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ABSTRACT 

The cellular protein ALIX and other ESCRT proteins facilitate 

topologically equivalent membrane abscission events, including viral 

envelope separation from host membranes, biogenesis of multi-vesicular 

bodies, and midbody scission at the late stage of cytokinesis. Late domain 

motifs displayed by retroviral Gag polyproteins are responsible for recruiting 

ESCRT proteins. The three best-characterized classes of late domains are: 

the “P(S/T)AP” late domains that bind TSG101 of the ESCRT-I complex, the 

“PPXY” late domains that bind NEDD4 family ubiquitin E3 ligases, and the 

“YPXnL” late domains that bind ALIX. ALIX also binds the ESCRT-III 

protein CHMP4, which recruits other ESCRT-III subunits and VPS4 

complexes to carry out membrane fission.  

My work in this dissertation is centered on how ALIX is recruited by 

various retroviruses and how ALIX function is regulated in viral budding. We 

first determined crystal structures of ALIXBro1, ALIXV and ALIXBro1-V. Second, 

in order to understand how the viral Gag proteins hijack ALIX, we 

determined the structure of ALIXBro1-V in complex with HIV and EIAV YPXnL 

late motifs. Third, we used surface plasmon resonance (SPR) to map a new 

type of ALIX-binding elements from certain SIV strains, which do not contain 

 



 

iv 
 

the canonical YPXnL late domains and still package ALIX in the virions. 

Furthermore, the new ALIX-binding motifs were crystallized with ALIXBro1-V. 

All these late-domain ligands adopt different conformations of backbones to 

interact with the equivalent interface on the ALIX V domain. Based on 

sequence analysis, nearly every known primate lentiviruses contains an 

ALIX-binding site, suggesting that the ability to recruit ALIX provide a 

strong selective advantage for viruses. Fourth, we discovered that the full-

length ALIX is autoinhibited by its C-terminal proline-rich region (PRR), 

which blocks the interaction of viral late domains based on the results of 

isothermal titration calorimetry (ITC), SPR and small-angle X-ray scattering 

(SAXS). The mutation that opens the closed conformation of the V domain 

partitioned ALIX into membrane-containing fractions and enhanced virus 

budding. These observations suggest that the function of ALIX is highly 

regulated, and ALIX activation requires dissociation of the autoinhibitory 

PRR, opening of the V domain, and probably protein dimerization. 

 



 

 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................. iii

ACKNOWLEDGMENTS ........................................................................ viii

Chapter o

 1. INTRODUCTION ...................................................................... 1

  Retroviruses and Hosts .................................................... 
Retrovirus Budding........................................................... 
ESCRT Machinery............................................................. 
ALIX .................................................................................. 
Outline of Chapters .......................................................... 
References ......................................................................... 

2
8

11
28
36
42

 2. STRUCTURAL AND BIOCHEMICAL STUDIES OF 
ALIX/AIP1 AND ITS ROLE IN RETROVIRUS 
BUDDING.................................................................................... 57

  Summary ........................................................................... 
Introduction ...................................................................... 
Results ............................................................................... 
Discussion ......................................................................... 
Experimental Procedures ................................................. 
Acknowledgement ............................................................. 
References ......................................................................... 
Supplementary Material .................................................. 

58
58
59
66
67
68
68
70

 3. STRUCTURAL AND FUNCTIONAL STUDIES OF ALIX 
INTERACTIONS WITH YPXNL LATE DOMAINS OF HIV 
AND EIAV .................................................................................. 89

  Abstract ............................................................................. 
Introduction ...................................................................... 
Results ............................................................................... 
Discussion ......................................................................... 
Methods ............................................................................. 
Acknowledgements ........................................................... 
References ......................................................................... 

90
91
92
94
95
95
95

 



 

vi 
 

Supplementary Information ............................................ 97

 4.  IDENTIFICATION AND STRUCTRUAL 
CHARACTERIZATION OF THE ALIX-BINDING LATE 
DOMAINS OF SIMIAN IMMUNODEFICIENCY VIRUS 
SIVMAC239 AND SIVAGMTAN-1 ..................................................... 101

  Abstract ............................................................................. 
Methods and Results ........................................................ 
References.......................................................................... 

102
102
106

 5.  ACTIVATION OF THE RETROVIRAL BUDDING FACTOR 
ALIX........................................................................................... 108

  Abstract ............................................................................. 
Methods and Results ........................................................ 
References.......................................................................... 

109
109
124

 6.  STRUCTURAL AND FUNCTIONAL STUDIES OF BROX 
IN VIRUS BUDDING................................................................ 129

  Introduction ...................................................................... 
Methods and Results......................................................... 
References ......................................................................... 

130
133
143

 7.  SUMMARY AND PERSPECTIVE ........................................... 146

  ALIX Functions in the Virus Budding ............................ 
ALIX Activation ................................................................ 
References ......................................................................... 

147
155
156

Appendix: STRUCTURAL AND FUNCTIONAL STUDIES ON THE 
EXTRACELLULAR DOMAIN OF BST2/TETHERIN IN REDUCED 
AND OXIDIZED CONFORMATIONS................................................... 160

  

 



 
 

ACKNOWLEDGMENTS 

I would like to express my deepest gratitude to my advisor Chris Hill 

for the guidance and support. In addition to his broad scientific knowledge, 

his active role in the campaign for sustainable energy has been an inspiration 

to me. I would like to thank Wes Sundquist for constant scientific guidance 

and being a role model for an integral and passionate scientist. I also thank 

my thesis committee: Michael Kay, Martin Horvath and Darrell Davis for 

critical review of my work. 

I would also like to acknowledge my co-workers, Robert Fisher, 

Michael landsman, Hyo-young Chung, David G. Myszka and Prof. Jill 

Trewhella, whose contributions are instrumental in this work. I thank Rob 

Fisher, Heidi Schubert and Frank Whitby for helpful guidance regarding 

crystallography, and Steven Alam for help in ITC and NMR experiments. I 

thank all the members of the Hill and Sundquist labs, who have provided a 

scientifically and socially enjoyable environment. Finally, I am also thankful 

for my friends and family who provided constant encouragement and support 

during my graduate work.  

 
 

 

 



CHAPTER 1 

INTRODUCTION 

  



Retroviruses and Hosts 

Retroviruses Life Cycle 

Viruses are abundant and are estimated to total 1031 particles on earth. 

Viruses infect mammals, plants, bacteria, and archaea (Breitbart and 

Rohwer, 2005). Viruses can be formidable pathogens, and viruses can also be 

useful tools for the study of the cellular biology and evolution of virus-host 

relationships. Diverse viruses are grouped at different hierarchical levels, 

based on their similar properties rather than on the identity of their hosts 

(Lwoff et al., 1962). Viruses can be classified into families, based on their type 

of genome and the method of replication (Baltimore, 1974). For example, 

Hepatitis A is a single-stranded RNA virus of the family Picornaviridae, 

while Hepatitis B virus is a DNA virus of the hepadnaviridae family (Baron, 

1996). Human immunodeficiency viruses types 1 and 2 (HIV-1, HIV-2) and 

human T-cell leukemia viruses all belong to the family Retroviridea. A 

standard retrovirus contains a dimer of positive-sense single-stranded RNA, 

enclosed in a capsid, which in turn is surrounded by a lipid bilayer envelope 

(Ganser-Pornillos et al., 2008).   

Retrovirus replication has many steps in common with the replication 

of other viruses, as well as several steps that are unique to their lifestyle 

(Figure 1.1). Retroviruses bind to specific receptors on the cell surface, and 

then, like all enveloped viruses, fuse the virion membrane with the host 

membrane, either at the cell surface or after internalization into endosomes, 
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Figure 1.1.  Retrovirus life cycle and interactions with host proteins.  

3

Vif . ~ 

Entry 
• 

~ - Cyclophi lin A 

TRlM5a ......-' 

I Uncoating 

APOBEC ~ ~ 
I Reverse Transcription 

~ 

___ / -!:.uclear Import 
/-- I~ 

/ ~ 
I I Integration 

RNAP /' I . . } 
\ cycl in T TranscnptlOn / 

Tal- - Cdk9./"\. ~ 
• VV \.°r v 

___ / 

/~CRMl----
0-0:: 

l 'VV~ Trans atlOn I 
e. ... 

Assembly 

\ 

o Vpu 

1. 
____ ESCRT proteins 



to deliver the virion core to the cytoplasm (Hughson, 1997). The single-

stranded positive-sense RNA genome is reverse transcribed into double-

stranded linear DNA. This DNA is delivered into the nucleus in the form of a 

pre-integration complex (PIC) that contains both viral and host proteins, and 

is inserted into the host genome to form the integrated provirus. In the late 

phase of the life cycle, the viral DNA is transcribed by the host RNA 

polymerase II (RNAP) complex, and the viral RNAs are processed and 

exported to the cytoplasm by highly regulated mechanisms. Three viral 

structural protein precursors – group-specific-antigen protein (Gag), 

polymerase (Pol) and the envelope protein (Env) – are translated in the 

cytoplasm, and transported to the plasma membrane by vesicular, 

cytoskeletal or other routes. Nascent virions are assembled from these 

proteins on host membranes, and immature particles are released from the 

cells. Finally, maturation of the virions is triggered by the viral protease, 

which cleaves the Gag into its constituent protein molecules to drive a 

dramatic reorganization of the core and the acquisition of virus infectivity 

(Ganser-Pornillos et al., 2008; Goff, 2007; Wolf and Goff, 2008).  

The numerous host proteins involved in retrovirus replication are 

characterized into two categories. The first category is innate immunity 

factors, which host organisms have evolved to perform multiple defensive 

mechanisms to limit or restrict virus replication by interfering with many 

stages of the retroviral life cycle. The other category is of the many host 
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proteins exploited by retrovirus in each step of replication to overcome the 

limited genome size and content of retroviruses (Goff, 2007; Wolf and Goff, 

2008).  

Restriction Factors 

Host cell proteins that mediate antiviral activities by inhibiting the 

viral life cycle are known collectively as restriction factors, and include the 

proteins TRIM5α, APOBECs, tetherin and ZAP. At the same time, many 

retroviruses have developed various offensive strategies to inactivate or 

overcome the blocks to infection. As a result, a balance exists between host 

defense and viral offence, and this conflict is a powerful driver of evolutionary 

change.  

TRIM5α blocks retroviral replication early in the life cycle, after viral 

entry but before reverse transcription. Although the exact mechanism of 

TRIM5α action is still not fully understood, TRIM5α binds to and 

multimerizes around incoming capsids, inducing premature uncoating of the 

viral capsids, which is detrimental to reverse transcription. TRIM5α proteins 

from a variety of species have different capabilities to restrict HIV-1 and 

other retroviruses. For instance, human TRIM5α potently restricts N-tropic 

MLV but not B-tropic MLV, HIV-1, or SIVmac, whereas rhesus macaque 

TRIM5α potently restricts HIV-1, N-tropic MLV but not SIVmac (Huthoff and 

Towers, 2008; Wolf and Goff, 2008). 
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APOBEC3G was identified as a cellular factor that renders human 

cells nonpermissive for infection by HIV viruses lacking a Vif gene (Sheehy et 

al., 2002). APOBEC family members convert cytidines into uracils in the 

negative sense single-stranded DNA that is generated during HIV-1 reverse 

transcription. As a result, these mutations might inactivate viral gene 

products or regulatory genetic elements. In addition, APOBEC3G can also be 

incorporated into nascent virus particles, and continues to edit during reverse 

transcription upon infection of the next target cell. However, the HIV-1 

encoded Vif protein (viral infectivity factor) counteracts APOBEC3G by 

targeting it for ubiquitylation and subsequent degradation by the proteasome 

(Huthoff and Towers, 2008; Wolf and Goff, 2008).  

Tetherin, also known as BST-2, was identified as a restriction factor 

that prevents retroviral particle release from the cell surface (Van Damme et 

al., 2008). This restriction factor is only effective against Vpu-minus HIV-1, 

because Vpu reduces cell surface levels of tetherin, with reported 

mechanisms including lysosomal degradation, proteasomal degradation, and 

sequestrating tetherin to the trans-Golgi network (Douglas et al., 2010). In 

the presence of tetherin, large numbers of Vpu-minus HIV-1 virions retained 

at the cell surface are fully formed and mature (Neil et al., 2008; Van Damme 

et al., 2008).  
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Host Proteins Exploited by Retroviruses 

In contrast to cellular restriction factors, a number of host proteins are 

hijacked by viruses and used to facilitate viral replication and intracellular 

movements. For example, cyclophilin A is a host factor that binds directly to 

the HIV-1 capsid (Franke et al., 1994; Howard et al., 2003). While TRIM5α 

restricts viral infection, cyclophilin A modulates the sensitivity of HIV-1 to 

host restriction factors (Towers et al., 2003). Retroviral transcription of the 

integrated provirus DNA involves a large number of transcription proteins 

and the entire RNAP machinery (Wu, 2004). Viral Tat protein enhances 

expression from HIV-1 long-terminal repeat (LTR) by association with host 

cyclin T and cyclin kinase (Cdk9) (Yankulov and Bentley, 1998). The nuclear 

export factor CRM1 is exploited by the viral protein Rev to export the viral 

RNA from the nucleus to the cytoplasm (Daelemans et al., 2002; Strebel, 

2003). The most extensive host machinery that is required for retrovirus 

budding uses endosomal sorting complex required for transport (ESCRT) 

proteins. Gag recruits the ESCRT machinery, and its membrane pinching 

activity, which normally drives the abscission step of cytokinesis and budding 

of vesicles into late endosomes, is used to bud virions from the cell. The rest 

of my dissertation will focus on Gag and ESCRT proteins in retrovirus 

budding (Bieniasz, 2009). 
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Retrovirus Budding 

Gag Composition 

The Gag protein is central to the assembly of HIV-1 and other 

retroviruses.  Gag proteins alone are sufficient to assemble and produce non-

infectious, spherical virus-like particles in the absence of other viral proteins 

or viral RNA (Freed, 1998). The structural proteins of HIV-1 are all derived 

from the Gag polyprotein. The functional organization of HIV-1 Gag is typical 

of retroviruses: matrix (MA), capsid (CA) protein, P2, nucleocapsid (NC) 

protein, P1 and p6 protein (Bieniasz, 2009).  

The MA domain can interact directly with PI(4,5)P2, thereby 

explaining how high levels of PI(4,5)P2 in the plasma membrane act as a 

membrane anchor for HIV-1 Gag association (De Matteis and Godi, 2004; 

Ono et al., 2004; Saad et al., 2006). Gag proteins self-oligomerize and trigger 

the exposure of a hydrophobic N-terminal myristate of the MA domain, which 

further contributes to membrane association (Waheed and Freed, 2010). In 

freshly budded particles, the Gag polyproteins are located around the 

periphery of the particle under the lipid envelope, which is derived from the 

plasma membrane (Briggs et al., 2004; Carlson et al., 2008). 

Upon assembly and budding, the viral protease is activated to cleave 

Gag into its constituent domains, and the newly processed proteins 

reassemble to form the distinct layers of the mature virion. The N-

myristoylated MA targets the inner viral membrane, CA assembles into the 
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conical capsid, and NC coats the viral RNA genome (Ganser-Pornillos et al., 

2008).  

Late Domains 

The p6 region of Gag is crucial for the release or pinching-off of 

assembled virions from the cell plasma membrane. Deletion of p6 from the 

HIV-1 Gag precursor protein leads to accumulation of assembled immature 

virus particles tethered to the plasma membrane (Gottlinger et al., 1991). 

Mutational analysis of the viral p6 region reveals short sequence motifs, 

termed “late domains”, that are required for particle release. Thus far, three 

different classes of late domains from retroviruses have been well 

characterized.  

The particle-release activity of HIV-1 p6 maps primarily to a P(T/S)AP 

late domain near the N-terminus of p6. The second position in this 

tetrapeptide motif can be either a threonine or a serine (Huang et al., 1995). 

P(T/S)AP motifs are highly conserved among lentiviruses, and have been 

shown to function in HTLV-1, MPMV, the VP40 protein of the Ebola virus, 

and the Z proteins of some arenaviruses (Morita and Sundquist, 2004). The 

P(T/S)AP motif recruits the cellular protein, TSG101, that normally functions 

in the sorting of proteins to multivesicular bodies (Garrus et al., 2001; 

Martin-Serrano et al., 2001; VerPlank et al., 2001).  

Another commonly used late domain is the PPXY motif, which 

functions in diverse retroviruses, such as RSV, MMuLV, HHTLV-1, MPMV, 
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rhabdoviruses, filoviruses, and arenaviruses (Morita and Sundquist, 2004). 

Several groups have demonstrated that the Nedd4 family of ubiquitin E3 

ligases can bind viral PPXY late domains (Kikonyogo et al., 2001; Macias et 

al., 2002).  

A third late domain, the YPDL motif, was identified in the C-terminal 

p9 domain of equine infectious anemia virus (EIAV) Gag, which does not 

contain the P(T/S)AP or  PPXY motifs (Puffer et al., 1997). A variant YPX3L 

motif was also found in the p6 domain of Gag encoded by HIV, and shown to 

bind ALIX (Strack et al., 2003). The viral motifs recruiting ALIX are 

collectively called the YPXL late domain.  

In a number of cases, retroviral Gag proteins have been shown to 

contain multiple late domains. For example, HIV-1 contains both PTAP and 

YPXL late domains, and MLV contains PSAP, YPXL and PPXY late domains. 

The advantage of multiple late domains within a virus is not entirely clear, 

but one possibility is that they provide the advantage of redundancy to 

recruit different cellular factors, in order to bud efficiently from different 

types of cell. 

Late domain function is largely insensitive to the motif’s position 

within a viral protein, and late domains are often exchangeable between 

retroviruses. For example, the YPDL late domain of EIAV can be functionally 

replaced with the PPPY late domain from RSV or the PTAP segment from 

HIV-1 p6 (Li et al., 2002). EM analysis reveals that late domain mutations 
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cause the same phenotype as deletion of the entire HIV-1 p6 region, with 

immature particles remaining tethered to the cell surface (Demirov et al., 

2002; Gottlinger et al., 1991). The receptors for characterized late domains, 

TSG101and ALIX, are members of ESCRT proteins, and Nedd4 family 

ubiquitin ligases can ubiquitylate ESCRT-I components (Chung et al., 2008; 

Morita and Sundquist, 2004). These proteins normally function at the surface 

of the endosome to induce the budding of small vesicles into the 

multivesicular bodies (MVB). In infected cells, HIV-1 Gag redirects the 

ESCRT machinery to the plasma membrane and uses it to bud out of the cell.  

ESCRT Machinery 

MVB Sorting 

Vesicle formation in MVB and viral particle budding on the cell surface 

share the same topology: they all bud away from the cytosol. MVB sorting 

plays important roles in the down-regulation of numerous activated growth 

factor receptors and membrane proteins. Downregulation of cell surface 

proteins is often facilitated by the posttranslational attachment of ubiquitin 

to the cytoplasmic domains (Joazeiro et al., 1999; Katzmann et al., 2002). 

Those membrane proteins are then sorted into the luminal vesicles (ILVs) of 

morphologically distinctive late endosomes known as MVBs. Fusion of the 

limiting membrane of the MVB with the lysosomal membrane results in MVB 

vesicles and their cargoes being exposed to the hydrolytic interior of the 

lysosome (Katzmann et al., 2002; Raiborg and Stenmark, 2009). 
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Genetic studies of yeast vacuoles, which correspond to the lysosomes of 

higher eukaryotes, led to the discovery of many components of the cellular 

MVB pathway (Raymond et al., 1992). The proteins essential for MVB sorting 

are now known as class E vacuolar vesicle protein sorting (VPS) proteins. 

Class E VPS mutants not only block MVB formation, but also produce large 

aberrant late endosomes consisting of stacked flat cisternae-like membranes, 

in contrast to roughly spherical wild-type endosomes filled with spherical 

~24nm intraluminal vesicles (ILVs) (Nickerson et al., 2006; Raymond et al., 

1992). Importantly, class E proteins are highly conserved from yeast to 

human. Many of these proteins are core subunits of four complexes required 

for transport (ESCRTs): ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III. 

Other class E VPS proteins include the AAA+ ATPase VPS4, and the ESCRT-

associated protein Bro1 domain-containing protein ALIX. 

Ubiquitylation is the principal signal for cargo to be directed into the 

MVB pathway. The conserved ESCRT/MVB machinery performs three 

distinct but connected functions: first, it recognizes ubiquitylated cargoes and 

enriches them on the endosome membrane; second, it deforms the membrane 

and maintains the membrane curvature to allow cargo to be enclosed by 

endosomal invagination; third, it catalyzes membrane abscission, forming 

ILV that contains the cargo. 
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ESCRT-0 

Human ESCRT-0 is a heterodimer composed of HRS (hepatocyle 

growth factor-regulated tyrosine kinase substrate) and STAM (signal 

transducing adaptor molecule), which correspond to VPS27 and Hse in yeast, 

respectively (Table 1.1). Both human and yeast ESCRT-0 core complexes are 

connected by antiparallel coiled coils (Figure 1.2) (Prag et al., 2007; Ren et al., 

2009). 

 

Table 1.  ESCRT complex subunits 

Protein 
Complex 

Yeast 
protein 

Human protein Ubiquitin 
binding 
domain 

Membrane 
interaction 
domain 

ESCRT-0 VPS27 HRS  VHS FYVE  
Hse1 STAM1, 2 UIM, VHS – 

ESCRT-I VPS23 TSG101 UEV – 
VPS28 VPS28 – – 
VPS37 VPS37A,B,C,D – VPS37 1-21 
MVB12 MVB12 – – 

ESCRT-II VPS36 EAP45 GLUE GLUE 
VPS22 EAP30 – – 
VPS25 EAP20 – – 

ESCRT-III 
VPS20 CHMP6 – 

N-terminal 
myristate 

VPS32/Snf7 CHMP4A,B,C – – 
VPS24 CHMP3 – – 
VPS2/Did4 CHMP2A,B – – 

 VPS46/Did2 CHMP1A,B – – 
Ist1 IST1 – – 
VPS60 CHMP5 – – 

other 
ESCRT 

VPS4 VPS4A,B – – 
Vta1 LIP5 – – 

 Bro1 ALIX V Bro1? 
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Figure 1.2. Domain organizations and known structures of the ESCRT-0 
proteins. (A) Domain organization of human HRS, human STAM1, yeast
VPS27 and yeast HSE. Domain name abbreviations are as follows: VHS,
VPS-HRS-STAM domain; UIM, ubiquitin interaction motif; FYVE, (Fab1, 
YOTB, Vac1 and EEA1) zinc finger domain; CB, clathrin-binding. (B) 
Structure of the ESCRT-0 core complex: left, human; right: yeast. (C)
Structure of the FYVE domain from yeast VPS27 with two zinic ions are
colored in cyan. (D) Structure of the STAM VHS domain in complex with 
ubiquitin. (E) Structure of the complex between HRS UIM and two
ubiquitin molecules. 
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The ESCRT-0 complex contains multiple domains that enable it to 

capture ubiquitylated cargo on endosomal membranes and initiate 

downstream sorting. First, ESCRT-0 targets to endosomes via the FYVE 

domain of HRS, which specifically binds to the endosomal lipid PI(3)P 

(phosphatidylinositol 3-phosphate) (Misra and Hurley, 1999; Raiborg et al., 

2001b). Second, both subunits of ESCRT-0 complexes are equipped with 

multiple ubiquitin-interaction domains: the UIM and VHS domains, which 

provide the initial recognition of MVB cargoes (Bache et al., 2003b; Bilodeau 

et al., 2002; Raiborg et al., 2002; Ren and Hurley, 2010). The UIM and VHS 

motifs bind rather weakly to ubiquitin, with dissociation constants (KD) of 

200-300 µM and 100 µM-2mM, respectively. Nevertheless, ESCRT-0 binds 

Lys63-linked tetraubiquitin 50 times more tightly than monoubiquitin, 

indicating multiple ubiquitin-binding domains cooperatively binding to 

polyubiquitin (Hirano et al., 2006; Raiborg et al., 2002; Ren and Hurley, 

2010). Third, HRS binds clathrin through a C-terminal clathrin-box motif, 

and localizes to flat clathrin lattices on early endosomes (Raiborg et al., 2002; 

Raiborg et al., 2001a; Raiborg et al., 2006). As a result, the concentration of 

local ESCRT-0 proteins and ubiquitylated cargoes are increased, which 

further facilitates the ESCRT-0-ubiquitin interaction. Finally, HRS recruits 

TSG101/ESCRT-I to endosomal membranes via the “PSAP” motif (Bache et 

al., 2003a). In conclusion, ESCRT-0 functions to recruit, concentrate and 
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cluster ubiquitylated cargoes to endosome membranes for downstream 

ESCRT proteins to continue the cargo sorting.  

HIV-1 Gag can be viewed as an analogue of the ESCRT-0 complex 

based on the following observations. 1) HIV-1 Gag has an intrinsic property 

to polymerize, and Gag can be induced to assemble in vitro spontaneously 

into protein spheres that resemble ESCRT-0 clustering mediated by clathrin 

(Campbell et al., 2001; Campbell and Rein, 1999). 2) MA functionally 

substitutes for the FYVE domain of ESCRT-0. The HIV-1 MA domain 

specifically recognizes PI(4,5)P2, which is enriched in plasma membranes 

(Ono et al., 2004; Saad et al., 2006), and PI(4,5)P2 binding induces the N-

terminal myristate of MA to adopt an exposed conformation, which further 

increases membrane-binding affinity and Gag multimerization (Saad et al., 

2006; Tang et al., 2004). 3) The HIV-1 Gag PTAP late domain mimics the 

PSAP motif of Hrs/ESCRT-0, and thereby recruits ESCRT-I and other 

components of the MVB vesicle fission machinery to facilitate budding 

(Pornillos et al., 2003).  

ESCRT-I 

The ESCRT-I complex is a hetrotetramer formed by four subunits: 

TSG101, VPS28, VPS37 and Mvb12 (Chu et al., 2006; Katzmann et al., 2001; 

Morita et al., 2007a). The crystal structure of the yeast ESCRT-I complex 

core revealed a dramatic feature of the heterotetramer structure with a rigid 

130 Å stalk (Kostelansky et al., 2007). Together with structures of the yeast 
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VPS23 UEV domain (Sundquist et al., 2004; Teo et al., 2004b), and VPS28 C-

terminal domain (CTD) (Pineda-Molina et al., 2006), the overall structure of 

the ESCRT-I complex can be modeled (Figure 1.3).  

ESCRT-I is recruited through the UEV domain of TSG101, which 

interacts with P(T/S)AP motifs in Hrs/VPS27 or viral Gag (Bache et al., 

2003a; Katzmann et al., 2003; Pornillos et al., 2003). Additionally, the UEV 

domain may also bind ubiquitylated cargoes (Sundquist et al., 2004; Teo et al., 

2004b). However, unlike ESCRT-0, ESCRT-I alone binds acidic phospholipids 

to a modest extent, but associates with membranes tightly in the presence of 

ESCRT-II (Kostelansky et al., 2007). ESCRT-1 in turn recruits ESCRT-II 

through the C-terminal domain of VPS28, which is at the opposite end of the 

stalk to the UEV domain (Gill et al., 2007).  

Markedly, all ESCRT ubiquitin-binding domains interact with the 

same Ile44 patch on ubiquitin (Hurley and Emr, 2006; Saksena et al., 2007). 

The simplest model indicated by these observations is a “hand-off” model in 

which ESCRT complexes sequentially bind to cargoes. However, one ESCRT-

II complex cannot simultaneously interact with the ubiquitin caught by the 

UEV domain and the VPS28 subunit of one ESCRT-I complex, which are 

separated by 130Å. The architecture of the ESCRT-I complex therefore 

provides direct evidence against the “hand-off” model between ESCRT-I and 

II. Instead, ESCRT-I and ESCRT-II likely co-assemble and cluster multiple 

ubiquitylated transmembrane proteins for packaging into ILVs.  
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Figure 1.3. Domain organization and structures of ESCRT-I complex and
subunits. (A) Domain organization of the intact ESCRT-I complex and the
ESCRT-I core. (B) Structure of the ESCRT-I core. (C) Superposition of the
human (yellow, red) and yeast (gray) complexes of the TSG101/Vps23
UEV domain with ubiquitin.  (D) Overlay of the TSG101 UEV domain
(yellow) in complex with the HIV-1 PTAP late domain (green) and the
HRS PSAP motif (magenta). (E) Structure of the VPS28 C-terminal
domain.   
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ESCRT-II 

The ESCRT-II complex consists of one VPS36 subunit, one VPS22 

subunit, and two copies of VPS25 (Babst et al., 2002b). Even though the three 

subunits do not share sequence homology, they all possess two repeats of a 

superimposable WH (winged-helix) domain. The cores of the both human and 

yeast ESCRT-II complexes are shaped like the letter “Y”, with two branches 

each formed by one VPS25 protein, and the stalk composed of VPS22 and 

VPS36 (Hierro et al., 2004; Im and Hurley, 2008; Teo et al., 2004a) (Figure 

1.4A). 

The structure of the GLUE domain, which was missing from the core 

structure, was determined in complex with ubiquitin and in complex with the 

C-terminal domain of the VPS28 ESCRT-I subunit, respectively (Figure 1.4B) 

(Alam et al., 2006). Indeed, both human and yeast GLUE domains can bind 

ubiquitin, membranes, and ESCRT-I (Im and Hurley, 2008; Slagsvold et al., 

2005; Teo et al., 2006). Nevertheless, two NZF domains are inserted in the 

yeast GLUE domain: the first NZF domain of VPS36 interacts with ESCRT-I 

and the second NZF possesses ubiqutin-binding activity (Gill et al., 2007; 

Slagsvold et al., 2005; Teo et al., 2006). ESCRT-II subsequently recruits 

ESCRT-III through direct interactions between VPS25/ESCRT-II and 

VPS20/ESCRT-III (Babst et al., 2002b; Im et al., 2009; von Schwedler et al., 

2003; Yorikawa et al., 2005). 
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Figure 1.4. Domain organization and structures of ESCRT-II proteins and
ESCRT-III proteins. (A) Domain organization of human and yeast ESCRT-
II complex. (B) Overall structure of the human ESCRT-II core, in which
the GLUE domain is absent. The color is same in (A). One VPS25 with one
WH2 domain poorly visible in the electron density is modeled in the figure
using the other subunit. (C) Structure of the yeast ESCRT-I VPS28 CTD
(blue) in complex with the NZF-N domain (yellow) from ESCRT-II. (D) The
complex structure between the human GLUE domain and ubiquitin. (E)
Crystal structure of human CHMP3. The CHMP3 core is blue and the
autoinhibitory domain is salmon. (F) The composite structure of the
ESCRT-II complex nucleating ESCRT-III subunits.  
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ESCRT-III 

The ESCRT-III complex consists of four core subunits: CHMP6, 

CHMP4, CHMP3, CHMP2, and accessory proteins CHMP1, IST1 and 

CHMP5 (Babst et al., 2002a; Nickerson et al., 2006). ESCRT-III subunits are 

recruited from the cytosol to the endosomal membrane, where they assemble 

into high order oligomers. ESCRT-III proteins are similar in both size (221-

241 residues) and domain organization, with an N-terminal basic core 

followed by a C-terminal acidic region, despite considerable variation in their 

primary sequences. Structural studies on CHMP3 indicate that the core 

domain contains 70 Å-long helices that are required for membrane 

association and homo- or hetro-dimerization (Figure 1.4E) (Muziol et al., 

2006). The C terminal segment packs against the core and prevents 

premature assembly, while deletion of the autoinhibitory region produces a 

dominant inhibitor of HIV-1 budding (Bajorek et al., 2009; Lata et al., 2008; 

Muziol et al., 2006; Zamborlini et al., 2006). 

ESCRT-III subunits were proposed to play an important role in 

membrane deformation, based on the following observations. First, ESCRT-

III subunits can interact directly with membranes and removal of 

autoinhibiton induces membrane targeting (Babst et al., 2002a; Lin et al., 

2005; Muziol et al., 2006). Second, ESCRT-III subunits can assemble into 

high order complexes on the membranes. For example, co-incubation of 

monomeric CHMP2A and CHMP3, both with C-terminal regions deleted, 
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assemble in vitro into tubular structures with their membrane-interaction 

sites exposed on the outside of the tubule (Lata et al., 2008). Other ESCRT-

III subunits can also form high order helical structures, such as VPS24, 

CHMP1B and IST1 (Bajorek et al., 2009; Ghazi-Tabatabai et al., 2008). 

Finally, ESCRT-III not only associates with membranes, but also its 

assembly is capable of driving membrane deformation. Overexpression of 

CHMP4 in mammalian cells produces buds and tubules from the top surface 

of cells, and CHMP4 assembles into interconnected circular arrays of 

filaments around sites of membrane protrusion (Hanson et al., 2008). Thus, 

assembly of ESCRT-III proteins is sufficient to drive membrane deformation 

with the appropriate curvature for viral and MVB budding.  

Based on biochemical and genetic studies, ESCRT-III subunits appear 

to be recruited sequentially (Saksena et al., 2009; Teis et al., 2008). VPS20 is 

the first ESCRT-III protein to associate with ESCRT-II on the endosome, 

where it adopts a conformation that is required to nucleate oligomerization of 

SNF7 at the endosome. Subsequent endosomal recruitment of the VPS24-

VPS2 subcomplex appears to be dependent on the VPS20-Snf7 subcomplex 

(Babst et al., 2002a). Emr and colleagues reported that the Snf7 oligomer 

contributes the major building block of the ESCRT-III complex. The VPS24-

VPS2 subcomplex caps and terminates the Snf7 oligomer by recruiting VPS4, 

which then disassembles the ESCRT-III complex by hydrolyzing ATP 

(Saksena et al., 2009; Teis et al., 2008).  
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VPS4 

VPS4 is a member of the AAA+ (ATPase associated with diverse 

cellular activities) ATPase family, members of which typically function as 

oligomeric rings and use energy from ATP hydrolysis to remodel the 

conformation of their substrates (Erzberger and Berger, 2006; Ogura and 

Wilkinson, 2001; Sauer et al., 2004). VPS4 is composed of an N-terminal 

microtubule-interacting and transport (MIT) domain, a large ATPase domain, 

a small ATPase helical domain, a β domain and a C-terminal helix (Figure 

1.5) (Scott et al., 2005a). VPS4 also functions as an oligomer that is, by most 

accounts, a dodecamer comprised of two stacked rings that are 

conformationally distinct (Landsberg et al., 2009; Yu et al., 2008), although 

there also has been a report of a tetradecameric form (Hartmann et al., 2008). 

Nevertheless, the central pore and the ATP hydrolysis activity of VPS4 are 

critical for MVB sorting, enveloped virus budding, and late stage of 

cytokinesis (Gonciarz et al., 2008; Scott et al., 2005a). Hence, current 

evidence favors a model in which VPS4 pumps ESCRT-III subunits from the 

membrane-bound state, through the central pore, and into the cytosol.  

The Vta1/LIP5 cofactor promotes and stabilizes the double ring 

structure of the VPS4 complex, and stimulates ATPase activity (Azmi et al., 

2006; Yang and Hurley, 2010; Yu et al., 2008). LIP5 is composed of two MIT 

domains at its N terminus, a dimeric VPS4-binding VSL domain at its C 

terminus, and a long flexible linker (Xiao et al., 2008). Hence, the VPS4-LIP5 
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Figure 1.5. Domain organization and structures of VPS4 proteins. (A)
Domain organization of human and yeast VPS4 proteins and VTA1. (B)
Structure of yeast VPS4 missing the MIT domain in complex with ATPγS.
(C) Structure of human VPS4 MIT in complex with MIM1 element from
CHMP2B. (D) Structure of human VPS4 MIT in complex with MIM2
element from CHMP6.  (E) Structure of Spastin MIT domain in complex
with MIM3 element from CHMP1B. 
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ATPase supercomplex displays a total of 24 MIT domains, 1 from each of the 

12 VPS4 subunits and 2 from each of the 6 associated Vta1 cofators (Azmi et 

al., 2008; Yu et al., 2008). Recruitment of ESCRT-III subunits is critically 

dependent on the MIT domain, which is composed of an antiparallel three-

helix bundle (Scott et al., 2005b). The MIT domain can bind ESCRT-III 

proteins in diverse ways. Type 1 MIT interacting motifs (MIM1), such as the 

C-terminus helix of CHMP1A, CHMP2B or VPS2 C-terminus, contact the 

VPS4 MIT domain via a surface groove formed by helices α2 and α3 of the 

MIT domain (Obita et al., 2007; Stuchell-Brereton et al., 2007). Type 2 MIT 

interacting motifs (MIM2) incorporated in the CHMP6 C-terminus can bind 

to the VPS4 MIT domain in the groove between helices α1 and α3 with an 

extended strand (Kieffer et al., 2008). In addition, a helix at the C-terminus 

of CHMP1B can fill the groove formed by helices α1 and α3 of the MIT 

domain in spastin, which is a microtubule- severing enzyme (Yang et al., 

2008). 

Membrane Abscission Mechanism 

The key question for understanding the mechanisms of vial budding 

and MVB biogenesis is how do the ESCRTs mediate scission of the narrow 

membrane neck connecting the nascent vesicle with the limiting membrane? 

ESCRT-III and VPS4 were initially believed to perform membrane fission 

based on the following two observations. (1) Activated ESCRT-III subunits 

assemble into a detergent-insoluble complex on the endosomal membrane, 

25



and overexpression of CHMP4 leads to plasma membrane invaginations that 

are coated on the inside (Babst et al., 2002a; Hanson et al., 2008; Zamborlini 

et al., 2006).  (2) ESCRT-III proteins and VPS4 are the most ancient and 

conserved of the ESCRTs.  Counterparts to ESCRT-III and VPS4, but not 

other MVB pathway components, have been found in archaebacteria, in 

which there is no endomembrane system, and sulfolobus ESCRT-III and 

VPS4 are crucial for cell division (Ghazi-Tabatabai et al., 2009).  

Important insights to the mechanism of membrane scission were 

provided by Wollert and Hurley, who reconstituted the membrane fission 

process by ESCRT machinery in vitro by using fluorescence microscopy 

visualization of bilayer giant unilamellar vesicles (GUVs) (Wollert et al., 

2009). This work demonstrated that the ESCRT-III proteins alone have the 

intrinsic ability to drive the detachment of ILVs (Wollert et al., 2009). The 

model system recapitulates the ordered recruitment of ESCRT-III and VPS4 

established in yeast. After the membrane scission step, VPS4 acts to recycle 

ESCRT-III proteins (Saksena et al., 2009; Teis et al., 2008). Wollert and 

Hurley subsequently added to this model by demonstrating that ESCRT-III 

subunits alone are not sufficient to produce buds at physiological 

concentrations in the GUV assay (Wollert and Hurley, 2010). After further 

dissecting the roles of upstream ESCRTs, they demonstrated that ESCRT-0 

clusters ubiquitin, consistent with its several ubiquitin-interacting domains 

(Bache et al., 2003b; Bilodeau et al., 2002; Raiborg et al., 2002; Ren and 
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Hurley, 2010). Nevertheless, the biggest surprise from this study was that 

ESCRT-I and -II together at subphysiological concentrations induce 

membrane bud formation. Furthermore, both ESCRT-I and -II localize to the 

necks membrane buds and confine the cargo within the buds by an unknown 

mechanism. Finally, ESCRT-III subunits colocalize with ESCRT-I and -II at 

membrane necks and complete scission efficiently (Wollert and Hurley, 2010).  

This model has been challenged, however, on the basis of live-cell 

visualization of the in vivo assembly and disassembly of ESCRT proteins, 

which favors the alternative view that VPS4 plays a more active role in the 

membrane scission event than simply recycling the ESCRT components 

(Baumgartel et al., 2011; Jouvenet et al., 2011). This conclusion is driven by 

three principal observations: (1) The ESCRT-III and VPS4A proteins were 

recruited coincidently with the completion of Gag accumulation. (2) VPS4A 

localizes to viral budding sites before disappearance of the nascent virions, 

suggesting that it acts before particle release. (3) Expression of VPS4 

dominant negative protein both blocks virion release and leads to 

colocalization of ESCRT-III protein with VLPs, which is contradictory to the 

Hurley model that predicts that VLPs should not be associate with ESCRT 

proteins over time.  
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ALIX 

ALIX Functions in the MVB Pathway,  

Retrovirus release, and Cytokinesis 

Role of ALIX in the MVB pathway. Bro1, the ALIX homologue in yeast, 

has been identified as an accessory class E VPS factor for the MVB pathway. 

Bro1 is important for sorting of carboxypeptidase S (CPS) and Ste2-GFP 

(Odorizzi et al., 1998; Odorizzi et al., 2003), whereas deletion of Bro1 only 

causes minor aberrant secretion of the soluble vacuolar enzyme 

carboxypeptidase Y (CPY) (Odorizzi et al., 2003). Bro1 appears to function at 

a late step of the MVB pathway, after the endosome-associated ESCRT-III 

proteins and before or in conjunction with Doa4, the ubiquitin hydrolase that 

mediates deubiquitylation prior to cargo incorporation into MVB vesicles 

(Katzmann et al., 2001; Nikko et al., 2003). Hence Bro1 dysfunction might 

lead to incorporation of ubiquitylated cargoes into intraluminal vesicles and 

depletion of the cytosolic ubiquitin pool, although this effect is subtle and 

delayed compared to mutations of other ESCRT components.   In addition, 

Bro1 was shown to enhance the stability of ESCRT-III in vivo and inhibits 

Vps4-mediated disassembly of ESCRT-III complex in vitro (Wemmer et al., 

2011). A Snf7 mutant that cannot bind Bro1 dramatically reduces the 

number of ILVs. These results implicate that Bro1 regulates ESCRT-III 

dissembly and membrane scission activity. 
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Role of ALIX in retrovirus release. ALIX plays a major role in 

promoting EIAV particle release. First, ALIX was shown to interact with the 

EIAV p9 protein, which contains a YPDL motif, the only late domain of EIAV. 

Second, mutations in the YPDL motif of EIAV Gag that prevent the 

interaction between ALIX and EIAV p9 disrupt virus budding (Martin-

Serrano et al., 2003a; Strack et al., 2003). Third, expression of a truncated 

dominate negative form of ALIX, or ALIX depletion induced by small 

interfering RNA, specifically inhibits EIAV virus production (Martin-Serrano 

et al., 2003a; Strack et al., 2003; Vincent et al., 2003).  

Although ALIX is crucial for EIAV budding, the role of ALIX in HIV-1 

release is less established. The p6 region of HIV contains both PTAP and 

YPXL late domains, which bind directly to the TSG101/ESCRT-I and ALIX 

proteins, respectively (Martin-Serrano et al., 2003b; Pornillos et al., 2003; 

Strack et al., 2003). The TSG101-PTAP interaction is essential for efficient 

release of HIV-1 from 293T cells and human T cell lines (Garrus et al., 2001). 

In contrast, mutations that abrogate the ALIX-YPXL interaction or siRNA-

mediated ALIX depletion have only a trivial impact on HIV-1 release from 

COS-7, Hela and 293T cells (Demirov et al., 2002; Gottlinger et al., 1991).  

Nevertheless, several observations indicate a greater role for ALIX in 

HIV-1 release. Overexpression of an ALIX fragment (residues 365-716) 

dramatically inhibits HIV-1 release (Munshi et al., 2007). Furthermore, ALIX 

stimulates the release and infectivity of HIV-1 proviral constructs that 
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contain ∆PTAP mutations (Fisher et al., 2007; Usami et al., 2007). ALIX 

therefore provides an alternative route for virus-particle egress, when the 

ability of TSG101 to promote virus release is eliminated. The presence of two 

late domains in HIV-1, presumably, provides advantages of optimal virus 

production and release in a variety of cell types.  

Role of ALIX in midbody abscission.  The membrane scission event at 

the final step in cell division is topologically equivalent to MVB formation 

and viral particle budding. Accumulating evidence indicates that the ESCRT 

machinery participates in this step, for example, ALIX, TSG101/TSG101, 

ESCRT-III proteins and VPS4 are all important for cytokinesis (Carlton and 

Martin-Serrano, 2007; Morita et al., 2010; Morita et al., 2007b). Among 

ESCRT proteins, the role of ALIX in cytokinesis is the most characterized. 

First of all, a concentration of ALIX is revealed at the midbodies of dividing 

cells. ALIX is recruited by CEP55, which functions in the organization of 

midbodies and recruitment of proteins required for abscission (Lee et al., 

2008). Moreover, depletion of ALIX by siRNAs, or disruption of the ALIX-

CEP55 interaction, causes cytokinesis defects with most of the cells 

exhibiting multiple nuclei and unusual remnants of arrested midbodies 

(Carlton et al., 2008; Carlton and Martin-Serrano, 2007; Morita et al., 2007b).  

Mechanism of ALIX in promoting particle release 

ALIX bridges viral Gag and the ESCRT machinery.  ALIX is composed 

of three regions: an N‐terminal Bro1 domain (residues 1-359), a central V 
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domain (residues 360-702), and finally a C‐terminal proline-rich region (PRR; 

residues 703-868) that is predicted to lack persistent secondary or tertiary 

structure (Fujii et al., 2007). 

The ALIX V domain binds the YPXL late domain of Gag. The V domain 

consists of two extended arms, each of which comprises three long helices. 

The two arms are arranged at an angle of ~30° to each other in the shape of 

the letter V (Fisher et al., 2007; Lee et al., 2007). The YPXL late domain 

binding site on the V domain is centered on the highly conserved hydrophobic 

groove on arm2 (Fisher et al., 2007; Zhai et al., 2008). The ALIX V domain 

can accommodate different conformations of the late domain peptide 

backbones. The YPXL late domains of HIV-1 p6Gag and EIAV p9Gag are 

mapped to the core sequences of 35LYPLTSL41 and 22LYPDL26 respectively 

(important residues are boldface) (Strack et al., 2003). Göttlinger and 

colleagues also reported that p6Gag proteins from SIVagm and SIVmac239 can 

bind and package ALIX into virions, although the ALIX binding sites were 

not obvious from sequence comparisons (Strack et al., 2003).  

The Bro1 domain is the common feature shared by all the ALIX 

homologues: two human ALIX homologues-HD-PTP and Brox, and the yeast 

Bro1 protein (Ichioka et al., 2008). The structures of the Bro1 domains are 

similar both for human ALIX and yeast Bro1 (Fisher et al., 2007; Kim et al., 

2005). The ALIX Bro1 domain contains ten α-helices and a small β-sheet. The 

surface of Bro1 domain is characterized with two conserved hydrophobic 
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patches. The first patch is centered on the exposed residue Tyr319, which 

forms the docking site for Src kinase (Schmidt et al., 2005), although the 

absence of Src in yeast suggests that this feature is conserved to support 

some other interaction. The second patch, centered on residue Ile212, forms 

the binding site for the CHMP4/ESCRT-III protein, which functions to 

mediate membrane fission (Fisher et al., 2007; Kim et al., 2005; McCullough 

et al., 2008; Wollert et al., 2009). ALIX therefore facilitates viral budding by 

binding directly to Gag proteins and recruiting CHMP4/ESCRT-III complexes, 

which then mediate membrane fission (Fujii et al., 2007). ALIX recruitment 

by Gag can also be augmented by interactions between the Bro1 domain and 

the NC domain of HIV-1 Gag (Dussupt et al., 2009; Popov et al., 2008, 2009). 

ALIX modulates membrane curvature. ALIX can recruit binding 

partners that are capable of inducing or stabilizing membrane curvature. 

ALIX was shown to be associated with the cellular protein CIN85/SETA-

endophilin complex (Schmidt et al., 2004; Soubeyran et al., 2002). Bar-

domain containing endophilins are lysophophatidic acid acyltransferases that 

modify membrane phospholipids and are believed to induce negative 

curvature and invagination of the plasma membrane during the early steps of 

endocytosis (Farsad et al., 2001; Schmidt et al., 1999). Furthermore, 

endophilin-2 binds and facilitates MLV Gag protein release (Wang et al., 

2003). However, the ALIX-endophilin interaction is dispensable in retroviral 
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budding, because the ALIX construct lacking of endophilin-binding-activity 

still facilitates HIV-1 release (Fisher et al., 2007).   

ALIX might bind or modify membrane curvature directly. First, The 

Bro1 domain has a convex shape and basic residues that could target 

negatively curved membranes produced during viral budding or MVB 

biogenesis (Kim et al., 2005). Second, the ALIX Bro1 domain and the Brox 

protein have been shown to stimulate the “minimal” Gag protein to produce 

virus-like particles (Dussupt et al., 2009; Popov et al., 2008, 2009). The 

minimal Gag construct lacks all the Gag-Gag interactions, and was therefore 

thought to be attenuated in its ability bend the plasma away from the cytosol.  

Bro1 domains are thought to assist Gag in the deformation of cellular 

membranes due to its membrane binding character. Third, 2,2’ 

lysobisphosphatidic acid (2,2’-LBPA), which is abundant in MVB and 

involved in protein and lipid trafficking, can induce formation of vesicles and 

recruit ALIX (Kobayashi et al., 1998; Lebrand et al., 2002; Matsuo et al., 

2004). However, Gruenberg and his colleagues also shown that ALIX 

represses and attenuates internal vesicle formation of LBPA lipsome, which 

is hard to reconcile with the positive role of ALIX in viral budding (Fujii et al., 

2007; Matsuo et al., 2004). Therefore, it still remains elusive that whether 

ALIX can directly bind to membrane.  

ALIX-Ubiquitin interaction. Ubiquitin serves as an important sorting 

signal during endocytosis and protein trafficking from the limiting membrane 
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of the endosome into MVB vesicles (Katzmann et al., 2001; Raiborg and 

Stenmark, 2009). The upstream complexes ESCRT-0,-I and -II all contain 

ubiquitin-binding domains that directly bind to an overlapping hydrophobic 

patch of ubiquitin that includes Ile44 (Hurley and Emr, 2006; Katzmann et 

al., 2002). Although the precise functional role of ubiquitin in retrovirus 

release remains elusive, there are several lines of evidence that support a role 

for Gag ubiquitylation. (1) High levels of ubiquitin are incorporated in 

retroviruses (Ott et al., 1998; Putterman et al., 1990). (2) Gag proteins are 

ubiquitylated at multiple sites (Ott et al., 2000). (3) Mutations of multiple 

lysine residues in HIV-1 and Rous sarcoma virus (RSV) Gag inhibits virus 

budding (Gottwein et al., 2006; Ott et al., 2000; Spidel et al., 2004). (4) The 

PPXY late domain can recruit NEDD4 family ubiquitin ligase; either 

NEDD4-2 or NEDD4-2s stimulates the release of HIV-1 constructs that lack 

TSG101-and ALIX- binding domains (Chung et al., 2008; Usami et al., 2008).   

Freed and colleagues recently reported that ALIX can associate with 

ubiquitin, and substitution of the YPXL late domain with ubiquitin largely 

rescues VLP release in an ALIX dependent manner (Joshi et al., 2008).  

Furthermore, a ubiquitin E3-ligase, POSH, which has been shown to 

augment HIV-1 particle release, can bind and ubiquitylate ALIX (Alroy et al., 

2005; Tsuda et al., 2006; Votteler et al., 2009). Thus, ALIX association with 

ubiquitin and ubiquitylated Gag might further augment retroviral release.  
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Other functions of ALIX 

ALIX has also been implicated in a number of other important cellular 

processes, as indicated by the variety of ALIX-binding partners. Roles for 

ALIX in apoptosis and regulation of JNK signaling pathway are implicated 

by interactions with the calcium-binding EF-hand protein ALG-2 and the 

ubiquitin E3 enzyme POSH (Sadoul, 2006; Tsuda et al., 2006; Vito et al., 

1996). A role for ALIX in cell-surface-receptor downregulation is indicated by 

direct interactions with cell-surface receptors and through antagonism of the 

Cbl-SETA/CIN85-endophilin complex (Geminard et al., 2004; Schmidt et al., 

2004). Finally, a role for ALIX in regulating cytoskeleton assembly and cell 

adhesion is indicated by an interaction with actin (Zhou et al., 2009; Zhou et 

al., 2008).  

Goal of this dissertation 

ALIX performs important functions in the endosomal pathway, in 

midbody separation, and during retrovirus budding from cell membrane. 

ALIX can bind directly to viral Gag and cellular ESCRT proteins, and these 

interactions facilitate virus budding. However, the structural and 

mechanistic basis of ALIX function is unclear. This dissertation was 

motivated by a desire to address following questions. 1) How is ALIX 

recruited to sites of viral budding and, more specifically, how do HIV-1 and 

EIAV recruit ALIX through difference sequences, and how do the viruses that 

lack YPXL motifs incorporate ALIX in the nascent virions? Chapters 2-4 are 
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focused on these questions of ALIX recruitment mechanisms. 2) How is ALIX 

regulated and, more specifically, does ALIX cycle between inactive (soluble) 

and active (membrane-associated) states, like other ESCRT proteins? 

Chapter 5 is centered on regulation of ALIX function. 3) Do human ALIX 

homologues share similar structural and functional features? Chapter 6 

reports studies of an ALIX homologue.  

My central approach has been to determine relevant molecular 

structures by X-ray crystallography. This has been complemented by 

biochemical binding assays, collaborative studies on the solution 

conformation by small angle X-ray scattering, and by collaborative functional 

studies on viral particle release. 

Outline of Chapters 

Chapter 2: Structural and Biochemical Studies of 

ALIX/AIP1 and Its Role in Retrovirus Budding 

The work described in Chapter 2 was originally published in the March 

9, 2007 issue of the Cell and is reprinted here in its published format. The 

focus of this work was about understanding how ALIX functions in viral 

budding through structure analysis of apo ALIX proteins. A former graduate 

student, Rob Fisher, determined the structures of isolated ALIXBro1 and 

ALIXV domains and obtained poor quality crystals of an ALIXBro1-V construct. 

I improved ALIXBro1-V crystals by introducing K268Y and K269Y mutations 

on a loop region, which turn out to stabilize a crystal contact. Hyo-Young 
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Chuang, a former graduate student in the Sundquist lab, carried out an 

assay to characterize ALIX function in EIAV and HIV-1 ∆PTAP budding. 

This work concludes that both the conserved hydrophobic pocket on the V 

domain and the conserved hydrophobic patch on the Bro1 domain are 

required for virus budding. Overall, the work in this chapter shows in 

structural detail that ALIX serves as a scaffold that connects retroviral Gag 

proteins to ESCRT-III proteins.  

Chapter 3: Structural and Functional Studies of ALIX 

Interactions with YPXnL Late Domains of HIV and EIAV 

The work described in Chapter 3 was originally published in the 

January, 2008 issue of the Nature Structural & Molecular Biology and is 

reprinted here in its published format. This work centers on understanding 

how ALIX is recruited by the HIV-1 p6 YPL(T/A)SL and EIAV p9 YPDL late 

domains. I co-crystallized ALIX with YPXnL motifs from HIV-1 and EIAV 

and determined the structures, which reveal that ALIX primarily recognizes 

the conserved LYP element by binding the Tyr residue deep in a conserved 

hydrophobic pocket and anchoring its OH group with a hydrogen bonding 

interaction at the bottom of the pocket. However, the HIV-1 and EIAV 

ligands adopt different backbone conformations to reach the fourth binding 

site of ALIX; the leucine of the EIAV late domain is spaced by one residue 

after LYP, whereas for HIV-1 there are three intervening residues following 

the LYP before the fourth anchor site leucine. Rob Fisher performed binding 
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experiments that showed that those peptides bind the ALIX construct with 

similar affinity, while the p6Gag and p9Gag proteins have distinct dissociation 

constants, indicating that the rest of proteins affect ALIX recruitment. Hyo-

Young Chuang performed viral budding assays to verify the importance of 

key interface residues.  

Chapter 4: Identification and Structural Characterization 

of the ALIX-Binding Late Domain of Simian 

Immunodeficiency Virus SIVmac239 and SIVagmTan-1 

Chapter 4 was originally published in the January, 2011 issue of the 

Journal of Virology. This work was undertaken to understand how certain 

SIVagm and SIVmac strains lacking a canonical YPXnL motif recruit ALIX to 

virions (Strack et al., 2003). I mapped the ALIX-binding elements and 

determined their crystal structures in complex with ALIXBro1-V. Both peptides 

begin to form an α-helix with the tyrosine, which superimposes closely to 

those from HIV-1 and EIAV. Michael Landsman, a graduate student in 

Sundquist lab, performed the viral budding assays reported in this paper to 

confirm that the newly identified late domains were ALIX responsive. 

Sequence analysis of p6Gag indicates that the α-helix mode is the most 

common type of ALIX-binding late domain throughout primate lentiviruses.  
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Chapter 5: Activation of the Retroviral Budding 

Factor ALIX 

Chapter 5 is a manuscript in preparation and was submitted to the 

Journal of Virology for publication. Previous studies have suggested that the 

soluble ALIX protein adopts an autoinhibited state and the conformational 

changes coincide with ALIX activation (Fisher et al., 2007; Pires et al., 2009; 

Zhou et al., 2008). I expressed and purified full length ALIX using a 

baculovirus-insect cell expression system, performed binding studies and 

showed that full length ALIX did not bind detectably to the EIAV p9 peptide. 

Together with SAXS analysis by Adam Dierkers and Cy Jeffries, postdocs in 

the Trewhella lab, we determined that the C-terminal PRR of ALIX folds 

back against the V domain and inhibits access by viral late domains. Hyo-

Young Chung discovered that the R649E mutation, which was designed to 

open the closed conformation of the V domain, was more potent than the wild 

type protein in stimulating virus release and infectivity. Michael Landesman 

showed that this R649E protein partitions into membrane-containing 

fractions to a greater extent that the wild-type protein.  Based on these data, 

we propose that ALIX is activated to facilitate virus budding through a series 

of conformational changes, including PRR release from Bro1-V domains, 

opening of the V domain, membrane recruitment of ALIX, and dimerization.  
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Chapter 6: Structural and Functional Studies of 

Brox in Virus Budding 

 Work in this chapter describes the structure of Brox, which is a human 

homologue of ALIX. Most of the Brox structure overlaps closely with the 

known structures of other Bro1 domains. However, extra C-terminal residues 

of Brox reach the convex interface, which is unique compared with the known 

Bro1 domains. Two hydrophobic patches that have been described for the 

ALIX Bro1 domain are also conserved on the Brox surface.  I performed 

binding experiments to verify that the CHMP4 interacts with Brox directly 

via the putative interface. Michael Landesman performed a minimal Gag 

budding assay and showed that Brox-CHMP4 interaction is required for VLP 

formation of the minimal Gag construct.  

Chapter 7: Summary and Respective 

 Chapter 7 summarizes structural and biochemical studies of ALIX 

described in Chapter 2-6.  In addition, it discusses some ALIX-binding 

proteins, which may regulate ALIX function in viral budding. This chapter 

includes an initial binding study of the ALIX-ubiquitin interaction. I 

performed binding experiments and showed that ubiquitin can interact with 

the ALIX V domain with a KD of 1 mM, I44A mutation on ubiquitin can 

abolish this interaction. ALIX-ubiquitin interaction and ALIX-ubiquitylation 

may provide alternative pathways for virus budding and regulate ALIX 
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function. It concludes with a discussion of future directions for understanding 

ALIX activation.  

Appendix: Structural and Functional Studies on the 

Extracellular Domain of BST2/Tetherin in Reduced and 

Oxidized conformations 

The appendix was originally published in the October 19, 2010 issue of 

the PNAS and is reproduced here in its published form. The focus of this 

work is to determine the structure of BST2, which prevents the release of 

budded viruses from the cell surface. Heidi Schubert was able to obtain 

native crystals of the extracellular domain under reducing conditions and 

compute an initial electron density map. However, the map was too poor to 

interpret. While Heidi was on maternity leave, I grew selenium- methionine 

crystals, solved the phase problem of crystallography and determined its 

structure. The BST2 extracellular domain forms a single long helix that 

associates as a parallel coiled coil over the C-terminal two thirds of the 

construct, while the N-terminal third of the protein forms an antiparallel 

four-helix bundle with another dimer. Roberto Steiner group determined the 

BST2 structure expressed on the surface of HEK293T cells, which forms a 

dimer in the crystal. I collaborated with Debra Eckert to characterize the 

oligomeric states of BST2. Consistent with the two crystal structures, we 

found that BST2 forms a stable tetramer under reducing conditions and 

converts into a stable dimer upon oxidation.  
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SUMMARY

ALIX/AIP1 functions in enveloped virus bud-
ding, endosomal protein sorting, and many
other cellular processes. Retroviruses, includ-
ing HIV-1, SIV, and EIAV, bind and recruit ALIX
through YPXnL late-domain motifs (X = any res-
idue; n = 1–3). Crystal structures reveal that hu-
man ALIX is composed of an N-terminal Bro1
domain and a central domain that is composed
of two extended three-helix bundles that form
elongated arms that fold back into a ‘‘V.’’ The
structures also reveal conformational flexibility
in the arms that suggests that the V domain
may act as a flexible hinge in response to ligand
binding. YPXnL late domains bind in a con-
served hydrophobic pocket on the second
arm near the apex of the V, whereas CHMP4/
ESCRT-III proteins bind a conserved hydropho-
bic patch on the Bro1 domain, and both interac-
tions are required for virus budding. ALIX there-
fore serves as a flexible, extended scaffold that
connects retroviral Gag proteins to ESCRT-III
and other cellular-budding machinery.

INTRODUCTION

Many enveloped RNA viruses use short peptide motifs,

termed ‘‘late domains,’’ to recruit cellular factors that facil-

itate budding (reviewed in Bieniasz, 2006; Demirov and

Freed, 2004; Morita and Sundquist, 2004). Two of the

best characterized late domains are the PTAPmotif, which

binds and recruits TSG101 (tumor susceptibility gene 101;

Demirov et al., 2002; Garrus et al., 2001; Gottlinger et al.,

1991; Huang et al., 1995; Martin-Serrano et al., 2001; Ver-

Plank et al., 2001), and the YPXnL motif (where X can vary

in sequence and length), which binds ALIX/AIP1 (ALG-2-

interacting protein X; Chen et al., 2005; Puffer et al.,

1997; Strack et al., 2003; Vincent et al., 2003). YPXnL

late domains can vary in sequence and can function alone

or together with PTAP late domains. For example, the

structural p6Gag protein of HIV-1NL4-3 contains 7PTAP10

and 36YPLASL41 late domains that function in tandem,

whereas the analogous EIAV p9Gag protein contains a sin-

gle 23YPDL26 late domain. In principle, multiple late do-

mains could synergistically enhance virus release and/or

expand viral tropism.

Both TSG101 (Vps23p in yeast) and ALIX (Bro1p) help

sort membrane proteins into vesicles that bud into the lu-

men of multivesicular bodies (MVB), which supports the

idea that virus budding and MVB vesicle formation are

highly related processes. The requirements for MVB pro-

tein sorting and vesicle formation are best understood in

yeast, where the process requires the action of at least

18 different ‘‘Class E’’ proteins. Most, but not all, Class E

proteins are stable subunits of the three ESCRT com-

plexes (endosomal sorting complexes required for trans-

port; Hurley and Emr, 2006). Humans have at least one ho-

molog of every yeast Class E protein, and MVB vesicle

sorting therefore appears to be a highly conserved pro-

cess, albeit one that occurs with considerably greater

complexity in mammals.

TSG101 functions as the central subunit of ESCRT-I,

which recognizes ubiquitylated membrane-protein

cargoes and helps recruit the downstreammachinery nec-

essary for protein sorting andMVB vesicle formation (Hur-

ley and Emr, 2006). This downstream machinery includes

the ESCRT-III and VPS4-LIP5 complexes, which appear

to be intimately involved in the actual mechanics of protein

sorting and vesicle formation. ALIX is also aClass Eprotein

and can interact directly with both ESCRT-I and ESCRT-III

but is not a stable subunit of either complex (reviewed in

Odorizzi, 2006). The yeast homolog Bro1p also recruits

the deubiquitylating enzyme Doa4p, which removes ubiq-

uitin from cargoes as they are sorted into MVB vesicles

(Dejournett et al., 2006; Luhtala and Odorizzi, 2004).

In addition to its roles in virus budding and MVB cargo

sorting, ALIX has also been implicated in a number of other

important cellular processes, including (1) MVB vesicle fis-

sion and back fusion via regulation of the conical lipid,
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lysobisphosphatidic acid (LBPA; reviewed in van der Goot

and Gruenberg, 2006); (2) endocytosis via interactions

with the membrane-curvature-sensing endophilins (Cha-

tellard-Causse et al., 2002; Gallop and McMahon, 2005);

(3) cell-surface-receptor downregulation via direct inter-

actions with cell-surface receptors (Geminard et al.,

2004) and through antagonism of the Cbl-SETA/CIN85-

endophilin complex (Schmidt et al., 2004); (4) spatial distri-

bution of endosomes via regulation of cortical actin (Cabe-

zas et al., 2005); (5) cell motility/adhesion via interactions

with FAK (focal adhesion kinase), PYK2 (proline-rich

tyrosine kinase 2; Schmidt et al., 2003), and possibly also

RabGAPLP (Rab GTPase-activating protein-like protein;

Ichioka et al., 2005); (6) apoptosis via interactions with the

calcium-binding EF-hand protein ALG-2 (apoptosis-linked

gene-2; reviewed in Sadoul, 2006); (7) regulation of the

JNK signaling pathway via interactions with ALG-2 and

the ubiquitin E3 ligasePOSH (plentyofSH3domains; Tsuda

et al., 2006). The latter observation is of particular interest

because POSH is also required for HIV-1 release (Alroy

et al., 2005), which raises the possibility that the ALIX-

POSH-ALG-2 complex could function in HIV-1 budding.

In summary, it is now apparent that ALIX performs a se-

ries of important functions in the endosomal pathway, in

cytoskeletal dynamics, and in enveloped virus budding.

However, the mechanistic bases for these seemingly di-

verse ALIX functions are not known. Our studies were

therefore undertaken with the goals of elucidating the

structure of ALIX, determining how it interacts with retrovi-

ral Gag proteins, and testing its requirements for function-

ing in virus budding.

RESULTS

Structural Studies of Human ALIX

As illustrated in Figure 1A, human ALIX can be subdivided

into three regions; the Bro1 domain (residues 1–358), the

‘‘V’’ domain (362–702), and the proline-rich region (PRR;

703–868). Constructs containing the PRR did not express

well in E. coli, but constructs spanning the Bro1 and V

domains could be expressed and purified. A series of

ALIXBro1-V proteins with loop mutations were surveyed to

identify a protein that would crystallize. The KK268,269YY

mutation enabled crystallization (apparently because

Tyr268 makes an important crystal contact), and the

structure of this protein (hereafter termed ALIXBro1-V)

was determined at a resolution of 3.3 Å (Rfree = 31.7%; Fig-

ures 1B and S1; Table S1). Isolated wild-type Bro1 and V

domains were also crystallized and their structures were

determined at higher resolutions (2.55 Å, Rfree = 27.4%

and 2.6 Å, Rfree = 30.2%, respectively; see Figures 1C–

1E). The V-domain crystals contained two molecules in

the asymmetric unit, and the different structures therefore

provided three independent views of the ALIX V domain.

Global Architecture of ALIXBro1-V

As illustrated in Figure 1B, the ALIXBro1-V protein adopts an

extended conformation in which the Bro1 and V domains

form discrete elements. Like its yeast analog, Bro1p (Kim

et al., 2005), ALIXBro1 is shaped like a banana, with a long

dimension of �100 Å. The domain is organized about

a core tetratricopeptide repeat (TPR) composed of three

helical hairpins that associate into a right-handed super-

helix (Figure 1C). The ALIX V domain is composed of two

extended arms that fold back on themselves at an angle

of �30� to form a V. The arms are 77 Å (arm1) and 90 Å

(arm2) in length, and each is organized about an extended

three-helix bundle (Figures 1D and 1E). The V-shaped

conformation brings the N-terminal Bro1 domain and the

C-terminal PRR (not present in the structure) into spatial

proximity, thereby explaining how Src kinase can simulta-

neously dock to the Bro1 domain and phosphorylate Tyr

residues in the ALIX C-terminal tail (Schmidt et al., 2005).

ALIXBro1-V has a highly asymmetric shape because the

long axes of the Bro1 and arm1 elements connect in par-

allel. As a result, ALIXBro1-V is �150 Å in its longest dimen-

sion but less than 50 Å in its other two. Small-angle X-ray

scattering profiles fit the crystal model well (R.D.F. and H.

Tsuruta, unpublished data), which indicates that the crys-

tal structure provides a good model for the solution struc-

ture of the uncomplexed protein. Nevertheless, we spec-

ulate that the different domains could change their relative

orientations in response to environmental cues like ligand

binding because the Bro1 and V domains are connected

by a single tripeptide linker (359VPV361) that makes only

limited noncovalent contacts (Figures 1B and 2A). More-

over, the V-domain arm trajectories vary in the three differ-

ent structures, which results in relative displacements of

up to 10 Å at their tips (Figure 2B). Finally, the loop region

between the two arms of the V domain also has the poten-

tial to act as a hinge (Figure 2C and Discussion). Thus, the

overall impression is that ALIXBro1-V is a scaffold com-

posed of extended domains that may reorient in response

to ligand binding.

Structure of the Bro1 Domain

The three helical hairpins that comprise the ALIXBro1 TPR

core (a4/5, a6/7, and a8/9) are each �50 residues in

length. They form a right-handed solenoid with a rotation

of �20� between each helical pair. The core is flanked

on one side by a10 (left in Figure 1C) and on the other by

a small b sheet (b1, b2) and a three-helix bundle (a1–3).

Both the N and C termini adopt extended conformations

that traverse opposite sides of the domain, with the first

17 residues extending along the convex surface and the

final 43 residues extending across the concave surface.

As expected, human ALIXBro1 generally resembles its

yeast counterpart (Kim et al., 2005), with an overall rmsd

of 2.8 Å over 338 equivalent Ca positions (Figure S2).

The character of the domain surface is also largely con-

served, with two exposed hydrophobic patches centered

about Tyr319 and Phe199. The first patch forms the dock-

ing site for Src kinase when Tyr319 is phosphorylated

(Schmidt et al., 2005), and the second patch forms the

binding site for the CHMP4B subunits of the ESCRT-III

complex (Kim et al., 2005 and see below). A strongly
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electropositive patch at one end of the yeast Bro1 domain

is also basic in the human protein, albeit to a lesser extent.

The human and yeast Bro1 domains differ most at one

end of the domain (right in Figure 1C), where N- and C-ter-

minal elements differ in secondary structure and packing

(Figure S2). Specifically, the C terminus of yeast Bro1p

forms three consecutive helical segments that cross the

concave side and then turn up into the domain, whereas

the equivalent residues in the human protein (342–358)

form an extended strand that traverses a similar path but

terminates earlier. Thus, the C-terminal helix of the yeast

protein packs between a3 and the a1–2 hairpin (ALIXBro1

numbering), whereas the human Bro1 C terminus is

shifted by �10 Å, and the first three helices of human

ALIXBro1 collapse into a three-helix bundle (a maximal rel-

ative shift of�12 Å). It appears possible that these distinct

C-terminal conformations could alter the relative orienta-

tions of the Bro1 and V domains in the different proteins.

The Structure of the ALIX V Domain

Both arms of the ALIX V domain are composed of ex-

tended three-helix bundles, although a series of short

breaks subdivide the major helices into 11 different seg-

ments (Figures 1D, S1, and S3). The topology of the V do-

main is notable in that the polypeptide chain crosses the

arm1/arm2 ‘‘loop’’ region three times in the course of

Figure 1. Structure of ALIXBro1-V

(A) shows domain structure of human ALIX. Se-

quences that compose the different elements

are color coded here (and throughout) as fol-

lows: Bro1, turquoise; Bro1-V linker, brown;

V-domain arm1, green; V-domain loop,

salmon; V-domain arm2, blue; and Proline-

rich region (PRR), gray.

(B) Ribbon representation of ALIXBro1-V is

shown. Residues implicated in CHMP4 binding

(Ile212; yellow) or YPXnL binding (Phe495,

Val498, Ala509, Phe676, Leu680, and Ile683;

red) are highlighted. The Bro1 and V domains

are connected by a short hydrophobic linker

(359VPV361). The limited set of interdomain hy-

drophobic packing interactions is made by

Phe24 (a1, Bro1), Val359, Pro360, Val361,

Val363 (a11, arm1, and V), and Leu585 (a19,

arm1, and V).

(C) This ribbon diagram of ALIXBro1 shows the

secondary-structure-labeling scheme. The

view is from the underside of the orientation

shown in (A).

(D) shows a ribbon diagram of ALIXV showing

the secondary-structure-labeling scheme. As

compared to (A), this orientation is rotated

clockwise by �60� relative to a line perpendic-

ular to the plane of the paper.

(E) This surface rendering shows ALIXV se-

quence conservation. ALIXV sequences from

seven divergent species were aligned using

ESPript (Gouet et al., 1999); residues with

scaled similarity scores are color coded as fol-

lows: 85–100 are red, 68–84 are orange, and

50–67 are yellow.
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building the two helical bundles (Figure S3). Hence, the

two arms are highly interconnected in primary sequence,

and the entire V domain likely represents a single func-

tional entity.

The two V-domain arms are primarily stabilized by hy-

drophobic side-chain-packing interactions that are based

upon heptad repeats and that adopt canonical ‘‘knobs

into holes’’ side-chain packing. This explains why the do-

main scored highly in coiled-coil prediction algorithms

(Katoh et al., 2003; Odorizzi et al., 2003). In contrast, the

three strands in the loops connecting arm1 and arm2 are

stabilized almost exclusively by hydrophilic interactions,

most of which are mediated by backbone atoms. An illus-

trative example is provided by the highly conserved

Arg649 residue (a21, arm2), which forms a series of inter-

actions that buttress the underside of the loop region;

these include a buried salt bridge with Asp407 (a12/13

loop) and hydrogen-bonding interactions with a buried

water molecule and with the backbone carbonyl oxygen

atoms of Pro535 (a17/18 loop) and Thr412 (a12/13 loop).

The loop region also encloses a hydrophilic interior cavity

of �67 Å3 (purple in Figure 2C).

The V domain exhibits intrinsic conformational flexibil-

ity, as revealed by comparisons of the relative positions

of the two arms in the different crystal structures. Isolated

arm1 structures from the crystallographically independent

models overlapwell (rmsd = 1.4 Å), and the same is true for

the arm2 structures, but overlapping on either arm causes

the other to ‘‘fan out’’ into different positions. This is illus-

trated in Figure 2B for the case of overlap on arm1, where

the relative arm2 displacements reach up to 10 Å at their

distal ends. These global differences in the structures

arise from small, cumulative changes in the interhelical

packing interactions along both arms rather than from

a dramatic reorganization of the loop region or elsewhere.

Thus, the structures demonstrate that the V-domain arm

Figure 2. Interdomain Linkers and Con-

formational Flexibility of ALIXBro1-V

(A) Stereoview showing the linker between the

Bro1 and V domains is shown. Secondary

structures are color coded as in Figure 1B,

and residues that contact the 359VPV361 linker

are shown explicitly.

(B) This stereoview illustrates conformational

variability in different V-domain structures.

The different trajectories of arm2 were visual-

ized by superimposing only the arm1 regions

from crystals of ALIXBro1-V (salmon) and from

the two different molecules in the ALIXV asym-

metric unit (green and blue). The only other sig-

nificant difference between the structures was

in the position of Trp476 residue (a4/5 loop),

which flips out of the core of arm2 in one of

the two ALIXV structures to make a crystal

contact.

(C) shows a stereoview illustrating the three-

stranded loop region that connects the two

arms of the V domain. Secondary structures

are color coded as in Figure 1B. Side chains

within the loop and adjacent residues are

shown, and the stabilizing interactions of the

Arg649 residue are shown explicitly. The purple

cage denotes a pocket that appears to be

occupied by a mix of ordered and disor-

dered water molecules. The view is from the

bottom of (B).
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positions can vary, although the biological significance of

this observation remains to be elucidated.

The ALIX VDomain Binds HIV-1 p6Gag and EIAV p9Gag

YPXnL Late Domains

ALIX binds and facilitates budding of retroviral Gag pro-

teins that contain YPXnL late domains, but the interaction

site is not yet known. We therefore performed biosensor

binding experiments to map the YPXnL-binding site and

measure the binding affinities of the HIV-1 p6Gag and

EIAV p9Gag proteins. As shown in Figure 3A, the immobi-

lized ALIX V domain bound both HIV-1 p6Gag and EIAV

p9Gag, with dissociation constants of 59 ± 15 mM and

1.2 ± 0.3 mM, respectively. In both cases, binding was

specific for the YPXnL late domain because YP to SR

mutations (termed DYP; Strack et al., 2003) reduced bind-

ing affinities substantially (>15-fold). Very similar binding

data were also obtained for the ALIXBro1-V construct, which

indicates that the Bro1 domain did not contribute to the

binding interaction (Table S2).

Close inspection of the V-domain surface revealed

a highly conserved hydrophobic groove on arm2 between

helices 16 and 21, centered about Phe676, that was

a strong candidate for the YPXnL late-domain-binding

site (Figures 1D, 1E, 3B, and S4). This site is exposed to

solvent but is located near the base of the V, where the

two arms are separated by only 5–10 Å. Phe676 sits at

one end of a deep pocket (�10 Å) that is lined by a series

of highly conserved residues (highlighted in red in

Figure 3B). A shallower hydrophobic groove also extends

�7 Å above Phe676, although the residues that line this

half of the site are less well conserved (Figures 3B, S1,

and S4).

Mutational analyses confirmed that a series of con-

served residues within the putative YPXnL-binding site

on arm2 were required for full-affinity HIV-1 p6Gag and

EIAV p9Gag binding. As shown in Figure 3A, the

Phe676Asp mutation abolished any detectable binding

to either HIV-1 p6Gag or EIAV p9Gag, which represents

a >1000-fold reduction in EIAV p9Gag binding affinity. Mu-

tations in two other binding-groove residues (Val498Asp

and Ile683Asp) also reduced HIV-1 p6Gag and EIAV

p9Gag binding affinities substantially (R20 fold; see Table

S2). These data indicate that retroviral Gag YPXnL late

domains bind the V domain of ALIX at a conserved site

that spans the side and interior face of arm2.

Requirements for ALIX in EIAV and HIV-1 Release

Previous studies have indicated that ALIX can function in

the release of both EIAV andHIV-1 (Chen et al., 2005; Mar-

tin-Serrano et al., 2003; Strack et al., 2003; von Schwedler

et al., 2003). Importantly, however, EIAV p9Gag contains

a single known late domain (the 23YPDL26-ALIX site),

whereas HIV-1 p6Gag contains two late domains: a

7PTAP10-TSG101 site and a 36YPLASL41-ALIX site. We

therefore assessed the relative importance of ALIX for

the release of both EIAV and HIV-1. As shown in Figure 4A,

the release of virion-associated Gag-derived CA protein

from HeLa cells expressing a wild-type EIAV vector was

readily detected in western blot assays (lane 1, upper

panel), but the DYP mutation in the p9Gag ALIX-binding

site reduced EIAV particle release 12-fold (compare lanes

1 and 2, panel 1). ALIX depletion similarly reduced the

Figure 3. Identification of the YPXnL-Binding Site on ALIXV

(A) Biosensor binding isotherms for purified HIV-1 p6Gag and EIAV p9Gag constructs binding to immobilized ALIXV domain constructs are shown.

(B) YPXnL-binding site on ALIXV arm2 is shown here as viewed from arm1. Residue conservation is color coded as in Figure 1E. Underlined residues

were mutated and tested for YPXnL-binding activity and/or for activity in the HIV-1 DPTAP rescue assay (see text).
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release of wild-type EIAV 10-fold (compare lanes 1 and 3,

upper panel). shRNA depletion of ALIX from HeLa cells

was very efficient (lane 3, bottom panel), and EIAVGag ex-

pression was not significantly affected by either the p9Gag

DYP mutation or by ALIX depletion (middle panels). Gag

processing was inhibited slightly, however, which is rem-

iniscent of the Gag-processing delay observed upon inhi-

bition of HIV-1 budding (Gottlinger et al., 1991). We there-

fore conclude that the 23YPDL26-ALIX interaction plays

a critical role in enhancing EIAV Gag release, which is in

good agreement with previous studies (Martin-Serrano

et al., 2003; Puffer et al., 1997; Strack et al., 2003).

The importance of ALIX for HIV-1 release was also

tested by measuring the effect of the DYP mutation in

the ALIX-binding site of HIV-1 p6Gag. As shown in

Figure 4B, this mutation reduced HIV-1 Gag release from

293T cells, as measured in both a western blot assay

(compare lanes 1 and 2, panel 1) and by viral titers in a sin-

gle-cycle MAGIC infectivity assay (lanes 1 and 2, panel 3).

However, the reductions in release and infectivity were

modest (�3-fold). In comparison, a mutation that blocked

the 7PTAP10-TSG101 interaction (PTAP7-10LIRL, termed

DPTAP) hadamuchmoreprofound effect onHIV-1 release

and reduced infectious titers more than 100-fold

(Figure 4B, compare lanes 1 and 3). Neither late-domain

mutation affected Gag protein expression, although both

again delayedGagprocessing, as evidencedby intracellu-

lar accumulation of the CA-SP1-processing intermediate,

with the more profound effect again seen for the DPTAP

mutation (Figure 4B, central panel). These experiments in-

dicate that ALIX and TSG101 both enhance the release of

wild-type HIV-1 from 293T cells but that the virus depends

muchmore heavily upon the 7PTAP10-TSG101 interaction.

These studies again generally agreewell with previousmu-

tational analyses that utilized different HIV-1 constructs

and cell types and were performed before the discovery

of the p6Gag
36YPLASL41-ALIX interaction (Demirov et al.,

2002; Gottlinger et al., 1991; Huang et al., 1995).

ALIX Overexpression Rescues Release

and Infectivity of HIV-1 DPTAP

The experiments described above demonstrate that the

p9Gag
23YPDL26-ALIX late-domain interaction plays a ma-

jor role in facilitating EIAV release, yet the p6Gag

36YPLASL41-ALIX interaction does not efficiently substi-

tute for the 7PTAP10-TSG101 interaction in supporting

HIV-1 release. We hypothesized that this apparent dis-

crepancy might reflect a reduced ability of HIV-1 to recruit

ALIX owing to the lower affinity of the p6Gag YPXnL-bind-

ing site. We therefore tested whether the inefficient re-

lease of the HIV-1 DPTAP virus from 293T cells could be

‘‘rescued’’ by increasing intracellular ALIX concentrations.

Figure 4. Requirement for ALIX in EIAV and HIV-1 Budding

(A) ALIX requirements for EIAV vector budding are shown as follows:

lanes 1, wild-type (WT) EIAV vector expressed in wild-type HeLa cells

(positive control); lanes 2, EIAV vector encoding a 23SR24 mutation in

the 23YPDL26 late domain of p9Gag (DYP) expressed in wild-type

HeLa cells; and lanes 3, wild-type EIAV vector expressed in cells de-

pleted of ALIX using shRNA.Western blots are shown as follows: panel

1, virus-like particle (VLP) production (anti-CA antibody) reports the

amount of successful budding and panel 2, cellular Gag protein levels

(anti-CA antibody) control for expression. Note that CA corresponds to

the processed central domain of Gag, p55 corresponds to full-length

Gag protein, and p40 and p47 are intermediate Gag cleavage prod-

ucts. Cellular Gag levels were similar in all cases, although the pro-

cessing was somewhat delayed in the DYPmutant and in the absence

of ALIX. Panel 3 shows cellular ALIX levels (anti-ALIX antibody).

(B) The relative importance of ALIX and TSG101 binding for HIV-1 virus

budding is shown. Lanes 1 show wild-type (WT) HIV-1 expressed in

293T cells (positive control), lanes 2 show HIV-1 encoding a 36SR37

mutation in the 36YPLASL41 late domain of p6Gag (DYP), and lanes 3

show wild-type HIV-1 encoding a 7LIRL10 mutation in the 7PTAP10

late domain of p6Gag (DPTAP). Western blots show virus production

(panel 1) and cellular Gag protein levels (panel 2, anti-CA and anti-

MA antibodies; MA is the processed N-terminal domain of Gag). Panel

3 shows viral titers measured in a single-cycleMAGIC assay (errors are

standard deviations from three separate infectivity experiments). Note

that cellular CA and MA levels were similar in all cases but that the

CA-SP1-processing intermediate accumulated in the DYP and DPTAP

constructs, which is a typical diagnostic of virus-budding inhibition.
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As shown in Figure 5, HIV-1 DPTAP release and infectivity

were indeed stimulated very dramatically (�25-fold) by

ALIX overexpression (Figure 5, panels 1 and 4, compare

lanes 1 and 2). Hence, raising cellular ALIX levels could re-

store HIV-1 DPTAP infectivity to within �20% of the wild-

type virus. Importantly, ALIX overexpression did not alter

intracellular Gag expression or processing (panel 2), which

demonstrates that the enhancement occurred at late

stages in particle assembly or budding. Control experi-

ments also confirmed that the p6Gag
36YPLASL41-ALIX in-

teraction was responsible for this enhancement because

ALIX overexpression did not stimulate the release of an

HIV-1 DPTAP virus that also lacked a functional ALIX-

binding site (compare lanes 2 and 4). Indeed, the second-

ary DYP mutation actually reduced HIV-1 DPTAP release

and infectivity by an additional 5-fold (compare lanes

3 and 4 to lane 1) presumably because the mutation also

inhibited the ability of endogenous ALIX to mediate low-

level release. These experiments demonstrate that ALIX

can replace TSG101 in its role of supporting the efficient

release of infectious HIV-1, provided ALIX is present at

sufficient levels to overcome the modest affinity of the

36YPLASL41-ALIX interaction.

ALIX YPXnL-Binding Activity Is Required

for Virus Release

The rescue of HIV-1 DPTAP release and infectivity upon

ALIX overexpression provided a convenient assay for test-

ing which ALIX activities were required for functional virus

release. This assay was initially used to test whether ALIX

mutations that inhibited YPXnL binding in vitro also

inhibited virus release through the ALIX pathway. As

described previously, overexpression of wild-type ALIX

enhanced the release and infectivity of HIV-1 DPTAP

�25-fold (Figure 6A, compare lanes 1 and 2). In contrast,

ALIX proteins with point mutations that inhibited YPXnL

binding (Val498Asp, Phe676Asp, and Ile683Asp) failed to

rescue HIV-1 DPTAP release or infectivity (compare lanes

2 and 3–5). These mutations did not affect ALIX expres-

sion or stability (panel 3), nor did they affect cellular Gag

levels (panel 2). Similar data were obtained for a series

of other mutations within the YPXnL-binding site

(Phe495Asp, Val509Asp, and Leu680Asp), whereasmuta-

tions in a second conserved hydrophobic patch located

on arm1 (Leu401Asp, Ile405Asp, and Leu556Asp) did

not diminish ALIX rescue significantly (<2-fold, data not

shown). These data reinforce the idea that ALIX binds

YPXnL late domains within the site shown in Figure 2B

and demonstrate that ALIX mutations that impair YPXnL

binding also inhibit virus release and infectivity.

ALIX Recruitment of CHMP4/ESCRT-III Is Required

for HIV-1 DPTAP Release

In addition to binding YPXnL late domains, ALIX also binds

CHMP4/ESCRT-III proteins through the Bro1 domain,

suggesting that ALIX may serve to connect retroviral

Gag proteins to the ESCRT-III machinery (Katoh et al.,

2003; Kim et al., 2005; Martin-Serrano et al., 2003; Odor-

izzi et al., 2003; Strack et al., 2003; von Schwedler et al.,

2003). We therefore tested whether the interaction be-

tween ALIX and CHMP4A was required for virus budding.

Previous work showed that mutations in an exposed hy-

drophobic patch on yeast Bro1p inhibited Snf7p

(CHMP4) binding and prevented proper MVB sorting

(Kim et al., 2005). We found that a mutation within the

equivalent patch on human ALIX, Ile212Asp, similarly in-

hibited the ALIXBro1-CHMP4A interaction, as assayed in

a GST pulldown experiment (Figure 6B). As expected,

wild-type ALIXBro1 bound to a GST-CHMP4A fusion pro-

tein but not to GST alone (compare lanes 2 and 3). In con-

trast, the ALIXBro1,I212D mutant did not bind GST-CHMP4A

detectably (compare lanes 3 and 6).

Figure 5. ALIX Overexpression Rescues HIV-1 DPTAP

Release and Infectivity

Virus release, cellular Gag protein levels, exogenous ALIX expression,

and viral infectivity are shown as analyzed by western blotting (panels

1–3) or MAGIC infectivity assays (panel 4). Lanes 1 show HIV-1 DPTAP

cotransfectedwith an empty pCI-neo vector control, lanes 2 showHIV-

1 DPTAP cotransfected with a vector expressing FLAG-ALIX, lanes 3

show HIV-1 DPTAP DYP cotransfected with an empty vector control,

and lanes 4 show HIV-1 DPTAP DYP cotransfected with a vector

expressing FLAG-ALIX. For reference, wild-type HIV-1 titers were

typically �65,000 IU/50 ml, and overexpression raised ALIX levels

�50-fold over endogenous protein levels as estimated by western

blotting with anti-ALIX antibodies (not shown). Error bars in infectivity

assays represent standard deviations of three separate infectivity

experiments.

64



We next tested whether the Ile212Asp mutation af-

fected the ability of ALIX to rescue HIV-1 DPTAP infectiv-

ity. As shown in Figure 6C, the ALIXI212Dmutant expressed

well (panel 3, compare lanes 2 and 3) but failed to rescue

HIV-1 DPTAP release or infectivity significantly (top and

bottom panels, compare lanes 2 and 3). Hence, the

Ile212Asp mutation strongly inhibited the ability of ALIX

to support HIV-1 release, implying that one essential

ALIX function in virus budding is to recruit CHMP4/

ESCRT-III.

Other ALIX Functions in Virus Budding

The HIV-1 DPTAP rescue assay was also used to survey

the functional importanceof four other knownALIXproper-

ties: Tyr319 phosphorylation, TSG101 binding, endophilin

binding, and interactions of the C-terminal PRR. ALIX mu-

tants defective in each of these properties were generated

and tested for their ability to rescue HIV-1 DPTAP release.

In the first case, the ALIX Tyr319Phe mutation, which

blocks phosphorylation and Src kinase binding (Schmidt

et al., 2005), did not impair the rescue of HIV-1 DPTAP re-

lease and infectivity (Figure 7, lane 3). This result indicates

that Src binding and phosphorylation do not play essential

(or nonredundant) roles in ALIX virus-budding activity.

ALIX can also bind directly to the N-terminal UEV do-

main of TSG101 via a 717PSAP720 motif located in the

ALIX PRR (Martin-Serrano et al., 2003; Strack et al.,

2003; von Schwedler et al., 2003). This interaction is of in-

terest because it provides a potential mechanism for as-

sociation of the two known late-domain-binding partners

of HIV-1. As expected, mutation of the final proline in the

717PSAP720 motif (Pro720Leu) eliminated TSG101 UEV

binding entirely (Figure S5A). However, the ALIXP720L mu-

tant fully rescuedHIV-1DPTAP release and infectivity (Fig-

ure 7, lane 4), which indicates that a functional TSG101-

binding site was not required for ALIX to support virus

budding. Indeed, we found that ALIX overexpression

rescued HIV-1 DPTAP release even when TSG101 was

Figure 6. ALIX Mutants Lacking YPXnL-

and CHMP4-Binding Activities Do

Not Support HIV-1 DPTAP Release and

Infectivity

(A) HIV-1 DPTAP release and infectivity when

coexpressed with an empty vector (�; lanes

1), with vectors expressing wild-type ALIX

(lanes 2), or with ALIX mutants defective in

YPXnL binding (lanes 3–5) are shown. ALIX

and Gag protein levels were analyzed by west-

ern blotting (panels 1–3), and infectious titers

were analyzed using MAGIC assays (panel 4).

(B) This GST pulldown assay shows that the

ALIXBro1 mutation Ile212Asp inhibits GST-

CHMP4A binding. Binding experiments were

performed with wild-type ALIXBro1 (lanes 1–3)

and the I212D mutant (lanes 4–6). Lanes 1 and

4 show pure ALIXBro1 proteins (reference

markers), lanes 2 and 4 show ALIXBro1 proteins

binding to GST alone (negative controls), and

lanes 3 and 6 show ALIXBro1 proteins binding

to GST-CHMP4A.

(C) HIV-1 DPTAP release and infectivity are

shown when coexpressed with an empty ex-

pression vector (�, lanes 1), with vectors ex-

pressing wild-type ALIX (lanes 2), or with the

ALIX Ile212Asp mutant (lanes 3), which is de-

fective in CHMP4A binding. In (A) and (C),

HIV-1 DPTAP release, cellular Gag protein

levels, exogenous ALIX expression, and viral

infectivity were analyzed as described in

Figure 4, with error bars representing standard

deviations from three separate infectivity

experiments.
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depleted from cells (not shown), which indicates that the

ALIX and TSG101 virus-budding pathways can function

independently.

Endophilins represent another interesting class of ALIX-

binding partners because endophilins can bind mem-

branes and can drive (or sense) membrane curvature.

Moreover, endophilin-2 binds and facilitates MLV Gag

protein release (Wang et al., 2003). Endophilins bind the

755PXRPPPP761 sequence within the ALIX PRR (Chatel-

lard-Causse et al., 2002; Shibata et al., 2004). We em-

ployed yeast two-hybrid assays to confirm that the ALIX

RP757,758AA mutation inhibited binding to both endophi-

lin-1 and -2 (Figure S5B). Despite lacking endophilin-bind-

ing activity, however, the ALIXRP757,758AA mutant effi-

ciently rescued HIV-1 DPTAP release and infectivity,

which indicates that endophilin binding was also dispens-

able for the virus-budding function of ALIX (Figure 7,

lane 5).

Finally, we tested the general importance of the ALIX

PRR using several deletion mutants, the shortest of which

removed just the final 38 ALIX residues (ALIXD831–868). All

of the C-terminal deletion mutants tested, including

ALIXD831–868, failed to rescue HIV DPTAP release and in-

fectivity (lane 6) despite equivalent expression levels of

themutant andwild-type proteins (panel 3, compare lanes

2 and 6). We therefore conclude that ALIX PRR interac-

tion(s) are required for late budding activity.

DISCUSSION

ALIXBro1-V Structure

The elongated Bro1 domain extends from the first arm of

the central V domain, which gives ALIXBro1-V the shape

of a ‘‘check mark.’’ This distinctive conformation explains

how Src kinase can bridge the N-terminal Bro1 domain

and the distal PRR tail and how it may similarly bring other

Bro1- and PRR-binding proteins into close proximity. The

ALIXBro1-V structure also suggests several ways in which

conformational changes could function in the numerous

biological roles ascribed to ALIX. Two types of domain

motion are attractive possibilities: (1) variation in the rela-

tive orientation of the Bro1 and V domains, which appears

possible given the limited number of contactsmade by the

interdomain linker (Figure 2A), and (2) variation in the tra-

jectories of the two arms of the V domain, as implied by

differences in the three different V-domain structures

(Figure 2B).

In addition to themodest variation in arm orientation ob-

served between crystal structures, we speculate that the V

domain might function as a ‘‘molecular hinge,’’ with the

structures reported here corresponding to the closed con-

formation. This idea is consistent with the lack of hydro-

phobic packing interactions throughout the loop region

of the V domain (Figure 2C). The hydrophilic loop-packing

interactions that do exist are well defined and geometri-

cally constrained, however, which indicates that if the

loop functions as a hinge, then activation energy will be re-

quired to break these interactions and open the V. In prin-

ciple, hinge opening could be driven by posttranslational

modifications and/or ligand binding and might expose

new binding sites and thereby provide an elegant mecha-

nism for transmitting signals for complex assembly and

disassembly. YPXnL late domains are obvious candidates

for triggering a possible hinge-opening motion because

they bind near the base of the V at a site located nearly be-

tween the two arms.

YPXnL Binding

We have mapped the YPXnL-binding site to a conserved,

hydrophobic groove on arm2 of the ALIX V domain and

demonstrated that YPXnL binding is required for ALIX-me-

diated budding of both HIV-1 and EIAV. ALIX binds nearly

603more tightly to EIAV p9Gag than to HIV-1 p6Gag, which

is consistent with the idea that the EIAV 23YPDL26 late

Figure 7. ALIX Requirements for HIV-1 DPTAP Release and

Infectivity

HIV-1 DPTAP release and infectivity are shown when coexpressed

with: an empty vector (�; lanes 1) with expression vectors for wild-

type ALIX (lanes 2), with the ALIX Y319F mutant (lanes 3), which cannot

be phosphorylated on residue 319, with the ALIXP720L mutant (lanes 4),

which is defective in TSG101 binding, with the ALIXRP757,758AA mutant

(lanes 5), which is defective in endophilin binding, or with the ALIXD831–

868 mutant (lanes 6), which lacks the final 38 residues in the PRR. HIV-1

DPTAP release, cellular Gag protein levels, exogenous ALIX expres-

sion, and viral infectivity were analyzed as described in Figure 4, with

error bars representing standard deviations from three separate infec-

tivity experiments.
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domain is an optimized ALIX-binding site (Vincent

et al., 2003). This presumably reflects the fact that EIAV

contains just a single known late domain and therefore

relies heavily on ALIX to bud from cells. In contrast, the

weaker HIV-1 36YPLASL41-ALIX late-domain interaction

implies that suboptimal binding must confer a selective

advantage when a functional TSG101-binding site is also

present. This same trend can be seen inmany different SIV

strains, where the absence of a TSG101-binding site

appears to correlate with the presence of an optimized

ALIX-binding site (and vice versa; Bibollet-Ruche et al.,

2004). Hence, viral late domains are not necessarily opti-

mized for high-affinity binding, particularly when a virus

employs multiple late domains.

We also found that ALIX can efficiently support the re-

lease and infectivity of an HIV-1 construct that lacks

a TSG101-binding site, provided that the cellular ALIX

levels are high enough to overcome the relatively weak

binding affinity. Importantly, virus release via ALIX does

not require TSG101, and vice versa. Similarly, TSG101 is

not required for release of a Dp6 HIV-1 chimera that

buds via a fused EIAV p9Gag element (Martin-Serrano

et al., 2003) nor for ALIX stimulation of murine leukemia vi-

rus budding (Segura-Morales et al., 2005). These observa-

tions all indicate that although TSG101 and ALIX can bind

one another and function together in the MVB pathway,

they represent independent routes out of the cell. The de-

cisions as to which late domain(s) are employed by a par-

ticular virus, how many late domains are used, and the af-

finity of each binding site presumably reflect a complex

optimization of the different possible exit routes from rele-

vant host cell types.

Although the precise mechanistic role of the different

cellular Class E proteins in enveloped virus budding is

not yet clear, there is increasing evidence that viruses

may be mimicking cellular interactions that allow mem-

brane proteins to recruit the MVB machinery and be

sorted into MVB vesicles, which ultimately leads to lyso-

somal degradation or release within extracellular exo-

somes. Interestingly, both the AP-2 adaptor complex

and ALIX can bind a Tyr-based motif found in the cyto-

plasmic tail of the transferrin receptor (TR; although the

motif does not match the YPXnL consensus; Geminard

et al., 2004). Vidal and colleagues have argued that the

AP-2 interaction directs TR endocytosis, and the ALIX in-

teraction may then direct the TR into exosomes that are

released by maturing reticulocyte cells (Geminard et al.,

2004). Both AP-2 and ALIX also bind the EIAV p9Gag late

domain and function in virus release (Chen et al., 2005),

which suggests that EIAV may bud via the same pathway

that sorts cellular TRs into reticulocyte-derived exosomes.

To date, the only well-documented example in which an

ALIX-like protein binds a nonviral YPXnL motif is for an

ALIX homolog in Aspergillus nidulans, PalA, which binds

tandemYPXL/I tetrapeptide repeatswithin PacC, aprotein

involved in sensing and responding to pH changes

(Vincent et al., 2003). The YPXL/I motifs are required for

pH-dependent proteolytic activation of PacC, although

the precise role of PalA in this process is not clear.

Other cellular binding partners for the ALIX V domain pre-

sumably exist, but the lack of a strong consensus se-

quence for the YPXnL-like bindingmotifs complicates their

identification.

Other Functional Requirements

Our studies also show that one essential function of ALIX

in virus budding is to recruit the CHMP4/ESCRT-III com-

plex. It has been challenging to establish a direct role for

the ESCRT-III proteins in virus budding because human

cells express 11 distinct, but related, ESCRT-III subunits,

and it is therefore difficult to differentiate between nones-

sential versus redundant functions (e.g., see Langelier

et al., 2006). Our work provides the most direct demon-

stration to date that ESCRT-III recruitment is required for

virus budding and is consistent with previous studies

showing that dominant-negative ESCRT-III constructs

can block virus release (Martin-Serrano et al., 2003;

Strack et al., 2003; von Schwedler et al., 2003) and that ar-

tificial Gag fusions that recruit ESCRT-III subunits can

substitute for the 23YPDL26 late domain in supporting

EIAV p9Gag release (Pineda-Molina et al., 2006). Hence,

there is now increasing evidence that while enveloped

RNA viruses can enter into the MVB pathway via many dif-

ferent binding partners, they ultimately require access to

the ESCRT-III and VPS4-LIP5 complexes, which appear

to be the functional machinery of MVB protein sorting/

vesicle formation.

The PRR of ALIX also provides essential function(s) in vi-

rus budding. While the terminal 38 residues of ALIX could

play a structural role, the high Pro and Gln content of this

region (34% and 24%, respectively) makes it more likely

that the polypeptide is inherently unstructured and can

adopt an extended conformation that serves as the dock-

ing site for other cellular proteins. We have shown that en-

dophilin and TSG101 binding to the PRR appear to be dis-

pensable (or redundant) for viral budding. Determining the

subset of PRR interactions that are essential for virus bud-

ding will likely shed light on the mechanistic requirements

for protein sorting/vesicle formation and will further reveal

howALIX can serve as an adaptable, multidomain scaffold

that links retroviral Gag proteins to essential cellular

budding machinery.

EXPERIMENTAL PROCEDURES

Summary of Protein Expression, Purification,

and Structure Determination

For protein-interaction studies, HIV-1 p6Gag and EIAV p9Gag were ex-

pressed as GST fusions in E. coli and purified by affinity chromatogra-

phy and gel filtration chromatography (following protolytic removal of

GST). ALIXBro1-V, ALIXBro1, and SeMet ALIXV were similarly expressed

as GST or 63-His N-terminal fusion proteins in E. coli and affinity pu-

rified for binding studies and crystallization. The 6x-His tag was left on

crystallized ALIXBro1 but removed from ALIXBro1-V and ALIXV. The crys-

tallized ALIXBro1-V protein had a KK268,269YYmutation. Structures were

determined by SAD (ALIXV) or molecular replacement (ALIXBro1 and

ALIXBro1-V) and refined as summarized in Table S1. Full details of
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plasmid construction, protein expression, crystallization, and structure

determination are provided in the Supplemental Data.

Protein-Protein Interaction Experiments

Biosensor binding experiments were performed as described (Garrus

et al., 2001) with purified HIV-1 p6Gag, EIAV p9Gag, and HIV-1

TSG101UEV proteins binding to immobilized GST-ALIXBro1-V, GST-

ALIXV, GST-ALIXBro1, and GST-ALIX714–723 proteins. Assay conditions

and binding affinities are provided in Table S2. GST pulldown experi-

ments were performed as described (von Schwedler et al., 2003) using

purified ALIXBro1 proteins binding to GST or GST-CHMP4A proteins

captured from clarified E. coli lysates.

Assays for HIV-1 DPTAP Release and Infectivity

293T cells (�83 105 cells/well in 6-well plates) were transfected with 1

mg of HIV-1 DPTAP plasmid (Garrus et al., 2001) + 1 mg of ALIX expres-

sion vector per well (10 ml Lipofectamine 2000, Invitrogen). Cytoplas-

mic proteins and sucrose-pelleted virions were harvested 24 hr post-

transfection, analyzed by western blotting, and quantified using an

Odyssey imaging system (Li-COR, Inc.). Primary antibodies were rab-

bit anti-CA and rabbit anti-MA at 1:15,000. HIV-infectious titers were

assayed in single-cycle MAGIC assays in P4 cells. Additional experi-

mental details are provided in von Schwedler et al. (2003).

EIAV VLP Production and ALIX Silencing

HeLa M cells (�4 3 105 cells/well, 6-well plate) were transiently trans-

fected (10 ml; FuGene6, Roche Applied Science) with 5 mg of wild-type

or p9Gag DYP pEV53B EIAV vector (Olsen, 1998). EIAV virus-like parti-

cles were harvested 48 hr posttransfection, concentrated through

20% sucrose cushions, and analyzed by western blotting using affin-

ity-purified EIAV anti-CA antibody (1:10,000). For ALIX-depletion ex-

periments, an shRNA targeting human ALIX nucleotides 1765–1783

(Chen et al., 2005) was delivered using the FG12 lentiviral expression

vector (Qin et al., 2003; 8 mg/ml polybrene, moi = 15) 24 hr prior to

transfection with pEV53B.

Supplemental Data

Supplemental Data include Experimental Procedures, References, five

figures, and two tables and can be found with this article online at

http://www.cell.com/cgi/content/full/128/5/841/DC1/.
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SUPPLEMENTAL EXPERIMENTAL METHODS

Plasmid Construction

ALIX Protein Expression Constructs. ALIX coding sequences were amplified and

subcloned from an EST clone (von Schwedler et al., 2003), and ALIX proteins were

expressed as either 6x-His or GST N-terminal fusion proteins. For ALIXBro1-V (residues

1-698) and ALIXV (residues 360-702), ALIX coding sequences were amplified with

5’NdeI and 3’BamHI restriction sites and inserted into the pET151/D-TOPO vector

(Invitrogen) following the manufacturer’s instructions. ALIXBro1 (residues 1-359) was

cloned between 5’NdeI and 3’BamHI restriction sites in a modified pET16b vector

(Novagen) designed to contain a TEV protease cleavage site following the 6x-His tag.

GST-ALIX expression constructs were generated by inserting ALIX coding sequences

between 5’NdeI and 3’BamHI restriction sites in a pGEX2T vector (GE Healthcare)

modified to contain a TEV protease cleavage site and 5’NdeI and 3’BamHI/BglII

restriction sites following the GST gene (pGEX2T-TEV).

HIV-1 p6Gag and EIAV p9Gag Expression Constructs. Genes encoding HIV-1NL4-3 p6Gag

and EIAV p9Gag were amplified from the proviral R9 and pEV53B plasmids (see below),

with 5’NdeI and 3’BamHI restriction sites, to allow expression as GST fusion proteins
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from a pGEX2T vector (GE Healthcare) modified to contain 5’NdeI and 3’BamHI cloning 

sites (Garrus et al., 2001; von Schwedler et al., 2003). ALIX point mutants were

generated by the Quickchange (Stratagene) method, following the manufacturer’s

protocol.

GST-CHMP4A Expression Construct. The GST-CHMP4A expression construct used in

GST pulldown experiments was described previously (von Schwedler et al., 2003).

Note, however, that the CHMP4A and CHMP4B designations have been reversed from

our previous publication to follow the convention of Katoh et al. (Katoh et al., 2003).

ALIX Mammalian Expression Vector. FLAG-tagged human ALIX DNA was amplified

and an NdeI-BamHI fragment was subcloned into a pCI-neo vector (Promega)

engineered to express the protein with an N-terminal FLAG epitope tag. ALIX mutants

were constructed using the quick change method following manufacturer’s instruction

(Stratagene).

Virus Expression Constructs. HIV-1 proviral expression constructs were based on HIV-

1NL4-3 R9 Apa (Swingler et al., 1997) (a gift from Didier Trono, University of Lausanne).

The HIV-1 p6Gag PTAP construct has been described previously (Garrus et al., 2001).

The HIV-1 p6Gag YP was constructed using megaprimer mutagenesis to introduce the

36YP37 to 36SR37 mutation in p6Gag without altering the overlapping pol reading frame.

The vector pEV53B (Olsen, 1998) (a gift from John Olsen, UNC Chapel Hill) was used

to produce EIAV virus like particles, and the 23YP24 to 23SR24 mutation was introduced

using the megaprimer method.

shRNA Lentiviral Vector for ALIX Depletion. An shRNA targeting human ALIX

nucleotides 1765-1783 (Chen et al., 2005), was built into the FG12 lentiviral delivery
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vector (Qin et al., 2003) (a gift from David Baltimore, Caltech). Lentiviral vectors

packing this shRNA expression construct were produced in 293T cells by calcium

phosphate co-transfection (8.1 µg FG12-ALIX shRNA, 8.1 µg pCMV R8.91 (Zufferey et

al., 1997), and 2.7 µg pMD.G (Ory et al., 1996), 10 cm plate, ~4×106). Virus like

particles were collected from the cell culture supernatants on the third

day posttransfection andconcentrated 200-fold by centrifugation through a 20% sucrose 

cushion.

Purification of Recombinant ALIX Proteins

ALIXBro1-V, ALIXBro1, and ALIXV were expressed as 6x-His N-terminal fusion proteins in

BL21(DE3) Codon+ (RIL) E. coli grown in auto-induction media, ZYP-5052 (Studier,

2005), at 37°C for 5-6 hours with vigorous shaking in baffled flasks before moving to

23°C to grow to saturation within 16-18 hours. SeMet ALIXV was prepared by

expression in PASM-5052 media (Studier, 2005). Subsequent purification steps were

performed at 4°C unless noted. Cells were lysed with sonication and lysozyme

treatment (2.5 mg/ml in 50 mM Tris pH 8.0, 300 mM NaCl, 10 mM imidazole). Clarified

supernatant was applied to Ni2+-NTA resin (Qiagen), washed with lysis buffer, and

eluted with 25 mM Tris pH 8.0, 100 mM NaCl, 250 mM imidazole. For ALIXBro1, EDTA

and DTT were added to 1 mM and the solution was diluted to 50 mM NaCl with ddH2O.

For ALIXBro1-V and ALIXV, the eluted protein was dialyzed against 25 mM Tris pH 8.0,

100 mM NaCl, 2 mM -mercaptoethanol while incubating with TEV protease (~18 h,

23°C), and the processed protein was collected as flow-through from a second pass

over Ni2+-NTA resin and diluted to 50 mM NaCl. For all three constructs, protein
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solutions were applied to a Q Sepharose FF column (GE Healthcare) and washed with

25 mM Tris pH 8.0, 50 mM NaCl, 1 mM DTT before eluting with a gradient to 1 M NaCl.

Monomeric ALIX was separated from dimer (ALIXBro1-V and ALIXV samples) and

aggregated species by size exclusion chromatography in 10 mM Tris pH 8.0, 100 mM

NaCl, 1 mM DTT: ALIXBro1-V (Superdex 200, GE Healthcare), ALIXBro1 and ALIXV

(Superdex 75, GE Healthcare). In the case of ALIXBro1-V and ALIXV, monomeric ALIX

was the predominant species, while dimeric ALIX was present in a much lower

percentage.  Furthermore, rigorous equilibrium analytical ultracentrifugation showed that 

monomeric ALIXV remained monomeric and that there was no appreciable equilibrium

between monomer and dimer species.

Purification of Recombinant HIV-1 p6Gag and EIAV p9Gag

GST-p6Gag and GST-p9Gag were expressed and lysed (50 mM Tris pH 8.0, 300

mM NaCl, 1 mM DTT) as for ALIX constructs. Clarified lysate was applied to a

Glutathione GSTPrep column (GE Healthcare), washed, and eluted with lysis buffer

supplemented with 20 mM glutathione. Protein fractions were combined, made to 2.5

mM CaCl2, and incubated with thrombin (Novagen). Free GST and uncut GST fusion

protein was separated from free HIV-1 p6 or EIAV p9 by size exclusion chromatography 

(Superdex 75, GE Healthcare) in 20 mM NaPhosphate pH 7.2, 150 mM NaCl.  Residual 

GST was removed by an additional pass through the Glutathione GSTPrep column.
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ALIX Crystallization and Data Collection

All crystals were grown in sitting drops using protein concentrated to 10 mg/ml in

the size exclusion chromatography solution. SeMet ALIXV crystals grew at 4°C with a

reservoir of 0.16-0.20 M Magnesium formate and 14% PEG-3350, and a drop of 1-2 L

reservoir and 2 L protein solution. ALIXBro1 and ALIXBro1-V both crystallized best at

13°C in drops with equal (0.5 – 2.0 L) volumes of protein and reservoir solution:

ALIXBro1 — 0.1 M NaMES pH 6.5, 10% PEG-20,000. ALIXBro1-V – 8-9% PEG 4000, 0.10-

0.25 M ammonium acetate, 0.10-0.15 M Magnesium acetate, 0.05 M Hepes pH 7.0.

ALIXBro1 and ALIXV crystals were cryoprotected in solutions of reservoir made up

with 20% glycerol (ALIXV; 5% and 10% intermediate steps). ALIXBro1-V cryoprotection

used reservoir made up with 30% MPD, achieved in 5% increments. Crystals were

suspended in a nylon loop, plunged into liquid nitrogen, and maintained at 100 K during

data collection.  Crystallographic statistics are given in Supplemental Table S1.

ALIX Structure Solution and Refinement

The ALIXV structure was determined by the SAD method. The top 8 Se sites

located with SHELX (Schneider and Pape, 2004; Sheldrick and Schneider, 1997) were

used in SOLVE/RESOLVE (Terwilliger, 2002) to estimate phases at 3.1 Å. Phases

were further improved in SIGMAA (Read, 1986) by averaging estimates obtained from

two crystals, and used with amplitudes of crystal 1 for map calculation. Initial

polyalanine models were built for the two molecules in the asymmetric unit and used to

guide averaging of the map separately over the regions of arm1 and arm2 using MAMA
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(Kleywegt and Jones, 1999) and AVE (Jones, 1992). This improved map allowed fitting

of the amino acid sequence.

The ALIXBro1 and ALIXBro1-V structures were solved by molecular replacement

using PHASER (McCoy et al., 2005). The search model for ALIXBro1 was a mixed poly-

Ser/homology model based on the yeast Bro1 structure (pdb code 1ZB1) (Kim et al.,

2005). Search models for ALIXBro1-V were the refined structures of ALIXBro1 and the two

arms of ALIXV. Modelbuilding was with O (Jones et al., 1991) and COOT (Emsley and

Cowtan, 2004). Structures were refined with CNS (Brunger et al., 1998) and in the final

cycles using REFMAC5 with TLS refinement using TLSMD (Merritt and Painter, 2006;

Painter and Merritt, 2006), and TLSANL (Howlin et al., 1993) in the CCP4 suite (Group,

November 4. 1994). Figures of the structure were generated in PyMol (DeLano, 2002).

Coordinates and data have been deposited in the Protein Data Bank, www.pdb.org

(PDB code 2OEV, 2OEW, 2OEX).
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Table S1.  Data Collection and Refinement Statistics
ALIXBro1-V

a ALIXBro1
a ALIXV

a

Data Collection b

Crystal 1 Crystal 2
Space Group C2 C2 P21 P21

Cell Parameters (Å) a = 144.0 a = 120.7 a = 63.9 a = 63.2
b = 98.5 b = 63.2 b = 50.0 b = 49.8
c = 72.2 c = 76.4 c = 130.2 c = 129.6
ß = 105.6 ß = 122.1 ß = 101.1 ß = 101.2

Wavelength (Å) 1.1 1.54180 0.9792 0.9792
Resolution (Å) 30-3.30 30-2.55 50-2.60 50-2.60
Outer Shell (Å) 3.42-3.30 2.64-2.55 2.69-2.60 2.69-2.60
Number of reflections
     Total 727,803 178,235 1,048,903 1,677,930
     Unique 14,236 15,487 23,601 22,229
Completeness (%) 94.6 (64.9) 96.5 (79.3) 92.4 (64.0) 89.8 (57.7)
Rsym (%)b 8.7 (28.8) 5.3 (24.0) 7.8 (20.4) 10.6 (29.7)
Mean I/s(I) 21.1 (3.5) 19.6 (3.6) 12.3 (3.6) 16.1 (3.2)
Refinement
R factor/Rfree (%)c,d 23.5/31.7 20.8/27.4 22.8/30.2
Nonhydrogen atoms
     Total 5486 2910 5489
     Solvent 0 79 91
RMSD from ideal geometry e

     Bond lengths (Å) 0.009 0.016 0.010
     Bond angles (º) 1.153 1.544 1.293
Average B-factor (Å2) 140.7 60.3 48.5
Ramachandran plot,
          nonglycine residue in
     Most favorable region (%) 83.7 88.8 93.9
     Additional allowed region (%) 15.7 10.3 6.0
     Generous allowed region (%) 0.6 0.9 0.2
     Disallowed region (%) 0.0 0 0.0

Values in parenthesis are for the highest resolution shell.
a The ALIXBro1-V construct crystallized comprises ALIX residues Met1-Arg698 preceded by the vector
sequence GIDPFTH. Of these, ALIX residues 2-698 are ordered in the refined model. The ALIXBro1

construct comprises ALIX residues Met1-Val359 preceded by MHHHHHHHHHHSGQNLYFQGH, and
ALIX residues 1-358 are ordered. The ALIXV construct comprises ALIX residues Pro360-Arg702 preceded 
by GIDPFTHM, and ALIX residues 361-702 (molecule A) and 362-702 (molecule B) are ordered.
b Data were collected from single crystals at beamline X29 at the National Synchrotron Light Source,
Brookhaven National Laboratory (ALIXV and ALIXBro1-V) or on a rotating anode source (ALIXBro1). Data
were integrated and scaled with the HKL package (Otwinowski and Minor, 1997).
b Rsym = (|( I – <I>)|)/( I), where <I> is the average intensity of multiple measurements.
c R factor = hkl||Fobs(hkl)|| – Fcalc(hkl)||/ hkl|Fobs(hkl)|
d Rfree = the crossvalidation R factor for 5% of reflections against which the model was not refined (7% for
ALIXBro1-V).
e Geometry was analyzed in PROCHECK (Laskowski et al., 1993)
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Table S2. ALIX Binding to HIV-1 p6Gag and EIAV p9Gag

Estimated Dissociation Constant (µM, 20 C)a

ALIXBro1-V (WT) ALIXV (WT) ALIXV (V498D) ALIXV (F676D) ALIXV (I683D)
HIV-1 p6Gag 57 ± 21b 59 ± 15b NBc NBc >1000d

HIV-1 p6Gag YP >1000d >1000d - - -
EIAV p9Gag 1.5 ± 0.3b 1.2 ± 0.3b 18 ± 1 NBb 580 ± 20
EIAV p9Gag YP >1000d >1000d - - -

aBinding was measured using Biacore 2000 and 3000 optical biosensors (Biacore AB, Uppsala,
Sweden) equipped with CM4 sensor chips derivatized with anti-GST antibodies through amine-
coupling (Johnsson et al., 1991). GST (control) and GST-ALIX fusion proteins were captured from
crude E. coli lysates to densities of 1000-1800 RU, and chip surfaces were over-coated with
recombinant GST to minimize non-specific interactions.  Purified wild-type and mutant HIV-1 p6Gag and 
EIAV p9Gag were diluted in running buffer (20 mM NaPhosphate, 150 mM NaCl, 0.2 mg/mL BSA,
0.005% P20, pH 7.2), and injected in duplicate from concentrations of 0 µM to 1000 µM. Affinity
parameters were obtained by plotting the equilibrium responses against the analyte concentration and
fitting to a simple 1:1 binding model (e.g., see Figure 3A)(Myszka, 1999).
bAverage difference between 8 (ALIXBro1-V) or 6 (ALIXV) independent measurements (errors in other
measurements were estimated from statistical fits of the binding data).
cNB = No detectable binding.
dWeak binding was detectable, but could not be accurately quantified because half-maximal binding
was not achieved.
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Figure S1. Sequence Alignments, Secondary Structure, and Topology of Human

ALIXBro1-V.

Sequence alignments of Bro1/ALIX proteins from five representative species, chosen

because they are the most highly studied ALIX/Bro1 proteins. The secondary structure

of human ALIXBro1-V is shown above, together with the numbering scheme. The color

coding is the same as in Fig. 1B, with the TSG101 binding site shown in lime green and

the Endophilin binding site shown in turquoise. Sequence alignments were performed

using the ClustalW server www.ebi.ac.uk/clustalw (Thompson et al., 1994), and match

structure-based alignments for the Bro1 domain.
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Figure S2.  Comparison of the Human and Yeast Bro1 Domains.

(A) Superposition of human ALIXBro1 (turquoise) and yeast Bro1Bro1 (magenta).

Alignments were performed using the DALI server: http://www.ebi.ac.uk/dali (Holm and

Sander, 1998).

(B) Stereoview showing a closeup view of the region with the greatest divergence

between human ALIXBro1 (turquoise) and yeast Bro1Bro1 (magenta). The region

corresponds to the right edge of the image in (A). Helices a1-3 in human ALIXBro1 are

labeled, as are the C-termini of human ALIXBro1 (ChBro1) and yeast Bro1Bro1 (CyBro1).
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Figure S3.  Topology of the ALIXV domain.

The figure illustrates how the polypeptide strand crosses the arm1/arm2 loop three

times in the course of building the V domain.  Color coding and numbering schemes are 

the same as in Fig. 1D.
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Figure S4. ALIXV Surface Conservation and Hydrophobicity

(A) Surface representation of AlilxV highlighting amino acid conservation. Coloring and

orientation of the left molecule are the same as in Fig. 1E. The right molecule is the

view from the “back” of the left. The nine species used in the alignment to define

conservation are: Homo sapiens (Human), Mus musculus (Mouse), Gallus gallus

(Chicken), Xenopus laevis (African clawed frog), Drosophila melanogaster (Fruit fly),

Caenorhabditis elegans, Dictyostelium discoideum (Slime mold), Arabidopsis thaliana

(Mouse-ear cress), and Aspergillus oryzae.

(B) Surface representation of ALIXV with surface residues colored by residue type.

Hydrophobic residues are colored green, polar blue, and acidic/basic residues white.

The molecule orientations are the same as in (A), except that the left molecule has been 

slightly rotated around the vertical axis to view the YPXnL binding site on Arm2.
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Figure S5. Characterization of ALIX Mutations that Block Endophilin and TSG101

Binding

(A) Biosensor binding isotherms showing that the TSG101 UEV domain binds a GST

fusion construct spanning the wild type ALIX 717PSAP720 motif (GST-ALIX714-723,
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Kd=146 1 M), and that the Pro720Leu mutation (GST-ALIX714-723, P720L) eliminated

binding.

(B) Yeast two hybrid assay showing that human ALIX binds endophilins-1 and -2, and

that the interactions are inhibited by the ALIX RP757,758AA mutation. Directed yeast two

hybrid assays were performed using the Matchmaker GAL4 Yeast Two Hybrid 3 system

(Clontech). AH-109 Saccharomyces cerevisiae were co-transformed with pGADT7 or

pGBKT7 cloning vectors (Clontech) containing inserts encoding wild type (WT) and

mutant human ALIX (Activation Domain fusions, AD) and endophilins-1 and -2 (DNA

Binding Domain fusions, DBD). Transformed yeast colonies were grown for three days

at 30 C on YPD plates with -Leu, -Trp selection. 10-100 colonies were pooled,

resuspended in a liquid culture of SB (-Leu, -Trp), selected on SB (-Leu, -Trp, -Ade, -

His) plates, and allowed to grow for 3 days. Growth on -Leu,-Trp,-His,-Ade media

reflects positive binding interactions between ALIX and the endophilins, whereas failure

to grow reflects a lack binding activity (ALIXRP757,758AA mutants and negative controls).
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Structural and functional studies of ALIX interactions
with YPXnL late domains of HIV-1 and EIAV
Qianting Zhai1,3, Robert D Fisher1,3, Hyo-Young Chung1, David G Myszka2, Wesley I Sundquist1 &
Christopher P Hill1

Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting
cellular factors. The YPXnL late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also
functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal
structures of ALIX in complex with the YPXnL late domains from HIV-1 and EIAV. The two distinct late domains bind at the same
site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and
functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-
dependent effects. These results reveal how YPXnL late domains recruit ALIX to facilitate virus budding and how ALIX can bind
YPXnL sequences with both n ¼ 1 and n ¼ 3.

Retroviruses such as HIV-1 bud through limiting host cell membranes
to acquire a lipid envelope and exit the cell. Efficient budding
requires short peptide motifs, known as late domains, that are
found in varying numbers and combinations in the viral Gag protein.
Late domains function by recruiting trans-acting cellular factors that
facilitate viral budding1–3. HIV-1 p6Gag contains two late domains: a

7P(S/T)AP10 motif that recruits the cellular protein TSG101 and a

35LYPLTSLRSLF45 motif that recruits ALIX (also known as AIP1)
(refs. 4–12). The HIV-1 35LYPLTSL41 motif belongs to the YPXnL
family of late domains, in which n frequently is a single residue (that
is, n ¼ 1) but can be three residues (n ¼ 3), as is the case for HIV-1
(refs. 10,12). Unlike HIV-1, the related EIAV p9Gag protein lacks a
PTAP late domain and contains a single 22LYPDL26 late domain that
binds ALIX10–15.
Both TSG101 and ALIX are components of the ESCRT pathway,

which helps to sort membrane proteins into vesicles that bud into
late endosomal compartments called multivesicular bodies16–18.
The ESCRT pathway also functions in the final abscission step of
cytokinesis, in which the thin membrane stalk that connects the
mother and daughter cells is pinched off to produce two discrete
cells19. Both of these membrane fission processes are topologically
equivalent to viral budding, and it appears that late domains function
by redirecting ESCRTmachinery to sites of virus assembly where it can
facilitate budding3.
Principal components of the human ESCRT pathway include

three multiprotein endosomal sorting complexes required for
transport (ESCRT-I (which contains a TSG101 subunit), ESCRT-II
and ESCRT-III), ALIX and the VPS4–LIP5 complex16. Although

mechanistic details are lacking, the ESCRT-III proteins are thought to
form a membrane-associated lattice that is essential for protein
sorting, membrane fission or both20. The machinery is reset by the
action of the VPS4–LIP5 ATPase, which binds ESCRT-III components
and disassembles the lattice. Although the ESCRT pathway is often
represented as a series of sequential steps, it may be better described as
a complex protein interaction network, as illustrated by the ability of
ALIX to bind both to ESCRT-I and to the CHMP4 subunits of
ESCRT-III and by the apparent absence of a role for ESCRT-II in
HIV-1 budding10,11,15,21–23.
The mechanism by which HIV-1 accesses the ESCRTmachinery has

been best characterized for the p6Gag–ESCRT-I interaction. Extensive
biochemical and structural work has shown that the ubiquitin E2
variant (UEV) domain of TSG101 binds the PTAP late domain of HIV
p6Gag and that mutations in the PTAP motif or UEV domain that
block their interaction also inhibit efficient virus budding4–6,9,24,25. In
situations where the PTAP-TSG101 interaction is impaired, HIV-1
budding becomes much more dependent upon the YPXnL-ALIX
interaction26,27. Furthermore, other lentiviruses, including EIAV and
some SIV strains, naturally lack PTAP late domains and therefore rely
on YPXnL-ALIX interactions to bud from cells10,26,28.
Crystal structures22,26,29 have revealed that ALIX is composed of

three regions: an N-terminal Bro1 domain (named for the apparent
yeast homolog, Bro1p) that binds the CHMP4 subset of ESCRT-III
proteins10,11,15,22,30; a central V domain that is formed by two three-
helix bundles disposed in a ‘V’ shape26,29; and a C-terminal proline-
rich region (PRR, not present in the crystal structures) that serves as a
docking site for a number of proteins, including TSG101 and SH3
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domain–containing proteins,11,31–35. The V domain binds the YPXnL
late domains of HIV p6Gag and EIAV p9Gag and this interaction is
required for ALIX-dependent viral budding10,15,26,27,29,36. To under-
stand how ALIX is recruited to sites of viral budding, we have
determined crystal structures of human ALIX complexes with HIV-1
and EIAV YPXnL late-domain peptides and have performed binding
and functional assays that confirm and extend the structural studies.

RESULTS
Structure determination
We determined crystal structures of ALIXBro1-V (residues 1–698) in
complex with peptides spanning the HIV-1 and EIAV late-domain
motifs to 2.8-Å resolution and Rfree values of 28% (Fig. 1). This
ALIXBro1-V construct contains a KK268,269YY double mutation that
stabilizes a crystal contact but does not alter the protein structure and
is distant from known ligand-binding sites26. The peptides used
correspond to residues 32–46 of p6Gag in HIV-1 strains NL4-3
(p6GagA) and HXB2 (p6GagT) and to residues 19–31 of p9Gag in
EIAV (Fig. 1b). The two HIV-1 peptides differ only in the presence of
alanine (p6GagA) or threonine (p6GagT) at position 39, whereas the
only identical residues in the EIAV peptide are the conserved residues
of the YPXnL motif and a conserved leucine that precedes the tyrosine.

Overall structure
The overall structure of ALIXBro1-V in the three peptide complexes
closely resembles that of the unliganded protein26, with differences
primarily within flexible loops. All three late-domain ligands bind to a
largely hydrophobic groove on arm 2 of the ALIX V domain that
was previously implicated in binding by mutagenesis studies26,29,36.
The peptides lie approximately parallel to arm 2, on the side
facing arm 1, and with their N termini pointing toward the base of
the V. The binding site, located between ALIX helices a16 and a21, is
lined by the conserved residues Ala502, Ala505, Asp506, Val509,
Glu665, Asn669, Glu672, Gly673, Lys675, Phe676, Tyr677, Leu680
and Ile683 and by the less-well-conserved residues Phe495 and Val498.
Minor local changes in ALIX conformation are induced by peptide
binding. In particular, a segment of helix a21 from residues 668–680
is shifted and rotated by B1.5 Å, and the side chains of Glu672,
Phe676 and Tyr677 are moved a few angstroms to accommodate
peptide interactions.

Conserved peptide interactions
The HIV-1 and EIAV peptides bind to the same ALIX surface and
form similar interfaces. The late-domain structures have been model-
ed for a total of 11 (HIV-1) or 8 (EIAV) residues and were found to
bury a total of approximately 570 Å2 (HIV-1) and 450 Å2 (EIAV) of
solvent-accessible surface area. The structures are stabilized by numer-
ous van der Waals contacts and several important hydrogen-bonding
interactions. The two HIV-1 peptide structures are closely super-
imposable throughout.
In all three structures, the first well-ordered peptide residue is the

leucine immediately preceding the late-domain tyrosine, and the three
ordered N-terminal residues (LeuTyrPro, LYP) adopt superimposable
conformations in the HIV-1 and EIAV peptides. This leucine side
chain rests against a hydrophobic surface on the protein formed by
ALIX Ala505, Gln508, Val509, Asn669 and Glu672, consistent with the
loss of binding observed upon substitution with alanine10 and the
conservation of hydrophobic character at this position.
The late-domain tyrosine side chain has the most distinctive

interaction. It plunges deep into a hydrophobic pocket that is lined
by Ala502, Ala505, Asp506, Val509, Glu672, Gly673, Phe676 and
Tyr677, with the phenolic hydroxyl projecting into the center of the
arm 2 three-helix bundle, where it is specifically recognized by a
hydrogen bond with the conserved side chain of Asp506 (Fig. 1f).
This buried hydrogen bond shows good geometry and should be

Bro1 domain
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Figure 1 Structure of ALIXBro1-V–YPXnL complexes. (a) Ribbon diagram of

ALIXBro1-V in complex with the HIV-1 p6GagT YPXnL late-domain peptide

(CPK). (b) HIV-1 p6GagT p6GagA and EIAV p9Gag YPXnL late-domain peptide

sequences used for crystallography and binding studies aligned on the basis

of the crystal structures. Residues modeled in the crystal structures are in

boldface, and residues that lack electron density are in normal font; the first

included residue (HIV Glu34; EIAV Asn21) has some density, although the

conformation is ambiguous. Structurally equivalent residues are on a gray

background. Residues that contact the protein are underlined. (c,d) Close-up

views of YPXnL late domains (sticks) for HIV-1 p6GagT (green) and EIAV

p9Gag (turquoise). ALIX is represented as a blue ribbon and surface with

residues in the binding site highlighted as yellow sticks. ALIX residues

previously shown by mutagenesis to be important for p6Gag and p9Gag

binding and ALIX function in viral budding are underlined26,29. (e) Overlay

of the HIV-1 p6Gag and EIAV p9Gag crystal structures. The intervening

38LTS40 residues of the HIV-1 YPXnL motif form a helical turn to position

Leu41 in a position equivalent to that of EIAV p9Gag Leu26. (f) Cutaway

view of EIAV p9Gag binding to ALIX. Viewed along the axis of arm 2 from the

V-domain apex, rotated B901 into the page relative to d. The YPXnL tyrosine

binds in a deep pocket and forms hydrogen-bonding interactions with ALIX

Asp506, which is optimally oriented by hydrogen bonding with Tyr677.

Figure generated using PyMol52.

91



strengthened by the relative acidity of the phenolic hydroxyl and by
the orientation of Asp506 through a buttressing interaction with the
conserved Tyr677 residue that occurs even in the absence of peptide.
In addition to enhancing affinity, this hydrogen-bonding interaction
should enhance specificity, including discriminating against substitu-
tion of the late-domain tyrosine for a phenylalanine.
The late-domain proline packs against Phe676, Ala502 and Val498,

which explains why substitution of Phe676 or Val498 with aspartate
severely impairs peptide binding26,29. The only hydrogen bond
between the late-domain main chain and ALIX is formed by the
NH group of the peptide tyrosine and the conserved ALIX side chain
of Glu672. These interactions of the LYP tripeptide at the N termini of
the different late-domain sequences provide a common anchor for
ALIX binding.

HIV-1 and EIAV late domains adopt different conformations
The HIV-1 and EIAV late-domain peptides adopt quite different
conformations immediately following the N-terminal LYP tripeptide
that allow the leucine side chain of both YPXnL sequences to bind to
the same shallow pocket in ALIX. The side chains of the intervening X
residues, three for HIV-1 and one for EIAV, all project away from the
ALIX surface because the EIAV peptide is extended whereas HIV-1
forms a helical turn (Fig. 1e). These different conformations therefore
allow sequences that contain different numbers of intervening residues
to make equivalent contacts with ALIX.
The electron density maps become less clear toward the peptide

C termini, and they are uninterpretable for the EIAV sequence more
than one residue after the leucine residue of the YPXnL core. The
C-terminal density for the HIV-1 peptides is also weak, but appears to
show the peptide continuing in the same direction along the groove
(Supplementary Fig. 1 online). The structure thereby places the HIV
late-domain Leu44 side chain in a hydrophobic contact with the ALIX
residues Phe495 and Ile683. This model is consistent with reports that
binding to ALIX is greatly impaired upon mutation of p6Gag Leu44 to
proline10 or alanine36.
The structure rationalizes previous mutagenic analyses of the ALIX

side of the late-domain binding interface. Point mutations of ALIX
residues Val498, Phe676 and Ile683 (to Asp) all substantially reduced
the binding affinity of EIAV p9Gag and HIV-1 p6Gag (420-fold) and
blocked the ability of ALIX to rescue TSG101-independent release of
HIV-1 (ref. 26). The ALIX F676D and V509A mutations also blocked

binding of an HIV-1 p6Gag peptide and abro-
gated the ability of an ALIX V-domain con-
struct to inhibit HIV-1 release29. All of these
residues reside within the late-domain bind-
ing site and make important contacts with all
these peptides.

ALIX binding to YPXnL late domains
We carried out biosensor binding experi-
ments to quantify the affinities of the
ALIX-YPXnL interactions (Fig. 2, Table 1).
ALIXBro1-V and ALIXV generally did not have
any notable differences in their ligand-
binding affinities, consistent with the idea
that all determinants for late-domain binding
reside within ALIXV. Furthermore, ALIX
bound HIV-1 p6GagA and p6GagT peptides
with indistinguishable affinities (7 ± 7 mM and
8 ± 2 mM, respectively), consistent with their
superimposable binding geometries. The EIAV

p9Gag peptide bound with a similar affinity (7 ± 1 mM). These data
agree well with previously reported equilibrium dissociation constants
for peptides spanning the HIV-1 (16-mer) and EIAV (15-mer)
YPXnL motifs (5–6 mM), obtained from solution-phase isothermal
titration calorimetry29,36. Substitution of the late-domain tyrosine
with phenylalanine reduced the binding affinity of both HIV-1
p6Gag and EIAV p9Gag more than 15-fold (Table 1). These results
are consistent with the observed hydrogen-bond interaction with the
tyrosine phenol and with the strict conservation of tyrosine in YPXnL
sequences in HIV-1, EIAVand SIV, but conflict with the conclusions of
Munshi et al., who reported that a phenylalanine substitution had no
effect on ALIX binding36. The reasons for this discrepancy are not
known at present.

HIV-1NL4-3 p6
Gag YPXnL Tyr is essential for late-domain function

Two different approaches were used to test the functional importance
of the phenolic hydroxyl of the YPXnL tyrosine residue for ALIX-
mediated HIV-1NL4-3 budding. In one case, we examined the release
and infectivity of an HIV-1 mutant with a p6Gag Tyr36Phe substitution
(engineered to maintain the native sequence in the –1 reading frame
for Pol expression). Previous studies showed that lack of ALIX
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Figure 2 ALIX-YPXnL binding affinities. (a) Representative biosensor sensograms for immobilized

ALIXBro1-V binding to HIV-1 p6GagT and EIAV p9Gag proteins and to YPXnL peptides used in

crystallography. (b) Biosensor binding isotherms for ALIXBro1-V binding to HIV-1 p6GagA/T and

EIAV p9Gag proteins, YPXnL peptides and a peptide from transferrin receptor (TfR). Experiments

with HIV-1 p6GagT and EIAV p9Gag were reported in ref. 26 and are included here for reference.

Table 1 ALIX binding to HIV-1 p6Gag, EIAV p9Gag and transferrin

receptor

Equilibrium dissociation constants

(mM, 20 1C) a ALIXBro1-V ALIXV

HIV-1 p6GagA peptide 7 ± 7b 5 ± 3b

HIV-1 p6GagT peptide 8 ± 2b 6 ± 3b

HIV-1 p6GagT Y36F peptide 220 ± 20b 230 ± 50b

EIAV p9Gag peptide 7 ± 1b 6 ± 1b

EIAV p9Gag Y23F peptide 41,000 41,000

HIV-1 p6GagA 60 ± 20b 60 ± 15b

HIV-1 p6GagT 40 ± 10b,c 39 ± 1b,c

EIAV p9Gag 1.5 ± 0.3b,c 1.2 ± 0.3b,c

TfR peptide 270 ± 140b 340 ± 90b

aBiosensor binding experiments were performed between immobilized GST-ALIX fusions
and peptide sequences of HIV-1 p6Gag (32DKELYPL(A/T)SLRSLFG46), EIAV p9Gag

(19TQNLYPDLSEIKK31), transferrin receptor 1 (TfR, 17PLSYTRFSLARQV29) and purified HIV-1
p6Gag and EIAV p9Gag. bAverage ± s.d. between 2–9 independent measurements. cExperiments
with HIV-1 p6GagT and EIAV p9Gag were reported in ref. 26 and are included here for reference.

92



recruitment results in a 50–75% reduction in HIV-1 infectivity and
release from 293T cells5,26, as seen for the control 36TyrPro37 to

36SerArg37 mutation (termed DYP) in HIV-1 p6Gag (Fig. 3a). Notably,
the HIV-1 p6Gag Tyr36Phe mutation had the same effect, reducing the
viral titer to 48% that of the control and inducing a modest increase in
the accumulation of the CA-SP1 Gag processing intermediate, which
is typically seen when viral budding is impaired. Thus, the Tyr36Phe
mutation alone seems to abrogate the ability of p6Gag to recruit ALIX.
We also examined budding and infectivity of an HIV-1 construct in

which the p6Gag PTAP late domain was mutated (HIVDPTAP). This
virus can no longer recruit ESCRT-I and only buds efficiently from
293T cells when ALIX is overexpressed. This system therefore provides
a sensitive assay for testing whether p6Gag mutants can support
functional recruitment of exogenous ALIX protein26,27. The Tyr36Phe
mutation blocked ALIX recruitment (Fig. 3b); notably, it also appar-
ently blocked recruitment of endogenous ALIX protein, causing a
further four-fold reduction in the (already low) release of HIVDPTAP
from cells lacking exogenous ALIX. Taken together, these experiments
demonstrate that removing the phenolic hydroxyl of the tyrosine
residue within the YPXnL motif blocks ALIX recruitment and HIV-
1NL4-3 late-domain function in vivo, consistent with our in vitro
binding and structural studies.

Protein context modulates ALIX–late domain interactions
Our finding that p6Gag and p9Gag peptides bound ALIX with similar
affinities (Kd B7 mM) was in contrast to our previous observations
that ALIX binds the full-length 52-residue HIV-1 p6GagA protein and
the 51-residue EIAV p9Gag protein with different affinities (57 ± 21 mM
and 1.5 ± 0.3 mM, respectively)26. Munshi et al. also reported a similar
difference between p6Gag and p9Gag binding affinities as quantified in
biosensor binding measurements, but this difference was not observed
in their isothermal titration calorimetry measurements36. Inspection
of the dissociation phases in the upper panels of Figure 2a shows that
p9Gag dissociates more slowly (by 410-fold) than p6Gag, which is
consistent with the overall increase in thermodynamic stability that
we observed for p9Gag–ALIX complexes. These results indicate that

late-domain YPXnL sequences provide the primary recognition inter-
face, but that binding affinity is modulated by the context in which the
sequence is displayed. Similar context-dependent effects were observed
when late domains were transferred between different viruses37. These
observations further suggest that ALIX-binding affinities are not
simply maximized but are selected for optimum performance
in vivo. Viruses such as EIAV that contain a single known late domain
present a high-affinity ALIX binding site to recruit ALIX for viral
budding, whereas HIV-1, which also uses a PTAP late domain,
presents its YPXnL motif in a more weakly binding context.
To assess the efficiency with which the different YPXnL late domains

recruit ALIX in vivo, we measured the relative levels of ALIX
incorporated by p6Gag and p9Gag polypeptides into different virus-
like particles (VLPs). These experiments used HIV-1 Dp6 proviral
constructs in which the Gag protein was fused to HIV-1 p6Gag

(control), to EIAV p9Gag or to a minimal PTAP motif that lacked a
YPXnL sequence15. There was a marked increase in the extent of ALIX

a b ΔPTAP

ΔY
P

ΔY
P

Y
36

F

Y
36

F

W
T

Y
36

F

ΔY
P

HIV-1

HIV-1

Second mutation

FLAG-ALIX

– –

– – – + + +

Virus
Anti-CA
Anti-MAVirus

Anti-CA
Anti-MA

Anti-CA

Anti-FLAG FLAG-ALIX

MA

MA

CA

CA

CA-SP1

LaneLane

Anti-MA

Cell

Anti-CA
Anti-MA

Cell

Cell

1 2 31 2 3 Lane 1 2 3 4 5 6 Lane 1 2 3 4 5 6

CA

MA

MA

CA-SP1

CA

2.50 35.0

17.51.25

2.10

1.01
0.96

In
fe

ct
io

us
 u

ni
ts

 (
×1

06 )
 m

l–1

In
fe

ct
io

us
 u

ni
ts

 (
×1

04 )
 m

l–1

33.0

1.72
0.540.41

0.31
0.24
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a single-cycle MAGIC assay (n ¼ 3 ± s.d.). Cellular CAGag and MAGag levels were similar in all cases, but the CA-SP1 processing intermediate accumulated

in the DYP and Tyr36Phe constructs, which is typically observed when virus budding is inhibited. (b) A secondary HIV-1 p6Gag Tyr36Phe mutation blocks the

rescue of HIVDPTAP virus release and infectivity that are normally induced by ALIX overexpression. Top gel panel, western blot showing HIVDPTAP virus release.
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whereas HIVDPTAP constructs with secondary mutations were used in lanes 2 and 5 (p6Gag DYP, positive control) and in lanes 3 and 6 (p6Gag Y36F). Note

that overexpression raised ALIX levels B50-fold over endogenous protein levels as estimated by western blotting with antibodies to ALIX (not shown).
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measured by blotting with antibodies to CA. Note that VLP levels were
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cellular Gag and ALIX expression levels were similar in all cases (left).
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incorporation into VLPs from the artificial HIV-1 p9Gag construct
relative to HIV-1 p6Gag (B12-fold) and to HIV-1 PTAP alone (B22-
fold) (Fig. 4). These data are consistent with the higher affinity
between ALIX and EIAV p9Gag measured in vitro and are in good
agreement with earlier immunoprecipitation experiments10, which
showed greater association of ALIX with EIAV p9Gag than with
HIV-1 p6Gag. Therefore, although the isolated YPXnL motifs bind
ALIX with similar affinities, the affinities of the EIAV p9Gag and HIV
p6Gag proteins differ owing to subtle protein context effects that could,
for example, stabilize the extended conformation of the EIAV late
domain and destabilize the helical conformation required for HIV-1
late-domain binding.

ALIX binding to endogenous cellular partners
Because the viral YPXnL peptides bind to conserved residues on the
ALIX surface, it seems likely that the viral late domains have evolved
to mimic interactions of cellular ALIX binding partners. In support
of this assumption, the pH-sensing protein PacC has been shown to
use a YPXL/I motif to bind PalA, the ALIX homolog in Aspergillus
nidulans12. Homologs of PacC are not apparent for species other than
related filamentous fungi and yeast, however, so it is likely that there
are other endogenous YPXnL-containing ligands. ALIX was recently
reported to bind the transferrin receptor (TfR) to facilitate its
trafficking into exosomes38. This interaction was mapped to a YTRF
motif in the TfR cytoplasmic tail, which resembles the consensus
YPXnL motif. To test whether ALIX can bind this site, we measured
the affinity of ALIXBro1-V for a 13-residue peptide fragment of TfR
encompassing the YTRF sequence38, and found that ALIX bound this
fragment with a Kd of 267 ± 140 mM, which is B40-fold weaker than
the HIV-1 and EIAV YPXnL late-domain peptides. Weak affinities of
this magnitude can mediate biologically important interactions, but
additional experiments will be necessary to determine whether TfR is
an authentic ALIX binding partner. Regardless, it seems likely that
other endogenous, higher-affinity ligands remain to be discovered.
Notably, the conserved surface of ALIX extends B10 Å beyond the

N-terminal ordered residues of the late-domain peptides, toward the
base of the V domain (Supplementary Fig. 2 online). In particular,
Glu665 and Asn669 are invariant in an alignment of nine ALIX
sequences26; they do not seem to perform structural roles but are
potentially available for additional binding interactions. We therefore
speculate that these residues are conserved because they function to
bind cellular partners, whereas the viral late domains use only a
portion of the binding site.

DISCUSSION
Our structural data show that ALIX recognizes viral YPXnL motifs
through a conserved hydrophobic groove on arm 2 of the V domain
that is likely also to bind endogenous cellular partners. The most
notable features of the interactions are the burial of the late-domain
tyrosine side chain deep into a hydrophobic pocket and the formation
of a hydrogen bond between the phenolic hydroxyl and a conserved
aspartate. The importance of this interaction was confirmed by
mutational analyses, both in vitro and in vivo, and the tyrosine residue
is therefore an essential element of the YPXnL late domains of
HIV-1NL4-3 and EIAV. The leucine and proline residues that flank
this tyrosine residue are also conserved in the late domains of both
HIV-1NL4-3 and EIAV, and these residues make equivalent hydro-
phobic contacts with ALIX. The terminal leucine residues within the
YPXnL late domains of HIV-1 and EIAV also make equivalent ALIX
interactions, despite spacing differences (HIV-1, n ¼ 3; EIAV, n ¼ 1);
this is made possible by alternative helical (HIV) or extended (EIAV)

main chain conformations. Thus, the structures presented here explain
how ALIX recognizes (L)YPXnL motifs (and its variants39) and can
accommodate either one or three residues between the proline and
leucine positions. We note that some HIV-2 and SIV strains can
still bind and package ALIX even though their Gag proteins typically
lack YPXnL motifs10, although the basis for these interactions is
currently unknown.
Finally, we found that although the isolated HIV-1 and EIAV late-

domain peptides have equivalent affinities, context-dependent effects
modulate the binding to make it stronger (EIAV) or weaker (HIV-1)
for the full-length p6Gag and p9Gag proteins. These observations are
consistent with the model that binding of late domains is not simply
maximized but is tuned for optimum selective advantage. In this
regard, it is notable that EIAV p9Gag, which lacks the ability to recruit
TSG101, binds ALIX some 60-fold more tightly than does HIV-1
p6Gag. Such fine tuning of binding affinities is likely to be especially
important for complexes that must form and disassemble along a
reaction pathway, as is expected to be the case during abscission,
multivesicular body vesicle formation and virus budding.

METHODS
Protein purification and crystallization. ALIXBro1-V (residues 1–698) harbor-

ing the KK268,269YY double mutation was purified as described26. HIV-1

p6GagA, HIV-1 p6GagT and EIAV p9Gag peptides were synthesized with

the sequences 32DKELYPLASLRSLFG46, 32DKELYPLTSLRSLFG46 and

19TQNLYPDLSEIKK31, respectively. Peptide termini were blocked with acetyl

(N) and amide (C) groups. Lyophilized peptides were resuspended in water and

mixed with ALIXBro1-V to a molar ratio of B1:1.2 protein/peptide at a final

ALIX concentration of 10 mg ml–1. Crystals were grown by sitting-drop vapor

diffusion at 13 1C, with the drops comprising 1–2 ml of reservoir solution (0.20–

0.25 M MgCl2, 7–10% (w/v) PEG-4000 and 0.1 M NaMES, pH 5.9–6.1) and

2 ml protein solution (1 mM DTT, 100 mM NaCl and 10 mM HEPES, pH 8.0).

Table 2 X-ray data collection and refinement statistics

p6GagA p6GagT p9Gag

Data collection

Space group C2 C2 C2

Cell dimensions

a, b, c (Å) 146.1, 99.4, 73.5 145.9, 99.1, 73.2 146.4, 98.6, 72.8

a, b, g (1) 90.0, 107.3, 90.0 90.0, 107.3, 90.0 90.0, 107.1, 90.0

Resolution (Å) 40–2.55

(2.64–2.55)

50–2.60

(2.69–2.60)

50–2.60

(2.69–2.60)

Rsym 12.6 (36.6) 6.0 (25.2) 15 (30.6)

I / s(I) 14 (2.1) 13 (2.1) 7 (2.3)

Completeness (%) 98.6 (88.3) 98.4 (94.2) 98.2 (96.5)

Redundancy 5.6 3.7 3.0

Refinement

Resolution (Å) 28–2.55 50–2.6 50–2.6

No. reflections 30,785 28,331 28,155

Rwork/Rfree 22.5/28.0 22.4/28.5 22.3/28.6

No. atoms

Protein 5,574 5,574 5,552

Water 17 17 23

Average B-factor (Å2) 95.8 88.4 84.7

R.m.s. deviations

Bond lengths (Å) 0.013 0.017 0.014

Bond angles (1) 1.309 1.511 1.384

Diffraction data from one crystal were used to determine each structure. Values in
parentheses are for the highest-resolution shell. Rfree is calculated from 5% of
reflections chosen randomly.
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Data collection and refinement. Crystals were cryoprotected by transfer, in 5%

(v/v) glycerol increments, to a solution of reservoir components made up with

30% (v/v) glycerol. Crystals were suspended in a nylon loop, plunged into

liquid nitrogen, and maintained at 100 K for data collection at beamline 11-1 of

the Stanford Synchrotron Radiation Laboratory (l ¼ 1.00000 Å (p6GagA) and

0.97946 Å (p6GagT, p9Gag)). Data were processed using HKL2000 (ref. 40). The

structures were isomorphous with the unliganded ALIXBro1-V structure (PDB

code 2OEV26) and were refined in REFMAC541 with TLS refinement using

TLSMD42–44 and TLSANL45 in the CCP4 suite46. Model building was per-

formed with O47 and COOT48. Geometry was analyzed in PROCHECK49, with

no residues in disallowed regions of the Ramachandran plot. Statistics are given

in Table 2.

Biosensor binding experiments. Surface plasmon resonance biosensor binding

experiments were performed at 20 1C using a Biacore T100 optical biosensor

equipped with a CM5 sensor chip. Antibody to glutathione S-transferase (GST)

was immobilized by amine-coupling chemistry50 onto the chip surface fol-

lowed by application of soluble Escherichia coli lysates of GST and GST-ALIX

fusion proteins diluted in running buffer (20 mM sodium phosphate,

150 mM NaCl, 0.2 mg ml–1 BSA, 0.005% (v/v) P20, pH 7.2) to densities of

3,000–3,500 response units. After GST-ALIX capture, chip surfaces were over-

coated with recombinant GST to minimize nonspecific interactions with the

GST antibody surface. Data for HIV-1 p6GagA, p6GagT and EIAV p9Gag were

previously reported26 and are shown here for comparison. Lyophilized peptides

of HIV-1 p6GagA, p6GagT, EIAV p9Gag and transferrin receptor 1 (TfR,

19PLSYTRFSLARQV31)
38 were resuspended in 10 mM sodium phosphate,

pH 7.2, 150 mM NaCl, diluted in running buffer and injected in duplicate

from concentrations of 0 to 100 mM. Affinity parameters were obtained by

plotting the equilibrium responses against the analyte concentration and fitting

the data to simple 1:1 binding models51. Note that higher analyte concentra-

tions gave rise to nonspecific surface binding.

HIV-1 infectivity and ALIX rescue experiments. The p6Gag Tyr36Phe muta-

tion was introduced into wild-type HIV-1NL4-3 and HIVDPTAP R9 proviral

constructs using the Megaprimer mutagenesis method (WISP07-85 and

WISP07-86, respectively). Each mutation changed the p6Gag Tyr36 codon

(TAT) to a Phe36 codon (TTT) without changing the p6*/Pol sequence in

the –1 frame. Full cloning details are available upon request, and all other

aspects of this experiment were performed as described previously26.

HIV-1 VLP production. 293T cells were transfected (using Lipofectamine

2000) with HIV-1 Dp6 proviral plasmids expressing truncated HIV-1 Gag

proteins fused to either HIV-1 p6Gag (p6, WISP07-87), EIAV p9Gag (p9,

WISP07-88) or a minimal TSG101-binding motif (PEPTAPPEES, PTAP,

WISP07-89)15. Cells were lysed in RIPA buffer and VLPs were harvested

B48 h after transfection through a 20% (w/v) sucrose cushion. Cell lysates

and VLPs were analyzed by western blot with polyclonal antibodies to CA

(1:10,000 dilution), MA (1:15,000) or ALIX (1:5,000)11.

Accession codes. Protein Data Bank: Coordinates and structure-factor ampli-

tudes have been deposited with accession codes 2R02 (p6GagT), 2R03 (p9Gag)

and 2R05 (p6GagA).

Note: Supplementary information is available on the Nature Structural & Molecular
Biology website.
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Supplementary Figure 1.  HIV-1 p6Gag and EIAV p9Gag Peptide Omit Maps 

Fo-Fc peptide omit maps (colored wheat, displayed at 2.2 x RMSD) were 

calculated from refined ALIX models that did not include peptide models for HIV-

1 p6Gag (a) or EIAV p9Gag (b).  An Fo(p6GagT)-Fo(p6GagA) difference map was 

calculated using phases from the ALIX:p6GagT model (magenta, displayed at 4.0 

x RMSD).  Since p6GagA/T peptides are identical except for threonine or alanine 

at position 39, the observed difference map peak corresponds to the location of 

Thr39 side chain atoms.  This map further validated the helical structure of p6Gag.

The view is the same as that in Figures 1 c,d. 
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Supplementary Figure 2.  ALIX Conservation at the Peptide Binding Site

HIV-1 p6Gag (a) and EIAV p9Gag (b) peptides (sticks) are shown binding to ALIX, 

which is shown as a surface that is colored according to sequence conservation 

from alignment of nine divergent species in ESPript1; residues with scaled 

similarity scores are color coded as follows: 85-100 are red, 68-84 are orange, 

and 50-67 are yellow (see also ref. 2).  Extension of the conserved surface ~10 Å 

N-terminal to the late domain peptides suggests that endogenous ligands might 

bind to a larger region of the ALIX surface. The nine species used in the 

alignment to define conservation are: Homo sapiens (Human), Mus musculus

(Mouse), Gallus gallus (Chicken), Xenopus laevis (African clawed frog), 
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Drosophila melanogaster (Fruit fly), Caenorhabditis elegans, Dictyostelium 

discoideum (Slime mold), Arabidopsis thaliana (Mouse-ear cress), and 

Aspergillus oryzae.
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Retroviral Gag proteins contain short late-domain motifs that recruit cellular ESCRT pathway proteins to
facilitate virus budding. ALIX-binding late domains often contain the core consensus sequence YPXnL (where
Xn can vary in sequence and length). However, some simian immunodeficiency virus (SIV) Gag proteins lack
this consensus sequence, yet still bind ALIX. We mapped divergent, ALIX-binding late domains within the
p6Gag proteins of SIVmac239 (40SREKPYKEVTEDLLHLNSLF59) and SIVagmTan-1 (24AAGAYDPARKLLEQY
AKK41). Crystal structures revealed that anchoring tyrosines (in lightface) and nearby hydrophobic residues
(underlined) contact the ALIX V domain, revealing how lentiviruses employ a diverse family of late-domain
sequences to bind ALIX and promote virus budding.

Many enveloped viruses, including retroviruses, recruit pro-
teins of the cellular ESCRT pathway to facilitate budding
(reviewed in references 3, 11, and 35). Short sequence motifs,
termed late domains, within retroviral Gag polyproteins bind
directly to early-acting ESCRT factors, which then recruit and
activate the downstream machinery necessary for membrane
fission. The three well-characterized late domains are typically
denoted by their canonical core amino acid sequences: PTAP
late domains bind the ubiquitin E2 variant (UEV) domain of
the TSG101 subunit of the ESCRT-I complex, PPXY late
domains bind WW domains of NEDD4 family ubiquitin E3
ligases, and YPXnL (where Xn can vary in sequence and
length) late domains bind the V domain of ALIX (10, 20, 32,
37). In a number of cases, retroviral Gag proteins have been
shown to utilize multiple late domains (e.g., see references 3, 4,
7, 11, 16, 31, 33, 34, and 35). We speculate that this phenom-
enon may be even more prevalent than is currently appreciated
because mutations in auxiliary late domains often produce
weak or cell-specific phenotypes and because late domains can
be difficult to recognize owing to primary sequence divergence.
It is therefore of interest to define the range of different se-
quences that can function as late domains and to learn how
sequence variation is tolerated while late-domain function is
retained.

Strack and colleagues initially reported that ALIX binds
core sequences of 35LYPLTSL41 and 22LYPDL26 within the
late domains of human immunodeficiency virus type 1 (HIV-1)
p6Gag and equine infectious anemia virus (EIAV) p9Gag, re-
spectively (32) (anchoring tyrosines are shown in boldface, and
nearby hydrophobic residues that contact ALIX are under-

lined). They also reported that p6Gag proteins from simian
immunodeficiency virus SIVmac239 and SIVagmTan-1 can bind
and package ALIX into virions, but in those cases the ALIX-
binding sites were not fully mapped and were not obvious,
because the SIV p6Gag proteins lacked canonical YPXnL
ALIX-binding elements. We therefore performed biosensor
binding experiments and deletion analyses to quantify and map
the ALIX-binding sites. These experiments employed a recom-
binant ALIX protein that spanned the Bro1 and V domains
(residues 1 to 698), here denoted ALIXBro1-V, but lacked the
C-terminal proline-rich region (residues 699 to 868). As shown
in Fig. 1, ALIXBro1-V bound directly to the full-length p6Gag

proteins from SIVmac239 (equilibrium dissociation constant
[KD], 66 � 4 �M) and SIVagmTan-1 (KD, 24 � 1 �M), with
binding affinities that were comparable to those of HIV-1
p6Gag and EIAV p9Gag (KD, 40 and 1.5 �M, respectively) (37).

Deletion experiments were performed to map the ALIX-
binding sites to the following sequences: SIVmac239 p6Gag, 40S
REKPYKEVTEDLLHLNSLF59; and SIVagmTan-1 p6Gag, 24A
AGAYDPARKLLEQYAKK41 (Fig. 1 and data not shown). In
both cases, ALIX bound the full-length SIV p6Gag proteins and
the minimal binding sites with comparable affinities, indicating
that ALIX binding was not significantly influenced by p6Gag

residues beyond the immediate binding site. The late domains
of HIV-1 p6Gag and EIAV p9Gag both contain key tyrosine
residues that bind in a deep pocket on the second arm of
the ALIX V domain (37). The ALIX-binding sites within
SIVmac239 and SIVagmTan-1 p6Gag also contained single tyrosine
residues (highlighted in boldface), and alanine point mutations
in each of these tyrosines eliminated any detectable ALIX
binding to the full-length SIV p6Gag proteins (Fig. 1). Thus,
these tyrosines are also key determinants of ALIX binding to
the SIV p6Gag proteins.

To learn how these SIV p6Gag proteins recognize and re-
cruit ALIX, we crystallized and determined the structures of
ALIXBro1-V (KK268,269YY mutant) in complex with binding-
site peptides from the SIVagmTan-1 and SIVmac239 p6Gag pro-
teins. Crystallization and data collection were performed as

* Corresponding author. Mailing address: Department of Biochem-
istry, University of Utah School of Medicine, 15 N. Medical Drive
East, Room 4100, Salt Lake City, UT 84112-5650. Phone for W. I.
Sundquist: (801) 585-5402. Fax: (801) 581-7959. E-mail: wes@biochem
.utah.edu. Phone for C. P. Hill: (801) 585-5536. Fax: (801) 581-7959.
E-mail: chris@biochem.utah.edu.

† Q.Z. and M.B.L. contributed equally.
� Published ahead of print on 20 October 2010.
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previously described (37). Crystallographic statistics are pro-
vided in Table 1. A comparison of the two SIV peptide com-
plex structures with the previously reported HIV and EIAV
late-domain complexes reveals that the ALIX protein structure
is essentially invariant. In all cases, the dominant interaction is
insertion of a tyrosine side chain of the p6 peptide into a deep
hydrophobic pocket on ALIX (Fig. 2). The tyrosines of all four
late-domain peptides superimpose closely and make the same

contacts with ALIX, including a hydrogen bond between the
tyrosine phenoxyl and the conserved ALIX Asp506 side chain.
As described previously, the EIAV and HIV late-domain in-
terfaces also bury a proline immediately following the tyrosine
(the Y � 1 position) and a leucine at Y � 3 (EIAV) or Y � 5
(HIV), with the different leucine positions being accommo-
dated by different conformations of the peptide backbone,
either extended (EIAV, designated a type 1 ALIX-binding
motif) or helical (HIV, designated type 2) from the Y � 2
position.

The two SIV peptides form equivalent ALIX interfaces
but do so by adopting yet another conformation (termed a
type 3 ALIX-binding motif). In both cases, they are helical
from the Y � 1 residue, which results in the Y � 3 Val/Ala
and Y � 7 Leu occupying the same locations as the Pro and
Leu of EIAV and HIV (Fig. 2). The most notable difference
between the two SIV peptides is that their helices project at
an angle of 15° with respect to each other. This presumably
results from differences in residues that contact ALIX, es-
pecially Val versus Ala at position Y � 3, and results in a
2.5-Å displacement of the SIVagmTan-1 Y � 7 Leu compared
to the structurally equivalent Leu of SIVmac239, HIV, and
EIAV. Thus, late-domain sequences adopt a range of con-
formations in order to preserve the interaction motif:
�YX0/2�X1/3L, with the alternative 0/2 and 1/3 spacings of
the intervening X residues accommodated by extended ver-
sus helical backbone conformations.

TABLE 1. Crystallographic statistics for ALIX complexesa

Parameterb
Value for indicated strainc

SIVmac239 SIVagmTan-1

Space group C2 C2
Cell dimensions

a (Å) 145.3 145.5
b (Å) 99.3 99.1
c (Å) 72.5 72.6
� (°) 106.9 106.6

Resolution (Å) 45–2.3 (2.38–2.3) 45–2.5 (2.59–2.5)
Completeness (%) 97.7 (82.6) 95.6 (70.8)
I/�(I) 18.2 (3.9) 31.5 (3.5)
Rsym (%)c 9.6 (28.2) 5.5 (32.0)
No. of unique reflections 44,063 34,197
Rfactor/Rfree (%)d 20.5/25.2 20.4/26.1
No. of protein atoms 5,614 5,559
No. of water molecules 58 22

Avg B factor (Å2)
Protein atoms 77.6 86.5
Water molecules 58 63.6

RMSD from ideal geometry
Bonds (Å) 0.007 0.008
Angles (°) 0.994 1.057

a Data were collected at beam line X29 of the National Synchrotron Light
Source and processed using HKL2000 (23). The structures were determined
using rigid-body refinement with the unliganded ALIXBro1-V model and were
refined in PHENIX (1) with TLS refinement (24, 25). Model building was
performed with O (17) and COOT (9).

b Rsym � (�(¥I 	 
I�)�)/(¥I), where 
I� is the average intensity of multiple
measurements. Rfactor � ¥hkl��Fobs(hkl)�� 	 Fcalc(hkl)��/¥hkl�Fobs(hkl)�. Rfree � the
cross-validation R factor for the 5% of reflections against which the model was
not refined.

c Values in parentheses are for the highest-resolution shell.

FIG. 1. ALIXBro1-V binding to different p6Gag proteins. (A) Rep-
resentative biosensor sensograms for ALIXBro1-V binding to immobi-
lized wild-type (main graph) or Y45A mutant (inset) SIVmac239 gluta-
thione S-transferase (GST)-p6Gag proteins. Samples were analyzed in
triplicate. p6Gag proteins, minimal binding peptides (blocked N and C
termini), were created, and the binding studies were performed and
analyzed as described previously (37). RU, response units. (B) Rep-
resentative biosensor binding isotherms for ALIXBro1-V binding to
SIVmac239 GST-p6Gag or SIVagmTan-1 p6Gag proteins. (C) Summary of
ALIXBro1-V dissociation constants for different retroviral p6/p9 pro-
teins/peptides. Values for SIV peptides are the means from two inde-
pendent experiments (each measured in triplicate) � ranges. Dissoci-
ation constants for the HIV-1 and EIAV peptides were reported
previously (37) but are reprinted here for reference.
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Sequence analyses revealed that nearly all primate lentivi-
ruses carry one of the three different types of ALIX-binding
motifs, supporting the idea that type 3 ALIX-binding motifs
can function as late domains that enhance virus budding (Fig.
3A). SIVmac239 p6Gag has been analyzed by deletion analysis
(26), but unfortunately the functional importance of the key
tyrosine residue in the ALIX-binding site was not tested. We
therefore used a SIVmac251-based system (21), for which a
vector was available, to test whether noncanonical ALIX-bind-
ing sites within SIV p6Gag proteins can function as late do-
mains. SIVmac251 and SIVmac239 are closely related and have
identical p6Gag ALIX-binding sites. Both isolates also contain
PTAP elements within p6Gag that presumably bind TSG101
and function as late domains.

Constructs were designed to mutate key residues in both
candidate late domains within the SIVmac251 p6Gag proteins

encoded by the pSIV3� helper vector without altering the
underlying Pol reading frame (11PTAP14 to 11LIAL14, termed
�PTAP; and 38EKPYKEVTEDLLHL51 to 38EKPSKEVTED
SLHL51, termed �YL; mutated residues are italicized). Viri-
ons were produced in 293T cells and analyzed as described
previously (30), with Western blotting used to detect virion-
associated and cellular CA levels (anti-SIVmac CA mouse
monoclonal antibody, 1:3,000 [14]) and cellular ALIX levels
(anti-ALIX rabbit polyclonal antibody, 1:5,000 [10]). Viral ti-
ters were measured using flow cytometry to detect green flu-
orescent protein (GFP) expression from the packaged pSIV-
gaMES4sin vector in transduced 293T cells.

As expected, the �PTAP mutation inhibited SIVmac251 re-
lease, as measured by reductions in virion-associated CA (p27)
protein levels (Fig. 3B, VIRION Western blot, compare lanes
1 and 2), without altering cellular CA expression levels (CELL

FIG. 2. Structures of SIV late domains bound to the second V-domain arm of human ALIXBro1-V. (A) SIVmac239 p6Gag late-domain peptide
(magenta sticks) and human ALIXBro1-V protein, represented as a blue ribbon and surface, with the side chains of binding-site residues shown
explicitly and labeled. The p6 tyrosine is indicated with a Y. The p6 peptide is oriented with the N terminus at the bottom of the figure.
(B) SIVagmTam-1 p6Gag late-domain peptide and ALIXBro1-V complex. (C) Overlay of the ALIX in complex with late-domain peptides of HIV-1
p6Gag (Protein Data Bank code 2R02; green), EIAV p9Gag (Protein Data Bank code 2R03; turquoise), SIVmac239 p6Gag (magenta), and SIVagmTan-1
p6Gag (salmon). Panels A to C were generated using PyMOL (6). (D) Late-domain peptide sequences used for crystallography and binding studies,
aligned on the basis of the crystal structures. Residues modeled in the crystal structures are in boldface, and those lacking electron density are in
italics. Residues that are structurally equivalent in all four complexes are highlighted by a gray background. Residues that bury more than 50%
of their solvent-accessible surface at the protein interface are underlined. Note that ALIX binds three different types of viral sequence motifs,
which we have designated types 1 to 3.
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blot). Vector titers were also dramatically reduced, essentially
to background levels [from 1.06 (�0.06) 
 106/ml to 6 (�2) 

103/ml; 180-fold reduction] (Fig. 3B, bottom panel, compare
lanes 1 and 2). SIVmac251 release and infectivity were also
reduced by the �YL mutation in the ALIX-binding site, al-
though the reduction was much less dramatic than for the
�PTAP mutation (Fig. 3B, compare lanes 1 and 3; 3-fold
infectivity reduction). The �PTAP/�YL double mutation in-
hibited virus release to an even greater extent than either
single mutation alone (Fig. 3B, compare lanes 2 and 4), with
viral titers again near background levels. Mutations in either
(or both) late domains led to accumulation of the CA-SP1
processing intermediate within cells (Fig. 3B, CELL blot, com-
pare lane 1 to lanes 2 to 4). This phenotype is also seen for
HIV-1 late-domain mutants and is indicative of budding de-
fects (13). Thus, both the 11PTAP14 and 38EKPYKEVTEDLL
HL51 sequences within SIVmac251 p6Gag promote Gag process-
ing, virion release, and viral infectivity, and the PTAP
sequence serves as the dominant late domain under these
experimental conditions. The situation is similar for HIV-1;
both the ALIX- and TSG101-binding late domains are func-

tional, but mutations in the PTAP element are more detrimen-
tal in most cell types (12).

To confirm that the SIVmac251 p6Gag
38EKPYKEVTEDLL

HL51late domain was ALIX responsive, we tested whether
ALIX overexpression stimulated virus release via this se-
quence (10, 33). ALIX overexpression did not alter the release
and infectivity of wild-type SIVmac251, presumably because the
11PTAP14 late domain was already highly active (Fig. 3B, com-
pare lanes 1 and 5). In contrast, ALIX overexpression substan-
tially stimulated the release and infectivity of an SIVmac251

�PTAP construct [to 1.4 (�0.2) 
 105; 23-fold infectivity in-
crease] (Fig. 3B, compare lanes 2 and 6). This stimulation was
dependent upon the ALIX-binding site within SIVmac251

p6Gag, because ALIX overexpression failed to stimulate either
the �YL or the �PTAP/�YL mutant constructs significantly
(compare lanes 3 to 7 and 4 to 8). Stimulation also required the
YPXnL-binding site of ALIX, because an inactivating point
mutation within this site (F676D) blocked the ability of ALIX
to stimulate release of the �PTAP construct (compare lanes
6 and 9). Thus, the 38EKPYKEVTEDLLHL51 site within
SIVmac251 p6Gag functions as an ALIX-dependent late domain.

FIG. 3. Primary sequences and functional analyses of the late domains within primate lentiviral p6Gag proteins. (A) Maximum likelihood
phylogenetic tree showing the different primate lentiviral lineages and their p6Gag proteins (drawn to scale as white boxes). TSG101-binding
P(S/T)AP late domains are shown in blue, and putative ALIX-binding late domains are shown in red (predicted ALIX contact residues) or black
(solvent exposed residues). ALIX-binding-site types are designated at right (see text for explanation). Sequences that most closely match the
crystallographically characterized ALIX complexes are denoted with stars. Consensus sequences for the designated lineage(s) were derived from
reference 19, and residues conserved at �85% identity are shown in capital letters. p6Gag proteins from the HIV-1/SIVcpz lineage fall into three
different classes that either have type 1 or 2 ALIX-binding sites or lack apparent ALIX-binding sites (and also lack tyrosines). Putative
ALIX-binding sites within SIVwrc proteins can have either a Trp or Tyr residue in the second position, and the effect of the Trp substitution on
ALIX binding has not been tested. The scale bar represents 0.1 substitution per site, and the tree was adapted from reference 1a. (B) Mutations
in the SIVmac251 p6Gag

11PTAP14 (�PTAP) and 38EKPYKEVTEDLLHL51 (�YL) sequences inhibited virion release (Western blot, panel 1) and
reduced viral titers (bottom graph, single-cycle infectivity assays), and ALIX overexpression stimulated release of the SIVmac251 �PTAP construct.
Cells were transfected with the designated SIVmac251 vectors (WISP10-480-484), and cotransfected with either an empty pCI-neo vector control
(lanes 1 to 4) or vectors expressing either wild-type (WT) FLAG-ALIX (lanes 5 to 8) or the designated mutant (lanes 9 and 10) FLAG-ALIX
proteins. Vector transduction titers shown in the graph were measured in single-cycle infectivity assays (n � 5 assays; values are shown plus
standard deviations). Western blots showing the levels of cell-associated CA and ALIX are also shown (CELL), with endogenous ALIX expression
levels (lanes 1 to 4) enhanced 20-fold relative to exogenous ALIX expression levels (lanes 5 to 10) for ease of visualization.
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As shown in Fig. 3A, p6Gag proteins from nearly every
known primate lentiviral lineage contain a type 1, type 2, or
type 3 ALIX-binding site, implying that (i) the ability to bind
ALIX must provide primate lentiviruses with a strong selective
advantage and (ii) these three types probably account for all
(or nearly all) of the different ALIX-binding modes. The only
exceptions are a subset of viruses within the HIV-1/SIVcpz

lineage, which lack identifiable ALIX-binding sites, and possi-
bly also a subset of SIVwrc viruses whose type 1 ALIX-binding
sites have Trp in place of Tyr. Type 3 ALIX-binding sites are
widespread throughout primate lentiviruses, and type 1 and 3
sites are more common than type 2 sites (which predominate
only in HIV-1 strains). Interestingly, p6Gag proteins that lack
the ability to bind TSG101 typically have type 1 ALIX-binding
sites (2). Type 1 sites bind ALIX with relatively high affinities,
at least in the cases examined to date (Fig. 1C), and this
correlation may therefore reflect a need to recruit ALIX more
efficiently when TSG101 cannot be recruited directly.

Although ALIX binds rather weakly to most isolated late
domains, several factors likely enhance ALIX recruitment in
vivo. First, p6-ALIX V domain interactions of the type studied
here can be augmented by upstream interactions between the
ALIX Bro1 domain and the HIV-1 Gag NC domain (8, 28, 29).
Analogous SIV NC-ALIX Bro1 interactions are also possible,
although such interactions alone are apparently not sufficient
to stimulate virus release because ALIX overexpression does
not substantially rescue SIVmac251 release or infectivity in the
absence of the p6Gag ALIX-binding site. Second, activated
ALIX is dimeric (27), which should enhance binding avidity to
oligomeric Gag assemblies. Third, ALIX can associate with
ubiquitin, and ubiquitylation of Gag (or associated proteins)
could therefore enhance ALIX recruitment (18). Finally, both
Gag and ALIX can associate with membranes, which may
increase the effective local ALIX concentrations at budding
sites. Thus, relatively weak ALIX-p6Gag interactions of the
type described here are apparently sufficient to ensure that
ALIX is recruited to function in virus budding.

Once recruited, ALIX can stimulate virus budding by re-
cruiting the downstream ESCRT-III membrane fission ma-
chinery via direct interactions with CHMP4 subunits (10, 33)
and also via additional stimulatory activities of the N-terminal
Bro1 domain that may involve membrane deformation (28).
CHMP4 recruitment appears to be important in the case of
SIVmac251, because the ALIXI212D mutant, which cannot bind
CHMP4 (22), also failed to stimulate release of the �PTAP
construct (Fig. 3B, compare lanes 6 and 10). Thus, the ALIX-
binding site in SIVmac251 p6Gag functions, at least in part, to
provide access to the membrane fission activity of the down-
stream ESCRT-III proteins.

Our results also have important implications for the identi-
fication of cellular ALIX-binding partners. The YPXnL-bind-
ing site within the ALIX V domain presumably evolved to bind
cellular partners, rather than viral late domains. To date, how-
ever, only one cellular interaction of this type has been iden-
tified: that between the Aspergillus ALIX homolog PalA and its
binding partner PacC (36). PalA binds tandem YPXL/I motifs
within PacC that match canonical EIAV late domains, and this
interaction facilitates the pH-regulated cleavage of the PacC
transcription factor. Such pH-sensing pathways are not con-
served outside of fungi, however, suggesting that additional

ALIX-binding partners have yet to be identified. Our studies
show that ALIX can bind a broader range of sequences than
previously appreciated, requiring only an anchoring tyrosine
interaction and downstream hydrophobic residues that can
vary in both identity and spacing. Cellular ALIX-binding part-
ners (and possibly also other viruses) can presumably also
employ this very loose consensus motif, which may help explain
why the mammalian ALIX-binding partner(s) has thus far es-
caped detection.

Protein structure accession numbers. Coordinates and dif-
fraction data for ALIXBro1-V (KK268,269YY mutant) in com-
plex with the SIVmac239 and SIVagmTan-1 peptides have been
deposited in the Protein Data Bank (PDB codes 2XS1 and
2XS8, respectively).
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domains share the capacity to bind human immunodeficiency virus type 1
nucleocapsid and to enhance virus-like particle production. J. Virol. 83:
7185–7193.

29. Popov, S., E. Popova, M. Inoue, and H. G. Göttlinger. 2008. Human immu-
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CHAPTER 5 

ACTIVATION OF THE RETROVIRAL BUDDING 

FACTOR ALIX 

  

 



Abstract 

The cellular ALIX protein functions within the ESCRT pathway to 

facilitate intralumenal endosomal vesicle formation, the abscission stage of 

cytokinesis, and enveloped virus budding. Here, we report that the C-

terminal proline-rich region (PRR) of ALIX folds back against the upstream 

domains and auto-inhibits V domain binding to viral late domains. Mutations 

designed to destabilize the closed conformation of the V domain opened the V 

domain, increased ALIX membrane association, and enhanced virus budding. 

These observations support a model in which ALIX activation requires 

dissociation of the autoinhibitory PRR and opening of the V domain arms. 

Methods and Results 

Retroviral Gag polyproteins contain short sequence motifs, termed 

“late domains”, which facilitate virus budding by recruiting components of 

the cellular ESCRT pathway (Bieniasz, 2009; Usami et al., 2009). For 

example, the HIV-1 p6Gag protein contains “PTAP” and “YPXL” late domains 

(designated by their consensus sequences), that bind directly to the TSG101 

and ALIX proteins, respectively (Demirov et al., 2002; Garrus et al., 2001; 

Martin-Serrano et al., 2001; Strack et al., 2003; VerPlank et al., 2001). ALIX, 

in turn, binds the CHMP4 subunits of the ESCRT-III complex, resulting in 

recruitment of the VPS4 ATPase, membrane fission, and virus release 

(Hurley and Hanson, 2010; Peel et al., 2010). 

ALIX contains three distinct structural elements: an N-terminal Bro1 
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domain, a central V domain, and a C-terminal proline rich region (PRR). The 

boomerang-shaped Bro1 domain binds CHMP4 proteins (Fisher et al., 2007; 

Kim et al., 2005; McCullough et al., 2008), the V domain comprises two 

extended three-helix bundles and binds YPXL late domains (Fisher et al., 

2007; Lee et al., 2007; Zhai et al., 2008; Zhai et al., 2011), and the PRR binds 

a series of other proteins, but is predicted to lack a persistent secondary or 

tertiary structure (Fisher et al., 2007; Fujii et al., 2007; Odorizzi, 2006). Like 

other ESCRT factors, ALIX must cycle between soluble (inactive) and 

membrane-associated (active) states. Several lines of evidence suggest that 

conformational changes accompany (or induce) these transitions. Firstly, 

recombinant ALIX proteins can form stable monomers and dimers (Fisher et 

al., 2007; Munshi et al., 2007), and biochemical evidence suggests that the 

dimer is the active conformation (Carlton et al., 2008; Fisher et al., 2007; 

Munshi et al., 2007; Pires et al., 2009). Secondly, small angle X-ray scattering 

(SAXS) profiles indicate that the two arms of the V domain may open and 

associate in an anti-parallel fashion when the protein dimerizes (Pires et al., 

2009). Thirdly, recent reports show that the PRR can inhibit ALIX binding to 

conformationally-sensitive monoclonal antibodies, CHMP4 proteins, and viral 

Gag proteins (Zhou et al., 2009; Zhou et al., 2008; Zhou et al., 2010). 

However, previous studies have not characterized the structure or 

conformational transitions of pure, full-length ALIX because this protein has 

not been available. 
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Although we were unable to express full-length human ALIX protein in 

E. coli, we could produce multi-milligram quantities of pure recombinant 

ALIX in insect cells using a baculoviral expression system. Briefly, 2 L of 

SF21 cells were infected with a BaculoDirect (Invitrogen) expression vector, 

which encoded His6-ALIX (ALIX residues 1-868, WISP10-643). The cells were 

lysed by sonication 48 hours post infection (300 mM NaCl, 10 mM imidazole, 

5% v/v glycerol, and 1% v/v Triton X-100, 50 mM Tris, pH 8.0). ALIX was 

purified from the clarified lysate by Ni2+ chromatography (Qiagen, elution 

with 250 mM imadazole), anion exchange chromatography (Q sepharose, GE 

Healthcare, 0.025-1.0 M NaCl gradient, 25 mM Tris, pH 8.8) and size 

exclusion chromatography (Superdex 200, GE Healthcare, monomeric species 

collected) (Figure 5.1A). This procedure typically yielded 5 mg of pure 

monomeric ALIX, and the protein identity was confirmed by electrospray 

ionization mass spectrometry. ALIX constructs that lacked the PRR (ALIX 

residues 1-698, denoted ALIXBro1-V (WISP10-648) ALIXBro1-V-R649E 

(WISP11-296) were expressed and purified in E. coli as described previously 

(Fisher et al., 2007). 

SAXS experiments were performed to examine the conformation of the 

C-terminal PRR. These measurements were performed using an Anton Paar 

SAXSess line-collimation instrument as described (Jeffries et al., 2008). 

Analysis of the forward scattering intensity, I(0) (Orthaber et al., 2000), gave 

a solution molecular mass for  ALIX (102.5 kDa, see Table S1) that agrees 
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Figure 5.1 Small Angle X-ray Scattering Analyses of Recombinant ALIX. 
(A) SDS-PAGE analysis (Coomassie blue staining) showing the stepwise expression
and purification of full length human His6-ALIX protein following: baculoviral
expression in SF21 insect cells (lane 1), nickel affinity chromatography (lane 2),
anion-exchange chromatography (lane 3), and gel filtration chromatography (lane
4). (B) Log I(q) vs. q solution small angle X-ray scattering profile for ALIX (circles)
and ALIXBro1-VR649E (grey diamonds). Fits to the ALIX scattering data are shown in
red (models depicted in panels D and E) or blue (model depicted in F). For clarity,
the data have been offset on the I(q) axis. (C) Probable atom-pair distance
distributions (P(r) vs r) for ALIX (open circles), the crystal structure of ALIXBro1-V

(black squares) and ALIXBro1-V,R649E (grey diamonds). The crystal structure P(r) was
calculated as for the experimental data except that the intensity profile was
generated using CRYSOL26 (Svergun et al., 1995) and the coordinates of ALIXBro1-V

(7). The areas under the P(r) curves are proportional to I(0) and correctly scaled
according to the ratios of the square of the molecular masses of the proteins. (D and
E) ALIX models that fit the scattering data (red lines in B). The Bro1 domain is
shown in light blue, the two arms of the V domain are shown in green and blue,
respectively, and PRR dummy atoms are shown in magenta. (F) A model in which
the PRR projects into solution does not fit the SAXS data (blue line in B.)  
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well with the calculated monomeric mass (100.8 kDa), indicating that the 

protein was monodisperse and monomeric. The Log I(q) vs. q SAXS profile for 

ALIX (open circles) is shown in Figure 5.1B. Indirect Fourier transformation 

of the SAXS profile using the program GIFT (Bergmann et al., 2000) yielded 

the probable atom-pair distance distribution within ALIX (P(r) vs. r plot, 

Figure 5.1C), the radius of gyration (Rg), 44.8 ± 1.5Å, and the maximum 

linear dimension (Dmax), 155 ± 5 Å. These structural parameters are very 

similar to the Rg (45.3 Å) and Dmax (158 Å) values calculated from the P(r) 

profile derived from the ALIXBro1-V crystal structure (Figure 5.1C, black 

squares). The overall shapes of the experimentally-derived and crystal 

structure based P(r) curves are also similar, indicating that the mass of the 

PRR must pack near the center of mass of the Bro1-V core structure. In 

contrast, a recent SAXS analysis of an ALIX construct that lacked the Bro1 

domain and the final 108 PRR residues indicated that in this context the 

truncated PRR projected away from the V domain (Shi et al., 2010).  These 

observations support a role for the Bro1 domain and/or the C-terminal two-

thirds of the PRR in mediating the fold-back structure. 

Atomic models for ALIX were generated using the ALIXBro1-V crystal 

structure (Fisher et al., 2007), and dummy atom representations of PRR 

residues. The ALIXBro1-V structure was fixed as a single rigid-body and the 

PRR positioned by refinement against the SAXS data using the program 

BUNCH (Petoukhov and Svergun, 2005). In the absence of any distance 
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constraints, the PRR consistently refined toward the second arm of the V 

domain (Figure 5.1D and red line fit in Figure 5.1B, χ2=0.54, calculated using 

CRYSOL26 (Svergun et al., 1995)). Models in which the PRR center was 

constrained to be within 5 Å of the center of the Bro1 domain fit the 

scattering data equally well (Figure 5.1E and red line fit in Figure 5.1B, χ2 = 

0.54). In contrast, models in which the PRR was rotated away from the V 

domain and into solution did not fit the experimental data (Figure 5.1F and 

blue line fit in Figure 5.1B; χ2 = 4.70). Thus, the SAXS data indicate that the 

ALIX PRR lies close to the Bro1-V core in solution, probably interacting with 

arm2 of the V domain and possibly also with the Bro1 domain. 

Isothermal titration calorimetry was performed to test whether the 

PRR influenced ALIX binding to a high-affinity late domain peptide from 

EIAV p9Gag (19TQNLYPDLSEIKK31; bold residues contact arm2 of the 

ALIX V domain (Zhai et al., 2008)). As expected, the control ALIXBro1-V 

protein bound the EIAV p9Gag peptide with a KD of 3.6 µM (Figure 5.2, 

black squares), which matches our previous biosensor-based analyses (KD = 6 

µM, see (Zhai et al., 2008)). In contrast, full length ALIX did not bind 

detectably to the EIAV p9Gag peptide under these conditions (open circles). 

Similarly, the EIAV p9Gag peptide bound approximately 100-fold less tightly 

to ALIX than to ALIXBro1-V in biosensor binding experiments (data not 

shown). In contrast, both ALIX constructs bound with similar affinities to a 

peptide that corresponded to the binding epitope on CHMP4B 
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Figure 5.2. ALIX protein binding to an EIAV p9Gag late domain peptide. 
Isothermal calorimetry titrations of an EIAV p9Gag peptide (750 µM) into 70
µM ALIXBro1-V (filled squares) or ALIX (open circles) in a solution of 20mM
sodium phosphate pH 7.2, 150 mM NaCl, 1 mM DTT (25°C). The solid line
shows the theoretical curve for a 1:1 peptide: ALIXBro1-V complex with a
dissociation constant of 3.6 µM (N=1.01±0.004, ΔG25°C= -7.42±0.02 Kcal/mol,
ΔH25°C= -5.55±0.03 Kcal/mol, ΔS25°C= 6.30±0.17 eu, MicroCal Origin software).
The peptide was added in 39 0.5 µl injections (180 s intervals) using a
MicroCal iTC200. 
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(205KKKEEEDDDMKELENWAGSM224, bold residues contact the ALIX 

Bro1 domain, see (McCullough et al., 2008), ALIX KD = 112±57 µM, 

ALIXBro1-V KD = 75±24 µM, n=6).  In this respect, our results differ from 

those of Zhou et al., who observed that the PRR also inhibited CHMP4 

binding (Zhou et al., 2010). However, our experiments were performed using 

pure monomeric ALIX and CHMP4B peptides, whereas theirs were 

performed with full-length proteins in crude extracts and could have been 

influenced by additional factors such as avidity effects resulting from protein 

oligomerization. Our data indicate that the PRR does not significantly alter 

the intrinsic affinity of the CHMP4 binding site on the Bro1 domain, but 

strongly inhibits YPXL late domain binding to arm2 of the V domain. 

The two arms of the ALIX V domain are juxtaposed at an acute angle 

of ~30º in crystal structures of the monomeric protein (termed the “closed” 

conformation) (Fisher et al., 2007; Lee et al., 2007; Zhai et al., 2008; Zhai et 

al., 2011). The suggestion that the linker connecting the two arms functions 

as a hinge that opens further under some conditions (Fisher et al., 2007) is 

consistent with SAXS data, which indicate that that the two arms are indeed 

more open in the ALIX dimer (Pires et al., 2009). We therefore hypothesized 

that mutations that destabilize the closed conformation might promote ALIX 

dimerization, membrane association, binding to the oligomeric Gag protein, 

and virus budding. This idea was tested by examining whether mutation of 

ALIX Arg649 localized the protein to cellular membranes or stimulated virus 
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release.  Arg649 forms an array of hydrogen bonding interactions that 

connect the three linker strands in the closed conformation, and the 

Arg649Glu mutation is therefore expected to destabilize the closed 

conformation of the V domain. Structural parameters derived from SAXS 

data collected from ALIXBro1-V-R649E show that there is a mass 

redistribution in the mutant compared to the ALIXBro1-V crystal structure 

as indicated by a change in the probable atom-pair distribution (Figure 5.1 C, 

grey diamonds), which extends out to ~190 Å. The Rg of ALIXBro1-V,R649E 

is ~8 Å greater than the ALIXBro1-V crystal structure (53.5 Å vs 45.3 Å), 

while the average radius of gyration of cross section of the mutant (calculated 

in PRIMUS (Konarev et al., 2003)) is smaller (Rgc ~12 Å vs ALIXBro1-V 

~14.5 Å). These data show that the Arg649Glu mutation causes ALIXBro1-V 

to extend and become ‘thinner’, indicating that the mutation causes the V-

domain to occupy a more ‘open’ configuration. 

Membrane flotation experiments were performed as previously 

described (Ono and Freed, 1999) to test whether the Arg649Glu mutation 

enhanced ALIX membrane association. Briefly, transfected 293T cells were 

collected 6 hours post-transfection, washed three times with cold NTE (150 

mM NaCl, 10 mM Tris-HCl, 1 mM EDTA), and suspended in 800 μl NTE 

containing 6% (wt/vol) sucrose, and a protease inhibitor cocktail (Sigma). 

Cells were disrupted by sonication (Figure 5.3A, lane 1, “Lysate”), nuclei and 

protein aggregates were removed by low-speed centrifugation (800×g, 15min, 
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Figure5.3. The Arg649Glu mutation activates ALIX for membrane association and
virus budding. 
 (A) Floatation analysis showing the degree of membrane association of ALIX and
ALIXR649E. Lanes 1-3 show the crude fractionation of 293T cell lysates (lane 1)
expressing either: ALIX (row 1, WISP03-308), ALIXR649E (row 2, WISP06-180), or
no protein (control, rows 3 and 4). The data demonstrate that neither ALIX nor
ALIXR649E forms insoluble aggregates (compare lanes 2 and 3 and see text for
details). Lanes 4-6 show the percentages of ALIX (row 1) ALIXR649E (row 2),
aldolase (soluble protein control, row 3) and cadherin (integral membrane protein
control, row 4) that partitioned into the membrane-containing (lane 4), soluble
(lane 6) or intermediate (row 5) fractions. (B) HIV-1 ΔPTAP viral titers released by
293T cells (6 well plates, 1 μg plasmid DNA) co-transfected with an empty vector
control or with the indicated quantities of pCl-neo-FLAG vectors expressing wild
type ALIX (grey triangles, black line) or ALIXR649E (black crosses, grey line). Titers
were measured in triplicate using single-cycle MAGIC infectivity assays. (C)
Western blots of supernatants and cells corresponding to the experiment described
in panel B, showing levels of virion-associated CA and MA released into the media
(panel 1), and cellular levels of viral Gag, (α-CA and α-MA, panel 2), and ALIX
protein levels (α-FLAG, panel 3)  
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resolubilized in 10% triton/NTE, lane 3, “Insoluble”). ALIX and ALIXR649E 

remained in the non-pelleted fractions (lane 2, “Soluble”). This fraction was 

adjusted to 80% (wt/vol) sucrose in NTE, placed on the bottom of a 14×89 mm 

centrifuge tube (Beckman, 331372), and the membrane fractions were 

“floated” by sedimentation (35,000 RPM for 24 h, 4°C, Beckman SW41 rotor) 

through layers of 65% sucrose (6 ml) and 10% sucrose (2.5 ml). Fractions 

containing membrane-bound proteins (4 ml, lane 4), soluble proteins (5 ml, 

lane 6), and an intermediate fraction (3 ml, lane 5) were collected and their 

protein contents were analyzed by Western blotting. Control soluble 

(aldolase) and integral membrane proteins (cadherin) concentrated in the 

soluble and membrane fractions, respectively, as expected (Figure 5.3A, rows 

3 and 4, respectively). The wild type FLAG-ALIX protein remained 

predominantly (79%) in the soluble fraction (Figure 5.3A, row 1, compare 

lanes 4 and 6), whereas most (65%) of the ALIXR649E mutant associated 

with membranes (Figure 5.3A, row 2, compare lanes 4 and 6). Thus, these 

data indicate that V domain opening activates ALIX for membrane binding. 

To test whether the ALIXR649E mutant was also hyperactive in 

stimulating virus release, we measured the release and infectivity of an 

HIV‐1NL4-3 virus that could not bind TSG101 (HIV-1 ∆PTAP) and was 

therefore highly dependent upon expression of exogenous ALIX for budding 

(Fisher et al., 2007; Usami et al., 2007). As shown in Figure 5.3B and 3C, 
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ALIXR649E was more potent than the wild type protein in stimulating virus 

release and infectivity, particularly when ALIX levels were limiting. For 

example, viral infectivity was 7-fold higher when cells were transfected with 

0.01 µg of the ALIXR649E expression construct (see Figure 5.3B, inset) even 

though both proteins were expressed at equivalent levels (Figure 5.3C, panel 

3, compare lanes 2 and 8). Similarly, 0.1 µg of the ALIXR649E expression 

construct stimulated virus release and infectivity to levels that were 

comparable to those induced by 1.0 µg of the wild-type ALIX expression 

construct (Figure 5.3B, inset and Figure 5.3C, panel 3, compare lanes 7 and 

11). Thus, the Arg649Glu mutation activates ALIX to facilitate HIV-1 

release, further supporting the idea that destabilizing the closed 

conformation of the ALIX V domain produces a constitutively active protein. 

Together with previous reports (Carlton et al., 2008; Pires et al., 2009; 

Zhou et al., 2010), our studies support a model in which ALIX is activated to 

facilitate virus budding through a series of conformational changes that: 1) 

release the PRR from the Bro1-V domains and expose the YPXL late domain 

binding site, 2) open the V domain, 3) stimulate membrane recruitment of 

ALIX, and 4) induce protein dimerization (Figure 5.4). These conformational 

changes are likely to be concerted and mutually reinforcing because: 1) ALIX 

dimerization appears to require V domain opening (Pires et al., 2009) and to 

be regulated by PRR residues (Carlton et al., 2008), 2) membrane 

recruitment will tend to increase local ALIX concentrations and thereby drive 
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Figure 5.4. Model depicting different stages of ALIX activation. 
(i) Monomeric ALIX adopts an autoinhibited state in the cytosol in 
which the two V domain arms (blue and green) adopt a “closed”
conformation, the PRR (red) folds back onto the V domain to
occlude the YPXL late domain binding site (orange), and onto the
Bro1 domain (light blue with the CHMP4 binding site shown in
purple). ALIX activation requires: (ii) dissociation of the PRR from
the Bro1-V core (pink arrow), (iii) opening of the V domain (blue
arrow), and (iv) protein dimerization, denoted in brackets because
dimeric species were characterized in references (Carlton et al., 
2008; Pires et al., 2009), not in the present study. 
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dimerization, and 3) ALIX dimerization will tend to promote binding to 

oligomeric Gag complexes owing to avidity. Thus, all of these effects likely 

combine to stimulate ALIX recruitment during viral Gag protein assembly at 

the plasma membrane. Other factors that may also contribute to ALIX 

activation include ubiquitin association (Joshi et al., 2008), phosphorylation 

(Schmidt et al., 2005), the ubiquitin E3-ligase POSH (Alroy et al., 2005; 

Tsuda et al., 2006; Votteler et al., 2009), and factors that bind the PRR such 

as CEP55, endophilins, TSG101, ALG-2, PYK2, Src kinases, and the Cbl-

SET/CIN85-endophilin complex (Carlton et al., 2008; Fisher et al., 2007; 

Martin-Serrano et al., 2003; Missotten et al., 1999; Morita et al., 2007; 

Schmidt et al., 2003; Shi et al., 2010; Strack et al., 2003; Tsuda et al., 2006; 

Vito et al., 1999; von Schwedler et al., 2003). 

In addition to providing a regulatable step in ESCRT complex 

assembly, ALIX dimerization may nucleate the assembly of two strands of 

CHMP4, which is thought to form filaments within the necks of budding 

vesicles (Hurley and Hanson, 2010; Peel et al., 2010). During yeast 

intralumenal endosomal vesicle formation, the ESCRT-II complex performs 

an analogous function in nucleating the polymerization of two CHMP4 

strands (Teis et al., 2010). In that case, two CHMP4 filaments are formed 

because the ESCRT-II complex contains two copies of the ESCRT-III binding 

protein Vps25p (Hurley and Hanson, 2010; Peel et al., 2010).  Similarly, the 

mechanism of PRR autoinhibition described here for ALIX is analogous to 
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autoinhibition of the ESCRT-III proteins, whose C-terminal tails also fold 

back on the body of the protein to prevent protein oligomerization and 

membrane binding until they are released by binding to upstream factors 

(Bajorek et al., 2009; Lata et al., 2008; Lin et al., 2005; Xiao et al., 2009). 

Once the proteins are opened, the oligomerization domains can polymerize, 

and the C-terminal tails are free to recruit additional downstream factors. 

Thus, different ESCRT factors employ common principles to cycle on and off 

membranes and maintain the sequential protein assembly pathways required 

for regulated membrane fission. 
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CHAPTER 6 

STRUCTURAL AND FUNCTIONAL STUDIES OF BROX 

IN VIRUS BUDDING 

  



Introduction 

ALIX functions in the MVB pathway, retroviral budding, and 

abscission of mother and daughter cells. ALIX and its yeast orthologue Bro1 

each contain an N-terminal Bro1 domain that binds directly to CHMP4 and 

Snf7, respectively. During biogenesis of MVBs in yeast, Bro1 (the yeast 

homolog of mammalian ALIX) functions in the sorting of carboxypeptidase S 

and Ga1 permease to the lysosome (Odorizzi et al., 2003). The Bro1-Snf7 

interaction coordinates recruitment of the deubiquitylating enzyme Doa4 to 

recycle ubiquitin prior to MVB sorting and subsequent lysosomal degradation 

(Kim et al., 2005; Richter et al., 2007). In addition, binding of Bro1 to Snf7 

enhances the stability of ESCRT-III and inhibits Vps4-mediated disassembly 

of the ESCRT-III complex (Wemmer et al., 2011). Moreover, the interaction 

between the Bro1 domain and CHMP4 is essential for ALIX to promote 

retrovirus budding and membrane scission of cytokinesis, when ALIX is 

recruited by viral Gag and CEP55 proteins respectively (Carlton and Martin-

Serrano, 2007; Fisher et al., 2007; Morita et al., 2007; Teis et al., 2008; Usami 

et al., 2007; Wollert et al., 2009).  

 In addition to ALIX, two other proteins encoded by the human genome 

contain Bro1-like domains. One is HD-PTP (also called PTPN23), which 

contains a similar domain organization of ALIX and an additional putative 

protein tyrosine phosphatase domain. HD-PTP has been shown to function in 

endosomal cargo sorting and MVB pathways (Doyotte et al., 2008). The other 
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ALIX homolog is named Brox, which contains an N-terminal Bro1 domain 

and a C-terminal farnesylation site (CaaX motif, C standing for cysteine, a 

for any aliphatic amino acid, and X for any amino acid) (Figure 6.1) (Ichioka 

et al., 2008). Brox shares 21.8% sequence identity with the human ALIX Bro1 

domain or the yeast Bro1 domain. 

 Although the function of Brox remains unclear, it is likely functions in 

membrane scission events involving ESCRT proteins. First, Brox was 

identified from a proteomic analysis of urinary exosomes, in which many 

ESCRT proteins were identified, including ALIX, TSG101, CHMP4, VPS4A 

and VPS4B (Pisitkun et al., 2004). Notably, ALIX was also revealed to be 

abundant in exosomes by an independent proteomic analysis of dendritic cell-

derived exosomes (Thery et al., 2001). Exosomes are luminal MVB vesicles 

released from the cell when MVBs fuse with the plasma membrane rather 

than lysosomes, so the association of Brox suggests that it, like ALIX, can 

function in the MVB pathway-driven formation of exosomes. Second, Brox 

can bind CHMP4 and, upon overexpression of a dominant negative mutant of 

VPS4B, is partly localized to the Golgi and endosomes (Ichioka et al., 2008). 

Third, Gottlinger and colleagues reported that the NC domain of the HIV-1 

Gag protein can associate with the Bro1 domain of ALIX and provide an 

additional site for ALIX recruitment, and further demonstrated that the Bro1 

domains of ALIX, HD-PTP and Brox were capable of enhancing the release of 

virus like particles (VLPs) comprised of a minimal Gag molecule (Popov et al., 
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Figure 6.1 Domain organization and structure of Brox.  
(A) Domain organization of ALIX, HD-PTP and Brox. 
(B) The electron-density maps. Left: 2Fo-Fc electron density map (blue, 1X
RMSD). The anomalous difference Fourier map (5X RMSD and orange).
Middle: the omit map for regions (residues 366-378) is colored green. Right:
the omit map for regions (residues 390-401) is colored green. 
(C) Structural comparison of Brox to other known Bro1 domains. Proteins
are colored in rainbow from blue at the N-terminus to red at the C-
terminus. 
(D) Top: Zoom-in view of the CHMP4 binding site (patch 1). ALIX is colored
gray, Brox is colored pink. Bottom: Zoom-in view of patch 2.    
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2009). In apparent conflict with this finding, Bouamer’s group observed that 

overexpression of the ALIX Bro1 domain, but not overexpression of other 

Bro1 domains, rescued the release of HIV-1 PTAP-/YP- (Dussupt et al., 2009). 

Therefore, the function of Brox remains elusive. In order to better 

characterize Brox, we determined the crystal structure of human Brox, 

measured its binding to CHMP4, and determined its importance in viral 

budding. 

Methods and Results  

Structure Determination of Brox 

In order to determine the crystal structure of Brox, the construct 

(residues 1-401) was cloned into pET151/D topo vector (Invitrogen) and 

expressed as an N-terminal 6XHis-tagged selenomethionine-substituted 

protein in BL21(DE3)  Codon+ (RIL) E. Coli in auto-induction media 

PASM5052 (Studier, 2005). Cells were lysed with lysozyme treatment and 

sonication, and the lysate clarified by cenrifugation.  Following purification 

on Ni2+ resin, the eluted protein was dialyzed against 25 mM Tris pH 8.0, 100 

mM NaCl, 1 mM DTT, 5% glycerol, and TEV protease overnight. The cleaved 

protein was collected as flow-through from a second Ni2+ resin column and 

applied to a HiTrap Q Sepharase Fast Flow Column (GE Healthcare). The 

protein was eluted by a NaCl gradient from 25 mM to 1 M (25 mM Tris pH 

8.8, 1 mM DTT and 5% glycerol), applied to size exclusion chromatography 

(10 mM Tris pH 8.0, 100 mM NaCl, 1 mM DTT), and concentrated to 10 
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mg/ml. Crystals were grown in sitting drops (reservoir: 20% PEG 1500, 0.1 M 

MMT pH 6.6, 13 ℃) and cryoprotected in a solution of reservoir components 

made up with 30% glycerol. 

 Diffraction data were collected to 2.6 Å resolution at three 

wavelengths at beam line X-29 of the National Synchrotron Light Source and 

processed using HKL2000 (Otwinowski and Minor, 1997). The Brox structure 

was determined by the MAD method using the PHENIX AutoSol wizard 

(Grosse-Kunstleve and Adams, 2003; McCoy et al., 2004; Terwilliger, 1994; 

Terwilliger et al., 2009). Fourteen Se sites identified from MAD and the ALIX 

Bro1 domain structure were used to guide model building. The model was 

first refined in REFMAC5 with 3-fold NCS in the CCP4 suite (Group, 

November 4. 1994), and then refined in PHENIX with TLS refinement 

(Adams et al., 2010; Painter and Merritt, 2005, 2006) to R/Rfree values of 

19.2/25.5 (Table 6.1). For the most part the electron-density map is clearly 

defined, including for most side chains, although residues 379-390 are not 

apparent and the C-terminal residues 391-401 are only marginally observed 

(Figure 6.1).  

 Most of the Brox structure overlaps closely with the known structures 

of other Bro1 domains. Brox is mainly composed of α-helices, and contains 

just two β-strands, to form an extended and slightly curved structure that 

resembles a banana (Fisher et al., 2007; Kim et al., 2005). Similar to other 

unknown Bro1 domain, an extended loop, residues 332-365, traverses the 
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Table 6.1. Crystallographic Statistics for Brox(1-401)   

 Brox (1-401) 

Data Collection  

Wavelength (Å) 0.97910 0.97940 0.9611 

Space group C2 C2 C2 

Cell dimensions (Å,°) a = 227.6  
b = 67.2 
c = 103.5 
β = 96.6 

a = 227.7  
b = 67.2 
c = 103.6 
β = 96.6 

a = 227.8 
b = 67.3 
c = 103.6 
β = 96.6 

Resolution (Å) 40-2.7 (2.8-2.7) 40-2.7 (2.8-2.7) 40-2.7 (2.8-2.7) 

Completeness (%) 98.8 (98.5)   99.6 (97.2) 98.8 (98.9) 

I/σ(I) 18.1 (3.6) 21.3 (3.0) 21.4 (3.3) 

Rsym (%) 9.3 (45.3) 9.1 (47.2) 9.0 (49.0) 

Number of unique 
reflections 

 
43,199 

 
43,233 

 
43,242 

    
Refinement   

Rfactor/Rfree (%) 19.2/25.5 

Number of protein 
atoms 

9294 

Number of water 
molecules 

31 

Average B-factor (Å2) 
   protein atoms 

water molecules 

 
60.9 
44.5 

RMSD from ideal 
geometry 

Bonds (Å) 
Angles (°) 

 
0.008 
1.156 
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length of the Bro1 domain on the concave surface (Figure 6.1). The RMSD of 

C-alpha atoms of Brox (residues 1-367) is 2.6 Å to ALIX-Bro1 domain 

(residues 2-360) and 3.0 Å to the yeast Bro1 domain (residues 1-367). The 

unique feature of Brox rises from its C-terminal residues (residue 366-401). 

Instead of entering the V domain at residue 366, as for ALIX, Brox forms a 

helix (residues 366-378), then extends over the convex face (Figure 6.1). 

Interactions Between Brox and CHMP4 

Two hydrophobic patches that have been described for the ALIX Bro1 

domain are also conserved on the Brox surface.  Patch 1 of ALIX Bro1 domain 

mediates the CHMP4 interaction. Several groups have shown that Brox can 

also bind to CHMP4 via patch 1 by immune-precipitation experiments 

(Ichioka et al., 2008; Popov et al., 2009). The Brox residues that correspond to 

the CHMP4 binding site of ALIX are highlighted in Figure 6.1. The 

interactions between the ALIX Bro1 domain and all three of the CHMP4 

isoforms are similar, although CHMP4B is the primary interaction partner of 

ALIX, because CHMP4B is expressed highest in the tested tissues (Katoh et 

al., 2004; McCullough et al., 2008).    

Surface Plasmon Resonance (SPR) was performed to test whether 

CHMP4 interacts with Brox directly through the putative binding site. 

Binding experiments used Biacore 2000 and T100 optical biosensor 

instruments. CM5 sensor chips were derivatized with anti-GST antibody 

using amine coupling, and were used to capture GST-CHMP4B205-224 or GST 
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alone. Pure Brox proteins each at 400 µM as the highest concentrations in a 

1.5-fold dilution series were injected in duplicate. All interactions reached 

equilibrium rapidly and dissociated with seconds during the dissociation 

phase. Binding responses were fit to 1:1 binding isotherms to obtain 

equilibrium constants. Brox binds to the N-terminal GST-tagged CHMP4B205-

224 with an affinity of 98.3 µM (SD = 22.0 µM), which is similar to the ALIX-

CHMP4 interactions (McCullough et al., 2008). Single point mutations of 

K144E or L212D on Brox completely abolished the interaction with CHMP4B, 

indicating that Brox binds CHMP4B directly through patch 1 (Figure 6.2). To 

determine whether the CHMP4 binding site plays an important role in the 

function of Brox, Michael Landesman in the Sundquist lab performed a 

minimal Gag budding assay. As expected, Brox stimulated VLP formation of 

the minimal Gag construct and was incorporated into the viral particles, 

whereas the K144E or L212D mutations that disrupted CHMP4 interaction 

failed to promote VLP production of the minimal Gag.  

Association Between Brox and NC 

Accumulating observations show that HIV-1 Gag can engage the Bro1 

domain of ALIX through NC. All the Bro1 domains tested, including the 

ALIX Bro1 domain and Brox, are sufficient to stimulate virus-like particle 

production in a minimal Gag rescue assay (Dussupt et al., 2009; Popov et al., 

2008, 2009. However, direct interactions between NC and the Bro1 domains 

remain to be determined.   
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Figure 6.2 Brox binding to CHMP4.  
(A) Representative biosensor sensograms for Brox and mutants binding
to the immobilized GST-CHMP4B204-224.  
(B) Biosensor binding isotherms for Brox, BroxK141E and BroxL212D
binding to the CHMP4B204-224.  
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The HIV-1 NC was cloned into the PET-3a vector with Nde1 and 

BahmH1 restriction sites (Novagen). The plasmid was transformed into BL2l-

Codonplus® (DE3)-RIPL competent cells. A starter culture of 200ml PA-0.5G 

media grown at 37 °C overnight was added to 2 L of P-5052 media 

supplemented with 0.1 mM ZnCl2 and grown for 8 h at 37 °C and 48 h at 

19 °C (Tyler et al., 2005). The purification  scheme for the HIV-1 NC was 

adapted from Lee et al (Lee et al., 1998). Cells were lysed by sonication, and 

the nucleic acids were precipitated by adding 4% (w/v) polyethyleneimine (pH 

7.9) dropwise to a final concentration of 0.4% and stirred for 15 minutes. The 

supernatant was applied onto a 5 ml HiTrap Q-Sepharase and a HiTrap SP-

Sepharase column (GE Healthcare) connected in series. After washing with 

25 ml buffer A (50 mM Tris-HCl pH 8.0, 0.1M NaCl, 0.1 mM ZnCl2, 10 mM 

BME, 10% glycerol), the Q column was detached. The protein was eluted from 

0.1M to 1 M NaCl and applied to size exclusion chromatography. Because 

Brox is more soluble and expressed to a higher level than the ALIX Bro1 

domain, the experiment was done using Brox. NMR samples were made by 

titrating Brox into NC, resulting in 200 µM NC alone or with Brox at 

concentrations of 200 µM, 400 µM, 600 µM, 800 µM and 1000 µM in 25 mM 

Sodium Acetate pH 6.5, 25 mM NaCl, 100 µM ZnCl2 1mM DTT and 10% (v/v) 

H2O. NMR HSQC spectra were recorded at 25 °C on a Varian INOVA 600 

MHz spectrometer. NC residues were assigned by comparing with the 

published NC spectra (De Guzman et al., 1998). The resonance of NC E51 
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showed a small shift upon the addition of Brox, and several resonances, 

including F6, R7, Q9 and R10, were found to disappear in the presence of 

Brox (Figure 6.3). Curiously, the NMR structure of NC in complex with RNA 

indicates that F6 and Q9 contact one RNA recognition element, and R7 and 

R10 contact a different RNA recognition element (Amarasinghe et al., 2000; 

De Guzman et al., 1998).  

 

 

Figure 6.3. Overlaid 15N -1H HSQC spectra of pure 15N-NC protein either free 
(green) or with Brox with a final molar ratio of 1:3 (Blue). The resonances 
that shifted and disappeared are labeled with the residue identities. 
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To determine whether the observed resonance shifts are caused by a 

direct NC-Bro1 interaction, SPR was performed to determine binding 

affinities of Bro1-V to NC. Cells that expressed GST-NC constructs were 

treated with lysozyme, DNase and sonication. The supernatants were treated 

with 4% (w/v) PEI (pH 7.9) dropwise to a final concentration of 0.4% in order 

to remove nucleic acids. GST-NC proteins were then precipitated by adding 

saturated ammonium sulfate to a final concentration of 1M, and resuspended 

with buffer (20 mM phosphate pH 7.4, 150mM NaCl, 10 µM ZnCl2 and 1mM 

DTT). Pure ALIXBro1-V proteins at 340 µM as the highest concentrations in a 2 

fold dilution series were injected in duplicate. First, the binding signal of 

ALIXBro1-V to GST-NC was every close to that of the GST-free construct 

(Figure 6.4), while the control GST-p6 and GST-CHMP4B bound to ALIXBro1-V 

with dissociation affinities of 41 µM and 26 µM. Second, DNase and PEI 

treatment, which removes nucleic acid, did not alter the affinity. Third, 

affinities of ALIXBro1-V to NCp1p6 and p6 constructs were indistinguishable, 

which was not surprising given the large uncertainty associated with the 

extremely weak NC-Bro1 interaction. Fourth, double mutants, such as F6A-

Q9A, R7A-R10A and E51A-Q53A, did not completely abolish the interaction 

between the Bro1 domains and NC. Even C28S and C49S double mutations 

on NC, which disrupt its zinc finger structure, did not change the KD. 

Therefore, these results show that there is not a direct interaction between 
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Figure 6.4. Representative biosensor binding Isotherms for ALIXBro1-V 
binding to GST-NC construct.  
ALIXBro1-V binds to GST-CHMP4b205-224 (KD = 26 µM), GST-p6 (KD = 41 µM), 
as expected. Treatment of PEI and SAS did not impair ALIX-p6 interaction 
(KD = 48 µM). GST-NCp1p6 binds to ALIXBro1-V with a KD of 42 µM similar 
to GST-p6. The binding curves of GST-NC (PEI) and GST-NC (lysate) are 
close to that of GST-free. Both presence of nucleic acids and mutations did 
not make notable differences in NC binding to ALIX. 
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purified NC and Bro1 domains, at least within the affinity (tighter than ~1 

mM) that is detectable by SPR. 
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CHAPTER 7 

SUMMARY AND PERSPECTIVE 

  



ALIX Functions in Virus Budding 

Many membrane scission events that separate the nascent viral 

envelope from host membranes co-opt the cellular ESCRT machinery 

(Bieniasz, 2009; Usami et al., 2009). ESCRT proteins play important roles in 

topologically equivalent cellular membrane scission events, including 

biogenesis of MVBs, and membrane abscission at the end of cell division 

(Carlton and Martin-Serrano, 2007; Hurley and Emr, 2006). Viral Gag 

mimics the upstream complexes of ESCRT machinery to enrich cargoes, 

induce and stabilize membrane curvature, because Gag proteins are able to 

assemble on the plasma membrane into an approximately spherical lollipop-

like structure (Freed, 1998). Gag then recruits downstream of the ESCRT 

pathway to complete membrane abscission. HIV-1 and EIAV encode “YPXnL” 

late domains that recruit ALIX and other ESCRT components to facilitate 

virus budding. ALIX contains three distinct structural elements: an N-

terminal Bro1 domain, a central V domain, and a C-terminal proline rich 

region (PRR).  

We determined the crystal structures of ALIXBro1, ALIXV, ALIXBro1-V, 

identified new ALIX-binding peptides from SIV strains, and determined 

structure of ALIX in complex with all characterized ALIX binding peptides, 

which likely cover all the ALIX-binding modes adopted by the viral Gag 

proteins. Furthermore, we determined the structure of a human ALIX 

homologue Brox, which interacts with CHMP4 via the same hydrophobic 
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patch of the ALIX Bro1 domain (McCullough et al., 2008). Therefore, we 

showed that ALIX serves as a scaffold that connects retroviral Gag proteins 

to ESCRT-III.  

ALIX-TSG101 

Many binding partners of ALIX have been reported, and can 

potentially participate in viral budding. The most notable of these is TSG101, 

which is itself the receptor for the primary late domain of HIV-1, a P(S/T)AP 

motif that binds the TSG101 UEV domain (Garrus et al., 2001). Curiously, a 

717PSAP720 motif is found in the ALIX PRR and can directly bind to the UEV 

domain of TSG101 (von Schwedler et al., 2003). However, overexpression of 

ALIXP720L rescued HIV-1 ∆PTAP release and infectivity (Fisher et al., 2007), 

indicating that this potential ALIX-TSG101 contact is not essential for viral 

budding.  

Nevertheless, the C-terminal region of ALIX contains additional 

TSG101 binding sites.  Residues 852PSYP855, Y864 and Y865 can mediate 

ALIX self-association and ALIX-TSG101 interaction. Thus, those residues 

could contact TSG101 directly or contribute to ALIX dimerization, which may 

produce an additional binding site (Carlton et al., 2008). Furthermore, both 

TSG101 and ALIX are recruited directly by the same interface of CEP55 to 

the midbody at the conclusion of cytokinsis (Carlton et al., 2008; Lee et al., 

2008; Morita et al., 2007). It remains a puzzle why depletion of TSG101 

inhibits the abscission step of cell cytokinesis, even though theoretically 
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ALIX alone is sufficient to recruit ESCRT-III subunits. Likewise, both ALIX 

and TSG101 are required to rescue VPL release of ubiquitin-fused EIAV Gag 

that lacks a YPXL motif (Joshi et al., 2008). These results indicate that 

TSG101 likely regulates ALIX, and the role of TSG101-ALIX interaction in 

viral release remains to be dissected.  

ALIX-ubiquitin 

Ubiquitin serves an important sorting signal during MVB biogenesis. 

Many ESCRT complexes contain ubiquitin-binding domains and can be 

ubiquitylated (Raiborg and Stenmark, 2009). Although the role of ubiquitin 

in viral budding remains elusive, several observations support a positive role 

for ubiquitin in viral particle release: (1) High levels of free ubiquitin and 

ubiquitylated Gag are incorporated in retroviruses (Ott et al., 1998; 

Putterman et al., 1990).  (2) Mutation of multiple lysine residues, which are 

candidate sites of ubiquitylation, in Gag inhibits virus budding (Gottwein et 

al., 2006; Ott et al., 2000; Spidel et al., 2004).  (3) Several independent 

observations show that different HECT ubiquitin ligases can drive viral 

budding, likely through multiple ways that can involve ubiquitylation of Gag 

or ubiquitylation of Gag cofactors (Chung et al., 2008; Jouvenet et al., 2011; 

Usami et al., 2008). (4) An unrelated ubiquitin ligase, the ring-finger 

containing protein POSH, was shown to promote viral production (Alroy et al., 

2005). POSH can form a complex with ALIX in a calcium-dependent manner, 

and can ubiquitylate multiple sites on ALIX (Votteler et al., 2009). Although 
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silencing of POSH by RNAi and disruption the POSH-ALIX interaction did 

not impair ALIX-dependent viral release (Votteler et al., 2009; unpublished 

data).  (5) Virginie Sandrin, a postdoc in the Sundquist group, has discovered 

that the majority of ALIX incorporated into budded virions is mono-

ubiquitylated (personal communication). (6) Fusion of ubiquitin to EIAV Gag 

lacking of a late domain rescued VLP release, which can be abolished by 

depletion of either cellular ALIX or TSG101 (Joshi et al., 2008).   

Motivated by these observations, I tested whether ALIX can directly 

interact with ubiquitin by performing SPR experiments. Cells expressing 

ubiquitin or I44A mutant cloned in pET3a vector were lysed with lysozyme 

treatment and sonication. Other proteins in the supernatant were 

precipitated with 70% perchloric acid with 1% (v/v) final concentration. The 

clarified supernatant was dialyzed overnight against 50mM ammonium 

acetate pH 4.5, and applied to HiTrap SP column (GE Healthcare). The 

protein was eluted by a NaCl gradient from 0 to 500 mM and further purified 

by size exclusion chromatography. SPR experiments were performed by 

immobilizing GST-ALIX constructs and injecting purified ubiquitin protein. 

Ubiquitin binds to the ALIX V domain with a KD of 1.07 mM (SD = 0.104 mM) 

(Figure 7.1). Like ubiquitin binding to ESCRT-0, -I and -II, and many other 

ubiquitin binding proteins, this interaction was severely impaired by the 

ubiquitin I44A mutation.  
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Figure 7.1. ALIXV binding ubiquitin. 
(A) Representative biosensor sensograms for wild type (blue) and I44A 
mutant (black) ubiquitin proteins binding to immobilized GST-ALIXV. 
Samples were analyzed twice at 25 ℃. Ubiquitin and Ubiquitin_I44A were 
tested at a high concentration of 3.5 mM in a 1.5-fold dilution series in 
duplicate over the GST captured surfaces in 10 mM Tris pH 8.0, 100 mM
NaCl, 1 mM DTT with 0.01% Tween-20 and 0.1 mg/ml BSA. (B)
Representative biosensor binding isotherms for the ALIXV binding to 
ubiquitin proteins. 
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I have worked on mapping the ubiquitin binding site on ALIX. Fifty 

GST-ALIXV mutants were made and analyzed for ubiquitin interaction. 

Effects were modest, but mutations that weakened the ALIX-ubiquitin 

interaction by at least two fold are I382A, A388E, L391A and L619A, and all 

belong to the arm 1 of the V domain (Table 7.1). In support of the ubiquitin 

binding site being located on arm 1, we found that a construct corresponding 

to just arm 1 also interacted with ubiquitin. We were unable, however, to 

identify a mutation that eliminated ALIX-ubiquitin association, including a 

double mutation of A388E and L619A. This effort is made challenging by the 

extremely weak binding affinity, which causes measurement errors that are 

so large that the effect of mutation is underestimated. 

Based on these data, it is attractive to speculate that ubiquitin binding 

and ubiquitylation of ALIX contributes to virus production under 

physiological expression levels of ALIX. One method to overcome the problem 

of detecting low affinity interaction is to use purified dimeric ALIX proteins 

and di-ubiquitin chains to perform SPR and affinity purification experiments, 

because dimerization can greatly increase binding affinity. Another approach 

is NMR chemical shift perturbation, which might indicate specific residues at 

the ALIX-ubiquitin interface. Another approach would be to cocrystallize 

ALIX and ubiquitin to visualize the interaction directly. Furthermore, a 

possible approach to determine the functional importance of ALIX-ubiquitin 

interactions would be to assay mutants that do not bind ubiquitin non-

152



Table 7.1. Summary of KD for Ubiquitin to GST-ALIXV proteins. 
 
 Constructs  KD (mM) 
wt GST-V 1.12 
1 GST-V-L626A Not expressed 
2 GST-V-L443A 0.98 
3 GST-V-T674A 1.58 
4 GST-V-L585A 1.31 
5 GST-V-F676D 1.40 
6 GST-V-K374A 0.98 
7 GST-V-V378A 2.19 
8 GST-V-K574 0.93 
9 GST-V-I382A 3.78 
10 GST-V-N393A  1.05 
11 GST-V-K563A 1.52 
12 GST-V-E406A 0.78 
13 GST-V-K565A 1.23 
14 GST-V-E617A 0.94 
15 GST-V-E623A 1.26 
16 GST-V-Q616A 0.92 
17 GST-V-L619A 3.92 
18 GST-V-Q622A 1.36 
19 GST-V-A388E 8.78 
20 GST-V-Q384E  1.07 
21 GST-V-L443A 0.70 
22 GST-V-R446A 2.81 
23 GST-V-N678A 1.61 
24 GST-V-I450A 1.28 
25 GST-V-T674A 1.20 
26 GST-V-K671A 1.10 
27 GST-V-L588A 0.98 
28 GST-V-L585A 0.92 
29 GST-V-Q445A 1.71 
30 GST-V-E449A  1.05 
31 GST-V-E453A 1.47 
32 GST-V-R456A 1.29 
33 GST-V-E460A 0.98 
34 GST-V-S515D 0.86 
35 GST-V-A533E 0.81 
36 GST-V-V593D 0.61 
37 GST-V-R380A 0.96 
38 GST-V-E387A 1.49 
39 GST-V-L391A 2.21 
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Table 7.1. Continued. 
 
 Constructs  KD (mM) 
40 GST-V-A383E 0.73 
41 GST-V-R386A 0.97 
42 GST-V-N379A 1.13 
43 GST-V-R373A 0.68 
44 GST-V-E567A 1.23 
45 GST-V-N571A 1.11 
46 GST-V-L626K Not expressed 
47 GST-V-K614A 1.06 
48 GST-V-K620A 1.01 
49 GST-V-K621A 1.06 
50 GST-V-L619A-A388E 4.80 
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covalently or are resistant to ubiquitylation. It would be important to use 

physiological levels of ALIX in these experiments, and it may be informative 

to assay for both viral budding and cytokinesis defects.  

ALIX-membrane 

The known structures of Bro1 domains all reveal an extended curved 

banana-shaped conformation, even when the different homologs share only 

low levels of sequence similarity (Fisher et al., 2007; Kim et al., 2005). The 

concave surface of Bro1 domains has been speculated to bind curved 

membrane or to induce membrane deformation (Kim et al., 2005). Moreover, 

ALIX has been reported to associate with LBPA, which is abundant in MVBs 

and can induce formation of vesicles (Kobayashi et al., 1998; Lebrand et al., 

2002; Matsuo et al., 2004). However, ALIX was also reported to antagonize 

internal vesicle formation in LBPA liposomes, which is apparently 

contradictory to the positive function of ALIX in virus production. It is still 

unclear whether ALIX can directly associate with membrane and regulate 

membrane curvature. Possible approaches to investigating this problem 

would be to visualize purified ALIX proteins incubated with lipids by electron 

microscopy and by FRET. 

ALIX Activation 

In Chapter 6, we reported that the C-terminal PRR of ALIX folds back 

against the V domain and inhibits access by viral late domains. A mutation 

(R649E) that opens the closed conformation of the V domain was more potent 
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than the wild type protein in stimulating virus release and infectivity. 

Weissenhorn and colleagues also argued that the active ALIX conformation is 

one in which the two arms of the V domain are in an open orientation (Pires 

et al., 2009). They further argue that ALIX dimerizes upon activation, with 

the arms of the open V domain packing against each other in an anti-parallel 

fashion (Pires et al., 2009). We have also noted that ALIX preparations 

include a significant fraction of dimerized protein that does not rapidly 

interconvert with the monomeric species, although our activated R649E 

mutant is primarily monomeric. Based on all these observations, we propose 

that ALIX is activated to facilitate virus budding through a series of 

conformational changes, including PRR release from Bro1-V domains, 

opening of the V domain, membrane recruitment of ALIX, and dimerization.  

A more precise description of the active conformation is an important 

objective for future studies. For example, what mechanism might trigger 

ALIX activation? Are certain ALIX-binding partners, protein modifications or 

ALIX localization involved in ALIX activation? From a structural perspective, 

a crystal structure of ALIXR649E might provide insight to conformational 

changes that underlie ALIX activation. Another attractive target for future 

structural studies is the dimeric form for ALIX, which likely represents an 

activated state. 
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HIV-1 and other enveloped viruses can be restricted by a host cel-
lular protein called BST2/tetherin that prevents release of budded
viruses from the cell surface. Mature BST2 contains a small cytosolic
region, a predicted transmembrane helix, and an extracellular
domain with a C-terminal GPI anchor. To advance understanding
of BST2 function, we have determined a 2.6 Å crystal structure of
the extracellular domain of the bacterially expressed recombinant
human protein, residues 47–152, under reducing conditions. The
structure forms a single long helix that associates as a par-
allel dimeric coiled coil over its C-terminal two-thirds, while the
N-terminal third forms an antiparallel four-helix bundle with
another dimer, creating a global tetramer. We also report the
3.45 Å resolution structure of BST2(51-151) prepared by expres-
sion as a secreted protein in HEK293T cells. This oxidized construct
forms a dimer in the crystal that is superimposable with the
reduced protein over the C-terminal two-thirds of the molecule,
and its N terminus suggests pronounced flexibility. Hydrodynamic
data demonstrated that BST2 formed a stable tetramer under
reducing conditions and a dimer when oxidized to form disulfide
bonds. A mutation that selectively disrupted the tetramer (L70D)
increased protein expression modestly but only reduced antiviral
activity by approximately threefold. Our data raise the possibility
that BST2 may function as a tetramer at some stage, such as during
trafficking, and strongly support a model in which the primary
functional state of BST2 is a parallel disulfide-bound coiled coil that
displays flexibility toward its N terminus.

coiled coil ∣ crystal structures ∣ HIV ∣ innate immunity ∣ restriction factor

Viral infection can induce a type I interferon response, which
in turn stimulates the expression of many genes that encode

innate immunity factors (1). One of the upregulated proteins,
bone marrow stromal cell antigen 2 (BST2/tetherin/CD317/
HM1.24), inhibits the release of HIV-1 and other enveloped
viruses from the surface of cells in which it is expressed (2–10).
HIV-1 virions retained at the cell surface in the presence of BST2
are fully formed and mature but remain attached to the cell sur-
face by a protease-sensitive linkage (11, 12) that contains BST2
(13, 14). The retained virions can subsequently be internalized
and have been visualized in early and late endosomes, and they
may ultimately be degraded following fusion with lysosomes (12).

HIV-1 escapes BST2-mediated restriction through the activity
of its accessory protein viral protein U (Vpu) (15–17). Most, but
not all (18), studies have found that Vpu reduces cell surface
levels of BST2, and the two proteins appear to interact through
their transmembrane (TM) domains (19–25). Various mechan-
isms for BST2 surface downregulation have been proposed,
including lysosomal degradation, proteasomal degradation, and/
or sequestration/retargeting of BST2 to the trans-Golgi network
(reviewed in ref. 8). The general importance of BST2 is indicated
by the findings that other viruses use different proteins to over-
come BST2 restriction, including the Env/glycoproteins of Ebola
virus and some strains of SIVand HIV-2, (4, 26, 27), the negative

factor (Nef) protein of other SIV strains (24, 28, 29), and the K5
protein of Kaposi’s Herpes Sarcoma virus (30, 31).

The mature BST2 protein has an unusual architecture, com-
prising a small cytosolic domain and a TM helix at the N terminus
(residues 22–44), a glycophosphatidylinositol (GPI) anchor at the
C-terminal Ser160 residue, and an approximately 105-residues-
long disulfide-rich coiled coil structure predicted for the extracel-
lular domain (32–34). This configuration appears central to
function, with the leading model being that virions are held at
the cell surface by a bridge in which the extracellular domain
of one or, more likely, multiple molecules of BST2 spans the
gap between plasma membrane and the membrane of the other-
wise detached viral particle (13, 14, 34). It has been argued that
the GPI modification targets BST2 to cholesterol-rich regions of
the plasma membrane (33), which may concentrate the protein at
sites of viral budding. However, removal of the GPI anchor
reportedly does not release virions from their tethered state
(14). Finally, functions for BST2, independent of viral restriction,
have also been proposed in trafficking and signaling (33), and in
organization of the subapical actin cytoskeleton (35).

It has been proposed that BST2 forms a parallel dimeric
coiled coil that is stabilized by C53–C53, C63–C63, and C91–C91
disulfide bonds. This model is supported by nonreducing SDS/
PAGE analyses of mutant proteins isolated from the surface of
HEK293T cells (32, 34) and by a recent crystal structure of
residues 89–147 of the BST2 extracellular domain (36). Both
the N-terminal TM helix and the C-terminal GPI can be incor-
porated into HIV-1 virions, and it has therefore been suggested
that BST2 either forms an antiparallel dimer (14) or that it forms
a parallel dimer whose tethering orientation is not critical for
viral restriction (34). We also note that the importance of BST2
dimerization has been disputed (37). Remarkably, HIV-1 restric-
tion is preserved (at approximately 10% levels) in cells that
express an engineered protein that was designed to maintain
the overall BST2 architecture but does not conserve the specific
amino acid residue identities (34). Finally, the efficiency of BST2-
mediated HIV-1 inhibition appears to be concentration-depen-
dent, because virions that contain BST2 can be released under
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conditions of low BST2 expression (34). These considerations
emphasize the importance of determining the oligomeric state(s)
of BST2. In an effort to understand the mechanistic basis for
BST2 activity better, we have determined crystal structures
and solution oligomerization states of oxidized and reduced
BST2 proteins and tested the restriction activity of a structure-
based mutant that cannot switch oligomerization states when
reduced.

Results
Reduced BST2 Crystal Structure. We determined a structure of the
human BST2 extracellular domain (residues 47-152) produced in
Escherichia coli and crystallized in the presence of reductant to
2.6 Å resolution and R∕Rfree values of 26.0%∕27.8% (Fig. 1 and
Table S1). All but a few of the BST2 residues at the termini of the
four molecules in the asymmetric unit were visible, although the
central regions (residues 92–117) have relatively weak density
and high B values.

Subunits are arranged as parallel dimers that splay apart
slightly to form an antiparallel 4-helix bundle over the N-terminal
40 residues and generate a 245 Å-long tetramer in the asymmetric
unit (Fig. 1A). The remaining two-thirds forms a dimeric coiled
coil, with residues 118–150 displaying the standard “knobs-into-
holes” packing of a and d heptad repeat residues seen in classical
coiled coils (38–40), and residues 92–117 packing more loosely to
display some but not all of the a and d residue knobs-into-holes
interactions (Fig. S1). Equivalent packing for the C-terminal
two-thirds was reported by Hinz et al. (36).

Although each of the subunits forms one continuous helix that
is devoid of sharp turns, the helices do not all superpose closely
over their entire length. The two parallel dimers in the asym-
metric unit are very similar to each other and superpose with
a root mean square deviation of 0.79 Å over all Cα atoms
(Fig. 1B), but the two subunits within one parallel dimer show
an approximately 30° deflection in the vicinity of residue 90, near
the tetramer-dimer transition (Fig. 1C). This asymmetry results
from small differences spread over several residues and may
indicate that the BST2 sequence encodes an asymmetric dimeric
structure, although we prefer the explanation that the molecule
has inherent flexibility.

C53 and C63 are contained within the N-terminal four-helix
bundle while C91 is immediately C-terminal to the bundle. All
three cysteines are reduced in this structure, whereas biochemical
data indicate that BST2 forms disulfide bonds in the oxidizing

environment of the cell exterior (34). Residues C53 and C63
are too far from their partners to form disulfide bonds without
disrupting packing of the four-helix bundle region. In contrast,
neighboring C91 residues could form a disulfide bond without
substantial movement of their main chains from the crystal struc-
ture. We have built C91 residues with their sulfur atoms separated
by 4.7 Å in this structure because the density, which is relatively
poor in this region, does not indicate formation of a disulfide.

Oligomeric States in Solution. Equilibrium analytical ultracentrifu-
gation (AUC) was used to determine the association state of
recombinant BST2 proteins in solution. This method provides
shape-independent estimates of mass and is therefore ideally sui-
ted for studies of highly extended assemblies such as BST2. These
studies employed slightly longer BST2(47–154) constructs in
order to include two tyrosine residues and thereby increase op-
tical absorbance. The AUC data showed that the recombinant
protein is a tetramer in solution under the reducing conditions
used in crystallization, over an initial concentration range of
0.5–2.0 mg∕ml (41.7–166.7 μM). Equilibrium protein distribu-
tions could be globally fit to a single species tetramer model
(Fig. S2) and also indicated a tetrameric association when the
molecular weight was allowed to float (Fig. 2A).

To determine if oligomerization was altered by oxidation, pur-
ified reduced BST2 was dialyzed for one week against identical
buffer that lacked reductant. Mass spectrometry showed that this
protein was a fully disulfide-linked dimer (Fig. S3). The protein
eluted from a sizing column primarily as a well-defined peak
but also included a broad peak at shorter retention times that
presumably corresponded to oxidized aggregates. AUC showed
that protein from the main peak is dimeric over the concentration
range tested (0.5–2.0 mg∕ml), either by fitting to a dimer
(Fig. S2) or by allowing the molecular weight to float (Fig. 2B).
These data indicate that BST2 forms a stable tetramer under
reducing conditions and converts into a stable dimer upon oxi-
dation.

Oxidized Crystal Structure.To determine the BST2 extracellular do-
main structure under oxidizing conditions, we expressed secreted
BST2(51–151) in HEK293Tcells and completed purification and
crystallization in the absence of reductant. Crystals of Endo-H
treated BST2(51–151) diffracted anisotropically to a maximum
resolution of 3.45 Å resolution. This structure, with one dimer
in the asymmetric unit, was determined by molecular replace-
ment using residues 89–151 of the reduced structure as a search
model. The refined model (R∕Rfree ¼ 26.9%∕29.8%) comprises
residues 72–151 for one of the two molecules in the asymmetric
unit and residues 77–151 for the other molecule. The oxidized
and reduced structures overlap closely from residue 90 to the
C terminus but diverge toward the N terminus where the reduced
protein tetramerizes (Fig. 3). For example, the Cβ–Cβ distance of
juxtaposed A88 residues, which occupy an a coiled coil position, is
4.2 Å in the oxidized structure and 7.4 Å in the reduced structure.
Clear electron density, confirmed by kicked omit maps, is ob-
served for a disulfide bridge linking C91 residues validating
the oxidized state of the molecule (Fig. 3). Two sugar moieties
extending from N92 and positioned perpendicular to the
C91–C91 disulfide could be located in the electron density
(Fig. S4). Finally, additional N-terminal residues could be mod-
eled in a helical conformation (Fig. S5), although due to the mod-
est resolution, gaps in the density, and appearance of disorder, we
have not included those residues in the deposited model. Thus,
the dimeric coiled coil extends into the region that is tetrameric in
the reduced structure, and residual density suggests that the
coiled coil continues most of the way to the N terminus of this
construct, albeit with pronounced flexibility.

Fig. 1. Structure of reduced BST2(47–152). (A) The four molecules in the
asymmetric unit. Yellow/magenta and blue/green subunits form parallel
dimers. (B) Overlap of the two parallel dimers. (C) Overlap of the blue
and green subunits on residues 90–152. (D) Orthogonal views showing the
L70 side chain buried at the center of the tetramer.
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The Role of the BST2 Tetramer in HIV-1 Restriction.Although the func-
tional importance of many BST2 residues has been tested by
mutagenesis (34), the tetramer has not been reported previously.
To create a mutant protein that was defective in tetramerization,
we mutated Leu70, which lies at the heart of the four-helix bundle
(Fig. 1D). Mutation to Asp destabilized the tetramer, so that
the BST2(147-154)L70D protein remained dimeric, even under
reducing conditions (Fig. 2C and Fig. S6). Thus, this mutation

allowed us to test the restriction activity of a protein that dimer-
ized but did not detectably tetramerize in vitro.

To assay restriction, HEK293T cells (which do not express
BST2) were cotransfected with expression constructs for wild-
type or mutant BST2 and an HIV-1NL4-3 proviral expression
construct that lacked Vpu (HIV-1ΔVpu). BST2(L70D) expression
was modestly increased (∼1.5-fold) across a series of different
concentrations of expression construct (Fig. 4A, “Cell” bottom
panel). Virus released from cells that expressed wild-type and
mutant BST2 was analyzed by (i) Western blotting of virion-
associated MA and CA proteins in the culture media (Fig. 4A,
“Virus”) and (ii) measuring the infectious titers of released vir-
ions (Fig. 4B). These data showed that both the wild-type and
mutant BST2 proteins were effective restriction factors because
they reduced the release of infectious viral particles more than
5,000-fold when expressed at high levels. However, the restriction
potency of BST2(L70D) was consistently about half that of the
wild-type protein, despite higher expression levels (Fig. 4). The
strong but attenuated activity of BST2(L70D) indicates that
BST2 tetramerization is not essential, although it remains possi-
ble that it may contribute to the potency of viral restriction.

Discussion
We have determined crystal structures of the extracellular
domain of BST2 under reducing and oxidizing conditions. The
C-terminal two-thirds of the structure forms a parallel dimeric
coiled coil. The C-terminal third adopts a classical knobs-into-
holes packing, while the central third is less well-defined. At
the N-terminal third of the protein, the two parallel helices splay
apart to form an antiparallel four-helix bundle in the reduced
state, but when the protein is oxidized these helices continue,
at least initially, as a dimeric coiled coil that is stabilized by a
C91–C91 disulfide and probably also by C53–C53 and C63–C63
disulfides. AUC data indicated that the crystal structures recapi-
tulate the predominant solution oligomerization states because
the reduced protein forms a stable tetramer but becomes dimeric
upon oxidation (Fig. 2). The latter observation is consistent with
an earlier study, which concluded that BST2 forms a disulfide-
crosslinked dimer on the cell surface (34). Our data therefore
indicate that BST2 can tether budded virions to the plasma mem-
brane as a disulfide-linked coiled coil dimer.

Fig. 2. Analytical equilibrium sedimentation analyses of BST2(47–154) with (A) and without (B) reductant and of BST2(47–154)L70D with reductant (C). Bot-
tom, residual differences between the data and fit. Rotor speeds shown here were 12,000 rpm. Data from two rotor speeds were globally fit to single species
models in which the molecular weights were allowed to float. Estimated molecular weights were 50,070 Da for reduced BST2(47–154) (MWobs∕MWcalc ¼ 3.92),
24,497 Da for oxidized BST2(47–154) (MWobs∕MWcalc ¼ 1.92), and 26,908 Da for reduced BST2(47–154)L70D (MWobs∕MWcalc ¼ 2.11).

Fig. 3. Structure of oxidized BST2(51–151). (A) Electron density for the
N-terminal region of oxidized BST2. B-factor sharpening was set at the
median B value of refined atoms. 2mFo-DFc map is shown in blue at 1 σ. Max-
imum-likelihood weighted averaged kick omit map (average size ¼ 100,
kick ¼ 0.8 Å) for the C91 disulfide is colored green at 4 σ. Residues at the
coiled coil interface are shown. (B) Overlap of the reduced (green) and
oxidized (orange) structures.
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While our manuscript was in preparation, a structure of the
bacterially expressed C-terminal two-thirds of BST2 (residues
80–147) was reported by Hinz and colleagues (36). This structure
showed formation of the C91–C91 disulfide bond, was ordered
over residues 89–147, and superimposes closely with our BST2
structures (RMSD ¼ 0.5–0.8 Å over essentially all Cα atoms).
This reinforces the impression that the C-terminal two-thirds
of the BST2 extracellular domain forms a dimeric coiled coil over
both the well packed C-terminal third and over the less regularly
associated central third.

Hinz et al. (36) also reported small angle X-ray scattering
(SAXS) analysis of dimeric BST2(80–147) and BST2(47–159)
proteins. Their data indicate an elongated structure that has a
bend at about one third from the N terminus. An attractive pos-
sibility is that the N-terminal third of the molecule is flexible, with
one specific possibility being that the coiled coil conformation
continues toward the N terminus but can hinge about residues
approximately 80–90. This apparent flexibility is consistent with
(i) our finding that residues in this region adopt different confor-
mations in our reduced and oxidized structures (Fig. 3) and in
different subunits in the reduced structure (Fig. 1C), (ii) the ap-
pearance of electron density maps for our oxidized BST2(51–151)
structure (Fig. 3 and Fig. S5), (iii) the protein’s protease sensitiv-

ity at residue 80 (36), and (iv) the retention of tethering activity
when an HA tag is introduced following residue 82 (36).

In addition to a hinging motion, it is possible that the N-term-
inal third of the BST2 extracellular domain has internal flexibility.
This would be consistent with the absence of favored buried
coiled coil residues in this region of the sequence and our finding
that L70D, which corresponds to a buried d position in a simple
coiled coil model derived from our crystal structures, expresses
and purifies like the wild-type sequence and retains activity in
a viral restriction assay (Fig. 4). The distribution of cystine resi-
dues is compatible with formation of a standard coiled coil
throughout the length of the molecule because these residues
would occupy a (C53), d (C63), and d (C91) positions in the mod-
el extended from the crystal structure. Disulfides can typically
be accommodated in these positions, although they are expected
to cause some structural perturbation when introduced into an a
site (41). Just one disulfide is required for stability because
constructs lacking any two cystines retain viral restriction activity,
albeit with reduced potency (34). The conservation of all three
cystines in a region of presumably loose-packed coiled coil is
probably not simply due to a requirement for stability because
coiled coils can be very stable in the absence of any disulfides.
Rather, the cyteine conservation likely reflects a balance be-
tween requirements of stability and flexibility for optimal BST2
function.

The model in which BST2 forms a coiled coil from residue 47
to 152 predicts an overall length of 140 Å. This compares with the
finding from SAXS measurements that the BST2(47–159)
construct has an overall length of 170 Å (36). This 30 Å length
difference might be explained by extended conformation(s) for
residues 153–159, which are not present in any of the crystal
structures plus a few additional residues at the ends of the mo-
lecule, which tend to be poorly defined in electron density. Partial
unwinding of helices of the N-terminal disulfide-bound portion of
the coiled coils is also a possibility.

A number of observations indicate that the N-terminal region
of the BST2 extracellular domain is functionally important,
including the findings that activity is lost when all disulfide bonds
are disrupted (34) or when seven residues within 62–73 are mu-
tated (36). Although we find that the L70D protein retains activ-
ity, thereby indicating that formation of a stable reduced tetramer
is not essential for viral restriction, the restriction activity is re-
duced by approximately twofold compared to wild-type, even
though expression of the mutant increases slightly. This reduction
in potency indicates that L70 contributes to restriction, likely by
stabilizing a functional conformation. Indeed, the activity reduc-
tion in the L70D mutant approaches the 10-fold loss of activity
seen in an “artificial” BST2 molecule that replaces essentially all
of the amino acid residues (34). L70D may diminish restriction
activity by impacting the conformation or stability of the parallel
coiled coil conformation. Alternatively, L70D may diminish ac-
tivity by inhibiting formation of the reduced BST2 tetramer that,
though not absolutely essential for HIV-1 restriction, might con-
tribute to the efficiency of restriction or to some other BST2 func-
tion. It is striking that BST2 forms a stable tetramer in solution,
indicating that the four-helix bundle is an energetically stable
conformation, although we note that isolated coiled coil peptides
can adopt nonphysiological association states (42). In principle,
tetramerization could occur at several different stages of the
BST2 “life cycle.” One possibility is that BST2 could become re-
duced upon localization to a cellular compartment that induces
disulfide bond reduction (43, 44), in which case tetramerization
could serve as a signal that alters protein trafficking (e.g., promot-
ing BST2 recycling or retention).

Finally, the structure raises the general question, why is BST2
dimeric? Because the leading model is that virions are tethered by
the TM helix and GPI anchors binging plasma and viral mem-
branes, one can question why a single isolated subunit is not

Fig. 4. Inhibition of HIV-1 release and infectivity by BST2 proteins. (A) Wes-
tern blot of samples from 293 T cells that expressed HIV-1ΔVpu and either
lacked BST2 (lane 1, unrestricted control) or expressed increasing levels of
wild-type BST2 (lanes 2–6) or BST2(L70D) (lanes 7–11). Panel 1, levels of
virion-associated viral Gag proteins released into the supernatant (VIRUS,
anti-CA and anti-MA). Panel 2, intracellular Gag protein levels (CELLS,
anti-CA and anti-MA). Panel 3, intracellular BST2 levels (CELLS, anti-BST2).
The first lane of Panel 1 contains 25-fold less sample than the other lanes.
Quantification showed that, on average, cells transfected with BST2(L70D)
expressed 1.4� 0.3-fold more protein than those transfected with the
wild-type BST2 (n ¼ 5, �s:d:). Nevertheless, cells expressing BST2(L70D) re-
leased 2.5� 1.3-fold more virion-associated CA and MA protein (n ¼ 10,
�s:d:). (B) Graph showing HIV-1 titers in the presence of increasing quantities
of expression vectors. Wild-type BST2 (light curve), BST2(L70D) (dark curve).
Each data point corresponds to a sample analyzed in the Western blots
shown in panel A. On average, viral titers were 1.9� 0.1-fold higher in cells
expressing BST2(L70D) mutant (vs. wild-type BST2, n ¼ 10, �s:d:).
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sufficient for activity. There are a number of possible explana-
tions, which are not mutually exclusive. Consistent with a report
that the GPI anchor is dispensable for restriction (14), one pos-
sibility is that virions can be tethered by the two TM helices of a
dimer embedding separately in plasma and virion membranes. A
second possibility is that dimerization provides a more structured
extracellular domain that is better able to fold and resist proteo-
lysis. Third, formation of an extended coiled coil, rather than a
more flexible isolated single subunit, may optimally separate the
TM helices and GPI anchors, thereby increasing the chance that
virions will bud between them and become tethered to the cell.
Finally, dimerization may strengthen the tether through avidity
effects that result from having two attachments to each mem-
brane. Avidity effects may also explain why higher concentrations
of BST2 molecules produce more efficient virion retention (34)
because higher order BST2 dimer–dimer interactions could be
stabilized in the constrained environment of the cell surface.
Although important questions remain regarding the structure
of the tether that connects virus and cell, our data indicate
that a BST2 parallel coiled coil is likely to be a fundamental
component.

Methods
Structure Determination of Reduced BST2.Human BST2(47–152) was expressed
in E.coli, purified under reducing conditions, and concentrated to
9–16 mg∕ml for crystallization (see SI Text for details). Crystals grew in sitting
drops comprising 2 μl of protein solution and 2 μl of reservoir solution (18%
PEG-MME 2K, 0.1 M BisTris pH 7.2, 4 μM TCEP). Crystals were transferred to
reservoir solution made up with 30% MPD and plunged into liquid nitrogen.
Data were collected from a selenomethione-substituted crystal at SSRL beam-
line 7.2 and processed with HKL2000 (45). Eight of the expected twelve Se
sites were located using the auto solve option in Phenix (46) and phased
to 3.0 Å resolution. The model was built using COOT (47) and refined to
2.6 Å with REFMAC5 (48, 49) using translation/libration/screw (TLS) para-
meters (50) and programs in the CCP4 suite (51). The crystallized construct
includes six additional residues (GIDPFT) at the N terminus that are not visible
in electron density maps. The following residues lack defined density; mole-
cule A (K47); B (K152); C (K47, K152); D (K47, A48, N49, K151, K152).

Structure Determination of Oxidized BST2. Human BST2(51–151) was ex-
pressed in HEK293T cells, purified, and concentrated to approximately
80 mg∕ml (Bradford) for crystallization (see SI Text for details). MRC crystal-
lization plate sitting drops were set up using a Mosquito crystallization robot
by mixing 100 nl of protein solution with an equivalent amount of reservoir.
Stacks of platelike crystals grew using a reservoir of 8% PEG8000, 100 mM
Tris-HCl pH 8.5 at 18 °C. Crystals were vitrified in crystallization reservoir
supplemented with 25% glycerol for data collection at the Diamond Light
Source I04 beamline. Data were integrated and scaled using the programs
MOSFLM (52) and SCALA (53) of the CCP4 suite. The structure of BST2(51–
151) was determined by molecular replacement using PHASER (54) and resi-
dues 89–151 of reduced BST2(47–152) as the search model. 20 cycles of rigid-
body refinement were followed by 10 cycles of positional refinement using
REFMAC5 (48, 49) with the occupancy of C91 residues set to 0.01. 2mFo-DFc

and mFo-DFc maps indicated the existence of the C91–C91 disulfide and
helical density was visible N-terminal to the template. Model building used
COOT (47). Final refinement cycles used secondary structure restraints be-
tween hydrogen bonded helical N-O atoms. Phenix.refine (55) was used to
generate secondary structure restraints and to calculate maximum likelihood

averaged kick omit maps (56). The refined model lacks a substantial portion
of the N terminus, which could not be reliably built, although residual
density is present, particularly in proximity to neighboring molecules in
the lattice (Fig. S5).

Analytical Equilibrium Ultracentrifugation. Data were collected at 4 °C in an
Optima XL-A centrifuge (Beckman). Reduced BST2(47–154) samples were in
a buffer containing 20 mM Tris pH 7.4, 300 mM NaCl, and 4 mM TCEP.
Alternatively, BST2(47–154)was oxidized by extensive (1week) dialysis against
the samebuffer lacking reductant. Formationof adisulfide-linkeddimer upon
oxidation was verified by mass spectrometry (Fig. S3). Oxidized and reduced
protein samples were centrifuged at 12,000 rpm and 16,000 rpm with initial
protein concentrations of 2.1, 1.06, and 0.53 mg∕ml (166.7 μM, 83.3 μM,
41.7 μM). Data were globally fit to ideal single species models with fixed or
floatingmolecular masses using the non linear least squares algorithms in the
HETEROANALYSIS software (57). Protein partial specific volumes and solvent
densities were calculated with the program SEDNTERP (version 1.09) (58).

BST2 Restriction of Virus Release and Infectivity. 293T and HeLa-TZM reporter
cells (obtained from Drs. J. C. Kappes and X. Wu through the AIDS Research
and Reference Reagent Program, Division of AIDS, NIAID, NIH) were main-
tained using standard procedures. Wild-type and mutant BST2 proteins were
expressed from a pCAG vector under the control of a constitutively active
CMV promoter. The HIV-1(ΔVpu) version of the HIV-1 molecular clone
NL4-3 has been described previously (12). Virus was produced by calcium
phosphate transfection of semiconfluent six well-plates of 293T cells with
1 μg of viral DNA and with increasing quantities of vectors expressing
wild-type BST2 WISP10-435 or BST2(L70D) WISP10-436 (0, 25, 50, 100, 200,
and 500 ng) or an empty pCAG control vector.

For Western blotting experiments, virus-containing media was harvested
40 h posttransfection. Virions (1 ml) were pelleted through a 20% sucrose
cushion at 15;000 × g, and the pellet was resuspended in 30 μl 1X SDS/PAGE
loading buffer (12 μl loaded/lane). Cells from the same samples were
harvested, pelleted, lysed in 60 μl SDS-loading buffer, and boiled for
10 min (6 μl loaded/lane). Levels of virion-associated CA and MA proteins
in the culture media (Virus) and cellular Gag-derived and BST2 proteins (Cells)
were analyzed by Western blotting using a mouse anti-BST2 (kindly provided
by Chugai Pharmaceutical, 1∶500 dilutions) or our own rabbit anti-HIV CA
and MA antisera (both mixed at 1∶1;000). The secondary antibodies were
antimouse IgG (goat) polyclonal conjugated to Alexa680 (1∶10;000, Invitro-
gen) and antirabbit IgG (donkey) polyclonal conjugated to IRdye800
(1∶10;000, Rockland). Western blots were visualized and quantified using
an Odyssey scanner (Li-Cor Biosciences).

Infectious titers were determined from viral supernatants by the numbers
of β-galactosidase-positive foci formed on HeLa-TZM indicator cells. Titers
provided in Fig. 4B show the mean� the range from two independent
repetitions of the experiment.
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Expression and Purification of Reduced BST2.Human BST2(47–152)
was cloned into pET151/D-TOPO (Invitrogen) and expressed in
BL21(DE3)RIL cells using the autoinduction technique (1). Ni-
NTA affinity chromatography, dialysis against 20 mM Tris, pH
8.0, 100 mM NaCl, 2 mM DTT, and cleavage of the His-tag with
TEV protease overnight at room temperature, was followed by Q
(Buffer A: 20 mM Tris 8.8, 10 mM NaCl, 1 mM DTT; Buffer B:
20 mM Tris 8.8, 1 M NaCl, 1 mM DTT) and size-exclusion chro-
matography in 20 mM HEPES pH 7.0, 100 mM NaCl, 2 mM
DTT. Protein was concentrated to 9–16 mg∕ml for crystallization.
Identical procedures were used for BST2(47–154) and seleno-
methionine-substituted BST2(47–152).

Expression and Purification of Oxidized BST2.Human BST2(51–151)
was cloned into a pHLsec vector (a kind gift of Dr. Aricescu, Ox-
ford) between the AgeI and KpnI cloning sites with a C-terminal
GTKH6 tag. After secretion signal cleavage, an EGT tripeptide
is left at the N terminus resulting in the final EGT-(BST2 E51–

K151)-GTKH6 protein product [BST2(51–151)]. Transient pro-
tein expression was performed in HEK293T cells essentially as
described (2). To facilitate protein deglycosylation, the N-glyco-
sylation inhibitor swainsonine was added at a final concentration
of 20 μM during DNA-PEI complex formation (3). Four days
after transfection, the supernatant was collected for protein pur-
ification under nonreducing conditions. Following overnight
binding to a His-Trap column (GE Healthcare), BST2(51–151)
was eluted in 50 mM phosphate buffer pH 7.5, 300 mM NaCl
with a linear (10–300 mM) imidazole gradient. The protein
was then dialyzed against 50 mM Tris-HCl buffer, 50 mM NaCl
with pH adjusted to 5.5 with a 1M sodium citrate solution prior to
overnight deglycosylation at 37 °C with Endoglycosidase-H (New
England Biosciences) according to the manufacturer’s instruc-
tions. Deglycosylated BST2(51–151) was further purified by
size-exclusion chromatography on a S200 16/60 column (GE
Healthcare) in 50 mM Tris-HCl pH 7.5, 100 mM NaCl buffer.

1. Studier FW (2005) Protein production by auto-induction in high density shaking
cultures. Protein Expres Purif 41(1):207–234.

2. Aricescu AR, Lu W, & Jones EY (2006) A time- and cost-efficient system for high-level
protein production in mammalian cells. Acta Crystallogr D 62(Pt 10):1243–1250.

3. Chang VT et al. (2007) Glycoprotein structural genomics: Solving the glycosylation

problem. Structure 15(3):267–273.

Fig. S1. Sequence alignment with knobs and holes analysis. An alignment of representative sequences with secondary structure observed in the reduced
structure shown above. The mature human protein is truncated at Ser160, the site of GPI anchor attachment. The glycosylation sites, Asn65 and Asn92, are
indicated with blue dots and are solvent exposed in the crystal structures. Residues that display a or d knobs into holes packing, as defined by the program
SOCKET (1), are indicated with orange dots. Residues that are invariant in this alignment are highlighted in red boxes, and residues that are highly conserved
are shown in red.

1. Walshaw J & Woolfson DN (2001) Socket: A program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307(5):1427–1450.
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Fig. S2. Analytical equilibrium ultracentrifugation analyses of BST2(47–154). Equilibrium distributions without (A) and with (B) reductant (4 mM TCEP). Re-
sidual differences between the data and the fits are shown below. Rotor speeds were 12,000 rpm in these experiments. Data sets were also collected at
16,000 rpm. Data were collected at three concentrations and were globally fit to single species models in which the molecular weights were fixed to either
a tetramer (left panel; 51,100 Da) or dimer (right panel, 25,550 Da). Note that the reduced BST2 protein is well fit by the tetramer model and the oxidized
protein is well fit by the dimer model.

168



Fig. S3. Mass spectrometry of reduced and oxidized BST2(47–154). (A) Reduced and (B) oxidized BST2(47–154) were desalted for electrospray ionization
mass spectrometry using a C18 Ziptip (Millipore) and analyzed on a Quattro-II mass spectrometer (Micromass, Inc.). Data were acquired with a cone voltage
of 50 eV, a spray voltage of 2.8 kV, and scanning from 800 to 1,400 m∕z in 4 s. Spectra were combined, and the multiply charged molecular ions were de-
convoluted into a molecular-mass spectrum by using MaxEnt software (Micromass, Inc.). The mass of the reduced species corresponded to a BST2(47–154)
monomer (MWobs ¼ 12;774.6 g∕mol, MWcalc ¼ 12;775.4 g∕mol), indicating no disulfide formation in the presence of reductant. In contrast, the majority
of BST2(47–154) formed a disulfide crosslinked dimer in the absence of TCEP (MWobs ¼ 25;544.0 g∕mol, MWcalc ¼ 25544.8 g∕mol, assuming formation of three
disulfide bonds).
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Fig. S4. Density showing glycosylation of N92 in BST2(51–151) expressed in HEK293T cells. 2mFo-DFc electron density (1.0σ, blue) indicates the position of
discernible sugar moieties extending from N92 residues after Endo-H treatment. N-acetylglucosamine (NAG) residues are approximately perpendicular to the
C91–C91 disulfide bond.

Fig. S5. Residual electron density at the N terminus of oxidized BST2(51–151). (A) Density in the 2mFo-DFc (blue, 1.0 σ) and mFo-DFc (green, 3.0 σ) maps is
visible at the N terminus of BST2(51–151) (orange). It is mostly evident in proximity to symmetry related molecules (gray). (B) Residual density suggests the
possibility of alternative helical conformation for the N-terminus, which we have tentatively modeled in this figure. Flexibility at the N terminus could generate
alternative coiled-coil dimers shown here in cyan and yellow, respectively.
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Fig. S6. Analytical equilibrium ultracentrifugation analyses of wt BST2(47–154)L70D. Equilibrium sedimentation distributions of BST2(47–154)L70D with
reductant (4 mM TCEP). Corresponding residual differences are shown below. Rotor speeds for the data shown here were 12,000 rpm. Data sets were also
collected at 16,000 rpm. Data were collected at three concentrations, and all of the data were globally fit to single species models in which the molecular
weight was allowed to float (left panel; MWobs ¼ 26;908 Da), fixed as a dimer (middle panel; 25,554 Da) and fixed as a tetramer (right panel; 51,108 Da). Note
that the reduced BST2(47–154) L70D protein is well fit by the dimer model.
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Table S1. Data collection and crystallographic refinement statistics

Data set Reduced BST2(47-152) Oxidized BST2(51-151)

PDB code 3nwh 2xg7
Space group P21 P212121
Cell dimensions (Å,°) a ¼ 26.6 a ¼ 28.86

b ¼ 59.6 b ¼ 91.86
c ¼ 159.5 c ¼ 146.96
β ¼ 91.6

Solvent content (%) 57 70
Resolution (Å) 50.00-2.60 (2.69-2.60) 38.95-3.45 (3.64-3.45)
Completeness (%) 97.5 (93.2) 99.4 (97.6)
I∕σðIÞ 17.2 (4.0) 8.9 (2.5)
Multiplicity 3.6 (3.3) 6.8 (6.5)
Rsym (%) * 5.8 (26.9) 11.3 (70.9)
# Unique reflections 15,096 5,576
Wilson B (Å2) 46.9 133.4
R factor (%) 26.0 26.9
Rfree (%) † 28.7 29.8
# of protein atoms 3,266 1,209
# water molecules 18 0
# sugar molecules - 2
hBiðÅ2Þ
protein atoms 16.4 126.6
water molecules 37.4 -
sugar molecules 181.5
RMSD from ideality
Bonds (Å) 0.018 0.012
Angles (°) 1.64 1.38
Phi/Psi angles:
Favored (%) 98 98.04
Allowed (%) 2.0 1.96
Disallowed (%) 0.0 0.0

Values in parentheses are for the highest-resolution shell.
*Rsym ¼ ∑ jI − hIij∕∑ I, where hIi is the average intensity from multiple
observations of equivalent reflections.

†Rfactor ¼ 100 ×∑ ‖Foj − jFc‖∕∑ jFoj. Rfree is the Rfactor computed from the
7.6% of reflections in the case of 3nwh and 4.5% in the case of 2xg7 that
were chosen randomly and excluded from the refinement calculations.
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