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ABSTRACT

Implantable microelectrode arrays are biomedical devices used in-vivo serving as 

neural interfaces between the nervous system and external systems such as 

neuroprosthetics. They are designed to be chronically implanted in the central or 

peripheral nervous system and record or stimulate neural signals. The Utah electrode 

array (UEA) is a representative example of silicon-based neural interfaces. They are 

typically encapsulated with the USP Class VI biocompatible material, Parylene-C, on the 

inactive areas to insulate and encapsulate the electrodes and minimize damage to the 

neural tissue. In order to record or stimulate neural signals, the active electrode sites must 

be deinsulated. Tip deinsulation of Parylene-coated UEAs is typically performed by a 

reactive ion etching (RIE) process using an O2 plasma, and an aluminum foil mask. This 

technique has limitations due to nonuniform tip exposure lengths contributing to large 

impedance variations (o > 0.5 MQ), and difficulty in controlling the magnitude of tip 

exposure, especially for tip exposures less than 40 ^m, which are needed to increase its 

selectivity in recording or stimulating single or multiple neurons. Moreover, foil masks 

cannot be used for more complex electrode geometries, such as variable height electrodes.

In this work, excimer laser ablation of Parylene from a UEA using a tip 

metallization of iridium oxide (IrOx) was investigated as an alternative deinsulation 

technique. A hybrid method of etching Parylene-C using a combination of laser ablation 

and the O2 RIE was investigated in the efforts to minimize electrode damage and remove



carbonaceous residues. The median impedance for fine tip (< 20 ^m) electrodes was ~ 4.6 

MQ immediately after laser ablation. However, significant amounts of carbon residue on 

the exposed surface were removed, generating improved impedances to ~ 0.7 MQ by 

including a maskless RIE process using 1 minute O2 RIE.

We also observed that reduction of IrOx could occur at relatively mild (> 180 °C) 

temperatures in reducing ambients, resulting in dramatic changes to the structural and 

electrical properties of the tip metallization. The reduced IrOx material was found to 

tolerate significantly more laser irradiation than the fully oxidized material. The median 

impedance, cathodal charge storage capacity (CSCc), and charge injection capacity (CIC) 

for the reduced electrodes with 40 |im exposure were ~ 25 kQ, ~ 40 mC/cm2, and ~ 0.8 

mC/cm2, respectively. These results suggest that a hybrid laser ablation using an excimer 

laser and RIE is promising for deinsulation of UEAs.

iv



To

My son, John 
My wife, Hyun-Jin 

&
My parents



ABSTRACT..............................................................................................................................iii

LIST OF FIGURES..................................................................................................................ix

ACKNOWLEDGMENTS..................................................................................................... xiv

CHAPTERS

1. INTRODUCTION...............................................................................................................1

1.1 Neural Interfaces..................................................................................................... 1
1.2 Penetrating Silicon-Based M icroelectrodes....................................................  2
1.3 Encapsulation and Tip Metallization Materials for Laser Deinsulation..5
1.4 Hypothesis and Specific Aims............................................................................7
1.5 References...............................................................................................................15

2. BACKGROUND AND STATE OF THE ART: TIP DEINSULATION AND HARGE 
INJECTION MATERIALS..............................................................................................20

2.1 Tip Deinsulation....................................................................................................20
2.1.1 Deinsulation M ethods...........................................................................20
2.1.2 Laser Beam Characteristics.................................................................21
2.1.3 Excimer Laser System..........................................................................22
2.1.4 Laser D einsulation.................................................................................25

2.2 Electrochemistry of the Stimulating and Recording M icroelectrode....28
2.2.1 The Electrode-Electrolyte Interface................................................. 28
2.2.2 Double Layer Charging........................................................................29
2.2.3 Faradaic Charging......................................................................................30

2.3 Electrochemical Characterization of M icroelectrode.................................32
2.3.1 Cyclic Voltammetry.............................................................................. 32
2.3.2 Electrochemical Impedance Spectroscopy....................................37
2.3.3 Potential Transient.................................................................................3 9

2.4 Iridium Oxide as Electrode Material.............................................................. 41
2.4.1 Consideration in Material Selection.................................................41
2.4.2 Iridium Oxide..........................................................................................43

TABLE OF CONTENTS



2.5 References................................................................................................................ 47

3. EXCIMER-LASER DEINSULATION OF PARYLENE-C COATED UTAH 
ELECTRODE ARRAY TIPS.......................................................................................... 51

3.1 Abstract.....................................................................................................................52
3.2 Introduction..............................................................................................................52
3.3 Experiment............................................................................................................... 53

3.3.1 Fabrication of Planar Structures and Microelectrode Arrays.................53
3.3.2 Excimer Laser System and Optical Layout Description........................ 54
3.3.3 Surface, Chemical, and Electrical Characterization of Laser Deinsulated 

Electrodes..................................................................................................56
3.4 Results and Discussion........................................................................................... 57
3.5 Conclusions............................................................................................................. 60
3.6 References................................................................................................................60

4. HYBRID LASER AND REACTIVE ION ETCHING OF PARYLENE-C FOR 
DEINSULATION OF A UTAH ELECTRODE ARRAY............................................62

4.1 Abstract....................................................................................................................63
4.2 Introduction............................................................................................................. 63
4.3 Experiment.............................................................................................................. 64
4.4 Results and Discussion............................................................................................66
4.5 Conclusions............................................................................................................. 70
4.6 References................................................................................................................70

5. EXCIMER LASER DEINSULATION OF PARYLENE-C ON IRIDIUM FOR USE 
IN AN ACTIVATED IRIDIUM OXIDE FILM-COATED UTAH ELECTRODE 
ARRAY.............................................................................................................................71

5.1 Abstract....................................................................................................................72
5.2 Introduction............................................................................................................. 72
5.3 Material and Methods.............................................................................................73
5.4 Results and Discussion...........................................................................................76
5.5 Conclusions............................................................................................................. 80
5.6 References................................................................................................................81

6. REDUCTION OF IRIDIUM OXIDE FILM FOR LASER DEINSULATION OF 
UTAH ELECTRODE ARRAY...................................................................................... 82

6.1 Abstract................................................................................................................... 83
6.2 Introduction............................................................................................................. 83

vii



6.3 Material and Methods..............................................................................................86
6.4 Results and Discussion...........................................................................................88
6.5 Conclusions........................................................................................................... 100
6.6 References............................................................................................................. 101

7. CONCLUSIONS AND FUTURE WORK.................................................................. 103

7.1 Conclusions........................................................................................................... 103
7.1.1 Excimer-Laser Deinsulation of Parylene-C Coated Utah electrode Array 

Tips.......................................................................................................... 104
7.1.2 Hybrid Laser and Reactive Ion Etching of Parylene-C for Deinsulation 

of a Utah Electrode Array...................................................................... 105
7.1.3 Excimer Laser Deinsulation of Parylene-C on Iridium for Activated 

Iridium Oxide Film Coated Utah Electrode Array.............................. 106
7.1.4 Reduction of Iridium Oxide Films for Laser Deinsulation of Utah 

Electrode Array...................................................................................... 107
7.1.5 Contributions.......................................................................................... 109

7.2 Future Work.......................................................................................................... 110
7.3 References............................................................................................................. 113

viii



LIST OF FIGURES

1.1 Scanning electron micrograph of (a) the UEA by secondary electrons and of (b) one 
electrode by back-scattered electrons. The UEA is encapsulated by an insulating 
Parylene-C layer, with the exception of the tip (~ 100 p,m) of the electrode which 
forms the active site for stimulation and/or recording of neural signals....................... 4

1.2 Schematic view of the process flow for wafer-scale fabrication of UEA.....................5

1.3. UV transmission characteristics of a 3 ^m-thick Parylene-C film. Parylene-C absorbs 
wavelengths shorter than 280 nm. KrF (248 nm) excimer lasers is effective for laser 
ablation of Parylene-C...................................................................................................... 8

1.4. Schematic cross-section of the aluminum foil masking process for (a) convex- and (b) 
concave-type electrode. The solid line represents the aluminum foil
mask................................................................................................................................. 10

1.5. Schematic cross-section of laser ablation process for individual electrode tip of Utah 
electrode array. The individual electrode of UEA is directly illuminated by laser 
beam................................................................................................................................ 10

1.6. Diagram of the hybrid deinsulation method using a combination of laser ablation and 
O2 RIE..............................................................................................................................12

2.1. Various patterns of TEM mode......................................................................................23

2.2. Schematic potential diagram of KrF excimer laser. The upper level in the diagram is a 
bound state populated with Kr+, F". The excited dimer molecule; KrF* collapses to 
the ground level; Kr + F state with the occurrence of photon emission..................... 24

2.3 A schematic diagram of the laser ablation system is presented that highlights the
motion stage, beam steering optics, and mask components........................................27

2.4. The surface layers formed when a metal electrode is immersed in an aqueous ionic 
solution. Double layer is formed by excess charge at the electrode surface and space 
charges (oriented water dipoles and ions). Electrons can also be transferred directly 
across the interface during Faradaic reacions [23]......................................................3 0

2.5. Potential waveform used in cyclic voltammetry. V is a triangular wave between Vmax 
and Vmin........................................................................................................................... 33



2.6. An example voltammogram with relevant features marked. As the voltage is swept 
from Vmin to Vmax and back again, the current follows the path with reduction and 
oxidation..........................................................................................................................34

2.7. Cyclic voltammograms of an Ir and AIROF are presented from planar electrodes with 
300 |im diameter circle. The CSCc of Ir and AIROF is 3.5 mC/cm2 and 10 mC/cm2, 
respectively. The seep rate was 50 mV/s [28]..............................................................36

2.8. An example of (a) equivalent circuit of one time constant, (b) Nyquist plot of circuit
(a), and (c) Bode plot of circuit (a ) ..............................................................................38

2.9. Equivalent circuit of the electrode-electrolyte systems. Rs is the electrolyte resistance, 
Rct is the charge transfer resistance, and the CPE is a constant phase
element............................................................................................................................ 40

2.10. Potential transient of the SIROF planar electrode shows access voltage (Va) and 
maximum cathodic (Emc) potential excursions during a constant current biphasic 
pulse. The current pulse amplitude and width per phase is 1.2 mA and 500 |is, 
respectively.................................................................................................................... 42

2.11. The unit cell of the Rutile structure of iridium oxide (IrO2) is presented. The silver 
balls represent Ir, and the red balls represent oxygen................................................ 44

2.12. Faradaic reaction of iridium oxide film is presented with the equations of chemical 
reaction. The reversible Faradaic reaction involves reduction and oxidation as the 
valence transition between Ir3+ and Ir4+ state of the iridium oxide............................45

3.1. The structure of Parylene-C............................................................................................53

3.2. (a) Scanning electron micrograph of UEAs (left) and the backscattered image of the 
electrode array in detail (right), (b) Schematic view of the process flow for wafers- 
scale fabrication of the Utah electrode array................................................................ 53

3.3. Schematics diagram of the laser ablation system..........................................................54

3.4. 30° tilted SEM (Scanning electron micrographs of the circles on a silicon substrate 
after laser ablation with 1000 mJ/cm2. (a) 10 pulses, (b) 20 pulses, (c) 30 pulses and 
(d) 100 pulses..................................................................................................................55

3.5. (a) The etch depth of the Parylene as a function of the number of laser pulses, (b) the 
Parylene etch rate by as a function of the fluence........................................................55

3.6. (a) SEM images (backscattering images) for films with three different thicknesses 
(0.4 |im, 0.8 |im, and 1.1 |im) exposed to a single laser pulse with 1680 mJ/cm2 
fluence for investigation of iridium oxide film fracture tendency. (b) SEM images for 
films with three different thicknesses (0.4 |im, 0.8 ^m, and 1.1 |im) exposed to 100

x



laser pulses with 1680 mJ/cm2 fluence. (c) SEM image of the laser ablated hole on a 
Parylene-coated iridium oxide film...............................................................................56

3.7. SEM images (upper) and AFM images (bottom) of iridium oxide films before (left) 
and after (right) laser ablation....................................................................................... 57

3.8. X-ray photoemission spectra of (a) the Parylene film (left) and laser ablated spot on 
Parylene coated iridium oxide film (right), (b) as deposited iridium oxide film (left) 
and Ir 4f peaks in high resolution scan (right) and (c) laser ablated spot on as 
deposited iridium oxide film (left) and Ir 4f peaks in high resolution scan (right)....58

3.9. 30° tilted scanning electron micrograph using backscattered electron images of a 
Utah electrode tip having 1.1 |im thickness iridium oxide film after laser deinsulation 
by (a) 35, 100, and 200 pulses with the fluence of 1440 mJ/cm2 and (b) fluence of 
1200, 1440, and 1680 mJ/cm2 with 150 laser pulses....................................................59

3.10. Impedance values as a function of the tip exposure of laser deinsulated Utah 
electrode. The tip exposure lengths were measured by SEM at a 30° sample tilt angle. 
The solid line is the trend line with the equation y=41.309x"1406............................... 59

4.1. (a) Photograph of a Utah electrode array with 10x10 electrodes, (b) SEM image of a 
Utah electrode tip fabricated by the oxygen plasma etching using an aluminum foil 
mask................................................................................................................................. 64

4.2. Schematics of the laser ablation system.........................................................................65

4.3. UV transmission characteristics of a 3 ^m-thick Parylene-C film..............................66

4.4. (a) SEM image of a 200 p,m diameter hole on an iridium oxide film after laser 
ablation of 3 |im thickness Parylene-C film with a fluence of 1 J/cm2 and a number of 
pulses of 100, (b) backscattered electron (BSE) image of (a), and (c) magnified 
image at the boundary between Parylene-C and iridium oxide film.......................... 66

4.5. X-ray photoemission spectra of (a) a Parylene film, (b) a laser ablated spot on an 
iridium oxide film, and (c) a laser ablated spot on an iridium oxide film with high 
resolution scan around the C 1s peak............................................................................ 67

4.6. (a) X-ray photoemission spectra of a laser ablated spot on an iridium oxide film after 
1 minute oxygen plasma treatment, (b) a high resolution scan of (a) around the Ir 4d 
and C 1s peaks................................................................................................................. 67

4.7. Imaging XPS data for (a) the Ir 4f peak before oxygen plasma treatment, (b) the Ir 4f 
peak after 1 minute oxygen plasma treatment, (c) the C 1s peak before oxygen 
plasma treatment, (d) the C 1s peak after 1 minute oxygen plasma treatment.......... 68

xi



4.8. Scanning electron micrographs using backscattered electron imaging (a) after laser 
deinsulation using the fluence of 750 mJ/cm2 and the number of pulses of 200, (b) 
after laser deinsulation and 4 minutes oxygen plasma etching, (c) after laser 
deinsulation and 8 min oxygen plasma etching............................................................68

4.9. (a) Thickness o f the Parylene-C etched as a function o f oxygen plasma etching time, 
(b) variation of the electrode tip exposures for electrodes with two different initial 
exposures of 11~13 p,m and 17~19 p,m as a function of the oxygen plasma etching 
time....................................................................................................................................69

4.10. (a) Impedance of electrodes with initial tip exposures of 11~13 p,m and 17~19 p,m as 
a function of the oxygen plasma etch time, (b) impedance of electrodes fabricated by 
laser ablation and 2 minutes oxygen plasma etching. The solid line is the trend line 
with the equation y = 15.915x'166 and R2 = 0.97......................................................... 69

5.1. Faradaic reaction of activated iridium oxide film.........................................................73

5.2. (a) Planar view of the AIROF electrode, (b) Schematic process flow for the planar 
AIROF electrode fabrication.......................................................................................... 74

5.3. (a) Backscattered SEM images of iridium films with three different thicknesses (50 
nm, 200 nm, and 600 nm) exposed to 100 laser pulses with 1920 mJ/cm2 fluence. (b) 
Backscattered SEM images of SIROF (600 nm) exposed to the different laser 
fluences (960, 720, and 480 mJ/cm2).............................................................................75

5.4. (a) The optical image of laser ablated spot (diameter of 100 |im) on a soda-lime glass. 
(b) Surface profiles of the edge of the circle ablated by different laser fluences (left) 
and after 2 minutes OPE treatment (right)................................................................... 75

5.5. X-ray photoemission spectra of (a) C 1s peak of as-deposited Parylene-C, (b) Cl 2p 
peak o f as-deposited Parylene-C, (c) C 1s peak o f the laser ablated Parylene-C and (d) 
Cl 2p peak of the laser ablated Parylene-C................................................................... 76

5.6. (a) SEM images of laser deinsulated holes on a Parylene coated iridium film before 
(left) and after (right) OPE treatment. (b) SEM images of iridium film (left) and 
AIROF film (right). (c) AFM images of iridium film (left) and AIROF film
(right).............................................................................................................................. 77

5.7. X-ray photoemission spectra showing (a) Ir 4f peak of the as-deposited iridium film, 
(b) O 1s peak of the as-deposited iridum film, (c) Ir 4f peak of the AIROF and (d) O 
1s peak of the AIROF.....................................................................................................78

5.8. (a) SEM images of AIROF by rectangular pulse levels of -0.85 and 0.95 V (left), -0.9 
and 0.95 V (center), and -0.95 and 0.95 V (right). (b) magnified images of (a)....... 78

xii



5.9. Amplitude (upper) and phase (bottom) of impedance of planar electrodes with 
iridium active area formed by three different deinsulation conditions and with 
AIROF active area (area of the active region ~ 70600 |im2).......................................79

5.10. Cyclic voltammograms of the planar iridium and AIROF electrodes (area of the 
active region ~ 70600 |im2). The electrode voltage was measured with respect to the 
Ag|AgCl reference electrode......................................................................................... 79

5.11. (a) SEM images of a laser deinsulated Utah electrode array tip with iridium film 
(left) and SIROF (right). (b) SEM images of as-deposited iridum film (left), AIROF 
activated by rectangular pulses with levels of -0.8 and 0.95 V (center), and AIROF 
activated by rectangular pulses with levels of -0.85 and 0.95 V (right).....................80

5.12. EIS (a) and CV (b) of AIROF Utah microelectrode (geometric surface area ~ 6000 
|im2)................................................................................................................................. 80

6.1. TGA of IrOx by nitrogen and forming gas.................................................................... 88

6.2. XRD spectra of (a) as-deposited SIROF and (b) annealed SIROF according to four 
different temperatures (410, 310, 220, and 210 °C).................................................... 90

6.3. SEM images (upper) and AFM images (bottom) of (a) as-deposited SIROF, (b) 
annealed SIROF, and (c) laser ablated annealed SIROF............................................. 91

6.4. Optical image of Ti/SIROF films on Si substrate after mechanically scratching is 
presented in (a). Three colors were disclosed as blue (1), silver (2) and dark gray (3).
(b) is the imaging XPS for Ir 4f peak of the sample same to Figure 6.4 (a). Spots (1),
(2) and (3) in Figure 6.4 (b) match to the numbers in Figure 6.4 (a)......................... 92

6.5. X-ray photoemission spectra of (a) spots (1), (b) spots (2), and (c) spots (3) in Figure
6.4 93

6.6. Electrochemical analysis of planar electrode is presented by (a) backscattered SEM 
image of laser deinsulated hole with 300 |im diameter, (b) Bode plot of different film 
stacks at particular annealing temperature (Ti/SIROF at 410 °C, Ti/Ir/SIROF at 410 
°C and Ti/Ir/SIROF at 210 °C), (c) cyclic voltammograms of the same samples as (b), 
and (d) potential transient of two different structures (Ti/Ir/SIROF at 210 °C and 
Ti/SIROF at 410 °C).......................................................................................................94

6.7. Electrochemical analysis of 3D UEA tip is presented by (a) SEM image of laser 
deinsulated Utah electrode array tip, and (b) impedance, (c) CSCc and (d) CIC 
values of UEAs with Ti/Ir/SIROF film structure annealed at 210 °C as a function of 
their tip exposure fabricated by the laser deinsulation. The solid lines are a trend line 
with the equations, y = 0.0817e"0028x, y = 91.525e"0019x and y = 1.0246e"0005x for 
Figure (b), (c), and (d), respectively..............................................................................98

xiii



ACKNOWLEDGMENTS

First of all, I would like to thank Dr. Florian Solzbacher, who gave me a big 

opportunity for my doctoral study in the University of Utah. His generous leadership and 

encouragement led me to become enthusiastic in research. This dissertation is the result of 

his guidance and persistent support.

I would like to thank Dr. Loren Rieth, who gave me invaluable inspiration and 

direction. Without his insightful advice and scientific discussion, this journey would not 

have been completed. I have learned a lot of academic and research lessons from him, 

which will be very helpful in my future career.

I would like to show my deepest appreciation to Dr. Jong-In Song in Gwangju 

Institute of Science and Technology. His unstinting trust and support motivated me to 

start my doctoral study. His thoughtful advice and encouragement were the source and 

base of my achievements.

My gratitude is extended to many fellows for providing a stimulating 

environment and their assistance. Special thanks to Prashant Tathireddy, Sandeep Negi, 

Rajmohan Bhandari, Mohit Diwekar, Rohit Sharma, Xianzong Xie, Tanya Abaya, and 

Ryan Coldwell. Appreciation is also extended to Dr. Brian van Devener and Brian Baker 

for the assistance on surface analysis, equipment training, and troubleshooting.

I would like to deliver my deepest gratitude to my wife, Hyun-Jin, for her 

unconditional understanding and love. It would be impossible for me to have this



dissertation without her devotion and sacrifice. My gratitude is also extended to my lovely 

son, John. Just his being makes me happiest in the world. Also, his babbling has always 

cheered me up.

Finally, I would like to thank my parents for their everlasting love, support, and 

encouragement throughout my life. Their prayer has led me in the right direction without 

the trials of life. I owe everything to my parents forever.

xv



CHAPTER 1

INTRODUCTION 

1.1 Neural Interfaces

Neural interfaces are devices designed to exchange information with the nervous 

system. These interfaces often use electrodes to record and/or stimulate neural signals. In 

recent years, their applications in neural prostheses have been rapidly developed by 

sophisticated modern microfabrication technologies, improvements in electronics and 

computer hardware, and advances in material sciences [1]. Applications include cochlear 

implants for recovering hearing [2-4], visual prostheses for restoring vision [5], and 

neural prosthetics for reanimating paralyzed limbs or controlling prosthetic limbs in 

patients with strokes, spinal cord injuries, or movement disorders [6]. Another currently 

available therapeutic neural interface is deep brain stimulation for essential tremor, 

Parkinson’s disease, and dystonia, also being investigated for treating epilepsy, 

depression, and chronic pain [7-10].

One essential part in all these applications is the neural interface in which an 

electrode records and/or stimulates neural signals. A feature that distinguishes neural 

interfaces is how invasive the neural interface (or placement procedure) is. Noninvasive 

systems primarily exploit electroencephalograms (EEGs) from the surface of the skull to 

control computer cursors or other systems, such as the P 300 speller enabling patients to 

write through cortical EEG measurements [11]. It provides a simple communications tool



for paralyzed people. However, despite having the great advantage of not exposing the 

patient to the risks of neurosurgery, EEG-based techniques provide communication 

channels of limited capacity due to low spatial resolution (3 ~ 5 cm) and susceptibility to 

artifacts during acquisition of neural data. The low conductivity of the skull attenuates the 

neural signal transmitting from brain to scalp electrodes significantly [12, 13].

The next level for more invasive neural interfaces is surface and/or cuff 

electrodes, which need to be placed surgically, but do not penetrate the neural tissue. 

Electrocorticography (ECoG) strip electrodes are a partially invasive system which have 

more spatial resolution (0.5 ~ 1 cm) than EEG electrodes. The detected signals are 

composed of local field potentials (LFPs) directly from the surface of the cortex. 

However, it has less spatial resolution than penetrating electrodes. Penetrating electrodes 

are based on recordings from ensembles of neurons or on the activity of multiple neurons, 

including LFPs. These provide neural signals with high spatial resolution (< 200 |im). 

However, it carries surgical risks associated with penetrating it into the cortex [14-18].

1.2 Penetrating Silicon-Based Microelectrodes

The development and use of implanted Si-based electrode arrays dates back to 

the late 1950s [19]. One of the important types of penetrating neural interfaces are the 

wire-type microelectrodes. This type of technology continues to be widely used by many 

laboratories, including industry for electrophysiological recordings. However, a manual 

production process for wire-type microelectrodes makes it difficult to precisely control 

the electrode geometries and electrochemical properties for electrode sites.

Mass-fabricated microelectrodes were achieved by photolithographic and 

microfabrication methods to solve the difficulty in assembling reproducible wire-type

2



microelectrodes [19, 20]. Multiple types of microelectrodes can be produced at the same 

time on a substrate by multiple designs in a photolithographic mask, allowing for 

numbers of microelectrodes to be made with less production costs. It can also be used to 

make microelectrodes that incorporate multiple recording and/or stimulation sites with 

well-defined spatial arrangements for compatibility with the well-organized structures o f 

the brain. The first substrate to produce multisite microelectrodes was silicon [21-29]. The 

capability of surface and bulk micromachining through chemical etching, etc., of the 

substrate is one of the key properties of silicon. Individual electrodes can be fabricated 

from a single substrate and small features such as channels in the substrate can be 

constructed. The semiconductor properties of silicon can be altered by doping. Silicon 

also plays host to fabrication of integrated circuits. It has many advantages, making it 

widely used as the basis for forming microelectrode arrays. Silicon-based microelectrode 

arrays can provide a solution for high reproducibility and the possibility o f integration o f 

components for signal processing and wireless telemetry. The Utah electrode array (UEA) 

is a prominent example of silicon-based microelectrode arrays that are used clinically in 

research [30, 31].

UEAs typically have 100 electrodes in a 10*10 grid, and were developed to 

provide an interface originally for visual prosthetics, and are now commonly used for 

motor prosthetics. Figure 1.1 shows a scanning electron micrograph (SEM) of a UEA. 

Individual microelectrodes extend 1.5 mm from the 10*10 mm planar substrate, as shown 

in Figure 1.1 (a). The tip of each electrode is metallized with sputter-deposited iridium 

oxide (SIROF) to facilitate electronic to ionic transduction. The conducting highly doped 

silicon shanks are insulated from each other using glass. The exterior o f the array is

3
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{a) {b)

Fig 1.1 Scanning electron micrograph of (a) the UEA by secondary electrons and of (b) 
one electrode by back-scattered electrons. The UEA is encapsulated by an 
insulating Parylene-C layer, with the exception of the tip (~ 100 p,m) of the 
electrode which forms the active site for stimulation and/or recording of neural 
signals.

insulated using biocompatible Parylene-C, and each tip is deinsulated in order to record 

or stimulate neural signals. A higher magnification image of one electrode tip showing 

the exposed tip (~100 p,m) of the electrode which forms the active site (tip exposure), and 

the adjacent Parylene encapsulation, is presented in Figure 1.1 (b).

Figure 1.2 is the schematic view of the process flow for fabrication of UEAs. 2 

mm thick, c-Si (100), ^-type wafers with the resistivity of 0.01 ~ 0.05 Q-cm and a 

diameter of 75 mm are used as substrates to make the UEAs. Back-side dicing, glassing, 

and grinding are used to create electrical isolation for the electrodes, and the back-side of 

the electrode is metallized as pads for wire bonding. Then, front-side dicing and wet 

etching are used to shape the electrodes. Finally, array singulation, tip metallization, and 

Parylene deposition after annealling are performed to finish the devices. Titanium and
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Fig 1.2 Schematic view of the process flow for wafer-scale fabrication of UEA

iridium oxide are deposited using DC and Pulsed-DC sputter deposition during the tip 

metallization, respectively, and annealed in forming gas (98% Ar and 2% H2) for 45 

minutes in 375 °C temperature. As the last step, tip deinsulation is carried out. The 

fabrication of UEAs is described elsewhere in detail [32, 33].

1.3 Encapsulation and Tip Metallization Materials 

for Laser Deinsulation

Microelectrode arrays need to be encapsulated by a biocompatible material to 

protect the device against the aggressive body fluids and the body tissue against corrosion 

products and nonbiocompatible materials. Parylene-C is one of the most highly use 

polymeric material for the insulation of neural interface devices [34]. It has good 

biocompatibility (USP Class VI polymer), chemical and biological inertness, good barrier



properties (the best within the parylene group), a slippery surface, and is an electrical 

insulator (p = ~ 1015 Qxm).

Parylene-C is deposited in a chemical vapor deposition (CVD) process to generate 

a thin layer (1 ~ 30 |im) which is highly conformal and can coat high-aspect ratio features

[34]. It has advantages over other technologies like dip coating (silicones and epoxies), 

die casting (silicones and epoxies), or spin coating (polymides and silicones), where the 

ability to penetrate small holes or to cover sharp edges with uniform thickness is limited.

Selection of the electrode material for tip metallization is critical for the 

performance of neural interface. The ideal electrode should be safe and effective. For 

safety, it needs to cause little damage to the surrounding tissue and have no adverse 

effects on the body. The electrode material should be biocompatible and mechanically 

stable during surgery and after implantation. Chronically implanted devices can remain in 

use for years, so the tip material needs to withstand insertion forces, resist corrosion, and 

be relatively biocompatible.

The charge should be effectively injected into the electrode material even with 

very small electrode area to selectively elicit action potentials. Materials with higher 

charge injection capacity (mC/cm2) can allow higher stimulation current densities while 

operating within safe voltage limits that avoid the electrolysis of water and bubble 

formation, oxidation of organic and inorganic species, and material corrosion or 

dissolution. Also, since a higher CIC lowers the potential required for stimulation, this 

can decrease power consumption, which is critical for implanted stimulation systems. 

Iridium oxide is a popular material for electrode active sites due to the Faradaic reaction 

transduction mechanism. It also has the highest charge injection capacity range from 1 to

6



4 mC/cm2. The reduction and oxidation in iridium oxide film is primarily from the 

valence change between Ir3+ and Ir4+ states [35, 36].

Laser is an attractive tool for micromachining due to the ability to generate high 

intensity of power for ablation. The directionality of laser enables it to make high-aspect 

ratio structures [37]. It is also appropriate for applications such as deinsulation. Laser 

ablation o f Parylene has already been used since the early 90s in electrodes for recording 

neural signals [38]. Laser deinsulation has also been demonstrated to remove the 

Parylene from biomedical microelectrodes based on Pt tips [39, 40], and to ablate micron 

thick Parylene films from copper surfaces [41]. However, the laser power can easily 

damage the substrate during laser ablation of Parylene-C. When iridium oxide films are 

used under Parylene-C, damage by the laser irradiation must be minimized.

In this study, the encapsulation material, Parylene-C, was removed from the 

active electrode tips o f the iridium oxide coated UEA using a laser. The ultraviolet light 

(248 nm) from the KrF excimer laser is strongly absorbed by Parylene-C. Parylene-C 

absorbs wavelengths shorter than 280 nm, as shown in Figure 1.3 [42]. The KrF excimer 

laser photon energy is high enough to break the chemical bonds of the Parylene-C, which 

makes this wavelength more efficient at ablating the films compared to lasers with longer 

wavelengths (> 300 nm), and results in less residual heat in the iridium oxide.

1.4 Hypotheses and Specific Aims

The goal of this study is to develop a laser ablation method to deinsulate 

Parylene from the tips of Utah electrode arrays, which have complex 3-D geometries. 

The UEA uses a 10*10 array sharp needle-type electrode array based on silicon and the 

pitch between electrodes is 400 |im with 1.5 mm length.
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Fig 1.3. UV transmission characteristics of a 3 p,m-thick Parylene-C film. Parylene-C 
absorbs wavelengths shorter than 280 nm. KrF (248 nm) excimer lasers is 
effective for laser ablation of Parylene-C.

In this study, we investigated a new deinsulation method using a hybrid 

approach that includes laser ablation and O2 plasma etching, as an alternative to the 

conventional reactive ion etching process with an Al foil mask. Reactive ion etching (RIE) 

with an Al foil mask that has traditionally been used for fabrication of Utah electrode 

arrays is an effective method to remove the Parylene insulation compared with other 

methods, such as heating or high-voltage arcing methods [43, 44]. However, the method 

can result in nonuniform tip exposure and incuring variations in impedance across the 

array. Also, the method of using a foil mask in RIE deinsulation makes it difficult to 

deinsulate arrays with high density or complicated electrode geometries that have specific 

purposes in neural interface application. Figure 1.4 shows instances of the poked 

electrode array by aluminum foil mask for convex and concave type electrode arrays that



have nonlinear gradients of electrode heights and are useful for retina interfaces or 

peripheral nerve interfaces [45]. The tip exposure is nonuniform above the aluminum foil 

mask that results in difficulties to use the RIE deinsulation method in neural interface 

electrode. The laser ablation technique can be used to deinsulate an individual electrode 

tip to solve these issues, as shown in Figure 1.5. Laser deinsulation can be explored to get 

very fine tip exposure (< 20 |im) which increases selectivity in acquiring the neural 

signals as well. The selectivity is a capability to stimulate or record a small population of 

neural tissues without activating close tissues. A small tip exposure (< 40 |im) with 

improved spatial resolution needs to be designed to record/stimulate a small population of 

neuron for cortical neural interfaces [46, 47].

Two of the challenges faced in developing a laser deinsulation process were 

damage to the thin film tip metallization and redeposition of carbon by-products that can 

lead to variations in the electrode impedance and charge injection capacity [48]. Specific 

aims to address these challenges are 1) solving the laser-induced film damage issue 

through optimization of the fabrication process focused on laser parameters, 2) 

developing a new laser deinsulation method for solving the carbon residue issue, 3) 

developing an activated iridium oxide film (AIROF) tip metallization to expand the laser 

deinsulation process window, and 4) stabilizing a annealing process variation to acquire 

SIROF having both high electrochemical performance (in electrochemical impedance, 

charge storage capacity, and charge injection capacity) and film damage resistance 

against laser power. The objectives of each specific aim are as follows:
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Fig 1.4. Schematic cross-section of the aluminum foil masking process for (a) convex-
and (b) concave-type electrode. The solid line represents the aluminum foil mask.

Excimer Laser

Fig 1.5. Schematic cross-section of laser ablation process for individual electrode tip of 
Utah electrode array. The individual electrode of UEA is directly illuminated by 
laser beam.



(a) Development and characterization of a laser ablation process to deinsulate the 

tips of Parylene encapsulated Utah electrode arrays (UEAs): The effect of 

laser beam fluence and number o f pulse on the Parylene etch rate were 

evaluated in connection with the tip exposure of UEAs. The surface analysis, 

such as X-ray photoelectron spectroscopy (XPS) or atomic force microscopy 

(AFM), was performed using planar test structures. The properties and 

thickness of the SIROF tip metallization were optimized to understand and 

minimize the damage to the film from laser ablation.

(b) Development of a hybrid deinsulation method using a combination of laser 

ablation and O2 RIE, as shown in Figure 1.6: Utah electrodes with fine tip 

exposures were developed by the hybrid deinsulation method to increase the 

selectivity for stimulating or recording a small population o f neurons. The 

removal of carbon debris using an O2 RIE process on the laser ablated active 

area in tips as well as the whole electrode structure was evaluated to increase 

the accuracy, reproducibility, and yield o f tip exposure, and impedance in 

electrode array.

(c) Development of an AIROF microelectrode array that resists damage from 

laser irradiation: The damage o f iridium and iridium oxide using a range of 

laser conditions was compared to determine the capability o f laser 

deinsulation on iridium. Laser parameters were investigated to minimize 

carbon residue and complete removal o f Parylene on the sidewall o f  the 

electrode tip using high fluence (> 1.5 J/cm2) with less number of pulses to 

improve tip reproducibility. Laser deinsulation o f Parylene-C on iridium and
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Excimer Laser Oxygen plasma

Fig 1.6. Diagram of the hybrid deinsulation method using a combination of laser 
ablation and O2 RIE

subsequent activation of iridium film were studied by surface analysis 

methods and electrochemical techniques for activated iridium oxide coated 

UEAs.

(d) Development of a partially deoxidized SIROF Utah electrode array to acquire 

damage resistant films with good electrochemical performance (low 

impedance and high CIC): The annealing temperature was optimized to 

control the amount of deoxidization on SIROF. The charge injection capacity 

was maximized by adjusting the degree of deoxidization of SIROF as low as 

possible. An oxygen diffusion from SIROF to Ti during annealing was 

investigated with a diffusion battier Ir between Ti and SIROF to solve the Ti 

degradation issue.



This dissertation is organized as follows. Chapter 1 introduces the neural interface 

and silicon-based microelectrode array for the neural interface application. The 

encapsulation and tip metallization material for laser deinsulation are discussed. Finally, 

the hypotheses and specific aims of this research are discussed.

Chapter 2 covers the excimer laser system, the electrode tip deinsulation methods, 

and charge injection mechanism/materials found in the literature. Electrochemical 

characterization including electrochemical impedance spectroscopy, cyclic voltammetry, 

and potential transient for electrode materials is reviewed.

Chapter 3 investigates the laser ablation method of Parylene coated Planar and 

3D microelectrode. The effect of laser beam fluence and number of pulse on the Parylene 

etch rate was studied to achieve the laser deinsulation of Parylene coated 3D Utah 

electrode array. This work is published in Sensor and Actuator: B Chemical, 2012.

Chapter 4 reports the hybrid deinsulation method using laser ablation and oxygen 

reactive ion etching. The experiments were designed to develop Utah electrodes with 

controllable fine tip exposures and solve the carbon debris issue by O2 RIE treatment on 

the laser ablated active area in tips. This work is published in Micromechanics and 

Microengineering, 2012.

Chapter 5 compares the as-deposited SIROF and AIROF coated Utah electrode 

array to get a high resistance array to film fracture. This work is published in the Journal 

of Neuroscience Methods, 2013.

Chapter 6 investigates the partially deoxidized SIROF Utah electrode array to 

stabilize an annealing process variation to acquire a SIROF having both high

13



electrochemical performance and film damage resistance against laser power. This work 

will be submitted to Biosensors and Bioelectronics, 2013.

Finally, the advantages and disadvantages of the laser deinsulation method in 

implantable microelectrodes are summarized and conclusions discussed in Chapter 7. 

Additionally, suggestions for future study are also provided in Chapter 7.
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CHAPTER 2

BACKGROUND AND STATE OF THE ART: TIP 

DEINSULATION AND ELECTROCHEMISTRY 

OF CHARGE INJECTION MATERIALS 

2.1 Tip Deinsulation

2.1.1 Deinsulation Methods 

The purpose of deinsulating the encapsulation material from microelectrode 

arrays is to generate the active electrode tips to acquire or stimulate neural signals from 

tissue. Early microelectrode deinsulation techniques used heating to melt the insulation or 

high-voltage discharges to ablate the material [1, 2]. The heating method led to the 

breakdown of the insulation adjacent to the deinsulated tip. The use of high voltage 

discharge degraded the adhesion of the Parylene adjacent to the tips and caused tiny 

fractures along the electrode shaft. This resulted in decreased impedance values that 

could degrade the encapsulation lifetime, selectivity, and increase cross talk between 

channels.

Another recently reported technique uses a diffusion-limited deposition (DLD) of 

Parylene on neural probes and can be used to generate unencapsulated electrode sites [3]. 

DLD technique makes use o f a concentration gradient o f precursor monomers during 

Parylene deposition between the inside and outside o f a specially designed container with 

perforated lids through which the needle-like microelectrodes were placed. However, this



method is not appropriate for deinsulation of UEAs to get a controllable exposure and 

highly uniform impedance values o f electrode tips because it needs specific containers for 

different types of electrode to be coated. Chemical etching is also a possibility, but is 

difficult to employ due to the inertness o f the Parylene to most solvents. Dry etching 

(a.k.a reactive ion etching (RIE)) processes are currently considered the most suitable 

method to deinsulate Parylene, with the use o f an oxygen plasma being most common [4

6].

Both photoresist and aluminum foil masks in conjunction with oxygen plasma 

etching have been investigated in UEA technology [7-9]. However, the use of a 

photoresist mask has been found to deteriorate the surface properties o f Parylene-C 

during hard baking or the resist removal by acetone. Therefore, the use o f aluminum foil 

mask and poking the electrode tips to the desired exposure length while deinsulating the 

Parylene has been adopted as a regular masking procedure in UEA technology. However, 

poking o f aluminum electrodes is a time consuming process, and also has an inherent 

problem o f nonuniformity and repeatability, leading to a large variation in the impedance 

values (o > 0.5 MQ). Moreover, the foil mask cannot be used for other electrode 

geometries like variable height electrodes, as introduced in Chapter 1.4.

2.1.2 Laser Beam Characteristics 

Laser is an acronym for “Light Amplification by Stimulated Emission of 

Radiation”. The light is amplified through a stimulated-emission gain process in media, 

including solids, gases, and liquids, resulting in classes of lasers including solid states 

lasers, gas lasers, and dye lasers. The wide range of laser source from ultraviolet (UV) to
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infrared (IR) enables micromachining of a variety of materials, including ceramic, metals, 

and polymers.

Several properties like wavelength, mode, and polarization determine the 

characteristics of a laser beam. The wavelength of a laser is determined by the transitions 

from the stimulated emission phenomenon. Even if lots of different wavelength lasers 

were developed, only a few of them, such as He-Ne, Nd:YAG, CO2, and excimer lasers, 

are significant commercially in processing of material. The high spatial and temporal 

coherence allow a laser collimated to long distance with a narrow spectrum. Standing 

electromagnetic waves are formed by optical oscillation from a laser cavity geometry. 

The specific geometry of resonator determine a transverse standing wave as a mode of a 

beam. A variety of mode patterns is presented in Figure 2.1 and is denoted by TEMplq (p 

is for radial zero field, l is for angular zero field, and q is for longitudinal zero field). The 

index (p, l) determines a spatial distribution as a transverse mode. The index q represents 

the number of axial mode under the same spatial distribution. The gain and loss are 

different between each transverse mode as different spatial distributions. Higher order of 

mode has more volume and a larger gain. However, it is harder to focus the beam because 

the laser beam is not from a virtual source.

2.1.3 Excimer Laser System 

High-resolution features (a depth and spatial resolution are around the order of 0.1 

p,m and 1 p,m, respectively) can be generated using an excimer laser for micromachining 

polymers. An excellent quality of MEMs features is enabled by the short wavelength 

(100 ~ 400 nm) in the ultraviolet region of the spectrum. The name “excimer” originated 

from excited dimer that exists very shortly as a molecule in an electronic excited state.
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Fig 2.1. Various patterns of TEM mode.

When the excited dimer transits to the ground state, it divides into the individual atoms 

that are repelled from each other. The dissociation of excited molecules has a very short 

lifetime (< ~ 10 ns) and causes the stimulated emission of the laser. Widely used excimer 

lasers are krypton fluoride (KrF), argon fluoride (ArF), and xenon chloride (XeCl) which 

each have different wavelengths. The pumping of the ground state atoms to excited 

energy level is produced by an electric discharge through gas mixture with high 

excitation voltage (kV).
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KrF excimer lasers have a relatively high photon energy (5 eV) which enables 

them to manufacture the microscale structure due to efficient ablation o f material from 

the surface [10]. The schematic potential diagram of the KrF excimer laser is shown in 

Figure 2.2 [11]. The upper level in the diagram is a bound state populated with Kr+, F-, 

and buffer gas (Ne or He). The minimum potential energy in the curve is unstable such 

that the excited dimer molecule; KrF* collapses to the ground level; Kr + F state with the 

occurrence of photon emission. The duration of the KrF* state is less than a few

Fig 2.2. Schematic potential diagram of KrF excimer laser. The upper level in the 
diagram is a bound state populated with Kr+, F-. The excited dimer molecule; 
KrF* collapses to the ground level; Kr + F state with the occurrence of photon 
emission.



nanoseconds and the unbounded Kr + F state is bonded covalently and separates Kr and F 

atoms. The gas discharge makes the lower state pump to the upper ionized energy state; 

Kr+ + F". This excitation cycle is repeated continually for the excimer laser transition. 

KrF excimer lasers are useful for very sharp cutting without heat production because the 

energy of the short frequency in the ultraviolet region is high enough to break the 

chemical bonds of material and does not penetrate deeply into the surface of materials, 

which is suitable for the application of refractive surgery, micromachining, and 

microlithography.

2.1.4 Laser Deinsulation 

Deinsulation using laser machining is an appropriate alternative to solve the 

challenges associated with aluminum foil mask followed by oxygen plasma deinsulation. 

Excimer lasers are the most applicable for deinsulation of Parylene-C due to their high 

resolution and power to remove the encapsulation without thermal effects on the substrate 

and adjacent material. However, one significant drawback of excimer laser ablation of 

Parylene is the residue and debris that accumulate on and adjacent to the ablation site. 

During the laser ablation process, photochemical breaking of bonds occurs with removal 

of Parylene [12]. Thes mechanisms can generate small molecular fragments which can 

accumulate in the form of residue on the surface [13, 14]. The fragments in UV ablation 

of polymers are combination of gaseous by-products (C2, CO, and CO2) and fracturing of 

the long chains of the polymer molecules (monomer and oligomer).

Carbon residue from the laser ablation can increase the impedance and decrease 

the charge storage and charge injection capacities on the surface of the neural interface 

electrode because it exists on top of the metalized active material [15]. It can be removed
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by laser illumination during the laser deinsulation process in case o f a large tip exposure. 

When more fluence and number of pulse are irradiated on the electrode tip surface to get 

the large exposure area, there is more removal o f carbon debris with less redeposition due 

to the laser power. But for neural interface applications [16, 17], small tip exposures on 

the order of tens of micrometers are needed to get selective electrical transduction. The 

relatively small tip area that can be generated by laser deinsulation is more influenced by 

the carbon residue due to lower flux on the electrode tip surface. Formation o f these 

residues can be decreased significantly using vacuum [18], helium, or oxygen [19] 

controlled ambient relative to ablation in air. However vacuum, without any medium to 

push the debris into the exhaust, [18] cannot remove the debris thoroughly. Low Z shield 

gases (e.g., He) are the most effective methods to avoid momentum exchange with the 

surrounding atmosphere. Although helium or oxygen environment help to dramatically 

reduce the surface debris, residue is still present around the ablation sites [19, 20].

To minimize the formation o f carbon residues, the laser flux needs to be high 

enough to efficiently remove the Parylene-C while not damaging the surface of the 

underlying material. For instance, the laser deinsulation of Parylene on gold makes it 

difficult to optimize the laser parameters (e.g., fluence and number of pulse) because of 

the difference o f ablation threshold (a minimum fluence o f laser to ablate the target 

material) between gold (255 mJ/cm2) and Parylene (340 mJ/cm2) for KrF excimer laser

[15]. The difference of ablation threshold can bring about an incomplete ablation of 

encapsulation material resulting in degradation o f impedance on active material. It is 

critical to select an underlayer that has a higher ablation threshold than the encapsulation 

to prevent damage to the active surface.
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A schematic diagram of the KrF excimer laser system (Optec MicroMaster) used 

in this study is presented in Figure 2.3. It has x-y stage motion and a computer software 

for laser/stage control. The sample is fixed by vacuum chuck and the motion stage has ~

1 |im resolution in each direction. The 248 nm KrF laser can photoablate Parylene-C. The 

pulse duration for this system is ~ 5 nsec and the repetition rate of the pulsed mode laser 

was chosen between 100 and 200 Hz. The laser fluence [mJ/cm2] is determined by 

selecting the output energy and demagnification. The laser beam goes through a mask (xy)
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Fig 2.3. A schematic diagram of the laser ablation system is presented that highlights the 
motion stage, beam steering optics, and mask components.



and passes a projection lens which makes a demagnification image (x’y’) on the 

workpiece. The value of demagnification ranges from 3 to 11. The fixed value of the 

laser energy was 10 mJ and the intensity of the beam was adjusted by an optical 

attenuator. The roughly circular electrodes makes the use of a circular laser mask the 

most appropriate.

2.2 Electrochemistry of the Stimulating and 

Recording Microelectrode

2.2.1 The Electrode-Electrolyte Interface 

There are charge transportation and electrochemical processes at the interface 

between the microelectrode and physiological solutions when a solid electrode is in the 

electrolyte. The electrochemical processes at this interface determines not only how this 

transport will occur, but also what chemical changes it will bring about to both the 

electrode and the electrolyte. Charge transport is through electrons (or holes) in 

electrodes, and is conducted through ions in electrolyte. In electrical recording, charge 

flows between the electrode and electrolyte, though high impedance amplifiers are used 

to minimize the current exchange in recording. The need to inject charge for functional 

electrical stimulation results in the need to exchange much greater levels o f charge with 

the tissue. When an electrode is in an ionic solution, though a bias voltage is not applied, 

electrochemical reactions occur at the interface. The basic reactions are reduction and 

oxidation:
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where O is the oxidant and R is the reductant. The reaction proceeds in one direction 

thermodynamically. Equilibrium conditions are reached as the reactions take place, 

reaching a condition where no current is transported across the interface and the reaction 

rate in forward and reverse directions is equal [21].

There are two mechanisms to keep a continuous net current flow across the 

interface. One is by capacitive current through the double layer formed by the excess 

charge on the electrode surface and a space charge layer in the solution. The other is by 

resistive current through Faradaic processes, in which charges are actually transferred 

between the electrode and the electrolyte, and chemical compositions in the electrode or 

solution are either oxidized or reduced [22].

2.2.2 Double Layer Charging 

Double layer coupling between the electrode and electrolyte occurs due to the 

difference of charge carriers between electrode and electrolyte. Electrons cannot move in 

an electrolyte, and ions cannot move in a solid electrode. When the applying current is 

larger than a reaction rate across the interface, it builds an accumulation of charge in the 

boundary of the interface. Electrons build up at the electrode surface and ions build up in 

the electrolyte by making the double layer. This double layer behaves like an electrical 

capacitor. In the solution near the interface, the double layer can be further divided into 

several sublayers, as illustrated in Figure 2.4. The charge is covered in a flat sheet close 

to the electrode based on the Helmholtz model [21]. The surface of electrode is 

concentrated in a layer o f adsorbed water molecules forming a hydration sheath called the 

Inner Helmholtz Plane (IHP). Hydrated ions with the opposite charge near the IHP form a 

layer called the Outer Helmholtz Plane (OHP). The two layers of water molecules make
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IHP OHP Diffuse I ay er Bulkelectrolyte

Interfacial layers

Fig 2.4. The surface layers formed when a metal electrode is immersed in an aqueous 
ionic solution. The double layer is formed by excess charge at the electrode 
surface and space charges (oriented water dipoles and ions). Electrons can also 
be transferred directly across the interface during Faradaic reactions [23].

the separation of charge. The diffuse layer is formed by a gradient of ion concentration 

from the OHP to the bulk electrolyte [23].

2.2.3 Faradaic Charging 

The capacitance per unit area for iridium oxide like sputter deposited iridium 

oxide films (SIROFs) and activated iridium oxide films (AIROFs) ranges from 1 to 4 

mF/cm2 which is 100 times greater than the double layer capacitance of platinum or gold. 

The reason for this high capacitance is not the formation o f  a double layer, but presence 

o f  a Faradaic charge transfer mechanism. An electrode establishes contact with the 

surrounding environment, thereby transferring electrons across the electrode-electrolyte



interface via oxidation and/or reduction reactions. All such charge-transfer processes are 

governed by Faraday’s law (i.e., the amount of chemical change occurring at an 

electrode-electrolyte interface is directly proportional to the current that flows through 

that interface), and hence are called Faradaic processes. Electrodes at which Faradaic 

processes occur are also known as charge-transfer electrodes.

Both capacitive and Faradaic pathways can be used for neural stimulation. A 

major problem in the capacitive mechanism is that the current is usually small compared 

to the cell stimulation threshold. The capacitive charge injection ability can be increased 

by adding a thin insulating layer with high dielectric constant on the electrode surface; 

however, this usually is still not sufficient for neural application [24].

Faradaic reactions at the electrode-electrolyte interface can be divided into two 

categories: reversible reactions and irreversible reactions. One example of a reversible 

Faradaic reaction is the redox o f  iridium oxide:

Ir3+ ^  Ir4+ + e (2.2)

In such reactions, the change made to the electrolyte or the electrode can be 

completely undone by reversing the direction o f  the current. Most common irreversible 

Faradaic processes include the electrolysis o f  water:

2H2O + 2e- ^ H 2 t  + 2OH-

2H2O ^  O2 t  + 4H+ + 4e- (2.3)

and the oxidation o f  chloride ions:
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2Cl- ^  Cl2 t  + 2e- 

Cl- + H2O ^  ClO- + 2H+ + 2e- (2.4)

Irreversible reactions will significantly alter the chemical composition and pH  of 

the electrolyte (i.e., the extracellular fluid), produce biologically toxic products, or 

corrode the electrode. This not only damages the electrodes, but also causes abnormalities 

in the neural function or the cell structure [25]. Therefore, irreversible Faradaic reactions 

are undesirable for neural stimulation.

2.3 Electrochemical Characterization of Microelectrode

2.3.1 Cyclic Voltammetry

Cyclic voltammetry (CV) is one of the key techniques used in electrochemistry 

research. Cyclic voltammetry can be used in quantitative investigations of equilibrium 

potentials, reaction rates, and absorption processes. Often, however, cyclic voltammetry 

is used qualitatively to get a general idea of what reactions and electrode processes are 

occurring in an electrochemical system. Cyclic voltammetry has a number of other uses. 

One is to measure the effective charge storage and charge transfer capabilities of an 

electrode. Another is to deposit materials onto an electrode surface and characterize the 

extent of such deposition. Repeated CV testing can also be used as a simple means of 

checking electrode stability.

Cyclic voltammetry is a controlled potential technique. In its simplest form, the 

potential is swept back and forth between two endpoints at a slow constant rate, typical 

around 50 mV/sec. Typical endpoints are about -0.6 and 0.8 V vs Ag| AgCl for iridium 

oxide that is bounded by the water window. This results in the application o f a low-



frequency, large-amplitude triangular voltage waveform to the working electrode. A 

typical waveform is shown in Figure 2.5. The resulting current is recorded and plotted 

against the applied potential, generating a plot presented in Figure 2.6. This corresponds 

to an electrode that can undergo a single perfectly reversible action R ^  O + ne2, where 

O is the oxidized species and R is the reduced species. Positive current corresponds to the 

forward reaction. Electrons flow out o f  the working electrode. Electrons flowing out 

means that a positive current is flowing in. Negative current corresponds to the reverse 

reaction. As the voltage is swept from Vmin to Vmax and back again, the current follows on

A
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One complete cycle

Fig 2.5. Potential waveform used in cyclic voltammetry. V is a triangular wave between 
Vmax and Vmin.
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Fig 2.6. An example of a voltammogram is presented with some relevant features marked. 
As the voltage is swept from Vmin to Vmax and back again, the current follows the 
path with reduction and oxidation.

the path shown in Figure 2.6, moving in the direction of the arrows. Starting near A, the 

current increases more and more rapidly as it approaches the formal potential E0 . Near B, 

the rise in current begins to slow down, reaching a peak at C. The current continues to 

decay as it goes through region D. Eventually, the potential reaches Vmax at point E, the 

sweep direction reverses, and similar behavior is seen for the negative direction. The 

number of cycles that are run depends on the application and the amount of time 

available.



Voltammograms contain a lot o f  complex information and can be particularly 

difficult to interpret if multiple reactions are occurring. The waveforms seen with cyclic 

voltammetry are a clear indication that even the simplest electrodes involve much more 

than linear resistance and capacitance terms.

In general, the most prominent features o f  a cyclic voltammogram are due to 

mass transport and chemical reactions, the very features simple electrical models tend to 

approximate or ignore [21]. The double layer capacitance and series resistance do show 

up in the observed waveforms, but their effect is usually small and often treated as an 

unwanted distortion. By assuming simple models for mass transport and reactant 

concentrations at the electrode surface, it is possible to derive analytical expressions for 

the observed peak shapes. The theory and interpretation of cyclic voltammetry data is a 

widely researched and a deep topic.

The charge storage capacity (CSC) is calculated from a voltammogram by 

integrating the current with respect to time for either the positive or negative sweep. In 

most cases, it is then divided by the area of the electrode for easier comparison between 

samples. The voltage limits for iridium oxide used in the voltammogram are typically just 

the water window, about -0.6 V and 0.8 V vs Ag|AgCl. If  the electrode will only be 

operated in a specific voltage regime, then it may be desirable to choose other voltage 

limits for the CSC calculation. The CSC is directly dependent on both the voltage limits 

and sweep rate; therefore, one must use a consistent measurement protocol for 

comparison to be useful. The CSC is useful as it represents the maximum amount of 

charge that can be transferred by the electrode while remaining in a set potential window. 

Since thicker oxide layers in iridium oxide tend to source more current [22], it has
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become a popular way to judge the extent o f  oxide growth during formation processes. A 

good iridium oxide electrode will have a CSC of around 30 mC/cm2 [26, 27]. The charge 

capacity is measured with the slow sweep rate (50 mV/s) and only a small fraction of it 

can be safely accessed with typical high-frequency stimulation (< 1 kHz) because porous 

electrodes with high electrochemical surface area (ESA) / geometric surface area (GSA) 

ratio and pore geometry o f  an electrode in electrolyte form a delay-line with a time- 

constant during the high-frequency stimulation [22].

A CV plot comparing Ir and activated IrOx to compare the double layer and 

Faradaic charging is shown in Figure 2.7. In the voltammogram of the activated Ir, there 

is a main current peak at 0.25 V in the positive voltage region and - 0.21 V in the 

negative voltage region. It represents the reversible redox reactions between Ir3+ and Ir4+.
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Fig 2.7. Cyclic voltammograms o f  an Ir and AIROF are presented from planar electrodes 
with 300 |im diameter circle. The CSCc of Ir and AIROF is 3.5 mC/cm2 and 10 
mC/cm2, respectively. The seep rate was 50 mV/s [28].



37

On the other hand, the CV of rectangular shape without any redox reactions in Ir shows a 

capacitive charging of double layer transduction mechanism. The cathodic charge storage 

capacity (CSCc) of Ir and activated Ir is calculated as 3.5 mC/cm2 and 10 mC/cm2, 

respectively, by integration o f the current with respect to time in the cathodic current 

region. The higher value of CSCc in activated Ir is by the Faradaic charging mechanism 

through redox reactions. More details about the experimental methods and results are in 

Chapter 5.

2.3.2 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectroscopy (EIS) studies an electrode’s complex 

impedance over a wide range of AC frequencies. An electrode is biased at some potential, 

usually its open circuit potential, and a small sinusoidal potential variation is applied. The 

magnitude and phase of the resulting current variation is measured. This is repeated over 

a range of frequencies, typically 1 Hz to 105 Hz by a frequency step, building up a 

spectrum, or generated using a multisine excitation [29].

Impedance spectroscopy is in some ways the polar opposite of cyclic voltammetry. 

Both are controlled potential techniques, but whereas cyclic voltammetry is large-signal 

and low frequency, EIS is small-signal and high frequency. As a result, they provide 

completely different types of information about an electrode. Cyclic voltammetry focuses 

on the specifics of mass transport and chemical reactions, while impedance spectroscopy 

abstracts these away and focuses more on the electrical domain. EIS spectra are valuable 

in assessing the recording capabilities of microelectrodes. EIS can be used to investigate 

both tissue and electrode properties. The resistive contribution o f tissue conductivity to 

the overall electrode impedance is estimated from the impedance measured at high
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frequency, where the contribution to the impedance due to charge transfer at the 

electrode-tissue interface is negligible.

Impedance spectra are typically displayed as either Bode plots or Nyquist plots. 

Each has its uses in analyzing electrode behavior. Examples o f both plots are presented in 

Figure 2.8. An equivalent circuit with one time constant in Figure 2.8 (a) leads to a 

Nyquist plot as shown in Figure 2.8 (b) and a Bode plot as shown in Figure 2.8 (c). In a 

Bode plot, the log magnitude and the phase of the impedance are graphed versus the log 

frequency. Bode plots prove useful in model fitting and providing rough impedance

Fig 2.8 An example of (a) equivalent circuit of one time constant, (b) Nyquist plot of 
circuit (a), and (c) Bode plot of circuit (a).
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estimates. In the Nyquist plot, the real and imaginary parts of the impedance are plotted 

against each other in which the imaginary part of the impedance is plotted on the Y-axis 

vs. the real part on the X-axis. Nyquist plot are commonly used to identify which circuit 

model would best fit the observed data. A quick glance at the features in a Nyquist plot 

can reveal which model element dominates the behavior o f  the electrode.

2.3.3 Potential Transient

The potential transient method is used to derive a maximum quantity of injected 

charge in a stimulation pulse within the water window. The charge injection capacity 

(CIC) is an important indication for the selection o f  the active surface material in the 

microelectrode array. A higher CIC is desirable for using smaller electrodes to increase 

selectivity, while maintaining the ability to deliver sufficient charge for stimulation. An 

equivalent circuit model of the electrode-electrolyte interface for iridium oxide is shown 

in Figure 2.9, in which Rs is the electrolyte resistance, Rct is the charge transfer resistance, 

and the CPE is a constant phase element. Due to the nonideal capacitance response at 

many electrode-electrolyte interfaces, a CPE can be used instead of the ideal capacitor. 

The CPE impedance is given by ZCPE = (A(iro)11) '1, where ‘ro’ is the angular frequency, ‘A ’ 

and ‘a ’ are frequency-independent parameters, and 0 < a  > 1. The CPE indicates an ideal 

capacitor for a  =1 and an ideal resistor for a  =0 [30].

The simplest case is to imagine an electrode model with only a resistor and 

capacitor in series. In response to a square current pulse, the observed waveform will start 

with a sharp step in voltage equal to iRs. This will be followed by an exponential ramp 

that can be approximated as a straight ramp for short time periods with slope i/Cdl (Cdl: 

double layer capacitance) as long as the current is applied. At the end of the pulse, the
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Fig 2.9. Equivalent circuit of the electrode-electrolyte systems. Rs is the electrolyte
resistance, Rct is the charge transfer resistance, and the CPE is a constant phase 
element.

voltage will decrease back down by the original voltage, leaving a net voltage of i/Cdi on 

the capacitor.

I f  the charge transfer resistance is included, the behavior is slightly more complex. 

The initial step will be the same, but instead o f a straight ramp, the voltage will 

exponentially approach iRs + iRct with time constant RctCdi. Analytical results can be 

derived for more complex systems o f resistors and capacitors using well-known 

techniques in circuit theory.

In most cases, it is better to make electrochemical measurements with a three 

electrode cell, but for chronically implanted electrodes, using a true reference electrode is 

simply not feasible [31]. This is rarely a problem, since most stimulators are current 

controlled devices and designed to generate a response, not measure electrochemical 

properties. Even without a reference, well-defined voltage can still be measured across 

the working and return electrodes. From an electrochemical perspective, this is a



suboptimal system in which to do modeling. However, it is exactly this lack of precise 

control that must be dealt with and accounted for in a real device.

In this study, current pulses were delivered as charge-balanced biphasic pairs, 

cathodal first, with equal times and current amplitude for each phase to measure CIC. The 

CIC is the magnitude of charge per unit area (mC/cm2) without a damage of the electrode. 

The biphasic pulse-width of 500 p,s was used for the charge injection of unbiased SIROF 

and AIROF planar electrodes and UEAs. As the parameters are defined in Figure 2.10, 

the max negative potential excursion (Emc) was calculated by subtracting the access 

voltage (Va) from the maximum negative voltage in the transient. Va is equal to iRs drop 

and associated with the saline resistance. Emc is also equal to the potential immediately 

after the end of the cathodic pulse when Va is zero. The CIC was derived from 

multiplying stimulation current and pulse width at which the potential (Emc) reaches 

water reduction potential (- 0.6 V) divided by the surface area [22, 30]. More details 

about experimental methods and results are described in Chapter 5 and 6.

2.4 Iridium Oxide as Electrode Material

2.4.1 Considerations in Material Selection 

Degradation of the electrode material during electrical stimulation can occur, 

particularly if the stimulation voltages exceed the water window [32]. The electrode 

material also degrades through exposure to the in-vivo environment for recording 

electrodes. Although ideally polarizable electrodes can create the stimulation with no 

chemical changes at the electrode-tissue interface, commonly used metallic electrodes 

such as platinum have the charge injection limited to less than 100 ~ 300 |iC/cm2 of true 

surface area without using porous structure for high roughness or additional coating of
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Fig 2.10. Potential transient of the SIROF planar electrode shows access voltage (Va) and 
maximum cathodic (Emc) potential excursions during a constant current biphasic 
pulse. The current pulse amplitude and width per phase is 1.2 mA and 500 |is, 
respectively.



high dielectric film [22, 24, 33]. Platinum electrodes, like many other metal electrodes, 

can be used only as low current density electrodes. However, typical clinical applications 

in the central nervous system require higher charge injection with small electrode areas. 

For instance, a retinal implant requires the smaller (~ 10 |im) and highly dense electrodes. 

Hence, stimulation electrodes with Faradaic charge transfer mechanisms can fulfill the 

requirements due to their high charge injection (> 300 |iC/cm2). Iridium oxide provides a 

significant enhancement of charge injection capacity through a valence transition for the 

Faradaic reaction.

An important consideration in selection of electrode material for use with laser 

deinsulation is the susceptibility o f  the material to degradation by laser irradiation. 

Materials have different values for their laser ablation threshold. The threshold of 

Parylene-

C made in this study was around 250 mJ/cm2. A more robust deinsulation process needs 

an electrode site material that has a higher ablation threshold than the encapsulation 

material. Iridium oxide thin films do not have a high resistance to laser power during the 

ablation of Parylene-C because it has relatively small ablation threshold (< 700 mJ/cm2). 

The damage resistance of IrOx needs to be improved, or the deinsulation process altered 

to prevent damage to the electrode sites.

2.4.2 Iridium Oxide

Iridium oxide that is used in this study is one of most attractive electrode 

materials because it has a high charge injection capacity to facilitate stimulation 

applications. IrO2 has a rutile-like structure containing six coordinate iridium and three 

coordinate oxygen, as shown in Figure 2.11. Rutile is the common mineral form of
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Fig 2.11. The unit cell of the Rutile structure of iridium oxide (IrO2) is presented. The 
silver balls represent Ir, and the red balls represent oxygen.

titanium dioxide. When grown or deposited on an electrode, iridium oxide is amorphous, 

forming chains and networks of iridium centers [34-36]. The iridium atoms in the film 

can exist in several different oxidation states. The +3 and +4 states are most stable, but 

others can be present as well. Bound to the iridium atoms are coordinated hydroxide and 

water molecules, some of which act as links between the iridium centers. The bound 

molecules can rearrange themselves in many different ways through rapid chemical 

reactions. The interface between the microelectrode and physiological solution is 

important because the charge transportation as electrochemical processes takes place and 

exerts a direct influence on the electrode performance.

Reduction and oxidation reaction take place in the iridium oxide. One possibility 

is for an electron to be transferred from the underlying metal to an iridium atom in oxide. 

Another possibility is for an electron to be transferred between two nearby iridium atoms. 

Both involve changing the oxidation of one or more iridium atoms between the + 3 and + 

4 states. At high potentials, iridium atoms in the oxide favor the +4 state, at lower



potentials, the + 3 state is preferred. At equilibrium, one would expect there to be a direct 

relationship between the concentration of atoms in each state and the applied potential. In 

order to change the potential in the film, one must convert iridium atoms between the two 

states. This requires a definite amount of charge. A diagram of redox process in iridium 

oxide and the equations o f chemical reaction are shown in Figure 2.12.

Hydrated iridium oxide films have complex microscopic structures that are 

highly dependent on how the film was created. When produced by iridium metal 

activation, AIROF, the film grows as a series o f thin sheets. With each potential cycle, a 

new layer is formed at the metal/oxide interface [26, 27]. Since each layer is formed by 

oxidizing a pre-existing electrode surface, the structure of the film will be strongly 

influenced by the crystal structure and surface morphology of the underlying metal. As 

the film grows, it can develop cracks and pores, some of which are quite large and cause 

surface flaking [37]. Direct use of AIROF in laser deinsulation is difficult because the 

laser ablation of Parylene-C can cause damage on the AIROF surface due to low ablation
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Fig 2.12. Faradaic reaction of iridium oxide film is presented with the equations of 
chemical reaction. The reversible Faradaic reaction involves reduction and 
oxidation as the valence transition between Ir3+ and Ir4+ state of the iridium 
oxide.



threshold of AIROF (< 700 mJ/cm2) that is close to that of Parylene-C (~ 250 mJ/cm2). 

The ability o f conversion from Ir to AIROF makes it possible to use the activated Ir 

through a slight tuning o f the deinsulation process. The laser deinsulation o f  Parylene on 

iridium and subsequent electrochemical activation o f  the iridium can be the alternative to 

use the AIROF with high charge injection ability, though this is not compatible with 

wireless-type UEA due to its inability to activate the iridium through pads.

Another method of depositing oxide films is by reactively sputtering them onto a 

substrate from an iridium target [38-40]. These films have cyclic voltammetric and 

charge injection properties comparable to those of AIROF even if it is affected by 

sputtering process parameters like deposition pressure, substrate bias, sputtering gas 

composition, and sputtering gas composition, etc. [41]. The low laser ablation threshold 

of SIROF, comparable to AIROF, makes it more challenging to directly make use of as- 

deposited SIROF with the laser deinsulation technique. A method of partial deoxidation 

of SIROF using an annealing process which enables the use o f SIROF with high charge 

injection capacity was developed, as is presented in Chapters 5 and 6.

The effective capacitance of iridium oxide is determined primarily by the number 

and accessibility o f the redox centers and its susceptible to limiting charge injection 

densities due to the shape or type of stimulation waveform. For example, when subjected 

to a predominantly cathodal pulse of 0.2 msec, the electrode can inject only 1 mC/cm2. 

However, the electrode can inject almost 3.5 mC/cm2 when the cathodal pulses are 

interspersed with an anodic bias voltage. The anodic bias voltage returns the 

electrode/oxide to its highest stable valence state between treatments, thereby increasing 

the charge injection ability o f the electrode [42, 43]. Also, transport and conductivity
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limitations during the short treatment timeframes restrict the utilization of the large

charge injection capacity o f  such electrodes.
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A B S T R A C T

U tah  e le c tro d e  a r ra y s  (U EAs) a r e  h ig h ly  e ffec tiv e  to  m e a su re  o r s t im u la te  n e u ra l a c tio n  p o te n tia ls  fro m  
th e  c e n tra l  o r  p e r ip h e ra l  n e rv o u s  sy s te m . T h e  m e a su re d  s ig n a ls  c a n  b e  u sed  fo r a p p lic a tio n s  in c lu d in g  
c o n tro l  o f  p ro s th e t ic s  (re c o rd in g ) a n d  s t im u la tio n  o f  p ro p r io c e p tiv e  p e rc e p ts . T h e  UEAs a re  c o a te d  w ith  
b io c o m p a tib le  P ary lene-C . a n d  th e  e le c tro d e  t ip s  a re  d e in su la te d  to  e x p o se  th e  ac tiv e  e le c tro d e  co a ted  
w ith  sp u tte re d  irid iu m  o x id e  film s (SIROFs) ro t ra n s d u c e  n e u ra l  signals. In co n v e n tio n a l UEA techno logy , 
th e  e le c tro d e  t ip s  a re  d e in s u la te d  by p o k in g  th e  e le c tro d e s  th ro u g h  a lu m in u m  foil fo llo w ed  b y a n o x y g e n  
p la s m a  e tc h  o f th e  e x p o se d  a re a s . H ow ever, th is  m e th o d  su ffe rs  from  lac k  o f  u n ifo rm ity  an d  re p e a ta b il i ty  
a n d  it is t im e  co n su m in g . W e focus o n  la se r tip -d e in su la tio n  te c h n o lo g y  th a t  can  p ro v id e  a  re p e a ta b le , 
un ifo rm , a n d  less  t im e  cons tim ing  t ip  e x p o s u re  for UEAs. T h e  la se r  d e in su la te d  SIROFa r e a  is c h a ra c te r iz e d  
by  X -ray  p h o to e le c tro n  sp e c tro sc o p y  (XPS), sca n  ning  e le c tro n  m ic ro sc o p e ( SEM ), a to m ic  fo rc e  m ic ra sc o p e  
(AFM), a n d  by m ea su rin g  th e  im p e d a n c e  o f th e  e x p o se d  s ite s . T he v a lu e  o f  im p e d a n c e  a n d  XPS p ea k s 
sh o w e d  th a t  th e  P ary len e  w a s  c le a rly  re m o v e d  T he d a m a g e  in d u c e d  by la se r irra d ia tio n  on  th e  SIROF 
film  w a s a ls o  in v e s tig a te d  to  u n d e rs ta n d  th e s e le c  tiv ity  o f  la s e r  d e in su la tio n . T h ick e r SIROF film s sh o w e d  
b e t t e r  re s is ta n c e  to  fra c tu re . T h e  re su lts  in d ic a te  t h a t  la s e r  d e in s u la tio n  is  a n  effec tiv e  m e th o d  to  etch  
P a ry le n e  film s.

© 2 0 1 2  E lsev ier B.V. All r ig h ts  r e s e rv e d

1. In tro d u c tio n

Neural interfaces for chronic im plan tation  need to  be encapsu 
lated by a b iocom patible m aterial to  p ro tect the device from the  
harsh physiological env ironm ent. In addition, the encapsulation  
m aterial m ust be b iocom patible in contact w ith  th e  neural tissue in 
the  vicinity o f the  device. Parylene-C  w hich  has a polym er structu re  
as p resen ted  in Fig. l , i s  a rep resen tative m aterial for encapsulation  
in biom edical im plants and  has good adhesion, uniform ity, electri
cal insulation, and  biological and  chem ical inertness, is non-toxic 
to  body tissue [1 -3 ].

Neural recording  and stim ulation  requ ire  the rem oval o f th e  
Parylene from  the active electrode tips o f  th e  UEA to  facilitate 
transduction  [4]. In very early designs, the recording  tips o f th e  
m icroelectrodes w ere  exposed e ith e r by usinga  hea ting  elem en t to 
m elt back th e  insulation o r by a high-voltage arcing techn ique [2], 
The heating  m ethod  usually led to  th e  breakdow n of the  insulation
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nea r the  tip after im plantation . The high voltage arcing technique 
resu lted  in poor adhesion  of the  Parylene insulation  a t th e  tips and 
caused  tiny  fractures along the electrode shaft, w hich decreased 
th e  im pedance values. In addition, th e se  m ethods m ade it diffi
cult to  control the size o f the tip exposure. Several o th e r m ethods, 
such  as chemical etching, canno t be used because Parylene is 
in e rt to  m ost solvents. Therefore, dry e tching  processes are cur
rently  considered th e  m ost su itab le  m ethod, and  these  include 
p lasm a etching, ion reactive etching, and  deep  reactive etching
[5],

Oxygen plasm a etching  is th e  standard  m ethod to  rem ove Pary
lene from th e  electrode tip  in  UEA m anufacturing  [6]. Both the 
pho to resist and th e  alum inum  foil m ask w ith  oxygen plasm a etch
ing  have been  investigated in UEA technology [7 -9 ]. However, 
th e  pho to resist e tch ing  m ask changes the surface properties of 
th e  Parylene. Therefore, poking the electrode tips th rough an alu
m inum  foil to  the  desired exposure length  for deinsu lation  of the 
Parylene has been adopted  as a regular m ask ing  p rocedure in UEA 
technology. However, th e  poking o f an a lum inum  m ask is a tim e 
consum ing process th a t is not practical on a p roduction  scale, 
and  it also has an  inheren t problem  of non-uniform ity and poor 
repeatab ility  leading  to  a large variation  in th e  im pedance values. 
M oreover, th e  foil m ask canno t be used fo r m ore com plex geom e
tries, such as variab le  heigh t electrodes.

http://www.elsevier.com/locate/snb
mailto:je-Min.Yoo@ut3h.edu
http://dx.doi.org/mi016/j.snbL2012.03.073
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Fig. 3. Schematics diagram  of the laser ablation system .

substrates by DC and Pulsed-DC sp u tte r  deposition, respectively 
(TMV Super Series SS-40C-IV Multi Cathode Sputtering system). 
The titan ium  acts as an adhesive layer and  w as deposited  in 
Ar am bient w ith  flow ing o f 150sccm  at a cham ber p ressure of 
20m T orr and spu tte ring  pow er o f 90 W for 5m in . The titan ium  
ta rget w as 99.6% pure* 3 in. in  d iam eter and 0.125 in. in th ickness 
(KurtJ Lesker, Pittsburgh, PA). SIROF w as deposited  in Ar and  0 2 
plasm a w ith  both  gases flowing a t  th e  rate  o f 100seem . The spu t
te ring  pow er w as 1 0 0 W w ith  deposition pressure o f lO m Torr. 
The deposition rate w as lO nm /m in . The pulse w id th  and fre
quency w ere  2016 ns and  100 kHz, respectively .The iridium  target 
w as 99.8% pure, 3 in. in d iam eter and 0.125 in. in  thickness (KurtJ 
Lesker, Pittsburgh, PA). Three different th icknesses o f  iridium  oxide 
films w ere  deposited  on flat substra tes  in o rder to  investigate film 
dam age from the laser. Annealing (Lindberg A nnealing Furnace, 
3 7 5 °C using  98% Ar and 2% H2 form ing gas) w as perform ed to  
im prove the adhesion  betw een  the  deposited  films and th e  sub
strate , and  aid in  the  form ation o f Ohmic contacts, Parylene (3 |im ) 
film w as deposited  by chem ical vapo r deposition  using a Paractech 
3000 Labtop deposition  system . To im prove th e  chem ical adhesion  
betw een the  Parylene and  th e  undernea th  film, 0.5% Silquest A -174 
silane w as used. Finally, th e  Parylene film was rem oved from the  
active area by the la se r system  (Optec M icroM aster Excimer Laser, 
KrF 248 nm).

The UEA is a 3-D silicon-based s truc tu re  consisting of a 10 x 10 
array  of tapered  silicon electrodes w ith  a leng th  o f 1.5 m m  and 
pitch o f 400 |im  betw een  tips as show n in Fig. 2(a). The detailed  
SEM im age on the right presents several e lectrodes ju s t  a fter tip  
m etallization  w hich shows th e  connections to  iridium  oxide film

th a t form th e  active surface. Fig, 2(b) is the  schem atic view  of the 
process flow for w afers-scale fabrication of UEAs, To m ake the 
UEAs, a 2 m m  thick, p-type, c-Si (1 0 0) w afer w ith  the  d iam eter 
o f 75 m m  and a resistivity  of 0 .01-0.05 £2 cm  w as prepared  as 
substra tes. Back-side dicing, glassing and  grind ing  w ere needed to  
form the back side m etal pad for w ire bonding. Front-side dicing 
and  w e t etching  w ere then  used to  shape the electrodes. Then, 
a rray  singulation, tip  m etallization  and Parylene deposition w ere 
perform ed to  com plete th e  devices. During the  tip  m etallization, 
titan ium  and  iridium  oxide w ere deposited  by DC and Pulsed-DC 
s p u tte r  deposition, respectively, and annealed  in a w ay sim ilar 
to  th a t described for the p lanar substrates. For th e  last step, tip 
deinsu lation  w as carried  ou t. The fabrication o f UEAs is described 
e lsew here in detail [7,15].

2.2. Excimer laser system  and optical layout description

The laser deinsulation  system  used in th is study includes an 
excim er laser, sophisticated beam  delivery optics, a precision sam 
p le  m otion stage, and ac o m p u te r w ith  a flexible contro l softw are as 
show n in Fig. 3. The w avelength of th e  laser is 248 nm  (KrF) w hich 
is capable o f pho toablating  the  Parylene films. The laser operates in 
a pulse m ode, typically pulsing a t a ra te  of 100 Hz. Pulses are  5 -6  ns 
in duration . The flue nee can be controlled by laser energy.

This system  uses projection optics w here  th e  laser beam  is 
passed  th rough a circular mask, and  then  w as d em agnified and 
focused on th e  sam ple. A circular m ask w as used  because the 
electrode base is circular. The sam ple for laser deinsulation  w as 
m ounted  on a vacuum  chuck. The sam ple m otion  stage had a
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Fig. 8. X-ray photoem ission spectra of (a) the Parylene film (left) and laser ablated spot on Parylene coated iridium oxide film (right), (b) as deposited iridium oxide film 
(left) and Ir4 f peaks in high resolution scan (right) and (c) laser ablated spot on as deposited iridium oxide film (left) and Ir 4 f peaks in high resolution scan (right).

110 fjim x 110 fjim to  analyze th e  ablated area of hole. The C Is  peak 
in th e  figure could be due to th e  debris o f carbon com ing onto  th e  
surface after the Parylene decom position by the  laser energy. D ur
ing ablation, the m olecular fragm ents ejected  from  th e  ablation 
zone could have the m om entum  exchange w ith  the surround ing  
a tm osphere and could have been redeposited  on the ablated  area. 
The redeposition occurs generally  in vicinity o f the ablation area. 
A lthough th e re  a re  carbon deposits in the  ablated area indicated  by 
the C 1s peak, th e  absence o f th e  chlorine peak indicates th a t the  
Parylene has been rem oved.

Fig. 8(b) and (c) p resen ts XPS spectra o f an  as-deposited  irid
ium oxide and  a laser irradiated spo t on th e  irid ium  oxide film. 
Both spectra show  the  Ir 4 f and  O l s  peaks. These peaks a re  sim i
lar to  those observed in  the right of Fig. 8(a) excep t for th e  carbon 
peak. The im ages on the righ t o f Fig. 8(b) and (c) show  the  detailed 
Ir 4 f  peaks w ith  high resolu tion  w hich has very m etallic charac
teristics. For the as-deposited  irid ium  oxide show n in Fig. 8 (b) 
the peak position is 61 eV for Ir 4 f-jn and  64eV  for Ir 4 f5n . H ow 
ever, after laser ablation the  position of th e  peaks shifted to the  
low er binding energy as  show n in Fig. 8(c). This is a ttr ib u ted  to the  
rem oval o f the  natu ral oxygen from  th e  surface by laser energy. 
The XPS analysis show s th a t th e  laser ablation carried out in this

experim en t d id  no t change elem en ta l/chemical com position o f the 
iridium  oxide.

Finally, th e  laser tip deinsu lation  was perform ed on the 3-D Utah 
electrode array. The thickness of th e  irid ium  oxide film w as 1,1 p jn , 
w hich  w as determ ined  from prior experim ental da ta  on the pla
nar s tructu re as described previously. The elec trode  tip exposure 
should be targeted  a t m ore than  20 p,m from  th e  tip of the elec
trode to th e  encapsulation  edge in the Utah electrode to acquire 
good neuron  sensitivity and im pedance value enough for neural 
recording  applications in cortical tissu e  [6]. Fig. 9 shows 3 0 ; tilted 
scanning  electron  m icrograph im ages o f a Utah electrode tip  w ith  
1.1 fim  thick irid ium  oxide film after laser illum ination. Fig. 9(a) 
show s th e  im ages o f laser deinsu lated  tips after they w ere  exposed 
to 35, 100, and  200 laser pulses w ith  a fluence of 1440mJ/cm2. 
The exposures o f the  electrode tip to th e  encapsulation  edge are 
~ 5 , 30, and  90 |xm for 35, 100, and  200 laser pulses, respectively. 
Fig. 9(b) show s th e  im ages of laser d e insulated tips after they  w ere 
exposed to  the  fluence of 1200, 1440, and  1680m J/cm 2 w ith  150 
laser pulses. The exposures of th e  electrode tip to the encapsula
tion edge are  *-45, 60 and  80 p,m for the  fluence of 1200,1440, and 
1680 mJ/cm2, respectively .These resu lts indicate tha t th e  exposure 
of the  electrode tip can be controlled by fluence and num ber of
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Fig. 9 . 30c tilted  scanning electron micrograph using backscattered electron images of a Utah electrode tip  having 1.1 jim  thickness iridium oxide film after laser deinsulation 
by (a) 35,100, and  200 pulses with the fluence of 1440 mJ/cm2 and (b) fluence of 1200,1440, and 1680 mJ/cm2 w ith  150 laser pulses.
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Fig. 10. Im pedance values as a function of the tip exposure of laser deinsulated Utah electrode. The tip exposure lengths were m easured by SEM a t a 30“ sample tilt angle. 
The solid line is th e  trend  line w ith the equation y  -  41.309te"1>l06.
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laser pulses. The uneven rem oval o f Parylene from th e  electrode tips 
is a ttribu ted  to  th e  nonuniform ity of laser pow er and the varying 
oblique angles betw een the laser beam  and th e  electrode tip su r
face. However, the tip  exposure w as highly reproducible, leading to 
the sam e area of exposure under th e  sam e deinsulation  conditions.

Fig. 1 0 show s th e  im pedance values as a function of the tip  expo
sure of laser deinsulated  Utah electrode arrays. The y-axis is a  log 
scale to express the  im pedance value in th e  en tire  tip  exposure 
range from  ~2 |xm to —130 p,m. The tip  exposure lengths w ere  
m easured  by SEM a t a 30c sam ple tilt angle. The solid line is the  
trend  line w ith the equa tiony  = 41 .309x_ 1 -406.The im pedance value 
becam e around  0.02 as th e  tip  exposure is increased beyond 
140 |im  and becom e larger than  1 M12 for tip exposures of less 
than 20 |xm. The rather high deviation of im pedance values from 
the trend  line is a ttr ib u ted  to the variation of the contact force 
of the  w orking  p robe during  im pedance m easu rem en t and the  
variation of th e  am oun t of carbon redeposition  on th e  active tip  
surface during  th e  laser ablation process. The electrode tip  expo
sure larger than  100 |xm  provides th e  im pedance value o f a few  tens 
o f kilo-ohm t w hich is th e  norm al ta rget im pedance value for neural 
interface applications [6|.

4. C onclusions

This study dem onstra ted  th a t the  laser ab lation  using a KrF 
excim er laser is an  effective deinsulation  m ethod for Parylene- 
coated U tah electrode array. O ptim um  conditions for deinsulating  
the electrode tips in the  UEA using th e  laser ablation w ere  inves
tigated through XPS„ SEM, and AFM analyses and im pedance 
m easurem ent. The thickness of the irid ium  oxide film th a t is resis
tan t to the film fracture induced by laser energy  w as derived and the  
param eters of laser ablation in te rm s of the fluence and the n u m 
ber of laser pulses for com plete rem oval of Parylene film from the  
electrode tip w ere also derived. The laser ablation process w as used 
for deinsulation ofP ary lene-coatedU tah  electrode array, producing 
the electrode im pedance in th e  range of tens of th a t is su itab le 
for im plantable neural interface deviceapplications. A m ore sophis
ticated m ethod  to  rem ove the residual carbon redeposited  on the  
deinsu lated  electrode surface will be explored to reduce the ra ther 
large variation of the electrode im pedance value. The results su g 
gest th a t the laser ablation using a KrF excim er laser is acceptable 
for de insulation  of the Utah electrode tips and  m ore com plicated 
electrode structu res for im plantable device applications.
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Abstract
Electrodes used for neural interfaces are typically encapsulated by b iocom patible materials 
such as Parylene-C. Tips o f  a U tah electrode array (U E A ) for recording neural action  
potentials are typically exposed using a reactive ion etching (RIE); however, it has limitations 
due to the com plex 3 D  geom etry o f  electrode arrays, resulting in nonuniformity o f  deinsulated  
area, d ifficulty in achieving very fine tip exposure, and decrease in selectivity in acquiring the 
neural signals. The laser ablation technique can be used to deinsulate electrode tips with 
exposures sm aller than 20  /im . However, the electrode arrays suffer from increased im pedance 
due to redeposition o f  the carbon debris produced by the ablation o f  the Parylene-C on the 
active area o f  the electrodes. The hybrid laser and plasm a etching uses a laser (KrF) ablation 
follow ed by an oxygen  reactive ion etching process to  better control tip exposure, particularly 
for electrode arrays w ith more com plex geom etries, and a low er electrode im pedance at the 
same tim e. Characterization o f  the deinsulated electrode surface by scanning electron  
m icroscope (SE M ), x-ray photoelectron spectroscopy (X P S ) and im pedance o f  a Utah  
electrode array (U E A ) suggests that the hybrid laser/R IE  method is  suitable for deinsulation  
o f  U E A s for neural interface applications.

(Som e figures may appear in colour only in the online journal)

1. I n t r o d u c t i o n

In order to record neuronal action potentials an d /or  local 
field potentials w ithin the brain, neural interface electrodes 
should be implanted. S ilicon-based implantable electrodes 
including the Utah electrode array (U E A ) and the Michigan  
probes are passivated using bi(com patib le materials such as 
Parylene-C on the inactive areas to insulate the electrode sites 
and to protect the brain tissue [1]. Tn order to record neural 
signals or stim ulate neurons the active electrode sites should  
be exposed. The deinsulation o f  electrodes in neural interface 
devices has been an issue as various types o f  electrodes 
with com plex geom etries are developed [2, 3]. Deinsulation  
m ethods reported in the literature include electrical discharge,

w et etching, dry etchi ng and laser abl ati on [3 -5 ]. The electrical 
discharge method has disadvantages including poor control 
over the tip exposure and poor adhesion o f  the Parylene-C layer 
near the exposed  tip o f  the electrode. M oreover, it can cause  
tiny fractures along the electrode shaft resulting in increased  
im pedance value. The w et etching m ethod is  challenging for 
rem oval o f  the Parylene-C because this material is chem ically  
inert and thus is only etched by a few  exotic solvents. Reactive 
ion etching is a relatively clean and effective m ethod to remove  
the Parylene-C insulation, so has been adopted for u se on a 
Utah electrode array [6] with 10 x  10 electrodes shown in 
figure 1 (a).  This technique uses an alum inum foil as an etching 
m ask. The electrodes are poked through the aluminum  foil to 
exp ose  the tips to  a desired length [7]. Figure 1(6) show s
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Figure 1. (a) Photograph of a Utah electrode array with 10 x  10 clectrodcs, (fc) SEM image o f  a Utah electrode tip fabricated by the 
oxygen plasma etching using an aluminum foil mask.

the SE M  im age o f  a tip o f  a U EA  exposed by the oxygen  
plasm a etching m ethod with an alum inum foil mask. This 
method is sim ple and can provide electrode tips with relatively 
low  im pedance. However, the im pedance o f  electrodes within  
the U E A  has a large standard deviation (a  >  0 .5  M Q ) 
because o f the non uniform ity o f  the tip exposure. In addition, 
the poking o f  an aluminum foil m ask is done manually and 
thus is a time consum ing process. M oreover, the fo il masks are 
difficult to  use for com plicated electrode geom etries including  
convoluted-, cylindrical-, or spherical-shaped electrode arrays 
that have nonlinear gradients o f  electrode heights. Those 
com plicated electrode arrays are u sefu l for peripheral nerve 
interfaces, retina interfaces [2] and accessing more com plex
shaped structures in the cortex.

The laser ablation method has been previously  
investigated [8] and applied to remove the Parylene-C from  
the tip o f  the electrodes for neural interface applications 
[9, 10]. S ince the laser ablation can deinsulate individual 
electrodes, it can be effecti vely used for fabrication o f electrode  
arrays with com plex  geom etries. H owever, the ablation o f  the 
Parylene-C with an excim er laser has a significant drawback 
of redeposition o f  the carbonaceous debris on and around the 
ablation site . Laser ablation occurs through a com bination o f  
photochem ical bond breaking and heating that can vaporize 
the material [11]. W hile vaporization and molten expulsion  
o f  the Parylene-C  by the laser ablation can effectively  
rem ove the Parylene-C, sm all and volatile  fragments o f  carbon 
can be accumulated in the form o f  debris on the surface 
[12]. This carbon debris can deteriorate the electrochem ical 
im pedance and the charge injection and storage capacities o f  
the electrodes. W hile the debris can be removed by the laser 
ablation with conditions o f  high fluence and large number 
o f  pulses, the electrode tip exposure (the distance from the 
electrode tip to the Parylene-C insulation edge) becom es large 
( >  50 /im ), For cortical neural interfaces [13, 14], a small tip 
exposure (< 4 0  ^ m ) is typically desired to selectively  record 
or stim ulate a sm all population o f  neurons. To fabricate an 
electrode with a small tip exposure a laser ablation with lower 
fluence is required, w hich can produce more carbon debris 
and thus contribute to increased electrode im pedances. The 
surface debris has been reported to be significantly reduced by

the laser ablation under vacuum [15], helium , or oxygen [16] 
environm ent compared with the laser ablation in air. However, 
the laser ablation under vacuum is som ewhat impractical. The 
u se o f  a shield gas w ith a low  atom ic w eight is one o f  the 
m ost effective m ethods to avoid m om entum  exchange between  
the carbon debris and surrounding atm osphere, resulting in 
reduced deposition o f  the carbon debris on the sam ple surface. 
T h e u se o f  helium  or oxygen environment helps to dramatically 
reduce but does not com pletely elim inate the surface debris 
around the ablation sites.

In this paper, ahybrid m ethod o f  etching Parylene-C using  
the laser ablation and the reactive ion etching (RIE) using an 
inductively coupled  oxygen  plasm a as a post-treatment o f  the 
laser ablated active region to fabricate a carbon residue free 
Utah electrode array is reported.

2. Experim ents

T h e characteristics o f  the laser ablation o f  Paiylene-C  on 
planar Si substrates as w ell as on  electrode tips o f  U E A s  
w ere investigated. Planar Si substrates w ere used for x-ray 
photoelectron spectroscopy (X PS) characterization o f  the laser 
deinsulated surface since this technique cannot be applied to 
U E A  tips. The metal and Parylene deposition  processes for 
the planar sam ples is  identical to  those o f  the U EA . A 50 nm  
titanium film w as sputter deposited fo llow ed  by an iridium  
oxide film  (1 f im )  on /M ype (1 00 ) c-S i w afers by DC and 
reactive pulsed-D C  sputter deposition  processes, respectively  
(T-M  Vacuum Super series). The iridium ox id e lilm was 
reactively sputtered in Ar and O 2  plasma, each flow rates 
o f  100 seem  and using 100 W  and a pressure o f  10 mTorr. 
T h e deposition rate was 10 n m /m in . The titanium lilm was  
u sed  as an adhesion layer betw een the iridium oxide film and 
the Si substrate. T he sputter deposited iridium oxide is an 
active electrode material o f  the electrode tips in a U E A  [17]. 
A nnealing (Lindberg annealing turnace. 375 °C using 98%  Ar 
and 2% H 2  forming gas) was performed for 4 5  m in to improve 
the adhesion betw een the deposited  film s and the substrate, 
and aid in the formation o f  O hm ic contacts. A  3 f im  thick thin 
film o f  Parylene-C was then deposited by a chem ical vapor
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F igure 2. Schematics o f the laser ablation system.

deposition system  (Paractech 3000 Labtop) using the Gorham  
process [6, 18]. To improve adhesion betw een the Parylene-C  
and the Si substrate, an adhesion promoter, Silquest A -174  
silane, was used [6]. The fabrication process o f  the U EA  is 
reported elsew here in detai l [19, 20].

The Parylene-C encapsulation material on a planar sample 
and electrode tips o f  the U E A  was removed by the laser 
ablation. The laser ablation system  (O ptec M icroM aster) used 
in this study has a sm all workstation including a KrF excim er 
laser, sophisticated beam delivery optics, a precision stage 
motion and a control softw are, as show n in figure 2. A KrF 
excim er laser with an ultraviolet wavelength o f  248  nm. 
which has a relatively high optical photon energy leading 
to photochem ical reaction [11], was used. The laser beam  
passes through an adjustable mask (xy ) and then a projection 
lens to form a dem agnified im age ( t V )  on the sam ple. The 
dem agnification D  =  xy/xfy^ is adjustable from 3 to 11. The 
lluence at the w orkpiece is determined by the energy o f  the 
laser and the dem agnification and attenuation in the beam  
delivery optics o f  the laser ablation system . The laser is 
operated in a pulse m ode w ith a repetition rate o f  100 Hz and a 
pulse duration o f  5 - 6  ns. The laser output energy was fixed at 
10 m j and the energy im pinging on the sam ple was controlled  
using an optical attenuator incorporated in the system .

The circular m ask has a diameter o f  550  /im , and 
com bined w ith a dem agnification o f  7 .3  generated a 75  f im  
diameter spot on the w orkpiece. M ore details o f  the laser 
ablation process are described in the other literature [21]. 
R eactive ion etching with O 2  was used to remove carbon 
surface contam ination. The oxygen  plasma etching used  
a March Plasmod (March Plasma System s) w hich utilizes 
an inductively coupled plasm a (ICP). The system  provides

isotropic etching to rem ove the target material uniform ly in 
the com plex-shaped electrode tip [6]. The RF (13 .56  M H z) 
pow er and the pressure for the oxygen  plasma etching were 
150 W  and 4 0 0  mTorr, respectively. This process does not 
require a mask for selective etching to remove carbon residue 
on  the laser-ablated area only since it d oes not etch Parylene-C  
significantly.

The surface m orphology o f  the sam ples after the laser 
deinsulation and the oxygen  plasm a treatment was exam ined  
by a SEM  (FEI Quanta600 FEG) w hich w as operated  
in a  backscattered electrode (B SE ) mode under a high 
vacuum condition. Chem ical and elem ental analysis o f  the 
deinsulated spots was performed using an A xisU ltraD LD  
X PS (Kratos A nalytical) to exam ine the presence o f  iridium  
ox id e, carbon and chlorine. The m onochrom atic x-ray source, 
A1 Ka (180  W ), was used and the analysis area was 
110 x  110 /i in 2 to  collect spectra within the etched spot. 
The pass energy o f  160 eV  with 200 ms in dw ell tim e and 
I eV  in step was used for a survey scan, and the pass energy o f  
4 0  eV  with 5 00  ms in dw ell tim e and 0.1 eV  in step was used  
for a  high-resolution scan to improve the resolution and to 
reduce the background noise. The Utah electrode impedance 
was m easured using a tw o-electrode m ethod by poking the 
deinsulated electrodes into a conductive agarose gel and using  
an im pedance m eter (Blackrock M icrosystem s). The agarose 
gel was prepared from a mixture o f phosphate-buffered saline 
and agarose pow der in a w eight ratio o f  42:1 . A platinum  
counter electrode probe was inserted in the gel. Impedances 
o f  individual electrodes w ere measured sequentially using a 
probe signal o f  100 nA  (peak to peak) at the frequency of
1 kHz between the electrode and Pt counter electrode.
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Figure 7. Imaging XPS data for (a) the Ir 4 f peak before oxygen plasma treatment, (b) the Jr 4 f peak after 1 min oxygen plasma treatment, 
(c) the C Is peak before oxygen plasma treatment, (d) the C U  peak after 1 min oxygen plasma treatment.

♦
♦

Figure 8. Scanning electron micrographs using backscattered electron imaging (a) after laser deinsulation using the fluence o f
750 mJ cm-2 and the number o f pulses o f  200, (h) alter laser deinsulation and 4 min oxygen plasma etching, (c) after laser deinsulation and
8 min oxygen plasma etching.

exposed electrode tips after the oxygen  plasm a etching o f  4  
and 8 min, respectively, revealing much higher backscattered 
electron intensity relative to the Parylene-C areas.

The etch rate o f  the Parylene-C  by O 2  RIE was measured 
on 10 Utah electrodes. Figure 9(a ) show s the etched thickness 
o f  the Parylene-C determined by m easuring the horizontal
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length o f  the Parylene-C in the spot located at 35 down  
from (he tip end. The error bar represents the standard deviation
( a )  of the m easurem ents. T he dotted line show s a trend 
line and the estimated Parylene-C etch rate is approximately  
0 .12  f tm  m in-1 . The variation o f  the electrode tip exposures 
for electrodes with tw o different initial exposures o f
11 -13  f tm  and 17 -19  /im  as a function o f  the RIE etching  
tim e was m easured and is shown in figure 9(b).  The electrode 
tip exposure was defined as the average o f  m inim um  and 
m aximum distances from the tip o f  the electrode to the edge o f  
the deinsulated Parylene-C. The rate o f  tip exposure variation 
was ~ 0 .1 9  jim  m in -1 for the electrodes with the initial 
exposure o f  11 -1 3  /tm  and ~ 0 .2 2  m in-1 for the electrodes 
with the initial exposure o f 1 7 -19  fim.  The rate o f  tip exposure  
variation was larger than the Parylene-C etch  rate, w hich  
indicates there exists thin sidew all residue o f  Parylene-C near 
the borderline o f  the Parylene-C.

The im pedance o f the electrodes with the tw o different 
initial exposures was measured as a function o f  the RIE 
etching tim e and presented in figure 10(tf). The im pedance 
value was a few  im m ediately after laser ablation. After
1 min o f  RIE, the average im pedance val ue o f  the tw o electrode

groups decreased from —4.6  to M ).7  M£2 and its standard 
deviation also decreased from ~ 0 .8  M£2 to ~ 0 .2  M Q . The 
average im pedance value and its standard deviation saturated 
t o ~ 0 .1 5  M Q  and ~-0.03 M Q  after 8 min o f  RIE. Figure 10(£) 
show s the im pedance and geom etrical surface area (G SA ) 
values o f  Utah electrodes as a function o f  the tip exposure 
fabricated by the laser deinsulation and 2 m in oxygen  plasma 
etching. The G SA  o f  the electrode was calculated assum ing  
that the electrode tip is in the form o f  a cone. The radius and 
height o f  the cone were measured from SEM im age. The solid  
line is a trend line with the equation y  =  17.49Jf-L?0 and the 
/^-squared (R2) value is 0 .97  for impedance. The G S A  has 
the equation y  =  15.32je1,57 and R 2 — 0 .9 9 . The im pedance 
data were more correlated to the G SA  rather than the tip 
exposure. N ote that there exists som e difference betw een the 
G SA  and the real surface area due to surface roughness [21 ]. 
T h e electrode im pedance value w as larger than 1 M£2 for tip 
exposures sm aller than ~ 5  / m  and approaches smaller than 
10 kQ as the tip exposure was increased beyond 100 f im .  
The results indicate that Utah electrode arrays w ith improved 
electrical characteristics can be fabricated by the hybrid laser 
and oxygen  plasma etching o f Parylene-C.
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4. Conclusions

A hybrid Parylene-C etching m ethod using a laser ablation  
follow ed by O 2  RIE was developed, and the performance 
and im pedance when applied to Utah electrode arrays 
was investigated. The XPS spectra from planar sam ples 
show ed that I min o f  the oxygen  plasm a etching is enough  
to remove significant am ounts o f  carbon residue on  the 
iridium oxide surface exposed  by laser ablation. The average 
im pedance value o f  U tah electrodes with initial electrode tip 
exposures o f  1 1—13 f i m  and 17—19 f i m  decreased dramatically 
from ~-4.6 M Q to ~ 0 .7  M Q after 1 min oxygen  plasma etching  
and becam e as low  as M ). 15 M Q  after 8 min oxygen  plasma 
etching. The lip  exposure length was highly reproducible ( a  ^  
1.5 jum) betw een electrode tips for the same laser deinsulation  
parameters. Furthermore, the deviation o f  im pedance value 
for the sam e exposure was drastically decreased {a  ^  
0.2  M Q ) even alter 1 min oxygen plasma etching treatment. 
Compared with the conventional deinsulation m ethod using  
oxygen  plasma etching w ith an aluminum  foil mask the laser 
deinsulation has advantages including an ability to control the 
deinsulation area precisely and to achieve smaller tip exposure 
(^ 2 0  fim ). A dditionally, the laser deinsulation offers much  
smaller deviation ( a  ^  0 .2  M Q ) o f  electrode im pedance than 
that (cr >  '-“0 .5  M Q ) o f the conventionally deinsulated UEA  
caused by the nonuniformity o f  the tip exposure. The results 
indicate that the hybrid Parylene-C etching method is  suitable 
for fabrication o f  low  im pedance Utah electrodes with small 
tip exposures for neural interface applications.
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Excimer laser deinsulation of Parylene-C on iridium for use in an activated 
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H I G H L I G H T S

► The irid ium  film  exhibits a m uch higher resistance to damage due to high laser power.
► The low er the laser fluence. the higher the humps of carbon debris.
► An electrode array t ip  laser ablated using a high fluence shows a d istinctivebound ary line betw een the exposure area and Parylene.
► Laser deinsulation of electrode tips  w ith  irid ium  film  and subsequent activation of the ir id ium  film  are suitable for fabrication of high-performance 

silicon-based im plantable devices.

A R T I C L E  I N F O  A B S T R A C T

Artide history: Implantable m icroelectrodes provide a m easure to e lectrica lly stim ulate n eu ro n s in th e  brain and spinal
Received 15 Sqxember 2012 aiKj record the ir electrophysiological activity. A  m aterial w ith  a high charge capacity such as acti-
Reteived i n revised form (> February 2013 vated or sputter-deposited indi um  oxi de film  (A IRO F or S IR O F )is used as an interface. The Utah electrode
Accepted 12 February 2013 array (U EA ) uses SIRO F for its interface material w ith  neural tissueand oxygen plasma etching (O P E ) w ith

an alum inium  foil mask to  expose the active area, w here the  interface between the elect rode and neural 
ti ssue is formed. H owever, dein sulati on of Parylene- C using OPE has I im itations, i ndud i ng the lack of un i - 
form ity in  the exposed area and reproducibility. W h ile  the deinsulation o f  Parylene-C us ingan excim er 
laser is proven to  be an alternative for overcoming the lim itations, the irid ium  oxide (IrO x ) suffers from 
fracture w hen high laser fluence (>1000 mJ/cm2) is used. Irid ium  (Ir ), w h ich  has a m uch higher fracture 
resistance than IrOx, can be deposited before excim er laser deinsulation and then th e  exposed Ir  film area 
can be activated by electrochemical treatm ent to acquire the AIROF. Characterisation of the laser-ablated 
Ir film  and AIROF by surface analysis (X -ray photoelectron spectroscopy, scanning electron m icroscope, 
and atom ic force microscope) and electrochemical analysis (electrochem ical im pedance spectroscopy, 
and cyclic vo ltam m etry) shows that the damage on  the Ir film  induced by laser irrad iation is significantly 
less than that on SIROF. and th eA IR O F  hasa high charge storage capacity. The results show  the potential 
of the laser deinsulation technique for use in  high performance AIROF-coated U EA  fabrication.

<0 2013 Elsevier B.V. All rights reserved.

ta rget neurons as closely as possible (H ochberg e t  al.. 2006; 
N ormann. 2007). As the geom etric size o f  an electrode is reduced 
toachieve better selectivity, the  curren t density required to  deliver 
the necessary am ount of s tim ulation  charge increases. The elec
trode surface m aterial that interfaces betw een the electrode and 
neural tissue should be able to transfer th e  electrical cu rren t 
betw een  them  efficiently. Transduction o f  the cu rren t can take 
place via e ither double-layer capacitive coupling or a  Faradaic 
reaction (Agnew and McCreery. 1990). Noble m etals, including 
platinum , iridium, gold, and  palladium , w hich  present a  capaci
tive o r pseudo-capacitive coupling transduction m echanism , have 
been selected as the m aterial for neural stim ulating  electrodes 
because of the ir resistance to corrosion. These m aterials are also

0165-0270/s - see from mailer C  2013 Elsevier B.V. All rigils reserved. 
http://dx.doi.org/l0.l0l6fj.jneumetri2013.02.010

1. Introduction

The electrical stim ulation  of cortical and  o ther central nervous 
system s and recording of electrical signals from these system s 
require the use of penetrating  m icroelectrodes to approach the

* Carespu id iiigau lliasat: Department ofElectrical and Computer Engineering 
U Diversity of Utah, 50S Central Cam pus Drive, M EB 1690, Salt Lake City, UT 84112, 
USA.TeL: +1 801 581 6941; tax: + 1 801 581 5281.
** Corresponding author. TeL: +8262715 2208.

£- m il adtkesses: Je-MinYoo® uiah.edu (J.-M. Yoo),jisong9gist.ac. kr (J.-L Song), 
k>i?n.riethti*ulah.edu (LW . Rieth).
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Fig. I . Faradaic reaction of activated iridium oxide film.

desirable for long-term  stim ulation and recording applications 
because no chemical species are created o r consum ed during cur
rent stim ulation. However, as the  area of the  electrode decreases, 
double-layer capacitive coupling alone is often insufficient to  
deliver th e  required charge. M aterials w ith a Faradaic reaction 
transduction  m echanism , w here current transduction takes place 
through reduction and oxidation, can provide a much h igher level 
of charge injection for th e  stim ulation of neurons. Iridium oxide is 
the m aterial w ith a Faradaic reaction transduction  m echanism  tha t 
displays the  highest charge injection cap acity .w here the  reduction 
and oxidation of iridium oxide film are prim arily due to  th e  valence 
change betw een Ir3* and Ir4* states (Cogan. 2008: N egietal.. 2010a).

There are tw o  types of iridium  oxide tha t are  used for the 
fabrication of m icroelectrodes: activated and sp u tte r-deposited 
iridium  oxide film (AIROF and SIROF). AIROF is form ed through 
electrochem ical activation of the  iridium  film, and th is reaction 
is accom panied by counter-ion (H* or OH- )ch arg e  com pensation 
from an  electrolyte, a s  shown in Fig. 1. AIROF w as the first iridium 
oxide film to  receive atten tion  as an oxide/chlorine catalyst in acid 
(Moz o ta  and  Con way, 1981 )as well as  for its resistance tocorrosion  
(Johnsonand Hench, 1977)and for u seasan e lec tro ch ro m ic  m ate
rial for display devices (G ottesfeld and McIntyre, 1979). Initially, 
irid ium ,alongw ith  o ther noble m etals in the  platinum  m etal group, 
had been studied as a neural interface material. However, activated 
iridium  oxide w as recognised a s  an  alternative to the se  m etals 
due to  its higher charge storage capacity an d  corrosion resistance 
(R obbleeet al.. 1983). AIROF electrodes com posed of iridium w ire 
and sputtered  iridium  films on  a silicon substra te  are widely used 
for intracortical stim ulation and recording applications. Silicon- 
based AIROF m icroelectrodes have been used as  Michigan probes 
(Anderson e t al.. 1989) and in Utah electrode arrays (UEAs) (Negi 
e t a  I.. 2010b).

A nother widely used type of iridium  oxide film is SIROF, which 
is acquired via reactive spu tte ring  of an  iridium  target in a n  oxi
dising plasm a environm ent. SIROF exhibits cyclic voltam m etric 
and charge storage capabilities com parable to  AIROF. a lthough its 
film characteristics a re  affected by the applied sputtering  process 
param eters, including the deposition pressure, substra te  b ias.an d  
sputtering  gas com position (Negi e ta l.,2009 ).

There a re  various m ethods for rem oving insulation m ateri
als from m icroelectrodes (Fortin and  Lu. 2002: Loeb e t al.. 1977: 
Sc hanze et aL. 2007 \  It w as recently repo rted  tha t diffusion-lim ited 
deposition of Parylene on a  neural probe allow s electrode sites to  
be uncovered (von M etzen e t al.. 2 011). However, this m ethod is 
not appropriate for the deinsulation of UEAs to  achieve contro l
lable exposure and highly uniform  im pedance values on electrode 
tips. In UEAs, oxygen plasm a etch ing  (OPE) w ith  an alum inium  foil 
mask has conventionally been used to etch an insulation m aterial. 
Parylene-C, from the electrode tip. The dem and for the devel
opm ent of m icroelectrodes tha t exhibit sophisticated geom etries 
w ith different electrode heights (Bhandari et aL. 2008) in UEAs is

leading a shift of deinsulation m ethods from oxygen p lasm a e tch 
ing using an  alum inium  foil mask to laser etching, as laser etch ing  
m akes the deinsulation of individual tips in die UEA possible (Yoo 
et al., 2012a). Furtherm ore, the laser deinsulation process is a ttra c 
tive for the large-scale production of m icroelectrode arrays because 
it is less tim e consum ing and  highly reproducible. A lthough laser 
ablation o f  a polym er m aterial presents die draw back of the  rede
position of carboneous debris on and around  th e  ab lated  site , the 
surface debris can be reduced by various m ethods, including die 
use of a shielding gas (Brannon et al.. 1985: Kuper and  Brannon. 
1992), ultrasonic cleaning (M usaev e t aL, 2011) and dipping in a 
chemical solution. Oxygen plasm a trea tm en t after laser ablation is 
the other alternative to  rem ove carbon debris (Yoo et al.. 2012b). 
It is im portan t to  m inim ise the am ount of residual carbon debris, 
as th is  debris potentially results in biocom patibility problem s in 
long-term  stim ulation  and recording applications through foreign 
body reactions.

The selection of the  electrode surface m aterial is particularly 
im portant because the  laser deinsulation of Parylene-C can p ro 
duce dam age to  th e  electrode surface m aterial, including cracking, 
delam ination, melting, and  vapourisation. W hile a laser fluence 
lower than the threshold fluence value for dam aging th e  electrode 
surface m aterial can beused . ablation of Parylene-C a t a low fluence 
can result in incom plete rem oval o f th is substance from th e  laser- 
ablated spot (M usaev et aL. 2011). causing nonuniform  exposure o f 
deinsulated tips and high deviation in im pedance values.

A higher laser fluence can im prove th e  uniform ity of the expo
sure o f the deinsulated tip  and can reduce the  redeposition o f 
residual carbon debris (Liu et aL. 2012). W hen th e  laser fluence 
is high, the  m om entum  of the ab la ted  by-products is sufficiently 
high to  allow them  to  escape from  th e  ablation zone into the a tm o 
sphere, resulting in less redeposition. Thus, an electrode surface 
material tha t exhibits a high resistance to the  dam age induced by 
a high laser fluence is necessary to achieve uniform  and repeatable 
electrode tip  exposure. Iridium is one  potential cand idate  for use 
as an  electrode surface material. Iridium displays superior physical 
properties, such asav ery  high m assdensity  (22.560 kg m 3). melting 
point (2 4 6 6 =C). and Young's m odulus (5.28 x 10-8 kPa \  com pared 
w ith o ther m etals in the  p latinum  group, w hich m akes it resistan t 
to high laser pow er-induced dam ages. Furtherm ore, it can b e  eas
ily deposited  on silicon-based m icroelectrodes via sputtering and 
is therefo re suitable for m ass m icrofabrication Finally, after being 
exposed th rough  laser ablation, iridium can beconverted  to AIROF. 
which exhibits a high charge injection capacity.

In th is  study, we investigate the resistance o f spu tte red  irid 
ium and iridium  oxide films against dam age induced by laser 
power. Planar iridium  and AIROF electrodes deinsulated  via laser 
ablation were fabricated and  characterised  using surface ana ly 
sis m ethods (X-ray photoelectron spectroscopy, scanning electron 
microscopy, and atom ic force m icroscopy) a n d  electrochem ical 
techniques (electrochem ical im pedance spectroscopy and cyclic 
voltam m etry). Based on the  determ ined  optim ised electrochem 
ical activation param eters. 3D UEA tips w ith AIROF w ere produced 
using laser deinsulation and characterised

2. Materials and methods

To investigate the effect o f  the laser fluence on the dam age to 
iridium film and  SIROF, iridium  film and  SIROF w ere deposited  on 
p-type (10  0 ) c-Si wafers using DC and  reactive pulsed-DC spu tte r 
deposition system s (T-M Vacuum Super series), respectively. Irid
ium films w ith  three different thicknesses (50, 200 an d  600 nm) 
were depositedon a titan ium  adhesion layer (50 nm )a t a  deposition 
rate of 5 nm /m in  in an  Ar gas am b ien t (at a  flow rate  of 150 seem 
and a cham ber pressure of 20m Torr). The sputtering pow er was
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Fig. S. X-ray photoemission spectraof(a) the C Ispeakof as-deposited Parylene-C ( 
and(d) the C] 2ppeakof Ia9er-ablated Parylene-C

Parylene-C. The Parylene-C insulator m aterial on the electrode tips 
w as rem oved via focusing a dem agnified excim er laser spo t with 
a d iam eter o f 70p.m  on the  Utah electrode tips. The laser pulses 
w e re 5  nsin  duration .w ith  a repetition ra te o f  1 00Hz, a n d th e la se r 
fluence w as 1500m J/cm 2. The details of the laser ablation system  
are reported  in Yoo et al. (2012a).

The m orphology and roughness of the  electrode surface before 
and after laser deinsulation w ere  exam ined via scanning elec
tron microscopy (SEM. FEI Quanta) and atom ic force microscopy 
(AFM, Digital Instrum ents). Chemical and  elem ental analyses of the 
laser-ablated electrode surface w ere  perform ed using XPS (Kratos 
Axis Ultra DLD) to exam ine th e  presence of residual carbon debris 
from  laser-ablated Parylene. A m onochrom atic Al Ka (180 W) X-ray 
source w as em ployed, and th e  analysis w as perform ed in a circular 
region w ith a d iam eter o f 55 p.m.

Sputter cleaning using 2keV Ar* w as perform ed prior to XPS 
analysis to  rem ove physisorbed oxygen on the  film surface. Elec
trochem ical im pedance spectroscopy (EIS) and cyclic voltam m etry 
(CV) w ere performed using the  planar AIROF electrode in  PBS 
solution to  determ ine th e  im pedance and charge storage capac
ity (CSC). The data  w ere acquired using a com puter-controlled 
com m ercial electrochem ical te st system (Gamry Instrum ents PC4 
po ten tiostat). The AgiAgCI electrode w as used as a reference elec
trode , and a  large-area Pt w ire w as u s e d a s a  coun ter electrode. All 
potentials w ere  m easured w ith respect to  the  AgiAgCI reference 
electrode. For the EIS m easurem ents, sinusoidal signals w ith  an 
am plitude o f 10 mV and frequencies ranging from 1 Hz to  1 MFIz 
w ere  em ployed. Cyclic voltam m ogram s w ere  acquired for the 
potential lim its o f  -0 .6  V and  0.8 V w ith  a sw eep rate  o f 50 mV s-1 . 
Following com m on practice, the  cathodal CSC (CSCc) w as used to 
characterise the elec tro d es  The CSC w as calculated from  th e  tim e

Binding Energy [eV]

B inding Energy [eV]

the t l 2p peak of as-deposited ft  rylene-C (c) the C Ispeakof laser-ablated F&rylene-C

integral for th e  cathodic current in a cyclic voltam m ogram  over a 
potential range tha t is just w ithin tha t of w ate r electrolysis. For 
iridium  oxide, th e  w ate r electrolysis w indow  w as typically con
sidered to  be -0 .6 V  to  0.8 V w ith respect to  th e  Ag|AgQ reference 
electrode

3. Results and discussion

First, th e  effect of the  laser fluence on th e  morphology of irid
ium film and SIROF was investigated. Fig. 3(a) shows backscattered 
SEM im ages o f  th e  iridium  films w ith three different thicknesses 
( 5 0 nm. 2 0 0 nm and  600 nm) exposed to 100 laser pulses w ith a 
fluence of 1920mJ/cm2. While the iridium  films w ith thickness of 
50 and 2 0 0 nm show ed cracks, there w ere no fractures observed 
on the iridium  film w ith  a  thickness of 600 nm a t a  laser fluence of 
1920 mJ/cm2. Fig. 3(b) show s backscattered SEM images of SIROF 
w ith a  film thickness of 6 0 0 nm  illum inated using 100 laser pulses 
w ith different laser fluences (960. 720, and 480m J/cm 2  ̂ As can 
be seen in the figure, the SIROF was dam aged under laser fluences 
higher than 720 mJ/cm2. The results p resen ted  in Fig 3 indicate tha t 
iridium  film shows m uch a  higher resistance against dam age due 
to high laser pow er com pared w ith SIROF.

Fig 4 (a)d isp laysanop tica l image of a  laser-ablated spot (diam 
ete r of 100 Jim) form ed on a  polished soda-lim e glass substra te  
coated with Parylene (thickness of 3 pm ). W hile Parylene was 
clearly rem oved w ithin the circle, debris rem ained a round  the  
edge of the circle. Fig. 4(b) provides the hum p heights at the  
edge of circles ab lated  using d ifferent fluences (~290, 630, 860. 
and 1300 mJ/cm2 ) im m ediately after laser ablation (left) and  after 
2 m in of OPE trea tm en t (right). The profiles were m easured  w ith  
a Tencor profilom eter (Profilom eter Tencor P-20H). The low er th e
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Fig, 9. Amplitude (upper) and phase (bom>m) of the impedance oT planar electrodes with an iridium active area formed using three different deinsulation conditions and 
with an AIROF active area (area of the active region = 70 jSOO pun2}

pulses, the cathodic voltage was analysed in detail because it is 
one o f the  most critical param eters for tun ing  the film grow th  rate 
(Pickup and  Birss, 1987). A crack in s tarted  to  appear the AIROF 
at a cathodic voltage of -0 .85V , and the  degradation of the  film 
m orphology becam e m ore severe as th e  cathodic voltage becam e 
m ore negative, as show n in Fig. 8(b). The AIROF partially  flaked off 
at -0 .9 V  and com pletely flaked off a t -0 .9 5  V. Behaviour similar 
to  that o f th e  AIROF fabricated on w ire-type iridium  electrodes has 
previously been reported (Cogan e t  al.. 2004). A lthough the AIROF 
activated using pulse levels o f  -0 .8  and  0.95V showed a stable 
m orphology w ithout cracks, a long-term  analysis of the  stim ula
tion  of AIROF electrodes under an in vivo environm ent is required  
for chronic im plantation app lications

The Bode plot o f the  im pedance values for p lanar electrodes 
w ith an  iridium  active area and  AIROF active a rea  a re  presented  
in Fig. 9 . The active area w as circular in shape and has a d iam 
e te r of 3 0 0 |im  (geom etric a rea  o f  approxim ately 70 ,6 0 0 jim 2 ). 
The thickness of the  iridium film w as 600 nm. The active area 
w as exposed via deinsulation  of Parylene using laser pu lses of 50 
w ith a fluence of 1500 m j/cm 2. The im pedance o f th e  planar irid
ium electrode fabricated th rough laser ablation only w as 28 kQ at 
1 kHz. However, it w as decreased significantly, dow n to ~ 5  k£2, 
by 2 min of subsequen t OPE tre a tm e n t This value w as similar 
to  tha t o f  an electrode fabricated only via OPE deinsulation  (for 
12 min). After th e  activation of iridium , the im pedance decreased 
to~0.9k£2. The im pedanceof th e  planar iridium  electrode showed 
a capacitor-like frequency dependence, indicating tha t the curren t 
transduction m echanism  in this case is capacitive coupling. On the 
o ther hand, the  im pedance of the planar AIROF electrode show ed 
resistive behaviour for the frequency range from 5 0 Hz to 50 kHz. 
The im pedances converged a ta  frequency range over 50 kHz. which 
indicates the effect of PBS im pedance. The results indicate tha t 
the planar AIROF electrode fabricated using the  hybrid deinsula
tion m ethod (laser deinsulation followed by 2 m in  of OPE) (Yoo 
et al., 2012b) show s resistive behaviour and provides m uch low er 
impedance.

Cyclic voltam m ogram s for th e  planar iridium  electrode fabri
cated via laser ablation followed by 2 m in of OPE and the p lanar 
AIROF electrode, m easured in PBS solution, are illustrated in Fig. 1Q 
The voltam m ogram  for the planar iridium  electrode exhibited an 
approxim ately rectangular shape, which is expected for an elec
trode presenting  a double-layer capacitive coupling transduction  
mechanism . However, th e  voltam m ogram  for th e  planar AIROF 
electrode showed main current peaks a t  0.25 V and -0 .21  V. cor
responding to  reversible Ir3* and Ir4* redox reactions, respectively. 
The CSCc w as 3 5  mC/cm2 for the  planar iridium electrode arid 
10 mC/cm2 for the planar AIROF electrode. The much higher charge 
storage capacity o f th e  p lanar AIROF electrode is a ttribu ted  to its 
Faradaic transduction  m echanism .

Fig. 11 (a) shows the Utah electrode array tips fabricated through 
laser deinsulation using 100 pulses w ith  a fluence of 1500 m j/cm 2 
on iridium  (left) and 500 pulses o f w ith  a fluence of 700 m j/cm 2
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Fig. 10. Cyclic voltammograms Ibrthe planar iridium and AIROF elect nodes (area of 
theactive region =70.600p.m2). The electrode voltage was measured with respect 
to the Ag|AgCI reference electrode.
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6.1 Abstract

Tip deinsulation of Parylene-C coated Utah electrode array (UEA) is typically 

performed by a reactive ion etching using aluminum foil mask. However, it has 

limitations resulting in nonuniform impedance (o > 0.5 MQ) of the exposed tip and the 

time-consuming process of aluminum poking on the array. Laser ablation can be an 

alternative to deinsulate electrode tips; however, the sputtered deposited iridium oxide 

film (SIROF) on the UEA tip is mechanically weak for high laser fluence (> 1 J/cm2) 

which causes damage of the film. In this paper, a partially deoxidized SIROF by 

annealing under 210 °C in forming gas (98% Ar and 2% H2) was used to get a highly 

tolerable film to damage by laser. The deinsulated electrode surfaces were characterized 

by scanning electron microscope, atomic force spectroscopy, X-ray diffraction, X-ray 

photoelectron spectroscopy, and electrochemical analysis (electrochemical impedance 

spectroscopy, cyclic voltammetry, and potential transient). The results suggest that the 

laser ablation on partially deoxidized SIROF is promising for deinsulation of UEAs.

6.2 Introduction

Utah electrode array (UEA) is one of the major implantable electrodes that is 

based on silicon microfabrication technology. It is insulated using a biocompatible 

Parylene-C on the inactive areas to protect both the electrode sites and the neural tissues 

[1, 2]. The insulated electrodes require a removal of the Parylene from the active 

electrode tips to record neural signals or stimulate neurons. The deinsulation o f 

implantable electrodes is an issue due to drawbacks of existing methods. The heating or 

high voltage methods usually lead to breakdown near the tips or poor adhesion o f 

Parylene [3]. The wet etching is not adaptable because o f the chemical inertness of
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Parylene-C. In recent years, a method of diffusion-limited deposition (DLD) of Parylene- 

C was reported that allows uncovered electrode sites on neural probes [4]; however, the 

process is complex and hard to apply in electrodes with complicated electrode geometries 

such as Utah slanted electrode array (USEA). The deinsulation of Parylene-C coated 

UEA tips is conventionally performed by a reactive ion etching (RIE) using aluminum 

foil mask as etching mask [5]. However, the poking of an aluminum foil mask on 

electrode array is a time-consuming process and the impedance o f electrodes within the 

UEA has a large deviation (o > 0.5 MQ) due to the nonuniformity o f the tip exposure. 

The laser deinsulation technique is an alternative to get over the limitations in the RIE 

method [6, 7]. However, a sputter deposited iridium oxide film (SIROF) is easily 

damaged at high laser fluences (> 1 J/cm2). Even if low laser fluence can be used to 

prevent film damages o f  iridium oxide, it can cause a nonuniform exposure o f  the 

electrode tip and potential biocompatibility problems from the carbon residue redeposited 

around the exposed area [8]. The mechanically weak property of as-deposited SIROF is 

an obstacle to directly use the laser ablation on the film.

Iridium oxide (IrOx) film is deoxidized under a certain annealing condition by 

breaking its bonds, as expressed in equation (1).

IrOx ^  Ir + O2 (g) ! (1)

It is reported that IrO 2  is easily reduced even at low temperatures when it is exposed to 

low pressure, and the thermodynamic behavior o f the deoxidized IrO 2  film as a 

relationship between temperature and environmental oxygen-pressure was studied [9, 10]. 

Environmental gas affects the deoxidization phenomenon; for example, iridium oxide
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film is easily reduced under a forming gas (5% H2 in Ar) at temperatures ranging from 

100 °C to 300 °C [11]. The oxygen reduced iridium oxide film gives rise to iridum on top 

of the film, which is the hardest, densest, and the most corrosion-resistant metal. The film 

can be highly tolerable to damage induced by laser due to its physical properties [8].

Titanium (Ti) is widely used as an adhesion layer in thin film microfabrication 

technology. However, the property can be easily changed to an oxide by plasma 

oxidation during the sputter process, such as a reactive deposition o f SIROF using O2 

plasma on top of the Ti film [12]. On the other hand, the possibility cannot be ruled out 

that an oxidation by oxygen diffusion from IrOx to the underneath adhesion layer of Ti is 

due to the high reactivity o f titanium with oxygen under high temperature [13].

In this work, we first investigated the deoxidization phenomenon o f SIROF by an 

annealing process under forming and nitrogen gases that was characterized by 

thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron 

microscopy (SEM), and atomic force microscope (AFM). The diffusion of oxygen from 

SIROF to Ti film by the annealing process was analyzed by X-ray photoelectron 

spectroscopy (XPS). Planar SIROF electrodes deinsulated by laser ablation were 

fabricated and characterized by electrochemical techniques (electrochemical impedance 

spectroscopy, cyclic voltammetry, and potential transient). Based on the optimized 

annealing and films structure from the test of planar electrodes, UEAs of a partially 

deoxidized IrOx film with a diffusion barrier Ir between Ti and SIROF were implemented 

using laser deinsulation and characterized.



6.3 Material and Methods

To investigate the influence o f temperature and environmental gas on 

deoxidization of SIROF, TGA (TA Q500) was performed under nitrogen and forming gas 

(2% H2 and 98% Ar). The temperature was scanned from 30 °C to 1000 °C at the heating 

rate of 15 °C/minute. The weight of IrOx powder that was extracted from SIROF on 

silicon substrate was 3.3 mg for nitrogen gas and 2.7 mg for forming gas. SIROF was 

deposited on ^-type (100) Si wafers by a pulsed DC sputter deposition system (TMV 

Super Series SS-40C-IV Multi Cathode Sputtering System) in Ar and O2 plasma with 

each flow rate of 100 sccm and at the RF power of 100 W and the pressure of 10 mTorr. 

The deposition rate was 10 nm/minute. Crystallization and the intensity o f  Ir after 

deoxidization by different annealing temperature (410, 310, 220, and 210 °C) were 

examined by XRD using Cu Ka radiation. Ti (100 nm) / Ir (80 nm) / SIROF (700 nm) 

film stacks on silicon wafer were used to follow the same film stacks o f  the test structure 

that is described later. Ti acts as an adhesive layer and was deposited by DC sputter in Ar 

with a flow rate of 150 sccm at a chamber pressure of 20 mTorr and sputtering power of 

50 W for 10 minutes. Ir is a barrier layer to protect a diffusion of oxygen into Ti from 

SIROF and deposited by pulsed DC sputter in Ar with a flow rate of 100 sccm and at the 

power of 100 W and the pressure of 10 mTorr for 10 minutes. SIROF film was deposited 

as same condition described above. Annealing (Lindberg Annealing Furnace) was 

performed for 45 minutes under the forming gas flow o f 2.5 slpm to improve the 

adhesion and form Ohmic contact between the deposited films and substrate. The 

dimensions of the analyzed samples were 1 cm x 1 cm square. Chemical and elemental 

analysis of the deinsulated spots was performed using XPS (Kratos Axis Ultra DLD) to
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examine the reduced SIROF. The monochromatic X-ray source, Al ka, was used and the 

beam spot size was 110x110 p,m2 for a small scan region.

Planar test electrodes were prepared on heavily doped p-type Si wafer (p = 0.01 ~

0.05 Q-cm) to investigate the electrochemical performance. Ti (100nm) / SIROF (700nm) 

and Ti (100 nm) / Ir (80 nm) / SIROF (700 nm) on doped Si wafer were deposited using a 

sputter system the same as above. LOR 7B (MicroChem) and positive photoresist 

(Shipley Microposit S-1813) were used to pattern the metal films by a lift-off technique

[14]. Parylene film (6 |im) was deposited by chemical vapor deposition using a 

Paractech 3000 Labtop deposition system. To improve the chemical adhesion between 

the Parylene and the underneath film, 0.5% Silquest A-174 silane was used. The Parylene 

film was removed from the active area by the KrF laser system (Optec MicroMaster 

Excimer Laser) having a wavelength of 248 nm [15]. Utah electrode arrays were 

fabricated using a particular metallization of Ti (100 nm) / Ir (100 nm) / SIROF (700 nm) 

structure and Parylene insulator material was removed by laser as used in the planar test 

electrode. The fabrication process o f  the UEAs and laser deinsulation technique are 

described in detail elsewhere [7, 16, 17].

The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), 

and potential transient analysis were performed in a phosphate buffered saline (PBS) 

solution at a pH of 7.4 to determine the impedance, cathodal charge storage capacity 

(CSCc), and charge injection capacity (CIC). The CSCc was calculated from the time 

integral o f  the cathodic current in a cyclic voltammetry for a water window range o f 

potential (-0.6 ~ 0.9 V) versus Ag|AgCl and the CIC was calculated by multiplying 

stimulation current and pulse width at which the maximum negative polarization reaches
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water reduction potential. The EIS and CV were acquired using a commercial 

electrochemical test system (Gamry Instruments) and potential transient analysis was 

done with a STG 2008 stimulus generator (Multi-Channel Systems MCS GmbH) and 

recorded with an oscilloscope. More details o f electrochemical measurements are given 

elsewhere [18, 19] .

6.4 Results and Discussion

Figure 6.1 shows the TGA of IrOx by nitrogen and forming gas. The weight loss 

is 14.2 % and 15.3 % for nitrogen and forming gas, respectively. Theoretical loss is ~ 

14.3 % for O2 reduction of IrO2 and it highly matchs to the loss values from TGA. 

Oxygen desorption starts at 893 °C for nitrogen; however, it starts at 180 °C for forming 

gas. H2 in forming gas is regarded as the factor to accelerate the reduction of oxygen 

from IrOx.

Fig. 6.1. TGA of IrOx by nitrogen and forming gas.



Figure 6.2 shows the XRD of as-deposited SIROF (left) and annealed SIROF 

(right) according to four different annealing temperatures (410, 310, 220 and 210 °C). An 

IrO2 (101) peak was prominent and Ir (111) appeared in the as-deposited SIROF, as 

shown in Figure 6.2 (a). However, the IrOx peaks disappeared and only metallic Ir peaks 

were detected, as presented in Figure 6.2 (b). When the annealing temperature was 410 

°C, which is close to the conventional annealing temperature in UEA process [7], the 

intensity o f the Ir (111) peak was highest but it decreased when lowering annealing 

temperature to 210 °C. This suggests the amount of oxygen reduction in SIROF is more 

as the annealing temperature is higher. There was no deoxidization when the temperature 

was below 210 °C.

Figure 6.3 is SEM images (upper) and AFM images (bottom) of (a) as-deposited 

SIROF, (b) annealed SIROF, and (c) laser ablated annealed SIROF. The film was 

annealed at 410 °C, and illuminated by laser for ~ 1.6 J/cm2 and 100 pulses. The 

morphology is dendritic in as-deposited SIROF, as shown in Figure 6.3 (a); however, it is 

changed to a granular after annealing and laser ablation on the surface, as in Figure 6.3 (b) 

and (c). The root mean square roughness (Rrms) of as-deposited SIROF is 24 nm. 

However, it becomes 62 nm after annealing and 65 nm after laser ablation. The surface of 

the SIROF is smoother through heat treatment by laser energy, as shown in Figure 6.3 (c)

[7].

Figure 6.4 is mechanically scratched Ti/SIROF films on silicon substrate after 

annealing at 410 °C in forming gas. The regions of three colors, blue (1), silver (2), and 

dark gray (3), were disclosed after the scratch, as shown in Figure 6.4 (a). Imaging XPS 

data were taken at the binding energy o f the Ir 4f peak (60.3 eV) for the scratched sample,
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Fig. 6.2. XRD spectra o f  (a) as-deposited SIROF and (b) annealed SIROF according to 
four different temperatures (410, 310, 220, and 210 °C).
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Fig. 6.3. SEM images (upper) and AFM images (bottom) of (a) as-deposited SIROF, (b) 
annealed SIROF, and (c) laser ablated annealed SIROF.

as presented in figure 6.4 (b). The scratched region is well matched between both figures. 

The SIROF film was removed by the scratch as dark imaging spots (1). Spot (2) is 

brighter than (3) which means there is more Ir concentration in (2). Figure 6.5 is XPS of

(a) spots (1), (b) spots (2), and (c) spots (3) in Figure 6.4. The atomic concentration of Ti 

2p and O 1s was 26.8 % and 45.4 %. The broad peaks are regarded as the two convoluted 

peaks of Ti and Ti in TiO2, which reflects the metallic titanium oxide, as illustrated in 

Figure 6.5 (a). Figure 6.5 (b) and (c) show the pure Ir peaks scanned from spots (2) and

(3), respectively. The XPS of the silver region having pure Ir in Figure 6.4 would be 

evidence of reduced SIROF by a diffusion of oxygen from SIROF to Ti, as presented in 

Figure 6.5
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(a) (b)

Fig. 6.4. Optical image of Ti/SIROF films on Si substrate after mechanically scratching is 
presented in (a). Three colors were disclosed as blue (1), silver (2) and dark gray 
(3). (b) is the imaging XPS for Ir 4f peak of the sample same to Figure 6.4 (a). 
Spots (1), (2) and (3) in Figure 6.4 (b) match to the numbers in Figure 6.4 (a).

(b). The XPS of the dark gray region as presented in Figure 6.5 (c) is regarded as 

deoxidized SIROF by annealing in forming gas.

The backscattered SEM image of a laser deinsulated hole with 300 |im diameter 

and the electrochemical analysis of planar electrodes are presented in Figure 6.6. The 

planar electrodes structured with Ti/Ir/SIROF annealed at 210 °C and insulated Parylene 

were exposed to 100 laser pulses with the fluence of 1.6 J/cm2 and treated by a reactive 

ion etching (RIE) using an inductivily coupled oxygen plasma for 2 minutes [15]. The 2- 

minute RIE decreases the carbon residue redeposited around the exposed area. There was 

no damage o f films by the laser for all planar electrodes that have deoxidized SIROFs by 

annealing. The impedances o f planar electrodes with different film stacks at particular 

annealing temperatures, Ti/SIROF at 410 °C, Ti/Ir/SIROF at 410 °C, and Ti/Ir/SIROF at 

210 °C, were quite a similar level at 1 kHz as 1.6, 1.4, and 1.5 kQ, respectively, but they



93

(a)

Binding Energy [eV]
(b)

Binding Energy [eV]

(C)

Binding Energy [eV]

Binding Energy [eV]

Binding Energy [eV]

Binding Energy [eV]

Fig. 6.5. X-ray photoemission spectra of (a) spots (1), (b) spots (2), and (c) spots (3) in 
Figure 6.4.



94

(a)

200 |jm

Fig. 6.6. Electrochemical analysis of planar electrodes is presented by (a) backscattered 
SEM image of laser deinsulated hole with 300 |im diameter, (b) Bode plot of 
different film stacks at particular annealing temperature (Ti/SIROF at 410 °C, 
Ti/Ir/SIROF at 410 °C and Ti/Ir/SIROF at 210 °C), (c) cyclic voltammograms 
o f the same samples as (b), and (d) potential transient o f  two different 
structures (Ti/Ir/SIROF at 210 °C and Ti/SIROF at 410 °C).
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Fig. 6.6. Continued



were different impedances, 4.6, 3.2, and 2.3 kQ, respectively, at 100 Hz and capacitive 

behavior for the frequency range from 1 to 500 Hz, as shown in Figure 6.6 (b). The 

impedances converged at a frequency range over 500 Hz, indicating the effect of PBS 

impedance. Cyclic voltammograms were measured in PBS, and no well-defined 

reduction and oxidation peaks are shown in Figure 6.6 (C), though the charge is Faradaic 

involving the reversible Ir3+/Ir4+ couple, as reported elsewhere [19]. The CV curve of 

Ti/Ir/SIROF annealed at 210 °C has a significantly larger internal area than that of 

Ti/SIROF annealed at 410 °C, or Ti/Ir/SIROF annealed at 410 °C, indicating the first 

sample has higher CSC than others. CSCc measured from CV is a quantity of charge 

available at near equilibirum condition. The CSCc was 5.8 mC/cm2 for Ti/SIROF 

structure annealed at 410 °C; on the other hand, it was 12.6 mC/cm2 and 24.8 mC/cm2 for 

Ti/Ir/SIROF annealed at 410 °C and Ti/Ir/SIROF annealed at 210 °C, respectively. There 

are two factors that influence the charge storage performance according to CSCc values. 

Ir that is deposited between Ti and SIROF is as a barrier layer to protect a plasma 

oxidation of Ti during the process of sputter deposition or a diffusion of oxygen into Ti 

from SIROF due to its high oxidation property, based on XPS data. Annealing 

temperature also effects the capacity because the amount of Ir on the reduced SIROF is 

lower as the annealing temperature is lower, based on the XRD analysis. Charge injection 

capacity also follows this rule. Potential transients were measured to compare different 

electrode potentials with 800 |iA and 500 |is biphasic current pulse, as illustrated in 

Figure 6.6 (d). The polarization across the electrode-electrolyte interface is lower in 

Ti/Ir/SIROF annealed at 210 °C (~ 0.4 V) than Ti/SIROF annealed at 410 °C (~ 0.7 V). It
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means that the charge injection required to deliver a stimulation pulse is higher in the first 

sample than the second sample. CIC derived from potential transient has practical 

importance compared with CSC due to its measure with high-frequency stimulation 

pulses with high current density. The values were 0.6, 0.9, and 1.4 mC/cm2 for the 

electrodes of Ti/SIROF annealed at 410 °C, Ti/Ir/SIROF annealed at 410 °C, and 

Ti/Ir/SIROF annealed at 210 °C, respectively. The last sample has the highest capacity of 

charge injection which is consistent with the CSC analysis.

Figure 6.7 (a) shows the SEM image of a laser deinsulated UEA tip using 1.6 

J/cm2 fluence and 120 pulses which has the Ti/Ir/SIROF film structure annealed at 210 °C, 

as used in the planar electrode. The electrode was highly resistant against damage by the 

laser and showed a distinctive boundary line between the exposure area and Parylene, 

though there was uneven removal of Parylene by nonuniform laser power. Figure 6.7 (b),

(c), and (d) show the impedance, CSCc, and CIC values of UEAs with Ti/Ir/SIROF film 

structure annealed at 210 °C as a function of their tip exposure fabricated by the laser 

deinsulation and 2-minute RIE etching. The solid lines are a trend line with the equations, 

y = 0.0817e"a028x, y = 91.525e-0019x, and y = 1.0246e-0005x for Figure (b), (c), and (d), 

respectively. The electrode impedance values were below 0.1 MQ for tip exposures of ~ 

10 |im and approaches ~ 2 kQ as the tip exposures were increased beyond ~ 100 |im. 

CSCc which was measured with a slow-sweep rate (50 mV/s) cyclic voltammogram has 

higher R2 values (0.86) than that of impedance at 1 kHz (0.58) or CIC (0.33) which 

suggests high-frequency current/voltage pulses employed for neural stimulation result in 

more deviation o f measured values. It is regarded that the limited diffusion rate of charge 

carriers, and the nonuniform geometry and deinsulated area o f each electrode tips affects
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Fig. 6.7. Electrochemical analysis of 3D UEA tip is presented by (a) SEM image of laser 
deinsulated Utah electrode array tip, and (b) impedance, (c) CSCc and (d) CIC 
values of UEAs with Ti/Ir/SIROF film structure annealed at 210 °C as a 
function of their tip exposure fabricated by the laser deinsulation. The solid 
lines are a trend line with the equations, y = 0.0817e-0028x, y = 91.525e-0019x 
and y = 1.0246e-0005x for Figure (b), (c), and (d), respectively.
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Fig. 6.7. Continued



the variation [18]. The CSCc and CIC values decreased as the tip exposure increased, 

which is due to larger potentials by the edge and the tip of the exposed area in a smaller 

size o f  electrodes. Measured values are available to neural stimulation and recording 

application, although the deviation o f impedances and CIC values from the trend line is 

rather high.

6.5 Conclusions

We have demonstrated partially deoxidized iridium oxide film for laser 

deinsulation o f UEAs. The reduced film has a high electrochemical performance using 

lower anneal temperature to secure more remaining IrOx film. The Ir film as a diffusion 

barrier of oxygen from SIROF to Ti also contributes to keep it from a deterioration of 

film property. The results indicate that the laser ablation on partially deoxidized SIROF is 

suitable for deinsulation of UEAs.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions and Contributions

The goal of the research described in this dissertation was to develop a laser 

deinsulation process of Parylene-C encapsulated Utah electrode arrays. The conventional 

deinsulation method [1] that uses dry etching (RIE) in an oxygen plasma has some 

limitations, such as large impedance variation (o > 0.5 MQ) in tip impedance, difficulty 

in controlling the tip exposure (especially for < 40 |im), inability to deinsulate UEAs with 

complex geometries, and low throughput associated with Al foil poking and subsequent 

etching. Laser deinsulation demonstrated a smaller variation in tip impedance (o < 0.2 

MQ) and well-controlled tip exposure (o < 0.3 |im), and the ability to deinsulate 

electrodes with different lengths.

There are several challenges for the laser ablation technique, such as a carbon 

residue remaining around the deinsulated site on UEA [2], and damage to the electrode 

material underneath the Parylene-C encapsulation [3, 4]. The problem of carbon debris 

was mitigated by using a hybrid deinsulation method that combines laser ablation and O2 

RIE. To decrease damage of the electrode material, laser deinsulation of Parylene-C from 

metallic iridium films, or reduced sub-oxide IrOx films, were investigated. Also, the 

subsequent electrochemical activation of the iridium film was optimized to get low 

impedance and high charge injection activated iridium oxide flim (AIROF) coatings.
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Electrodes fabricated using this process showed a low tip impedance (~ 3 kQ at 1 kHz) 

and high CSC (~ 15 mC/cm2) for 60 |im exposed tips. The partially deoxidized sputter 

deposited iridium film (SIROF) was devised and verified to achieve laser tip deinsulation 

with significantly less damage to the metallization. Theses electrodes had high 

electrochemical performance (median impedance ~ 25 kQ, CSCc ~ 40 mC/cm2, and CIC 

~ 0.8 mC/cm2) for a 40 |im exposed tip. A detailed description of the achievements from 

this work and the conclusions drawn are presented in following subsections.

7.1.1 Excimer-Laser Deinsulation o f Parylene-C Coated 
Utah Electrode Array Tips

The use of laser deinsulation for Parylene coated planar and 3D microelectrodes 

was investigated by optimizing the laser parameters, such as fluence and number of 

pulses. The ablation threshold to etch Parylene was a fluence of ~ 250 mJ/cm2. The 

damage threshold of SIROF annealed at 375 °C in forming gas (98% Ar and 2% H2) for 

45 minutes was larger than 1000 mJ/cm2 for the planar test structures. Especially, thicker 

SIROF films (1.1 |im) showed higher resistance to damage (film fracturing) for the laser 

fluences of 1680 mJ/cm2. XPS analysis verified that the Parylene was removed, although 

there was carbon residue in the ablated area. After laser ablation, only the roughness of 

active electrode, SIROF, was changed without any chemical state alternation.

The laser deinsulation conditions developed with planar test structures were then 

applied to UEAs, with the complex 3D geometries and sharp electrode shanks. The 

removal of Parylene from electrode tips was uneven, which resulted from the spatial 

nonunniformity o f laser power and the various oblique angles between the beam and the 

surface of the electrode tip. However, there was good repeatability for the open area of



the tips under the same deinuslation condition. There was a trade-off relation between 

laser fluence and number o f  pulses. With higher fluences, less number o f  pulses are 

needed for a specific exposure due to the higher ablation rate o f  parylene. The impedance 

values according to tip exposure of laser deinsulated UEA have a large variation (o > 0.5 

MQ), so that the trend line was not highly matched to the data points because o f the 

carbon redeposition on active tip surface after laser ablation. However, the electrode tip 

exposures larger than 100 |im had impedances o f a few tens o f kQ, which is the normal 

target impedance value for neural interface applications. The benefits in achieving 

controlled deinsulation for electrodes suggested that the excimer laser ablation warranted 

addition research as a method to deinsulate UEAs.

7.1.2 Hybrid Laser and Reactive Ion Etching of Parylene-C for 
Deinsulation o f  a Utah Electrode Array

A hybrid method of etching Parylene-C using a combination of laser ablation and 

the O2  RIE was investigated to decrease the electrode impedance and increase its charge 

injection by removing the carbonaceous residue. XPS analysis on the SIROF surface after 

the hybrid laser and O2  RIE verified that the residual carbon produced by laser ablation o f 

Parylene was significantly removed by subsequent O2  RIE even for only a 1-minute 

etching.

In order to investigate the effects of the hybrid laser and plasma etching on the 

performance o f  electrodes with an especially small tip exposure for better selectivity, 

electrodes with two different tip exposures, 11 ~ 13 |im and 17 ~ 19 |im, were fabricated 

and characterized. The impedance value was a few MQ immediately after laser ablation. 

After 1 minute o f  the oxygen plasma etching, the median impedance value o f  the two

105



electrode groups decreased from ~4.6 MQ to ~0.7 MQ and its standard deviation also 

decreased from ~0.8 MQ to ~0.2 MQ. The median impedance value and its standard 

deviation saturated to ~0.15 MQ and ~0.03 MQ after 8 minutes etching time. The 

deviation of impedance values of Utah electrodes deinsulated by the hydrid method was 

significantly less than that of the values deinsulated by only laser.

7.1.3 Excimer Laser Deinsulation of Parylene-C on Iridium 
for Use in an Activated Iridium Oxide Film 

Coated Utah Electrode Array

The selection of submaterial underneath the Parylene-C encapsulation is critical 

for laser deinsulation because the high laser fluence can easily damage the submaterial 

during removal o f the Parylene. The use of high laser fluences (> 1.5 J/cm2) is desirable 

because it reduces the redeposition of carbon by-products on the laser ablated region [5]. 

Consequently, a durable submaterial with high ablation threshold (> 1.9 J/cm2) allows 

less carbon debris with no damage. Iridium was chosen as the submaterial due to its 

excellent physical and mechanical properties, improving its stability to high laser 

irradiation.

The damage on sputter deposited iridium and iridium oxide films (as-deposited) 

according to different laser power was investigated and verified by SEM analysis. The 

iridium was not significant damaged by laser irradiation, using conditions where 

relatively low carbon residue was observed. The laser deinsulation was then implemented 

to deinsulate Parylene coated metallic iridium films on silicon substrates. The deinsulated 

Ir then was activated by electrochemical activation (AIROF). A degree of damage of 

AIROF during activation process was investigated by varying the cathodic activation 

voltage (from - 0.8 to - 0.95 V) with fixing the anodic voltage of 0.95 V versus Ag|AgCl.
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When the cathodic voltage was - 0.8 V, there was no degradation of film. However, a 

crack of iridium oxide started to appear at the cathodic voltage of - 0.85 V. The 

degradation including the crack and delamination of film was becoming severe for more 

negative cathodic voltage. The AIROF activated using pulse levels o f - 0.8 and 0.95 V 

had a stable film morphology.

When using higher fluence with less pulses (1500 mJ/cm2 fluence, 100 pulses) on 

iridium, the boundary line between exposure area and Parylene was distinctive in laser 

deinsulated UEA. On the other hand, lower fluence with more pulses on SIROF active 

electrode film (700 mJ/cm2, 500 pulses) had insufficient Parylene etching on the sidewall 

o f  tip and the boundary was not clear. This causes the nonuniform exposure in the 

deinsulated area, and results in impedance variations between electrode tips. In this 

regard, the laser ablation of Parylene-C on iridium films was performed using high 

fluence with less number o f  pulses to decrease carbon residue and achieve complete 

removal o f Parylene on the sidewall of the electrode tip. The median impedance o f the 

AIROF UEA tip was ~ 3 kQ for 60 |im exposure. The CSCc calculated by CV was ~ 16 

mC/cm2 which agrees well with values in the literature [6], and indicates good 

deinsulation performance.

7.1.4 Reduction o f Iridium Oxide Films for Laser 
Deinsulation o f  Utah Electrode Array

As-deposited sputtered iridium oxide films (SIROF) are easily damaged by high 

laser fluences (> 1 J/cm2). Though use of low laser fluence for deinsulation can prevent 

film damage, it can cause a nonuniform exposure o f  the electrode tip and potential 

biocompatibility problems by the carbon residue redeposited around the exposed area.
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The poor mechanical properties o f as-deposited SIROF are an obstacle to the direct use of 

laser ablation for this electrode material. A process to partially reduce the IrOx layer in a 

Ti/Ir/IrOx (adhesion/diffusion barrier/electrode material) was developed, as the partially 

reduced IrOx could tolerate significantly more laser irradiation. The ablation threshold of 

reduced SIROF (> 1500 mJ/cm2) was much higher than that of as-deposited SIROF (< 

700 mJ/cm2).

In the thermogravimetric analysis (TGA) o f SIROF, reduction started at 893 °C 

in a pure nitrogen atmosphere. In a forming gas atmosphere, a dramatically lower 

temperature of 180 °C was found to cause reduction of the deposited SIROF. X-ray 

diffraction analysis (XRD) of SIROF after annealing with forming gas verified that the 

amount of oxygen reduction in SIROF increased as annealing temperature increased, and 

there was no deoxidization when the temperature was below 210 °C. The reduced SIROF 

provided a fracture resistance to laser power. However, less reduction by lower anneal 

temperature (~ 220 °C) was desirable for a high electrochemical performance because it 

secured more remaining IrOx film. XPS analysis verified that there was an oxygen 

diffusion from SIROF to Ti during the annealing process. The Ir diffusion barrier 

between SIROF to Ti layers prevents the reduction of IrOx through consumption of 

oxygen from this film by the Ti adhesion, which has a dramatically higher affinity for 

oxygen. The electrode showed high electrochemical performance with median ~ 25 kQ 

impedance, ~ 40 mC/cm2 CSCc, and ~ 0.8 mC/cm2 CIC for 40 |im exposed tips. These 

results suggest that the laser ablation on partially deoxidized SIROF with a diffusion 

barrier Ir was suitable for deinsulation of UEAs.
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7.1.5. Contributions 

This dissertation makes contributions in several areas:

• Chapter 3 of the dissertation has contributed to achieve the laser ablation process to 

deinsulate the 3D tips of Parylene encapsulated Utah electrode arrays (UEAs). Using 

a prototyping technique in laser deinsulation presented, one can easily implement the 

method to remove encapsulation polymer at the tips on microelectrode arrays. Also, 

the labor, time, and cost required for tip deinsulation can be minimized.

• In Chapter 4, the critical issue of carbon debris in excimer laser ablation of Parylene 

was settled by a hybrid deinsulation method using a combination o f  laser ablation and 

O2 RIE. Utah electrodes with fine tip exposures were developed by the hybrid 

deinsulation method to increase the selectivity for stimulating or recording a small 

population o f neuron.

• In Chapter 5, an AIROF microelectrode array that resists damage from laser 

irradiation was developed through laser deinsulation o f Parylene-C on iridium and 

subsequent activation of iridium film. That approach minimizes carbon residue and 

complete removal o f Parylene on the sidewall o f the electrode tip using high fluence 

(> 1.5 J/cm2) with less number of pulses to improve tip reproducibility.

• In Chapter 6, a partially deoxidized SIROF Utah electrode array was developed to 

acquire damage resistant films with good electrochemical performance (low 

impedance and high CIC). We are able to understand the thermodynamical and 

electrochemical characteristics o f  iridium oxide for its application to laser 

deinsulation.
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7.2 Future Work

In this study, laser deinsulation processes for the UEA, and the resulting 

electrochemical properties of the electrodes relevant to stimulation and recording of 

neural signals were investigated. The laser tip deinsulation of UEA is highly 

recommended for future studies in several areas, such as the following:

1. The use o f ultrashort pulsed laser (picosecond or femtosecond) to increase the 

ablation efficiency (higher etch rate) while minimizing heat damage to 

substrate. The very short laser pulses could provide the sample patterning of 

high precision and lower ablation threshold than the nanosecond laser used in 

this study [7]. These results could be beneficial to the general area of 

micromachining polymer materials.

2. Even if the laser deinsulated electrode tips look clean, the residue of carbon 

still remains around the ablation site. Investigating the use of a helium shield 

gas system could be useful to minimize the carbon debris during the laser 

ablation process. The effects of this residue on biocompatibility, tip 

impedance/CIC, and encapsulation lifetime also need to be elucidated.

3. The SIROF in this study is not pure iridium oxide but it contains a mixture of 

oxide, sub-oxide, and metallic phases as reported in [8]. Stimulation pulses 

within the water window can lead to further activation of iridium with 

subsequent “lift-off’ of the activated film by too much stimulation. The 

effects of long-term in-vivo stimulation and recording and degradation of 

SIROF for chronic implantation application also need to be further studied.
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4. The parameters of the activation of iridium for AIROF was based on the 

method reported in [9]. Among many parameters of the activation pulse 

signal for the growth of AIROF, including anodic/cathodic voltage, ramp-up 

rate, dwell time, and number of pulses, the cathodic voltage was analyzed in 

detail because it is one o f the most critical parameters for tuning the film 

growth rate. However, the tuning o f other parameters, such as using slow 

ramp-up rate instead of rectangular pulse needs to be investigated to decrease 

the delamination of AIROF.

5. Foreign body reactions are a limiting factor for long-term use of all 

chronically implanted microelectrodes and may well be exacerbated by 

residual degradation products that are less inert than the parent polymer. The 

tips in this study do look quite clean just after laser deinsulation and the 

electrochemical measurements offered acceptable values as neural interface, 

However, it would be useful to have data on the integrity o f  the insulation and 

tip exposure and impedance after penetrating membranes such as epineurium 

and dura mater as an in-vivo experiment. It would be even better to have some 

comparative recording data from neural tissue.

6. A charge injection material with capacitive coupling mechanism is ideal for 

neural stimulation because no chemical change occurs to either the tissue or 

the electrode. As an alternative to iridium oxide, there are various emerging 

materials, such as conducting polymers and carbon nanotubes (CNT), which 

have the capacitive charging mechanism. Conducting polymers, such as poly- 

ethylenedioxythiophene (PEDOT), cannot serve as a substrate for laser



deinsulation due to their soft mechanical property with the ablation threshold 

comparable to Parylene-C. CNTs are one of the candidates to replace the 

SIROF for the laser ablation technique due to its expected high ablation 

threshold with extraordinary mechanical (50 ~ 300 GPa of the tensile strength) 

and electrical properties (~ 5*10'8 fi^m of the electrical resistivity) for a 

multiwalled carbon nanotube (MWNT). CNTs are the one of the strongest and 

stiffest materials resulting from the covalent sp2 bonds formed between the 

individual carbon atoms. The charge injection capacity o f CNT is around 1

1.6 mC/cm2, far better than bare Pt and comparable to iridium oxide with a 

wide electrochemical operational window (2.5 V) [10, 11]. If  several issues, 

for example, an adhesion problem or removal o f catalytic seed material like 

Fe, can be solved, CNTs could be a strong candidate electrode material for 

electrode sites in Utah electrode array.
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