useful instances using 

random under-sampling. In the second case, I still have room to improve the performance. 

Therefore, first, an effective over-sampling method would be necessary and useful. It can 

be integrated with the current method to solve the problem I mentioned above. Especially 

for the high-skewed data set, there may not be enough data for the training model if 

majority instances are removed to make it balanced. Although there are some existing 

over-sampling techniques such as SMOTE, incorporating cost information into over-

sampling deserves more attention.  

Second, I have used three artificial cost ratios in the experiment. Even when I 

observed the change of performance when moving from equal cost ratio to differentiated 

cost ratios, it is not clear how this change happens across different cost ratios. Further 

efforts should pursue the effect of my method under more different cost ratios. 

Furthermore, in terms of the experiment, I also need to do comparison analysis between 

the proposed method and threshold adjusting or cost-sensitive learning methods. 

Last but not least, these are also many multiclass applications in the real world. 

The “balance” in multiclass situation is more complicated than the two-class problem. It 

would be interesting to extend my method for solving the two-class data to the multiclass 

problem.  
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Table 3.1: An Example of Cost Matrix for Binary Classification 

 

 Actual negative Actual positive 

Predicted negative C(0,0), or TN C(0,1), or FN 

Predicted positive C(1,0), or FP C(1,1), or TP 

 

Table 3.2: An Example of Cost Matrix 

 Actual negative Actual positive 

Predict negative 0 12 

Predict positive 1 0 

 

 

Table 3.3: Descriptive Statistics of Online Transaction Data Set 

Attribute Mean Std. Dev. Min Max 

Duration_first_visit 280.70 325.83 0 2615 

Duration_first_purchase 248.28 275.73 0 2075 

Duration_registration 280.70 325.83 0 2615 

Return_freq 0.09 0.33 0 12 

Return_item_qty 0.15 9.71 0 3039 

Return_fee 0.32 1.90 0 158.4 

Refund_amt 9.18 112.56 0 27702.95 

Total_purchase 170.41 737.67 0 170713.9 

Purchase_freq 1.73 2.28 1 310 

Recency_purchase 119.71 106.88 0 365 

Num_cmpgn 1.70 2.23 0 310 

Num_coupon 0.14 0.56 0 52 
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Table 3.4: Description of Independent Attributes for Online Search Keyword Data Set 

Attribute Description 

word_count Number of words for the keyword 

Ret_spe Retailer specific, 0 or 1 

bnd_spe Brand specific, 0 or 1 

prd_spe Product specific, 0 or 1 

subc_spe Subcategory of product, 0 or 1 

mod_spe Model or series of a product, 0 or 1 

fea_spe Feature related, 0 or 1 

shp_spe Shopping intention (including promotion related), 0 or 1 

 

Table 3.5: Descriptive Statistics of Online Search Keyword Data Set 

Attribute Mean Std. Dev. Min Max 

word_count 3.30 1.52 1 14 

ret_spe 0.07 0.26 0 1 

bnd_spe 0.26 0.44 0 1 

prd_spe 0.84 0.37 0 1 

subc_spe 0.38 0.49 0 1 

mod_spe 0.09 0.29 0 1 

fea_spe 0.52 0.50 0 1 

shp_spe 0.15 0.36 0 1 

 

Table 3.6: Description of Web Metrics for Competitor Data Set 

Web metrics Description 

sim_in  similarity in the web links that are directed towards web sites of companies of interest 

sim_out similarity in the web links that are going out from the sites of companies of interest  

sim_text Similarity of self-description of the sites of companies of interst 

count_news Number of news containing two companies’s names 

count_search Number of search results containing two companies’s names 
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Table 3.7: Descriptive Statistics of Web Metrics for Competitor Data Set 

Web metrics Mean Std. Dev. Min Max 

sim_in 0.01 0.04 0 0.97 

sim_out 0.01 0.07 0 1.00 

sim_text 0.03 0.05 0 0.89 

count_news 5.55 88.05 0 4575 

count_search 18776.42 163269.50 0 10500000 

Table 3.8: Comparison of Misclassification Costs for  

Re-balanced Online Transaction Data Set (real cost ratio) 

 

Table 3.9: Comparison of Misclassification Costs for  

Re-balanced Online Transaction Data Set (cost ratio 1:1) 

 

 

Classifier 

Misclassification Cost ($) Relative % Improvement 

Proposed OSS Raw Proposed vs. OSS Proposed vs. Raw 

Bayesian 

Network 
108859.05 140126.97 158972.84 -22.31% -31.52% 

Decision Tree 94393.79 142179.19 209876.29 -33.61% -55.02% 

Logistic 121096.32 189241.5 221477.92 -36.01% -45.32% 

Naïve Bayes 188461.30 205047.49 201419.5 -8.09% -6.43% 

Neural 

Network 
98738.35 155185.67 216962.83 -36.37% -54.49% 

SVM 98738.35 124045.07 269537.95 -20.40% -63.37% 

Classifier 

Misclassification Cost ($) Relative % Improvement 

Proposed OSS Raw Proposed vs. OSS Proposed vs. Raw 

Bayesian 

Network 
3317.80 2841.600 2661.600 16.76% 24.65% 

Decision Tree 3480.30 2820.900 2386.700 23.38% 45.82% 

Logistic 3037.90 3216.200 2398.000 -5.54% 26.68% 

Naïve Bayes 2717.90 2555.300 2590.700 6.36% 4.91% 

Neural Network 3141.00 2761.800 2381.200 13.73% 31.91% 

SVM 3069.00 3173.500 2600.800 -3.29% 18.00% 
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Table 3.10: Comparison of Misclassification Costs for  

Re-balanced Online Transaction Data Set (cost ratio 1:10) 

 

Table 3.11: Comparison of Misclassification Costs for  

Re-balanced Online Transaction Data Set (cost ratio 1:100) 

 

 

Classifier 
Misclassification Cost ($) Relative % Improvement 

Proposed OSS Raw Proposed vs. OSS Proposed vs. Raw 

Bayesian 

Network 
12656.00 14909.7 16365.9 -15.12% -22.67% 

Decision 

Tree 
11710.50 15067.2 20505.5 -22.28% -42.89% 

Logistic 13426.10 19528.7 21521.2 -31.25% -37.61% 

Naïve 

Bayes 
18966.00 20252 19972.4 -6.35% -5.04% 

Neural 

Network 
16038.90 16135.8 21113.8 -0.60% -24.04% 

SVM 12362.20 13841.2 25881.1 -10.69% -52.23% 

Classifier 

Misclassification Cost ($) Relative % Improvement 

Proposed OSS Raw Proposed vs. OSS 
Proposed vs. 

Raw 

Bayesian 

Network 
105887.20 135590.7 153408.9 -21.91% -30.98% 

Decision Tree 90327.50 137530.2 201693.5 -34.32% -55.22% 

Logistic 117314.00 182653.7 212753.2 -35.77% -44.86% 

Naïve Bayes 181507.90 197219 193789.4 -7.97% -6.34% 

Neural 

Network 
98843.30 149875.8 208439.8 -34.05% -52.58% 

SVM 100427.00 120518.2 258684.1 -16.67% -61.18% 
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Table 3.12: Comparison of Mean Difference for Online Transaction Data 

Variable 
Raw Remained (real cost) 

Removed 
Remained (Majority) 

- Minority 

Removed - 

Minority 

Raw (Majority) 

- Minority 
Overall Majority Minority Overall Majority Minority 

first_visit 280.696 257.852 343.763 297.565 251.084 343.763 261.6595 -26.96% -23.88% -24.99% 

first_purchase 248.284 227.325 306.151 263.959 221.510 306.151 230.5961 -27.65% -24.68% -25.75% 

registration 280.696 257.852 343.763 297.565 251.084 343.763 261.6595 -26.96% -23.88% -24.99% 

rtntn_freq 0.087 0.074 0.124 0.094 0.064 0.124 0.079011 -48.39% -36.28% -40.32% 

rtn_item_qty 0.148 0.138 0.175 0.126 0.077 0.175 0.171644 -56.00% -1.92% -21.14% 

rtn_fee 0.324 0.270 0.474 0.345 0.215 0.474 0.300492 -54.64% -36.61% -43.04% 

rfnd_amt 9.18 7.973 12.512 9.854 7.179 12.512 8.420221 -42.62% -32.70% -36.28% 

total_purchase 170.406 140.109 254.053 190.933 127.428 254.053 147.2428 -49.84% -42.04% -44.85% 

purch_freq 1.735 1.434 2.564 1.931 1.294 2.564 1.513207 -49.53% -40.98% -44.07% 

recency 119.709 130.952 88.666 119.173 149.866 88.666 120.3131 69.02% 35.69% 47.69% 

num_cmpgn 1.703 1.408 2.517 1.897 1.274 2.517 1.483727 -49.38% -41.05% -44.06% 

num_coupon 0.141 0.098 0.257 0.164 0.070 0.257 0.113897 -72.76% -55.68% -61.87% 
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Table 3.13: Comparison of Misclassification Costs for  

Search Keyword Data (cost ratio 1:1) 

 

 

Table 3.14: Comparison of Misclassification Costs for  

Search Keyword Data (cost ratio 1:10) 

 

Table 3.15: Comparison of Misclassification Costs for  

Search Keyword Data (cost ratio 1:100) 

Classifier 

Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian Network 71.60 63.40 41.80 12.93% 71.29% 

Decision Tree 78.20 68.80 33.30 13.66% 134.83% 

Logistic 74.20 59.70 33.00 24.29% 124.85% 

Naïve Bayes 84.70 64.70 42.00 30.91% 101.67% 

Neural Network 82.60 79.90 33.20 3.38% 148.80% 

SVM 83.60 75.10 34.00 11.32% 145.88% 

Classifier 
Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian Network 137.60 178.60 223.60 -22.96% -38.46% 

Decision Tree 139.80 160.60 297.90 -12.95% -53.07% 

Logistic 139.10 160.50 302.10 -13.33% -53.96% 

Naïve Bayes 127.70 150.20 201.30 -14.98% -36.56% 

Neural Network 138.60 279.70 269.90 -50.45% -48.65% 

SVM 140.10 175.00 340.00 -19.94% -58.79% 

Classifier 
Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian Network 731.20 1330.60 2041.60 -45.05% -64.18% 

Decision Tree 741.50 1078.60 2943.90 -31.25% -74.81% 

Logistic 696.30 1168.50 2993.10 -40.41% -76.74% 

Naïve Bayes 523.40 1005.20 1794.30 -47.93% -70.83% 

Neural Network 555.60 2277.70 2636.90 -75.61% -78.93% 

SVM 689.30 1174.00 3400.00 -41.29% -79.73% 
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Table 3.16: Comparison of Mean Difference for Search Keyword Data 

 

Variable 
Raw Remained (1:100) 

Removed 

Remained 

(Majority) 

- Minority 

Removed - 

Minority 

Raw (Majority) - 

Minority 
Overall Majority Minority Overall Majority Minority 

length 21.030 22.195 15.341 20.624 26.033 15.341 21.236 69.70% 38.43% 44.68% 

word_count 0.041 3.507 2.315 3.214 4.136 2.315 3.350 78.66% 44.71% 51.49% 

ret_spe -0.866 0.058 0.129 0.101 0.072 0.129 0.054 -44.19% -58.14% -55.04% 

bnd_spe -0.166 0.295 0.088 0.287 0.491 0.088 0.246 457.96% 179.55% 235.23% 

prd_spe 0.061 0.841 0.835 0.805 0.774 0.835 0.858 -7.31% 2.75% 0.72% 

subc_spe 0.155 0.379 0.388 0.339 0.289 0.388 0.401 -25.52% 3.35% -2.32% 

mod_spe -0.020 0.109 0.012 0.094 0.178 0.012 0.092 1383.33% 666.67% 808.33% 

fea_spe 0.197 0.546 0.388 0.446 0.506 0.388 0.556 30.41% 43.30% 40.72% 

shp_spe 21.030 0.158 0.097 20.624 0.205 0.097 21.236 111.34% 21792.78% 62.89% 
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Table 3.17: Comparison of Misclassification Costs for Competitor Data (cost ratio 1:1) 

 

Table 3.18: Comparison of Misclassification Costs for Competitor Data (cost ratio 1:10) 

 

Table 3.19: Comparison of Misclassification Costs for Competitor Data (cost ratio 1:100) 

Classifier 
Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian 

Network 
1583.06 960.420 643.300 64.83% 146.08% 

Decision Tree 1804.20 842.780 625.660 114.08% 188.37% 

Logistic 1318.00 831.580 791.280 58.49% 66.57% 

Naïve Bayes 821.28 709.980 628.920 15.68% 30.59% 

Neural Network 1692.74 972.960 575.060 73.98% 194.36% 

SVM 950.32 682.200 567.160 39.30% 67.56% 

Classifier 
Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian Network 2816.58 3912.24 4809.58 -28.01% -41.44% 

Decision Tree 2933.56 3107.54 5248.6 -5.60% -44.11% 

Logistic 3070.08 5695.18 7227.36 -46.09% -57.52% 

Naïve Bayes 3889.96 5779.86 4864.5 -32.70% -20.03% 

Neural Network 3233.66 3327 4647.38 -2.81% -30.42% 

SVM 3415.00 5207.76 5556.58 -34.42% -38.54% 

Classifier 
Misclassification Cost ($) Cost Reduction by the Proposed Method 

Proposed OSS Raw Compared to OSS Compared to Raw 

Bayesian 

Network 
14475.82 33430.44 46472.38 -56.70% -68.85% 

Decision Tree 14108.02 25755.14 51478 -45.22% -72.59% 

Logistic 28625.24 54331.18 71588.16 -47.31% -60.01% 

Naïve Bayes 34130.66 56478.66 47220.3 -39.57% -27.72% 

Neural Network 20505.86 26867.4 45370.58 -23.68% -54.80% 

SVM 27535.54 50463.36 55450.78 -45.43% -50.34% 
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Table 3.20: Comparison of Mean Difference for Competitor Data 

 

 

Table 3.21: Comparison of Misclassification Cost Using Removed Majority Examples as Training Dataset 

 
 Cost 1:1 Cost 1:10 Cost 1:100 

RUS proposed RUS proposed RUS proposed 

BN 2824.90 2717.80 15958.90 15104.5 148385 129999.35 

DT 2458.50 2447.90 18161.10 17592.9 175397 168936.90 

Logistics 2440.40 2413.20 20115.80 19430.6 197137 197502.40 

NB 2603.50 2594.40 19929.20 19560.3 193251 189503.20 

NN  2501.30 2440.40 19337.50 18603.4 187689 185920.50 

SVM  2530.50 2490.70 22746.80 21485.5 225309 201039.50 

 

Web metrics 
Raw Remained (1:100) 

Removed 

Remained 

(Majority) 

- Minority 

Removed  - 

Minority 

Raw 

(Majority) - 

Minority Overall Majority Minority Overall Majority Minority 

sim_in 0.011 .0073071 .0465136 0.025 0.003 .0465136 0.008 -93.55% -82.80% -84.29% 

sim_out 0.014 .0127735 .0218677 0.013 0.003 .0218677 0.014 -86.28% -35.98% -41.59% 

sim_text 0.029 .0259482 .058979 0.039 0.020 .058979 0.027 -66.09% -54.22% -56.00% 

count_news 5.545 3.883547 22.15959 11.637 1.113 22.15959 4.191 -94.98% -81.09% -82.48% 

count_search 18776.420 15187.84 54652.33 30267.480 5882.625 54652.33 16222.070 -89.24% -70.32% -72.21% 
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Table 3.22: Comparison of Misclassification Costs Under Different  

Class Distribution (cost ratio 1:10) 

  
5% 

10% 15% 20% 

RUS proposed RUS proposed RUS proposed RUS proposed 

BN 16742.4 15354.5 14542.3 13457.7 13554.7 13267.4 13522.1 13000 

DT 14360.8 15727.2 13330.2 11710.5 14575.4 12654.7 12454.6 11454.5 

Logistics 16756.6 13359 14226.6 13456.1 15365.8 14753.2 13654 12400.l 

NB 21276.7 18953.7 19232.2 19266.5 18656.5 17468.6 17543.9 11535.3 

NN 16868.1 15800.9 12859.1 15038.9 13545.6 14987.3 13565.5 11020.1 

SVM 14445.2 13987.2 14645.5 14662.2 14656.4 13765.2 14263.6 12503.6 

 

Table 3.23: Comparison of Misclassification Costs Under Different  

Class Distribution (cost ratio 1:100) 

  
5% 

10% 15% 20% 

RUS proposed RUS proposed RUS proposed RUS proposed 

BN 115113.3 105887.2 115113.3 105887.2 115113.3 105887.2 115113.3 105887.2 

DT 107179.2 90327.5 107179.2 90327.5 107179.2 90327.5 107179.2 90327.5 

Logistics 125647.6 117314 125647.6 117314 125647.6 117314 125647.6 117314 

NB 187873 181508 187873 181508 187873 181508 187873 181508 

NN 94191.1 98843.3 94191.1 98843.3 94191.1 98843.3 94191.1 98843.3 

SVM 155739.5 100427 155739.5 100427 155739.5 100427 155739.5 100427 

 

 

Table 3.24: Comparison of Misclassification Costs Between  

SMOTE and Proposed Method 

  
cost ratio 1:1 cost ratio 1:10 cost ratio 1:100 

SMOTE proposed SMOTE proposed SMOTE proposed 

BN 
3213.50 3317.80 13134.30 12656.00 123387.70 105887.20 

DT 
3277.86 3480.30 12040.80 11710.50 92323.80 90327.50 

Logistics 
3022.50 3037.90 13754.20 13426.10 123444.50 117314.00 

NB 
2453.60 2717.90 19302.30 18966.00 194543.30 181507.90 

NN 
3111.50 3141.00 17030.80 16038.90 103232.60 98843.30 

SVM 
3160.20 3069.00 12403.20 12362.20 123232.40 100427.00 
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Figure 3.1: Illustration of Noisy Example 

 

Input: a raw data set with N0 instances belonging to the majority class and N1 instances 

belonging to the minority class; 

      under-sampling ratio R; 

      cost of misclassifying a majority instance as minority, c[majority][minority]; 

      cost of misclassifying a minority instance as majority, c[minority][ majority]; 

Output: a reduced data set with N0*(1-R) instances belonging to the majority class and 

N1 instances belonging to the minority class 

//initialization 

For each instance A in the raw data set 

A.noise=0   

End for 

For each instance M in the raw data set 

      find its nearest neighbor A 

      If  A.class = majority   

       If  A.class = M.class 

       A.noise= A.noise - c[majority][minority] 

    else 

       A.noise = A.noise + c[minority][majority] 

    End if 

    End if 

End for 

remove from the raw data set N0*R majority instances with top noise levels 

 

Figure 3.2: A Cost-oriented Under-sampling Method 

Noisy 

instance 
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Figure 3.3: An Example of Data Location 

 

 

Figure 3.4: Misclassification Cost of Online Transaction Data (cost ratio 1:1) 
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Figure 3.5: Misclassification Cost of Online Transaction Data (cost ratio 1:10) 

 

Figure 3.6: Misclassification Cost of Online Transaction Data (cost ratio 1:100) 
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Figure 3.7: Misclassification Cost of Online Transaction Data (real cost ratio) 

 

 

Figure 3.8: Misclassification Cost of Search Keyword Data (cost ratio 1:1) 
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Figure 3.9: Misclassification Cost of Search Keyword Data (cost ratio 1:10) 

 

 

 

Figure 3.10: Misclassification Cost of Search Keyword Data (cost ratio 1:100) 
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Figure 3.11: Misclassification Cost of Competitor Data (cost ratio 1:1) 

 

 

 

Figure 3.12: Misclassification Cost of Competitor Data (cost ratio 1:10) 
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Figure 3.13: Misclassification Cost of Competitor Data (cost ratio 1:100) 
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

 

 This dissertation develops two novel methods in cost-sensitive learning and 

imbalance learning. To the purpose of minimizing misclassification costs, these two 

methods incorporate the cost information into the learning process and achieve satisfying 

performance. This dissertation offers insights into these techniques and raises issues that 

merit future research. The purpose of this chapter is to summarize the findings of the 

dissertation and suggest ideas for the future research. 

 

4.1 Conclusion and Contributions 

In Chapter 2, I proposed an Iterative Cost-sensitive Naïve Bayes (ICSNB) that 

addresses the limitation of Naïve Bayes on probability estimation. Empirical tests using 

real-world data validate the proposed method and show that its performance outperforms 

other existing cost-sensitive learning methods. The consistent effect of the proposed 

method on cost reduction is demonstrated through the test results on multiple data sets 

varying in domains, sizes, class distribution, etc. Moreover, I tried five different cost 

matrixes to check the sensitivity of my method. Misclassification cost by ICSNB is 

always lower than other methods and there are only very few exceptional cases 
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where the cost ratio is close to 1.   

In Chapter 3, I developed a novel cost-based under-sampling method aiming to 

solve the ineffectiveness of current classifiers in imbalance data. I proposed to identify 

and remove noisy and costly majority instances to alleviate the impact of those instances 

on predicting minority samples. I tested my method through three real business case 

studies, i.e., online shopping, search engine marketing (SEM), and competitor 

identification. This empirical study provides support for my new under-sampling method 

in imbalance learning. Using removed samples to form a new training data, additional 

experiments further confirm that those removed instances are noisy instances and can 

cause higher costs in prediction. Moveover, experiment results shown the generaliability 

of the proposed method under different distribution levels.  

My study makes the following contributions to the current literature: 

 Proposes a new cost-sensitive learning method specified for Naïve Bayes 

classifier 

 Reduces computation complexity in current Naïve Bayes research that focuses on 

improving probability accuracy 

 Develops a novel intelligent under-sampling method 

 Validates and compared the performance of cost-sensitive imbalance learning in 

business applications 
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4.2 Future Work 

This dissertation only serves as the first step toward my efforts in cost-sensitive 

and imbalance learning. Future work needs to be extended to take care of some 

limitations and unsolved issues associated with this dissertation.  

1. Distance measure is the one of key issues in the ICSNB method and it can directly 

affect the formation of the new training set and then influence the instance 

ranking. Although the Euclidean distance is the popular measurement for 

dissimilarity measure, for a data set with categorical attributes, it is interesting and 

helpful to explore some new and more effective distance measures.  

2. As another key issue in the ICSNB method, the choice of optimal    can also have 

a direct impact on the performance of the prediction model. The greedy search 

approach for optimal   in my study did not cost too much time and effort. But, it 

will be painful when dealing with a large data set, which is actually very common 

in our lives. Developing a rule to quickly derive an optimal   through analyzing 

the characteristics of input data can be a very interesting research topic for the 

future. 

3. In the ICSNB method, hard instances are labeled using the normal Naïve Bayes 

approach. I analyzed the quantity of hard instances for each experimental data set 

and found that the number is usually less than 10. If those hard instances are the 

target instances and are assigned wrong labels, it will increase the overall cost and 

can result in a totally different result for a small data set. Thus, a future study 

focusing on those unsolved hard instances is needed. 
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4. Under-sampling is one of approaches for the imbalanced data. However, if we are 

facing small data, under-sampling will result in insufficient data points for 

learning. Therefore, extending my cost-based sampling method to over-sampling 

can be very useful to improve the current study. 

5. Both of my proposed methods are designed to solve binary class problems. In the 

real world, there are many multiclass problems. Although my transformation 

method in the ICSNB is an alternative solution, the cost matrix is much more 

complex in multiclass data and cannot be easily converted into a 2X2 cost matrix. 

Therefore, developing a cost-sensitive method for multiclass problems is a 

direction for my future research. 
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