
A RANGELAND PREDICTIVE PHENOLOGICAL MODEL 

FOR THE UPPER COLORADO RIVER BASIN 

AND ITS WEB DELIVERY

by

Yuan Zhang

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Geography 

The University of Utah 

August 2013



Copyright © Yuan Zhang 2013 

All Rights Reserved



The U n i v e r s i t y  o f  Ut ah  G r a d u a t e  S c h o o l  

STATEMENT OF DISSERTATION APPROVAL

The dissertation of _______________________ Yuan Zhang____________________

has been approved by the following supervisory committee members:

George F. Hepner , Chair 06/13/2013
Date Approved

Philip E. Dennison , Member 06/13/2013
Date Approved

Richard R. Forster , Member 06/13/2013
Date Approved

Ikuho Yamada , Member 06/13/2013
Date Approved

Bruce K. Wylie , Member 06/13/2013
Date Approved

and by ____________________George F. Hepner____________________ , Chair of

the Department of ________________________ Geography_____________________

and by Donna M. White, Interim Dean of The Graduate School.



ABSTRACT

Understanding the spatially and temporally variant phenological responses and 

cycles can greatly assist the administrative planning, policy making and management in 

grazing, planting, and ecosystem conservation. The linkages of analysis as a basis for 

management have received increasing attention in the context of climate change. This 

research focuses on analyzing phenological responses of vegetation as constrained and 

moderated by environmental factors, such as landscape and season, in the geographically 

diverse Upper Colorado River Basin (UCRB). Due to the geographic diversity of 

phenological forcing in the UCRB, several homogeneous phenological subregions 

(phenoregions) are delineated, and the phenological responses of vegetation are analyzed 

on a per phenoregion basis. A multivariate adaptive regression splines (MARS) approach 

is adopted to model and interpret the regionally and seasonally specific relationships 

between environmental drivers (temperature, precipitation and solar radiant energy) and 

vegetation abundance, indicated by a Vegetation Index (VI). Short-term predictions of 

vegetation abundance are made using the models. Taking into consideration the scale of 

the study area and the time-step of the models, 1 km 7-day interval eMODIS data and the

1 km NASA AMES Ecocast data are used to articulate the dependent and independent 

variables. The series of models are integrated into a prototype phenological Decision 

Support System (DSS) to provide predicted vegetation abundance over the growing 

season and the trends of climatic variables leading to potential grazing management



strategies. The implementation of the DSS is a unique attempt to integrate phenological 

theory and GIS technology, the combination of which makes this DSS analytically-based, 

intuitive and more user-friendly.
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1 INTRODUCTION

Rangeland mismanagement due to lack of scientific tools and information support 

in the Upper Colorado River Basin (UCRB) has caused severe problems of rangeland 

degradation and low productivity. The improvement of rangeland management requires a 

more robust analytical support system. This system would consist of better, more current 

information and a predictive modeling capability as part of a Decision Support System 

(DSS) for managers. The DSS would generate new data, incorporate, analyze and 

interpret existing data from different data sources, and consequently provide solid 

information and decision support. The DSS, by assisting with precise, reasonable and 

reliable rangeland management information and strategies, can help solve the dilemma of 

achieving a balance between economic output and rangeland health.

Initially, this dissertation delineates phenologically-based units (phenoregions) for 

the UCRB. A set of phenological models (phenomodels) is developed and validated to 

make short-term predictions of vegetation abundance in the UCRB, including the 

rangeland managed by the BLM (US Department of the Interior, Bureau of Land 

Management). In addition, a prototype DSS is created to present the phenological data, 

models and supplemental information to land managers in an understandable manner. 

The set of phenomodels is a crucial component of the DSS, assisting in making 

reasonable grazing strategies. The DSS must integrate predictive phenological models 

and a suite of information from different data sources within a Geographic Information



System (GIS). This approach will help land managers in the BLM with improved 

rangeland management.

1.1 Public Rangeland Management and Issues

The United States has about 3.1 million km2 of rangeland (National Research 

Council, 1994). Forty-three percent of rangeland in the US (about 1.4 million km2) is 

owned by the federal government (National Research Council, 1994), known as public 

rangeland. Rangeland in the US can provide forage for livestock and wild grazing 

animals, habitat for wildlife, as well as commodities and recreation for human. Well- 

managed rangeland can further help support wildlife diversity, healthy watersheds and 

carbon sequestration, and thereby sustain rangeland ecosystems (BLM, 2011; National 

Research Council, 1994).

The BLM, under the Department of the Interior, was formed in 1946 by merging 

the General Land Office and the US Grazing Service to manage 1 million km2 of public 

land with multiple uses, 0.64 million km2 of which is within grazing districts (BLM, 

2011; Dombeck et al., 2003). Most of the BLM managed rangeland (~0.55 million km2) 

is in the west (Dombeck et al., 2003).

The BLM developed a series of standards and guidelines in the 1990s to maintain 

and promote long-term health and productivity of public rangeland (BLM, 2011; National 

Research Council, 1994). However, with so much effort needed to maintain rangeland 

health, rangeland conditions under BLM administration are still unsatisfying if  not 

declining.
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1.1.1 Limited Rangeland Resources 

The area of available rangeland for grazing is decreasing. More than 0.04 million 

km2 of rangeland has been lost because of development and crop cultivation (Maczko et 

al., 2004). Scenarios have been projected that the amount of land available for forage 

production will continue to decrease from 2000 to 2050 (Van Tassell et al., 2001).

BLM uses the Animal Unit Month (AUM) to provide information on overall 

livestock use. An AUM is the amount of forage needed to sustain one cow and her calf, 

one horse, or five sheep or goats for a month (BLM, 2011). Authorized grazing use 

indicated by AUMs is continuing to decrease, from 18.2 million AUMs in 1953 to 12.4 

million AUMs in 2010 due to degrading and shrinking rangeland (BLM, 2011).

1.1.2 Range Degradation 

According to the most recent rangeland assessment data in 2010, 8% of BLM 

managed rangeland was in potential natural community condition, 35% in late seral 

condition, 41% in midseral condition, and 15% in early seral condition. Potential natural 

community, late seral, midseral, and early seral are categories of ecological status 

expressed as the degree of similarity of present vegetation to the potential natural, or 

climax, plant community and are, respectively, 76 - 100%, 51 - 75%, 26 - 50% and 0 -  

25% similarity (BLM, 2011).

The degradation of rangeland in the US has been mainly due to overgrazing of 

livestock, while drought, erosion, mining, off-road vehicle use and weeds further 

aggravate this condition (Dombeck at. el., 2003; National Research Council, 1994). Lack 

of sufficient information makes it difficult for the land managers to decide when to start 

and stop grazing for a specific pasture. Overgrazing prevents rangeland from fully

3



4

recovering or prolongs rangeland recovery. Rangeland degradation can severely affect 

the economic and ecological values and products provided by rangeland (National 

Research Council, 1994).

1.1.3 Low Productivity

Land degradation leads to low productivity of public rangelands. In the US, 54% 

of private rangeland produces 93% of all AUMs, while 46% of public rangeland produces 

only 7% (National Research Council, 1994). The costs of public rangeland management 

have been high, far beyond the economic values generated by livestock grazing (Nelson,

1995). The actual situation varies from allotment to allotment and from pasture to pasture 

within each allotment. However, there is not enough information and scientific insight at 

high geographic resolution for federal government personnel and land managers to make 

allotment-specific decisions (Nelson, 1995).

Thus, land degradation resulting in lowered productivity is an outcome of a lack 

of proper management. Improper rangeland management is the direct consequence of the 

inability to utilize appropriately scaled climatic, vegetative, land use / cover information 

integrated with management goals in an effective way at the phenoregion and allotment 

levels.

Scientific insights and tools are therefore greatly needed to provide necessary and 

sufficient information to support improved rangeland management. The DSS developed 

in this research integrates predictive phenomodels, summarizes phenological forcing 

trends, and refines grazing suggestions and other information. This is believed to be able 

to contribute to the mitigation of rangeland degradation, boost rangeland health and 

improve economic outputs.
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1.2 Phenology

The word “phenology” originates from the Greek word phaino, meaning to show 

or to appear (Schwartz, 2003). Phenology studies the relationship between periodic 

biological phenomena and climatic conditions -  how organisms grow and behave in 

response to environmental conditions (Hodges, 1991). Budburst and flowering of 

vegetation, hibernation of bears and snakes and the migration of birds are all typical 

phenological events.

Phenological events have been observed and studied since ancient times. The 

most ancient records and literature have been found in China, written more than 3000 

years ago. The longest written phenological record originates in Japan beginning in 705 

AD regarding the initiation of cherry flowering (Schwartz, 2003). However, these ancient 

records of phenology are just simple data collections and applied exclusively in 

agriculture. It was not until the late 19th century that phenology entered the category of 

science as a branch of environmental science (Sparks and Jeffree, et al., 2000). At that 

time, it was realized that phenology is useful in monitoring the environment and 

understanding the relationships between the environment and phenological events.

Plant phenology (or vegetation phenology) is a main branch of phenology science. 

It studies how periodic biological phenomena of plants (budburst, flowering, fruiting, 

senescence and dormancy, which are called “phenological phases” or “phenophases”) are 

influenced and driven by climatic variation at specific locations. Higher temperatures can 

accelerate plant development leading to earlier onset of phenological events (Badeck et 

al., 2004; Fitter et al., 1995; Sparks and Carey, 1995; Sparks et al., 2000). Two locations 

with a mean annual temperature difference of about 5°C can cause the onset of greenup



to differ by as much as a month in the UCRB. Precipitation can affect the timing of 

different phenophases and accounts for a significant amount of the phenological variation 

in moisture-limited regions like the UCRB (Reed et al., 1994; Penuelas et al., 2004; 

Pickup et al, 1994). Solar radiant energy is a prerequisite for photosynthesis. The 

variation of solar radiant energy directly affects the production of simple sugars and 

further the growth of vegetation. The UCRB is one of the regions receiving the highest 

solar radiation is the US. It is important to consider how solar radiation affects plant 

phenology in the UCRB.

Since the late 1800s and early 1900s, focus has been put on discovering the 

factors that can cause different plant phenological events (Blodget, 1857; Garner and 

Allard, 1920, 1930; Livingston, 1916; Parker and Borthwick 1939; Waldo, 1893; 

Whitley, 1850). Subsequently, research has focused on phenological modeling for 

simulation and prediction of phenophases.

In theory, if one can define and measure the relevant factors that affect 

phenological phase change, prediction of the location and timing of phase change should 

be possible. This research is an application of phenological theory: phenological theory 

serves as an important building block for phenomodel development and decision support 

in the DSS. This research in turn contributes to phenological theory by exploring the 

unique phenology of the UCRB.

1.3 Research Scope and Research Questions

The outstanding issues associated with BLM managed public rangeland 

necessitate the achievement of a tradeoff between rangeland health and economic outputs 

with limited rangeland resources. The key is to use scientific tools and information

6



support to yield improved rangeland management. Improved rangeland management can 

not only avoid the impacts of overgrazing on public land resources, it can, on the contrary, 

support a healthy ecosystem and environment.

Three objectives of the research are as follows:

1. To understand the relationships between vegetation growth and phenological 

forcing.

2. To develop a set of phenomodels to predict the vegetation abundance 7 days 

in the future.

3. To design a prototype DSS with phenomodels as a crucial module.

This research uses the Upper Colorado River Basin (UCRB) as the study area. 

The diversity of climate and terrain of the UCRB enables the extension of phenomodel 

development framework to other BLM managed lands and other regions with similar 

ecosystems, such as many rangelands in Australia, Argentina, New Zealand and South 

Africa.

The UCRB has more than range ecosystems, so this research focuses more than 

just on rangeland vegetation. A framework for predictive phenological model 

development is proposed that can be applied to all kinds of vegetation and to other 

geographically diverse regions.

Satisfactory achievement of research objectives requires knowledge related to 

four research questions below:

1. How can phenoregions be effectively delineated in the UCRB and how can 

performance of phenoregions be evaluated?

7
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Due to the geographic diversity in the UCRB, phenoregions 

(phenologically and climatically self-similar clusters) need to be 

delineated in order to develop phenoregion-specific models. Several 

criteria are revealed to evaluate the performance of phenoregions.

2. What are the dependent and independent variables of the phenomodels?

A Vegetation Index (VI) signifying the abundance of rangeland 

vegetation is identified as the dependent variable by exploring use of 

different VIs in the set of phenomodels. The phenological forcing 

variables affecting the dependent variable, such as temperature, 

precipitation and light are examined and established as the 

independent variables in each phenoregion.

3. What are the relationships between the dependent and independent variables 

identified in question two and how to validate these relationships as 

represented with a mathematical model?

The relationships between the dependent and independent variables are 

explored for model development in each phenoregion. The models are 

validated to make sure they are effective for practical application, 

using both cross and independent field validation.

4. What information should be provided and what mechanisms should be 

adopted in the proposed DSS to most effectively assist land managers in 

formulating grazing strategies and decisions?

A DSS is designed and im plemented integrating modules of 

phenomodels, visualization, trend display and analysis, and grazing
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information.

1.4 Design of Methodology

1.4.1 Study Area

The UCRB (Figure 1.1) is one of the main locations of large scale livestock 

grazing activity in the United States. Since the late 1500s, there has been livestock 

grazing in this area, primarily cattle and sheep. At present, most of the lands in the UCRB 

are used as rangeland. UCRB has a total area of about 0.29 million km2 within which the 

BLM manages about 0.16 million km2 of rangeland and the US Forest Service manages 

about 0.05 million km2 of rangeland. Public rangeland takes up 72% of the entire UCRB. 

A quarter of the 0.64 million km2 of BLM managed rangeland is within the UCRB. These 

figures make the UCRB an ideal study area to understand rangeland phenology and how 

the DSS could improve BLM rangeland management and health.

The majority of the concerns and issues regarding public rangeland conditions 

and management apply to the BLM managed rangeland in the UCRB. Despite enormous 

public administration cost and high input of lands and forages, the output of livestock 

value is fairly low in the UCRB. This makes grazing information a very important factor 

to solve the high-input and low-output problem.

The UCRB has highly diverse topography, latitude, soils and climate patterns. 

Such large tracts of land and extraordinary geographic diversity make the UCRB a 

worthwhile area for vegetation phenology to be examined and for a phenomodel 

development framework to be designed. This geographic diversity makes this research 

distinctive, innovative and challenging.
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Figure 1.1 The UCRB study area and the location of UCRB within the conterminous US.
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1.4.2 Phenoregion Delineation 

The geographic diverse nature of the UCRB excluded the possibility of using a 

single model to depict the relationships between dependent and independent variables, 

and thus necessitates the delineation of phenology based subregions. Environmental 

variables related to climate, elevation, topography and vegetative history are identified 

and analyzed to generate phenoregions having similar phenological forcing. Because the 

UCRB is a highly diverse region, a quantitative approach (Principal Component Analysis 

plus &-means++ clustering) and high spatial resolution data are used to yield increased 

homogeneity within each defined phenoregion.

1.4.3 Phenological Models 

The Multivariate Adaptive Regression Splines (MARS) approach is adopted in 

this research to conduct model development in each phenoregion. MARS models are 

built to represent the relationships between independent and dependent physical 

environmental variables. The MARS models can depict different relationships within 

different data intervals, automatically model interactions and are easy to interpret. 

Therefore, the straightforward, intuitive and more realistic characteristics of MARS 

models make it much easier to understand how the various environmental variables 

interact and how the environment as a whole impacts vegetation dynamics at different 

locations and different dates characterized by different ranges of environmental variables.

1.4.4 Decision Support System 

An integrative DSS is developed to provide a suite of information to supplement 

and present the predicted results from the phenomodels. The implementation of the DSS



in this research is a unique attempt to integrate phenological theory and GIS technology, 

the combination of which makes DSS vivid, intuitive and more user-friendly.

Grazing management strategies are suggested based on the predicted vegetation 

abundance. Basic grazing strategies are based on a classification of Vegetation Index 

values and to evaluate each pasture within an allotment indicating the suitability and 

capacity of grazing. Historic temperature, precipitation data as well as historic, current 

and near-future vegetation indices are presented in the DSS in tables, inquiries or plots. 

The trend and historical situations portrayed in these data can further assist land 

managers with critical clues on phenophases and current and expected productivity.

1.5 Contributions

1.5.1 Theoretical Contributions 

This research provided theoretical advancements in the biogeographical research. 

Phenoregion delineation in this research identified variables having spatial influence on 

vegetation phenological patterns and features. Phenoregion identification reveals how 

different environmental variables, individually and collectively, contribute to vegetation 

growth. The different models developed for different phenoregions disclose how the 

relationships between environment and vegetation dynamics differ under varied ranges of 

phenological forcing.

This research substantiates phenological theory. It helps to enrich this theory by 

exploring different vegetation responses to the environment in different phenoregions and 

under different ranges of environmental variables within the same phenoregion. It also 

examines impacts of variation of single as well as several environmental variables on 

vegetation dynamics within the study area of the UCRB.

12



13

1.5.2 Methodological Contributions 

This research developed two analytical frameworks. One framework delineates 

subregions of similar phenological forcing (phenoregions) in geographically diverse 

regions. This is accomplished by using principal component analysis and &-means++ 

clustering to decompose the geographic diversity of topography, climatic conditions and 

vegetation, and finely differentiate the spatial variation in phenological forcing among 

different geographic locations in the UCRB. This framework has been demonstrated 

effective in achieving increased homogeneity within each defined phenoregion.

The second is the modeling framework that develops predictive phenological 

models in geographically diverse regions. The framework contains these elements: 

phenoregion delineation, variable identification, relationship exploration and phenomodel 

development / validation. This comprehensive approach to phenological modeling using 

the spatial analysis and visualization capability of a GIS is an innovative contribution.

1.5.3 Practical Contributions 

The set of proposed models are used to predict the vegetation abundance 7 days in 

the future. Decisions of location and timing for grazing livestock can be suggested based 

on the predicted results in order to prevent overgrazing and nonsufficient recovery, and 

thus to help sustain the rangeland ecosystem and maintain or improve rangeland 

conditions.

Phenomodels in this research uses multiple and frequent data sources for its 

decision-making. These models provide superiority over current decision basis including 

mainly expert knowledge and infrequent local, discrete monitoring data. In this sense, the 

DSS can provide land managers with real-time, abundant and critical historic, current and
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near-future information on vegetation abundance, phenoregions, grazing strategies and 

productivity under the scenario of real-time production of data fed into the phenomodels.

By delivering models and information online, land managers can relatively easily 

acquire the phenological status at specific locations by providing simple inputs. Using the 

visualization module to display the predicted results can further assist the land managers 

with intuitive and vivid overviews about the rangeland phenological situation in the 

UCRB. The adoption of GIS technology enables the DSS to intuitively interact with land 

managers.

1.6 Organization of Dissertation

The rest of this dissertation is organized as follows: Section 2 provides readers 

with a background knowledge of phenology, remote sensing, environmental drivers and 

factors that influence plant growth and development, and phenological models; Section 3 

discusses in detail the methodology of phenoregion delineation, and the model 

development including selection of dependent and independent variables, data sources 

and processing, relationship analysis, and MARS model development; Section 4 presents 

the analysis and results correspondent to each component of the methodology; Section 5 

discusses the enhancements of rangeland phenomodels, the possibility of using other 

models and the influence of the pixelated nature of remote sensing phenology. Section 6 

is the conclusions reviewing the whole dissertation, summarizing important consensus 

and inferences reached and drawn from the preceding chapters and discusses future work.



2 BACKGROUND AND LITERATURE REVIEW

2.1 Remote Sensing and Plant Phenology

2.1.1 Remotely Sensed phenology 

Remote sensing is the observation of the physical, chemical, and biological 

properties of the earth’s land and water surface from a distance by means of reflected or 

emitted electromagnetic energy. The sensor can create remote sensing imagery by 

recording the electromagnetic energy reflected or emitted by the physical objects on the 

surface of the earth (Campbell, 2002; Longley et al., 2005).

Remotely sensed plant phenology uses satellite to track gradual phenological 

changes and phenophases at regional, continental, and global scales. It has been used as a 

supplement to, and sometimes even a substitute for ground observed phenology for 

several decades (Reed and Brown, 2005). Remote sensing has its superiority to traditional 

field phenological methods in phenological monitoring and forecasting, and is 

indispensable in the broad-scale phenological studies.

The ability of remote sensing to conduct frequent measurements over a vast 

region for a long period enables regular, broad-scale, and long-term monitoring of 

phenology (Reed and Brown, 2005; Zhang et al., 2003). Therefore, remote sensing 

provides a robust means to elevate the monitoring and modeling of plant phenological 

dynamics from single plant species, and vegetation communities to entire ecosystems; 

thereby helping to improve the understanding of broad-scale phenological trends, which



are usually very hard or even impossible for traditional ground observation to detect. It 

has been demonstrated that moderate to good agreement exists between remotely sensed 

observations and field measurements in terms of vegetation abundance (Jenkins et al., 

2002; Schwartz et al., 2002; Fisher and Mustard, 2007; Fisher et al., 2007).

Rather than directly recording, monitoring or estimating specific dates of budburst 

or flowering used in traditional ground-based phenological research, remote sensing 

offers a way in which a continuum of processes can be monitored or predicted (White 

and Nemani, 2006). Remote sensing thus indirectly measures phenophases by monitoring 

the vegetation status throughout the year, and detecting changes in emitted or reflected 

electromagnetic radiation caused by these phenophases. Tracking or predicting specific 

transition dates between phenophases using remotely sensed data has thereby become one 

of the recent foci of phenological research. For example, Kaduk and Heimann (1996) 

used the biggest increase in a Vegetation Index to determine the timing of phenophases; 

White et al. (1997) used a set of thresholds on a Vegetation Index to determine the onset 

of different phenophases; Zhang et al. (2003) used the minimum and maximum in the 

rate of change on a Vegetation Index time series as the transition dates between seasons; 

Fisher et al. (2007) used the half-maximum greenness as a signal of the greenup onset.

Although principles of using remotely sensed data in phenological studies have 

been well established, close attention needs to be paid to the scaling from individual 

plants and species to broad-scale vegetation communities and ecosystems. Mixed species 

and vegetation land cover within a single pixel requires analytical and modeling methods 

different from those used in ground-based phenology assessment. Further, how the
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temporal and spatial resolutions of remotely sensed data affect the environment- 

vegetation relationship and phenological transition detection remains under exploration.

2.1.2 Vegetation Indice s 

The use of multispectral sensors to measure the radiation within different spectral 

bands is the basis of the Vegetation Index (VI), a relatively common approach for 

monitoring phenology. Using a VI to track the temporal and spatial variations of plant 

phenology relative to climatic, topographic and edaphic conditions has been very 

successful and effective (Reed et al., 1994; Zhang et al., 2001; Huete et al., 2002; Ji and 

Peters, 2004; White and Nemani, 2006; Myneni et al., 1997). The fundamental principle 

of VIs is to enhance the difference between and normalize the reflectance of two different 

bands of the electromagnetic spectrum. For example, the differences between the 

reflectance of red and near infrared band can be used to create a VI because the intense 

absorption in red band (driven by chlorophyll absorption) and intense reflectance in near 

infrared band (driven by leaf mesophyll and canopy structure) are unique features of the 

actively growing vegetation. The unique spectral features make the VIs that use these 

bands effective indicators of photosynthetically active vegetation.

Popular remote sensing-based vegetation indices include the Normalized 

Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), the 

Enhanced Vegetation Index (EVI), and the Normalized Difference Water Index (NDWI). 

Each index is used in different situations dependent on soil background, atmospheric 

conditions, solar zenith angle and sensor calibration. Soil background and atmospheric 

conditions are the two main factors that affect vegetation indices (Campbell, 2002).
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The NDVI is the most commonly used VI for monitoring vegetation phenology 

(Ji and Peters, 2004; Reed, et al., 1994; White and Nemani, 2006; Zhang, et al., 2001; 

Zhang, et al., 2009). NDVI is constructed based on the difference between the reflectance 

of the red and near infrared band, and is calculated as

NDVI = P'N m  ~ PRed
P nIR _  P Re d

where p Nsm and p Red are the reflectance in the near-infrared and red bands, respectively.

The NDVI reduces most errors related to sensor calibration, sun zenith angle, landscape, 

and atmospheric conditions, by canceling out signal variations caused by these situations 

through ratioing. NDVI values vary from -1 to 1. The NDVI value of vegetation is 

typically from 0.2 to 0.8 and values increase with denser vegetation canopies. NDVI has 

been shown to be closely related to Leaf Area Index (LAI), Net Primary Production 

(NPP), green biomass, and Fraction of Absorbed Photosynthetically Active Radiation 

(fAPAR) (Running and Nemani, 1988; Tuck et al., 1981). Despite its popularity in 

phenological research, NDVI has some limitations. It is easily saturated in multilayer 

canopies, and it is sensitive to atmospheric aerosols and soil background (Huete et al., 

2002, Xiao et al., 2003; Xiao et al., 2005; Sirikul, 2007). NDVI is also more sensitive to 

biophysical parameters. For example, Ji and Peters (2007) demonstrate that NDVI, 

compared to other VIs, is more sensitive to moderate and low Leaf Area Index (LAI), 

which is usually defined as one-sided green leaf area per unit ground surface area 

(Watson et al., 1947).

SAVI has a similar form to NDVI, but reduces sensitivity to soil background:

S A y j  =  (P NIR  ~  P R e d ) ( 1  +  L )

P  NIR +  P R ed  +  L
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where L is the soil adjustment factor (Huete, 1988). SAVI values range from -1 to 1. 

SAVI minimizes the influence of soil background by introducing L into the equation to 

compensate soil noise. A value of 0.5 for L is reported to work well for a wide range of 

soil and vegetation amounts in field measured data without the influence of atmosphere 

(Huete, 1988). However, atmospheric variations can cause the unstable performance of 

SAVI, and may reinduce soil noise into the index (Liu and Huete, 1995). SAVI has many 

modified or transformed versions. The TSAVI (Transformed Soil Adjustment Vegetation 

Index) was proposed by Baret et al. in 1989 to minimize soil brightness. The SAVI2, 

SAVI3 and SAVI4 were proposed by Major et al. in 1990 based on the theoretical 

consideration of the effects of wet and dry soils. The MSAVI (Modified Soil Adjustment 

Vegetation Index) was developed by Qi et al. in 1994 to minimize the effect of bare soil. 

These series of VIs are all effective for low vegetation cover areas. For example, the 

NDVI is only useful when the vegetation cover is more than 30% while the SAVI and 

SAVI-like VIs are still effective when the vegetation cover is as low as 15% (Gibson and 

Power, 2000).

The EVI considers both the effects of soil background and atmospheric conditions 

(Liu and Huete, 1995),

J 7J / J  _ ^ A  NI R ^ R e d ________________

P nIR +  C 1 X A R ed  _  C 2 X p B lu e  +  L

where L is the soil adjustment factor, G is the gain factor, Q  = 6.0 and C2 = 7.5. EVI 

ranges from -1 to 1. The EVI has an improved sensitivity in high biomass regions by 

separating the soil background signal and reducing the atmospheric influence (Huete et 

al., 2002). There are many studies using EVI to indicate the vegetation abundance 

(Penuelas et al., 2004; Zhang, et al., 2003; Zhang et al., 2009).
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The NDWI is a slightly different VI proposed by Gao (1996) to measure liquid 

water absorption by vegetation canopies. It uses two narrow channels centered at 0.86 

and 1.24 , and is calculated as:

N D W I = P nir ~  P swir 
P nir +  P swir

Because both channels used in NDWI are hardly affected by atmospheric aerosol 

scattering, NDWI is less sensitive to atmospheric aerosols as compared with NDVI. It is 

sensitive to the total amounts of water in vegetation due to the different water absorption 

features in the two channels. NDWI is still affected by soil background. NDWI values 

range from -1 to 1 and are positive for green vegetation and negative for dry vegetation.

2.2 Plant Phenology and Geography

Plant phenology, as an important branch of phenological research, studies how 

periodic biological events in the plant world (such as sprouting and flowering) are 

influenced by environmental changes driven by weather and climate (Schwartz, 2003). 

Environmental drivers of these periodic biological events have received increased 

attention with the ongoing climate change (Dahlgren et al., 2007).

Phenological study, as the definition implies, studies the influence of these drivers 

on plant development with the focus on the temporal variations of the drivers. At the 

same time, to a geographer, the spatial variations of the drivers are equally, if not more, 

important than the temporal variations.

These drivers and their relative importance vary depending on climatic and biome 

patterns, but it is widely accepted that the main drivers of plant growth and development 

are temperature, precipitation and light (Lindsey and Newman, 1956; Campbell and
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Sugano, 1975; Prins and Loth, 1988; Reed et al., 1994; Fitter et al. 1995; Sparks and 

Carey 1995; Sparks et al. 1997, 2000; Penuelas et al., 2004; White et al., 1997). These 

drivers are referred to as environmental drivers in this dissertation with both of their 

spatial and temporal variations exerting influence.

The spatio-temporal influence of environmental drivers on plant development is 

moderated by the spatial variation of some time-invariant factors, notably edaphic 

conditions and landscape in terms of elevation, slope and aspect (Schwartz, 2003; 

Sharma, 2005; Batanouny, 2001). These factors are referred to in this dissertation as 

environmental factors as opposed to environmental drivers. The environmental factors 

are considered temporally stable, so only their spatial variations matter in the context of 

plant development. However, the influence of environmental factors on vegetation 

dynamics and their moderation on the environment-vegetation relationships may not be 

constant over time.

Under natural conditions, vegetation is not affected by an individual factor alone; 

rather, it is affected by all environmental drivers and factors at the same time as a whole -  

the environment. The drivers and factors themselves are interrelated. They influence each 

other and interact with each other. Therefore, plant growth is the results of not only the 

sum of, but the interactions between all these environmental drivers and factors.

2.2.1 Environmental Drivers

The spatial variations of environmental drivers are the main determinants of 

vegetation cover type and its distribution (Walter, 1973; Woodward, 1987; Whittaker, 

1970; Suzuki et al., 2000). The temporal variations of phenological drivers are the direct 

causes of periodic plant life cycle events, as indicated in the definition of phenology.
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Both spatial variations and interannual variations can cause the onset and offset of 

phenophases to differ (White et al., 1997; Dahlgren et al., 2007). The relationships 

between environmental drivers and status of vegetation abundance vary spatially and 

temporally (Kawabata et al., 2001; Suzuki et al., 2000; Schultz and Haplert, 1995). The 

detailed spatio-temporal influences of main environmental drivers on plant development 

(temperature, precipitation and light) are reviewed below.

2.2.1.1 Temperature

Temperature is one of the major factors that control plant activity, phenological 

cycles and plant distribution. From the ontogenetic point of view, temperature can affect 

plant mechanisms and physiology such as respiration, photosynthesis, and transpiration.

Photosynthesis starts at a low temperature, reaches an optimum and decreases at 

higher temperatures due to the impaired carbon metabolism and substance transportation 

(Schulze, 2005; Larcher, 2003). At extreme temperatures, photosynthesis reaches a 

complete standstill. For example, Xu and Baldocchi (2003) found that the photosynthesis 

processes of trees are prohibited when experiencing air temperatures exceeding 40°C.

Temperature is demonstrated to be a main factor influencing respiration rate 

(Sirikul, 2007; Schulze, 2005). Similar to photosynthesis, respiration also responds to 

temperature in the form of an optimum curve (Larcher, 2003). However, respiration is 

generally activated at a lower temperature as compared with photosynthesis. It increases 

exponentially over a wider range of temperatures and is only inhibited at very high 

temperatures (Schulze, 2005). At extremely high temperatures, the heat damage to 

enzymes and membrane structures causes respiration activity to stop (Larcher, 2003).
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Net photosynthesis or net primary production as the balance between 

photosynthesis and respiration is directly related to the change of biomass over time. The 

optimum of net photosynthesis is moved slightly to a lower temperature as compared to 

gross photosynthesis (Schulze, 2005; Larcher, 2003), due to exponentially increasing 

respiration activity at higher temperatures. The optimal temperature at which net 

photosynthesis maximizes is not constant. It changes with season and vegetation species 

(Larcher, 2003; Schwarz, 1997; Sirikul, 2007).

There exist three ranges of temperatures: The optimal temperature range, the rigid 

(stiff) temperature range, and the lethal temperature range.

Plants grow at a maximal rate within the optimal temperature range. This range is 

plant specific, and differs among individual tissues and organs within a single plant 

(Larcher, 2003; Schulze, 2005). Temperatures outside of this optimal range can cause 

stress in plants and lead to growth anomalies (Schulze, 2005).

The rigid or stiff temperature range is defined by two critical values -  the cold 

limit and the heat limit. Plant activities are limited to a minimum without lethal damage 

when temperature is around the heat limit and cold limit, because the net photosynthesis 

declines dramatically at too low or too high temperatures (Schulze, 2005). This situation 

occurs during the dormancy season, so that plants can survive extreme temperatures 

(Larcher, 2003). Most plants start to grow when temperature is above 10C , and stop 

growing when temperature is beyond 35C (Waugh, 2000).

The lethal temperature range is defined by two cardinal temperature tolerances, 

and plant development completely ceases and plants suffer lethal and permanent damage 

once temperature is outside of this range, due to the sudden destruction of cell structures
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and cellular functions (Schulze et al., 2005; Larcher, 2003). The lethal limit is also 

species specific, and organ and tissue specific (Larcher, 2003). The lower lethal 

temperature limit ranges from less than -40C for boreal ecosystems to greater than 10C 

for cold-sensitive species in broadleaf evergreen forests (Smith et al., 1997). The upper 

threshold of lethal temperature is 42 - 56C for most plants (Dahl and Birks, 2007).

Antecedent temperature and cumulative heat supply are also crucial to plant 

development (Larcher, 2003). Hudson (2009) pointed out that the temperatures of 

preceding months are also important factors that influences the timing of phenophases in 

temperate zones (Menzel 2003; Estrella et al., 2007), and in some cases even 

temperatures from the previous autumn can affect spring phenology. Many measures of 

heat accumulation have been identified to be directly associated with plant growth and 

development. Generally, most phenophases are related to certain temperature thresholds 

and require a certain amount of cumulative heat supply, especially for fruits and seeds to 

ripen (Larcher, 2003). The heat needed to reach a certain phenophase differs for different 

species and at different locations (especially at different latitudes) even for the same 

species (Schwartz, 2003). For example, Strand (1965) found that the cumulative heat 

needed for the same crop plant variety to reach a phenophase generally decreased with 

increasing latitude (Schwartz, 2003).

The difference of temperature between day and night has a favorable effect on 

plant growth (Larcher, 2003). There is an optimal amplitude of diurnal temperature 

alteration associated with different vegetation species and vegetation in different climatic 

regions (Larcher, 2003). Larcher (2003) found that vegetation in continental regions has 

the best growth rate when the day/night temperature fluctuation is about 10 to 15 °C; the
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optimal fluctuation for some desert plants, most plants in the temperate zone and in 

equatorial regions is about 20 °C, 5 to 10 °C, and 3 °C, respectively. This can be partly 

attributed to the adaptation of plants to the temperature fluctuations in their habitat.

Besides the direct influence of temperature in triggering, accelerating and 

impeding plant development, temperature can also influence plants indirectly by affecting 

the timing and duration of snowmelt and soil thaw, which leads to the alteration of the 

timing of plant activity, and thereby the start or extension of the growing season (Moulin 

et al., 1997; Myneni et al., 1997).

The relationship between temperature and plant phenology can be detected at 

different temporal and spatial scales. Fitter (2002) found that there is a significant 

relationship between mean monthly temperature and 83% of 385 species of interest. 

Many studies concluded that the onset of many phenophases such as the flowering dates 

and leaf color changing dates are closely associated with mean monthly temperatures 

(Park-Ono, et al., 1993; Shigehara et al., 1991; Schwartz, 2003). Although the timing of 

phenophases is influenced by other environmental conditions as well, temperature is the 

dominant factor during the dormancy season in winter and during the growing season in 

spring and summer at mid- and high-latitudes (Schwartz, 2003; Fitter et al., 1995; Sparks 

et al., 2000; Chmielewski, 2002). The influence of temperature is not as great in autumn 

(Schwartz, 2003). Similar relationship has been found between the annual mean 

temperature and onset of phenophases as well. For example, Zhang (1995) estimated that 

under a CO2 doubling scenario, a temperature rise of 0.5 to 2.0 °C in annual mean 

temperature can cause the corresponding phenophases to advance 4 to 6 days in spring 

and summer, and to delay 4 to 6 days in autumn.
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Since remote sensing has become a major means for phenological research, the 

relationship between vegetation indices computed from remotely sensed images and 

temperature has been addressed. Generally, temperature has been demonstrated to be 

strongly related to vegetation indices across different regions in the world (Sirikul, 2007; 

Nemani and Running, 1989). Cui et al. (2009) found that NDVI responds maximally to 

the variation of temperature with a lag of about 10 days in eastern China.

Temperature does not only affect time-related plant growth, but it also exerts its 

effects spatially. Long term average temperature is considered a determinant factor of 

vegetation distribution, and is widely used in a lot of global vegetative models (Schulze 

et al., 2005). The advancement or delay of phenophases due to the increase or decrease of 

temperature varies spatially. Therefore, the temperature change can also change the 

distribution pattern of onset of phenophases (Schwartz, 2003; Kai et al., 1993).

Besides the mean, maximum and minimum temperature, Growing Degree Days 

(GDD) is another common temperature measure used in phenological research (Neteler et 

al., 2011). GDD is a measure of heat accumulation above a plant-specific base 

temperature. GDD is based on the rationale that plant development will only occur when 

the temperature exceeds the base temperature (Hudson and Keatley 2009; Neteler et al., 

2011), and plants grow in an accumulated manner closely related to the accumulated heat 

indicated by the GDD. GDD is calculated as:

T + T ■^  p,p, _  ‘ max ~  ‘ min rp 
( j U U  ~ -------2----------base

where is the maximum temperature, is the minimum temperature, and is 

the base temperature; any temperature that is below is set to before

calculation. Some studies use an upper temperature threshold as well because there is also
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a heat limit beyond which plant development will stop or become much slower. The 

Accumulated Growing Degree Days (AGDD) accumulates the GDD from a consistent 

starting data. Some studies indicate that AGDD is linearly related to plant growth and 

development.

2.2.1.2 Precipitation

The influence of precipitation can be summarized as the influence of water on 

plant growth, because precipitation is a critical component of global water cycle and it is 

how the ecosystem gains water.

Water plays an indispensable role in plant growth because it is crucial for all 

physiological processes (Lambers et al., 2008). Although photosynthesis requires only a 

small amount of water to function normally, the resulted decreased cell volume and wilt 

from water deficiency can cause photosynthetic activity to reduce (Larcher, 2003; 

Lambers et al., 2008). However, when the water content further drops below the amount 

required for normal function of photosynthesis, the photosynthetic activity is immediately 

inhibited. Photorespiration is less sensitive to water deficiency; the rate can only be 

reduced when the cellular dehydration is severe (Larcher, 2003). Prolonged wilt kills 

plants (Lambers et al., 2008).

Water is also one of the major components of transpiration through which plants 

can transport nutrients in water throughout the plant organs from the soil and root, and 

help balance leaves’ energy (e.g., transpiration cools leaves) (Lambers et al., 2008). The 

process of transpiration requires water. Therefore, if there is not enough water to support 

the transpiration, nutrient deficiency can result, and reduced cooling effect can cause the 

microclimate temperatures to rise over the lethal limit.
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Therefore, water sometimes functions as a limiting factor. Water stress strongly 

restricts phenological development and plant production globally, especially under dry 

climates (Lambers et al., 2008; Schwartz, 2003). Lambers et al, 2008 concluded that 

water stress has the greatest limitation than other biotic and abiotic factors on crop yield.

The relationship between water and plant growth is complicated, so the 

relationship between precipitation and plant growth is even more complicated because 

the amount of water and how water is used is dependent on precipitation forms (rain or 

snow), soil conditions, vegetation types, phenophases, and evapotranspiration activities 

influenced by temperature and such.

The influence of precipitation on vegetation and timing of phenophases is thus not 

as intuitive as that of temperature. Junttila et al. (1983) found that increased precipitation 

can advance the flowering dates for early flowering species while delaying dates for later 

flowering species (especially those in plants with high basic/threshold air temperatures 

for flowering) (Schwartz, 2003). Knapp (1984) found that flowering intensity 

significantly decreased during drought while it increased during a wetter year generally 

for three grasses of interest (big blue stem, little bluestem, and switchgrass), although 

slight differences exist (Schwartz, 2003). Schulze (2005) considered precipitation a 

decisive factor at the time of budding and during the development of young plants. Zhang 

et al., (2005) found a threshold of cumulative rainfall beyond which, the onset of 

vegetation green-up is stimulated in arid and semiarid regions of Africa.

Actually, although temperature has much greater influence on plants and plant 

phenology during most of the time and at most locations, precipitation is of greater 

importance in arid and semiarid regions (Schwartz, 2003, Moulin et al., 1997). Moulin et



al. (1997) concluded that the onset of the growing season is more related to the 

cumulative temperature in temperate deciduous forests and to precipitation in savannas. 

Schwartz (2003) found that 75% of the species in the dry forest are affected by the 

precipitation seasonality, compared to only 17% in wet forests. However, Wielgolaski 

(2003) found that precipitation was still important for plant development even in regions 

with maritime climates, specifically, he found that germination was accelerated when the 

number of days with precipitation is higher for Betulapubescens in western Norway.

Similar to temperature, the responses of vegetation to precipitation also lagged, 

and generally with a longer length, because water during rainfall cannot be used by plants 

until it reaches the soil. An exception is between precipitation and ephemerals where the 

response is near-instantaneous (Davenport and Nicholson, 1993). Vegetation may also 

respond to an integrated multimonth or multiyear of rainfall (Davenport and Nicholson, 

1993). Tyler (2001) conducted a 12-year phenological study in Swedish temperate 

deciduous forests, showing that precipitation of the previous year may be more important 

than temperature for flowering (Schwartz, 2003). Justice et al., 1986 and McMahon et al., 

1982 found that the lag of response of monthly NDVI to monthly rainfall is 1 to 2 

months, and monthly NDVI is strongly correlated with the cumulative rainfall of the 

previous 2 months (Chandrasekar et al., 2006). Ji and Peters, 2004 found that different 

lags exist between NDVI and precipitation in different seasons in grasslands and 

croplands. The lag is shorter in the early growing season and longer in the mid- to late- 

growing season generally. Cui et al. (2009) found in eastern China that NDVI maximally 

responds to the variation of precipitation at a lag of about 30 days, and the response is the 

most pronounced in autumn. They also concluded that the lag is different in different
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seasons, and is longer in summer. Another conclusion of Cui et al. (2009) is that the lag 

also varies spatially, and it increases from north to south.

Variability in precipitation regimes at seasonal and longer time scales strongly 

influence ecosystem dynamics in arid and semiarid regions (Lotsch et al., 2003). Long­

term average precipitation determines species and ecosystem distribution, and 

precipitation variation in the growing season has a strong influence on the inter- and 

intra-annual variation in plant structure and productivity (Lotsch et al., 2003). Tucker and 

Nicholson (1999) showed that NDVI correlates with annual integrated precipitation, and 

the interannual variability correlates with variability in precipitation patterns in regions 

where precipitation is limited.

The long term average precipitation, and the seasonal distribution of precipitation, 

strongly influences the spatial distribution of vegetation cover and vegetation density. 

Wet tropics that have abundant and evenly distributed precipitation during the growing 

season have rich vegetation; grasslands prevail where there are frequent and severe 

droughts in summer; further reduced precipitation leads to a semidesert, occupied by 

scattered shrubs; areas with extremely limited precipitation are deserts with no or little 

vegetation (Lambers et al., 2008). The distribution of two major forests in western 

Australia (karri and jarrah) are limited mainly by precipitation and soil conditions. Karri 

is associated with acidic soils, while jarrah has lateritic soils and lower precipitations. In 

regions where the annual precipitation further decreases, forests change to wandoo 

woodland. Werger (1983) also arrived at a similar conclusion in west Africa: mean 

annual rainfall is closely related to vegetation spatial distribution. In areas with 150 to 

300mm mean annual rainfall, the major vegetation is ephemeral grasses; in areas with
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300-500mm rainfall, grassy savannas prevail; in areas with over 500mm rainfall, woody 

vegetation appears.

2.2.1.3 Light

Light is heterogeneous both spatially and temporally, thus stationary and photo- 

autotrophic plants are strongly influenced by the light environment (Timmermans, 2010; 

Srivastava, 2002).

Light exerts significant influence on plants by participating in a series of basic 

physiological processes including photosynthesis, transpiration and metabolism (Sharma, 

2005; Fitter and Hay, 2001), thereby influencing plant growth and development. Further, 

many phenological events are associated with light such as germination, seedling 

development and flowering in which cases light functions as a signal (Sharma, 2005; 

Srivastava, 2002; Timmermans, 2010). There are several families of photoreceptors that 

can monitor light across a wide range of bandwidths (Timmermans, 2010). These 

photoreceptors coordinate to mediate a series of developmental transitions (Timmermans, 

2010).

Light affects the photosynthetic process both indirectly and directly. Firstly, light 

is indispensable for chlorophyll formation (Sharma, 2005); secondly, photosynthesis 

directly needs the participation of light as the energy source (Fitter, 2001). Only light 

within the band between 400 and 700 nm, or Photosynthetically Active Radiation (PAR), 

can influence the photosynthetic process (Crawley, 2009). Light reaches the plants in the 

form of photons. Pigments in chloroplast capture the photons, and convert them into 

chemical energy through the photosynthesis process (Pessarakli, 2002; Scott, 2008; 

Pfafflin, 2006). The energy is stored in the form of carbohydrates and other compounds,
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which ultimately are used for plant growth and development (Pessarakli, 2002; Crawley, 

2009). The photosynthetic responses to light considerably differ among species and 

among tissues and organs on the same individual plants (Crawley, 2009). Generally, the 

rate of photosynthesis increases with increasing PAR. However, for most plants, light is 

not a limiting factor and photosynthesis easily becomes saturated under usual solar 

radiant conditions (Fitter, 2001). Therefore, light in these situations is more important as 

a signal than as an energy source (Srivastava, 2002). In other words, the solar radiation 

has to reach certain critical values for specific phenophases to occur, and thus thresholds 

become more important in these cases.

Transpiration is also affected by light. Light can regulate the opening and closing 

of stomata; it can also exert its influence through the resulted elevation of temperature 

(Sharma, 2005).

Plants usually tend to adjust themselves to the current light conditions, and this 

process is called photoacclimation and photoadaptation. Under low light level, they 

reorient their leaves and chloroplasts to maximize light absorption; under high light level, 

they fold or drop leaves to avoid interception of excess light and resultant photodamage 

(Huang, 2006).

Many characteristics of light influence plant development, including the intensity, 

duration, and quality (or spectral composition).

Light intensity can be quantified by solar radiation, usually in the unit of watts per 

square meter. Solar radiation has an influence on plant growth and development, but not 

in a limiting way, because most plants can develop well in less than full sunlight 

(Pfafflin, 2006). Low solar radiation can lead to the situation that the energy gained from
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photosynthesis is not enough for plants to maintain growth and development; when solar 

radiation increases, metabolism is stimulated to increase the sink capacity of 

photosynthesis, which can cause the increase of photosynthate production, and thereby 

increased rate in respiration and growth; high solar radiation can cause the chloroplast to 

absorb excess energy, and the energy overload may lead to severe oxidative stress, 

photodamage and even photoinhibition. (Schulze et al., 2005; Huang, 2006).

The responses of plants to similar solar radiation levels differ from species to 

species (Pugnaire, 1999; Pfafflin, 2006). For instance, under intermediate light levels, 

light-demanding species grow faster than shade tolerant species (Pugnaire, 1999). Shade 

tolerant species can still maintain their development under very low solar radiation, such 

as redwood seedlings, which normally grow in the shade of forest floor (Pfafflin, 2006). 

Decker (1944) found that photosynthesis in light demanding species such as loblolly pine 

increased with increasing solar radiation, and reached maximal rate at full sun light; 

shade tolerant species such as white oak and red oak reached a maximum in 

photosynthetic activity at only about one-third of full sunlight, and showed a little 

decrease when solar radiation further increase (Pfafflin, 2006). Photosynthetic responses 

can be different for the same plants depending on the habitat. For example, Solidago 

virgaurea (golden rod) can be either sun plants or shade plants in different habitats 

(Pfafflin, 2006).

The duration of light is the day length, or photoperiod. Photoperiod can influence 

plant growth dependent on the type of plants, and the interactions between photoperiod 

and plants are among the most complex (Thomas and Vince-Prue, 1996). The responses 

of plants to photoperiod, or in particular, the timing of light and darkness is known as
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photoperiodism (Thomas and Vince-Prue, 1996). It is one of the major means that plants 

resort to to adjust themselves to seasonal changes in the environment and to avoid 

unfavorable environments (Thomas and Vince-Prue, 1996). For example, at high 

latitudes, the shortening photoperiod in autumn acts as a signal to induce dormancy, a 

response by which plants can survive the following low temperatures in winter; for some 

species in desert and semidesert areas, dormancy is induced by the increasing 

photoperiod so that plants can survive water stress in summer (Thomas and Vince-Prue,

1996). Therefore, photoperiodism is widely utilized in breeding and horticulture by 

artificially manipulating duration of light or darkness (Thomas and Vince-Prue, 1996). 

Hillman (1969) indicates that total solar radiant energy, as long as it is above a threshold, 

is relatively not as important as photoperiod.

The first to carry out an experiment demonstrating how photoperiod influences 

plant development is Henfrey (1852). He found that plant development was faster when 

the photoperiod is longer. Many other attempts also successfully demonstrated the 

influence of photoperiod on the acceleration of plant development and onset of some 

phenophases, especially flowering (Thomas and Vince-Prue, 1996). However, it was 

Tournois (1912, 1914) and Klebs (1913) who proposed that it is photoperiod, rather than 

the total quantity of light, that strongly influences plant development. Further, Garner and 

Allard (1920, 1923) pointed out that a longer photoperiod can actually either accelerate or 

slow down plant growth rate and some other responses, depending on the plant. They 

classified plants into the modern photoperiodic groups, and they also introduced the 

terms “photoperiod” and “photoperiodism.”



Short-Day Plants (SDP) follow a dark dominant mechanism, and they only grow 

or grow faster when the photoperiod is less than a critical value, i.e., the length of dark 

period is greater than a critical value; Long-Day Plants (LDP) follow a light dominant 

mechanism, and they only grow or grow better when the photoperiod exceeds a critical 

value; Day Neutral Plants (DNP) grow regardless of photoperiodic conditions; there is 

also a fourth condition in which dark dominant and light dominant mechanisms may both 

take effect, called Intermediate-Day Plants (IDP) which only grow or grow faster 

between two critical values of day length (Sharma, 2005; Thomas and Vince-Prue, 1996; 

Pfafflin, 2006).

Plants that are sensitive to photoperiod can be subdivided into qualitative types 

and quantitative types. Qualitative types require the photoperiod to be over or under a 

particular value to grow for LDP and SDP, respectively; quantitative types do not have a 

critical value of photoperiod to maintain plant growth, yet longer or shorter photoperiods 

can accelerate the growth rate for LDP and SDP (Thomas and Vince-Prue, 1996). The 

division between these two kinds is even more obscure, a type may turn into another 

when a certain environmental condition is satisfied (e.g., a plant can be qualitative at one 

temperature and quantitative at another) (Thomas and Vince-Prue, 1996). Therefore, 

Thomas and Vince-Prue (1996) suggests considering the two types as one continuous 

piecewise function instead with either no change or slight change on one side of critical 

value and obvious gradual change on the other.

Light quality or spectral composition is also very important to various 

physiological processes of plants. Solar radiation within the visible range is of most 

importance (Pfafflin, 2006). All visible light with wavelengths below 680 nm is effective
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in chlorophyll synthesis (Sayre, 1928; Pfafflin, 2006). The blue-violet band is responsible 

for phototrophic responses (Pfafflin, 2006).

Variation in irradiance is one of the major characteristics of habitats dominated by 

different plants. For example, Blackman and Rutter (1950) found that the distribution of 

Scilla nonscripta (bluebell) in English forests is controlled primarily by solar radiation. 

Certain plant species need a minimal solar radiation to exist (Tansley, 2010). Local 

variations also matter, the influence of which is especially important in forest with upper 

canopy and understory vegetation, because light is the single most limiting factor there 

(Fitter, 2001; Pugnaire, 1999). Light quality also influences plant distributions, e.g., the 

increase of ultra-violet light at higher elevation may reduce the number of species 

(Waugh, 2000).

2.2.2 Environmental Factors

Environmental factors such as topographic and edaphic conditions are temporally 

stable as compared with environmental drivers, so only their spatial dynamics can 

influence plant growth and development. The direct influence is on the spatial 

distribution of vegetation, and indirectly, environmental factors affect environmental 

drivers and moderate how environmental drivers affect plant growth (Dale, 2000).

2.2.2.1 Topography

The effects of landscape, specifically elevation, slope and aspect, on vegetation 

are very pronounced in the natural environment.

Plant phenology and distribution are strongly affected by elevation (Campbell, 

1974; Schuster et al., 1989) via its influence on abiotic factors. Air temperature on 

average decreases by 0.6 C per 100 m of increase in elevation (an adiabatic lapse rate of
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0.6C /100 m). The dry adiabatic lapse rate can reach a maximum of 1C /100 m for 

unsaturated air, and the wet adiabatic lapse rate is about 0.5C /100 m for saturated air 

(Jorgensen, 2009). Also, the lower partial pressure of CO2 at higher elevation has a direct 

downward influence on photosynthesis activity, and results in a reduced carbon gain and 

vegetation growth (Jorgensen, 2009). Due to a thinner atmosphere at higher elevation, an 

outcome of increased solar radiation is expected (Jorgensen, 2009). Increased elevation is 

usually associated with increased precipitation due to an orographic effect (Black, 1996). 

Elevation also affects the state of precipitation (rain or snow), dependent on temperature. 

Snow is usually associated with higher elevation and rain with lower elevation, due to the 

lapse rate of temperature (Grayson and Blosch, 2001).

The influences of elevation on these abiotic factors cause a series of phenomena 

along elevation gradients: when elevation increases, generally there are decreases in the 

number of species, plant height, plant density, growth rate, and length of growing season 

(Waugh, 2000). Elevation is also a decisive factor of species distribution, with vegetation 

cover changing gradually from grassland, shrubland, and deciduous forest, to conifer 

forest, to barren systems and tundra as elevation increases.

Slope and aspect affects vegetation in a different way as compared to elevation 

and most other environmental drivers and factors. Their variations across space are more 

abrupt rather than gradual, thereby creating localized climates or even microclimates with 

different solar radiation, precipitation, drainage, and exposure to wind (Schwartz, 2003; 

Sharma, 2005). These microclimates further lead to the creation of microhabitats whose 

environmental and phenological characteristics can differ a lot even over a small area 

(Schwartz, 2003; Batanouny, 2001).
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Slope can influence soil depth, acidity and drainage through its effect on the rate 

of water flow (Waugh, 2000; Sharma, 2005). Steeper slopes are usually associated with 

thinner, less waterlogged and less acidic soils because water flows down more rapidly 

and soil can be more easily washed down due to gravity (Waugh, 2000; Sharma, 2005). 

Therefore, in an extreme situation, only certain vegetation or even no vegetation can exist 

along a very steep slope with little water supply and severe soil erosion, even though 

there is abundant precipitation (Sharma, 2005). Slope also affects the solar radiation by 

changing the solar incidence angle, and the different heating causes different atmospheric 

temperature within the microhabitat (Sharma, 2005).

Aspect is the direction a slope faces. Aspect affects solar radiation, temperature 

and moisture. Generally, south-facing slopes are more favorable for plant growth than 

north-facing slopes in the northern hemisphere, because they can receive more solar 

radiation, and thus have higher temperature and lower humidity (Waugh, 2000). Also, it 

is common to see different vegetation or vegetation composition on different aspects. For 

example, the southwest facing Himalayas generally have more abundant rains than the 

other side due to the rainshadow effect, and thus have flourishing vegetation as compared 

to much poorer vegetation on the other side (Sharma, 2005).

2.2.2.2 Edaphic Conditions

Variations in soil texture, structure, nutrients, and other characteristics cause plant 

growth and distribution to vary (Waugh, 2000).

Soil texture is the degree of coarseness or fineness of the soil (Waugh, 2000). Soil 

can be composed of clay, silt, sand, and gravel. The composition and proportion of them 

determine the soil texture (Waugh, 2000). Variations in soil texture (i.e., variations in the
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size and spacing of soil pores) affects soil water content, water flow and aeration 

(Waugh, 2000). For example, clay soils tend to hold more water and are less aerated as 

compared to sandy soils which have larger and more scatted soil pores. Soil texture also 

influences the ability of soil to hold nutrients. Clay soils can retain more nutrients and 

make them less easily leached due to the higher absorbability of clay particles compared 

to sand, thereby making clay soils more fertile. Despite all these disadvantages, it is 

easier for plant roots to penetrate coarser soils.

Soil nutrients are essential for plant growth, and are mainly released by rock 

weathering (Waugh, 2000). These nutrients are dissolved in water (soil solution) for 

plants to absorb. Soil nutrients in soil solution have two forms: cations (positively 

charged ions) and anions (negatively charged anions). Cations can be absorbed by plants 

through the cation exchange process, where cations move from the surface of soil 

particles or soil solution to plant roots (Waugh, 2000). Therefore, the measure of the 

ability of a soil to retain cations, called Cation Exchange Capacity (CEC) is a crucial 

measure. Low CEC means that the soil cannot hold enough nutrients for plant use, thus it 

is less fertile (Waugh, 2000). The CEC level is highly associated with soil texture and 

organic matter content. Generally, CEC is higher when soil texture is finer and there is 

more organic matter in the soil.

Anions are usually released from organic matter by the decomposition of 

microorganisms. Therefore, soil organic matter is another important measure as a major 

source of nutrients. Also, increase in the soil organic matter leads to the increased water- 

holding capacity.
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Acidity is yet another attribute of soil that influences plant growth. Acidity is 

actually a measure of the concentration of the cations in the soil on the pH scale. A 

slightly acidic soil is the optimal condition for plant growth, and overly acidic soil is 

deleterious to plants, and makes organic matters more soluble and easily leached.

The depth of the water table also causes variations of plant growth. The plant 

rooting system is confined to the layers above the water table, because roots cannot grow 

into the ground water zone for lack of aeration. Thus the depth of the water table 

determines the depth of root system and soil as a nutrient reservoir (Batanouny, 2001).

Based on the review of the attributes above, it can be seen that edaphic condition 

is also one of the factors that controls vegetation distribution, because plants have 

different needs for nutrients and different tolerances of acidity and toxic elements (Foth 

and Ellis, 1997).

2.2.2.3 Latitude

Latitude, similar to elevation, has a gradient that affects abiotic factors. Annual 

insolation increases with decreasing latitude (Jorgensen, 2009). Latitude is also the only 

factor determining the spatial variation of photoperiod. Variations in solar radiation and 

photoperiod are direct controls on temperature. Therefore latitude is considered one of 

the major factors affecting temperature (Ahrens, 2007). As a consequence, the duration of 

the growing season varies from about 10 weeks at high latitude to the entire year in the 

tropics (Jorgensen, 2009).

Latitude influences vegetation distribution and diversity, as well as the 

environment-vegetation relationship via its influence on light and temperature. 

Vegetation diversity is higher at low to middle latitudes and lower at high latitudes (Van
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Dyke, 2008). The distributions of many species or ecosystems are confined within certain 

parallels of latitudes. For example, alpine forests are likely to occur at higher altitudes on 

lower latitudes with strong maritime influences (Jorgensen, 2009). Mangroves are 

generally distributed between 25° N and 25° S latitude (Jorgensen, 2009). The responses 

of vegetation to environment vary at different latitudes. For example, different amounts 

of heat are needed for the same species to reach a certain phenophase at different 

latitudes (Schwartz, 2003).

2.2.3 Interactions Between and Combined Effects of 

Environmental Drivers and Factors 

As stated above, plant growth is the result of overall influence of all 

environmental drivers and factors, and their interactions as well. Although it is a common 

and important analytical and explorative method to study relationships between 

vegetation and a single environmental driver or factor separately, it is important to bear in 

mind that the natural environment functions as a whole, and it is meaningless to look into 

one factor without considering the influence of another.

Firstly, environmental drivers and factors are interrelated and influence one 

another. Elevation strongly influences temperature, and the vegetation distribution along 

elevation gradients is largely due to temperature gradients. Generally, temperature 

decreases by 6.5°C per every 1000 m increase in elevation. Slope and aspect can also 

cause spatial variations of temperature through different solar radiant conditions. 

Consistent solar radiation can naturally result in the increase of temperature in the 

microclimate and in plant organs (Fitter, 2001). Temperature can affect the number of 

microorganisms in the soil. When temperature is higher, more microorganisms are
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involved in the decomposition of organic matters, thus leading to more nutrients released 

for plant growth (Waugh, 2000). Extremely high precipitation sometimes leads to the 

decrease in vegetation abundance due to reduced soil nutrients by leaching (Schuur, 

2003).

Secondly, variations o f one environmental driver or factor can change how 

vegetation responds to another. How light influences plant growth is dependent on 

temperature. For example, the moderation o f phytochrome, one o f the predominant 

photoreceptors controlling germination, is actually variant at different temperatures 

(Timmermans, 2010). The saturating solar radiation increases as temperature increases. 

The solar radiation at which plants grow optimally differs at different elevations as well. 

Mooney and Billings (1961) found that Oxyria digyna reached maximal photosynthetic 

rate at higher solar radiation level at higher elevation (Pfafflin, 2006). Solar radiant 

energy needed for plants to maintain growth and development varied on different levels 

o f moisture (Atkinson, 1904). While photoperiod is the most important control o f 

flowering, dormancy is largely induced by variations in both photoperiod and 

temperature. Photoperiodism can operate when temperature is within an effective range, 

and when temperature is out of this range (either too high or too low), dormancy cannot 

be properly induced by photoperiod, and growth may resume and lethal damages may 

occur due to heat stress, cold stress and water stress (Thomas and Vince-Prue, 1996). 

Temperature usually has pronounced influence in the spring, in driving leafing, flowering 

and ripening, because of the extended photoperiod. Other environmental drivers, notably 

precipitation and light, can also change the response o f vegetation to temperature. For 

example, under the circumstances o f lower solar radiation, the temperature optimum
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moves to a lower range, which implies that plants can function well during both the 

morning characterized by lower solar radiation and cooler temperature, and the midday 

characterized by higher solar radiation and temperature (Schulze et al., 2005).

Lastly, one driver becomes especially important when other drivers are not 

limiting factors. In the arid and semiarid tropics and subtropics, where temperature is 

always at its optimum for the vegetation there, precipitation becomes the main driver of 

plant growth (Schwartz, 2003).

2.3 Rangeland Phenology

Rangeland supports different kinds of vegetation types, such as shrublands, 

grasslands, steppes, deserts, and woodlands (Heady and Child, 1994). Rangeland 

phenology is also affected by the environmental drivers and factors enumerated above. 

However, rangeland vegetation responds more rapidly to the environmental variations as 

compared to other kinds of vegetation (Reed et al., 1994).

Most rangelands are characterized by low and variable annual rainfall, and are 

located in dry areas (Grice and Hodgkinson, 2002 and Tussie, 2004). Therefore, among 

all the environmental drivers and factors, precipitation regime has a much more 

significant influence on rangeland vegetation, especially on annual grasses and shortgrass 

prairie at drier locations (Reed et al., 1994). They usually respond to precipitation in a 

pulsed way, in which they are highly dependent on discrete rainfall events, and their 

phenology is a steady and rapid reflection of the rainfall events, in terms of productivity, 

density, and abundance (Rauzi and Dobrenz, 1970).

Another notable factor than constrains rangeland phenology is the livestock 

grazing. Livestock grazing has considerable impact on rangeland vegetation (Desalew et
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al., 2010). The grazing-induced vegetation change is such a big disturbance, especially 

under high grazing intensity, that it cannot be overlooked when monitoring or predicting 

rangeland plant phenology. The actual response of rangeland vegetation to grazing is 

dependent on the types of livestock and the vegetation types and composition.

2.4 Phenological Models and Predictions

A model is a representation of an object or process being studied in the real world 

(Bender, 2000). Modeling is a process of simplifying and abstracting reality. It is an 

integration of knowledge already known about reality (Hodges, 1991). A process to be 

modeled can be divided into three parts -  negligible elements, elements that affect the 

model but whose behavior the model is not designed to study (exogenous variables, 

parameters, input, or independent variables), and elements whose behavior is designed to 

be studied using the model (endogenous variables, output or dependent variables) 

(Bender, 2000).

Phenological models refer to algorithms or quantitative statements which can 

simulate the response of the major plant physiological processes to environmental 

variables (Hodges, 1991) in order to predict the phenophases of the plant. Phenological 

modeling is a method of integrating knowledge about biological and environmental 

processes into mathematical equations (Hodges, 1991). In a phenological model, the 

outputs or dependent variables are the phenophases or the vegetation status and the input 

or independent variables are all of the environmental variables that affect the 

phenophases.

The earliest effort in phenological modeling was made by Reaumur (1735). He 

suggests that the spatial and interannual difference in the dates of phenophase onset can



be explained by the degree-day sum. Reaumur (1735) concluded that plant development 

is proportional to the heat accumulation over time, rather than the temperature around the 

phenophase onset. This is still the most important assumption in phenomodeling 

(Schwartz, 2003). Since then, many phenomodels have used different forms of heat 

accumulation to model many kinds of phenophases, mostly budburst and flowering. The 

variable being modeled was usually the date of phenophase onset/offset during the early 

periods of the phenomodeling history, because phenological observations were mostly 

ground- and field-based, and it is easier to accurately observe the dates rather than the 

actual vegetation status.

Photoperiod was then added aiming to more accurately model or predict the 

phenophase onset. The models with photoperiod considered initially, took the form of a 

multiplication of the heat accumulation variable and a variable based on photoperiod. 

Photoperiod is still considered a very important independent variable in phenomodels 

nowadays. For example, Jolly et al., 2005 developed a Growing Season Index (GSI) as 

the product of three indices related to photoperiod, minimum temperature and vapor 

pressure deficit.

The advent of remote sensing technology induced great changes in 

phenomodeling. The phenomodels that utilizes remote sensing to predict phenophase 

onset focus more on the onsets and offsets of the growing season than on the actual 

budburst, flowering or leaf color changing dates. A simple way to predict the onset and/or 

offset of the growing season is to analyze the time series of VIs. There have been many 

methods to determine the onset/offset dates, including thresholds, maximum rate of 

change, or a certain percentage of the greatest VI increase.
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Remote sensing also provides a way to monitor and record a continuum of the 

actual vegetation development. A lot of recent attention has been attached to the actual 

vegetation abundance instead of just the transition dates. One form of this kind of 

phenomodels is the autoregressive moving average, which uses current and precedent 

values of VI to predict the future VI values. However, the most popular and successful 

model is the multiple regression model (Ji and Peters, 2004; Olson et al., 1985). The 

multiple regression model is a statistical model that considers the underlying physical 

process by including all environmental drivers and factors, trying to simulate how the 

environment, as a whole, affects the vegetation abundance.
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3 METHODOLOGY

The Upper Colorado River Basin is a highly geographically diverse region. This 

diversity creates great spatial variation in environmental drivers and factors. 

Temperature, precipitation and light are identified as three main environmental drivers 

having spatio-temporal influence on plant development. The influence is moderated by 

the spatial variation o f environmental drivers including topography and edaphic 

conditions. As reviewed in Section 2.2, the environment-vegetation relationships are 

dependent on different ranges o f environmental drivers and factors; therefore, the great 

spatial and temporal variations in the environmental drivers and factors lead to the spatial 

and temporal variations in the environment-vegetation relationships. Both temporal and 

spatial variations of the environment-vegetation relationship need to be accounted for to 

achieve the three objectives o f the research. The spatial variation o f the environment- 

vegetation relationship in the UCRB is firstly accounted for by phenoregion delineation,

i.e., spatially differentiating subregions using environmental drivers and factors, and then 

by adding the time invariant environmental factors in the phenomodels. The temporal 

variation o f the relationship is conducted by the identification o f phenophases, i.e., 

greenup, maturity, senescence and dormancy and by including the time variant 

environmental drivers in the phenomodels.

The Multivariate Adaptive Regression Splines (MARS) technique is used as the 

modeling approach serving both the prediction and interpretation purposes. The onset and



offset of phenological phases can occur within a time window as short as only a few days. 

Use of data with longer intervals will firstly increase the uncertainty and makes it harder 

to get accurate predictions necessary for identifying the phenophase onset/offset, and 

secondly, will mask the accurate onset/offset date since all predictions are made for the 

next interval. Data with shorter intervals are usually only available at much coarser 

spatial resolution (Cardot et al., 2008). Therefore, 1-km 7-day eMODIS and Ecocast data 

are chosen as a trade-off between the two kinds of resolution that satisfies the 

requirements of rangeland managers. The phenomodels use a large number of samples 

extracted from remote sensing images, rather than only data derived from sites 

sporadically distributed in the study area. The NDVI is used as the dependent variable of 

the phenomodels to represent vegetation abundance, because it has been successfully 

used in many phenological studies. The saturation issue, as a major limitation of the 

NDVI, becomes less of a concern in this research in the semiarid and arid UCRB. 

Different independent variables are selected to be used in different phenoregions based 

on their influence on the 7-day vegetation dynamics. Models are evaluated and adjusted 

based on their performance. This modeling process ensures that the interpretation made 

from these models is representative of the vegetative response to the environment. Two 

ways of validation are used to assess the model’s representation of the reality. Cross 

validation ensures the model is applicable to other independent regions and years. Field 

validation ensures the model is applied to the physical environment in a realistic manner. 

Finally, a DSS is developed to incorporate the models and other information for public 

use. The DSS is to provide assistance to the land managers and other users. Components 

of the methodology are presented in Table 3.1.
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Table 3.1 Workflow of methodology

Components Approaches, steps and 
summaries Techniques

3.1 Phenoregion 
Delineation

Select phenological forcing 
variables; spatially partition the 

UCRB; evaluate the series of 
phenoregion maps and select 
the optimal one used in the 

following analysis and 
modeling.

Principal Component 
Analysis (PCA); k- 

means++ clustering; 
MapCurves goodness-of- 

fit score

3.2 Data Sources and 
Data Processing

Introduce eMODIS and 
Ecocast data and 

preprocessing; scrutinize data 
and assess data quality; data 
sampling; outlier exclusion; 

NDVI time series 
reconstruction

Reprojection and subset; 
Stratified systematic 

sampling; random 
sampling; Savitzky-Golay 
smoothing filter; iterated 

Savitzky-Golay fitting

3.3 Time Series 
Analysis

Mean phenoregional 
reconstructed NDVI time series 

generation; identification of 
phenological phases

Time series smoothing;
time series 

decomposition; NDVI 
ratio; thresholding

3.4 Premodeling 
Preparation and 

Analysis

Calculate candidate variables; 
pairwise correlation analysis; 
PCA analysis; lag structure 

analysis

Image processing and 
generation through IDL; 

Pearson’s correlation 
coefficient; PCA

3.5 Model 
Development

Model development, 
diagnostics, and adjustments; 
relationship analysis between 

NDVI and environmental 
drivers as moderated by 
environmental factors

Multivariate Adaptive 
Regression Splines 

(MARS)

3.6 Model Validations
Validate phenomodels using 

both cross validation and field 
validation

Field site selection; field 
spectra measurement; 

spectra processing; bad 
quality spectrum 
handling; cross 

validation; Root Mean 
Square Error (RMSE); 

Coefficient of Variation 
(CV)

3.7 Phenological 
Decision Support 

System

Phenological DSS integrating 
phenomodels and other useful 

information

Google maps API; KML; 
C#.net; Web-based GIS



50

3.1 Phenoregion Delineation

The delineation of subregions based on their climatic, ecologic and geographic 

characteristics has been increasingly used for planning, policy making, natural resource 

conservation and management by government agencies and conservation groups 

(Thompson et al., 2004). Partitioning of regions into functional subregions is dependent 

on the purpose of the application. Therefore, subregions can take a variety of forms based 

on the classification logic.

Ecoregions are one type of subregion delineation. The Kuchler, Bailey and 

Omernik systems are three well-known and widely used ecoregion classification systems 

generated using different data and classification methods (McMahon et al., 2001; 

Thompson et al., 2004). The concept of Potential Natural Vegetation (PNV) was 

introduced by Tuxen (1956) as the vegetation that would exist today if human impacts 

were removed. The Kuchler system (Kuchler, 1964) is a potential natural vegetation map 

of the conterminous United States. The Bailey system (Bailey, 1983) adopted maps of 

climate, topography and vegetation to generate ecoregion maps at nine levels of division 

while each level is based primarily on one particular map (Omernik, 1987). The Omernik 

ecoregion system (Omernik, 1987) is based on a combination of four maps: land use, land 

surface form, potential natural vegetation and soils. These well-known and widely-used 

ecoregions are delineated by qualitatively analyzing the homogeneity and generality of 

each adopted map based on the knowledge and experiences of experts.

Extending on the ecoregion concept, the delineation of subregions has become 

more function-specific. Agroecoregions (a.k.a. agroecozones, crop growth zones or soil 

productivity zones) are generated by delineating subregions of similar expected crop
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performance. They are used for crop suitability analysis and agricultural policy making 

(Williams et al., 2008). The soil map units used in the Natural Resources Conservation 

Service, US Department of Agricultural (NRCS) soil survey are mapped by 

differentiating the properties o f natural bodies o f soils and serve as the basic map unit for 

the widely used STATSGO (State Soil Geographic) and SSURGO (Soil Survey 

Geographic) databases (NRCS, 2011).

Recently, natural area subregion delineation has focused on phenological 

processes to yield functional phenoregions. The term “phenoregion” was first defined by 

White et al. (2005) as phenologically and climatically self-similar clusters. The 

phenoregion system derived by White et al. (2005) served as a global framework for 

monitoring phenological responses to climate change.

The effective delineation of phenoregions, i.e., the effective spatial partitioning of 

the vegetation-environment relationship, is a prerequisite to all analyses and 

phenomodeling. Each phenoregion is an entity in which all pixels in that phenoregion are 

considered to share similar phenological cycles and vegetation-to-environment responses. 

Phenoregions are the basic areal units of all analyses. Therefore, phenoregion delineation 

is a very important first step in this dissertation and the foundation of its methodology.

The geographic diversity of the UCRB necessitates the delineation of phenology 

based subregions. This dissertation develops 1-km pixel based UCRB-specific 

phenoregions, which are expected to capture homogeneous environment-vegetation 

relationships in respective phenoregions by differentiating environmental drivers and 

factors. Multivariate clustering generates clusters as quantitative subregions based on 

multiple variables dependent on the function o f clusters (Hargrove and Hoffman, 2004;



White et al., 2005). Multivariate clustering has been demonstrated to be effective for 

subregion delineation at different spatial scales. In this research, normalized principal 

component analysis (PCA) combined with improved &-means clustering (&-means++ 

clustering) is used to generate phenoregion maps of the UCRB (Figure 3.1). The number 

of clusters is varied, and the results are compared using a set of evaluative criteria to 

determine the optimal classification from this series of phenoregion maps. The 

differentiation of environmental drivers and factors can lead to the successful delineation 

of phenoregions, because:

1. Differentiation of environmental drivers and factors naturally lead to similar 

ranges of these drivers and factors, i.e., similar phenological forcing within 

each phenoregion.

2. A literature review indicates that long-term average and seasonal variations of 

environmental drivers as well as environmental factors determine the 

vegetation distribution, so a phenoregion is expected to have homogeneous 

vegetation distribution.

3. As summarized in the section of “Interactions between and Combined Effects 

of Environmental Drivers and Factors” in Section 2, variations of one 

environmental driver or factor can change how vegetation responds to another. 

Phenoregions limit this kind of variations, and can naturally lead to more 

homogeneous environment-vegetation relationship.

A phenoregion, thereby, is expected to have similar vegetation responses in terms 

of either one of the environmental drivers and factors and the environment as a whole. 

The phenoregions in the optimal phenoregion map assured that a unique phenomodel
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Figure 3.1 Diagram of phenoregion delineation.



with a unique set of independent variables can be developed for each phenoregion, and 

the common environment-relationship can be explored within each phenoregion by 

interpreting the respective phenomodel. The diagram of phenoregion delineation is 

shown in Figure 3.1.

3.1.1 Data Sources and Variables

It has been pointed out that spatial variations of all environmental drivers and 

factors significantly influence vegetation distribution and spatial variation of 

environment-vegetation relationship. Theoretically, long-term average and seasonal 

variations of all environmental drivers and factors should be included in the phenoregion 

delineation; practically, there are several exceptions and modifications. The variables 

used in delineation for this research are specified in Table 3.2.

Light conditions, specifically solar radiation and photoperiod, are not included as 

variables in phenoregion delineation. This is because the spatial variation of solar 

radiation and photoperiod is largely due to latitude and elevation. As discussed before, 

the influence of slope and aspect act more like a microhabitat, therefore it is more 

meaningful to consider the two variables in the phenomodels instead of in the 

phenoregion delineation. The phenomodels can represent exactly how the variation of 

landscape can adjust the climate and create microhabitats, by including pixel specific 

slope and aspect values, and allowing for them to interact with other independent 

variables.

The annual averages, standard deviation of monthly data and averaged data during 

growing season are used in phenoregion delineation for the differentiation of 

phenological forcing and for phenological patterns.
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Table 3.2 Summary of variables used in the UCRB phenoregion delineation

Variables Descriptions Data Sources
Original
Spatial

Resolution
Accuracy

Latitude 1km

Elevation Mean elevation above sea level DTED Level 0 by 
NGA

30 arc 
seconds

Horizontal accuracy: <60 m 
Vertical accuracy: <46 m

Mean maximum 
temperature

Annual maximum temperature averaged for 1971 - 
2000

Mean minimum 
temperature

Annual minimum temperature averaged for 1971 - 
2000

Mean maximum 
temperature during 

growing season

Maximum temperature between May and Oct., 
averaged for 1971-2000

Mean minimum 
temperature during 

growing season

Minimum temperature between May and Oct., 
averaged for 1971-2000

PRISM dataset by 
PRISM Climate 
Group at Oregon 
State University

0.00833
decimal
degrees

130 m

Standard deviation of 
monthly temperature Intra-annual variability of temperature

Mean precipitation Total annual precipitation averaged for 1971-2000
Mean precipitation 

during growing season
Total precipitation between May and Oct., 

averaged for 1971-2000

Standard deviation of 
monthly precipitation Intra-annual variability of precipitation

Soil Variability Index
The variable indicating soil variability and was 

derived by applying PCA on 10 soil 
characteristics

STATSGO soil 
characteristics for the 
conterminous United 

States by USGS

1 km N/A

Mean NDVI Mean annual NDVI averaged for 1990-2005 AVHRR-NDVI by 
USGS 1 km <1 km Root Mean Square 

Error



Table 3.2 lists 12 variables included in phenoregion delineation related to 

temperature, precipitation, elevation, soil fertility and vegetation. Plant phenology and 

species distribution patterns have been demonstrated by multiple studies to be strongly 

affected by elevation (Campbell, 1974; Schuster et al., 1989). Distribution of different 

species can easily be observed across elevation gradients. The UCRB has an elevation 

range of about 3000m, making elevation an especially important input variable in this 

research. The vegetation cover in the UCRB changes gradually from barren systems 

above 3500m, to conifer- and deciduous-dominated forest at around 2500-3000m, to 

sagebrush dominated shrubland below 2000m. The elevation variable is derived from the 

Digital Terrain Elevation Data (DTED) level 0 at 30 arc second (~1km) resolution 

compiled by the National Geospatial-Intelligence Agency (NGA, 1996) in 2001.

Temperature has long been observed to directly influence phenological phases. A 

large number of papers have scrutinized the effects of temperature on the phenological 

timings of plants (Badeck et al., 2004; Fitter et al., 1995; Sparks and Carey, 1995; Sparks 

et al., 2000). In general, higher temperature accelerates plant development leading to 

earlier onset of phenological events. Five temperature variables calculated from the 

PRISM (Parameter-elevation Regressions on Independent Slopes Model, Daly et al., 

1994) dataset were included as input variables: mean annual maximum temperature, 

mean annual minimum temperature and standard deviation of monthly temperature as 

well as mean maximum and minimum temperature during the growing season, defined as 

from May to October based on the range of first and last freeze/frost occurrence dates at 

different stations spread over the UCRB (Koss et al., 1988). PRISM data have a spatial 

resolution of 0.00833 decimal degrees (~925m) and have a monthly temporal resolution
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covering 1971 to 2000 (PRISM Climate Group, 2010). The mean annual maximum and 

minimum temperature represent the general temperature range. Standard deviation of 

monthly temperature, and mean maximum and minimum temperature during the growing 

season were adopted to account for the intra-annual variation of temperature.

Precipitation is another major factor having great effects on vegetation. It affects 

the timings of different phenophases and accounts for a significant amount of the 

phenological variation, especially in moisture-limited regions like the UCRB (Reed et al., 

1994; Penuelas et al., 2004). Three variables -  annual mean precipitation, standard 

deviation of monthly precipitation and mean precipitation during the growing season 

were included. These three precipitation variables were also extracted from the PRISM 

dataset (PRISM Climate Group, 2010).

Although not as significant as precipitation, soil fertility has close relationship 

with species distribution pattern (Swaine, 1996). Soil fertility can greatly influence 

vegetation abundance and species richness (Gentry and Emmons, 1987; Swaine, 1996). 

Many soil attributes are directly correlated with fertility -  such as pH value, organic 

matter, and cation exchange capacity (Troeh and Thompson, 2005). A principal 

component (PC) of several soil attributes is used to serve as an index of soil fertility to 

preserve maximum variability in soil attributes and allow better discrimination of 

phenoregions. The SSURGO and STATSGO databases are considered to be reliable data 

sources to derive soil fertility by providing a series of soil attributes directly related to 

soil fertility. However, the NRCS soil survey project to populate the SSURGO and 

STATSGO database is still underway in the western US, so this data source is currently 

unavailable. Instead, the USGS compiled 1 km data set of STATSGO soil characteristics
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for the conterminous United States (USGS, 1997) was used, with a full coverage of the 

study area and limited soil attributes less directly related to soil fertility, yet still greatly 

influencing vegetation growth. This data set contains 10 soil parameters including the 

high and low values of the range of organic matter, permeability, available water 

capacity, bulk density and depth to seasonally high water table. PCA was applied to the 

10 soil parameters. The first PC accounted for 99.6% of the total variance, indicating 

high consistency in the variance of the 10 soil parameters. The first PC was named the 

soil variability index (SVI) was used as another input variable besides the variables of 

elevation, temperature and precipitation.

Normalized Difference Vegetation Index (NDVI) is the most commonly used VI 

for monitoring vegetation phenology. The mean annual NDVI is provided by the 1 km 

dataset from the USGS by averaging the AVHRR-NDVI from 1990 to 2005, to signify 

the average vegetation growth and vigor.

Latitude is also demonstrated to have influence on the environment-vegetation 

relationship, even for the same species.

Twelve variables (Table 3.2) were thus selected and extracted from corresponding 

data sources. They were all resampled to a common 1 km resolution and pixel alignment, 

and then subset to the UCRB.

Phenoregions customized by this set of variables captures particular phenological 

forcing patterns that may be missing in other types of subregion classification (Hargrove 

and Hoffman, 2004). For example, by considering the annual mean precipitation and the 

mean precipitation during growing season, delineated phenoregions can provide 

additional information in discriminating places with desert monsoons and with alpine
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climates. Also, the areas with a higher mean temperature in the growing season resulting 

in an earlier onset of greenup can be distinguished using these variables. More general 

purpose subregions delineated without these variables might fail to capture these 

important differences. In this sense, the set of variables can decompose the geographic 

diversity of topography, climatic conditions and vegetation, and finely differentiate the 

spatial variation in phenological forcing among different geographic locations in the 

UCRB.

3.1.2 Principal Component Analysis and &-means++ Clustering

Normalized Principal Component Analysis plus iterative &-means clustering has 

been demonstrated to be an effective approach for the delineation of subregions in 

previous studies (Hargrove and Hoffman, 2004; White et al., 2005). PCA plus &-means 

clustering, as a quantitative method, does not rely on geographic knowledge or familiarity 

with the data, thus making the delineation of phenoregions more objective. Although this 

approach is computationally intensive compared with other quantitative methods, its 

essence of hierarchical nonnestable clustering can lead to independent phenoregion maps 

with different numbers of clusters, providing a better opportunity to develop an improved 

classification of phenoregions (Hargrove and Hoffman, 2004).

However, due to the local optima problem associated with ordinary &-means 

algorithm, this research uses &-means++ (Arthur and Vassilvitskii, 2007), rather than 

ordinary &-means algorithm, to acquire optimal clustering. The &-means++ algorithm is 

an augmentation of ordinary &-means by replacing the random seeding with a careful 

seeding process. &-means++ clustering retains all the advantages of ordinary &-means and 

solves the local optima problem. The combination of PCA and &-means++ clustering is



thus used in this research to delineate phenoregions by generating clusters based on all 

the PCs of the 12 variables in Table 3.2.

Principal component analysis is an essential algorithm before k-means clustering 

can be applied due to potentially strong correlations among input variables. For example, 

precipitation is correlated with many soil attributes affecting soil fertility; soil fertility 

and vegetation abundance indicated by NDVI are closely related under higher 

precipitation (Swaine, 1996); and total annual precipitation and its variability are 

influenced by the elevation (Prins and Loth, 1988). PCA can effectively reduce the strong 

correlations between variables by converting the original set of variables into several PCs 

that are orthogonal in the principal component space (Hargrove and Hoffman, 2004). All 

of the variables were normalized because PCs are sensitive to scaling. Normalized 

variables have a mean of 0 and variance of 1. PCA was applied to normalized variables.

The k-means++ algorithm was used to cluster pixels that are close in the principal 

component space formed by all 12 PCs (i.e., similar values in elevation, temperature, 

precipitation, soil fertility and vegetation history). Ordinary k-means clustering has an 

intrinsic flaw associated with the random seeding: the performance of k-means clustering 

is dependent on the initial selection of cluster centroids. Many researchers have been 

aware of this problem, that the k-means algorithm may terminate at a local optimum 

instead of a global optimum depending on the initial centroids (Steinley, 2003). k- 

means++ clustering (Arthur and Vassilvitskii, 2007) addresses this problem by 

introducing a careful seeding process in lieu of random seeding in the ordinary k-means 

algorithm, to ensure the initial centroids are as far away from each other as possible in the 

multivariate data space. The k-means++ algorithm is as follows:
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1. Select at random the first centroid from all data points.

2. Calculate a probability statistic using the following equation for each data 

point,

r D ^ 2 
^ D ( i ) 2

where is the shortest distance (in the principal component space) from a 

data point i to its closet centroid that has already been selected.

3. Select the data point with the largest probability (P) as the next centroid.

4. Repeat steps 2 and 3 until all k  centroids are selected.

5. Proceed with this set of initial centroids as in the ordinary k-means algorithm.

Improved seeding can help ensure maximum dissimilarity between phenological

forcing clusters and maximum homogeneity within each cluster while avoiding the 

selection of outliers (the algorithm is insensitive to outliers in seed selection). Adopting 

the k-means++ seeding process can effectively reduce the uncertainty and avoid the 

sometimes poor clustering that arbitrarily results from the ordinary k-means algorithm. In 

summary, the k-means++ clustering improves both speed and accuracy compared to the 

ordinary k-means (Arthur and Vassilvitskii, 2007).

k, the number of clusters, is a priori parameter for each execution of k-means++ 

clustering. An inappropriate selection of k  could result in a poor classification of 

phenoregions. Therefore, the clustering was tested with k  clusters with k  ranging from 5 

to 26. Two types of comparisons were then used to select a phenoregion map with higher 

homogeneity and spatial concordance (a measure of spatial coincidence and spatial 

overlap, Hargrove et al., 2006) with other phenoregion maps with different numbers of 

clusters.
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3.1.3 Comparisons of Phenoregion Maps and Selection of 

the Optimal Phenoregion Map

The optimal phenoregion map should have the following characteristics:

1. The map should be as homogeneous within each phenoregion as possible, i.e., 

pixels within the same phenoregion should have as low variability or 

dispersion as possible in terms o f latitude, elevation, temperature, 

precipitation, soil fertility and vegetation history.

2. Since the phenoregion maps with different numbers of clusters are all 

generated by the same process, maps with higher spatial concordance with 

other phenoregion maps may indicate consistently more stable phenoregions.

Two methods were adopted to compare phenoregion maps based on these two 

criteria. The first comparison method calculated the mean standard deviation o f the 

Euclidean distance in principal component space formed by PCs for different 

phenoregion maps, referred to as “absolute comparison.” The second method quantified 

the spatial concordance between pairs o f phenoregion maps, referred to as “relative 

comparison.”

The absolute comparison uses two metrics to quantify the spatial homogeneity o f 

different phenoregion maps. For both, it is calculated for each pixel the Euclidean 

distance from itself to the centroid of the cluster it belongs to in the principal component 

space. This indicates the similarity between a pixel and the mean o f the phenoregion (the 

final centroid after running &-means++) in terms of phenological forcing variables. The 

two metrics are the Total Within-Cluster-Sum-of-Squares (TWCSS) and the Mean 

Standard Deviation (MSD), calculated as:
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where Dt is the Euclidean distance between the pixel i and the centroid in the principal 

component space, Np is the number of pixels in phenoregion p. Both metrics indicate 

from different perspectives the general degree of homogeneity of a specific phenoregion 

map. The difference is that the TWCSS is the simple summation of the Euclidean 

distance over all pixels, and the phenoregions with more pixels naturally are attached 

with more importance / weight; the MSD, on the contrary, regards the homogeneity 

(standard deviation of Euclidean distance) of each phenoregion as equally important.

The relative comparison uses Mapcurves Goodness-Of-Fit (GOF) scores 

(Hargrove et al., 2006) to quantify the degree of spatial concordance between two maps. 

Each cluster on the map has a GOF score calculated as shown in Figure 3.2, where GOF 

is the goodness-of-fit score of this cluster, C is the amount of overlapping region, B+C is 

the total area of the intersected cluster on the reference map and A+C is the total area of 

the intersected cluster on the map being compared. A Mapcurve, which is a form of 

cumulative frequency distribution, was plotted for each comparison direction of 

phenoregion maps (e.g., the map with 5 clusters compared to the map with 6 clusters as a 

reference). This plot contains an x-axis indicating the GOF score and y-axis indicating 

the percentage of clusters with a GOF score exceeding the correspondent GOF threshold 

(Hargrove et al., 2006). Two GOF scores were derived by calculating areas underneath 

Mapcurves of both comparison directions. The higher score indicates favorable direction 

of comparison and was selected as the GOF score between these two maps. The 

Mapcurves GOF scores range from 0 to 1 with the higher value indicating better fit.
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Figure 3.2 The algorithm used to calculate GOF score of cluster A+C on Map 1 
(modified from Hargrove et al., 2006).

The average Mapcurves GOF score of a phenoregion map was calculated as the 

sum of scores between this map and each of 5- to 26-phenoregion maps divided by 22 

(the number of phenoregion maps). This research used the average Mapcurves GOF score 

as a measure of the average spatial concordance of a phenoregion map with the whole 

series of maps with different numbers of clusters.

Absolute and relative comparisons are conducted for the selection of the final 

phenoregion map used as the basis of all following analyses and modeling. In addition, 

the number of phenoregions is also an important factor when making the decision 

because it influences the time and labor consumed for analysis and field work.

3.2 Data Sources and Data Processing

3.2.1 eMODIS Data

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument 

aboard the Terra (EOS AM) and Aqua (EOS PM) satellites of NASA. Terra MODIS and



Aqua MODIS view the entire earth's surface every 1 to 2 days, acquiring data in 36 

spectral bands (NASA, 2009). There are many standard MODIS data products for 

calibration, atmosphere, land, cryosphere and ocean.

The eMODIS product (USGS-EOS MODIS) is generated at the US Geological 

Survey’s (USGS) Earth Resources Observation and Science (EROS) Center. The 

eMODIS products provide the 7-day interval data at the spatial resolutions of 250 m, 500 

m and 1 km, including NDVI and surface reflectance bands over the Continental US. The 

eMODIS products offer higher temporal frequency (7-day) and faster production output 

(<24 hours for expedited data and <30 days for historical data) than standard MODIS 

products (USGS, 2008). While having a high agreement with the standard MODIS NDVI 

products as indicated by the pixel-by-pixel comparison, the eMODIS NDVI products 

have much less geometric distortion, especially in high latitude and extreme-longitude 

regions (Ji et al., 2010). Therefore, eMODIS products are more suitable as the data source 

from which NDVI can be extracted.

The 1-km eMODIS NDVI product was used in this research. All NDVI images 

and their associated quality files are reprojected to the NAD83 / UTM zone 12N and 

subset to the bounding box of the UCRB. The quality files are recoded: the pixels marked 

as good quality and snow are still kept the same, and the pixels marked as other values 

including cloudy, bad band quality, negative reflectance and fill values are marked as bad 

quality in the recoded quality files.

3.2.2 Ecocast Data

Ecocast data is the climate data product produced by the NASA AMES 

Ecological Forecasting Lab using the Terrestrial Observation and Prediction System
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(TOPS) (NASA Ames Ecological Forecasting Lab, 2009). The Ecocast gridded climatic 

data includes the maximum and minimum temperature, precipitation and solar radiation. 

The Ecocast data at 1-km over the study area of the UCRB used in this project were 

generated by the NASA AMES in 2010 at 7-day intervals correspondent with those in the 

eMODIS data. Similarly, all Ecocast images are reprojected to the NAD83 / UTM zone 

12N and subset to the bounding box of the UCRB.

3.2.3 Data Overview, Evaluation and Quality Assessment 

A total number of 541 7-day intervals from 2000 to 2010 are used in this 

dissertation. The first 7-day interval is from the 49th day to the 55th day of 2000 (2000049

- 2000055), and the last 7-day interval is from the 173rd day to 179th day of 2010 

(2010173 - 2010179).

However, there exists irregularity in the 541 7-day intervals. Different 

compositing rationales were applied in different years in the eMODIS data production to 

match the intervals of the AVHRR product suites: Friday to Thursday were composited 

in 2000 to 2002, Wednesday to Tuesday were composited in 2003 to 2006, and Tuesday 

to Monday were composited in 2007 to present. This resulted in the two pairs of 

neighboring 7-day intervals with overlapping dates. The first one is 2002361 - 2003002 

and 2003001 -  2003007 with 2 overlapping days, and the second one is 2006354 - 

2006360 and 2006360 to 2007001 with 1 overlapping day. Since the Ecocast data are 

generated at the same 7-day intervals as eMODIS data, this overlapping interval problem 

exists in both datasets. Because the number of overlapping days are only limited to 1 and 

2 days, they are also considered to be approximately 7 days apart as with other 

neighboring intervals, for simplicity of analyses. Another issue of missing intervals is
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caused by the data anomalies in correspondent intervals. The missing intervals in the 

eMODIS data set include 2000224 - 2000230, 2001166 - 2001172, 2001173 - 2001179, 

2002081 - 2002087, 2003351 - 2003357, and 2004210 -  2004216. The missing interval 

issue for the Ecocast data only exists in precipitation images: precipitation data during the 

period of 2007296 - 2007302 are missing over the whole study area.

Aside from the interval irregularity, the data quality in both datasets, especially in 

the eMODIS dataset is also a problem to be paid attention to.

The eMODIS dataset is pure satellite data, and thereby its quality is easily 

affected by sensor failure, cloud, and a lot o f other possible interferences. Therefore, 

although the enhanced Maximum Value Compositing (eMVC) used in eMODIS 

production helps to reduce cloud contamination and to improve the data, the overall 

eMODIS data quality is still not ideal. There are only 11 out of all 541 images that have 

100% good quality. There are also a very small number (also 11) of NDVI images that 

have more than half of bad quality pixels. Most of the images have a percentage of bad 

quality pixels below 2%. Pixels identified as snow are also a problem worth attention. 

Although snow covered pixels can also be considered to have good quality and to 

represent the actual land surface condition, they are not o f research interests in this 

dissertation. Therefore, pixels with snow are coded as a separate category besides good 

quality and bad quality.

The quality of the Ecocast data is much more consistent than that of the eMODIS 

data, because it is fused from multiple data sources such as ground observations, satellite 

data and ecological modeling. All images o f minimum temperature, maximum 

temperature, and solar radiation are 100% good quality. Precipitation images are the only

67



type in the Ecocast data that have known quality problems. There are 111 out of 541 

precipitation images that have data quality issues and only 5 have more than half bad 

quality pixels.

Therefore, the data quality issues should be borne in mind and taken care of when 

doing following analyses, in order to avoid artifacts in model outputs.

The spatial and temporal sampling and the usage of the sampled values are shown 

in Figure 3.3.

3.2.4 Spatial and Temporal Sampling

Stratified systematic sampling plus random sampling is adopted to extract pixels 

spatially for modeling and validation. Stratified systematic sampling can effectively 

reduce spatial autocorrelation, ensure the interdependency of pixel sample one and two, 

and avoid the infeasible, extremely time-consuming and sometimes destructive 

exhaustive sampling. About one-twentieth (14693 pixels) of the total number of pixels in 

the UCRB (293889 pixels) are determined to be extracted. The sample size allocated to 

each phenoregion is calculated using Neyman allocation, based on the total number of 

pixels in and the standard deviation of that phenoregion:

Np * SDp
n-n =  n *  — --------

p Z N i *SDi

where np is the sample size of phenoregion p, n  is the total sample size, Np is the number 

o f pixels o f phenoregion p , and SDp is the standard deviation (heterogeneity) of 

phenoregion p. To sample n p pixels in phenoregion p: firstly, systematic sampling is 

applied in phenoregion p  to extract the sample with the size slightly more than np; then, 

n p pixels were randomly extracted from the systematically sampled pixels. The np pixels
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Figure 3.3 Spatial and temporal sampling and the usage of sampled values.
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were randomly divided into two sets: pixel sample one and pixel sample two. The NDVI 

values of pixel sample one in all years (from 2000 to 2010) were used to construct 

complete NDVI time series necessary for premodeling analysis.

On the temporal dimension, values in odd years and in even years for the two 

pixel samples were extracted separately. Values o f pixel sample one in odd years were 

used for model development (as training data). Values of pixel sample one in even years 

are temporally independent, and thereby were used to validate the developed models for 

their ability to generalize to temporally independent datasets (temporal cross validation). 

Similarly, values o f pixel sample two in odd years were selected as the spatially 

independent data and used for spatial cross validation; values of pixel sample two in even 

years were both temporally and spatially independent and were used for spatio-temporal 

cross validation.

3.2.5 Outlier Exclusion 

Although the eMODIS NDVI product is strictly preprocessed and carefully 

composited, the residual noise after the bad quality values are removed constantly exists 

in the NDVI time series due to various reasons such as cloud contamination and poor 

atmospheric conditions.

Inherently, vegetation growth and decline as indicated by NDVI are in a gradual 

manner. Noise present in the NDVI time series (mainly atmospheric aerosols and snow) 

tends to depress NDVI values. These reduced NDVI values, if  not excluded, will lead to 

biased vegetation-environment relationship and erroneous phenomodels. An effective and 

robust technique o f high-quality NDVI time series reconstruction is needed to help 

identify outliers with abnormally reduced NDVI values while it does not mistakenly



exclude NDVI values with normally greater increase or decrease during greenup or 

senescence.

Commonly used techniques of NDVI time series noise reduction and 

reconstruction include the Best Index Slope Extraction (BISE) algorithm, Fourier-based 

fitting method and some iteration based algorithms (Ma and Veroustraete, 2006). An 

iterated Savitzky-Golay filtering by Chen et al., 2004 is adopted to smooth the original 

NDVI time series, remove noise and reconstruct high-quality NDVI time series by 

approaching to the upper NDVI envelope progressively. Chen et al.’s (2004) algorithm is 

demonstrated to be able to achieve the equally high quality reconstructed time series as 

the BISE algorithm, while the Fourier-based method has the smoothest but the biggest 

displacement from the original time series. Also, unlike the BISE algorithm, no 

parameters need to be determined beforehand to achieve the optimal results. The 

Savitzky-Golay smoothing filter used in the iteration based algorithms in Chen et al. 

(2004) also has advantages in preservation o f local features (such as relative maxima and 

minima). The data points in the original NDVI time series that are far below the 

reconstructed time series are very likely to be less reliable, and are thereby considered 

outliers and excluded from modeling.

Figure 3.4 illustrates the time series reconstruction and outlier exclusion of one 

arbitrary sampled pixel (step 1 to 6). The pixel-wise algorithm is as follows:

1. Remove predetermined outliers.

a) The NDVI values identified as bad quality during the production o f 

eMODIS-NDVI are removed.

b) The data points along the NDVI time series with an increase o f more
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Figure 3.4 Illustration of Chen et al.’s (2004) NDVI time series reconstruction.
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than 0.4 within the next three 7-day intervals are considered against 

the natural vegetation growth cycle, and are also excluded.

2. Replace the predetermined outliers with linearly interpolated values.

3. Apply the Savitzky-Golay filter to generate the long-term change trend.

4. Calculate the weight for each point on the NDVI time series as:

where Wj is the weight of data point i on the NDVI time series, N 0 is the 

linearly interpolated NDVI time series, is the long-term change trend 

generated using the Savitzky-Golay filter, d  is the absolute distance between

represent the actual vegetation cycle, and thereby are given higher weight (1). 

The points below are likely depressed due to cloud, snow or poor 

atmospheric conditions, and are thereby assigned weights based on the 

distance between and .

a) Generate new NDVI time series from the linearly interpolated time 

series (N 0 ) and the Savitzky-Golay fitted time series (N tr for the first 

time and N k+1 during iteration). The Savitzky-Golay filter with the 

smoothing window size of 9 and degree of the smoothing polynomial 

of 6 was applied, which was demonstrated by Chen et al. (2004) to 

have the optimal performance. The new NDVI time series is generated 

as:

and . The points on that are above are considered to be able to

5. Iteration:
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for the first time and

j^new _ N 0 , N 0 >  N f+ 1 
N f+ 1 , N 0 <  N f+ 1

during iteration,

where N 1 is the initially generated NDVI time series by taking bigger 

values from using N 0 and N t r , N k+1 is the fitted NDVI time series 

using the Savitzky-Golay filter during the kth iteration, and N new is 

the new NDVI time series generated by taking bigger values from N 0 

and N k+1 during each iteration.

b) Apply the Savitzky-Golay filter on N 1 for the first iteration and N n ew 

for the rest iterations to gradually approach the upper NDVI envelope.

c) Calculate a fitting effect index as:

where Fk is the fitting effect index with smaller value indicating a 

better fit.

iteration corresponding to the smallest Fk as the final reconstructed NDVI 

time series.

7. Outlier exclusion: Outliers can be pinpointed by comparing the original NDVI 

time series (time series after step 1) and the reconstructed time series.

a) For each data points on the original time series that are below the

6. Repeat 5 until Fk stops decreasing and choose the N k+1 during the kth

reconstructed time series, calculate the distance.



b) Outliers are identified as the data points with distances greater than

0.03. The selection of this threshold directly determines the 

performance of the phenomodels. A higher threshold value will cause 

outliers to still remain in the modeling dataset. A lower threshold value 

will cause the reduction of the data available for modeling and a higher 

possibility of removal of reliable NDVI values. Several thresholds 

were tested in the outlier removal process, and 0.03 was found to be a 

value that can achieve a trade-off between the two situations.

c) Due to the edge effect of the Savitzky-Golay filter, the fitted values of 

the first four and last four points along the NDVI time series are not 

reliable. Therefore, the first and last four points are also removed from 

the time series as outliers, because it is hard to estimate the reliability 

of the original NDVI values without their correspondent reliable 

reconstructed values.

3.3 Time Series Analysis

3.3.1 Seven-day Phenoregional Mean NDVI Time Series 

Since it is impossible to scrutinize the phenological cycles of all sampled pixels 

represented by NDVI time series within respective phenoregions, a time series 

representative of the phenological cycles of all pixels within a phenoregion need to be 

generated. This representative NDVI time series helps to examine the multiyear 

vegetation growth cycle and the annual cycle, and to identify phenoregion specific onsets 

of phenophases.
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According to the phenoregion delineation rationale, pixels within the same 

homogeneous phenoregion should share similar phenological cycles. Further, the 

sampled pixels using the stratified systematic sampling are representative of all pixels in 

a phenoregion. Therefore, it can be assumed that the spatially averaged time series over 

all sampled pixels in this phenoregion can characterize the phenological cycle o f that 

phenoregion as an integrate entity.

However, simply averaging the time series, i.e., using the averaged values of only 

good quality pixels, can easily lead to artifacts due to the nonnegligible data quality issue 

summarized above. The fact that the images having a large proportion of bad quality 

values can result in time series composed of averaged values over different sets of pixels 

on different dates. What is more, as stated in Section 3.2.5, a lot of residual noise remains 

in the NDVI time series even after the careful and strict preprocessing during the 

eMODIS-NDVI production. The phenoregional mean time series computed as the 

average o f all reconstructed NDVI time series, however, can deal with both issues. The 

action of averaging itself further increases the reliability by reducing the remaining noise 

associated with time series of single pixels.

3.3.2 Time Series Decomposition

In order to identify a uniform set o f phenophase onset dates for multiple years in a 

phenoregion, the second step is to summarize a uniform seasonal cycle, conducted by 

time series decomposition. Time series decomposition deconstructs a time series into 

three components: the trend component (the long term general movements o f NDVI 

values), the seasonal component (the cyclical component that roughly repeat itself at a 

certain frequency, representing seasonality) and the remainder (the noise or random
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fluctuations). The seasonal component is the uniform cycle that can be used to extract a 

uniform set of phenophase onsets for specific phenoregions.

The time series decomposition requires a fixed frequency (e.g., 365 days, 12 

months, or 4 seasons) per year. However, the number of 7-day intervals varies across 

years. Considering also the interval irregularity discussed before, the multiyear 7-day 

phenoregional mean time series are extended to daily ones with 365 days in each year. 

The phenoregional mean NDVI value on a specific day is taken from the 7-day time 

series at the 7-day interval this day belongs to. For overlapping days, the daily value is 

the mean value of the two 7-day intervals containing this day. The values on the three 

366th days are combined with those on the 365th day of respective years.

A Seasonal Trend decomposition procedure based on Loess (STL) was adopted to 

decompose the reconstructed daily phenoregional mean NDVI time series. STL 

(Cleveland et al., 1990) is one of the most popular time series decomposition algorithms. 

It uses a single smoother, the locally weighted regression (loess) to conduct the trend and 

seasonal smoothing. Firstly, STL finds the seasonal component by smoothing 365 

seasonal subseries, with each one constituting values on the same day of year from 2000 

to 2010. Secondly the Loess smoother is applied again on the time series with the 

seasonal component removed, to find the trend component. The residuals after the 

removal of seasonal and trend components constitute the remainder. The iterations of the 

two steps are not necessary for time series that converges fast. Otherwise, the time series 

is detrended (trend component removed), and a set of robust weights is calculated and 

used in the next iteration of the above steps. The number of iterations can be determined 

beforehand, or iterations can continue until convergence. The STL approach, as
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compared with other methods of time series decomposition, is flexible (e.g., capable of 

controlling the degree of smoothness in trend and seasonal smoothing), allows fast 

computation, can handle any type of seasonality, and is robust to outliers.

The reconstructed daily phenoregional mean NDVI time series are decomposed 

using STL for each phenoregion as shown in Figures 3.5 and 3.6.

3.3.3 Determination of Phenophase Onsets 

As stated in Section 2, the environment-vegetation relationship is temporally 

variant. W hile phenoregions are delineated to achieve the spatially  relatively  

homogeneous relationship, the temporal variation also needs to be addressed for the
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Year

Figure 3.5 NDVI time series decomposed into seasonal, trend and remainder component 
by STL.
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fulfillment of the research objectives. Division of a year into phenological phases is one 

of the two measures to account for it. It is expected that within the resulted respective 

period, the vegetation-environment relationship is more homogeneous. A diagram of the 

phenophases identification in a specific phenoregion is shown in Figure 3.6.

The decomposed seasonal component using STL is uniform throughout all years, 

and thereby a set of uniform phenophases onset dates can be determined for each 

phenoregion. Four phenophases described from Zhang et al., 2003 are adopted:

1. Greenup: The NDVI values obviously start to increase;

2. Maturity: The increase of the NDVI values slows down and remains stable 

during this phenophase;

3. Senescence: The NDVI values obviously start to decrease;

4. Dormancy: The decrease of the NDVI value slows down and remains at a 

very low level throughout this phenophase.

Generally, as summarized in Section 2.1.1, there are several widely accepted 

ways for phenophase determination: thresholding, growth rate, and certain percent of the 

annual amplitude of the VI time series. The thresholding method uses an empirically or 

experimentally determined VI threshold or a VI threshold that has been successfully 

applied in other research to determine the phenophase onset. The growth rate method 

detects the rate of change of VI or curvature, and uses the dates of the maximal and 

minimal rates as onset dates. The third method is also called the VI ratio method, which 

uses a level of VI relative to the amplitude to determine the onsets. The purpose of 

phenophase division here is to partition a year into different temporal segments, during 

each of which the environment-vegetation relationships are expected to be more
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homogeneous. For the first method, the NDVI threshold is hard to determine for different 

phenoregions at different locations and composed of different vegetation communities. 

The second method applies best to the quasitrapezoidal shaped time series, and is thus not 

the most appropriate for this analysis due to the different shapes of NDVI time series in 

different phenoregions. The most suitable method for this analysis is the percent of 

annual amplitude due to its versatility. The NDVI ratio threshold can be selected and can 

be at different levels for different phenophases. Before the NDVI ratio can be applied to 

the seasonal component, the seasonal component has to be smoothed to further reduce 

noise, avoid possibly false maximum and minimum NDVI values, and to achieve the 

local monotonicity to prevent the derivation of two close onset and offset dates for the 

same phenophases. The Savitzky-Golay smoothing filter was applied for smoothing due 

to its advantages in preservation of local maxima and minima.

NDVI ratio, developed by Kogan (1995) and Burgan and Hartford (1993), is 

calculated as normalized NDVI ranging from 0% to 100% as follows:

NDVIt -  NDVImin
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NDVI r a t i o n  = NDVlmax -  NDVlmin

where N D V I ra110 ( t)  is the NDVI ratio at day t, N DV lt is the NDVI value at day t, 

and are, respectively, the annual maximal and minimal values. The

actual NDVI values are thereby transformed to a ratio form. NDVI ratio of 50% is the 

most commonly used threshold. It is believed that the NDVI increase is the most rapid at 

this threshold. However, the purpose of the phenophase division is to capture the whole 

continuous stretch of NDVI increase and decrease, during which it is assumed that the 

lagged response of vegetation to environment is consistent. Other commonly used 

thresholds include 10% and 90%, however, to avoid the mistaken use of the snowmelt



onset as the greenup onset, 20% and 80% of NDVI ratio are used as the thresholds to 

determine phenophase onset (Figure 3.7).

3.4 Premodeling Preparation and Analysis

3.4.1 Exclusion of Nonnaturally-Vegetated Effects 

This p ro jec t focuses on p lant phenology, so it is necessary  to reduce 

nonvegetative effects on the data to avoid biased analysis and modeling results. Before 

modeling, NDVI values are further examined to ensure the data points that are used to 

build models contain as few nonvegetative effects as possible. Only naturally vegetated
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NDVI values are retained. Firstly, snow cover, though representing the actual land 

surface, is regarded as noise in this research and NDVI values marked as snow in the 

eMODIS-NDVI quality files are removed. Secondly, the NDVI values below 0.1 are 

considered to contain no meaningful information in the context of vegetation phenology, 

and therefore are also removed. Thirdly, the naturally vegetated pixels and nonnaturally- 

vegetated pixels are identified with the assistance of National Gap Analysis Program 

(GAP) Land Cover Data (USGS, 2010), and the nonnaturally vegetated pixels are 

excluded from the following analysis and modeling.

GAP data published in 2010 are used for this identification purpose. GAP land 

cover map at 30 m resolution is a seamless combination of the work of several different 

projects representing the ground land cover from 1999 to 2001 (USGS, 2010). GAP data 

have three levels of details, from the most general of eight classes to the most detailed of 

75 classes within the study area of the UCRB (Appendix A). The level-one classification 

is adopted to assist with the identification of nonnaturally-vegetated pixels. Class one of 

human land use, class two of aquatic and class three of sparse and barren systems are 

considered as nonnaturally-vegetated. Since the sampled pixels are 1 km2, it is highly 

possible that they are composed of several different land cover types. The layer of 

sampled pixels were overlaid on the 30-m GAP land cover map to derive the percentage 

of three classes of human land use, aquatic and sparse and barren systems combined. 

Sampled pixels with a combined percentage of more than 50% are identified as 

nonnaturally-vegetated pixels and are thereby excluded.
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3.4.2 Preparation of Candidate Variables 

The literature review indicates that the spatial and temporal variations of the 

environmental drivers and factors influence vegetation growth and environment- 

vegetation relationships. All variables related to environmental drivers should be 

included in the phenomodeling because their temporal variations directly “drive” plant 

development. The topographic variables (elevation, slope and aspect) as well as other 

time invariant variables used in phenoregion delineation, should also be included in 

phenomodeling to moderate the influence of environmental drivers and other 

environmental factors on the 7-day vegetation dynamics, and to account for the inter­

pixel difference of the environment-vegetation relationships. The GAP level one land 

cover is also included as one of the candidate variables (GAP) to account for the 

influence of land cover types on the environment-vegetation relationships.

In the temperature category, the minimum (TMIN) and maximum temperature 

(TMAX) that can be directly extracted from the Ecocast data are included as candidate 

variables. The weekly temperature difference (TDIFF), calculated as the difference 

between TMAX and TMIN is also included, it is argued to have a favorable effect on 

plant growth (Larcher, 2003). The mean temperature (TMEAN), calculated as the 

average value of the TMAX and TMIN is also one of the candidate variables. Further, the 

growing degree days (GDD) and the GDD with the upper threshold (GDDu), as well as 

the accumulated values of these two variables (AGDD and AGDDu), starting from the 

first day of each year are also included, because it is indicated in a considerable amount 

of literature that they are directly associated with vegetation abundance.
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As discussed in Section 2.2.1.1, there are two forms of GDD: one calculated with 

only the base temperature and the other with both the base temperature and the upper 

temperature threshold. The values of the smoothed daily mean phenoregional time series 

of TMEAN at the greenup onset dates in different years are averaged to serve as the base 

temperature. If the calculated base temperature is below zero, then it was set to zero. 

Based on the physical meaning of the upper temperature threshold (vegetation growth 

stops or slows down dramatically), the threshold is calculated for each phenoregion as 

follows (Figure 3.8): firstly, obtain the days for each year with a positive growth rate on 

the multiyear daily reconstructed phenoregional mean NDVI time series; secondly, obtain 

the TMEAN values on those days extracting from the smoothed TMEAN time series; 

thirdly, derive the maximal value from those TMEAN values for each year; finally, 

average over each years’ maximal TMEAN values as the upper temperature threshold for
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that phenoregion. The phenoregion-specific base temperature and upper temperature 

threshold are shown in Table 3.3. The TMAX, TMIN, TDIFF, TMEAN, GDD, GDDu, 

AGDD, AGDDu at the lag of 1 to 10 weeks are extracted or calculated to explain the 

lagged responses of vegetation to the environment.

In the precipitation category, the variables of precipitation at lags of 1 to 20 weeks 

are included as candidate variables to account for the variant lagged responses of 

vegetation to precipitation in different phenoregions.

In the light category, solar radiation (SRAD) from the Ecocast data is one of the 

candidate variables. Photoperiod (PTPD) also has great influence on plant development 

(Henfrey, 1852; Tournois, 1912; Tournois, 1914; Klebs, 1913; Garner and Allard, 1920; 

Garner and Allard, 1923; Thomas and Vince-Prue, 1996). Photoperiod or day length can 

be calculated from the latitude and Julian day. Solar radiant energy (SRE), calculated as 

the product of SRAD and PTPD, is yet another candidate variable of the light category.

Last but not the least, the antecedent NDVI (aNDVI), i.e., the correspondent 

NDVI values 7 days ago, is also included in the models. Vegetation responds to the 

environment with the exhibition of NDVI increase or decrease on the basis of aNDVI. 

The antecedent status and developmental stages of vegetation also influence how it 

responds to the environmental variations.
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Table 3.3 Base temperature and upper temperature threshold for the calculation of GDD 
and GDDu in the nine phenoregions

Phenoregion 1 2 3 4 5 6 7 8 9
Base temperature 

(°C)
0 0 2.67 3.71 0 3.01 2.22 0 0

Upper temperature 
threshold (°C)

24.5 15.9 14.85 15.13 24.42 18.27 15.76 21.75 20.47



Table 3.4 shows all 147 candidate variables and their abbreviations of four 

categories of environmental drivers and topography. For all variables of environmental 

drivers, the variables at the lag of 1 week were not given any suffixes (such as TMAX 

and SRAD), and variables at the lag of more than 1 week were named with suffixes of the 

number of lags in weeks (such as TMAX_2 through TMAX_10). Categorical variables 

are marked in bold font in Table 3.4. The variable ASPECT has three categories: north- 

facing (ASPECT_N), south-facing (ASPECT_S) and west- or east-facing 

(ASPECT_WE). The SEASON has four categories: SEASON_1 (the greenup phase), 

SEASON_2 (the maturity phase), SEASON_3 (the senescence phase), and SEASON_4 

(the dormancy phase). The GAP variable has eight categories correspondent to the eight 

classes of the GAP level one classification, with GAP_1 through GAP_9 represents the 

eight land cover classes of “human land use,” “aquatic,” “sparse and barren systems,” 

“forest and woodland systems,” “shrubland, steppe and savanna systems,” “grassland 

systems,” “recently disturbed or modified,” and “riparian and wetland systems,” and code 

6 is not used in the GAP level one coding.

3.4.3 Multicollinearity and Internal Structure 

The environment exerts its influence on 7-day vegetation dynamics as an entity, 

so the influence of each environmental component is entangled. The environmental 

drivers and factors themselves are also highly correlated, making this situation even more 

complicated. The correlations between independent variables in the models are referred 

to as multicollinearity. Although MARS is robust to the violation of many assumptions 

required by ordinary multivariate regression models, multicollinearity is a serious 

concern. Multicollinearity can lead to the arbitrariness of variable selection among highly
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Table 3.4 Candidate variables and their abbreviations

Category Lag in Weeks Candidate Variables Abbreviations
Vegetation
abundance 1 Antecedent NDVI aNDVI

Maximum Temperature TMAX
Minimum Temperature TMIN
Weekly Temperature 

Difference TDIFF

Mean Temperature TMEAN

Temperature 1 - 10 Growing Degree Days GDD
Growing Degree Days with 

upper threshold GDDu

Accumulated Growing Degree 
Days AGDD

Accumulated Growing Degree 
Days with upper threshold AGDDu

Precipitation 1 - 20 Precipitation PRCP

Solar Radiation SRAD
Light 1 - 10 Photoperiod PTPD

Solar Radiant Energy SRE
Elevation ELEV

Topography Slope SLOPE
Aspect ASPECT

Phenological Phase SEASON
Mean Maximum temperature MEAN TMAX
Mean Minimum Temperature MEAN TMIN
Mean maximum temperature 

during growing season GS_TMAX

Mean minimum temperature 
during growing season GS_TMIN

Other

Time invariant Standard deviation of monthly 
temperature TEMP_STD

Mean precipitation MEAN PRCP
Mean precipitation during 

growing season GS_PRCP

Standard deviation of monthly 
precipitation PRCP_STD

Soil variability index SVI
Mean annual NDVI MEAN NDVI

Latitude LAT
The GAP level 1 land cover GAP



correlated variables, and further affect the selection of variables and knots in the 

following steps. Multicollinearity can also create problems in interpreting the models and 

in making predictions for regions other than the sampled pixels if the correlation structure 

differs (Moilanen et al., 2009). Therefore, to build a robust and practically meaningful 

MARS model, multicollinearity has to be taken care of in advance.

The reduction of multicollinearity in the context of MARS is not well established 

in literature. Most solutions use PCA before modeling or PCA related regressions. This 

approach addresses well the multicollinearity problem, but makes the modeling results 

harder to interpret and masks the interactions between the original independent variables 

before the PCA transformation.

Therefore, an approach of variable reduction by iteratively removing variables is 

adopted. Since TMEAN and TDIFF are the linear combination of TMAX and TMIN, 

only one of these two sets of variables can be kept to avoid the perfect multicollinearity.

Variance Inflation Factor (VIF) is a commonly used statistic to examine the 

multicollinearity. The VIF of an independent variable is defined as:

1
VIF; =  --------7

i  - R f

where is the coefficient of determination of the regression with being the 

dependent variable and all the other independent variables being the independent 

variables. Two rule-of-thumb values of VIF are proposed as thresholds in the literature: 5 

and 10 (Acevedo, 2012). Here the VIF of 10 is used as the cut-off value, which indicates 

that 90% of the variance in Xt can be explained by the linear combination of other 

variables. The more conservative value of 5 is not used to avoid the risk that useful 

information for NDVI prediction may be lost.
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The variable with the maximal VIF value is iteratively removed until the VIF 

values of all remaining variables are less than 10. It is worth noting that the removed 

variables may still be important to the 7-day vegetation dynamics. The only reason 

variables are removed is that trends can be explained by other correlated variables. 

Therefore, the interpretation of the model should also consider the variables that are 

highly correlated with the variables selected by MARS. In this sense, it is necessary to 

analyze the entangled relationship within the environment between environmental drivers 

and factors.

Principal Component Analysis (PCA) provides a way to scrutinize the internal 

structure of environmental factors and environmental drivers at different lags. The PCA 

loadings indicate the relative importance of each environmental driver and factor, and the 

cumulative variance provides insight into the environmental variance accounted for by 

each PC.

It is also important to examine the lag structure of the time variant dependent and 

independent variables. The lag structure of a variable calculates the correlation between 

the current value of the variable and its antecedent values at different lags, and thereby 

exhibits persistence or stability of a variable over time.

3.5 Model Development

3.5.1 Multivariate Adaptive Regression Splines

Multivariate regression is a widely used and rather mature approach due to its 

ability to convey the empirical quantitative associations between the independent and 

dependent variables once the causal relationships have been verified. It is also superior in
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implicitly expressing the main and partial effects of independent variables on the 

dependent variable, as well as how these effects are influenced by the moderate variables.

However, ordinary multivariate regression has the disadvantage that it has to 

satisfy a lot of assumptions such as a linear relationship, normal distribution and 

homoscedasticity of residuals, making it much less flexible. Also, the vegetation- 

environment relationship in reality is complex: it varies in different intervals of 

environmental drivers and factors, in different phenophases, and the interaction between 

variables further complicates relationships. The complex relationships between 

vegetation abundance and all environmental drivers and factors are extremely difficult to 

quantify using linear regression.

Some other modeling approaches, such as neural network or random forests, have 

been reported to be able to handle complex and nonlinear relationships and can achieve a 

high goodness of fit (Francis, 2003; Prasad et al., 2006). However, they either transform 

independent variables, or conduct the modeling in a “black box,” or produce a model that 

is difficult to understand and interpret.

Considering that the understanding and interpretation of environment-vegetation 

relationship via the phenomodels is one of the three research objectives in this 

dissertation, the Multivariate Adaptive Regression Splines introduced by Friedman 

(1991) is a more reasonable modeling approach.

MARS is a nonparametric regression that has been applied to model complex 

relationships and deal with high dimensions of independent variables. MARS does not 

make any assumptions about the underlying relationships between the dependent and 

independent variables. Instead, MARS is composed of a series of data-driven “basis
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functions” that models the relationships within different intervals of data, and 

automatically identifies the “knots” or breakpoints that separate and connect different 

relationships. The MARS also adopts the least squares approach in approximating the 

overdetermined systems, aiming to minimize the sum of squares of the residuals. The 

MARS models take the form of

k

Y = f t , + ^ f t B (  m
i=l

where Bj(X) is a basis function. Essentially, MARS is an extension to the linear 

regression in the form of piecewise regression. Each subregion in the data space 

partitioned by the knots has its own regression equation. Therefore, MARS has 

advantages in flexibly handling nonlinear and nonmonotonic relationships, which are 

difficult for linear regression to reveal. The piecewise nature of MARS makes it 

especially appropriate in modeling the complex vegetation-environment relationships that 

are variant dependent on different levels of environmental drivers and factors.

MARS also automatically models the interactions between independent variables 

within respective subregions in the data space. As stated in Section 2.2.3, plant 

development is the results of the overall influence of the environment as a whole. Besides 

the single environmental drivers and factors, the influence of the interactions between 

them on vegetation is also important. Therefore, the ability of MARS to model locally 

existing and variant interactions is another reason that makes it a better candidate 

modeling approach.

The MARS models are in a format that is simple to understand and interpret as to 

the effect of each independent variable on the dependent variable. It can be converted to
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the form of linear regression models within respective subregions in the data space. This 

characteristic satisfies the objective of interpretation of the complex lagged vegetation-to- 

environment responses in this dissertation.

One requirement of the spline-fitting of MARS, especially in the context of high 

dimensional data, is that a large number of observations are needed. A MARS model with 

n independent variables and k knots has (k +  1 ) n subregions. Each subregion needs a 

certain number of observations to place the knots and estimate the coefficients. 

Generally, thousands, or hundreds of thousands of observations are required for spline 

fitting. Although MARS addresses this problem by constructing the model as the 

summation of basis functions, instead of dealing with each subregion explicitly, still a 

reasonably large number of observations are required to fit MARS, which is considered a 

main drawback of the mothod. However, in the context of remote sensing phenological 

modeling, this requirement is not a problem at all. Each phenoregion has

observations,

which are generally much more than enough for the application of MARS even after 

sampling and outlier exclusion. On the other hand, MARS performs well in dealing with 

large datasets. The MARS models can be built quickly even with a very large number of 

independent variables and observations. The development of MARS models include two 

phases: the forward pass and the backward pass (the pruning pass). The forward pass 

tends to build an overfit model as with other nonparametric models due to their 

adaptability. The backward pass then uses pruning techniques to simplify the models and 

increase the performance of its generalization to the prediction of other new datasets.
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The forward pass starts with only the intercept included in the model and adds 

basis functions gradually to the model. A basis function Bj(X) (Figure 3.9) is a two-sided 

truncated function or the product of several truncated functions (interaction terms) in the 

form:

(x — c, i f x  >  c
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max(0,x — c) i. e.

or

max(0, c — x) i. e.

0, otherwi se

c — x, i f x  <  c
0, otherwi se

or

max(0,xj — Cj) * max(0, Xj — cf) 

where x is an independent variable and c is the knot location. The forward pass searches 

for each basis function with all possible knots exhaustively, and adds the one to the 

model that can minimizes the sum of squares of the residuals. This recursive process of

>  x

Figure 3.9 Example of an additive MARS model consisting of two basis functions.



adding basis functions stops if the sum of squares does not decrease any more or 

decreases by only a very small amount, or the model reaches a user-specified maximal 

complexity.

The backward pass reduces the complexity and increases the generalization ability 

of the possibly overfitted model built in the forward pass. The terms with the smallest 

contribution to the decrease of the sum of squares are excluded. The model subsets of the 

best performance are quantified by the so-called Generalized Cross Validation (GCV) 

criterion calculated as:

n n r  _  EiL 1 (Vi - y ) 2
—  ------------ i— I----- 1—1 +  CGL

U  N }

where and y are, respectively, the observed and predicted values of the independent 

variables, N  is the number of cases, c is the penalty that increases with the number of 

terms, and d  is effective degree of freedom. The GCV is a measure based on the trade-off 

between the goodness-of-fit and the complexity of the model. The model subset with the 

lowest GCV values is considered the optimal one.

3.5.2 Vegetation Dynamics and the Lagged 

Dependent Variable

The models in this research aim to disentangle the environment’s influence on the 

7-day vegetation dynamics. Specifically, the models represent how past NDVI values 

gradually develop into current NDVI values as influenced by the environment. Therefore, 

the models should be specified as a dynamic model and the simplest way is to include a 

Lagged Dependent Variable (LDV) to capture the vegetation dynamics so that the current 

NDVI value is a function of the antecedent NDVI value as modified by the
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environmental drivers in the context of different environmental factors. The specification 

of dynamic models by including the LDV permits the simulation of the changes of NDVI 

on a gradual basis over time yielded by the antecedent values of environmental drivers. 

The coefficients of the environment drivers, factors or interaction terms in the final 

dynamic MARS models represent the influence of the respective terms on the change of 

NDVI values independent of the initial level.

There has been controversy about the inclusion of the LDV. If autocorrelation is 

present in the residuals, the LDV causes the coefficients of the independent variables to 

be biased downward (Keele and Kelly, 2005). But this is seldom a problem because the 

inclusion of the LDV can reduce the serial autocorrelation in the residuals. Also, the 

lagged dependent variable can lead to inconsistent estimates if the model is specified to 

include fixed effect, i.e., the individual specific effects are included in the residuals. This 

is because the LDV tends to be correlated with the residuals containing fixed effects. The 

presence of both LDV and fixed effects is also not a problem in this research, because 

MARS models with explicitly conveyed individual effects (by environmental factors and 

the LDV) were used instead of the fixed effects models due to the exploration and 

interpretation purpose of this research. Essentially, if the answer to the theoretical 

question “does the past NDVI value impact the current NDVI value in the vegetation 

development process?” is yes, then it is reasonable to include the lagged dependent 

variable in the specification of the models (Keele and Kelly, 2005), as long as no fixed 

effects are included and the residuals are not autocorrelated.
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3.5.3 Modeling Procedure 

Values of pixel sample one in odd years are used as the training data to build 

phenomodels. Figure 3.10 shows how values are extracted from images of environmental 

factors and images of NDVI and environmental drivers on all dates in odd years, and 

used as dependent and independent variables in the phenomodels.

The vegetation-environment relationship will be modeled using the MARS 

approach for all nine phenoregions. A unique phenomodel will be built for each of the 

nine phenoregions so that the unique environment vegetation relationships can be 

depicted that are different from those in other phenoregions. However, interventions and
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adjustments are needed during modeling in order to make sure the models represent as 

much of the actual relationship in the physical environment as possible. Models need to 

be examined repeatedly and adjusted accordingly as to:

1. Whether key variables are missing from the model;

2. Whether the modeled relationship and interactions are consistent with the 

widely accepted and strictly validated phenological and ecological theories;

3. Whether the locations of the knots are reasonable.

The manual constraints and adjustments assist in avoiding the situation where the 

completely data driven MARS model is possibly against current understandings of 

ecological processes.

All remaining variables after the VIF based iterated variable reduction were firstly 

restricted to enter into MARS models linearly. The second MARS models considers non­

linear relationships by allowing the relationship to bend at different knots. The third one 

adds the interactions. For the sake of interpretability, only two degree interaction terms 

are allowed. The three models are compared using R2, GCV and the standard error. The 

R2 quantifies the amount of variance in the dependent variable that can be accounted for 

by the independent variables in the model specification. The GCV is a measure used for 

the MARS models to select the model with the best performance. The GCV considers 

both the goodness-of-fit and the complexity of the model and lower values of GCV 

denote better models. The standard error measures the accuracy of the model, by 

quantifying the mean deviation of the fitted values from the observed values.

All variables are divided into two categories. The first one directly influences how 

vegetation develop from aNDVI to NDVI within 1 week. Variables in this category also
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influence how vegetation responds to other variables within the same category. This 

category includes all environmental drivers which are time variant. Variables in the 

second category include time-invariant environmental factors and aNDVI. They adjust 

the influence of variables in the first category on vegetation development. Therefore, the 

models take the form:

i ±j

NDVI =  ^  a tEDt +  ^  btEDt * EF j +  ^  ctEDt * ED j +  ^  d tEDt * aNDVI
i i j  i j  i

+  ^  etE Ft +  f  * aNDVI +  e
i

where ED  are environmental drivers and EF  are environmental factors. The practical 

meaning can be more clearly seen if we change the equation above to:
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NDVI =  ( Z a , + Z  b tE Fj +  ^  ctEDj +  ^ d  t *  aND VI \ * ^ E D t + ^  e tE Ft +  f
\  i i j  j  i I  i i

* aNDVI +  e

The first component in the above equation indicates the influence of a specific 

environmental driver EDt on the development of vegetation from the value of aNDVI to 

the value of NDVI. This influence is dependent on aNDVI, environmental factors and 

other environmental drivers, explicitly ( a t +  £  tj  btE Fj +  % j ctED j +  £ t d t * a N DV I ). 

Statistically, this term (the influence of E Dt) is composed of the main effect as well as the 

effect moderated by environmental factors, other environmental drivers and aNDVI in the 

order they appear in the term. The second component (£ t etEFt), statistically the main 

effect of the environmental factors, works as the minor adjustment on NDVI accounting 

for the spatial difference of the realtionships.



3.6 Model Validations

3.6.1 Cross Validation 

Cross validation applies the models in other independent data sets, in order to 

assess the models’ performance and prediction accuracy. For each phenoregion, three 

different data sets which are, respectively, spatially independent, temporally independent, 

and spatio-temporally independent are selected for the conduction of spatial, temporal 

and spatio-temporal cross validation. The models are applied on values of pixel sample 

two in odd years for spatial cross validation, on values of pixel sample one in even years 

for temporal validation, and on values of pixel sample two in even years for spatio- 

temporal validation. The three kinds of cross validation are adopted to avoid overfitting 

and to ensure the models can be generalized both temporally and spatially.

For each type of cross validation in a phenoregion, two measures of fit were used 

to quantify how accurately the phenomodels predict.

Root Mean Square Error (RMSE) measures differences between predicted values 

and observed values (prediction errors), and is used to quantify the model performance 

and predicting accuracy. RMSE is calculated as:

RM S E =  J e (( Ypred -  Yob) 2 )

where is the predicted value, and is the observed value.

Coefficient of variation (CV), or the RMSE normalized to the mean of the 

observed values, is a relative measure of prediction accuracy and independent of the unit 

of the dependent variable. The CV is calculated as:

RMSE
CV =

Yob

100



The CV is usually expressed as a percentage and makes it easier to compare the accuracy 

of the models across different phenoregions and when applied to a different data set.

3.6.2 Field Validation 

The field validation is to ensure that the phenomodels are capable of practical 

application. Field site sampling is one critical step determining the time spent in the field 

and the correctness of the validation. Since phenomodels are built for each phenoregion 

delineated within the UCRB, it is important to make sure field sites are selected in several 

phenoregions.

Since the spectra of the selected field sites have to be repeatedly measured once 

per week for a number of continuous weeks due to the 7-day time step of the models, it is 

preferred that these sites in different phenoregions are close to each other, i.e., these field 

sites should be located in a region with many patches belonging to different 

phenoregions. Also, it was preferred that they are located within an acceptable distance to 

major roads to reduce traveling time. A region west of Duchesne, Utah was selected 

based on these criteria. Several field sites were selected in each of the three phenoregions 

(Phenoregions 2, 8, and 9) located near Duchesne, Utah as candidates before the first trip 

to ensure that at least one of them was accessible (e.g., not fenced or the road was not in 

seasonal closure). Three of them were selected as the final field sites to be used in field 

validation, one for each phenoregion. The field sites in phenoregions two and eight were 

measured consecutively for 7 weeks, on 04/27, 05/04, 05/13, 05/21, 05/27, 06/03, and 

06/10 of year 2011. The field site located in phenoregion nine was covered by snow until 

05/21, so it was only measured for 4 weeks, from 05/21 to 06/10 in 2011.
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At each field site, a 45 m long transect with randomly extending direction was 

selected, in order to make sure that the average NDVI measured along this transect could 

represent the NDVI of the 1 km2 pixel the field site is in. The transects were marked with 

nails and stakes during the first measurement to make sure the same points along the 

same transect were measured each time consistently. These transects of different 

phenoregions were repeatedly measured each week for detection of NDVI changes. 

During each measurement, spectra of 16 points equally distributed along the 45 m 

transect every 3 m was measured five times using an Analytical Spectral Devices (ASD) 

Full Range field spectrometer. Spectra of a reference panel (spectralon) were recorded at 

each site to allow correction of the field spectra to reflectance.

In spectra processing, the radiance data were converted to reflectance, averaged 

over the five measurements at the same point, and further averaged across all points 

along a transect to derive the mean spectrum for a site. NDVI was calculated using the 

averaged reflectance over the MODIS spectral response function for the red band (620 -  

670 nm) and near infrared band (841-876 nm), consistent with the range of bands one and 

two of MODIS.

Originally, the Ecocast data should have been used as the independent variables in 

field validation, however, the Ecocast data in 2011 was not available. Therefore, the 

currently only comparable dataset, DAYMET (Thornton, et al., 2012), is used in field 

validation. The DAYMET dataset is a daily climatic dataset generated from the Daymet 

model by the Numerical Terradynamic Simulation Group (NTSG) at the School of 

Forestry, University of Montana. It is also a 1-km dataset and contains the variables of 

maximum and minimum temperature, precipitation and solar radiation. The DAYMET
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dataset was either averaged (solar radiation and maximum and minimum temperature) or 

accumulated (precipitation) over eight 7-day intervals of 2011109 - 2011115 through 

2011158 - 2011164. An extra 7-day interval of 2011109 -  2011115 was included to make 

predictions on the NDVI of the 7-day interval of 2011116 -  2011122 containing the first 

field trip date. The field measured NDVI serves as the dependent variable of NDVI 

during these 7-day intervals as well as the independent variable of antecedent NDVI 

during the corresponding previous 7-day intervals.

The “predicted NDVI values” (the NDVI values predicted using the developed 

phenomodels with the input of field measured NDVI as the independent variable of 

antecedent NDVI and DAYMET data as other independent variables) were compared 

with the “observed values” (field measured NDVI). Similarly with cross validation, the 

prediction power of the models can also be quantified using the RMSE and CV.

3.6.2.1 Comparison of Ecocast and DAYMET data

Since a different data set from that used in the model development (Ecocast) is 

used in the field validation (DAYMET), a comparison between the two datasets is 

necessary to reveal any biases that may affect field validation.

Other than the DAYMET data for field validation (2011109 to 2011164), extra 

data from 2010005 to 2010179 were also downloaded, processed and composited to 

create the 7-day interval overlap with Ecocast data (available from 2000049 -  2000055 to 

2010173 - 2010179) that enables the comparison.

For each of the 25 7-day intervals within the overlap, 100 pixels were randomly 

selected from the images of maximum and minimum temperature, precipitation and solar 

radiation for both Ecocast and DAYMET data. Four scatterplots of the 2500 pairs of
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values correspondent to the four variables were generated and correlation coefficients 

were calculated.

3.7 Phenological Decision Support System

A prototype phenological Decision Support System was developed using C#.net. 

It aims to provide land managers in the BLM with the predicted vegetation abundance in 

the next 7-day interval, along with other useful information. It has the following modules.

A spatial visualization module is an essential module in the pheno-DSS. All other 

functional modules need the cooperation of the spatial visualization module. The spatial 

visualization module is implemented using the comprehensive, robust and flexible 

Google Maps API. It provides more intuitive user interactions: users can select locations 

or regions on the map instead of inputting by hand. It also provides more vivid 

presentation of the results: different types of data and many layers can be overlaid on 

Google maps.

A data access module allows a user to display data over Google Maps and 

download preprocessed eMODIS NDVI and Ecocast climate images on a user selected 7- 

day interval. Grazing allotments and pastures can be overlaid on the selected image. If an 

NDVI image is selected to be displayed, users can choose to classify the NDVI values 

based on the grazing suitability. The layers of grazing allotments and pastures as well as 

the suitability grades can assist land managers in better understanding the NDVI image 

and help them in making decisions.

A Time Series module allows users to select either a point, a region, or an 

allotment or pasture and to display the time series of user-selected variables within a user 

selected range of dates. This module provides another useful tool for land managers to
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arrive at a better grazing strategy by bearing in mind the climatic trends and past 

phenological cycles.

As the core of the phenoDSS, the prediction module allows the display of the 

predicted NDVI image for the next 7-day interval generated using the phenomodels 

developed in this dissertation. As with the data access module, the grazing administration 

layer can be overlaid and the grazing suitability grades can be calculated to facilitate the 

land managers’ cognition of the vegetation abundance in terms of grazing.

Lastly, a phenological inventory is provided as a useful resource. This is a listing 

of geospatial and scientific data useful in vegetation (phenology) monitoring and model 

development in the Upper Colorado River Basin (UCRB). The inventory is designed to 

provide ecological and hydrological information in support of scientific research and land 

management. Users can browse or make the specific inquiries to check the relevant 

records.
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4 ANALYSIS AND RESULTS

4.1 Phenoregion Delineation

4.1.1 Principal Component Analysis 

Twelve components were generated from the variables listed in Table 3.2 using 

Principal Component Analysis (PCA). All components were used in the following 

analysis, and &-means clustering were performed in the principal component space 

constructed by the 12 orthogonal principal components. The component scores imply the 

dominant variables for each of the PCs, as well as, the correlations between PCs and 

input variables (Table 4.1). The first PC has the highest score for elevation and all eight 

climatic variables. It is positively correlated with elevation and three precipitation 

variables while negatively correlated with five temperature variables. The first PC is 

moderately correlated with latitude and the mean NDVI. It explained about 61.8% of the 

total variance by itself. The second PC is highly negatively correlated with latitude. It 

also represents several of the climatic variables. The soil variability index was highly 

positively correlated with the third PC while having relatively low correlation 

coefficients with all other PCs, making the third PC a dominant representation of the soil 

variability. The fourth through sixth PCs are supplemental in explaining the latitude, the 

intra-annual climatic variation, and the mean NDVI. The seventh through twelfth PCs are 

much less correlated with the 12 variables, and these last PCs combined can only explain 

2.45% of the total variance.



Table 4.1 Component scores of and variance accounted for by the PCs. (Abbreviations are: LAT, latitude; ELEV, elevation; 
MEAN_TMAX, mean maximum temperature; MEAN_TMIN, mean minimum temperature; GS_TMAX, mean maximum 
temperature during growing season; GS TMIN, mean minimum temperature during growing season; TEMP STD, standard 
deviation of monthly temperature; MEAN PRCP, mean precipitation; GS PRCP, mean precipitation during growing season; 
PRCP STD, standard deviation of monthly precipitation; SVI, soil variability index; MEANNDVI, Mean annual NDVI; 
PC1-PC5, the first to the fifth PCs).

PCI PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12
LAT 0.383 -0.802 0.034 -0.015 0.243 -0.385 0.026 -0.02 0.007 -0.033 0.002 0

ELEV 0.961 0.052 0.035 0.019 0.022 0.233 -0.047 -0.098 0.063 -0.044 -0.001 0
MEAN TMAX -0.947 0.274 -0.047 -0.008 -0.135 -0.018 0.036 0.023 -0.008 -0.069 0.022 -0.001
MEAN TMIN -0.856 0.45 0.044 -0.098 0.197 -0.112 0.025 -0.032 0.014 -0.002 -0.011 -0.005

GS TMAX -0.977 0.141 -0.044 -0.008 -0.118 -0.082 0.031 -0.002 0.006 -0.042 -0.024 0.003
GS TMIN -0.881 0.393 0.049 -0.098 0.177 -0.133 0.034 -0.072 0.03 0.039 0.012 0.003

TEMP STD -0.69 -0.499 -0.118 0.097 -0.488 -0.082 0.041 -0.054 0.031 0.026 0.001 -0.001
MEAN PRCP 0.906 0.312 0.02 -0.116 -0.099 -0.129 0.169 0.067 0.089 0.005 0 0

GS PRCP 0.92 0.273 -0.043 0.006 -0.086 -0.041 0.241 -0.058 -0.077 -0.004 -0.001 0
PRCP STD 0.74 0.323 0.139 -0.422 -0.255 -0.223 -0.186 -0.015 -0.023 -0.003 0 0

SVI -0.058 0.059 0.96 0.253 -0.073 -0.036 0.007 0.001 -0.002 -0.001 0 0
MEAN NDVI 0.539 0.505 -0.295 0.548 -0.028 -0.232 -0.107 -0.003 0.003 0 0 0

Variance
explained 0.618 0.157 0.088 0.049 0.041 0.031 0.012 0.002 0.002 0.001 0.000 0.000

Cumulative
Variance
explained

0.618 0.775 0.863 0.912 0.952 0.983 0.995 0.997 0.999 1.000 1.000 1.000

Eigenvalue 7.416 1.881 1.056 0.586 0.488 0.369 0.142 0.028 0.020 0.012 0.001 0.000
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4.1.2 Phenoregion Maps Generation Using &-means++ Clustering 

Phenoregion maps with different numbers of clusters (5 to 26) were generated 

separately following the procedure described in Section 3.1.2. Figure 4.1 illustrates the 

5-, 12-, 19-, and 26-phenoregion maps. Visually, the phenoregion maps in Figure 4.1 

have similar structures yet with moderate differences. For example, three out of all four 

maps (the 12-, 19-, and 26-phenoregion maps) delineated the Northern Wyoming Basin 

(cross sign); all four phenoregion maps delineated the Northern Canyonlands (diamond 

sign), parks and ranges in northern Utah (triangle sign) and the western White River 

National Forest in Colorado (donut sign). Phenoregions in one map are not simply the 

subsets of those in another map with a smaller number of phenoregions because they are 

not generated as nestable hierarchical clusters. Instead, each pixel was reassigned to a 

cluster each time the phenoregion map was generated. Mountainous areas tend to be 

patchier than lower elevations and have more linear shapes following the direction of the 

elevation contours. A larger number of phenoregions are associated with mountainous 

areas such as the Southern Rocky Mountains in Colorado (in yellow circles in Figure 4.1) 

than with flat areas such as the Wyoming Basin (in red circles in Figure 4.1). The patches 

become smaller and sparser with increased distance from the core area of phenoregions 

and along the boundaries. This trend is considered to be the representation of gradual 

instead of abrupt change of phenological forcing in transition areas. These transition 

areas are called “phenopauses” (first coined by Hargrove and Hoffman (2004) as 

“ecopauses”) (Hargrove and Hoffman, 2004; William et al., 2008). Pixels belonging to 

the same phenoregions are not necessarily contiguous; instead, they could be distributed
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Figure 4.1 5- (A), 12- (B), 19- (C) and 26-phenoregion (D) maps. (Cross sign: Northern 
Wyoming Basin; diamond sign: Northern Canyonlands; triangle sign: parks and ranges in 
northern Utah; donut sign: western White River National Forest in Colorado; yellow 
circle: S).



in either large or small patches far away from each other. This results from similar 

phenological forcing occurring in different locations within the UCRB.

4.1.3 Selection of Phenoregion Maps

The optimal phenoregion map was selected by absolute and relative comparisons 

as described in Section 3.1.3. The optimal phenoregion map has higher homogeneity by 

absolute comparison and spatial concordance with other phenoregion maps by relative 

comparison.

The total within-cluster sum of squares and mean standard deviation of each 

phenoregion map are shown in Figure 4.2. Generally, both metrics decrease in a stable 

manner — the homogeneity becomes higher when the number of phenoregions increases. 

The MSDs of k-means++ clustering from 5- to 14-phenoregion maps decreases, while 

beyond the 13-phenoregion map, there are some fluctuations. The TWCSS of the k- 

means++ clustering are strictly monotonically decreasing with an increasing number of 

phenoregions. So judging from the results of absolute comparison, the phenoregion maps 

with a greater number of phenoregions are generally more favorable.

Figure 4.3 (A) is the matrix of Mapcurves GOF scores between all pairs of 

phenoregion maps, represented by grayscale values. Brighter tones indicate higher GOF 

scores. Mapcurves GOF scores between each phenoregion map and itself are always 

equal to 1, producing the white diagonal from the upper left (5,5) to the lower right 

(26,26) corner. Except for these perfect fits, most of the phenoregion maps have GOF 

scores below 0.9, because of the hierarchical yet nonnestable nature of this series of 

phenoregion maps. A phenoregion map tends to have a higher GOF score when 

compared to another map with a similar number of clusters. For example, the Mapcurves

110



111

Figure 4.2 Mean standard deviations (MSD) and total within-cluster sum of squares 
(TWCSS) of phenoregion maps using ordinary &-means and &-means++ clustering.

GOF score curve of the 15-phenoregion map peaks at 15 clusters and declines on either 

side of the peak (Figure 4.3 (B)).

The average GOF score shows a general trend that higher scores are associated 

with intermediate number of clusters. Phenoregion maps with either small (e.g., 5, 6, and 

7) or large number of clusters (e.g., 24 and 26) tend to have lower spatial concordance 

with other maps. Among all phenoregion maps, the 19-phenoregion map has the highest 

average GOF score (0.781, Table 4.2). The 24-phenoregion map has the lowest average 

GOF score (0.723). The 19-, 20-, 17-, 16-, 9-, 18-, 22- and 15-phenoregion maps (in 

decreasing order) have a higher degree of concordance with other maps (Table 4.2), thus 

are considered to be superior choices for the final phenoregion map.
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Figure 4.3 (A) Matrix of Mapcurves GOF scores represented by linearly scaled grayscale 
values with black indicating a score of 0.637 and white indicating 1.00; (B) Mapcurves 
GOF scores of the 17-phenoregion map.
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Table 4.2 Rank of phenoregion maps by average Mapcurves GOF score

Phenoregion
number

Average Mapcurves 
GOF score

Phenoregion
number

Average Mapcurves 
GOF score

19 0.781 13 0.756
20 0.777 21 0.752
17 0.773 23 0.752
16 0.767 8 0.751
9 0.766 25 0.745
18 0.765 14 0.743
22 0.764 5 0.742
15 0.764 6 0.739
12 0.761 7 0.736
11 0.760 26 0.733
10 0.760 24 0.723

Considering the fact that phenological modeling, validation and ground truthing 

are time- and labor-consuming, a phenoregion map with a smaller number of 

phenoregions is preferred. Therefore, the nine-phenoregion map is selected to serve as the 

basic unit of phenomodeling.

4.2 Characteristics of Nine Phenoregions

It is necessary to explore the characteristics of each of the nine phenoregions in 

the UCRB before the development of the phenomodels.

Figure 4.4 shows the phenoregion map with the nine phenoregions used in this 

project as the basic areal unit. The characteristics can be summarized through Figure 4.5, 

Table 4.3 and Table 4.4.

Phenoregions one, five, and eight share similar characteristics. As compared with 

other phenoregions, the elevations in these three phenoregions are lower. Phenoregions 

one and five have almost equally high maximum and minimum monthly temperatures
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Figure 4.4 The nine-phenoregion map used as the basic unit of phenomodeling.
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Figure 4.5 Monthly precipitation (A), minimum temperature (B), and maximum 
temperature (C) in the nine phenoregions.
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Table 4.3 Summarization of elevation and climatic conditions in the nine phenoregions

Phenoregion 1 2 3 4 5 6 7 8 9
Mean elevation (m) 1750 2098 3007 2839 1652 2238 2854 1812 2046
Annual cumulative 
precipitation (mm) 250 277 804 960 264 509 573 316 411

Mean monthly 
precipitation during 
growing season (mm)

23 27 60 56 24 42 43 28 36

Mean maximum 
temperature (°C) 18.6 12.4 8.5 8.5 18.3 13.5 9.7 16.0 15.8

Mean maximum 
temperature during 
growing season (°C)

27.0 21.5 15.1 15.9 27.1 21.7 17.3 25.1 24.1

Mean minimum 
temperature (°C) 2.7 -3.5 -6.2 -5.3 2.7 -1.2 -5.3 1.4 -1.4

Mean minimum 
temperature during 
growing season (°C)

9.7 3.5 0.1 1.1 9.9 5.6 1.2 8.9 5.3

Table 4.4 Vegetation composition aggregated from 30-m GAP land cover data

Phenoregion Vegetation Composition

1

Shrubland: 43.15% 
Barren: 20.85% 
Forest: 18.33% 

Grassland: 10.07%
2 Shrubland: 79.86%

3 Forest: 55.51% 
Grassland: 16.93%

4 Forest: 63.99% 
Grassland: 11.86%

5
Shrubland: 48.28% 

Barren: 31.16% 
Forest: 13.30%

6 Forest: 49.31% 
Shrubland: 39.54%

7 Forest: 57.34% 
Shrubland: 22.52%

8
Shrubland: 54.54% 

Forest: 22.35% 
Barren: 10.51%

9
Forest: 42.97% 

Shrubland: 32.58% 
Human land use: 14.66%



over the entire year (hot summer and cool winter). The monthly temperatures in 

phenoregion eight are only slightly lower, but the temperatures in summer are closer to 

those in phenoregion one and five than the temperatures in winter, indicating a higher 

intra-annual temperature difference. The three phenoregions are dry throughout the year 

and the precipitation reaches a minimum in June. It is slightly wetter in late summer and 

early autumn. The precipitation is also slightly higher in spring in phenoregion eight. All 

three phenoregions contains almost half shrubland and also a significant amount of barren 

lands and forestlands.

Phenoregion two is located in the Greater Green River Basin/Wyoming Basin. It 

is dry and has a warm summer and cold winter. The precipitation is lower in winter and 

higher in late spring. It is composed predominantly of shrubland.

Phenoregions three, four and seven are located at higher elevation mountains, and 

contain a large proportion of forestlands. Phenoregions three and four also contain some 

grassland while phenoregion seven contains some shrubland. As can be obviously 

observed in Figure 4.5 (A), precipitation is much higher in late fall, winter and early 

spring in phenoregion four as compared with other phenoregions. Although precipitation 

is much lower in summer than in other months, it is still higher than that in most of the 

other phenoregions. Phenoregion three and seven also have higher precipitation in winter 

and lower precipitation in summer, but the difference is not as high as in phenoregion 

four.

Phenoregions six and nine have a large amount of both forestland and shrubland 

on highlands. Precipitation is concentrated in spring and fall, and is lower in summer.
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The monthly minimum temperatures are almost the same while the monthly maximum 

temperature is higher in phenoregion nine.

4.3 Samples and Outlier Exclusion

Spatial sampling was conducted in each phenoregion using stratified systematic 

plus random sampling as described in Section 3.2.4. The numbers of pixels in pixel 

sample one and two in each of the nine phenoregions as well as the numbers of pixels 

identified as nonnaturally-vegetated are listed in Table 4.5 and displayed in Figure 4.6.

The number and percentage of NDVI values of the naturally-vegetated pixels 

identified as bad quality and snow during eMODIS compositing and as residual outliers 

by comparing with the reconstructed time series are shown in Table 4.6 for both pixel 

sample one and two. The numbers and percentages of three kinds of outliers for both 

samples within the same phenoregion are very close, showing from another perspective 

the effectiveness of stratified systematic sampling in extracting representative samples, as 

well as the homogeneity of phenological and environmental characteristics of
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Table 4.5 Summary of sampled pixels for modeling and validation

Phenoregion

Number o f pixels Total 
number 
of pixels

Percentage 
o f the pixel 

sample 1 
(%)

Standard
deviation

Number of 
nonnaturally- 

vegetated pixels
Pixel

sample
1

Pixel
sample

2

Pixel 
sample 1

Pixel 
sample 2

1 1335 1335 65317 2.0 2.3 242 270
2 1079 1079 48562 2.2 2.5 60 64
3 512 511 13754 3.7 4.2 43 42
4 379 378 10031 3.8 4.2 17 15
5 533 532 22432 2.4 2.7 166 143
6 1218 1217 47382 2.6 2.9 37 43
7 596 596 19865 3.0 3.4 32 19
8 965 965 36772 2.6 2.9 80 85
9 732 731 29774 2.5 2.8 126 108
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Figure 4.6 Sampled pixels for both modeling and validation: small blue dots are pixel 
sample one, small red dots are pixel sample two, and bigger black dots are the 
nonnaturally-vegetated pixels (See Figure 1.1 for the location of UCRB).
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Table 4.6 Number of NDVI outlier values in sampled pixels in pixel sample one and two 
after the removal of nonnaturally-vegetated pixels

Phenoregion
Pixel Sample 1 Pixel Sample 2

Bad
Quality Snow Residual

noise
Bad

Quality Snow Residual
noise

1 Count 39746 16332 26388 38866 16564 25747
Percent 6.72% 2.76% 4.46% 6.75% 2.87% 4.47%

2 Count 52467 62985 31166 52821 61512 31194
Percent 9.52% 11.43% 5.65% 9.62% 11.20% 5.68%

3 Count 28760 47887 20343 29906 48795 20120
Percent 11.33% 18.87% 8.02% 11.79% 19.23% 7.93%

4 Count 26682 35234 16741 27153 35329 17040
Percent 13.62% 17.99% 8.55% 13.83% 17.99% 8.68%

5 Count 14676 8177 9978 15900 8217 10295
Percent 7.39% 4.12% 5.03% 7.56% 3.90% 4.89%

6 Count 68732 69638 38169 68280 68668 37834
Percent 10.76% 10.90% 5.97% 10.75% 10.81% 5.96%

7 Count 33173 47659 22143 33373 49349 22649
Percent 10.87% 15.62% 7.26% 10.69% 15.81% 7.26%

8 Count 43886 33024 23792 43254 33310 23106
Percent 9.17% 6.90% 4.97% 9.09% 7.00% 4.85%

9 Count 29270 26311 17252 30252 27719 17627
Percent 8.93% 8.03% 5.26% 8.98% 8.22% 5.23%

phenoregions. On the contrary, the numbers and percentages across phenoregions differ 

significantly.

Phenoregions three and four have much higher percentage of inconsistent, snowy 

and noisy (contaminated) NDVI values, due to the constantly higher precipitation across 

the year as shown in Figure 4.5 (A). Phenoregions one and five, as the two phenoregions 

with the lowest cumulative precipitation and precipitation during growing season, 

naturally have the lowest number and percentage of all three kinds of outliers.

4.4 Phenological Cycles

Figure 4.7 displays the phenological cycles as the reconstructed phenoregional 

mean NDVI time series of pixel sample one and two spaced 0.1 unit apart for visual 

clarity. The two time series within the same phenoregion are almost exactly the same.
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Figure 4.7 Phenoregional mean NDVI time series of pixel sample one (in green) and 
pixel sample two (in red) spaced 0.1 unit apart for visual clarity.
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This further demonstrates the homogeneity of phenoregions and the representativeness of 

both sets of sample.

Phenoregions one and five show little seasonality: NDVI values remain stable at 

around 0.2 across multiple years. Phenoregion eight, considered to be similar to 

phenoregions one and five in the ranges and patterns of environmental variables, shows 

some seasonality though. This phenomenon of little or some seasonality can be attributed 

to the high proportion of shrubland and barren land, as well as, the possible vegetation 

sparsity caused by very limited precipitation during growing season. Phenoregions one 

and five have the lowest mean monthly precipitation during growing season, only 23mm 

and 24mm, respectively. The proportion of barren land greatly negatively influences the 

seasonality, as phenoregion one and five both contain more than 20% of barren land and 

thus show little seasonality; phenoregion eight shows some seasonality because it only 

contains around 10.51% of barren lands.

Phenoregion two and nine exhibit a higher degree of seasonality. Phenoregion two 

contains predominantly shrubland, and thereby has lower values of NDVI ranging from 

about 0 to 0.2 annually (NDVI values are as low as 0 because snow covered pixels 

represents the actual land surface and thereby are not removed until before modeling). 

NDVI values in phenoregion nine have a higher range of about 0.2 to 0.4.

Other phenoregions (three, four, six, and seven) have very obvious seasonality. 

Phenoregion four has the widest range of NDVI with the lows around 0.1 and highs over 

0.6, as it contains the highest proportion of forest.

The annual phenological cycles exhibit different patterns in the nine 

phenoregions (Figure 4.8). The onset dates of four phenophases are shown in Table 4.7
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Figure 4.8 Mean annual NDVI time series and phenophases of pixel sample one.

using NDVI ratios and a threshold of 20% and 80% as described in Section 3.3.3. Typical 

phenological cycles include the bimodal NDVI time series such as phenoregions one and 

five, pointed peak such as phenoregion four and flat peak such as phenoregion three. It is 

common and normal that the annual phenological cycles in some phenoregions are 

composites of several patterns. For example, phenoregion nine shows the combined 

feature of the bi-modal, pointed peak (the first peak) and the flat peak (the maturity 

phenophase).
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Table 4.7 Phenophase onset in day of year

Phenoregions Greenup Maturity Senescence Dormancy
1 27 121 327 353
2 55 123 251 347
3 121 162 274 331
4 125 162 265 322
5 34 108 324 358
6 88 138 269 342
7 110 155 273 336
8 48 124 289 354
9 51 127 297 354

4.5 Premodeling Analysis

It is not realistic to present and analyze the results of premodeling analysis and 

modeling procedure for all phenoregions. Phenoregion one is used as the example case in 

the premodeling analysis and the modeling procedure. All of the analyses and results 

presented below are for phenoregion one if not specified otherwise. Phenoregion one 

contains about 43% shrubland and 10% grassland, and therefore can provide insights into 

the rangeland phenology and lagged responses of rangeland vegetation to the 

environmental changes.

4.5.1 Pairwise Correlation Analysis 

For phenoregion one, independent variables sharing similar physical meaning 

naturally are extremely highly correlated, such as the TMEAN, TMAX, TMIN, GDD and 

GDDu at the same and neighboring lags. TMEAN, TMAX, TMIN, GDD and GDDu at a 

certain lag are also highly correlated with PTPD, SRE and SRAD after 2 to 5 weeks. 

There are few causal relationships in these correlations. The high correlations between 

temperature and the subsequent light condition are most probably the result of their



similar trends over time: the increase of temperature is usually accompanied by the 

increase of photoperiod, solar radiant energy and solar radiation. TDIFF is most highly 

correlated with its contemporaneous SRAD, followed by the contemporaneous TMAX 

and SRE, though the correlation coefficient (0.5~0.8) is lower. The close relationship 

between weekly temperature difference and light is because the increase of air 

temperature is largely due to the absorption of radiant energy from the sun. AGDD and 

AGDDu, as cumulative temperatures, are most highly correlated with themselves at 

different lags with most of the correlation coefficients greater than 0.8. AGDD and 

AGDDu are also moderately correlated with different forms of weekly temperatures 

(TMAX,TMEAN, TMIN, GDD and GDDu) 4 to 5 weeks later.

PTPD, SRAD and SRE are most highly correlated with themselves (light 

variables) at the same and neighboring lags. Also, as mentioned in the last paragraph, 

they are also highly correlated with the precedent weekly temperature variables

On the contrary, PRCP is only moderately or weekly correlated with other 

variables and itself at different lags. The pairwise correlations between PRCP at different 

lags are only as high as 0.25. The highest correlation of PRCP at a certain lag usually 

occurs at the two neighboring lags. This is because precipitation is composed of discrete 

events, unlike temperature and light, whose change is gradual and continuous. The PRCP 

is moderately negatively correlated with its contemporaneous TDIFF with the correlation 

coefficient ranging from 0.42 to 0.48. This correlation can be attributed to the 

complicated relationships between air temperature and precipitation. Precipitation falls 

from clouds which blocks the sun, greatly decreases the amount of solar radiant energy 

the air can absorb to increase the temperature (Dai et al., 1999). When precipitation
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occurs during daytime, it is usually accompanied with lowered maximum temperature: 

the air needs to be cooled to its dew point to allow precipitation to develop; precipitation 

also lowers the air temperature through evaporative cooling.

SLOPE is moderately negatively correlated with TEMP_STD (correlation 

coefficient being 0.42), indicating that steeper slopes tend to have lower intra-annual 

variability of temperature. ELEV is highly positively correlated with GS_PRCP and 

PRCP_STD and moderately positively correlated with MEAN_NDVI, indicating more 

abundant precipitation and higher intra-annual variability of precipitation at higher 

elevations. ELEV is also highly negatively correlated with MEAN_TMIN, GS_TMIN, 

MEAN_TMAX, and GS_TMAX. This is the temperature gradient that can be observed 

with increased elevation. ELEV is also moderately negatively correlated with 

TEMP_STD, denoting a mild trend of lower intra-annual variability of temperature at 

higher elevations. PRCP_STD is positively correlated with ELEV, GS_PRCP, 

MEAN_PRCP, and negatively correlated with the five temperature environmental factors 

(MEAN_TMIN, GS_TMIN, MEAN_TMAX, GS_TMAX, and TEMP_STD) as well as 

LAT. SVI is not as highly correlated with other environmental drivers and factors. It is 

only weakly positively correlated with MEAN_TMIN and GS_TMIN, and weakly 

negatively correlated with LAT, TEMP_STD and GS_PRCP.

4.5.2 Principal Component Analysis 

The PCA analysis was applied on the 144 continuous independent variables of 

phenoregion one, and the results show that: among all Principal Components (PCs), the 

first PC accounts for almost half (46.7%) of the variance in the set of all independent 

variables. The first PC is almost equally composed of weekly temperature variables
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(TMAX, TMIN, TMEAN, GDD, and GDDu), as well as light variables at longer lags 

(lags of 5 to 10 weeks). The second PC accounts for about another 19.8% of the total 

variance. This PC is constituted mainly of AGDD, AGDDu and all three light variables at 

shorter lags (lags of 1 to 4 weeks). These can be understood as that temperature and light 

variables are the most important in accounting for the environmental variance. All other 

142 PCs altogether account for the remaining 33.5% of the total variance, with the 

highest variance accounted for by a single PC being only 5%.

4.5.3 Lag Structure

The lag structure of NDVI shows apparent difference among phenoregions 

(Figure 4.9). NDVI in phenoregions one, five and eight has very high persistence, and the 

correlation is as high as about 0.6 even at the lag of as long as 25 weeks. This is possibly 

due to the vegetation composition and climatic conditions in these phenoregions, which 

lead to a much smaller amplitude of NDVI throughout the year.

Phenoregions two, six, and nine have slightly more NDVI instability as compared 

with phenoregions one, five and eight, though they still exhibit relative small vegetation 

dynamics.

The difference between the NDVI lag structure of phenoregions three, four, and 

seven and other phenoregions is quite big. These three phenoregions show very active 

vegetation dynamics. NDVI is no longer correlated with its antecedent values when the 

lag is more than 14 weeks, 15 weeks and 17 weeks in phenoregion four, three and seven, 

respectively.

The difference between lag structures of temperature variables is not as big for 

different phenoregions. The shape of the lag structures of TMEAN, TMAX, TMIN, GDD
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Lag in Weeks

Figure 4.9 NDVI lag structures in phenoregions one to nine.



and GDDu are half parabola with the vertex on the top (Figure 4.10), that is, the 

correlation coefficient decreases much slower at smaller lags and faster at longer lags. 

The difference between phenoregions is slightly bigger for GDD and GDDu as compared 

with other three variables. TMEAN, TMAX and TMIN no longer correlate with their 

respective lagged values at about 14 weeks in all phenoregions. The pattern shown in the 

lag structures of GDD and GDDu is roughly consistent with those of NDVI in terms of
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Figure 4.10 TMAX lag structure in phenoregions one to nine.



the variable persistence. The correlation decreases fastest in phenoregion four and 

slowest in phenoregion five. TDIFF shows a very different pattern. The correlation starts 

at a lower value and reaches 0 at longer lags. The lag structure of AGDD and AGDDu 

exhibits a ear-linear decrease pattern. The shape of the lag structure of light variables is 

very similar to that of TMEAN, TMAX, TMIN, GDD and GDDu. There are also no 

obvious differences among phenoregions.

Very high instability and low correlation coefficient are associated with the lag 

structure of PRCP (Figure 4.11), because precipitation consists of discrete events.
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Figure 4.11 PRCP lag structure in phenoregions one to nine.



For phenoregion three, after the VIF based variable reduction, TMIN at lags of 3, 

6, and 10 weeks, GDD, GDDu at lags of 2, 4, 5, 7, and 9 weeks and AGDD_10 are the 

remaining temperature variables. SRAD at lags of 2, 6, 8 and 10 weeks are kept as light 

variables; All precipitation variables at lags 1 through 20 weeks are kept as precipitation 

variables; ELEV, GS_PRCP, GS_TMIN, LAT, MEAN_NDVI, PRCP_STD, SLOPE and 

SVI are kept as time invariant variables to account for the interpixel difference.

4.6 Model Development

The MARS approach was adopted in this research to build phenological models 

for each phenoregion. MARS was chosen due to its ability to deal with high dimensional 

independent variables, to model different relationships in different data intervals, and to 

automatically model interactions. MARS models were built using the R package “earth.” 

Consistently, phenoregion one was selected to illustrate the modeling process. After the 

iterative variable removal process, the remaining variables having obviously reduced 

multicollinearity are fed into MARS.

At first, all variables are restricted to enter linearly, which ended up with a 

multiple linear stepwise regression model. In this linear version of the model, AGDD, 

TMIN, and TMIN_4 in the descending order of importance entered the model as 

environmental drivers. These three variables belong to two different types in terms of 

their physical meanings. TMIN and TMIN_4 are the weekly temperature at the lag of 1 

and 4 weeks, in the form of minimum temperature. AGDD is the accumulated 

temperature at the lag of 1 week. MEAN_NDVI and MEAN_PRCP entered the model as 

the pixel specific spatial adjustments. The model has the R2 of 91.39%, GCV of 0.000293 

and standard error of 0.0171 (Table 4.8).
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Table 4.8 Four measurements of model performance (R2, GCV, standard error and 
residual autocorrelation) for the three phenomodels (MARS 1, 2 and 3) in phenoregion 
one

Phenomodels R2 GCV Standard Error Residual
Autocorrelation

MARS 1 91.39% 0.000293 0.0171 -0.178
MARS 2 91.44% 0.000291 0.0171 -0.168
MARS 3 91.61% 0.000286 0.169 -0.166

By allowing the relationship to bend at different knots, a new MARS model was 

built, with no interaction effects of variables. This second model (MARS 2) yielded an R2 

of 91.44%, GCV of 0.000291, and standard error of 0.0171. These model parameter 

values indicate that MARS 2 provides a slightly better performance as compared to the 

linear stepwise model (MARS 1). Besides the five independent variables that MARS 1 

included, an extra independent variable (PRCP_10) entered MARS 2. PRCP_10 ranks 

before TMIN and TMIN_4, indicating that as compared with MARS 1, MARS 2 

identified the importance of precipitation over weekly temperature.

The third model (MARS 3) building on the basis of MARS 2, allows for a degree 

two interaction (product of two variables). The R2 of the third model increased to 91.61%, 

the GCV decreased to 0.000286, and the standard error further decreased to 0.169. The 

three statistics indicate that MARS 3 performs even better when the interaction terms are 

considered. The variables of AGDD, PRCP, PRCP_10, PRCP_18, AGDDu_5, TMIN, 

and TMIN_4 are the environmental drivers of MARS 3. The variables of MEAN_NDVI, 

LAT, ELEV are the environmental factors included in MARS 3.

The correlation between the residuals and lagged residuals is -0.178, 0.168, and

0.166 for MARS 1, MARS 2 and MARS 3, respectively, indicating only minor residual



autocorrelation in all three models and a decreased residual autocorrelation from MARS 

1 to MARS 3.

The performance of three models suggested by the measures of R2, GCV and 

standard error is that MARS 3 has the best performance and MARS 1 has the worst. 

MARS 3 has the highest R2 value, indicating the highest amount of the variation in the 

dependent variable can be explained by the independent variables. The lowest GCV of 

MARS 3 means that it is the optimal model considering both goodness of fit and the 

model complexity. The lowest standard error indicates that MARS 3 has the highest 

prediction accuracy. Also, based on the importance of precipitation on plant development 

summarized in Section 2.2.1.2, the inclusion of more precipitation variables and their 

greater importance over weekly temperature variables in MARS 2 and MARS 3 makes 

more sense. This further demonstrates the superiority of MARS over linear regression by 

approximating nonlinear relationships and automatically modeling interactions, in that 

the vegetation dynamics depicted in MARS models are closer to the actual vegetation 

dynamics in the physical environment.

4.7 Modeling Results

The MARS models with two degree interaction terms are built separately for nine 

phenoregions. All nine MARS models have good performance with a range of the largest 

R2 of 97.22% in phenoregion six and the lowest R2 of 91.61% in phenoregion one. Table 

4.9 shows the values of R2 and standard error of the phenomodels as well as the numbers 

of cases used to build the phenomodels in the nine phenoregions. Appendix B can be 

referred to for the complete results. Relationships between vegetation and environment 

can be inferred by interpreting these models.
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Table 4.9 The R2 and standard error of phenomodels and the number of cases used to 
build the phenomodels in the nine phenoregions

Phenoregion R2 Standard Error Number of cases
1 91.61% 0.0169 85643
2 95.24% 0.0185 85948
3 95.40% 0.0351 14922
4 96.13% 0.0335 13742
5 93.53% 0.0174 31348
6 97.22% 0.0281 80060
7 96.23% 0.0339 23960
8 95.95% 0.0222 69174
9 96.65% 0.0261 53111

4.7.1 Interpretation of Relationships Modeled by MARS 

The environment-vegetation relationships can be interpreted from both MARS 

model specification and the graphic representation of MARS models. The interpretation 

from the latter one is much easier. The graphic relationships of the MARS model in 

phenoregion one (Figure 4.12, see Appendix B for the graphic relationships in other 

phenoregions) is used as an example.

There are two types of plots. The first type represents the main effects of aNDVI, 

environmental drivers and environmental factors, in the form of connected segments (the 

first four plots in Figure 4.12). The other type represents the influence of the interaction 

terms on the vegetation dynamics, or the effect moderated by other variables. This type of 

plot appears in the form of 3-D surfaces (the lower seven plots in Figure 4.12).

Phenoregion one has four main effect plots and seven interaction term plots. One 

plot from each type of plot is selected to give an example of interpretation. The fourth 

main effect plot depicts the relationship with NDVI and PRCP_10. There are two
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Figure 4.12 The graphic relationships of the MARS model in phenoregion one.

line segments approximating the nonlinear relationship between NDVI and PRCP_10, 

separated by the knots located at PRCP_10 values of 1.9 mm (Figure 4.12). NDVI 

increases very fast when the PRCP_10 is below 1.9 mm, and increases much slower at 

PRCP_10 values beyond 1.9 mm. The second interaction plot shows how the TMIN- 

NDVI relationship is moderated by elevation. The TMIN-NDVI relationship differs 

slightly at different elevations. When elevation is below 1925 m, increase in TMIN leads 

to the increase of NDVI when TMIN is below 2.1 °C and leads to faster decrease of 

NDVI when TMIN is above 2.1 °C. When elevation is above 1925 m, the increase in



TMIN always results in an increase in NDVI. However, the same amount of increase in 

TMIN leads to slighly faster vegetation growth when TMIN is less than 3 °C.

4.7.2 Influence of Environmental Variables 

on Vegetation Dynamics

The temporally variant environmental drivers (temperature, precipitation, and 

light) directly drives vegetation growth. Environmental factors account for the spatial and 

temporal differences of the environment-vegetation relationships modeled in the 

phenomodels, i.e., the differences among different phenophases and among different 

locations. Based on the variable subset selection rationale of MARS, environmental 

drivers and factors included in the model are deemed more important than the ones left 

out of the model within the reduced set of variables that were fed into MARS. However, 

the variables that are removed beforehand due to high VIF values should not be 

considered unimportant. The importance of these variables should be analyzed separately 

based on the pairwise correlation, lag structure and PCA results.

4.7.2.1 Temperature

Three categories of temperature variables at lags of 1 to 10 weeks were analyzed 

by MARS in terms of their influence on the 7-day vegetation dynamics. The first 

category is the weekly temperatures, including TMAX, TMIN, TMEAN, GDD and 

GDDu. The second category is the weekly temperature difference, including TDIFF. The 

third one is the accumulated temperatures, including AGDD and AGDDu.

Temperature variables are generally included in the models of all nine 

phenoregions. The first category of weekly temperatures appears in all phenoregions 

except for phenoregion eight. The third category of temperature variables, the AGDD and

136



AGDDu at different lags are included in all nine phenoregions, and are of great 

importance according to the variable importance ranks shown in Appendix B. This 

indicates that the accumulated temperature is very important in accounting for the 7-day 

vegetation dynamics.

The temperature variables appear as the main effect terms in only phenoregions of 

three, four, six and seven where the mean temperature is relatively lower. Phenoregion 

one is the only phenoregion that does not include temperature variables at longer lags of 

week 5 to 10. Phenoregions three, four, five, six and seven also contain temperature 

variables at shorter lags. Phenoregions two, eight, and nine contain only temperature 

variables at longer lags. Although some of the variables at either shorter or longer lags 

are included in the phenoregions, they are considered less important, such as TMIN_3 in 

phenoregion three, and TMIN and GDDu_4 in phenoregion four. From this perspective, 

phenoregions one, five, and six contain only temperature variables at shorter lags in their 

more important set of independent variables.

The influence of temperature variables is moderated by aNDVI in eight out of all 

nine phenoregions. Phenoregion one is the only exception. Except for phenoregion three, 

five, and six, the temperature-vegetation relationships are affected by MEAN_NDVI in 

the other phenoregions. The moderation of long term mean temperature is in effect in 

phenoregion four, six and nine, while the long term mean precipitation affects the 

temperature-vegetation relationships in phenoregion five, six, seven and eight. The 

influence of temperature is dependent on the latitude in phenoregion three, four, and five. 

Phenoregion one is the only phenoregion where temperature’s influence is affected by 

ELEV. In some phenoregions, the influence of temperature on NDVI is also conditioned
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by other environmental drivers. For example, in phenoregion four, The influence of 

AGDD_10 on NDVI is moderated by SRAD_6 and PRCP_16.

4.7.2.2 Precipitation

Precipitation variables include the weekly cumulative precipitation at the lag of 1 

to 20 weeks. The lag structure and pairwise correlation matrix reveals that precipitation 

variables are much less correlated with temperature and light variables and with itself at 

different lags. Therefore, in all phenoregions, all 20 precipitation variables were retained 

in the final set of variables after VIF based iterated removing process.

The MARS models of all phenoregions include the precipitation variables except 

for phenoregion six and eight. This indicates that the temporal variance in precipitation 

does not have a great influence in driving vegetation growth. However, the environmental 

factors of GS_PRCP and MEAN_PRCP are included in phenoregion six and eight, 

respectively. This means that the spatial variance of the mean precipitation helps to 

explain the spatial difference of environment-vegetation relationships. Among the 

phenoregions that include the precipitation variables, the phenomodels of phenoregion 

one and five have the largest number of precipitation variables: phenoregion one has 

three and phenoregion five has four. Phenoregion two, five, and seven also include the 

long-term average of precipitation besides the weekly cumulative precipitation variables. 

The phenomodels of phenoregion one, five, and seven include precipitation variables in 

the main effect term.

Precipitation variables at much shorter lags (1 to 5 weeks) and much longer lags 

(16 to 20 weeks) appear to be more important than those at intermediate lags, since only
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phenoregions one and five included the latter into their phenomodels (PRCP_10 for 

phenoregion one and PRCP_7 for phenoregion five).

For phenoregions without long-term average of precipitation (phenoregions one, 

three, four, and nine), phenoregions one and four contain precipitation variables (PRCP) 

at shorter lags, but PRCP in phenoregion four is considered much less important. 

Phenoregion two, five, and seven contain both lagged precipitation variables and long 

term average precipitation variables, thereby the importance of the lagged precipitation 

variables are naturally less important than if long-term average precipitation variables are 

not included, In this sense, phenoregions five and seven, among the three phenoregions, 

have relatively more important precipitation variables at shorter lags.

The interaction terms that contain the precipitation variables only appear in 

phenoregions one through five. The precipitation-vegetation relationships are affected by 

different environmental variables in these five phenoregions. They are affected by 

precipitation at other lags in phenoregion one, by light in phenoregion two, by aNDVI in 

phenoregion three, by temperature in phenoregion four and by the long-term average of 

precipitation and season in phenoregion five.

4.7.2.3 Light

The light variables include photoperiod (PTPD), solar radiation (SRAD) and the 

product of the two -  solar radiant energy (SRE). Light variables are also considered 

important in vegetation development, but are less commonly included in equivalent 

models in literature. Analyzing the influence of light on 7-day vegetation dynamics, as 

with temperature, is harder, due to the high correlation between light and temperature 

variables and between the same variables at different lags.



The SRAD variables at different lags are included in models of phenoregion two, 

three, four, six, and seven. Also the SRAD variables are the only kind of light variables 

that are included in phenomodels. Most of the PTPD and SRE variables are removed due 

to multicollinearity beforehand. The SRAD variables appear as the main effect term in 

phenoregion two, three, and seven.

The SRAD variables are included in the interaction terms in phenoregion two, 

three, six, and seven. The influence of light on vegetation in the maturity phase is 

different from that in other phases in phenoregion two and seven. The SRAD variables 

interact with temperature variable of AGDD in phenoregion four, six, and seven.

4.8 Validation Results

The MARS models need to be validated to ensure its ability of generalization to 

different dates and different locations. This purpose was fulfilled by temporal, spatial and 

spatio-temporal cross validation. The MARS models also need to be validated for 

successful application to the physical environmental, and to ensure that they are not only 

the artifacts of measurement errors and noises in remote sensing data. This purpose of 

ground truthing is fulfilled by field validation.

4.8.1 Cross Validation

MARS models were built using values of modeling pixels in odd years. The 

models were applied to values of modeling pixels in even years (temporally independent 

data), values of validation pixels in odd years (spatially independent data) and values of 

validation pixels in even years (spatio-temporally independent data). As introduced in 

Section 3.6.1, the statistic of RMSE is used to quantify the performance of MARS 

models on different sets of data. RMSE indicates how accurate the model predicts when

140



applied on different sets of data. The RMSE values were compared with the standard 

error of the models to indicate if models performs consistently well on different data sets. 

The results of cross validation are shown in Table 4.10. Phenoregion one, two and five 

have the lowest RMSE and phenoregion three, four and seven have the highest. The 

RMSE values of models in all phenoregions are close to their respective standard errors, 

indicating the successfulness of the models in generalization to temporally and spatially 

independent data.

The results of CVs are shown in Table 4.11. Considering the mean value of NDVI 

in each phenoregion, the relative RMSE - CV shows that phenoregion four has the best 

performance, followed by phenoregion three, six, and seven.

4.8.2 Field Validation

4.8.2.1 Comparison of Ecocast and DAYMET Data

A comparison was made to reveal the similarities between Ecocast and DAYMET 

data as described in Section 3.6.2.1. The comparison helps to analyze the possible biases
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Table 4.10 Root Mean Square Error (RMSE) of the temporal, spatial and spatio-temporal 
cross validation in nine phenoregions

Phenoregion Standard Error
RMSE

Temporal Cross 
Validation

Spatial Cross 
Validation

Spatio-temporal 
Cross Validation

1 0.017 0.017 0.017 0.018
2 0.019 0.020 0.018 0.020
3 0.035 0.039 0.035 0.039
4 0.034 0.037 0.034 0.037
5 0.017 0.018 0.018 0.018
6 0.028 0.029 0.028 0.029
7 0.034 0.034 0.034 0.035
8 0.022 0.022 0.023 0.023
9 0.026 0.026 0.027 0.028
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Table 4.11 Root Mean Square Error (RMSE) normalized to the mean of the observed 
values of the temporal, spatial and spatio-temporal cross validation in nine phenoregions

Phenoregion Standard Error
CV

Temporal Cross 
Validation

Spatial Cross 
Validation

Spatio-temporal 
Cross Validation

1 8.0% 8.3% 8.1% 8.4%
2 8.7% 9.1% 8.9% 9.3%
3 7.0% 8.1% 7.3% 8.3%
4 5.8% 6.6% 5.9% 6.5%
5 7.5% 7.9% 7.8% 8.1%
6 7.0% 7.9% 7.1% 7.8%
7 7.1% 7.7% 7.2% 7.8%
8 8.3% 8.9% 8.5% 9.1%
9 7.6% 8.2% 7.7% 8.2%

of using different data in field validation.

Figure 4.13 plotted pairs of values extracted from Ecocast and DAYMET data, 

respectively, for four variables of maximum and minimum temperature, solar radiation 

and precipitation. All four variables of Ecocast data are highly correlated with their 

equivalent from DAYMET data with the correlation coefficient being 0.98, 0.97, 0.88 

and 0.72. TMAX and TMIN from two data sources are very consistent. The DAYMET 

SRAD values are generally higher than the Ecocast SRAD values (with most of the 

points above the y=x line). PRCP is the variable that has the greatest inconsistency 

between two data sources. It is anticipated that the predicted errors within phenoregions 

that include PRCP variables may be biased either upwards or downwards.

4.8.2.2 Results of Field Validation

Three sites were selected in phenoregion two, eight, and nine. Consistent per- 

week spectra measurements were conducted at these three sites from late April to early 

June, 2011. Figure 4.14 shows the measured NDVI time series at the three field sites
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Figure 4.13 Scatter plots of variables extracted from Ecocast and DAYMET data with the 
black line being the y=x line.

during this period. The measurements on May 21st, 2011 were problematic due to the 

overcast sky and variant light conditions. The incident light is scattered light instead of 

direct sunlight under an overcast sky, and the variations of light conditions lead to 

variations of brightness and high variability of measurements at different points along the 

transect, the spectra measurements on May 21st, 2011 are considered less reliable and 

therefore the calculated NDVI on that day should be used with caution.

The RMSE and CV values of the field validation (Table 4.12) tend to be much 

larger than those of the cross validation in phenoregion two and eight, and smaller in 

phenoregion nine. The lower accuracy of the phenomodels in field validation is the
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Phenoregion 8 
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Date

Figure 4.14 NDVI time series of three sites in phenoregion two, eight, and nine in 2011.

Table 4.12 The RMSE and CV of field validation before and after the removal of 
measurements on May 21st, 2011

Phenoregion
All measurements Measurements on May 21st, 2011 excluded

RMSE CV RMSE CV

2 0.034 10.9% 0.028 9.1%
8 0.052 20.1% 0.015 5.6%
9 0.015 4.7% 0.016 4.8%



combined results of different data sources (DAYMET instead of Ecocast), less reliable 

measurements (measurements on May 21st, 2011), errors during field measurements 

(such as transect reconstruction and the spectrometer pistol holding position), and errors 

associated with pixel alignment and using the 45 m transect to represent the 1 km2 pixel.

If the less reliable measurements on May 21st, 2011 are excluded from field 

validation, the RMSE and CV values calculated are shown in the right two columns of 

Table 4.12. Both RMSE and CV values in phenoregions two and eight decreased 

significantly and are within reasonable ranges as compared to those in cross validation.

4.9 Phenological Decision Support System

The prototype Pheno DSS implemented in this research contains three main 

functions:

1. Data access module: Users can display over Google Maps (Figure 4.15 (A) 

and (B)) or download (Figure 4.15 (B)) the archived preprocessed eMODIS 

and Ecocast data for the UCRB. All preprocessed eMODIS and Ecocast data 

were saved on the server side. Users can choose to display or download these 

historical images by specifying the date and the variable (NDVI for eMODIS 

data, and maximum and minimum temperature, precipitation, and solar 

radiation for Ecocast data). Users can also overlay the grazing alloments or 

grazing pastures on the eMODIS or Ecocast images to examine the values of 

specific alloments or pastures (Figure 4.15 (B)).

2. Prediction module: The crucial function of the pheno DSS is the prediction of 

NDVI for the next 7-day interval. In the scenario of the real-time or near real­

time production of eMODIS and Ecocast dataset, this DSS can generate the
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NDVI image of the UCRB for the next available 7-day interval (Figure 4.16

(A)), using the built-in pheno models of the nine phenoregions. The DSS can 

also generate an NDVI image for user selected historical date (Figure 4.16

(B)). Similar with the functions in the data access module, users can choose to 

download the image of predicted NDVI, and overlay the layers of grazing 

allotments and pastures.

3. Time series of NDVI and environmental drivers can be generated (Figure 

4.17). Users first need to choose either a point or a region. Users can choose a 

point by simply clicking on the map or inputting the latitude and longitude of 

the point by hand. The region can be drawn using the rectangle or polygon 

tools provided by Google Maps (Figure 4.17 (A)). The rectangle can be either 

drawn on the map or input the boundary information from the right panel. The 

region also can be one of the grazing allotments or pastures (Figure 4.17 (B)). 

When users click on one of the grazing allotments or pastures, it will show on 

the right panel the information of that allotment or pasture (number and name) 

(Figure 4.17 (B)). Users will then choose the variable time series which they 

would like to display and the time range of the time series. The pheno DSS 

will generate both the graphic time series and a table with exact values (Figure 

4.17 (C)). The table can be saved as an Excel file for easy data documentation 

(Figure 4.17 (C)).
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5 DISCUSSION / IMPLICATIONS OF RESEARCH

5.1 Research Questions and Research Objectives

The four research questions were answered by this dissertation and three research 

objectives were fulfilled.

Research question one is, “How can phenoregions be effectively delineated in the 

UCRB and how can performance of phenoregions be evaluated?” The PCA plus k- 

means++ clustering were adopted to disaggregate the UCRB into self-similar clusters. 

Twelve variables including environmental factors as well as the long-term average and 

temporal variations were used in the phenoregion delineation. The spatial homogeneity 

was quantified using the total within-cluster sum-of squares and the mean standard 

deviation. The effectiveness of phenoregions and the homogeneity within phenoregions 

were further proved in the analysis of phenological cycles, outliers and the successful 

modeling of the environment-vegetation relationship using one MARS model for each 

phenoregion.

Research question two is, “What are the dependent and independent variables of 

the phenomodels?” The dependent variable of the phenomodels are NDVI for all 

phenoregions. The use of NDVI in phenological models and phenological research has 

been well established in literature, and the major limitation of easy saturation is not a 

concern in this research. The independent variables differ in each phenoregion. A two­

fold independent variable selection was used to select important independent variables 

from the pool of candidate variables including aNDVI, environmental drivers and



environmental factors, while reducing multicollinearity. The first step reduces 

multicollinearity using an iterated VIF based variable reduction approach. Then MARS 

model automatically selects the important variables from the reduced set of variables.

Research question three is, “What are the relationships between the dependent and 

independent variables identified in question two and how to validate these relationships 

as represented using a mathematical model?” The relationships between the dependent 

and independent variables are successfully quantified using MARS. The relationships 

differ among phenoregions, and differ at different ranges of environmental variables 

within the same phenoregion. The relationships represented in the MARS models were 

validated using both cross validation and field validation, ensuring the generalization of 

the models both temporally and spatially and to practical use in reality.

Research question four is, “What information should be provided and what 

mechanisms should be adopted in the proposed DSS to most effectively assist land 

managers in formulating grazing strategies and decisions?” The prototype pheno DSS 

implemented several modules to provide information about the trend of environmental 

variables, historical images as a still picture of the environment, predicted NDVI values 

from the phenomodels, and basic grazing suggestions. The spatial visualization module 

and the user friendly interaction can greatly assist land mangers in acquiring information 

needed for their decision making.

The successful answering of the four research questions led to the fulfillment of 

the three research objectives. Nine phenoregions were delineated to disaggregate spatially 

the environment-vegetation relationships. Nine MARS models were then built, one for 

each phenoregion. The interpretation of MARS models in all phenoregions as the
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representation of vegetation dynamics reveals the common features in different 

phenoregions as well as the differences among phenoregions and under different intervals 

of environmental variables within each phenoregion. The prototype pheno DSS can 

successfully predict the NDVI values of the UCRB for the next 7-day interval, and has 

the ability to go real-time or near real-time under the scenario of the real time or near real 

time production of eMODIS and Ecocast data sets.

5.2 The Applicability of Phenomodels and 

Modeling Frameworks

The nine phenomodels represent the UCRB specific and phenoregion specific 

relationships, and are not expected to work equally well in regions outside of the UCRB. 

However, as mentioned in Section 1.3, UCRB is representative of other BLM managed 

lands and other regions with similar ecosystems. Therefore, it is possible to apply the 

phenomodels developed for the UCRB to a new region, as long as this new region is 

analyzed beforehand and concluded to share similar phenological characteristics with one 

of the phenoregions in the UCRB.

The phenomodeling framework of phenoregion delineation plus MARS modeling 

within each phenoregion, though, is a universal approach that can be applied elsewhere. 

The list of candidate variables was summarized from literature on various regional 

settings, and therefore makes a comprehensive set that influences the environment- 

vegetation relationships spatially and temporally. The MARS modeling approach can 

select the most important variables from the set of environmental drivers and factors. 

This framework works especially well in regions that are also geographically diverse. It 

uses its complex mechanism to account for the complex spatially and temporally variant
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environment-vegetation relationships. It certainly can be applied to homogeneous regions 

as well, in which case, the step of phenoregion delineation is not necessary.

However, due to some limitations of the MARS approach, there are some 

restrictions applying the framework. Firstly, the development of MARS models require a 

very large number of observations, therefore, it is harder to apply to smaller regions 

especially when data for only a limited number of years are available. Secondly, the 

confidence intervals of parameters and other checks on the model cannot be calculated 

directly for MARS models, and certain validation techniques are required to validate the 

models. When the number of observations is small, there may not be enough observations 

that can be used for cross validation. There are also regions where field validation cannot 

be conducted due to the accessibility issues. In these situations, the MARS modeling is 

not the optimal approach.

5.3 Phenological Predictive Models for Rangelands

The same modeling framework can be applied to only the pixels within the 

grazing allotment and pastures in the UCRB. As compared with the modeling for the 

entire UCRB, the modeling for rangelands is easier in that: the climatic condition and 

vegetation are not as diverse, which can possibly lead to higher accuracy of prediction; 

outliers are expected to be less and NDVI time series are expected to be less noisy due to 

the relatively uniform land cover.

However, there are some difficulties in the NDVI prediction considering the 

ongoing grazing activity. Vegetation development occurs at the same time as livestock 

are on the range consuming the vegetation. The current phenomodels do not take this into 

consideration. When the models are enhanced and adjusted for rangelands, this problem

153



becomes a serious concern. The possible adjustment to account for this disturbance 

caused by livestock consumption is to include extra variables (such as the livestock 

distribution information) into the model.

5.4 Phenoregions / Scale Dependencies and Pixel 

Nature of Remote Sensing Phenology

The heterogeneity of environmental characteristics and the resulting heterogeneity 

of environment-vegetation relationship at different locations, has long been a problem in 

phenological and ecological modeling. This problem requires attention before successful 

phenomodels can be built for the UCRB. In this research, an approach of disaggregating 

the UCRB into phenologically homogeneous phenoregions is proposed to address this 

problem. Successful models were built for each phenoregion with different 

environmental drivers and factors and with different coefficients, accounting for the 

influence of environmental drivers on the 7-day vegetation dynamics as moderated by 

other environmental drivers and factors. The similarities and differences of the 

environment-vegetation relationships in different phenoregions can be summarized.

Remote sensing of phenology entails a scaling-up process, from field sites to 

regional and global scales, and from individual plants and species to vegetation 

communities and ecosystems. Given the outcomes of this research, it is reasonable to use 

a pixel based spatial partition of the UCRB as the basis of remote sensing phenological 

modeling. Methods used in ground based phenology should be either adjusted or 

redesigned to adapt to the broad-scale nature of remote sensing phenology. Therefore, 

traditional species based phenological monitoring or modeling is not applicable in this 

research, because:
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1. In remote sensing phenology deals with, instead of the single plant, the pixel 

which is a mixture of signals from everything on the surface including bare 

ground and different species of vegetation. This mixture of nature is especially 

true in the geographically diverse UCRB, seen by examining the composition 

of GAP land covers within 1-km pixels. Even for multispectral sensors that 

have frequent coverage of the UCRB and the finest spatial resolution (such as 

ASTER with 15m spatial resolution and 16 days temporal resolution), the 

mixture problem in a pixel is still inevitable.

2. Within the same ecosystem, such as shrubland, the environment-vegetation 

relationship can still be very divergent. For example, Knapp (1984) found that 

the responses of three grasses (big blue stem, little bluestem, and switchgrass) 

in terms of flowering intensity can be slightly different to increased mean 

annual precipitation (Schwartz, 2003).

3. Even the same species has different responses given different ranges of 

environmental drivers and factors. This has been demonstrated by many 

studies. For example, the same crop plant variety needs different mean annual 

temperature sums to reach a particular phenophase if cultivated at different 

latitudes (Schwartz, 2003). Also, the saturating solar radiation at maximal 

growth rate varies with elevation even for the same species, which is a result 

of the genetic adaptation to the habitat (Pfafflin, 2006).

This research focus on the phenological cycles and the vegetation-environment 

relationships of the 1-km pixels, therefore, it is one of the objectives of this research to 

identify the response mechanism of the pixel with mixed vegetation and species.
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5.5 MARS and Other Models

This research uses phenoregion plus MARS modeling to predict the next 7-day 

interval NDVI values and interpret the influence of environment on the 7-day vegetation 

dynamics. The phenoregion plus MARS strategy is still regarded as a better choice in this 

research considering the major objectives. Firstly, a more generic vegetation-environment 

relationship is desired rather than a pixel specific relationship. The vegetation- 

environment relationship does vary greatly due to the geographic diversity in the UCRB. 

However, the reason of the variation is also a question to be answered. Actually, both the 

spatially and temporally variant relationship is essentially due to the combination, and 

interaction of different values of environmental factors and drivers. That is also why 

MARS works better than ordinary multivariate regression models. Secondly, phenoregion 

accounts for the major difference of the relationships so that more homogeneous 

relationships can be modeled and interpreted for each phenoregion, though environmental 

factors still take effect in accounting for the minor interpixel differences or interphase 

differences.

The complexity of the responses of vegetation to the environment results in the 

advantages of more flexible MARS over ordinary linear regression. MARS is easily 

interpretable as with linear regression. MARS does not assume any underlying 

relationships, instead, it can approximate any kinds of relationships using basis functions 

driven by data. The basis functions allow different linear relationships in different 

intervals of data.

This section focuses on the discussion of this strategy as compared with other 

kinds of models.
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Geographically Weighted Regression (GWR), as one of the commonly used 

spatial regression models, considers spatial dependence and accounts for the spatially 

variant relationship. GWR, however, lack the flexibility of phenoregion plus MARS in 

relationship approximation. For example, GWR requires a predetermined relationship 

between dependent and independent variables, and it does not automatically model 

interactions.

The fixed and random effect models usually applied on longitudinal data consider 

the unit or individual effect, and work especially well with datasets with heterogeneous 

relationships. However, out of the similar reason that it is the purpose of this research to 

explore what caused the “individual effect,” MARS with explicitly expressed individual 

effect (environmental factors and aNDVI) is preferred.



6 CONCLUSIONS AND FUTURE WORK

This research identified and delineated nine phenoregions in the geographically 

diverse UCRB. These phenoregions work as the basic areal unit for the phenological 

modeling. A phenomodel was built for each of the nine phenoregions to predict the 

vegetation abundance 7 days in the future. Interpretation of the phenomodels contributes 

to the understanding of the environment with respect to the 7-day vegetation dynamics. A 

prototype pheno DSS was then developed that integrates phenological theory and GIS 

technology to provide a suite of information to supplement and present the predicted 

results from the phenomodels.

The framework of phenoregion delineation plus MARS model development 

within each phenoregion proposed in this research provides a way to model and 

understand the complex and variant phenological features and environment-vegetation 

relationships in the geographically diverse regions.

Some conclusions about the vegetation-environment relationships can be made by 

examining the phenomodels in all nine phenoregions.

Firstly, vegetation responds faster to environmental drivers in dryer phenoregions 

and phenoregions with more shrubland and grassland. This is inferred from that fact that 

environmental drivers at shorter lags are more likely to be selected to enter the model in 

such phenoregions. For example, temperature variables at shorter lags are more important 

in phenoregions one, five, and six; precipitation variables at shorter lags are considered



more important in phenoregions one, five, and seven. Also, some phenoregions 

containing more shrubland (such as phenoregion five) include both environmental drivers 

at shorter and longer lags. This is probably caused by the mixed species of slow- 

responding forest and deep-rooted shrubs and fast-responding shallow-rooted shrubs and 

grasses.

Secondly, environmental drivers are found to be more important in phenoregions 

where they are limiting factors. Precipitation is more important in moisture limited 

phenoregions such as phenoregions one and five, which have both the largest number of 

precipitation variables and main-effect precipitation variables. Temperature is more 

important in cooler phenoregions. For example, the phenoregions three, four, six, and 

seven with lower temperatures have the main-effect temperature variables. Solar 

radiation is generally important for all phenoregions, but the relative importance in 

different phenoregions is hardly observed because solar radiation is seldom a limiting 

factor in UCRB and can be easily saturated.

Only one or two categories of phenological phases are included in the 

phenomodels. SEASON variable category maturity is included in seven out of nine 

phenoregions, indicating the different environment-vegetation relationships in the 

maturity phase. However, this does not indicate that the vegetation-environment 

relationship is not temporally variant in other phenophases. Instead, as analyzed in 

Section 5.3, spatiotemporally-variant relationships are largely due to the different values 

of environmental drivers and factors in different locations and at different dates. 

Therefore, the application of MARS, by modeling different relationship within different 

data intervals, partly accounts for the temporally variant relationship, and weakens the
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influence of phenophases as shown in models. Possible improvements of this research in 

the future include the following:

This research uses NDVI as the indicator of vegetation abundance. However, as 

indicated in 2.1.2, EVI, SAVI and NDWI are also good candidates. Phenomodels using 

these VIs are worth trying. The advantages and disadvantages of different VIs in 

phenomodeling are of interest.

Though currently only 1km data can be acquired frequently, phenomodels based 

on data of different spatial resolution can be a future direction. The comparison of these 

phenomodels can shed light on the scale dependency of vegetation-environment 

relationship.

A few phenomena represented by the phenomodels are hard to explain using the 

current data and information in this dissertation. Additional information of the UCRB 

(such as soil types, species) may help make more comprehensive interpretations.

In this dissertation, cross validation is conducted on three randomly selected fixed 

sets of samples. In the future, the pixels sampled using systematic plus random sampling 

can be divided into several sets, each set will be subsequentially used as the modeling / 

training set while others as the validation sets. The final phenoregion will be selected as 

the one with the best cross validation results.

Due to the limited time, funding and labor, field sites were selected around a 

location where there are several phenoregions. Field sites located in the center of a large 

patch are more “pure” and are considered more typical in terms of the vegetation- 

environment relationships modeled in respective phenomodels, and are therefore more 

preferable. Also, the 45 m transect may not be representative enough of the 1 km2 pixel, a
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longer transect or other field sampling methods may help to improve the accuracy of field 

validation.



APPENDIX A 

GAP CODES AND NAMES



Table A .l GAP codes and names

LEVEL1 LEVEL2 LEVEL3 CN LEVEL1 CN LEVEL2 CN LEVEL3
1 12 1201 Human land use Developed Developed, Open Space
1 12 1202 Human land use Developed Developed, Low Intensity
1 12 1203 Human land use Developed Developed, Medium Intensity
1 12 1204 Human land use Developed Developed, High Intensity
1 13 1301 Human land use Mining Quarries, Mines, Gravel Pits and Oil Wells
1 14 1402 Human land use Agriculture Cultivated Cropland
1 14 1403 Human land use Agriculture Pasture/Hay
2 21 2102 Aquatic Open water Open Water (Fresh)
3 31 3105 Sparse and barren systems Beach, shore and sand Undifferentiated Barren Land

3 31 3121 Sparse and barren systems Beach, shore and sand Inter-Mountain Basins Active and Stabilized 
Dune

3 32 3201 Sparse and barren systems Cliff, canyon and talus North American Warm Desert Bedrock Cliff 
and Outcrop

3 32 3202 Sparse and barren systems Cliff, canyon and talus Rocky Mountain Cliff, Canyon and Massive 
Bedrock

3 32 3216 Sparse and barren systems Cliff, canyon and talus Inter-Mountain Basins Cliff and Canyon

3 32 3218 Sparse and barren systems Cliff, canyon and talus Colorado Plateau Mixed Bedrock Canyon 
and Tableland

3 33 3304 Sparse and barren systems Bluff and badland Inter-Mountain Basins Shale Badland
3 34 3403 Sparse and barren systems Playa, wash and mudflat Inter-Mountain Basins Wash
3 35 3502 Sparse and barren systems Alpine sparse and barren North American Alpine Ice Field
3 35 3503 Sparse and barren systems Alpine sparse and barren Rocky Mountain Alpine Bedrock and Scree

3 36 3603 Sparse and barren systems Other sparse and barren Inter-Mountain Basins Volcanic Rock and 
Cinder Land

4 41 4111 Forest and woodland 
systems

Deciduous dominated 
forest and woodland 

(xeric-mesic)

Rocky Mountain Aspen Forest and 
Woodland



Table A. 1 Continued

LEVEL1 LEVEL2 LEVEL3 CN LEVEL 1 CN LEVEL2 CN LEVEL3

4 41 4112 Forest and woodland 
systems

Deciduous dominated forest 
and woodland (xeric-mesic)

Rocky Mountain Bigtooth Maple Ravine 
Woodland

4 41 4147 Forest and woodland 
systems

Deciduous dominated forest 
and woodland (xeric-mesic)

Inter-Mountain Basins Curl-leaf Mountain 
Mahogany Woodland and Shrubland

4 43 4324 Forest and woodland 
systems

Mixed deciduous/coniferous 
forest and woodland (xeric- 

mesic)

Inter-Mountain Basins Aspen-Mixed Conifer 
Forest and Woodland

4 45 4512 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic) Colorado Plateau Pinyon-Juniper Woodland

4 45 4526 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Rocky Mountain Foothill Limber Pine- 
Juniper Woodland

4 45 4527 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic) Rocky Mountain Lodgepole Pine Forest

4 45 4528 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Southern Rocky Mountain Dry-Mesic 
Montane Mixed Conifer Forest and 

Woodland

4 45 4530 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Southern Rocky Mountain Ponderosa Pine 
Woodland

4 45 4531 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland

4 45 4532 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Rocky Mountain Subalpine-Montane 
Limber-Bristlecone Pine Woodland

4 45 4534 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Southern Rocky Mountain Pinyon-Juniper 
Woodland

4 45 4543 Forest and woodland 
systems

Conifer dominated forest 
and woodland (xeric-mesic)

Middle Rocky Mountain Montane Douglas- 
fir Forest and Woodland

4 46 4609 Forest and woodland 
systems

Conifer dominated forest 
and woodland (mesic-wet)

Northern Rocky Mountain Mesic Montane 
Mixed Conifer Forest

4 46 4610 Forest and woodland 
systems

Conifer dominated forest 
and woodland (mesic-wet)

Southern Rocky Mountain Mesic Montane 
Mixed Conifer Forest and Woodland
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LEVEL1 LEVEL2 LEVEL3 CN LEVEL1 CN LEVEL2 CN LEVEL3

4 46 4611 Forest and woodland 
systems

Conifer dominated forest 
and woodland (mesic-wet)

Rocky Mountain Subalpine Mesic Spruce-Fir 
Forest and Woodland

5 51 5103 Shrubland, steppe and 
savanna systems

Alpine and avalanche chute 
shrubland Rocky Mountain Alpine Dwarf-Shrubland

5 52 5205 Shrubland, steppe and 
savanna systems Scrub shrubland Inter-Mountain Basins Mixed Salt Desert 

Scrub

5 53 5307 Shrubland, steppe and 
savanna systems Steppe Inter-Mountain Basins Big Sagebrush Steppe

5 53 5308 Shrubland, steppe and 
savanna systems Steppe Inter-Mountain Basins Montane Sagebrush 

Steppe

5 53 5309 Shrubland, steppe and 
savanna systems Steppe Inter-Mountain Basins Semi-Desert Shrub 

Steppe

5 56 5601 Shrubland, steppe and 
savanna systems Conifer dominated savanna Colorado Plateau Pinyon-Iuniper Shrubland

5 56 5603 Shrubland, steppe and 
savanna systems Conifer dominated savanna Inter-Mountain Basins luniper Savanna

5 57 5701 Shrubland, steppe and 
savanna systems

Sagebrush dominated 
shrubland

Colorado Plateau Mixed Low Sagebrush 
Shrubland

5 57 5703 Shrubland, steppe and 
savanna systems

Sagebrush dominated 
shrubland Inter-Mountain Basins Mat Saltbush Shrubland

5 57 5704 Shrubland, steppe and 
savanna systems

Sagebrush dominated 
shrubland

Wyoming Basins Dwarf Sagebrush Shrubland 
and Steppe

5 57 5706 Shrubland, steppe and 
savanna systems

Sagebrush dominated 
shrubland

Inter-Mountain Basins Big Sagebrush 
Shrubland

5 57 5707 Shrubland, steppe and 
savanna systems

Sagebrush dominated 
shrubland Southern Colorado Plateau Sand Shrubland

5 58 5803 Shrubland, steppe and 
savanna systems

Deciduous dominated 
shrubland

Colorado Plateau Blackbrush-Mormon-tea 
Shrubland

5 58 5806 Shrubland, steppe and 
savanna systems

Deciduous dominated 
shrubland

Rocky Mountain Lower Montane-Foothill 
Shrubland
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LEVEL1 LEVEL2 LEVEL3 CN LEVEL 1 CN LEVEL2 CN LEVEL3

5 58 5809 Shrubland, steppe and 
savanna systems

Deciduous dominated 
shrubland

Rocky Mountain Gambel Oak-Mixed Montane 
Shrubland

7 71 7102 Grassland systems Alpine grassland Rocky Mountain Alpine Fell-Field
7 71 7103 Grassland systems Alpine grassland Rocky Mountain Dry Tundra

7 72 7204 Grassland systems Montane grassland Northern Rocky Mountain Subalpine-Upper 
Montane Grassland

7 72 7205 Grassland systems Montane grassland Rocky Mountain Subalpine-Montane Mesic 
Meadow

7 72 7206 Grassland systems Montane grassland Southern Rocky Mountain Montane-Subalpine 
Grassland

7 73 7305 Grassland systems Lowland grassland and 
prairie (xeric-mesic) Inter-Mountain Basins Semi-Desert Grassland

7 73 7306 Grassland systems Lowland grassland and 
prairie (xeric-mesic) Northwestern Great Plains Mixedgrass Prairie

8 81 8101 Recently disturbed or 
modified Harvested forest Recently Logged Areas

8 81 8107 Recently disturbed or 
modified Harvested forest Harvested forest-Shrub Regeneration

8 83 8301 Recently disturbed or 
modified Recently burned Recently Burned

8 84 8404 Recently disturbed or 
modified Introduced vegetation Introduced Upland Vegetation - Annual 

Grassland

8 84 8406 Recently disturbed or 
modified Introduced vegetation Introduced Riparian and Wetland Vegetation

8 84 8407 Recently disturbed or 
modified Introduced vegetation Introduced Upland Vegetation - Perennial 

Grassland and Forbland

8 85 8501 Recently disturbed or 
modified Other disturbed or modified Disturbed, Non-specific
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LEVEL1 LEVEL2 LEVEL3 CN LEVEL 1 CN LEVEL2 CN LEVEL3

8 85 8502 Recently disturbed or 
modified

Other disturbed or 
modified

Disturbed/Successional - Recently Chained 
Pinyon-Juniper

9 96 9606 Riparian and wetland 
systems Wet meadow or prairie Rocky Mountain Alpine-Montane Wet 

Meadow

9 97 9707 Riparian and wetland 
systems Depressional wetland Western Great Plains Open Freshwater 

Depression Wetland

9 97 9711 Riparian and wetland 
systems Depressional wetland Western Great Plains Saline Depression 

Wetland

9 98 9810 Riparian and wetland 
systems Floodplain and riparian Inter-Mountain Basins Greasewood Flat

9 98 9823 Riparian and wetland 
systems Floodplain and riparian Western Great Plains Floodplain

9 98 9825 Riparian and wetland 
systems Floodplain and riparian Rocky Mountain Lower Montane Riparian 

Woodland and Shrubland

9 98 9830 Riparian and wetland 
systems Floodplain and riparian Great Basin Foothill and Lower Montane 

Riparian Woodland and Shrubland

9 98 9832 Riparian and wetland 
systems Floodplain and riparian Rocky Mountain Subalpine-Montane 

Riparian Woodland

9 98 9837 Riparian and wetland 
systems Floodplain and riparian Rocky Mountain Subalpine-Montane 

Riparian Shrubland

9 98 9848 Riparian and wetland 
systems Floodplain and riparian Western Great Plains Riparian Woodland 

and Shrubland



APPENDIX B

DETAILED INFORMATION OF PHENOMODELS

B.1 Phenoregion One

The phenomodel of phenoregion one has an R2 of 91.61% and standard error of 

0.0169. Table B.1 shows the importance of the independent variables included in 

phenoregion one. Figure B.1 illustrates the relationships between NDVI and independent 

variables. The mathematical equation of the phenomodel in phenoregion one is as follows:

NDVI =
0.22
+ 0.83 * max(0, aNDVI - 0.21)
- 0.76 * max(0, 0.21 - aNDVI)
- 5.8e-06 * max(0, ELEV - 1925)
+ 6e-06 * max(0, 1925 - elev)
+ 2.1 * max(0, MEAN NDVI - 0.13)
- 1.3 * max(0, 0.13 - mean_n d v i)
+ 0.0026 * max(0, 1.9 - PRCP 10)
+ 0.032 * max(0, aNDVI - 0.21) * max(0, LAT - 37)
- 0.021 * max(0, aNDVI - 0.21) * max(0, 37 - LAT)
- 1.1e-06 * max(0, TMIN - 2.1) * max(0, 192 5 - elev)
- 3.8e-07 * max(0, 2.1 - t m i n) * max(0, 192 5 - elev)
+ 1.8e-06 * max(0, TMIN - 3) * max(0, ELEV - 192 5)
- 2.6e-06 * max(0, 3 - t m i n) * max(0, ELEV - 192 5)
- 0.00025 * max(0, 13 - prcp) * max(0, 1.9 - PRCP 10)
+ 1e-07 * max(0, ELEV - 1925) * max(0, AGDDu_5 - 121)
+ 3.5e-07 * max(0, ELEV - 1925) * max(0, 121 - AGDDu 5)
- 0.0021 * max(0, 0.13 - MEAN_NDVl) * max(0, AGDD - 105)
- 0.015 * max(0, 0.13 - MEAN_NDVl) * max(0, 105 - AGDD)
+ 0.094 * max(0, 0.13 - MEAN_NDVl) * max(0, TMIN 4 - 6.9)
+ 0.036 * max(0, 0.13 - MEAN NDVl) * max(0, 6.9 - TMIN 4)
+ 5.6e-06 * max(0, PRCP_10 - 1.9) * max(0, PRCP_18 - 2.3)
+ 0.00013 * max(0, PRCP_10 - 1.9) * max(0, 2.3 - PRCP_18)

B.2 Phenoregion Two

The phenomodel of phenoregion two has an R2 of 95.24% and standard error of 

0.0185. Table B.2 and Figure B.2 shows the importance of the independent variables and 

the geographic relationships. The mathematical equation of the phenomodel in
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Table B.1 Importance o f entered independent variables in phenoregion one

nsubsets gcv rss
aNDVI 22 100 100

MEAN NDVI 20 9.7 9.7
LAT 18 6.2 6.3

AGDD 17 5.6 5.6
PRCP 14 4.5 4.6

PRCP_10 14 4.5 4.6
PRCP_18 13 4.1 4.2

ELEV 12 3.6 3.7
AGDDu 5 12 3.6 3.7

TMIN 11 3.3 3.4
TMIN_4 10 2.9 3

Figure B.1 Geographic relationships in phenoregion one.
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Table B.2 Importance o f entered independent variables in phenoregion two

nsubsets gcv rss
aNDVI 16 100 100

AGDD_10 15 13.8 13.8
MEAN NDVI 13 9.3 9.3

SRAD_6 11 6.4 6.4
GDDu_7 11 6.4 6.4

SEASON2 7 3.9 4
GS_PRCP 7 3.5 3.5

PRCP 3 1.7 1.7

1 aNOVI___________________  _ ________________2 MEAN_NDV1________________  g __________________ 8 8*AD_g__________________ 1 aNDVI: MEAN_NDVI

Figure B.2 Geographic relationships in phenoregion two.
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phenoregion two is as follows: 

NDVI =
0.21
+ 0.82 * max(0, aNDVI - 0.16)
- 0.59 * max(0, 0.16 - aNDVI)
- 4.9 * max(0, MEAN_NDVI - 0.13)
- 2.6 * max(0, 0.13 - mean_n d v i)
+ 4 6e-05 * max(0, SRAD 6 - 392)
- 6e-05 * max(0, 392 - SRAD_6)
+ 5.3 * max(0, aNDVI - 0.16) * max(0, -IVDN_NAEM 0.12)
- 18 * max(0, aNDVI - 0.16) * max(0, 0.12 - MEAN NDVl)
- 0..00052 * max(0, aNDVI - 0.16) * max(0, AGDD_10 - 24)
+ 0.0043 * max(0, aNDVI - 0.16) * max(0, 24 - AGDD 10)
- 2e-06 * max(0, 26 - PRCP) * max(0, SRAD_6 - 392)
+ 0.1 * max(0, 0.13 - MEAN_NDVl) * max(0, GS_PRCP - 32)
- 0.025 * max(0, 0.13 - MEAN_NDVl) * max(0, 32 - GS_PRCP)
+ 0.037 * max(0, 0.13 - MEAN_NDVl) * max(0, 13 - GDDu_7)
+ 0.6 * max(0, 0.13 - MEAN NDVl) * max(0, SEASON2 - 0)
- 6 9e-05 * max(0, SRAD 6 - 392) * max(0, SEASON2 - 0)

B.3 Phenoregion Three

The phenomodel of phenoregion three has an R2 of 95.40% and standard error of

0.0351. Table B.3 shows the importance of the independent variables. Figure B.3

illustrates the relationships between NDVI and independent variables. The mathematical

equation of the phenomodel in phenoregion three is as follows:

NDVI =
0.51
+ 0.8 * max(0, aNDVI - 0.48)
- 0.81 * max(0, 0.48 - aNDVl)
- 0.0034 * max(0, 8.2 - GDD)
+ 1.3 * max(0, MEAN NDVI - 0.14)
- 1.8 * max(0, 0.14 - MEAN NDVl)
+ 0.00066 * max(0, SRAD 10 - 570)
- 3.9e-05 * max(0, 570 - SRAD 10)
- 0.00025 * max(0, AGDD 10 - 22)
+ 0.0045 * max(0, 22 - AGDD_10)
- 0.012 * max(0, 0.48 - aNDVl) * max(0, GDD - 3.3)
- 0.019 * max(0, 0.48 - aNDVl) * max(0, 3.3 - GDD)
+ 0.015 * max(0, aNDVI - 0.48) * max(0, TMIN_3 - 5.9)
+ 0.0079 * max(0, aNDVI - 0.48) * max(0, 5.9 - TMIN_3)
+ 0.046 * max(0, aNDVI - 0.48) * max(0, 1.7 - PRCP_20)
+ 0.00038 * max(0, 8.2 - GDD) * max(0, LAT - 38)
- 0.00082 * max(0, 8.2 - g d d) * max(0, 38 - LAT)
+ 3e-05 * max(0, GDD - 7.1) * max(0, AGDD_10 - 22)
+ 4.7e-05 * max(0, 7.1 - g d d) * max(0, AGDD_10 - 22)
- 0.0014 * max(0, LAT - 40) * max(0, 22 - AGDD_10)
+ 0.0019 * max(0, LAT - 41) * max(0, 22 - AGDD_10)
- 0.00036 * max(0, 41 - lat) * max(0, 22 - AGDD_10)
- 0.00016 * max(0, GDDu_2 - 3.5) * max(0, 22 - AGDD_10)
- 0.00032 * max(0, 3.5 - GDDu 2) * max(0, 22 - AGDD_10)
- 0.017 * max(0, GDDu_7 - 12) * max(0, AGDD_10 - 22)
- 1.3e-05 * max(0, 12 - GDDu 7) * max(0, AGDD_10 - 22)
- 3.5e-06 * max(0, SRAD 8 - 414) * max(0, 22 - AGDD_10)
- 9.2e-06 * max(0, 414 - SRAD_8) * max(0, 22 - AGDD_10)
- 0.00096 * max(0, 22 - AGDD_10) * max(0, SEASON2 - 0)
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Table B.3 Importance of entered independent variables in phenoregion three

nsubsets gcv rss
aNDVI 28 100 100

AGDD 10 26 15.4 15.5
SEASON2 25 10.4 10.6
SRAD_8 24 9.4 9.6

MEAN_NDVI 23 8.2 8.4
GDDu_2 21 6.7 7
PRCP_20 19 5.9 6.2

GDD 18 5.5 5.8
GDDu 7 15 4.9 5.2

LAT 14 4.5 4.8
SRAD_10 9 2.9 3.2
TMIN_3 8 2.4 2.7

Figure B.3 Geographic relationships in phenoregion three.
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B.4 Phenoregion Four

The phenomodel of phenoregion four has an R2 of 96.13% and standard error of 

0.0335. Table B.4 shows the importance of the independent variables. Figure B.4 

illustrates the relationships between NDVI and independent variables. The mathematical 

equation of the phenomodel in phenoregion four is as follows:

NDVI =
0.24
+ 0.82 * max(0, aNDVI - 0.23)
- 0.91 * max(0, 0.23 - aNDVl)
- 0.11 * max(0, aNDVI - 0.61)
+ 0.0084 * max(0, 16 - AGDD_10)
- 0.03 * max(0, SEASON4 - 0)
+ 5 * max(0, aNDVI - 0.23) * max(0, -IVDN_NAEM 0.13)
- 13 * max(0, aNDVI - 0.23) * max(0, 0.13 - MEAN_NDVl)
+ 0.0029 * max(0, aNDVI - 0.23) * max(0, 11 - GDDu_4)
+ 0.00077 * max(0, aNDVI - 0.23) * max(0, AGDD_10 - 116)
+ 0.001 * max(0, aNDVI - 0.23) * max(0, 116 - AGDD_10)
- 0.0085 * max(0, aNDVI - 0.34) * max(0, 16 - AGDD_10)
- 0.0064 * max(0, 0.34 - aNDVl) * max(0, 16 - AGDD_10)
+ 5.2e-05 * max(0, TMIN - 1.4) * max(0, AGDD_10 - 16)
+ 5.6e-06 * max(0, 1.4 - TMIN) * max(0, AGDD_10 - 16)
- 3e-04 * max(0, 2.3 - prcp) * max(0, 16 - AGDD_10)
+ 0.043 * max(0, GS TMIN - 5) * max(0, 16 - AGDD_10)
- 0.00034 * max(0, 5 - GS TMIN) * max(0, 16 - AGDD_10)
- 0.12 * max(0, MEAN_NDVI - 0.13) * max(0, 16 - AGDD_10)
- 0.0019 * max(0, LAT - 41) * max(0, 16 - AGDD_10)
- 0.00041 * max(0, 41 - LAT) * max(0, 16 - AGDD_10)
+ 0.0036 * max(0, LAT - 42) * max(0, 16 - AGDD_10)
- 0.00024 * max(0, GDDu 2 - 2) * max(0, 16 - AGDD_10)
- 0.00051 * max(0, 2 - GDDu 2) * max(0, 16 - AGDD_10)
- 7.7e-06 * max(0, SRAD 6 - 479) * max(0, 16 - AGDD_10)
- 6.2e-06 * max(0, 479 - SRAD 6) * max(0, 16 - AGDD_10)
- 5.6e-05 * max(0, AGDD_10 - 16) * max(0, 2.4 - PRCP_16)

Table B.4 Importance of entered independent variables in phenoregion four

nsubsets gcv rss
aNDVI 26 100 100

AGDD 10 25 21.3 21.4
GDDu 2 23 11.2 11.3
SRAD 6 21 9.5 9.7

MEAN NDVI 21 9.3 9.4
LAT 18 7.5 7.6

SEASON4 14 5.7 5.9
PRCP 16 13 5.3 5.4
GS TMIN 11 4.6 4.7

PRCP 8 3.6 3.7
GDDu 4 7 3.2 3.4

TMIN 6 2.8 3
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1 aNDVI 2 AGDDJO 3 SEASON 1 aNDVI: MEAN_NDVI

Figure B.4 Geographic relationships in phenoregion four.
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B.5 Phenoregion Five

The phenomodel of phenoregion five has an R2 of 93.53% and standard error of 

0.0174. Table B.5 shows the importance of the independent variables. Figure B.5 

illustrates the relationships between NDVI and independent variables. The mathematical 

equation of the phenomodel in phenoregion five is as follows:

NDVI = 0.21
+ 0.81 * max(0, aNDVI - 0.18)
+ 0.25 * max(0, 0.18 - aNDVI)
+ 2.7 * max(0, MEAN NDVI - 0.13)
- 2.2 * max(0, 0.13 - MEAN NDVI)
- 0.00013 * max(0, MEAN PRCP - 623)
- 3.4e-05 * max(0, 623 - MEAN PRCP)
+ 0.00097 * max(0, LAT - 38)
- 0.0061 * max(0, 38 - LAT)
- 0.00023 * max(0, PRCP 7 - 5.9)
- 0.00067 * max(0, 5.9 - PRCP_7)
+ 0.0043 * max(0, SEASON2 - 0)
- 0.02 * max(0, aNDVI - 0.18) * max(0, MEAN_TMIN - -2)
- 162 * max(0, 0.18 - aNDVI) * max(0, MEAN_NDVI - 0.12)
- 0.00094 * max(0, 0.18 - aNDVI) * max(0, MEAN PRCP - 463)
- 0.003 * max(0, 0.18 - aNDVI) * max(0, 463 - MEAN_PRCP)
- 0.57 * max(0, 0.18 - aNDVI) * max(0, LAT - 41)
- 0.054 * max(0, 0.18 - aNDVI) * max(0, 41 - LAT)
+ 8e-05 * max(0, aNDVI - 0.18) * max(0, AGDD_10 - 52)
+ 0.0011 * max(0, aNDVI - 0.18) * max(0, 52 - AGDD 10)
+ 7.7e-06 * max(0, TMIN - -9.1) * max(0, MEAN_PRCP - 623)
+ 8.2e-06 * max(0, -9.1 - t m i n) * max(0, MEAN PRCP - 623)
+ 2.4e-05 * max(0, MEAN PRCP - 388) * max(0, 38 - LAT)
+ 4.5e-05 * max(0, 388 - MEAN PRCP) * max(0, 38 - LAT)
+ 5.1e-06 * max(0, MEAN_PRCP - 623) * max(0, PRCP 5 - 13)
+ 3.6e-06 * max(0, MEAN_PRCP - 623) * max(0, 13 - PRCP_5)
+ 1.1e-05 * max(0, MEAN_PRCP - 623) * max(0, PRCP_16 - 7.8)
+ 3.3e-06 * max(0, MEAN_PRCP - 623) * max(0, 7.8 - PRCP_16)
+ 3.7e-06 * max(0, LAT - 38) * max(0, AGDD_4 - 97)
+ 7.7e-05 * max(0, LAT - 38) * max(0, 97 - AGDD_4)
+ 4e-04 * max(0, PRCP_2 - 9.3) * max(0, SEASON2 - 0)

B.6 Phenoregion Six

The phenomodel of phenoregion six has an R2 of 97.22% and standard error of 

0.0281. Table B.6 shows the importance of the independent variables included in the 

phenomodel of phenoregion six. Figure B.6 illustrates the relationships between NDVI 

and independent variables in phenoregion six. The mathematical equation of the 

phenomodel in phenoregion six is as follows:
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Table B.5 Importance of entered independent variables in phenoregion five

nsubsets gcv rss
aNDVI 30 100 100

MEAN PRCP 29 15.2 15.3
LAT 28 11.1 11.3

AGDD 4 28 11.1 11.3
MEAN NDVI 27 10.2 10.4
MEAN TMIN 26 9.1 9.2

SEASON2 23 6.4 6.6
TMIN 20 5.2 5.4

AGDD 10 19 4.7 5
PRCP 2 18 4.3 4.6
PRCP 7 16 3.6 3.8

PRCP 16 12 2.6 2.8
PRCP 5 10 2 2.2

1 aNDVI 2 MEAN NDVI 3 MEAN PRCP 4 LAT 0  5 PRCP 7

Figure B.5 Geographic relationships in phenoregion five.
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Table B.6 Importance o f entered independent variables in phenoregion six

nsubsets gcv rss
aNDVI 19 100 100

AGDD 10 17 10.1 10.1
GS_PRCP 16 8.1 8.1

MEAN_NDVI 15 6 6
MEAN_TMAX 14 5.5 5.5

SEASON2 13 5.1 5.1
SRAD_4 12 4.6 4.6
TMIN_3 10 3.4 3.5

GDDu 7 2.2 2.2

1 aNDVI 2 MEAN_NDVI 3 AGDD_10 1 aNDVI: MEAN_NDVI

Figure B.6 Geographic relationships in phenoregion six.
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NDVI =
0.38
+ 0.81 * max(0, aNDVI - 0.38)
- 0.81 * max(0, 0.38 - aNDVI)
+ 0.19 * max(0, -IVDN_NAE 0.13)
- 2.1 * max(0, 0.13 - MEAN NDVI)
- 1.4e-05 * max(0, AGDD 10 - 32)
+ 0.0019 * max(0, 32 - AGDD_10)
- 12 * max(0, 0.38 - aNDVI) * max(0, MEAN_NDVI - 0.13)
+ 0.01 * max(0, aNDVI - 0.38) * max(0, TMIN_3 - 3.9)
+ 0.0086 * max(0, aNDVI - 0.38) * max(0, 3.9 - TMIN 3)
+ 0.00018 * max(0, aNDVI - 0.38) * max(0, AGDD_10 - 150)
+ 0..00077 * max(0, aNDVI - 0.38) * max(0, 150 - AGDD_10)
- 7. 6e-05 * max(0, GDDu - 7.7) * max(0, 32 - AGDD_10)
- 6. 1e-05 * max(0, 7.7 - GDDu) * max(0, 32 - AGDD_10)
- 0.00019 * max(0, MEAN_TMAX - 12) * max(0, 32 - AGDD_10)
+ 1.7 * max(0, MEAN_NDVI - 0.13) * max(0, SEASON2 - 0)
- 1. 9e-05 * max(0, GS PRCP - 48) * max(0, 32 - AGDD_10)
- 5.6e-05 * max(0, 48 - GS PRCP) * max(0, 32 - AGDD_10)
- 1e-05 * max(0, SRAD 4 - 498) * max(0, 32 - AGDD_10)
- 1e-06 * max(0, 498 - SRAD_4) * max(0, 32 - AGDD_10)

B.7 Phenoregion Seven

The phenomodel of phenoregion seven has an R2 of 96.23% and standard error of 

0.0339. Table B.7 shows the importance of the independent variables included in the 

phenomodel of phenoregion seven. Figure B.7 illustrates the relationships between NDVI 

and independent variables in phenoregion seven. The mathematical equation of the 

phenomodel in phenoregion seven is as follows:

NDVI =
0.28
+ 0.9 * max(0, aNDVI - 0.24)
- 0.56 * max(0, 0.24 - aNDVI)
+ 0.00012 * max(0, PRCP - 16)
- 0.00053 * max(0, 16 - PRCP)
+ 0.00055 * max(0, SRAD - 550)
- 0.00012 * max(0, 550 - SRAD)
+ 1.3 * max(0, MEAN NDVI - 0.14)
- 1.4 * max(0, 0.14 - MEAN NDVI)
- 2.8e-05 * max(0, AGDD 10 - 26)
+ 0.002 3 * max(0, 26 - AGDD_10)
- 0.44 * max(0, 0.24 - aNDVI) * max(0, GAP4 - 0)
- 0.00018 * max(0, -1.6 - t m i n) * max(0, 26 - AGDD_10)
- 1.5e-06 * max(0, SRAD - 418) * max(0, AGDD_10 - 26)
+ 3.4e-07 * max(0, 418 - s r a d) * max(0, AGDD_10 - 26)
- 0.001 * max(0, SRAD - 550) * max(0, SEASON2 - 0)
- 0.08 * max(0, MEAN NDVI - 0.13) * max(0, 26 - AGDD_10)
- 0.041 * max(0, 0.13 - MEAN NDVl) * max(0, 26 - AGDD_10)
+ 1.2e-05 * max(0, GS_PRCP - 41) * max(0, 26 - AGDD_10)
- 1e-04 * max(0, 41 - GS PRCP) * max(0, 26 - AGDD_10)
- 0.00014 * max(0, GDDu_2 - 4.9) * max(0, 26 - AGDD_10)
- 1e-04 * max(0, 4.9 - GDDu_2) * max(0, 26 - AGDD_10)
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Table B.7 Importance o f entered independent variables in phenoregion seven

nsubsets gcv rss
aNDVI 21 100 100

AGDD 10 20 15.9 15.9
SRAD 17 7.1 7.2

MEAN_NDVI 17 7.1 7.2
TMIN 16 6.6 6.7

GS_PRCP 15 6.2 6.3
GDDu_2 15 6 6.1

PRCP 13 4.3 4.4
GAP4 12 3.9 4

SEASON2 11 3.4 3.5

Figure B.7 Geographic relationships in phenoregion seven.
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B.8 Phenoregion Eight

The phenomodel of phenoregion eight has an R2 of 95.95% and standard error of 

0.0222. Table B.8 shows the importance of the independent variables. Figure B.8 

illustrates the relationships between NDVI and independent variables. The mathematical

equation of the phenomodel in phenoregion eight is as follows:

NDVI
0.2
+ 0.8 * max(0, aNDVI - 0.18)
- 0.75 * max(0, 0.18 - aNDVI)
+ 0.85 * max(0, -IVDN1NAE 0.12)
- 1.9 * max(0, 0.12 - MEAN NDVl)
+ 0.00011 * max(0, MEAN PRCP - 325)
- 2e-05 * max(0, 325 - MEAN PRCP)
- 0.0088 * max(0, LAT - 42)
- 0.0025 * max(0, 42 - LAT)
+ 0.053 * max(0, aNDVI - 0.18) * max(0, TEMP STD - 12)
+ 0.019 * max(0, aNDVI - 0.18) * max(0, 12 - TEMP_STD)
+ 3.8e-05 * max(0, aNDVI - 0.18) * max(0, AGDD 6 - 65)
+ 0.0017 * max(0, aNDVI - 0.18) * max(0, 65 - AGDD_6)
+ 0.016 * max(0, 0.12 - MEAN NDVl) * max(0, 79 - AGDD_10)
+ 1.4 * max(0, MEAN_NDVI - 0.12) * max(0, SEASON2 - 0)
+ 1.2 * max(0, MEAN_NDVI - 0.12) * max(0, SEASON3 - 0)
- 5e-07 * max(0, MEAN_PRCP - 325) * max(0, AGDD_10 - 0)

B.9 Phenoregion Nine

The phenomodel of phenoregion nine has an R2 of 96.65% and standard error of 

0.0261. Table B.9 shows the importance of the independent variables. Figure B.9 

illustrates the relationships between NDVI and independent variables. The mathematical 

equation of the phenomodel in phenoregion nine is as follows:

NDVI =
0. 24
+ 0.74 * max(0, aNDVI - 0.22)
- 0.76 * max(0, 0.22 - aNDVl)
+ 0.00097 * max(0, 17 - MEAN TMAX)
+ 2.8 * max(0, -IVDN_NAE 0.14)
- 1.6 * max(0, 0.14 - MEAN_NDVl)
- 45 * max(0, 0.22 - aNDVI) * max(0, -IVDN_NAEM 0.13)
+ 0.00014 * max(0, aNDVI - 0.22) * max(0, AGDD 6 - 65)
+ 8e-04 * max(0, aNDVI - 0.22) * max(0, 65 - AGDD_6)
+ 8. 6e-05 * max(0, aNDVI - 0.22) * max(0, AGDDu 10 - 245)
+ 0..00036 * max(0, aNDVI - 0.22) * max(0, 245 - AGDDu_10)
+ 3e-04 * max(0, aNDVI - 0.22) * max(0, PRCP_19 - 4.5)
+ 0.0064 * max(0, aNDVI - 0.22) * max(0, 4.5 - PRCP_19)
+ 0.066 * max(0, aNDVI - 0.22) * max(0, SEASON2 - 0)
+ 8. 2e-05 * max(0, 17 - MEAN TMAX) * max(0, 59 - AGDDu_10)
- 0.38 * max(0, MEAN_NDVI - 0.14) * max(0, TMIN_10 - 6.3)
- 0.15 * max(0, MEAN_NDVI - 0.14) * max(0, 6.3 - TMIN_10)
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Table B.8 Importance o f entered independent variables in phenoregion eight

nsubsets gcv rss
aNDVI 16 100 100

AGDD_6 14 8.5 8.5
MEAN NDVI 13 6.8 6.8
MEAN_PRCP 12 5.5 5.6

SEASON2 11 4.7 4.8
AGDD_10 10 4.6 4.7
SEASON3 10 4.3 4.3

LAT 7 2.7 2.8
TEMP_STD 5 1.6 1.6

Figure B.8 Geographic relationships in phenoregion eight.
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Table B.9 Importance o f entered independent variables in phenoregion nine

nsubsets gcv rss
aNDVI 16 100 100

MEAN_TMAX 14 8.4 8.4
AGDDu_10 14 8.4 8.4

MEAN_NDVI 13 5.6 5.6
SEASON2 11 3.5 3.6
PRCP_19 8 2.3 2.3
TMIN_10 7 1.8 1.8
AGDD_6 5 1.3 1.4

1 aNDVI 2 MEAN TMAX 3 MEAN NDVI 1 aNDVI: MEAN_NDVI

Figure B.9 Geographic relationships in phenoregion nine.
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