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ABSTRACT

In this dissertation, several problems are solved using different approaches.

The first problem is the two-dimensional three-material G-closure problem: find-

ing all possible effective tensors from given conductivities of three materials and

volume fractions. We solve this problem by establishing lower bounds on effective

tensors, and finding the (sequences of) microstructures that attain the lower bounds.

The lower bound is a piece wise analytic function that depends on the conductivity

and volume fraction of each component. They are derived using a combination of the

translation method, and additional constraints on the field in the materials. The

found bound extend their results to the anisotropic case. Furthermore, the lower

bound obtained in this dissertation is also the improvement of the Hashin-Shtrikman

and translation bounds, in the sense that it is optimal in a range of parameters where

previously known bounds are not; and in the region where both the new bound and

previously known bounds are not optimal, the bound derived here is tighter.

In the case when the established bound is optimal, structures that attain the

bound are presented. All structures are laminates of finite rank. While the bound

cannot be obtained by laminate structures, we estimate the bound by comparing

it with some particular structure. The numerical experiment shows that the gap

between the two is rather small, hence the bound is very close to the optimal bound.

The next two problems are typical problems in optimal design, and are solved

using the variational method in the frame of Young measures developed by Pedregal.

The key idea of this approach is to find the quasiconvex envelope of sets and functions.

Those ideas have been used before for optimal design problems with two materials

at disposal. Our goal here is to explore how those ideas can be extended to three or

more materials situations. In particular, we focus on two paradigmatic cases, where

we consider a linear-in-the-gradient cost functional and a typical quadratic situation.

In both cases, we are able to formulate, quite explicitly, a full relaxation of the



problem through which optimal microstructures for the original nonconvex problem

can be understood.

In principle, this approach can be also used to find the G-closure problem as long

as one can find the quasiconvex hull of the set, composed of the gradient fields and

their associated divergence free fields determined by the governing equations in the

G-closure problem.

iv



To my husband Carlos and our son Juan-Luis Maria



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapters

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 G-closure problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Optimal design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Connection between two parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. PROBLEM AND NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Three material conductivity composite . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 G-closure boundary and optimal energy bounds . . . . . . . . . . . . . . . . . 8
2.3 Known bounds on G-closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. ENERGY BOUNDS AND BOUNDS ON G-CLOSURE . . . . . . . . 12

3.1 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Technique and relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Nonlinear programming problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Derivation of bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. OPTIMAL STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Rank-1 connections and optimality conditions on fields . . . . . . . . . . . . 28
4.2 Optimal structures in region B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Optimal structures in region C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Optimal structures in region A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Optimal structures in region D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Estimate of the bound in region E and D2 . . . . . . . . . . . . . . . . . . . . . 38
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. PROBLEM DESCRIPTION AND PRELIMINARIES . . . . . . . . . 46

5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Div-curl Young measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Reformulation of the problem and relaxation . . . . . . . . . . . . . . . . . . . 49

6. LINEAR COST FUNCTIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Quasiconvex hull of admissible set A . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Relaxation of the problem (P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



7. QUADRATIC COST FUNCTIONAL . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 The JBOC condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Application of JBOC to our quadratic cost . . . . . . . . . . . . . . . . . . . . . 66

8. OPTIMAL STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.1 Difference of three materials from two materials . . . . . . . . . . . . . . . . . 76
9.2 Solving the G-closure problem using Young measures . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



LIST OF FIGURES

Figure Page

4.1 Cartoon of optimal structures in regions A -D1 and the presumed opti-
mal structure in region E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Fields in optimal laminates L(13,2,13) and formation of rank-1 path. . 30

4.3 Fields in optimal laminate L(13,2,13,2) and formation of rank-1 path. 34

4.4 Fields in optimal laminates L(123,2) and formation of rank-1 path. . . 37

4.5 δWrel relative gap between the energy of the bounds and conjected
structure in region E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 The graph of regions A-E where expression of energy bounds change. . 41

4.7 The eigenvalues of optimal fields- minimizers. . . . . . . . . . . . . . . . . . . . . 44

4.8 The eigenvalues of effective tensor K∗ at the G-closure boundary as
functions of r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9 The G-closure boundaries of harmonic bounds, translation bounds and
new bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CHAPTER 1

INTRODUCTION

In this dissertation, we study several constrained optimization problems given by:

(GP ) minimize in χ

∫

Ω

Ψ(∇u) dx (1.1)

subjected to:

χ = {χi} ∈ {0, 1}3,

∫

Ω

χ(x) dx = r|Ω|,

and

div(

3
∑

i=1

Aiχi∇u(x)) = 0, in Ω, u = u0, on ∂Ω (1.2)

Here Ω ⊂ RN is a regular, bounded domain, r ∈ [0, 1]3, r · 1 = 1, 1 = (1, 1, 1).

The matrices Ai are conductivity tensors for the constituents, assumed to be positive

definite and such that Ai − Aj is invertible for every pair i 6= j.

1.1 G-closure problem

In the first part of the dissertation, we focus on two-dimensional three-material

G-closure problem-characterizing the set of all possible effective tensors Keff from

given (A, r). This set is completely determined by its boundary due to its properties.

In Chapter 2, we define Keff in the context of periodic homogenization through

problem (GP ) with some particular integrand Ψ and proper space where u is sitting.

We also pose the G-closure problem, and discuss how this boundary of G-closure can

be found by constructing lower bounds on the energy stored in the homogeneous media

with effective conductivity Keff , and seeking the micro-geometry of three-material

composites with equal energy. It is assumed that

Ai = aiI, a1 < a2 < a3 = ∞.
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which significantly simplifies the calculation. The same assumption was made in [22]

for the two material case. In the end of chapter, we review all known bounds on the

G-closure.

In Chapter 3, we describe the technique of constructing the lower bound, which

inherits the translation method, described in [5, 12, 28] etc., and incorporate the

idea in [32] of imposing extra constraints derived in [4] on the field ∇u. A similar

technique was applied in [14]. Because of the constraint, the translated energy-wells

can become nonconvex but are still bounded from below, a new bound is obtained in

this case. During the derivation of the bounds, the associated optimality conditions on

the field are found naturally. This new bound is a piece-wise analytic function whose

algebraic expressions vary depending on the problem parameters: conductivity of

each constituent, volume fractions and external loading. In one subset of parameters,

it matches the translation bound. In the isotropic case, the bound derived in this

dissertation coincides with those found by Cherkaev [14]. In the remaining cases,

the new bound either improves the known bounds or extends the isotropic optimal

bounds [14, 32] to the anisotropic case. Precisely, the new bounds are optimal in a

big part of the region, where the known translation bounds are not optimal. And

based on the optimal energy bounds, the G-closure boundary is calculated. In the

rest of this region, the new bound is tighter than those previously known, and we

have a better outer bound on the G-closure.

In Chapter 4, we construct optimal structures to attain the bounds, guided by

the optimality conditions obtained in Chapter 3. More exactly, we found structures

realizing the bound in almost all ranges of problem parameters, except a subset

where we suggest the best possible structure. This method was suggested in [2].

All structures are orthogonal laminates of some finite rank, and the fields in two

neighboring layers are rank-1 connected. Also the fields in each layer are assumed to

comply with the optimality conditions. We construct optimal structures by finding

ways to join the materials by rank-1 connections. In the subset where the bound

cannot be attained by laminate structures, numerical experiments are performed. The

result shows that the gap between the bound and the energy of specially constructed

structure is rather small.
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Remark 1.1 Generally, optimal structures are not necessarily laminates: for exam-

ple, Hashin and Shtrikman first suggested ”coated spheres” geometry [20], Milton [27]

proved optimality of parallel coated spheres, and later developed a method of transfor-

mation of optimal shapes [28], Lurie and Cherkaev showed the optimality of multilayer

coated circles [26], Vigdergauz [42], Grabovsky and Kohn [19], and recently Liu [24]

suggested special convex oval-shaped inclusions, Gibiansky and Sigmund suggested

”bulk blocks” [18], Albin and Cherkaev proved the optimality of ”haired spheres” [1],

and a recent paper by Benveniste and Milton investigated ”coated ellipsoids” [8]. All

these structures admit separation of variables when effective properties are computed.

It is not clear yet if the laminate structure approximates any other optimal structure,

see for example [3, 11, 34]. We show, however, that proper laminates are optimal for

the considered problem.

The first part of dissertation ends with a summary of the result about the new

bound, and structures that either attain it or best approximate it.

1.2 Optimal design problem

The second part of the dissertation focuses on finding the (quasi) convex envelope

of the admissible set and the quasiconvexification of the integrand of some optimiza-

tion problems. Those issues are intimately related to relaxation of nonconvex vectorial

problems.

Unlike in the first part, u is a scalar field, but we do not limit ourselves to the

two-dimensional case, we work in arbitrary dimensions. The assumption a3 = ∞ is

not needed either. Besides, we consider the integrand as both linear and quadratic

with respect to the gradient of the state, i.e.,

1. the linear case: Ψ(x, ξ) = G(x) · ∇u, for some fixed field G ∈ L2(Ω, RN );

2. a quadratic case: Ψ(x, ξ) = (1/2)|∇u|2.

Notice that the cost functional in the first part can be treated as linear because of the

governing equation. This type of problem is very typical in optimal design. It is well

known that in general, such problems do not admit optimal solutions, because the

oscillating behavior of a minimizing sequence of characteristic functions persists to a
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degree that relaxation is needed. These relaxed versions might provide some insight

in understanding optimal microstructures, and eventually lay down the foundation

for setting up suitable numerical simulations [16].

The main tool in the analysis is an appropriate reformulation of the optimal design

problem as a nonconvex, vector variational problem for which, due to the underlying

structure carried by the conductivity law, a relaxation can be either fully computed,

or appropriately estimated. This procedure leads one to work with div-curl Young

measures as introduced in [36]. This program has been carried out for two materials in

[9]. The objective of current work is to understand the differences in the more complex

situation of multimaterials, and how the various ingredients and computations change

for three or more materials.

In Chapter 5, we briefly recall some features of div-curl Young measures that is

related to our analysis. Afterwards, we review the key ingredients of the variational

method for optimal design problems in the frame of Young measures associated with

pairs of gradient-divergence free vector field.

In Chapter 6, we deal with the linear cost functional whose relaxation amounts

to determining the set of all generalized admissible pairs, or more precisely, the weak

limits of all admissible pairs from the original problem. Because of the weak continuity

of linear cost functionals with respect to weak convergence, this suffices for the linear

case. A full relaxation is obtained and stated in Theorem 6.2.

In Chapter 7, the quadratic cost functional is studied. The analysis and computa-

tion are much harder than the linear cost functional case. In general, one only gets a

lower bound of the relaxation, or subrelaxation (see [17] for two materials case). We

first compute the subrelaxation using the variational method described in Chapter

5, after verifying it is fruitless to continue in this direction, we turn to the JBOC

condition introduced in [36]. Following its idea of studying a few appropriately built

problems, we succeed in finding a relaxation as stated in Theorem 7.2.

In Chapter 8, we describe the microstructure based on the relaxation result

achieved in Chapter 7. The microstructures are local laminates of arbitrary finite

order (Theorem 8.1). The diversity of microstructures is due to the fact that optimal

solutions of the relaxed problem are sitting in a two-dimensional space where we have
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three independent rank-1 connections.

1.3 Connection between two parts

The problem of bounding the energy of multimaterial linear composites is equiv-

alent to the problem of finding the quasiconvexification of the multiwell energy [21],

(discussed in)[28]. In other words, one could obtain the G-closure through the

quasiconvexification of corresponding multiwell energy. In principle, if we could find

the quasiconvexification of the integrand defined in the first part, then we would

have achieved the whole G-closure. G-closure could also be achieved by finding

the quasiconvex hull of all M2×4 matrices in the form of (∇U, F ) using the method

described in the second part, where

∇U = (∇u1,∇u2)
T , F = (F1, F2)

T , divFj = 0,

and

F =
∑

i

χiAi∇U, i = 1, 2, 3.

However, due to the technical difficulty of identifying Young measures associated with

sequences {(∇Uj, F
j)}, we have not succeeded in doing so. This will be part of the

future plans.



CHAPTER 2

PROBLEM AND NOTATION

In this chapter, we briefly review the problems of homogenization and G-closure.

The references for this chapter can be found in [5, 12, 28], for example.

2.1 Three material conductivity composite

Consider three materials that form a two-dimensional periodic composite. The

materials with isotropic conductivity tensor kiI occupy disjoint sets Ωi ⊂ R2, i =

1, 2, 3, that form a unit periodicity cell Ω:

Ω =
⋃

i=1,2,3

Ωi, Ω = {(x1, x2) : 0 ≤ x1 < 1, 0 ≤ x2 < 1},

where I is the two-by-two identity matrix. It is assumed that

k1 < k2 < k3, and k3 = ∞

The areas mi = ‖Ωi‖ of Ωi are fixed and satisfy:

m1 +m2 +m3 = 1, mi ≥ 0, ∀i = 1, 2, 3.

The governing equations applied to the composite are described as:

div(K∇u) = 0,

∫

Ω

∇u(x) = E0, x ∈ R2, (2.1)

where E0 is the average field prescribed by the distant external loadings, and K :

Ω → {K1, K2, K3} is the conductivity tensor defined by:

K(x) =
∑

i

χi(x)Ki, Ki = kiI, (2.2)

where

χi(x) =

{

1 if x ∈ Ωi,
0 otherwise.

Notice that K(x) is actually determined through the partition Ωi or {χi}.
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The assumption that k3 = ∞ forces the field u(x), x ∈ Ω3 to be zero, and so is the

energy density in Ω3. The energy stored in the material with layout K(x) is defined

as:

W (K,E0) = inf
u∈H1

#(Ω)+E0·x

∫

Ω

∇u(x) ·K(x)∇u(x) dx,

where H1
#(Ω) is the space of local H1 functions that are Ω periodic with zero mean.

The effective conductivity Keff of the composite with layout {χi} is defined as

the conductivity tensor of homogeneous material storing the same energy, subjected

to the same external loading. Hence, we have:

E0 ·KeffE0 = inf
u∈H1

#(Ω)+E0·x

∫

Ω

∇u(x) ·K(x)∇u(x) dx ∀E0 ∈ R2.

In order to completely determine effective properties of the composite, we subject the

mixture to two orthogonal loadings

lim
|x|→∞

ea(x) = e0a =

(

1
0

)

, and lim
|x|→∞

eb(x) = e0b =

(

0
r

)

,

and calculate the sum of energies, which can be rewritten in terms of the vector

potential U = (u1, u2), in response to the external loading

E0 = (e0a|e0b) = diag(1, r).

The gradient matrix of potentials is defined as:

DU =

(

DU1

DU2

)

, DUi =
(

∂ui

∂x1

∂ui

∂x2

)

, i = 1, 2.

The sum of energies is:

W(K,E0) = inf
U∈H1

#(Ω,R2)+E0x

∫

Ω

(DU(x) ·K(x)DU(x)) dx, (2.3)

where the inner product defined over two-by-two matrices is:

A · B = Tr(ATB),

and the energy in the corresponding homogeneous material with conductivity tensor

Keff , subjected to the external loadings E0 is:

E0Keff · E0 = W (K, e0a) +W (K, e0b) = k∗1 + k∗2r
2, ∀r ∈ R, (2.4)
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where k∗1 and k∗2 are the eigenvalues ofKeff . Without loss of generality, it is assumed

that 0 ≤ r ≤ 1. Following the definition of the effective tensor Keff , one gets:

E0Keff ·E0 = inf
U∈H1

#(Ω,R2)+E0x

∫

Ω

(DU(x) ·K(x)DU(x)) dx = W(K,E0). (2.5)

2.2 G-closure boundary and optimal
energy bounds

The G-closure G(mi, ki) is defined as the closure of the set of all possible Keff

obtained for parameters mi and ki. We say K∗ ∈ G(mi, ki), if there exists a sequence

of structures with layout {χε
i} whose effective tensor Kε

eff is such that Kε
eff → K∗.

The G-closure is a bounded subset of two-by-two symmetric matrices. It is also known

to be rotationally invariant, so it is enough to consider the projection of the set in the

two-dimensional eigenvalues plane. Two types of bounds are used to find G-closure:

inner and outer bounds. An outer bound is a set B(mi, ki) that contains G(mi, ki).

An inner bound S(mi, ki), on the other hand, is a smaller set that lies inside G(mi, ki).

If we can construct sets S and B such that S = B, then we have fully characterized

the G-closure.

We define outer bound B by a set of inequalities in the eigenvalues plane, that

any tensor K∗ ∈ G(mi, ki) must satisfy. For example, the known Wiener bounds and

translation bounds are given by:

1. Wiener bound

λmin(K∗) ≥
(

N
∑

i=1

mi

ki

)−1

, λmax(K∗) ≤
N
∑

i=1

miki,

where λmin and λmax are the minimum and maximum eigenvalues of K∗ respec-

tively.

2. The translation bound

TrK∗ − 2k1

detK∗ − k2
1

≤ 2

N
∑

i=1

mi

ki + k1
,

TrK∗ − 2kN

detK∗ − k2
N

≥ 2

N
∑

i=1

mi

ki + kN

.

The outer bounds depend only on the parameters ki and mi. Because G-closure

contains all possible effective tensor Keff of certain mi and ki, and Keff is associated
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with W(K,E0) through (2.4), we construct outer bounds by finding a lower bound

on W(K,E0). Its complementary upper bound can be established by solving a dual

problem in the same way, replacing the conductivity ki by the resistivity ρi = 1/ki.

Our attention is then brought to the lower bound defined by:

B(E0, ki, mi) = inf
χ
W(K,E0), (2.6)

where χ satisfies

χ = {χi} ∈ {0, 1}3,

∫

Ω

χi dx = mi, i = 1, 2, 3.

It depends on the ratio r of magnitudes of the two external loadings, and will be

written as B = B(r) from now on, with other parameters fixed.

The inner bound of the G-closure or S is formed by the effective tensor of the

structures. Therefore if the lower bounds equal to the energy of some structure, or can

be approached by the energy of a sequence of structures with fixed (mi, ki) and layout

χε, then we conclude we have reached the G-closure boundary. And the G-closure

can be completely characterized by its boundary, because it is closed, bounded, and

simply connected. This sequence of structures are called optimal structures, and the

bound B(r) is said to be optimal. The optimal bounds B(r) and eigenvalues k∗1 and

k∗2 of K∗ located on the G-closure boundary are related through

B(r) = k∗1 + k∗2r
2 (2.7)

by (2.4)-(2.6). And the eigenvalues can be computed as:

k∗1(r) = B − r

2

dB

d r
, k∗2(r) =

1

2 r

dB

d r
. (2.8)

The pairs (k∗1(r), k∗2(r)) form a parametric equation for the boundary of the G-closure

set. If the parameter r can be explicitly excluded from system (2.8), one obtains an

explicit relation between k∗1(r) and k∗2(r).

2.3 Known bounds on G-closure

2.3.1 Outer bounds

The problem of exact bounds has a long history. It started with the bounds by

Voigt and Reuss, called also Wiener bounds or the arithmetic and harmonic mean
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bounds. The bounds are valid for all microstructures and become in a sense exact for

laminates: one of the eigenvalues of K∗ of a laminate is equal to the harmonic mean

of the mixed materials’ conductivities, and the other one, to the arithmetic mean

of them. The pioneering paper by Hashin and Shtrikman [20] found the bounds

and the matching structures for optimal isotropic two-component composites, and

suggested bounds for multicomponent ones. The exact bounds and optimal structures

of anisotropic two-material composites were found in earlier papers [22, 23, 25, 39]

using a version of the translation method (see its description in the books [5, 12, 15,

28]. The method is equivalent to building the polyconvex envelope of a multiwell

Lagrangian, as it was shown by Kohn and Strang [22, 23]; the wells are the energy of

the materials plus their cost (here, “cost” is the dual variable to the volume fraction

of material in the composite). The theory of bounds for the two-material composite

is now well developed and applied to elastic, viscoelastic, and other linear materials.

Bounds for multicomponent composites turn out to be much more difficult. Milton

[27] showed that the Hashin-Shtrikman bound is not exact everywhere (it tends to

an incorrect limit when m1 → 0), but is exact when m1 is larger than a threshold,

m1 ≥ 2θ(1 −m2), (2.9)

where

θ =
k1(k3 − k2)

(k2 + k1)(k3 − k1)
≤ 1

2
.

Milton and Kohn [29] suggested an extension of the translation method to anisotropic

multimaterial composites, computed the anisotropic bounds for multicomponent com-

posites and the optimal structures. Nesi [32] suggested a new tighter bound for

isotropic multicomponent structures, and Cherkaev [14] further improved it and found

optimal structures.

2.3.2 Inner bound (optimal structures)

2.3.2.1 Two-material optimal structures

The topology of two-material optimal structures is simple and intuitively clear:

for isotropic or moderately anisotropic loading, the material with smaller conductivity

k1 “wraps” the one with bigger conductivity k2 (k2 > k1), so that k2 forms a nucleus
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and k1 forms a core. The G-closure in this case is completely known due to the work

in [20, 25, 39].

2.3.2.2 Multimaterial optimal structures

The multimaterial structures are more diverse and nonunique, and require new

ideas for constructing. Milton [27], Lurie and Cherkaev [26], and later Barbarosie [7]

described two types of isotropic structures that realize the multicomponent bound for

sufficiently large volume fractions (see (2.9)). Gibiansky and Sigmund ([18]) expand

the domain of applicability of Hashin-Shtrikman bounds to

2θ(
√
m2 −m2) ≤ m1 ≤ 2θ(1 −m2).

They demonstrated new isotropic nonlaminate microstructures (bulk structures) that

realize this bound. Albin et al. [2] extended the results of Gibiansky and Sigmund [18],

finding laminates that realize translation bounds for both isotropic and anisotropic

case in a range of parameters

m1 ≥ gacn, and
|k∗2 − k∗1|
k∗1 + k∗2

≤ ĝacn,

where k∗1 and k∗2 are the eigenvalues of K∗. These inequalities represent the range

of volume fractions and degree of anisotropy of a composite where the translation

bound is optimal. For isotropic composites (k∗1 = k∗2), the range of applicability of

the found laminates coincides with the one of bulk structures suggested by Gibiansky

and Sigmund.

Remark 2.1 This region corresponds to case D1 in Chapter 3 and 4, where our new

results of bounds and optimal structures are identical to those found by Albin et al.

[2]. We describe this region explicit in those chapters.

Structures that realize the isotropic bound for the whole range of volume fractions

were found in [14].



CHAPTER 3

ENERGY BOUNDS AND BOUNDS ON

G-CLOSURE

In this chapter, we describe the analysis involved to derive the lower bounds

on the energy of composites and provide details on how those bounds are found,

which turns out to be by solving some nonlinear programming problem. Such lower

bounds vary depending on the problem parameter (mi, ki) as well as external loading

E0 = diag(1, r), or precisely r . They are piece-wise analytic functions. The bounds

on the G-closure follows, after the energy bounds are obtained.

3.1 Basis

Prior to the analysis of the bound, we introduce an orthonormal basis

a1 =
1√
2

(

1 0
0 1

)

, a2 =
1√
2

(

1 0
0 −1

)

,

a3 =
1√
2

(

0 1
−1 0

)

a4 =
1√
2

(

0 1
1 0

)

of two-by-two matrices. In terms of this basis, any matrix E ∈ M2×2 can be written

as

E =
1√
2
s1(E)a1 +

1√
2
d1(E)a2 +

1√
2
d2(E)a3 +

1√
2
s2(E)a4 (3.1)

where

s1(E) =
1√
2
(E11 + E22), d1(E) =

1√
2
(E11 − E22)

s2(E) =
1√
2
(E12 −E21), d2(E) =

1√
2
(E12 + E21). (3.2)

In this basis, the energy of an isotropic material with conductivity tensor kI has the

form

W (k, E) = kTr(E ET ) = k(s2
1 + s2

2 + d2
1 + d2

2). (3.3)
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Furthermore the representation for determinant is:

det(E) =
1

2
(s2

1 + s2
2 − d2

1 − d2
2). (3.4)

The relation among S0j , D0j of average field E0 and corresponding sj, dj, j = 1, 2,

components of the response E = DU in the composite to the external loading is

represented by:

∫

Ω

s1(x) dx = S01 =
(1 + r)√

2
,

∫

Ω

s2(x) dx = S02 = 0,

∫

Ω

d1(x) dx = D01 =
(1 − r)√

2
,

∫

Ω

d2(x) dx = D02 = 0 (3.5)

The representation of the energy and fields in terms of this basis will simplify com-

putations related to the derivation of a bound, that is to be discussed in the rest of

the chapter.

3.2 Technique and relaxation

The technique for the bound derivation, localized polyconvexification, is described

in [32, 14]. Here, we repeat the argument of Cherkaev [14]. As in the translation

method [12, 28], we construct a lower bound using quasi-affiness of the determinant

function
∫

Ω

det(E)dx = det(E0). (3.6)

Start with adding and substracting 2tdetE for some t ∈ R,

W(K,E0) = inf
E=∇U

U∈H1
#

(Ω)+E0x

∫

Ω

(KE · E) + 2tdet(E)) dx− 2tdet(E0). (3.7)

Next we relax the point-wise differential constraint on E = ∇U by replacing the set

H1
#(Ω)2 + E0x with the set of E ∈ L2(Ω, R2×2) such that

∫

Ω

E dx = E0.

Furthermore, the constraint

det(E) ≥ 0, or s2
1 + s2

2 − d2
1 − d2

2 ≥ 0 a.e. x ∈ Ω, if det(E0) ≥ 0 (3.8)
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is imposed on E. This constraint is proved in [4] to be satisfied by any U ∈ H1
# +E0x

that is a solution to (2.1). Such constraints are used also in [14, 32]. Now we wind

up with a relaxed problem that gives a lower bound of W(K,E0)

W(K,E0) ≥ inf
E

∫

Ω

((KE · E) + tdet(E)) dx− t det (E0), (3.9)

E = {E ∈ L2(Ω,R2×2) :

∫

Ω

E dx = E0, (3.8) holds} (3.10)

which can be rewritten as:

W(K,E0) ≥ Y (E0(r), t) − 2rt, (3.11)

where

Y (E0(r), t) = inf
E

∫

Ω

(k(s2
1 + s2

2 + d2
1 + d2

2) − t(s2
1 + s2

2 − d2
1 − d2

2)) dx, (3.12)

using (3.3), (3.4) and (3.5). (3.11) gives a family of lower bounds on W(K,E0)

parameterized by t. We seek the best possible bound B(r) of this family

B(r) = max
t

(Y (E0(r), t) − tdetE). (3.13)

After B(r) is achieved, using (2.8), one can find the bounds for K∗, or the bounds

for the G-closure. The constraint (3.8) could be slack or strict in different regions Ωi,

depending on the problem’s parameters. If inequality (3.8) is slack everywhere, the

procedure coincides with polyconvexification and gives the conventional translation

bound.

Remark 3.1 The bound for isotropic composites obtained in [14] uses a stronger

inequality, which, however, coincides with (3.8) for the case k3 = ∞ considered here.

3.3 Nonlinear programming problem

The energy bound is found by solving the max-min problem (see (3.13) ) where the

minimization problem prescribes the condition on the optimal fields. If the minimizer

E is a gradient or can be approximated in a proper sense by a sequence of gradients,

then the bound is optimal. Using (3.2), this minimization problem can be written as:

Minimize in sj , dj :

∫

Ω

[(k + t)(s2
1 + s2

2) + (k − t)(d2
1 + d2

2)] dx

subject to (3.5) and (3.8)
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We can split the integral into a sum of integrals over Ωi and minimize in each Ωi

independently, due to the fact that the differential constraint on the field is relaxed,

hence the boundary conditions between the fields in neighboring domains may be

omitted also. Introduce

Sij =
1

mi

∫

Ωi

sj(x) dx, Dij =
1

mi

∫

Ωi

dj(x)dx, j = 1, 2, (3.14)

and recall that the field in Ω3 is zero

sj(x) = dj(x) = 0, ∀x ∈ Ω3 ⇒ S3j = D3j = 0. (3.15)

Then the problem can be reformulated as:

Minimize in (Sij, Dij) : V1 + V2, (3.16)

subject to

m1S11 +m2S21 = S01, m1S12 +m2S22 = 0,

m1D11 +m2D21 = D01, m1D12 +m2D22 = 0, (3.17)

where

Vi = inf
s2≥d2

∫

Ωi

(

(ki + t)s2 + (ki − t)d2
)

dx (3.18)

and

s2 = s2
1 + s2

2, d2 = d2
1 + d2

2.

Vi are functions of Sij, Dij , which we show in the following section.

3.3.1 Structure of minimizers

Depending on the sign of ki − t, expression Vi and corresponding s(x), d(x) vary,

and there are three situations:

1. ki − t > 0 holds. All terms in the integrand of Vi are convex, hence applying

Jensen’s inequality to each of them, we have:

Vi = mi(ki + t)(S2
i1 + S2

i2) +mi(ki − t)(D2
i1 +D2

i2). (3.19)

The infimum is actually a minimum when fields s, d satisfy:

sj(x) = Sij , dj(x) = Dij a.e. x ∈ Ωi, j = 1, 2.



16

2. ki − t < 0 holds. In this situation the d terms are concave, yet the inequality

(ki − t)d2 ≥ (ki − t)s2

holds. Thus the replacement of the second term by (ki − t)s2 decreases the

integral value. Consequently, we get:

Vi = inf

∫

Ωi

2kis
2 dx = 2kimi(S

2
i1 + S2

i2), (3.20)

where the infimum becomes a minimum again, if s, d are:

sj = Sij , d
2 = s2 a.e. x ∈ Ωi or sj = Sij, d

2 = S2
i1 + S2

i2 a.e. x ∈ Ωi.

As a consequence,

det(E) = s2
1 + s2

2 − (d2
1 + d2

2) = 0, a.e. x ∈ Ωi.

3. If ki − t = 0 holds, the second term disappears, thus one has:

Vi = inf

∫

Ω

2kis
2 = 2miki(S

2
i1 + S2

i2), (3.21)

which is the same as the previous case. However the minimum is achieved by

different fields:

sj = Sij , d2 ≤ s2.

In the second situation, the constraint (3.8) comes to play a role because of the

non-convexity of term (ki − t)d2, and this will lead us to new bounds.

3.4 Derivation of bounds

We will first solve the minimization problem (3.16) for fixed t, whose solution

Y (r, t) changes, depending on the range of t. There exist five cases, in each of which,

after the solution Y (r, t) of (3.16) is obtained, the bounds will be derived by solving

the maximization problem with respect to t. The G-closure boundary is described

after derivation of bounds.

3.4.1 Intermediate value t ∈ (k1,k2)

There will be two different situations when t ∈ (k1, k2) because the solution of

the minimization problem (3.16) varies depending on the average (or external) field

E0(r).
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3.4.1.1 Study of minimization problem (3.16)

If t ∈ (k1, k2), we would have k2 − t > 0 and k1 − t < 0, V = V1 +V2 are as follows

(see (3.19), (3.20))

V = 2m1k1(S
2
11 + S2

12) +m2(k2 + t)(S2
21 + S2

22) +m2(k2 − t)(D2
21 +D2

22). (3.22)

We will minimize V subject to (3.17). As stated in the previous section, the compo-

nents di in Ω1 are:

d2
1 + d2

2 = S2
11 + S2

12, a.e. x ∈ Ω1.

Applying Jensen’s inequality, we get:

|Ω1|(S2
11 + S2

12) =

∫

Ω1

(d2
1 + d2

2) dx ≥ |Ω1|(D2
11 +D2

12),

or equivalently,

S2
11 + S2

12 ≥ D2
11 +D2

12. (3.23)

We express S1j in terms of S2j , and D1j in terms of D2j, respectively, using the affine

equality contraint in (3.17):

S11 =
S01 −m2S21

m1
, S12 =

−m2S22

m1
,

D11 =
D01 −m2D21

m1
, D12 =

−m2D22

m1
. (3.24)

Substituting (3.24) back into (3.23) and the expression of V , we get the minimization

problem, where both the objective functional Ṽ and the inequality constraint Ψ are

quadratic functions:

Ṽ =
2k1((S01 −m2S21)

2 +m2
2S

2
22)

m1

+m2(k2 + t)(S2
21 + S2

22) +m2(k2 − t)(D2
21 +D2

22),

Ψ = (D01 −m2D21)
2 + (m2D22)

2 − (S01 −m2S21)
2 − (m2S22)

2 ≤ 0.

The necessary condition for (S21, S22, D21, D22) to be a minimum is the Karush-Kuhn-

Tucker condition:

∇Ṽ + λ∇Ψ = 0, (3.25)

λΨ = 0, λ ≥ 0, (3.26)

Ψ((S21, S22, D21, D22) ≤ 0. (3.27)
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The solutions to (3.25) and (3.26) are as follows:

s1 = {D22 = 0, D21 = 0, S22 = 0, S21 =
2k1S01

2k1m2 + k2m1 +m1t
}, λ1 = 0;

s2 = {D21 =
m1(k2 + t)S01 +D01(m1k2 + 2k1m2 +m1t)

2m2k̃
, D22 = 0,

S22 = 0, S21 =
(m1k2 + 2k1m2 −m1t)S01 +m1(k2 − t)D01

2m2k̃
},

λ2 = −(k2
2 − t2)m1S01 + ((k2

2 − t2)m1 + (k2 − t)k1m2)D01

(k2(S01 −D01) + t(S01 +D01))m1m2

;

s3 = {S21 =
S01 [(k2 − t)m1 + 2k1m2]

2m2k̃
− D01m1 (k2 − t)

2m2k̃
, S22 = 0,

D21 = −S01m1 (k2 + t)

2m2k̃
+
D01 [(k2 + t)m1 + 2k1m2]

2m2k̃
, D22 = 0}

λ3 = −(k2
2 − t2)m1S01 − ((k2

2 − t2)m1 + (k2 − t)k1m2)D01

(k2(S01 +D01) + t(S01 −D01))m1m2
, (3.28)

where k̃ = k1m2 + k2m1. First, notice λ2 < 0 under the condition k1 < t < k2,

therefore s2 cannot be a minimum. Whether s1 can be a minimum depends on

whether Ψ(s1) ≤ 0 is satisfied. Substitute s1 into Ψ and get:

Ψ =
(D01 − S01)m1(t+ k2) + 2k1m2D01

(2k1m2 +m1k2 +m1t)m1

,

which can be simplified to:

Ψ =
2k1m2 − 2(k̃ +m1t)r

(2k1m2 +m1k2 +m1t)m1
,

using D01 =
1 − r√

2
and S01 =

1 + r√
2

. Ψ ≤ 0 holds if and only if

2k1m2 − 2(k̃ +m1t)r ≤ 0, or
k1m2

k̃ +m1t
≤ r. (3.29)

If (3.29) is true, it can be shown that λ3 < 0. Therefore, in this situation, s3 cannot

be a minimum either. The only possible minimum is s2. On the other hand, if

(3.29) does not hold, then Ψ(s1) > 0, which eliminates s1. Furthermore, we have

λ3 > 0 in this situation, thus s3 becomes the possible minimum. The Karush-Kuhn-
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Tucker conditions are sufficient as well in our specific problem, because of the positive

definiteness of ∇2(Ṽ + λiΨ), i = 1 or 3, which is shown as follows:

∇2(Ṽ + λiΨ) = diag(a, a, b, b),

where

a =
4k1m

2
2

m1
+ 2m2(k2 + t) − 2λim

2
2, b = 2m2(k2 − t) + 2λim

2
2.

By “diag”, we mean diagonal matrices. Both a and b are positive for λ1 = 0.

Substituting λ3 into a and b, we get:

a = 2m2(1 + r)(k2 + t)k̃, b = 2m2(1 − r)(k2 − t)k̃,

which are also positive under the assumption r ≤ 1 and t ∈ (k1, k2). Therefore, s1 is

a minimum of V if
k1m2

k̃ +m1t
≤ r holds (case B), otherwise s3 is the minimum (case

C). We discuss those two cases successively.

3.4.1.2 Case B

When
k1m2

k̃ +m1t
≤ r holds, substituting s1 back into Ṽ , we find the minimum

YB(t, r):

YB(t, r) = H0S
2
01 =

(1 + r)2

2
H0, (3.30)

where

H0 =

(

m1

2k1
+

m2

k2 + t

)−1

. (3.31)

The corresponding average field in Ω1 can be found as well, using (3.24),

D11 =
D01

m1
, D12 = 0, S12 = 0, S11 =

(k1 + t)S01

2k1m2 + k1m1 + tm1
=
H0

2k1
S01,

and the point-wise minimizers are:

d1 = D21 = 0, d2 = D22 = 0, s2 = S22 = 0, s1 = S21, a.e. in Ω2, (3.32)

d2
1 + d2

2 = S2
11, s1 = S11, s2 = S12 = 0, a.e. in Ω1, (3.33)

which implies

E = αI, a.e. in Ω2, (3.34)

Tr(E) = constant, det(E) = 0 a.e. in Ω1, (3.35)
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taking into account (3.2). Notice that S11 = Tr(E) and recall

det(E) =
1

2
(s2

1 + s2
2 − d2

1 − d2
2).

The computation shows another fact about the minimizing field:

S11

S21
=
Tr(E1)

Tr(E2)
=
k2 + t

2k1
, (3.36)

where Ei, i = 1, 2, represent the field in Ωi. The relationship (3.36) is used to solve

the field in structures that realize the bound. The corresponding bound BB is found

by solving:

BB = max
t∈(k1,k2)

(YB(t, r) − 2tr).

Differentiating YB(t, r) − 2tr with respect to t, two critical values of t are obtained:

tcr1 = −r m1k2 + 2rm2k1 − k1
√
rm2(1 + r)

r m1
, (3.37)

tcr2 = −r m1k2 + 2rm2k1 + k1
√
rm2(1 + r)

rm1

.

Using basic knowledge of calculus (study sign of derivative), it can be easily shown

that the maximum is achieved at tcr1, therefore topt = tcr1. Substituting it back into

YB(t, r) − 2tr, we get the energy bound:

BB =
k1(1 + r − 2

√
rm2)

2

2m1
+ r k2. (3.38)

3.4.1.2.1 G-closure boundary After the energy bound BB is obtained, the

parametric representation for k∗1 and k∗2(r) at the boundary of the G-closure are

found using (2.8), if BB is optimal:

k∗1 = K(r) and k∗2 = K

(

1

r

)

, (3.39)

where

K(r) =
k1

(

1 −√
rm2

) (

1 + r − 2
√
rm2

)

m1
+ rk2.

The eigenvalues k∗1(r) and k∗2(r) are correlated through the parametric equation

1

k∗1 − tcr1(r)
+

1

k∗2 − tcr1(r)
=

2

H0 − 2tcr1(r)
. (3.40)
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3.4.1.3 Case C

If
k1m2

k̃ +m1t
> r holds, s3 is substituted into Ṽ to find the minimum YC(r, t):

YC = 2
−m1r

2t2 + 2m2

(

k1 − k̃
)

r t+m2k1k2 + k̃k2r
2

2m2k̃
. (3.41)

The average field inside Ω1, in this case, is found by substitution of s3 into (3.24):

D12 = S12 = 0, D11 = S11 =
S01 (k2 + t)

2k̃
+
D01 (k2 − t)

2k̃
. (3.42)

Let us analyze the point-wise condition on the field in Ω1. We know they should

satisfy

d2
1 + d2

2 = S2
11, s1 = S11, s2 = S12 = 0, a.e. in Ω1,

as in case B, because k1 − t < 0 holds in both cases (see “structure of minimizer” for

details), which is equivalent to:

det(E) = 0, T r(E) = constant.

On the other hand, we have D11 = S11, which implies d1 = S11, d2 = 0 under the

relation

d2
1 + d2

2 = S2
11.

Therefore the point-wise fields are:

d2 = s2 = 0, d1 = s1 = S11. (3.43)

In other words, the field E in Ω1 is also constant. This is not necessary in case B

where the field in Ω1 can vary as long as (3.35) is satisfied. The point-wise fields in

Ω2 satisfy:

s1 = S21, s2 = S22 = 0, d1 = D21, d2 = D22 = 0. (3.44)

This says that the field in Ω2 is a constant diagonal matrix E = diag(a, b), different

from the multiple of the identity matrix in case B.

Differentiating YC(r, t)−2rt with respect to t, the optimal value topt can be found:

topt =

(

k1 − k̃
)

m2

rm1
, (3.45)

and the bound in case C is:

BC =
(1 −m2)

2 k1 +m1m2k2

2m1
+

k2

2m2
r2. (3.46)
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3.4.1.3.2 G-closure boundary The calculation for the region C is similar.

According to (2.8), we have:

k∗1 =
(1 −m2)

2 k1 +m1m2k2

m1
, k∗2 =

k2

m2
. (3.47)

3.4.1.4 Description of regions B and C

The applicability of bounds will be described through systems of inequalities on

r in terms of the conductivies ki and volume fractions mi. A part of the inequalities

is obtained by solving the constraint:

k1 < topt < k2. (3.48)

The rest is derived from the requirement:

k1m2

k̃ +m1t
≤ r in case B, or

k1m2

k̃ +m1t
> r in case C, (3.49)

and the assumption r ∈ [0, 1]. The plot of the solution to the system of inequalities

(3.48) and (3.49), in the co-ordinate plane r −m1 (taking m2, ki’s as parameter), is

named as region B and C, respectively. Region B is given by the following:

ψAB < r < ψBD, 1 ≥ r ≥ m2,

ψAB = m2





k1

k̃ +
√

k̃2 −m2k2
1





2

, (3.50)

ψBD = m2

(

2k1

a +
√

a2 − 4m2k2
1

)2

, (3.51)

a = k̃ + 2m2k1, k̃ = m1k2 +m2k1. (3.52)

Region C is represented by:

ψAC < r < ψCE , 0 ≤ r < m2,

ψAC =
m2(k1 − k̃)

m1k2
, ψCE =

m2(k1 − k̃)

m1k1
. (3.53)

ψAB and ψAC are solutions to topt = k2 in case B and C, respectively. Similarly, ψBD

and ψCE are solutions to topt = k1. The boundary between Regions B and C is the

line given by r =
k1m2

k̃ +m1t
. Substituting topt in either case B or C for t, leads to

r = m2 (3.54)

dividing regions B and C.
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3.4.2 Case t = k2

We follow the same steps as in the previous section. First we find V = V1 + V2 by

evaluating V1, V2 in this case (see (3.20), (3.21)):

V = 2k1m1(S
2
11 + S2

12) + 2k2m1(S
2
21 + S2

22). (3.55)

V does not depend on D1j , D2j . Therefore we can minimize V only subject to the

constraints

m1S1j +m2S2j = S0j , j = 1, 2

because the constraints

m1D1j +m1D1j = D0j

can be satisfied by modifying point-wise dj, j = 1, 2, in Ωi, i = 1, 2,

d2
1 + d2

2 ≤ s2
1 + s2

2, and sj = S2j , a.e in Ω2,

d2
1 + d2

2 = s2
1 + s2

2, and sj = S1j , a.e. in Ω1, (3.56)

due to the fact D0j ≤ S0j for r ∈ [0, 1]. The minimum of V is found using the

standard Lagrange multiplier procedure:

S1j =
H2

2k1
S0j , S2j =

H2

2k2
S0j , j = 1, 2, (3.57)

or

S11 =
H2(1 + r)

2
√

2k1

, S21 =
H2(1 + r)

2
√

2k2

, S12 = S22 = 0,

if we take into account S01 =
1 + r√

2
and S02 = 0, where

H2 =

(

m1

2k1
+
m2

2k2

)−1

,

and S11, S21 satisfy
S11

S21
=
k2

k1
. (3.58)

(3.56) and (3.57) imply that point-wise fields in Ωi satisfy:

Tr(E) = constant, a.e. in Ωi, i = 1, 2,

det(E) = 0, a.e. in Ω1. (3.59)
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The minimum YA(r) is:

YA(r) = H2S
2
01 =

H2(1 + r)2

2
. (3.60)

The bound BA is:

BA = YA(r) − 2k2r =
H2(1 + r)2

2
− 2k2r. (3.61)

3.4.2.1 G-closure boundary

Find k∗1(r) and k∗2(r) again using (2.8) where

k∗1 = KA(r) =
1

2
(r + 1)H2 − rk2, k∗2 = KA(1/r). (3.62)

Excluding r from (3.62), we find the equation describing the boundary. One can

check that k∗1(r) and k∗2(r) are bounded as

2

H2 − 2k2
=

1

k∗1 − k2
+

1

k∗2 − k2
. (3.63)

This is similar to the Translation bound [25, 29, 39]. If the composite is isotropic,

the bounds coincide with the ones found in [14, 32].

3.4.2.2 Description of region A

The region A where bound BA is effective is defined similarly to regions B and

C. We notice that when t ∈ (k2,∞), the expression V is the same as in the case

t = k2, although the point wise dj, in Ω2 is different (see the description of ’structure

of minimizer’ for details). Therefore the minimum of V will be YA as well and it is

independent of t. Consequently, when maximizing YA − 2tr with respect to t to find

the bound, t = k2 gives the maximum or the bound, because YA − 2tr is linearly

decreasing with respect to t. In conclusion, when t ∈ (k2,∞), the bound is also BA.

We have pointed out that r = ψAB and r = ψAC are obtained by setting topt = k2 in

case B and C respectively. In addition, topt is a decreasing function of r in both case

B and C; therefore any point below the curves ψAB and ψAC corresponds to some
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t > k2. As a consequence, the region below ψAB and ψAC occurs where the bound

BA is active. In the r −m1 coordinate plane, it is given by the inequalities:

m1 ≥ 0, 0 ≤ r ≤ 1, (3.64)

r ≤ φAB, m2 ≤ r ≤ 1, (3.65)

r ≤ φAC , 0 < r ≤ m2. (3.66)

Curves φAB and φAC are described in (3.50) and (3.53).

3.4.3 Case t = k1 ( Translation bound)

This case can be viewed as a particular case of B, corresponding to some specific

value t = k1. The minimum YD of V and corresponding minimizers Sij , Dij can be

obtained by substituting k1 for t in s1 (see (3.28)) and (3.30):

YD = H1
(1 + r)2

2
, (3.67)

S21 =
S01

k1 + k2
H1, S22 = 0, D2j = 0, (3.68)

where

H1 =

(

m1

2k1

+
m2

k1 + k2

)−1

.

Substituting (3.68) into thecorresponding affine equality in (3.24), the average in Ω1

can be found as:

D12 = 0, D11 =
D01

m1
, S12 = 0, S11 =

S01

2k1
H1. (3.69)

And the pointwise si, di in Ω1 satisfy:

s1 = S11, s2 = S12, d2
1 + d2

2 ≤ s2
1 + s2

2 a.e. in Ω1, (3.70)

which is equivalent to:

d2
1 + d2

2 ≤ S2
11, (3.71)

by (3.69). It is also true that Tr(E(x)) = constant, x ∈ Ω1. However det(E) 6= 0,

which is different from case A, B and C. The bound BD is:

BD = H1
(1 + r)2

2
− 2r k1 (3.72)

and matches the classical Hashin-Shtrikman bound [20] if r = 1, and translation

bounds [2, 18, 29], if r ≤ 1.
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3.4.3.1 G-closure Boundary

The calculations are similar to the previous case A. The effective conductivities

are found using (3.62) with k2 replaced by k1 and H2 by H1. The parameter r can be

excluded, and the boundary of the G-closure corresponding to the Translation bound

is:
2

H1 − 2k1
=

1

k∗1 − k1
+

1

k∗2 − k1
. (3.73)

3.4.4 Small values t ∈ (k1, 0]

In this case, both k2 − t > 0 and k1 − t > 0 are true; therefore V is:

V = m1(k1 + t)(S2
11 + S2

12) +m2(k2 + t)(S2
21 + S2

22)

+ m1(k1 − t)(D2
11 +D2

12) +m2(k2 − t)(D2
21 +D2

22).

Differentiating V with respect to Sij , Dij, we get:

Si1 =
S01

ki + t
H+, Di1 =

D01

ki − t
H−., Si2 = Di2 = 0.

H−1
+ =

m1

k1 + t
+

m2

k2 + t
, H−1

− =
m1

k1 − t
+

m2

k2 − t
.

Here H+ and H− are the Lagrange multipliers enforcing the constraint on Sij and Dij

respectively in (3.17). This says that the fields Ei in each pure material component

Ωi are constant matrices with rank(Ei −Ej) 6= 1.

We compute the bound BE as before:

BE = max
t∈[0,k1)

(YE − 2tr), (3.74)

YE =
1

2

[

H+(1 + r)2 +H−(1 − r)2
]

.

In principle, the optimal value topt could be found by solving the fourth-order equation:

d (YE − 2tr)

d t
= 0.

After topt(r) is found, BE can be obtained by substituting topt(r) into (3.74), then

one can compute the G-closure boundary using (2.8), if this bound is optimal. The

region E, where BE is effective, could have also been obtained by solving topt < k1.

However, the complex nature of the fourth-order equation make an explicit algebraic
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expression unachievable. Although the general formula for the bound cannot be

obtained, we do know that this bound is not realizable by laminate structures, because

the optimality condition on the fields tells that such fields either are constant a.e. in

Ω, or are approached by a sequence of gradients that are constant values in a proper

sense [37]. Consequently, optimal laminates matching BE will not exist. Under this

circumstance, we can only conclude that BE is a lower bound. Numerical experiments

are performed to show how close BE is to the optimal bound, by computing the

relative difference between BE and the energy of some particular structure, which is

described and discussed in next chapter.

3.4.4.1 Region BD and BE

The region D is adjacent to the region B along the curve φBD (3.51) and E is

adjacent to C along the curve ψCE , (3.53). These two regions are divided by the

curve

φD2E = −m1b− 2m2k1k̃ + a
√

m1 (m1 − 1) b

2m2k1k̃
, (3.75)

a = k̃ + (m1 +m2) k1,

b = a2 − (k1 + k2)
2m1 − 4m2k1

2, (3.76)

and are described as

Region D : φDB < r, φD2E ≤ r ≤ 1, m1 ≤ 1 −m2,

Region E : max{0, φCE} < r < φD2E , m1 ≤ 1 −m2.

Note that φD2E is found by solving
d (YE − 2tr)

d t

∣

∣

∣

∣

t=k1

= 0 for r.



CHAPTER 4

OPTIMAL STRUCTURES

In this chapter, we describe how to build structures that realize the bounds or

optimal structures. The method used here follows closely the paper by [2]. The key is

to join the pure material components whose fields comply with optimality conditions,

derived in the last chapter, through rank-1 connections. A similar idea was used in

[33].

All structures are orthogonal laminates of some rank, obtained by sequentially

adding to the existing laminate a new one, along one of mutually orthogonal axes x1

and x2. The length scales in laminates are well separated. We choose to work with

laminates because the field inside each layer can be treated as constant (see [10])

when well-separated length scales go to zero, thus making the computation of the

energy easy. One can also show this by the use of gradient Young measures ([30, 34]).

The fields in neighboring layers in a laminate have to satisfy rank-1 connections.

4.1 Rank-1 connections and optimality
conditions on fields

The average field, prescribed by external loading, is assumed to be a diagonal

matrix (see [28]) and eigenvectors are aligned with x1 and x2, hence fields in each

layer are also diagonal matrices in R2×2 with eigenvectors codirected with the axes.

Such matrices are denoted as E = (α, β) through their diagonal entries or eigenvalues.

Two fields E1 = (α1, β1) and E2 = (α2, β2) are rank-1 connected if and only if

det(E1 − E2) = 0, or (α1 − α2)(β1 − β2) = 0. (4.1)

In the eigenvalues plane, this means (α1, β1), (α2, β2) either lie in the same vertical

line or horizontal line which are called rank-1 paths. Only materials whose fields
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form rank-1 paths can be joined together in laminates. On the other hand, the fields

in optimal structures must satisfy the optimality conditions derived in Chapter 3.

Hence, optimal structures can be created through rank-1 paths. Or more precisely, the

materials whose fields agree with sufficient optimality conditions are joined together

through rank-1 connections to generate laminates. The average field and volume

fractions are computed while the construction carries on. The last rank-1 path must

pass through the point (1, r) in the plane prescribed by external loading E0 and all

materials are consumed in this last step. The created structures are optimal because

we request that the optimality condition holds through the whole procedure. The

optimal structures in regions A, B, C, D and best possible structure in region E are

shown in Fig. 4.1. Note that region A is divided into two subregions A1 and A2

because of the difference of optimal structures realizing the bound BA. And region

D is divided into D1 and D2 according to the achievability of the bound. In D1, the

optimal structures are found in [2], while in D2, no optimal laminates are obtained

yet.

(a) (b) (c)

(d) (e) (f)

Figure 4.1 Cartoon of optimal structures in regions A -D1 and the
presumed optimal structure in region E. (a) L(13,2,13,2) region A1 (b)
L(13,2,13) region B (c) L(13,2,13,1,1) region D1 (d) L(123,2) region A2
(e) L(13,2,1) regions D2, E
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4.2 Optimal structures in region B

In case B, the optimality condition (3.34) and (3.35) requests:

E1 = (0, β) or E1 = (β, 0), in Ω1, E2 = (α, α), in Ω2.

Hence, material k2 is never rank-1 connected to material k3 whose fields are zero

and material k1 is used in layers to ensure compatibility. The optimal multiscale

laminates in region B are T 2 structures (or L(13, 2, 13)-structure) and built through

the following steps. The formation of rank-1 paths among optimal fields is illustrated

in Fig. 4.2.

1. L(13) substructure is formed. Materials k1 and k3 are laminated along the x2

direction with relative volume fraction of material k1 equal to µ11. The fields

in the materials are called E11 and E13, and E13 = (0, 0). The average field in

the substructure is called E10.

Figure 4.2 Fields in optimal laminates L(13,2,13) and formation of rank-1
path.
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2. L(13, 2) substructure is formed. The obtained L(13) structure is laminated

with material k2 (field E2 = (α, α)) along the x1 direction, with relative volume

fraction of material k2 equal to µ2, to form a second rank laminate. The average

field in the substructure is called E20.

3. L(13, 2, 13) structure is formed. The obtained L(13, 2) structure is laminated,

along x2 direction, with another laminate L(13) which is formed by laminating

material k1 (field E31) with k3 (field E33 = (0, 0)) along x1 direction. The

relative volume fraction of the second rank laminate L(13, 2) is µ4. The average

field of L(13) is represented as E3
13 and the relative volume fraction of material

k1 equals to µ31. The average field in the final structure is called E30.

4.2.1 Constraints

The average fields in the described substructures are:

E10 = E11µ11, E20 = E10(1 − µ2) + E2µ2, (4.2)

E3
13 = E31µ31, E30 = E3

31(1 − µ4) + E20µ4. (4.3)

The laminate’s volume fractions satisfy the geometric constraints:

µ11(1 − µ2)µ4 + µ31(1 − µ4) = m1, µ4µ2 = m2. (4.4)

There are four interfaces between layers in L(13, 2, 13), which impose four rank-1

connection conditions or continuity conditions along the tangential direction of the

interfaces on fields. The design variables µ’s in the sequential structures are properly

chosen to ensure these continuity conditions are satisfied, hence the following relations

hold

E11 = (0, β), E31 = (β, 0), (4.5)

E10[2] = E2[2] → βµ11 = α, (4.6)

E20[1] = E3
13[1] → αµ2 = βµ31. (4.7)

The average field of the mixture equaling to the external field results in

e30 = (1, r),
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hence:

1 = αµ2(1 − µ4) + βµ31µ4, (βµ11(1 − µ2) + αµ2)µ4 = r. (4.8)

4.2.2 Calculations of constants

Solving (4.4) and (4.6)-(4.8), we obtain:

β =
(1 + r) − 2

√
m2r

m1
, α =

√

r

m2
,

µ11 =
rm1

(1 + r)
√
rm2 − 2rm2

, µ4 =
√
rm2,

µ31 =
m1

(1 + r) − 2
√
rm2

, µ2 =

√

m2

r
.

A straight calculation confirms that the fields coincide with the fields computed for

the bounds; thus the energy matches the bound BB.

4.2.3 Region of applicability

Requiring all volume fractions fall into the interval (0,1) and also enforcing 0 <

r ≤ 1, we obtain a system of inequalities of r:

0 <
rm1

(1 + r)
√
rm2 − 2rm2

< 1,

0 <
m1

(1 + r) − 2
√
rm2

< 1,

0 <

√

m2

r
< 1, 0 <

√
rm2 < 1.

The solution of the above inequalities varies depending on the relationship between

m1 and m2:







m2 < r < 1 if m1 < 2
(√

m2 −m2

)

,

m2 < r <
1 − a5 −

√
1 − 2a5

a5
, otherwise ,

(4.9)

where

a5 =
2m2

(m1 + 2m2)2
.

The region represented by (4.9) contains the region of applicability of the bound BB.
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4.3 Optimal structures in region C

Note that if r = m2, then µ2 = 1, which implies that the substructure L(13)

formed in the first step of constructing L(13, 2, 13) disappears or the composite

degenerates into the T structure - second-rank laminate L(13, 2) (see Fig. 4.1, region

C). And one can show that L(13,2) matches the bound BC that is effective in region C

and therefore is optimal. The fields inside each component of the T structure comply

with the optimality condition for this region. This structure plays the same role as

the laminates in two-phase problem, in which an optimal structure of higher rank

degenerates into a laminate if r is small enough.

4.4 Optimal structures in region A

In this region, two structures are found independently. Each of them is optimal

in one of two mutually disjoint subregions A1, A2 of region A. The difference of the

structures arises because the field in material k2, prescribed by optimality conditions

(3.59), allows for the multiple existence of rank-1 paths and hence multiple optimal

structures (see Fig. 4.3 and Fig. 4.4 for the difference). In Fig. 4.3 and 4.4, the

admissible range of fields in k2 is represented by 45◦ solid line l .

4.4.1 Optimal structures in region A1

Laminate L(13,2,13,2) is optimal in A1 (Fig. 4.1). It is built by adding a layer

of material k2 with field E42 along direction x1 to the laminate L(13, 2, 13) described

in the previous section. The relative volume fraction of L(13, 2, 13) is defined as µ5.

The field in material k1 in region A is the same as that in region B; therefore the

fields E11 and E31 are as in (4.5).

E11 = (0, β), E31 = (β, 0).

The construction of structure and rank-1 connectedness tell that E42 is in the form:

E42 = (α2, r),

and the field E22 is assumed to be:

E22 = (α1, β1).

Also the optimality condition (3.59) on the field and relationship (3.58) lead to



34

Figure 4.3 Fields in optimal laminate L(13,2,13,2) and formation of rank-1
path.

β1 + α1 = α2 + r, k1β = k2(α1 + β1). (4.10)

The average fields in the sequential substructures are as in (4.2), (4.3) and the average

field in the whole laminate is computed as:

E40 = E30µ5 + E42(1 − µ5)

It has to match the external field E0 = (1, r). Continuity conditions along the

interfaces in the substructures request:

E10[2] = E22[2], E20[1] = E3
13[1]µ31, E30[2] = e42[2],

and yield:

µ11β = β1, µ2α1 = µ31β, µ11µ4(1 − µ2)β + µ2µ4β1 = r. (4.11)

The average field E40 = (1, r) leads to:

1 = α2(1 − µ5) + βµ31µ5. (4.12)
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The volume fractions (relative and absolute) satisfy:

m1 = µ11(1 − µ2)µ4µ5 + µ31(1 − µ4)µ5, m2 = µ2µ4µ5 + (1 − µ5). (4.13)

There are nine variables and eight conditions. To deal with the uncertainty, we assume

α1 = β1, (4.14)

which significantly simplifies the calculation.

Remark 4.1 The assumption (4.14) is based on the observation that the bound in

region A is a continuation of the bound in region B where the optimal structure is

L(13, 2, 13) and the field in material k2 is a multiple of the identity matrix. Therefore

it is reasonable to keep such a property in the core part k2 in L(13, 2, 13, 2).

4.4.1.1 Calculation of the constants

Solving equations (4.10)- (4.14), we find the volume fractions and fields inside

each material:

µ11 =
k1

2k2

, µ31 =
a2 k

2
1

r k2a1

, µ2 =
2a2k1

r a1

,

µ4 =
2rk̃

k1(r + 1)
, µ5 =

r(1 + r)a1

(2k̃ − k1(1 + r))2
.

e11 =
k2(r + 1)

k̃
[0, 1] , e31 =

k2(r + 1)

k̃
[1, 0] ,

e22 =
k1(r + 1)

2k̃
[1, 1] , e42 =

k1(r + 1)

k̃
[1, 0] + r[−1, 1], (4.15)

where

a1 = −5rm2k1
2 − 4rk1m1k2 + 4rk̃2 + (1 + r −m2)k1

2,

a2 = k1m2(m2 − 1) +m1k2(m2 + r).

Notice that µ31 = µ2µ11 holds and µ11 6= 0, which tells us that µ31 and µ2 van-

ish simultaneously. Such degeneration brings the L(13, 2, 13, 2) structure into the

L(13, 2)-structure.
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4.4.1.2 Region of applicability

All the volume fractions have to be in the interval (0,1); therefore we have the

following inequalities:

0 <
(m2k̃ − k1m2 + rm1k2)k1

2

r k2a2
< 1, (4.16)

0 <
2(m2k̃ − k1m2 + rm1k2)k1

r a2
< 1,

0 <
2k̃

k1(r + 1)
< 1, 0 <

r(1 + r)a2

(−r k1 − k1 + 2k̃)2
< 1. (4.17)

The above system of inequalities has solutions :

ψA1A2 < r < ψA1B , (4.18)

where ψA1A2 =
(k1 − k̃)m2

m1k2
, ψA1B = m2





k1

k̃ +
√

k̃2 −m2k
2
1





2

, (4.19)

only if ki, mi, i = 1, 2, satisfy:

m1 <
k1(1 −m2)

2k2
.

At the boundary of the applicability domain where r = ψA1B, by calculation, we have

µ5 = 1. This means the last layer k2 disappears and the structure degenerates into

L(13, 2, 13)-laminate. At the other boundary, when r = ψA1A2, we have µ2 = 0, µ31 =

0, which means that the composite degenerates into L(13, 2)-structure.

4.4.2 Optimal structure in region A2

In this region, the second-rank laminate L(123, 2) (Fig. 4.1 region A2) is shown

to be optimal. The formation of rank-1 paths is presented in Fig. 4.4. It is built in

two steps:

1. L(123) substructure is formed. Material k1, k2, and k3 are laminated along

the x1 direction, with relative volume fraction of materials k1 and k2 equaling

to µ11 and µ12, respectively. The fields in the materials are represented by

E11 = (α1, 0) in Ω1, E12 = (α2, 0) in Ω1
2, and E3 = (0, 0) in Ω3. The average

field in the substructure is E10.
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Figure 4.4 Fields in optimal laminates L(123,2) and formation of rank-1
path.

2. L(123, 2) structure is formed. The obtained L(123) structure is laminated with

material k2 (field E22 = (α22, β22) in Ω2
2) along x2 direction, with relative volume

fraction of material k2 equaling to µ2, to form a second rank laminate. The

average field in the substructure is called E20.

Here Ω1
2 and Ω2

2 are the subdivisions of Ω2, Ω2 = Ω1
2 ∪ Ω2

2.

The optimality condition requires that

α2 = α22 + β22,

and the compatibility requires that

k1α1 = k2α2.

The computation of the constants is similar to the previous case. They are:
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α1 =
k2(1 + r)

k̃
, α2 =

k1(1 + r)

k̃
, α22 = r,

β22 =
k1(1 + r)

k̃
− r, µ2 =

rk̃

k1(1 + r) − k̃
,

µ11 =
m1

1 + r
− rm1k1

(k̃ − k1)(1 + r)
, µ12 =

m2

1 + r
+

rm1k2

(k̃ − k1)(1 + r)
.

The region is bounded by the lines,

r = 0. r = 1, m1 = 0, r = ψA1A2, r = ψAC .

When r → 0, µ2 → 0, and the optimal L(123,2)-structure degenerates into a laminate.

4.5 Optimal structures in region D

Laminate L(13,2,13,1,1) is shown in [2] to be optimal in a subregion D1 of region

D, using a method similar to the one presented above. The most anisotropic structure

of this type is L(13,2,1) with the parameters:

p =
k1(1 −m2 −m1)

m1k2

, e11 =

[

0,
r(k1 + k2)(k1 + k2 − k̃ −m1k1)

m2k2k1

]

,

e2 =

[

r(k1 + k2 − k̃ −m1k1)

m2k2

,
r(k1 + k2 − k̃ −m1k1)

m2k2

]

,

e31 =

[

r,
r(1 −m1)(k1 + k2)

2

m2k1k2

− r(k1 + 2k2)

k2

]

, (4.20)

and pm1 is the volume fraction of material k1 that is rank-1 connected with material

k3. L(13,2,1) is optimal when

r = ψD1D2 =
m2k1k2

a6 + a7
, (4.21)

where

a6 = (k1 + k2)m1((k1 + k2)(1 −m1) − 3m2k1), a7 = m2k1(2k1 + k2 − 2m2k1),

and region D1 is described as

m1 ≥
k1(1 −m2)

k1 + k2

, ψD1D2 ≤ r ≤ 1, r ≥ ψBD. (4.22)

In region D2 where ψD2E < r < ψD1D2, optimal structures cannot be found even

if the optimality conditions obtained in Chapter 3 are applied. The possible reason
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is either that the pointwise description of the field in material k1 is too rough and

could not provide a definite rank-1 path used to build structures, or the bound is not

optimal. Our best guess is that L(13, 2, 1) is probably the structure closest to the

G-closure boundary.

4.6 Estimate of the bound in
region E and D2

The bound (3.74) in region E is not attainable by laminates and might not be

exact. We conjecture that an exact bound probably would require more constraints

on the field other than (3.8) or the constraints in [14]. It is desired that new constraints

will reveal more information on the relationship among the mean field in each material,

and this might help one to find the optimal structure in the region D2 as well.

4.6.1 Arguments for presumptive structures

Since bound BE cannot be realized by laminates, the method that succeeds in

other regions does not apply in region E. As pointed out, optimal structures in D2,

neighboring with region E, were not found. So we try to guess the best structures in

both D2 and E regions.

We notice that at the boundary of neighboring region D1, optimal structures

L(13, 2, 13, 1) degenerate on the boundary into the structures L(13, 2, 1), Fig. 4.1.

In another neighboring region C, optimal structures L(13, 2) can be viewed as a

degeneration of L(13, 2, 1), when the volume fraction of the exterior layer k1 in

L(13, 2, 1) goes to zero. Also, laminates L(12) are optimal two-material (m3 → 0)

structures that correspond to anisotropic loading r < rtr < 1, ([25]). These laminates

are a degeneration of laminates L(13, 2, 1), as m3 → 0. Finally, the optimal structures

for the limits, when r → 0, were conjectured in [13] to be L(13, 2, 1), because this

structure, being different from simple laminates, has a conductivity in the x1 direction

that equals to the harmonic mean, while the conductivity in the orthogonal direction

is finite (smaller than the arithmetic mean).

Base on these observations, we presume that structures L(13, 2, 1) with the proper

distribution of k1 between the layers, stay optimal in the whole regionD2∪E. In those

structures, the fields in the second and third materials are constant everywhere, as the
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bound predicts. However, the field in the first material takes two different values in

different layers; this contradicts the assumption of the bound but makes the structure

compatible: the field E11 in the inner layer is rank-1 connected with E3.

4.6.2 Numerical results

The numerical experiments are performed to see how well the suggested bounds

approximate an optimal bound. In all the numerical experiments, the conductivity ki

of each material is fixed. So is the volume fraction mi of each material. The relative

difference between the bound BE and energy WL(13, 2, 1) of L(13,2,1) structures (Fig.

4.1, region E)

δWrel =

(

minα∈[0,1]WL(13,2,1)(α) − BE

BE

)

(4.23)

is calculated for r ∈ [0, r0], where r0 is the threshold value where the topt in case E

becomes k1. Energy WL(13,2,1) depends on one parameter α - the relative amount of

material k1 used in the inner layer. We choose the value αopt of α to minimize the

energy stored in the structure. αopt changes with respect to the anisotropy level r

of the external field, as does WL(13,2,1). The results of one numerical experiment are

shown in Fig. 4.5. The parameters are m1 = 0.2, m2 = 0.5, m3 = 0.3, k1 = 1, k2 = 3.

As we can see, the relative differences are rather small, of the order 10−4, and even

of order of 10−7 as r is very close to 0. This is true for all fixed m1 values which fall

Figure 4.5 δWrel relative gap between the energy of the bounds and
conjected structure in region E.
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inside region E in r−m1 plane, and δWrel also changes in the same way with respect

to r for each fixed m1.

4.7 Summary

4.7.1 Bounds on energy and minimizers

The optimal bound is a piecewise analytic function of the G-closure problem

parameters ki, mi and the anisotropic level r of the external loading. It turns out

that there are five distinct regions A, B, C, D, and E, where the bound takes different

expressions and each of them corresponds to different values of topt(k1, k2, m1, m2), a

critical parameter in the derivation of the bounds. Those regions are conveniently

presented in the rectangle

{(m1, r) : 0 ≤ m1 ≤ (1 −m2 −m3), 0 ≤ r ≤ 1}

in the r −m1 plane while keeping the parameters ki and m2 fixed. The line r = 1

corresponds to isotropic external fields, i.e., the magnitude of fields in two orthogonal

directions is equal,and hence refers to isotropic composites. r = 0 means single

external loading. Fig. 4.6 is one of the plots of those regions where the parameters

were set as k1 = 1, k2 = 2, m2 = 0.36, m3 = 0.24. The dependence on m2 is not shown

in the figure. A change of m2 leads to a variation of the shape of those regions but not

their topology. Region D corresponds to the known translation bound [29]. Optimal

structures in part (D1) of region D have been found in [2]. The isotropic structures

in this region were also found in [18]. On the line r = 1 outside region D, the bound

has been derived in [32] and optimal structures have been found in [14]. The bounds

and structures in the remaining regions are new results of this work.

4.7.2 Three special points

There are three points where several regions meet, as shown in Fig. 4.6.

The four regions A1, A2, B, and C meet in the point P1:

r = m2, m1 =
k1(1 −m2)

2k2
. (4.24)

The four regions B, C, D, and E meet at the point P2:

r = m2, m1 =
k1(1 −m2)

k1 + k2
. (4.25)
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Figure 4.6 The graph of regions A-E where expression of energy bounds
change.

Above the interval (P1, P2) the field E2 is constant and proportional to the identity

matrix, and below this line the proportionality is lost.

The three regions A2, C and E meet at the point P3:

r = 0, m1 =
k1(1 −m2)

k2
. (4.26)

At this point, the L(12,3) structure has the same conductivity in the x1 direction, as

that of a simple laminate, see [13].

The boundaries between regions in Fig. 4.6 are calculated. The expressions are

shown in Table 4.1. The division between A1 and A2, and between D1 and D2 are

based on structural attainability, and the bounds are the same. In Table 4.2 the

expressions of energy bounds in different regions and corresponding expressions for

Table 4.1 Boundaries between regions
Boundary A1A2 A2B BD A1C, CE BC D1D2 D2E
Formula (4.18) (3.50) (3.51) (3.53) (3.53) (3.54) (4.21) (3.75)
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Table 4.2 Formulas for energy bounds and G-closure, and type of optimal
structure or the best approximate

Region Energy G-closure Structure Exact?
A1 (3.61) (3.63) L(13,2,13,2) yes
A2 (3.61) (3.63) L(123,2) yes
B (3.38) (3.39) L(13,2,13) yes
C (3.46) (3.47) L(13,2) yes
D1 (3.72) (3.73) L(13,2,13,1,1) yes
D2 (3.72) (3.73) L(13,2,1) not known
E (3.74) L(13,2,1) no

the G-closure boundary are listed. Optimal laminates that realize the bounds and

the best structure that approximates the bound in the regions where the bound is

not exact are also included in the table. Table 4.3 and Fig. 4.7 show the details of

optimal parameters and minimizers in different regions assuming that E0 = (1, r).

4.7.3 G-closure boundaries

The results for the G-closure boundary follow from the energy bounds. The

expression for the G-closure boundary is summarized in Table 4.2.

In Fig. 4.8, the eigenvalues k∗1(r), k∗2(r) of points on the G-closure boundary are

plotted separately as a function of r with parameter ki, mi fixed

k1 = 1, k2 = 2, m1 = 0.15, m2 = 0.5.

The horizontal line in the graph represents region C, because both eigenvalues are

constant independent of r. In Fig. 4.9, the G-closure boundary represented by

(k∗1, k∗2) and its symmetric image with respect to the 45◦ line are plotted with r

excluded. To show the improvement of new bounds, the graphs of the G-closure

Table 4.3 Character of minimizers
Region topt E(x) in Ω1 E(x) in Ω2

A t = k2 Tr(E) = constant, det(E) = 0 Tr(E) = constant
B t ∈ (k1, k2) Tr(E) = constant, det(E) = 0 E(x) = αI
C t ∈ (k1, k2) E(x) = constant, det(E) = 0 E(x) = diag(α, β)
D t = k1 Tr(E(x)) = constant E(x) = αI
E t ∈ (0, k1) E(x) = constant E(x) = constant
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(a) (b) (c)

(d) (e) (f)

Figure 4.7 The eigenvalues of optimal fields- minimizers. (a) Axes (b)
t = k2 Case A (c) k1 < t < k2 Case B (d) k1 < t < k2 Case C (e) t = k1 Case
D (f) t < k1 Case E

Figure 4.8 The eigenvalues of effective tensor K∗ at the G-closure boundary
as functions of r.
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(a) (b)

Figure 4.9 The G-closure boundaries of harmonic bounds, translation
bounds and new bounds. Parameter: k1 = 1, k2 = 2, m2 = 0.5 (a) m1 = 0.15
(In the r−m1 plane, parameters chosen represent a vertical line that passes
through regions D, B, C (two sharp bend points), A). (b) m1 = 0.05 (Region
A)

boundaries corresponding to harmonic mean bounds, the translation bounds and

new bounds are presented for two different values of m1 while keeping the other

parameters the same. Fig. 4.9(a) corresponds to one vertical line in the r−m1 plane

with k1, k2, m1, m2 fixed, which crosses the regions D, B, C and A as r decreases.

As shown in the figure, in the region D, the new boundary of the G-closure matches

the one given by the Translation bound. In the remaining region, the new bound

is optimal while the Translation bound is not; therefore, the new bound is tighter

than the Translation bound. Fig. 4.9(b) corresponds to a vertical line that lies in the

region A only, as pointed out before, the new bound is optimal and the Translation

bound isn’t, as a consequence, the new bound lies above both the Translation bound

and the Harmonic bound.



CHAPTER 5

PROBLEM DESCRIPTION AND

PRELIMINARIES

In this chapter, we provide some preliminary knowledge of the technique that is

used to solve the problem, or to be more specific, recall some important features of

div-curl Young measures that will be used in our analysis, and review our variational

method in terms of Young measures.

5.1 Problem description

We consider a typical optimal design problem in conductivity for the optimal

layout of the distribution of n ≥ 3 different conducting materials with conductivity

Ai in a domain Ω, so that a certain cost functional depending on the underlying field

is minimized. Precisely, we aim to minimize

(P ) : I(χ) =

∫

Ω

Ψ(x,∇u(x)) dx

under the constraints

χ = (χ1, χ2, . . . , χn) ∈ {0, 1}n,

∫

Ω

χ(x) dx = |Ω|r,

and

div

[

∑

i

χi(x)Ai∇u(x)
]

= 0 in Ω, u = u0 on ∂Ω.

Here Ω ⊂ RN is a regular, bounded domain, r ∈ (0, 1)n, r · 1 = 1, 1 = (1, 1, . . . , 1).

The matrices Ai for the constituents are assumed to be positive definite and such

that Ai −Aj is invertible for every pair i 6= j. Concerning the cost functional

Ψ : Ω × RN → R,

we distinguish two cases:
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1. the linear case: Ψ(x, ξ) = G(x) · ξ, for some fixed field G;

2. a non-linear case: Ψ(x, ξ) = (1/2)|ξ|2.

It is well-known that in general, such a problem does not admit optimal solutions

because the oscillating behavior of minimizing sequences of characteristic functions

persists to a degree that relaxation is needed. These relaxed versions might provide

some insight in understanding optimal microstructures, and eventually lay down the

foundation for setting up suitable numerical simulations. The main tool in the analysis

is an appropriate reformulation of the optimal design problem as a nonconvex, vector

variational problem for which, due to the underlying structure carried by the con-

ductivity law, a relaxation can be either fully computed, or appropriately estimated.

This procedure leads one to work with div-curl Young measures as introduced in

[36]. This program has been carried out for two materials in [9]. The objective of

the current work is to understand the differences in the more complex situations of

multimaterials, and how the various ingredients and computations change for three or

more materials. For simplicity, as a starting point, we will deal with the three-material

situation.

5.2 Div-curl Young measures

In this section we will briefly recall some facts about div-curl Young measures.

The main reference for this section is [36] and most materials are taken from it. We

first give the definition of a div-curl Young measure.

Definition 5.1 A family of probability measures ν = {νx}x∈Ω is called a (L2) div-curl

Young measure if there exists a sequence of pairs of vector fields Fj in L2(Ω;Mm×N ),

and uj in H1(Ω,Rm) such that

divFj → 0 in H−1(Ω;Rm), {|Fj|2}, {|∇uj|2} are equiintegrable in Ω,

and the Young measure associated with {(Fj,∇uj)} is precisely ν.

Such a measure ν has the property: that whenever the sequence of functions

{φ(x, Fj(x),∇uj(x))}
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weakly converges in L1(Ω) for some Caratheodory integrand φ, the weak limit is given

by

φ̄(x) =

∫

Mm×N×Mm×N

φ(x, ρ, λ) dνx(ρ, λ).

Even if {φ(x, Fj(x),∇uj(x))} fails to converge weakly in L1(Ω), the right inequality

for lower semicontinuity still holds:

lim inf
j→∞

∫

Ω

φ(x, Fj(x),∇uj(x)) dx ≥
∫

Ω

∫

Mm×N×Mm×N

φ(x, ρ, λ) dνx(ρ, λ) (5.1)

and strict inequality occurs when concentrations develop in the sequence

{φ(x, Fj(x),∇uj(x))}.

One important feature of this class of measures associated with div-curl pairs is the

direct consequence of the classic and well-known div-curl lemma ([31], [38], [41]),

which says:

Lemma 5.1 Let {Fj} be a sequence of bounded fields in L2(Ω;Mm×N ) converging

weakly to F , such that {divFj} is bounded in L2(Ω,Rm), and let {∇uj} be a bounded

sequence of gradients in H1(Ω,Rm) converging weakly to ∇u. Then

Fj(∇uj)
T ⇀ F∇uT .

If we rewrite the limits F, ∇u, F∇uT in terms of the div-curl Young measure asso-

ciated with (Fj,∇uj), we obtain the fundamental commutation property of div-curl

Young measures.

Lemma 5.2 If {νx}x∈Ω is a div-curl Young measure, then for a.e. x ∈ Ω,
∫

Mm×N×Mm×N

ρλT dνx(ρ, λ) =

∫

Mm×N

ρ dν(1)
x (ρ)

∫

Mm×N

λT dν(2)
x (λ) (5.2)

where ν
(i)
x , i = 1, 2 are the marginals on the two components, respectively.

Note that

F (x) =

∫

Mm×N

ρ dνx(ρ, λ) =

∫

Mm×N

ρ dν(1)
x (ρ)

is a divergence free matrix in L2(Ω;Mm×N ), and

∇u(x) =

∫

Mm×N

λT dνx(ρ, λ) =

∫

Mm×N

λT dν(2)
x (λ)

holds for some u ∈ H1(Ω,Rm). We will call (F,∇u) the barycenter or the first

moment of the Young measure ν. Another crucial question to be discussed is how
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to build a div-curl Young measure in a general and explicit way. The answer is the

following lemma.

Lemma 5.3 Suppose that ρi, λi, i = 1, 2 are four m×N matrices such that

(ρ2 − ρ1)(λ
T
2 − λT

1 ) = 0 (5.3)

as m×m matrices. Then the probability measure

µ = tδ(ρ1,λ1) + (1 − t)δ(ρ2,λ2)

is a div-curl Young measure for all t ∈ [0, 1]. If ν1 and ν2 are two div-curl Young

measures with barycenters (ρ1, λ1) and (ρ2, λ2), respectively, such that (5.3) holds,

then

µ = tν1 + (1 − t)ν2 (5.4)

is a div-curl Young measure, too, for any t ∈ [0, 1].

Div-curl Young measures constructed in this way are called “laminate” div-curl Young

measures. (5.3) and (5.4) can be recursively used to build higher or multirank

laminate div-curl Young measures.

5.3 Reformulation of the problem
and relaxation

We introduce the field

V (x) =
∑

i

χi(x)Ai∇u(x),

and reformulate the problem in terms of new design variables (∇u(x), V (x)). The

cost functional stays the same as introduced in Section 5.1 in terms of ∇u(x). The

variable pairs (∇u(x), V (x)) are subjected to the following constraints:

V ∈ L2(Ω;RN), u ∈ H1(Ω),

div V = 0 weakly in Ω, u = u0 on ∂Ω.

In addition, for a.e. x ∈ Ω, feasible pairs should belong to the subset Λ ⊂ RN × RN

determined by

Λ = ∪iΛi, Λi = {(λ, ρ) ∈ RN ×RN : ρ = Aiλ}; (5.5)
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and the subset Ωi of Ω prescribed by

Ωi = {x ∈ Ω : (∇u(x), V (x)) ∈ Λi}

has relative measure ri. Let A stand for the class of feasible pairs. It is clear that

this reformulation is equivalent to the original problem (P ). However, it has some

advantages from the perspective of relaxation. First, one is led to deal with pairs

of usual vector fields instead of characteristic functions. Second, the reformulation

enables us to use Young measures associated with feasible pairs and perform an

analysis based on manipulation and calculations of such class of measures. The Young

measures generated by admissible pairs in A are div-curl Young measures due to

the differential constraints imposed on those pairs. Let ν = {νx}x∈Ω be a div-curl

Young measure corresponding to a sequence of feasible pairs (∇uj, Vj) ∈ A with first

moment F = (F (1), F (2)) ∈ M2×N . The relationship between the two components in

admissible vector fields leads to the following fact:

supp(νx) ⊂ Λ = ∪iΛi,

and as a consequence, if

νx =
∑

i

ti(x)νx,i, supp(νx,i) ⊂ Λi, t = (t1(x), . . . tn(x)) ∈ (0, 1)n, t(x) · 1 = 1,

holds, then we should have
∫

Ω

ti(x) dx = |Ω|ri.

The cost functionals can be expressed through feasible ν’s as

I1(ν) =

∫

Ω

G(x) · F (1)(x) dx, I2(ν) =

∫

Ω

∑

i

ti(x)qi(x) dx

where

F (1) =

∫

Λ

X dνx(X, Y ), qi =

∫

Λi

|X|2 dνx,i(X, Y ).

The local feature of div-curl Young measure enables the compuation to be carried out

locally for a.e. x ∈ Ω. Therefore, we can treat x as an index, and even drop it for
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simplicity. Now one is allowed to work with a homogeneous div-curl Young measure

ν such that:

ν =
∑

i

tiνi, supp(νi) ⊂ Λi, ti ∈ [0, 1],
∑

i

ti = 1,

and the first moment of ν is given by

F = (F (1), F (2)) =

∫

Λ

(X, Y ) dν(X, Y ).

Let A(t, F ) denote the class of such families of probability measures. The local version

of the cost functionals is:

I1(ν) = g · F (1), I2(ν) =
∑

i

tiqi,

where as before

F (1) =

∫

Λ

X dν(X, Y ), qi =

∫

Λi

|X|2 dνi(X, Y ).

In these terms, relaxation amounts to calculating (or estimating) the minimum of the

optimization problem

(QP ) Minimize in ν ∈ A(t, F ) : I(ν)

as a map of (t, F ), for I = Ij, j = 1, 2. Let us call such a function Φ(t, F ). This Φ(t, F )

is actually the quasiconvex envelope of a certain intergrand in the original problem

(P ) expressing the interaction between Ψ and the state law [34]. Furthermore, if

we can verify that the integrand Ψ enjoys a typical coercivity property and satisfies

proper growth conditions, then by a standard relaxation theorem in ([15]), we have

a relaxed version of the original optimal design problem as follows:

Minimize in (∇u, V ) :

∫

Ω

Φ(t(x),∇u(x), V (x)) dx,

where minimization is performed over the set of all weak limits (∇u, V ) of sequences

from A.



CHAPTER 6

LINEAR COST FUNCTIONAL

Situations where two constituents are at disposal have been thoroughly investi-

gated using the parametrized measure or Young measure approach before, in partic-

ular, one can find in [9] the case of a linear cost functional; and in [17], a quadratic

cost functional. We focus on the case where three isotropic phases

Ai = aiI, i = 1, 2, 3 with ai > 0,

are present; furthermore, it is assumed a3 > a2 > a1. Such simplification allows the

algebra to be fully explicit. In this chapter, we deal with the linear cost functional,

precisely,

(P ) Minimize in χ :

∫

Ω

G(x) · ∇u(x) dx

subject to

div

[

3
∑

i=1

χiai∇u
]

= 0 in Ω, u = u0 on ∂Ω,

and

χ = (χi) ∈ {0, 1}3, χ · 1 = 1,

∫

Ω

χ(x) dx = r|Ω|,

where Ω ⊂ RN , 1 = (1, 1, 1), r ∈ [0, 1]3 with r · 1 = 1, and G ∈ L2(Ω;RN). We leave

the quardratic cost for the next chapter, which requires a different strategy.

6.1 Quasiconvex hull of admissible
set A

Any sequence {∇uj, Vj} ∈ A is equiintegrable because they are solutions of a

sequence of uniformly elliptic problems (see [6]), thus generates a div-curl Young

measure ν. In addition, we have the following:

∇uj ⇀ ∇u =

∫

RN×RN

X dν(X, Y ), Vj ⇀ V =

∫

RN×RN

Y dν(X, Y ) in L2(Ω,RN)



53

because of equiintegrability of ∇uj and Vj, and the representation of weak limit in

terms of Young measure. Recall (∇u, V ) is the first moment of ν. Hence for any

G ∈ L2(Ω,RN), it is true that:

∫

Ω

G(x) · ∇uj dx→
∫

Ω

G(x) · ∇u dx, as j → ∞

and consequently relaxation in such a situation is just a matter of finding all the weak

limits of sequences in A or obtaining the set of all div-curl Young measures generated

by sequences in A. This set is the quasiconvex hull of A which is the union of three

linear manifold Λi at given proportion. Now our attention is brought to finding the

quasiconvex hull itself. It will be shown that, as in the two-material situation [9], this

quasiconvex hull QtA or envelope is given by the set

{(t, F ) : Pt(F ) ≤ 0}

for a specific homogeneous-of-degree-two polynomial Pt. Here

A = ∪iΛi, Λi = {(λ, ρ) ∈ RN ×RN : ρ = aiλ},

and QtA is described as:

QtA = {F = (F (1), F (2)) ∈ RN × RN : there is a div-curl Young measure ν

supported in S with mass ti in Λi, and barycenter F}.

Note that t = (t1, t2, t3) is a collection of proportions

1 = t1 + t2 + t3, ti ≥ 0.

6.1.1 Necessary conditions on an admissible
ν for given t

Feasible div-curl Young measures ν admit the decomposition:

ν = t1ν1 + t2ν2 + t2ν3, supp(νi) ⊂ Λi, t1 + t2 + t3 = 1, ti ≥ 0.

If we define

xi =

∫

Λi

X dνi(X, Y ) =

∫

RN

X dν
(1)
i (X)
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where ν
(1)
i is the projection of νi onto the λ-component, then due to the structure of

the manifolds Λi, we have

F (1) = t1x1 + t2x2 + t3x3 ∈ RN , F (2) = t1a1x1 + t2a2x2 + t3a3x3 ∈ RN . (6.1)

Furthermore, the commutation property of div-curl Young measure (Lemma 5.2)

provides

F (1) · F (2) = t1q1 + t2q2 + t3q3 (6.2)

where

qi =

∫

Λi

|X|2 dν(1)
i (X) ∈ R.

Finally, by Jensen’s inequality we have the following relationship:

qi ≥ |xi|2,

F (1) · F (2) ≥ t1a1|x1|2 + t2a2|x2|2 + t3a3|x3|2. (6.3)

These conditions will be used to prove part of the central result of this chapter stated

in the following theorem

Theorem 6.1 For each t ∈ [0, 1]3, t · 1 = 1, 1 = (1, 1, 1), the quasiconvexification of

the union of the three manifolds

A = ∪3
i=1Λi

at volume ti in Λi is given by the pairs (F (1), F (2)) ∈ RN × RN for which

((a1t1 + a2t2 + a3t3)F
(1) − F (2)) · (a1a2a3F

(1) − (a1a3t2 + a1a2t3 + a2a3t1)F
(2)) ≤ 0.

Proof. The proof is carried out in two steps. First, we derive constraints on

(t, F ), which are represented as {Pt(F ) ≤ 0}, such that conditions (6.1)-(6.3) can be

satisfied by some xi’s. We therefore have QtA ⊂ {Pt(F ) ≤ 0}. In the second step,

we show that every F ∈ {Pt ≤ 0} is the first moment of a laminate div-curl Young

measure supported in A with mass ti at Λi, using Lemma 5.3. Hence we also have

{Pt(F ) ≤ 0} ⊂ QtA.
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Step1: find those constraints on (t, F ). Unlike the two-material case, where F

takes form

F (1) = t1x1 + t2x2 ∈ RN , F (2) = t1a1x1 + t2a2x2 ∈ RN , (6.4)

which enables xi, i = 1, 2 to be uniquely determined, (6.1) is underdetermined and

leaves us one free variable. It also makes the problem a lot more complicated. We

take x3, for example, as the free variable. Express x1, x2 in terms of x3 using (6.1)

x1 =
a2t3x3 − a3t3x3 − a2F

(1) + F (2)

t1(a1 − a2)
,

x2 =
a3t3x3 − a1t3x3 + a1F

(1) − F (2)

t2(a1 − a2)
. (6.5)

Substituting it into the inequality (6.3), we get a quadratic form in x3

(

a1(a3t3 − a2t3)
2

t1(a1 − a2)2
+
a2(a3t3 − a1t3)

2

t2(a1 − a2)2
+ a3t3

)

|x3|2

+2

(

a1(a3t3 − a2t3)(a2F
(1) − F (2))

t1(a1 − a2)2
+
a2(a3t3 − a1t3)(a1F

(1) − F (2))

t2(a1 − a2)2

)

· x3

+
a1(a2F

(1) − F (2)) · (a2F
(1) − F (2))

t1(a1 − a2)2
+

a2(a1F
(1) − F (2)) · (a1F

(1) − F (2))

t2(a1 − a2)2
− F (1) · F (2) ≤ 0. (6.6)

This inequality can have solutions only if the minimum of the left-hand side, let us call

it G(ai, ti, F, x3), is less than or equal to 0. We will derive restrictions on F associated

with ti, based on this condition. Standard procedure shows that the minimum of G

is achieved at

x30 =
ρ1F

(1) + ρ2F
(2)

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
(6.7)

where

ρ1 = a1a2(a1t1 + a2t2) − a1a2a3(t1 + t2), ρ2 = a3(a1t2 + a2t1) − a1a2(t1 + t2),

and the minimum itself equals to:

G(x30) =
Pt(F )

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
,
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where

Pt(F ) = (a1a2a3F
(1)− (a1a3t2 +a1a2t3 +a2a3t1)F

(2)) · ((a1t1 +a2t2 +a3t3)F
(1)−F (2)).

(6.8)

Hence (t, F ) must satisfy Pt(F ) ≤ 0.

Remark 6.1 Note that Pt = 0 can only hold when G(ai, ti, F, x30) = 0, and then

inequality (6.6) becomes equality. This forces νi to be Dirac masses based at (xi, aixi).

As a matter of fact, x30 is the only point satisfying G(ai, ti, F, x3) ≤ 0 when Pt(F ) = 0.

However, there exist x3 6= x30 such that G(ai, ti, F, x3) = 0 while Pt(F ) < 0 is true,

which will also leads to νi being a Dirac mass, and there exist many x3 such that

G(ai, ti, F, x3) ≤ 0.

Step 2. We would like to show that every F with Pt(F ) ≤ 0 is achievable as a

second-order laminate div-curl Young measure. This requires that every νi is a Dirac

mass based at (xi, aixi), and, in addition, (xi, aixi) satisfy (see Lemma 5.3),

(xi − xj) · (aixi − ajxj) = 0, (6.9)

R(ti, xi, ai) ≡ (z − xk) · (Z − akxk) = 0 (6.10)

where

z =
tixi

ti + tj
+

tjxj

ti + tj
, Z =

tiaixi

ti + tj
+
tjajxj

ti + tj
,

and (6.10) can be rewritten as:

R(ti, xi, ai) ≡ (tixi + tjxj − (ti + tj)xk) · (aitixi + ajtjxj − ak(ti + tj)xk) = 0.

As pointed out in Remark 6.1, we know that if G(ai, ti, F, x3) = 0, we will have Dirac

masses supported in each manifold Λi. The following lemma is to prove that having

(6.9) and (6.10) satisfied, automatically, ensures that νi supported in Λi is a Dirac

mass.

Lemma 6.1 Suppose (6.1), (6.2), and (6.3) hold. If (xi − xj) · (aixi − ajxj) = 0,

then R(ti, xi, ai) = 0 if and only if G(ai, ti, F, x3) = 0 or, equivalently, if and only if

F (1) · F (2) − a1t1x
2
1 − a2t2x

2
2 − a3t3x

2
3 = 0. (6.11)
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The proof is straightforward. We can assume, without loss of generality, i = 1, j =

2, k = 3 (the other cases are similar). We may rewrite R(ai, ti, xi) in the form

R(ai, ti, xi) = (t1 + t2)(t1(x1 − x3) · (a1x1 − a3x3) + t2(x2 − x3) · (a2x2 − a3x3))

−t1t2(x1 − x2) · (a1x1 − a2x2). (6.12)

Let us denote by D(xi, ai, ti), the left hand side of (6.11). Direct algebra shows that

D − R = −(t1(x1 − x3) · (a1x1 − a3x3) + t2(x2 − x3) · (a2x2 − a3x3)).

If (x1 − x2) · (a1x1 − a2x2) = 0 holds, we will have

D −R =
−1

t1 + t2
R or D =

t1 + t2 − 1

t1 + t2
R,

which finishes the proof of the lemma.

As a consequence of Lemma 6.1, if we can find x3 satisfying (6.9) and (6.10), so

that G(ai, ti, F, x3) = 0, by the remark above, each νi will be a Dirac mass supported

in Λi, and, in addition, they will form a second rank-laminate as desired. Therefore

ν =
∑

i tiνi will be a div-curl Young measure. Our goal is then to prove that such

x3 can be found for all F = (F (1), F (2)) such that Pt(F ) ≤ 0. Using (6.1), we can

rewrite both equations in (6.9)-(6.10) as quadratic forms of x3

(x3 − v1) · (x3 − v2) = 0, (6.13)

(x3 − F (1)) · (x3 −
F (2)

a3

) = 0, (6.14)

where

v1 =
a1a2(t1 + t2)F

(1) − (a1t2 + a2t1)F
(2)

t3(a1a2t1 + a1a2t2 − a1t2a3 − a2t1a3)
,

v2 =
(a1t1 + a2t2)F

(1) − (t1 + t2)F
(2)

t3(a1t1 + a2t2 − t1a3 − t2a3)
.

Equations (6.13) and (6.14) represent two N-1 spheres in RN centered at

v1 + v2

2
,

F (1) + F (2)

a3

2

respectively, with corresponding radii

r1 =

∥

∥

∥

∥

v1 − v2

2

∥

∥

∥

∥

, r2 =

∥

∥

∥

∥

∥

F (1) − F (2)

a3

2

∥

∥

∥

∥

∥

.

We need to show that these two spheres intersect with or touch each other. By

elementary geometry, this is equivalent to showing that the distance d between the
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centers and radii ri, i = 1, 2 of the spheres satisfy d ≤ (r1 + r2). One can find, by

direct calculation, that

r1 =
t1t2(a1 − a2)

2‖a3F
(1) − F (2)‖

t3(a1t1 + a2t2 − t1a3 − t2a3)(a1a2t1 + a1a2t2 − a1t2a3 − a2t1a3)
,

r2 =
‖a3F

(1) − F (2)‖
2a3

.

The computation of d2 − (r1 + r2)
2 will be much easier than that of d− (r1 + r2) due

to these last formulae. The result is

d2 − (r1 + r2)
2 =

C1 · C2

ρ
,

where

ρ = t23a3(a1t1 + a2t2 − t1a3 − t2a3)(a1a2t1 + a1a2t2 − a1t2a3 − a2t1a3),

C1 = (a1t3t1 + t3a2t2 − a1t1 − a2t2 − t2t3a3 − t3a3t1)F
(1) + (t1 + t2)F

(2),

C2 = (a1a2t2t3 + a1t3t1a2 + a1t2a3 + a2t1a3 − a2a3t1t3 − a1t2t3a3)F
(2)

−a1a2a3(t1 + t2)F
(1).

Use the fact t1 + t2 + t3 = 1, to rewrite C1 and C2 as

C1 = (t1 + t2)(F
(2) − (a1t1 + a2t2 + a3t3)F

(1)),

C2 = (t1 + t2)((a1a3t2 + a1a2t3 + a2a3t1)F
(2) − a1a2a3F

(1)).

Thus, we have

d2 − (r1 + r2)
2 =

(t1 + t2)
2

ρ
Pt.

Since ρ > 0 holds under the assumption a3 > a2 > a1, d
2 − (r1 + r2)

2 ≤ 0 on

{Pt ≤ 0}. Hence the spheres (6.13) and (6.14) intersect with or touch each other. We

conclude that every F = (F (1), F (2)) with Pt(F ) ≤ 0, is the barycenter of a div-curl

Young measure (a second order laminate in fact) supported in the union of the three

manifolds Λi, and with mass ti over each one, thus finishing the proof of Theorem

6.1.

6.2 Relaxation of the problem (P )

The relaxation result is contained in the following theorem whose proof follows

immediately after the quasiconvex hull A is obtained, by simply noticing that the
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cost functional, being linear with respect to ∇u, is weakly continuous with respect to

weak convergence in H1(Ω).

Theorem 6.2 The variational problem (P ) below is a full relaxation of the problem

P :

(P ) Minimize in (t,∇u, V ) ∈ A :

∫

Ω

G(x) · ∇u(x) dx

subject to

u = u0 on ∂Ω, div V = 0 in Ω, t ∈ [0, 1]3, t · 1 = 1,

∫

Ω

t(x) dx = r|Ω|,

where

A = {(t, (F (1), F (2))) : Pt(F ) ≤ 0}

and

Pt(F ) = (F (2)− (a1t1 +a2t2 +a3t3)F
(1)) · ((a1a3t2 +a1a2t3 +a2a3t1)F

(2)−a1a2a3F
(1)).

Actually, such relaxation becomes more transparent if we rephrase the main result

in this chapter, Theorem 6.1, as follows.

Theorem 6.3 A pair of fields (∇u, V ) with u ∈ H1(Ω), u = u0 on ∂Ω, V ∈
L2(Ω;RN), div V = 0, is the weak limit of a sequence of pairs (∇u(j), V (j)) with

div
[

(χ
(j)
1 a1 + χ

(j)
2 a2 + χ

(j)
3 a3)∇u(j)

]

= 0 in Ω, u(j) = u0 on ∂Ω,

and

V (j) = (χ
(j)
1 a1 + χ

(j)
2 a2 + χ

(j)
3 a3)∇u(j), ti|Ω| =

∫

Ω

χ
(j)
i dx, i = 1, 2, 3,

if and only if

Pt(∇u(x), V (x)) ≤ 0.
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QUADRATIC COST FUNCTIONAL

In this chapter, we deal with the quadratic cost functional, namely

Minimize in χ :

∫

Ω

1

2
|∇u(x)|2 dx

subject to

div
[

∑

χiai∇u
]

= 0 in Ω, u = u0 on ∂Ω,

and

χ = (χi) ∈ {0, 1}3, χ · 1 = 1,

∫

Ω

χ(x) dx = r|Ω|,

where 1 = (1, 1, 1), r ∈ [0, 1]3 with r · 1 = 1, and ai > 0. According to the discussion

in the end of Section 5.3, and similar to the two-material case, a lower bound for the

appropriate relaxed integrand amounts to finding the minimum for the optimization

problem

(PP ) Minimize in (xi, qi) :
∑

i

tiqi

subject to

F (1) · F (2) =
∑

i

aitiqi, F
(1) =

∑

i

tixi, F
(2) =

∑

i

aitixi, qi ≥ |xi|2.

It has been proved in the previous chapter that the feasible set for the minimization

problem is non-empty if Pt(F ) ≤ 0 holds, where t = (t1, t2, t3), and

Pt = ((a1t1 + a2t2 + a3t3)F
(1) − F (2)−) · (a1a2a3F

(1) − (a1a3t2 + a1a2t3 + a2a3t1)F
(2)).

Let A∗
(t, F ) stand for the set of (t, F ) satisfying this last constraint. For each such

fixed (t, F ), and for fixed vector xi, the feasible set in the variables qi actually is a

triangle in R3. Therefore the optimal solution will be achieved at one of its three
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vertices depending on the relationship among the ai’s. Under our assumption a3 >

ai, i = 1, 2, elementary algebra shows that the optimal solution will occur at qi =

|xi|2, i = 1, 2, by comparing

J = (
∑

tiqi)

∣

∣

∣

∣

qi=x2
i
,qj=x2

j

, i, j = 1, 2, 3, and i 6= j.

We can rewrite J , by using the linear constraints (6.2), as

J = t1|x1|2 + t2|x2|2 +
F (1) · F (2) − a1t1|x1|2 − a2t2|x2|2

a3
,

and then, after the inner optimization in the variables qi’s, we are left with

Minimize in xi : t1

(

1 − a1

a3

)

|x1|2 + t2

(

1 − a2

a3

)

|x2|2 +
F (1) · F (2)

a3

subject to

F (1) · F (2) ≥ a1t1|x1|2 + a2t2|x2|2 + a3t3|x3|2,

F (1) = t1x1 + t2x2 + t3x3, F (2) = t1a1x1 + t2a2x2 + t3a3x3. (7.1)

Call the minimum of this problem Φ(t, (F (1), F (2))) and we have a lower bound on

the relaxation as stated in the following theorem.

Theorem 7.1 Consider the variational problem

Minimize in (t,∇u, V ) ∈ A :

∫

Ω

Φ(t, (∇u, V )) dx

subject to

u = u0 on ∂Ω, div V = 0 in Ω, t ∈ [0, 1]3, t · 1 = 1,

∫

Ω

t(x) dx = r|Ω|,

where

A = {(t, (F (1), F (2))) : Pt(F ) ≤ 0}

and

Pt(F ) = (F (2)− (a1t1 +a2t2 +a3t3)F
(1)) · ((a1a3t2 +a1a2t3 +a2a3t1)F

(2)−a1a2a3F
(1)).

The optimal value for this problem is a lower bound for the relaxation of the quadratic

problem considered above.
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One can use the two identities in (7.1) to express x1 and x2, as an affine quantity in

terms of x3 as in (6.5), and substitute this into the inequality constraint and the cost

functional. That will result in a quadratic cost in x3 subject to a quadratic inequality

constraint. The algebra involved is rather tedious, and certainly leads to a lower

bound for our relaxed problem. However, we do not have any means to show that

such an optimal value for the lower bound could possibly be achieved by lamination.

Sometimes the inequality constraint is inactive, so that we cannot even be sure about

the structure of the third probability measure ν3. But even if the optimal value would

be attained with that inequality being active, so that it is an equality, all we can be

sure about is that the third probability measure is also a delta measure because

F (1) · F (2) = a1t1|x1|2 + a2t2|x2|2 + a3t3|x3|2

implies q3 = |x3|2. Yet, one cannot show that the three delta measures, one in

each manifold, is a second-order laminate. If they turn out to be a laminate, then we

achieved the quasiconvexification of the original integrand; hence we have a relaxation.

Otherwise one gets only a lower bound of the quasiconvexification. Therefore, even

if it were possible to provide an explicit form for this subrelaxation, all we can get is

a lower bound as stated in Theorem 7.1.

One can make a further attempt based on the JBOC (see section 7.1) introduced

in [35]. By focusing on optimality conditions, it may be possible to provide a more

explicit form of the subrelaxation which surprisingly may turn out to be, as a matter

of fact, a full relaxation! The explanation for such a remarkable situation is clear:

one may not be able to compute exactly the values of a certain integrand for all

potential values of its arguments, but sometime it might be possible to provide those

exact values for part of the admissible values of the arguments related to a specific

optimization problem.

7.1 The JBOC condition

In this section, we follow closely the material in Section 3 of [35], although we will

adapt those ideas to our div-curl situation in arbitrary spatial dimension N .

Assume we have found a (sub)relaxation, of a certain optimal design problem, in

the form
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Minimize in (t, u, V ) :

∫

Ω

Φ(x, t(x),∇u(x), V (x)) dx

subject to

u ∈ H1(Ω), u = u0 on ∂Ω, V ∈ L2(Ω;RN),

div V = 0 in Ω, 0 ≤ t ≤ 1,

∫

Ω

t(x) dx = r|Ω|,

and

Ψ(x, t(x),∇u(x), V (x)) ≤ 0 a.e. x ∈ Ω,

for certain functions Ψ,Φ : Ω × [0, 1]3 ×RN ×RN → R. Let us introduce the JBOC

condition that bounds Φ and Ψ.

Definition 7.1 Two functions Φ(F ) and Ψ(F ) defined for F = (F (1), F (2)) ∈ RN ×
RN are said to satisfy the JBOC (joint boundary optimality condition) if there is a

map M : RN → RN with Ψ(F (1),M(F (1))) = 0 so that an optimal solution of the

(nonlinear) mathematical programming problem

Minimize in F (2) : Φ(F ) subject to Ψ(F ) ≤ 0

is given when F (2) = M(F (1)), and, in addition, an optimal solution of the optimiza-

tion problem

Minimize in F (1) : Φ(F (1),M(F (1))) subject to Ψ(F ) ≤ 0

is also provided when F (2) = M(F (1)).

Such a definition is tailored to help in the following sense: even if the integrand Φ

is not explicitly known, we can still focus on optimality in an appropriate way, and

be led to a new, simpler, equivalent optimization problem which may even be a full

relaxation of the original problem. Suppose that for a.e. x ∈ Ω and t ∈ [0, 1]3,

the functions Ψ(x, t, ·, ·) and Φ(x, t, ·, ·) verify the JBOC condition so that there is

a map M : Ω × [0, 1]3 × RN 7→ RN in such a way that the identity V = M(x, t, U)
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furnishes the optimal relationship between the two variables V and U as indicated in

the definition. We furthermore assume that

Ψ(x, t, U,M(x, t, U)) = 0,

and the problem

div [M(x, t(x),∇u(x))] = 0 in Ω, u = u0 on ∂Ω,

always has a unique solution in H1(Ω). Through this mapping, we can consider two

additional variational problems intimately related to our (sub)relaxation, namely:

• Problem (P ∗):

Minimize in (t, u, V ) :

∫

Ω

Φ̃(x, t(x),∇u(x)) dx

subject to

u ∈ H1(Ω), u = u0 on ∂Ω, 0 ≤ t ≤ 1,
∫

Ω

t(x) dx = r|Ω|, Ψ(x, t(x),∇u(x), V (x)) ≤ 0,

where

Φ̃(x, t, U) = Φ(x, t, U,M(x, t, U)).

• Problem (P̃ ):

Minimize in t :

∫

Ω

Φ̃(x, t(x),∇u(x)) dx

subject to

div [M(x, t(x),∇u(x))] = 0 in Ω,

u = u0 on ∂Ω, 0 ≤ t ≤ 1,

∫

Ω

t(x) dx = r|Ω|.

Let us identify as (P ) the initial problem in this section. The key lemma to relate all

of these optimization problems is the following.
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Lemma 7.1 If for every non-negative function p(x) (multiplier) and volume fractions

t(x), the combination

Φ̃(x, t(x), U) + p(x)Ψ(x, t(x), U, V )

is an integrand with the property that the integral functional

∫

Ω

[

Φ̃(x, t(x),∇u(x)) + p(x)Ψ(x, t(x),∇u(x), V (x))
]

dx (7.2)

under a Dirichlet boundary condition for u, and the div-free condition for V , cannot

have local minima which are not global, then the pair determined by

div [M(x, t(x),∇u(x))] = 0 in Ω, u = u0 on ∂Ω, V (x) = M(x, t(x),∇u(x))
(7.3)

is optimal for (P ∗) for each admissible volume fraction t(x), and the three optimization

problems (P ), (P ∗), and (P̃ ) are equivalent.

This lemma implies that when we are interested in finding optimal solutions for (P ).

We can find them by treating (P̃ ) as well. When an explicit form for Φ is not

available, if, however, we are able to obtain the optimal map M, we turn to problem

(P̃ ) that is much more explicit and easier to handle than (P ). In addition, if (P )

comes from an original nonconvex problem, it may happen that (P̃ ) is a relaxation

for that nonconvex problem, even if (P ) is not.

Proof. Let t be given, and let u and V be uniquely determined by (7.3). Because

of the JBOC condition, there is no better mate for ∇u, among those complying with

Ψ(x, t(x),∇u(x), Ṽ (x)) ≤ 0, than V itself, and no better mate for V , among those

verifying Ψ(x, t(x),∇ũ(x), V (x)) ≤ 0 than ∇u. This double assertion implies that

the pair (∇u, V ) is a local minimizer for (P ∗), and so there is a multiplier p(x) ≥ 0

such that the same pair (∇u, V ) is a local minimizer for the augmented functional

in (7.2). By our main hypothesis in the statement, that same pair is in fact a global

minimizer for (7.2) under (7.4). Take any other pair (ũ, Ṽ ) admissible for (P ∗), such

that

ũ ∈ H1(Ω), ũ = u0 on ∂Ω, Ψ(x, t(x),∇ũ(x), Ṽ (x)) ≤ 0. (7.4)
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It is immediate to check that
∫

Ω

Φ̃(x, t(x),∇u(x)) dx =
∫

Ω

Φ̃(x, t(x),∇u(x)) dx+

∫

Ω

p(x)Ψ(x, t(x),∇u(x), V (x)) dx

≤
∫

Ω

Φ̃(x, t(x),∇ũ(x)) dx+

∫

Ω

p(x)Ψ(x, t(x),∇ũ(x), Ṽ (x)) dx

≤
∫

Ω

Φ̃(x, t(x),∇ũ(x)) dx,

because
∫

Ω

p(x)Ψ(x, t(x),∇u(x), V (x)) dx = 0

but
∫

Ω

p(x)Ψ(x, t(x),∇ũ(x), Ṽ (x)) dx ≤ 0.

The pair (∇u, V ) is then optimal for (P ∗) for each feasible t. Denote by m∗, m̃ and m

the infima of the associated optimization problems. Notice that problem P contains

(P̃ ) because the admissible fields for (P̃ ) come from the ones for P . Furthermore m∗

is the lower bound for all infima because Φ̃ is defined as a result of minimizing Φ over

F (2). Hence we have:

m∗ ≤ m̄ ≤ m̃.

On the other hand, the optimal solution (∇u, V ) of (P ∗) for each feasible t is

admissible for (P̃ ), which implies:

m̃ ≤ m∗.

Combining those two inequalities, one gets:

m∗ = m̄ = m̃.

7.2 Application of JBOC to our
quadratic cost

We found a (sub)relaxation or lower bound for the relaxation of the original

optimal design problem (see Theorem 7.1), where Φ(t, F ) is the minimum of the

minimization problem:

Minimize in xi : t1

(

1 − a1

a3

)

|x1|2 + t2

(

1 − a2

a3

)

|x2|2 +
F (1) · F (2)

a3
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subject to

F (1) · F (2) ≥ a1t1|x1|2 + a2t2|x2|2 + a3t3|x3|2,

F (1) = t1x1 + t2x2 + t3x3, F (2) = t1a1x1 + t2a2x2 + t3a3x3.

Even though we do not have an explicit form for it, we show that this Φ(t, F ) and

Ψ(t, F ) = (F (2)−(a1t1 +a2t2 +a3t3)F
(1)) ·((a1a3t2 +a1a2t3 +a2a3t1)F

(2)−a1a2a3F
(1))

(7.5)

comply with the JBOC condition for any given t ∈ [0, 1]3. In particular, we are able

to determine the optimal map M in the surprisingly simple form

V = M(t, U), V = (a1t1 + a2t2 + a3t3)U.

In addition, Φ and Ψ are verified to fulfill Lemma 7.1.

We turn our attention first to the JBOC condition. Two optimization problems

are solved to show the applicability of JBOC to Φ and Ψ. First, we find an optimal

solution F (2) = M(F (1)) of

(P2) Minimize in F (2) : Φ(F ) subject to Ψ(F ) ≤ 0

for fixed (t, F (1)). Afterwards, for given (t, F (2)) we obtain an optimal solution of the

second optimization problem

(P1/P2) Minimize in F (1) : Φ(F (1),M(F (1))) subject to Ψ(F ) ≤ 0

which can be written F (2) = M(F (1)), as well; besides

Ψ(x, t, F (1),M(F (1)) = 0

holds, too.

• Solve problem (P2) for fixed t and F (1):

min
F (2)

min
xi

Φ(t, F, x)

subject to

F (1) · F (2) ≥ a1t1|x1|2 + a2t2|x2|2 + a3t3|x3|2,

F (1) = t1x1 + t2x2 + t3x3, F (2) = t1a1x1 + t2a2x2 + t3a3x3. (7.6)
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Note that the set of values of xi varies depending on the (t, F ) such that

Ψ(t, F ) ≤ 0.

We can switch the order of the two minimizations without changing the solution,

and end up with the optimization problem

min
x∈{G(xi,ti,F )≤0, (7.6) holds}

min
F (2)∈A(F (1),t)

Φ(t, F, x)

where

A(F (1), t) = {F (2) : Ψ(t, F (1), F (2)) ≤ 0 for given t and F (1)},

G(ai, ti, xi, F ) = a1t1|x1|2 + a2t2|x2|2 + a3t3|x3|2 − F (1) · F (2).

We first deal with inner constrained minimization problem using the standard

Karush-Kuhn-Tucker conditions due to the convexity of both the cost functional

Φ and the constraints on F (2), which can be easily checked:

∂Φ(xi)

∂F (2)
+ s

∂Ψ

∂F (2)
= 0, sΨ = 0, s ≥ 0,Ψ ≤ 0. (7.7)

The solutions to (7.7) are:

F (2) = f(t, xi, F
(1)), s = 0,

F (2) = (a1t1 + a2t2 + a3t3)F
(1), s1 = S1(x, F

(1)),

F (2) =
a1a2a3F

(1)

a1a2t3 + a1a3t2 + a2a3t1
, s2 = S2(x, F

(1)).

It is not hard to find that Ψ(t, F ) = 0, if

F (2) = F (1)(a1t1 + a2t2 + a3t3), or F (2) =
a1a2a3F

(1)

a1a2t3 + a1a3t2 + a2a3t1

is true. And as pointed out in Remark 6.1, there is only one value x3 = x30 (see

(6.7)) such that G(t, x, F ) ≤ 0 holds. Substitute it into S1 and S2, and after

some tedious algebra, we get

s1 =
1

a3

, s2 =
a1a2t3 + a1a3t2 + a2a3t1 − 2a2

3

a3

.

The fact that the constraints on the x’s depend on (F (1), F (2)) plays a crucial role

here. One can check that s2 < 0 under the condition t·1 = 1 and the assumption



69

a1 < a2 < a3. The Karush-Kuhn-Tucker conditions are also sufficient, if the

cost functional and constraints are convex differentiable functions, which is true

in our particular problem. Therefore

F (2) = (a1t1 + a2t2 + a3t3)F
(1)

is a minimum. Furthermore, this minimum is unique because of the strict

convexity of objective function Φ. As a conclusion,

F (2) = (a1t1 + a2t2 + a3t3)F
(1)

is the optimal solution of P2.

Remark 7.1 It is worth pointing out that it is really hard to verify whether the

first stationary point F (2) = f(t, xi, F
(1)) satifies Ψ ≤ 0 due to the complex form

of f(t, xi, F
(1)). However, this is not necessary because

F (2) = (a1t1 + a2t2 + a3t3)F
(1),

being the unique minimum, eliminates that possibility.

• Solving problem (P1/P2)

We have found out that

F (2) = (a1t1 + a2t2 + a3t3)F
(1) = M(t, F (1)) (7.8)

is an optimal solution of P2. Substituting this into function Φ and take into

account the fact that x3 = x30 when (7.8) holds, we obtain a surpringly neat

expression

Φ̃ = Φ(t, F (1),M(F (1)) = |F (1)|2.

The optimization problem we are looking at now is:

Minimize in F (1) : Φ̃ + ρΨ(t, x, , F (1), F (2))

subject to

Ψ ≤ 0.
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Notice how the outer minimization disappeared automatically by virtue of the

fact that there exists only one value of x3 satisfying the constraintG(t, x, F ) ≤ 0.

Then following the same idea, we find out that if F (2) 6= 0

F (1) =
F (2)

a1t1 + a2t2 + a3t3
, ρ3 =

2

BaC
,

F (1) =
(a1a2t3 + a1a3t2 + a2a3t1)F

(2)

a1a2a3
, ρ4 =

−2

BhC
,

where

Ba = a1t1 + a2t2 + a3t3, Bh =
a1a2a3

a1a2t3 + a1a3t2 + a2a3t1
=

1
t1
a1

+ t2
a2

+ t3
a3

,

C = a1t2t3(a2 − a3)
2 + a2t1t3(a2 − a3)

2 + a3t1t2(a1 − a2)
2.

Therefore

F (1) =
F (2)

a1t1 + a2t2 + a3t3
, ρ3 =

2

BaC
,

is the optimal solution to (P1/P2). Otherwise

F (1) = 0, ρ = 0

is the optimal solution to (P1/P2). We still can interpret it as

F (1) =
F (2)

Ba

, or F (2) = M(t, F (1)) = BaF
(1).

We can conclude now that Φ and Ψ verifies JBOC with

F (2) = M(t, F (1)) = BaF
(1).

Next, once the map M is obtained, we check the validity of Lemma 7.1. Note

that we also have

Φ̃(x, t, U) =
1

2
|U |2.

Lemma 7.2 Let p(x) be a non-negative function defined in Ω, and consider the

functional
∫

Ω

[

1

2
|∇u(x)|2 + p(x)Ψ(t(x),∇u(x), V (x))

]

dx, (7.9)

for a fixed volume fraction t, and

u ∈ H1(Ω), u = u0 on ∂Ω, V ∈ L2(Ω;RN), div V = 0 in Ω,

where Ψ is given by (7.5). Every local minimizer for this variational problem is also

a global minimizer.
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The proof of this lemma is elementary using the classical div-curl lemma. Notice that

the integrand in (7.9) can be written as the sum of two terms: one which is strictly

convex in the pair (∇u, V ) and another one which is a multiple of the inner product

∇u ·V . By the div-curl lemma, the latter contribution is weakly continuous, and so it

does not play a role regarding the issue local/global minimizer. The strict convexity

of the first term, however, implies that local minimizers are global.

As a direct consequence of Lemma 7.2, we have the following relaxation theorem,

which is a particular case of a conjecture of Tartar [40] for multimaterials.

Theorem 7.2 The optimization problem

Minimize in t : Ĩ(t, u) =

∫

Ω

|∇u(x)|2 dx

subject to

div [(a1t1 + a2t2 + a3t3)∇u(x)] = f in Ω,

u = u0 on ∂Ω,

t ∈ [0, 1]3, t · 1 = 1,

∫

Ω

t(x) dx = r|Ω|,

is a relaxation of the original optimal design problem in the following sense:

1. the infima for both problems are the same;

2. the second optimization problem always has an optimal solution (t̃, ũ).



CHAPTER 8

OPTIMAL STRUCTURES

In this chapter, we would like to shed some light on the optimal layout of the

three materials optimal design problem. It has been shown in the previous chapter

that optimal solutions are given by

F (2) = (a1t1 + a2t2 + a3t3)F
(1),

which lie in the set {Pt = 0}. Recall, in Remark 6.1, it is pointed out that the νi’s

are Dirac masses based at (xi, aixi) on the set {Pt = 0}. Furthermore, the xi’s are

uniquely determined: x3 = x30 (see (6.7)), x1 and x2 are found by substituting x30

into (6.5). We now find optimal structures that can be formed by these three mass

points, one on each manifold Λi.

Lemma 8.1 On the set (F, t) ∈ {Pt = 0}, any pair (xi, aixi) and (xj , aixj) supported

in Λi and Λj respectively, is rank-1 connected for i, j = 1, 2, 3, i 6= j.

The proof of the lemma is tedious, but straightforward. We check whether

(xi − xj) · (aixi − ajxj) = 0, i 6= j

is true on {Pt = 0}. Here we show only the case i = 1, j = 2. Direct calculation of

(x1 − x2) · (a1x1 − a2x2) yields:

(x1 − x2) · (a1x1 − a2x2) =
c1c2|x3|2 + (c2A1 + c1A2) · x3 + A1 · A2

t21t
2
2(a1 − a2)2

=
(c1x3 + A1) · (c2x3 + A2)

t21t
2
2(a1 − a2)2

(8.1)

where
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c1 = (a3t2t3 − a1t3t1 + a3t1t3 − a2t2t3),

c2 = (a1t3t2a3 − t2a1a2t3 − t3a2t1a1 + t3a2t1a3),

A1 = (a2t2F
(1) − t2F

(2) + a1t1F (1) − t1F
(2)),

A2 = (t2a2a1F
(1) − a1t2F

(2) + a2t1a1F
(1) − a2t1F

(2)).

Evaluating c1x3 + A1 at x3 = x30, we get:

c1x3 + A1 =
−(a1 − a2)

2[(a1t1 + a2t2 + a3t3)F
(1) − (t3 + t1 + t2)F

(2)]

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
.

Evaluation of c2x3 + A2 at x3 = x30 results in:

c2x3 + A2 =
(a1 − a2)

2[a1a2a3(t1 + t2 + t3)F
(1) − (a1a3t2 + a1a2t3 + a2a3t1)F

(2)]

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
.

Taking into account the fact t1 + t2 + t3 = 1, the last two equations can be simplified

to:

c1x3 + A1 =
−(a1 − a2)

2[(a1t1 + a2t2 + a3t3)F
(1) − F (2)]

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
,

c2x3 + A2 =
(a1 − a2)

2[a1a2a3F
(1) − (a1a3t2 + a1a2t3 + a2a3t1)F

(2)]

a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2
. (8.2)

Therefore (see (6.8))

(x1 − x2) · (a1x1 − a2x2) = ρ1Pt (8.3)

where

ρ1 =
−(a1 − a2)

2

t21t
2
2 (a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2)2 .

Hence, (x1, a1x1) and (x2, a2x2) are rank-1 connected if

(F (1), F (2)) ∈ {(X, Y ) ∈ R2 ×R2 : Pt(X, Y ) = 0}.

Similarly, it can be shown that:

(x1 − x3) · (a1x1 − a3x3) = ρ2Pt,

(x2 − x3) · (a2x2 − a3x3) = ρ3Pt, (8.4)

and

ρ2 =
−(a1 − a3)

2

t21t
2
2 (a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2)2

,

ρ3 =
−(a2 − a3)

2

t21t
2
2 (a1t2t3(a2 − a3)2 + a2t1t3(a1 − a3)2 + a3t1t2(a1 − a2)2)2 ,
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which tells that both {(x2, a2x2), (x3, a3x3)} and {(x1, a1x1), (x3, a3x3)} are rank-1

connected when

(F (1), F (2)) ∈ {(X, Y ) ∈ R2 ×R2 : Pt(X, Y ) = 0}.

Based on these calculations, we have the following theorem.

Theorem 8.1 Let (t, u) be an optimal solution for the optimal design problem in

Theorem 7.2. Put

V (x) = (a1t1(x) + a2t2(x) + a3t3(x))∇u(x) for a.e. x ∈ Ω,

and,

W3(x) =
(a1a2(a1t1(x) + a2t2(x)) − a1a2a3(t1(x) + t2(x)))∇u(x)

a1t2(x)t3(x)(a2 − a3)2 + a2t1(x)t3(x)(a1 − a3)2 + a3t1(x)t2(x)(a1 − a2)2
,

+
(a3(a1t2(x) + a2t1(x)) − a1a2(t1(x) + t2(x)))V (x)

a1t2(x)t3(x)(a2 − a3)2 + a2t1(x)t3(x)(a1 − a3)2 + a3t1(x)t2(x)(a1 − a2)2
,

W1(x) =
a2t3(x)W3(x) − a3t3(x)W3(x) − a2∇u(x) + V (x)

t1(x)(a1 − a2)
,

W2(x) =
a3t3(x)W3(x) − a1t3(x)W3(x) + a1∇u(x) − V (x)

t2(x)(a1 − a2)
.

Then every local laminate of arbitrary finite order supported in the three mass points

(Wi(x), aiWi(x)), i = 1, 2, 3,

with corresponding weights ti(x) is an optimal microstructure for the original optimal

design problem.

In fact, this theorem is a natural consequence of the following general fact and Lemma

8.1.

Lemma 8.2 If in a two-dimensional linear manifold, three linearly independent di-

rections are rank-1, then every direction in that manifold is rank-1, and every prob-

ability measure supported in such a manifold can be decomposed as a laminate of

arbitrary order.
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This is exactly our situation with the three mass points, one on each manifold. The

simplest optimal structures among all those diverse optimal structures, are the three

second-rank laminates formed by the three mass points

{(x1, a1x1), (x2, a2x2), (x3, a3x3)}

sitting over each manifold Λi, at the given proportion.



CHAPTER 9

SUMMARY

In this chapter, we describe the difference between the situation of two materials

optimal design and that of three materials. In addition, we discuss the possibility of

solving G-closure problem using Young measures, or the connection between the two

parts of this dissertation.

9.1 Difference of three materials
from two materials

The main differences are present in two aspects: (1) formation of the quasiconvex

hull; (2) obtainability of the quasiconvexification of the integrand.

In the two-material situation, the system (6.4) has unique solutions xi, i = 1, 2,

hence corresponding to a (F (1), F (2))-the first moment of some Young measure, the

mass points (xi, aixi) on each Λi, i = 1, 2 is uniquely determined. This is the main

difference of the two-material situation from the three materials, and it simplifies the

analysis and algebra involved. As a consequence, an explicit quasiconvexification is

available. On the contrary, in the three-materials situation, (6.1) is underdetermined

and has many solutions. Therefore, for fixed t, corresponding to some F (see the

proof of Theorem 6.1 and Remark 6.1):

F ∈ {Pt(F ) ≤ 0},

there exist multiple vectors (x1, x2, x3) that satisfy the necessary conditions (6.1), (6.2)

and (6.3). Let us denote this set of vectors by S. Each vector leads to an admissible

Young measure ν of the problem (PP ) (polyconvexfication problem). However, only a

subset of S can be recovered by a div-curl Young measure and forms the quasiconvex

hull, which is the admissible set of the problem (QP ) (quasiconvexification problem).
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Each element of this subset satisfies (6.9) and (6.10). When one deals with the

quadratic cost functional, the optimal solution of the problem (PP ) can lie anywhere

in S, not only in the quasiconvex hull. If it falls outside the quasiconvex hull,

there is no way to find the explicit quasiconvexification of the original integrand,

and in this situation, one has a lower bound of the relaxation (subrelaxation). As

a consequence, we turn to the JBOC condition as discussed in Chapter 7. By

focusing on such optimality conditions, we found the fully relaxation from which

the minimizing sequences can be constructed explicitly.

9.2 Solving the G-closure problem
using Young measures

The G-closure problem is actually a problem of finding the quasiconvexification of

the multiwell energy [21]. So the two approaches presented in this dissertation embody

some common ideas: due to the limited knowledge of quasiconvex functions, in both

approaches, actually the polyconvexification is first obtained. This corresponds to

the lower bound of energy in the first part, and the subrelaxation in the second part.

Such a polyconvexfication is found by using the weak continuity of the determinant

of fields. However, in the G-closure problem, it is incorporated in the integral

through some lagrange multiplier t to form the augmented integrand; while in the

context of Young measures, this property is enforced directly on the fields or the

generalized fields-Young measures (the commutation property of determinant against

Young measures). Once the polyconvexification is obtained, in both parts, it is shown

that this polyconvexification is also a rank-1 convexification by presenting laminates

structures that realized the lower bound on the energy in the G-closure problem;

and showing that the optimal Young measures are laminate Young measures in the

second part; thus this polyconvexification is a quasiconvexification, too. Note that

the optimal Young measures are the weak limits of the laminate fields in the optimal

structures (structures realizing the energy bound) in the first part.

It is possible to solve the G-closure problem using the Young measures. One

needs to deal with two gradient fields in the G-closure problem; therefore, we intro-

duce the new design variable V , as in the second part of the dissertation, however,

corresponding to two gradient fields:
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V =
3
∑

i=1

aiχi∇U, where ∇U = (∇u1,∇u2),

and consider the two-dimensional three-materials G-closure problem in terms of the

new design variables (∇U, V ) ∈ M2×4, subjected to the constraints:

V ∈ L2(Ω;M2×2), U ∈ H1(Ω;M2×2),

div V = 0 weakly in Ω, U = U0 on ∂Ω.

Furthermore, if we write V = (V1, V2), then (∇u1, V1) × (∇u2, V2) should belong to

Λ ⊂ M2×2 ×M2×2, where

Λ =

3
⋃

i=1

Λi × Λi, and Λi = {(λ, ρ) ⊂ R2 ×R2 : ρ = aiλ}.

and the subset Ωi of Ω prescribed by

Ωi = {x ∈ Ω : (∇u1(x), V1(x)) × (∇u2(x), V2(x)) ∈ Λi × Λi}

has relative measure ri. The Young measures ν = {νx}x∈Ω associated with the

sequences {(∇Uj, V
j)} from the admissible set of the G-closure problem satisfy:

supp(νx) ⊂ Λ =
⋃

i

Λi × Λi,

and as a consequence, if

νx =
∑

i

ti(x)νx,i, supp(νx,i) ⊂ Λi × Λi, ti(x) ∈ (0, 1),
3
∑

i=1

ti(x) = 1,

holds, then we should have

∫

Ω

ti(x) dx = |Ω|ri.

Note that the integrand, in terms of the new design variables, is:

Ψ(x) = ∇U(x) · V (x),

where the inner product is defined over two by two matrices; therefore the G-closure

problem is a case of the linear cost functionals. As pointed out in Chapter 6, in such

a situation, all that matters is to find the quasiconvex hull of the admissible set, or
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the weak limits of the sequences {(∇Uj , V
j)} ∈ M2×4 coming from the G-closure

problem, and they are the first moment of the associated Young measures.

In order to obtain the quasiconvex hull, we have to first find the constraints on

the first moments F ∈ M2×4 of the admissible Young measures ν associated with the

sequences {(∇Uj , V
j)}, which is expected to be described through polynomials of F

as before. However, the situation is much more complicated, because we are dealing

with Young measures associated with two divergence free vectors and two gradient

vectors. The commutation property is satisfied by any pair of divergence free and

gradient vectors against the Young measure, by div-curl lemma. In addition, due

to the weak continuity of the determinant of a gradient matrix, the commutation

property also holds for the determinant of the matrix formed of two gradient vectors

and the determinant of the matrix of the two divergence free vectors, recalling that

in R2, a divergence free vector is the 90◦ rotation of a gradient vector. To be more

precise, if we let:

F (1) =

∫

M2×4

λ1 dν(λ1, λ2, ρ1, ρ2), F (2) =

∫

M2×4

λ2 dν(λ1, λ2, ρ1, ρ2),

F (3) =

∫

M2×4

ρ1 dν(λ1, λ2, ρ1, ρ2), F (4) =

∫

M2×4

ρ2 dν(λ1, λ2, ρ1, ρ2),

we have:

F (1) · F (3) =

∫

M2×4

λ1 · ρ1 dν(λ1, λ2, ρ1, ρ2),

F (1) · F (4) =

∫

M2×4

λ1 · ρ2 dν(λ1, λ2, ρ1, ρ2),

F (2) · F (3) =

∫

M2×4

λ2 · ρ1 dν(λ1, λ2, ρ1, ρ2),

F (2) · F (4) =

∫

M2×4

λ2 · ρ2 dν(λ1, λ2, ρ1, ρ2),

det(F (1), F (2)) =

∫

M2×4

det(λ1, λ2) dν(λ1, λ2, ρ1, ρ2),

det(F (3), F (4)) =

∫

M2×4

det(ρ1, ρ2) dν(λ1, λ2, ρ1, ρ2).

Different from the situation where one gradient field is involved, we have more than

one polynomials, each of which is related to the commutation property given by one

of the above equations, describing the constraints on F . It is the main challenge

to integrate all those polynomials into a proper framework and being able to show
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that, in this framework, every admissible F is the first moment of a laminate Young

measure. Once this goal is achieved, we will find the quasiconvex hull of the set of

matrices (∇U, V ) and thus obtain the G-closure.
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