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ABSTRACT 

    This thesis is conducted to compare a crash-level severity model with an occupant-

level severity model for single-vehicle crashes on rural, two-lane roads. A multinomial 

logit model is used to identify and quantify the main contributing factors to the severity 

of rural, two-lane highway, single-vehicle crashes including human, roadway, and 

environmental factors.   A comprehensive analysis of 5 years of crashes on rural, two-

lane highways in Illinois with roadway characteristics, vehicle information, and human 

factors will be provided. The modeling results show that lower crash severities are 

associated with wider lane widths, shoulder widths, and edge line widths, and larger 

traffic volumes, alcohol-impaired driving, no restraint use will increase crash severity 

significantly. It is also shown that the impacts of light condition and weather condition 

are counterintuitive but the results are consistent with some previous research. Goodness 

of fit test and IIA (independence of irrelevant alternatives) test are applied to examine the 

appropriateness of the multinomial logit model and to compare the fit of the crash-level 

model with the occupant-level model. It is found that there are consistent modeling 

results between the two models and the prediction of each severity level by crash-level 

model is more accurate than that of the occupant-level model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

    Motor vehicle travel is the primary means of transportation in the United States, 

providing an unprecedented degree of mobility. The National Highway Traffic Safety 

Administration have reported that in the year of 2008, vehicle travel resulted in 5,811,000 

police reported crashes and 37, 261 fatalities on highways, and those who manage to 

survive crashes are faced with such potential consequences as mental trauma, pain, and 

expensive medical costs. The society as a whole is also at a loss, both economically and 

emotionally, because of these incidents. Fortunately, statistical analyses of the likelihood 

of motor vehicle accidents have the ability to predict motor vehicle safety, thus reducing 

injuries or fatalities and mitigating the loss by crashes. Such analyses could help identify 

factors that one can control to keep motor vehicle risks at an acceptable level, thereby 

saving lives, preventing injuries, and making motor vehicle travel a more competitive 

mode of travel. 

    The Highway Safety Manual (HSM) provides analytical tools and techniques for 

quantifying the potential effects on crashes as a result of decisions made in planning, 

design, operations, and maintenance. There is no such thing as absolute safety. There is 

risk in all highway transportation. A universal objective is to reduce the number and 
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severity of crashes within the limits of available resources, science, and technology, 

while meeting legislatively mandated priorities. The information in the HSM is provided 

to assist agencies in their effort to integrate safety into their decision-making processes. 

Most of the research used to develop the HSM relied on accident frequency methods for 

analyzing road safety.   

    The following equations show how the HSM predicts crash frequency:                                                

N
predicted

=N SPF *C r *(AMF r1 * AMF r2 *… AMF r12 )                                                     (1.1) 

N SPF =AADT*L*365*10
6
*e 312.0

                                                                                 (1.2)   

where 

N predicted =predicted average crash frequency for an individual roadway segment for a 

specific year 

N SPF = predicted average crash frequency for an individual roadway segment that has 

base condition 

C r =calibration factor for roadway segments of a specific type developed for a particular 

jurisdiction or geographic area 

AMF r1 …AMF r12 = Accident Modification Factor for rural two-way two-lane roadway 

segments that modify the safety prediction based on how the segment deviates from base 

conditions 

AADT= average annual daily traffic (vehicles per day) 

L=segment length (miles) 
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    The base condition for an individual roadway segment represents geometric design 

features and traffic control conditions that are quantified for some specific values to be 

set as basic. For example, it is base condition when lane width equals 12 feet or the 

roadside hazard rating is 3. 

    Accident Modification Factors (AMFs) represent the relative change in crash 

frequency due to a change in one specific condition (when all other conditions and site 

characteristics remain constant). AMFs are the ratio of the crash frequency of a site under 

two different conditions. Therefore, an AMF may serve as an estimate of the effect of a 

particular geometric design or traffic control feature or the effectiveness of a particular 

treatment or condition. 

    Therefore, in the Highway Safety Manual, the crash frequency is predicted based on 

roadway characteristics; any change in geometric attributes of a roadway can be 

converted to a change of crash frequency. 

    Table 1 shows that the HSM method for estimating accident severity on rural, two-lane 

roads is limited to using default distribution for crash severity level based on California 

data. Crash severity likely varies from place to place, and the distribution of severity in 

California may not represent severity distributions in other places.  The HSM method 

focuses mainly on roadway characteristic factors for predicting crash frequency or crash 

severity. Driver and occupant factors are briefly mentioned in the HSM, but they do not 

play key roles in the safety prediction algorithms.  

    Frequency-based modeling methods (i.e., negative binomial, Poisson regression model) 

are sometimes used to estimate the expected numbers of crashes on road segments for 
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each severity level (e.g., one model for fatal plus injury crashes, one model for total 

crashes) and then the proportion of each severity level can be estimated. 

    The Poisson approach for predicting crash frequency is: 

P(n i )=
!

)exp(

i

i

ni

i

n
                                                                                                         (1.3) 

ii Xexp( )                                                                                                                 (1.4) 

where 

P(n i )= the probability of n accidents occurring on a highway section i over one year time 

period 

i = the expected accident frequency for highway section i 

X i  = a vector of explanatory variable 

= a vector of estimable coefficients 

    The potential limitation of this approach is that this method could introduce estimation 

bias because it assumes the accident frequencies of each severity level are independent 

from each other (Milton et al. 2008). It is reasonable to think that the change in the 

frequency of one accident severity may have some effects on the frequencies of other 

severity levels. 

    There are other limitations with accident frequency-based approaches (the number of 

accidents), or the use of frequency-dominated approaches (the number of accidents with 

consideration to resulting injury severity usually only at the fatality level). Accident 

frequency approaches tend to favor locations where accidents are more likely to occur at 

the expense of some locations that may have fewer but more severe accidents. The 
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frequency-based models used to address crash severity often include aggregating 

different severity levels (e.g., one outcome is PDO, the other outcome is fatal plus injury). 

An injury crash has potential outcomes ranging from possible injury to near death.  

1.2 Classification of Crash Severity 

    Identifying the level of crash severity is an important step to model crash severity. 

There are several ways to classify crash severity. The advantages and disadvantages of 

different classifications are listed below. 

1.2.1 Fatal Plus Injury And No Injury 

    This classification divides crashes into those resulting in any level of injury for fatality, 

and those resulting in property damage only.  This division of severity level is too vague 

because injury has so many forms from possible injury to near death.  

1.2.2 AIS (Abbreviated Injury Scale) 

    AIS classifies injuries by body part, specific lesion, and severity. AIS is on a 6-point 

scale (0-6) and the level is determined by comparing injury diagnosed by a medical 

expert to a defined scale. Usually the AIS level determined soon after an accident is not a 

final outcome because the injuries from other levels may turn out to be death. AIS level is 

based on medical criteria and does not reflect how the same injury will affect different 

individuals. 

1.2.3 MAIS (Maximum Abbreviated Injury Scale) 

    Sometimes people suffer from injuries to more than one body part, so a maximum AIS 

(MAIS) is used to cover different injured regions of the body and reflect the most serious 

injured regions. The advantage of AIS and MAIS is that they are determined by 
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physicians so they tend to be more accurate. However, they need experts to examine the 

injuries and then put the findings into files so it may take a longer time period. 

1.2.4 KABCO 

    The KABCO scale is the most commonly used by the crash reporting officer, and is 

therefore the most readily available scale in databases received from state agencies. 

However, measurement biases are made by police officers. The most serious problem is 

overrating of the severity level by the police officer. The bias in police reported crash 

severities has been explored in Farmer (2003). 

1.3 Research Objectives 

    The objective of this thesis is to explore the relationship between crash severity and 

driver, vehicle, and roadway variables on two-lane rural highways. The data used will be 

from commonly maintained crash and roadway databases from state transportation 

agencies.  However, it is a first step towards a more detailed explanation of crash 

severities that will be conducted during a doctoral thesis. The objective of this thesis will 

be achieved through the following tasks:  

1. Provide a literature review of discrete choice methods used to estimate the 

relationship between crash severity and contributing factors; 

2. Identify and quantify the main contributing factors to the severity of rural, two-lane 

highway, single-vehicle crashes including human, roadway, and environmental 

factors.   A comprehensive analysis of 5 years of crashes on rural, two-lane highways 

in Illinois with roadway characteristics, vehicle information, and human factors will 

be provided. The multinomial logit model will be used to identify factors that are 
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associated with the severity outcomes of single-vehicle crashes. Key assumptions of 

the multinomial logit model will be tested. 

3. Compare a crash-level severity model with an occupant-level severity model for 

single-vehicle crashes on rural, two-lane roads. 
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Table 1 Distribution for Crash Severity on Rural Two-Lane Segments 

Crash severity level Percentage of total roadway segment crashes 

Fatal  1.3 

Incapacitating  5.4 

Nonincapacitating  10.9 

Possible injury  14.5 

Total plus injury 32.1 

Property damage only 67.9 

Total  100 



 

 

 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Multinomial Logit Model 

The multinomial logit model is widely used to estimate accident severity.             

Shankar and Mannering (1996) attempted to address the potential bias that univariate 

analyses creates by presenting a multinomial logit model of motorcycle-rider accident 

severity in single vehicle collisions. They concluded that the multinomial model is a 

promising approach to evaluate the determinants of motorcycle accident severity.    

Savolainen and Mannering (2007) researched a similar topic (motorcyclists’ injury 

severities in single- and multivehicle crashes) using a multinomial logit model for multi-

vehicle crashes. It is concluded that collision type, roadway characteristics, alcohol 

consumption, helmet use, and unsafe speeds play significant roles in crash-injury 

outcomes.                                                                                                                                    

    The injury severity of male and female drivers in single and two-vehicle accidents for 

different types of vehicles was explored by Ulfarsson and Mannering (2004) using a 

multinomial logit model.  The results suggest that there are important behavioral and 

physiological differences between male and female drivers that must be explored further 

and addressed in vehicle and roadway design. 
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Multinomial logit models have been used to explore the differences between urban and 

rural driver injuries in accidents that involve large trucks by Niemeier et al. (2005).  The 

results showed that many variables were found to be significant in either the rural or the 

urban model, but not both because of the different perceptual, cognitive, and response 

demands placed on drivers in rural versus urban areas. 

2.2 Nested Logit Model 

 

    Generalized extreme value (GEV) models constitute a large class of models that 

exhibit a variety of substitution patterns. The unifying attribute of these models is that the 

unobserved portions of utility for all alternatives are jointly distributed as a generalized 

extreme value. This distribution allows for correlations over alternatives and, as its name 

implies, is a generalization of the univariate extreme value distribution that is used for 

standard multinomial logit models described above. When all correlations are zero, the 

GEV distribution becomes the product of independent extreme value distributions and the 

GEV model becomes standard multinomial logit. The class therefore includes logit but 

also includes a variety of other models. 

    Hypothesis tests on the correlations within a GEV model can be used to examine 

whether the correlations are zero, which is equivalent to testing whether standard logit 

provides an accurate representation of the substitution patterns. 

    The most widely used member of the GEV family is called nested logit. This model 

has been applied by many researchers in a variety of situations, including energy, 

transportation, housing, and telecommunications. Its functional form is simple compared 

to other types of GEV models. Nested logit models allow partial relaxation of the IIA 

property. Sometimes different alternatives may share the same unobserved terms.  The 
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nested logit model can overcome the restriction of the MNL model that requires the error 

term for different alternatives, in , to be independent from each other. 

    Shankar et al. (1996) presented a nested logit formulation as a means for determining 

accident severity on rural highways given that an accident has occurred.  They concluded 

that a nested logit model, which accounted for shared unobservables between property 

damage and possible injury accidents, provided the best structural fit for the observed 

distribution of accident severities. 

    Chang and Mannering (1999) studied occupancy/injury severity relationship in truck-

and non-truck-involved accidents using the nested logit model.  The findings of this study 

demonstrated that the nested logit model, which was able to take into account vehicle 

occupancy effects and identify a broad range of factors that influence occupant injury, is 

a promising methodological approach. 

    Holdridge et al. (2005) analyzed the in-service performance of roadside hardware on 

the entire urban State Route system in Washington State by developing multivariate 

nested logit models of injury severity in fixed-object crashes. The models showed the 

contribution of guardrail leading ends toward fatal injuries and also indicated the 

importance of protecting vehicles from crashes with rigid poles and tree stumps. 

2.3 Ordered Logit Model 

 

    Wang and Abdel-Aty (2008) examine left-turn crash injury severity using an ordered 

logit model. This study found that neither the total approach volume, nor the entire 

intersection volume, but rather the specific vehicle movements affected crashed injury 

significantly. 
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2.4 Ordered Probit Model                                                                                    

Duncan et al. (1998) examined the impact of various factors on injuries to passenger 

car occupants involved in truck-passenger car rear-end collisions and demonstrated the 

use of the ordered probit model in the complex highway safety problem.  They concluded 

that the ordered probit model is flexible because it allows the injury severity probabilities 

to vary differently across categories.                                                                                                                                                                                                                                                       

Klop and Khattak (1999) explored the effect of a set of roadway, environmental, and 

crash variables on bicycle injury severity using the ordered probit model. The model 

results showed that variables that significantly increase injury severity include straight 

grades, curved grades, darkness, fog, and speed limit.                                          

Quddus et al. (2002) used an ordered probit model to examine factors that affect the 

injury severity of motorcycle accidents and the severity of damage to the motorcycles and 

vehicles involved in those crashes. They concluded that factors leading to increased 

probability of vehicle and motorcycle damage included some similar factors and different 

factors. 

    Kockelman and Kweon (2002) described the use of ordered probit models to examine 

the risk of different injury levels sustained under all crash types, two-vehicle crashes, and 

single-vehicle crashes.  This work suggested that the manner of collision, number of 

vehicles involved, driver gender, vehicle type, and driver alcohol use played major roles 

in terms of the crash severity. 

Adbel-Aty (2003) analyzed driver injury severity at locations of roadway sections, 

signalized intersections, and toll plazas using the ordered probit model. This study 
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illustrated the similarities and differences in the factors that affect injury severities at 

different locations.                                                                                                          

Donnell and Cornor (1996) use both an ordered logit model and ordered probit model 

to predict the severity of motor vehicle accident injuries. They concluded that occupant 

age, vehicle speed, seat position, blood alcohol level, and type of collision had affected 

the probabilities of serious injury and death. 

2.5 Mixed Logit Model 

    Gkritza and Mannering (2008) demonstrated a mixed logit approach that can be used 

to better understand the use of safety belts in single- and multi-occupant vehicles.  They 

concluded that the mixed logit model can provide a much fuller understanding of the 

interaction of the numerous variables which correlate with safety-belt use. 

    Milton et al. (2008) analyzed the injury-severity distributions of accidents on highway 

segments, and the effect that traffic, highway, and weather characteristics have on these 

distributions using a mixed logit model. Their results showed that the mixed logit model 

has considerable promise as a methodological tool in highway safety programming. 

Pai et al. (2009) estimated mixed logit models to investigate the contributory factors to 

motorists’ right of way violations in different crash types. It was found that motorcycles’ 

right of way was more likely to be violated on non-built-up roads, and in diminished light 

conditions.                                                                                                                                    

    Kim et al. (2010) applied a mixed logit model to analyze pedestrian-injury severity in 

pedestrian-vehicle crashes to address possible unobserved heterogeneity. It was found 

that several factors increased the fatal injury level significantly, including darkness, 

drunk driving, and speeding.  They found that the effect of pedestrian age was normally 



14 

 

distributed across observations, and that as pedestrians became older, the probability of 

fatal injury increased substantially. 

    Eluru et al. (2008) has developed an ordered mixed logit to examine pedestrian and 

bicyclist injury severity in traffic crashes. They concluded that the ordered mixed model 

does not produce inconsistent estimates of the effects of some variables as does the 

ordered probit model. The analysis also suggested that the general pattern and relative 

magnitude of elasticity effects of injury severity determinants are similar for pedestrians 

and bicyclists. 

2.6 Crash-level Model Versus Occupant-level Model Analysis 

    Lenguerrand et al. (2006) use the multilevel logistic model, generalized estimating 

equation and logistic model to estimate the hierarchical structure of road crash data—it is 

believed that correlations of injury severity can be found for drivers and occupants in the 

same car or in the same accident. They  concluded that the MLM is the most efficient 

model while both GEE and LM underestimate parameters and confidence intervals. 

MLM methods divide the crash data into 3 categories—crash level, car level and then 

occupant level so it provides a more precise estimation for the crash data. It is also 

concluded that the Lenguerrand study is in agreement with others studies not taking the 

hierarchical road crash structure into account because in practice, the departures from 

more appropriate and more complex models are minor and the results from the LM model 

is acceptable. One of the main objectives of this paper is to compare a crash-level 

severity model with an occupant-level severity model for single-vehicle crashes on rural, 

two-lane roads. 
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2.7 Summary of Literature Review 

    There are several commonly used discrete choice models for predicting crash severity 

such as the multinomial logit model, nested logit model, ordered probit model, and mixed 

logit model. These approaches have been applied to crash severity analysis by researchers 

on the relationship between crash severity and its contributing factors. Table 2 shows a 

summary of commonly used discrete choice models. Advantages and limitations as well 

as important assumptions of these models are presented. 
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Table 2 Summary of Crash Severity Predicting Models 

Model Type Previous 

Research 

Advantage  Limitation   Assumptions  

Multinomial 

Logit 
Shankar and 

Mannering 

(1996); 

Ulfarsson and 

Mannering 

(2004); 

Niemeier et al. 

(2005); 

Savolainen and 

Mannering 

(2007) 

Readily 

interpretable; 

Allows 

coefficients of 

variables to vary 

between different 

categories 

Susceptible to 

correlation of 

unobserved 

effects from one 

injury severity 

level to the next 

(IIA property); 

Does not 

recognize the 

ordering of 

injury severity 

outcomes 

The error terms 

should be 

independently 

and identically 

distributed 

Nested Logit Shankar et al. 

(1996); Chang 

and Mannering 

(1999); 

Holdridge et al. 

(2005) 

Relaxes IIA 

assumption 

Does not 

recognize the 

ordering of 

injury severity 

outcomes 

The error terms 

should be 

generalized 

extreme value 

distributed 

Ordered Logit Donnell and 

Cornor (1996); 

Wang and 

Abdel-Aty 

(2008) 

Recognizes the 

ordering of injury 

severity 

outcomes 

The shift in 

thresholds are 

restricted to 

move in the 

same direction 

Parallel slope 

assumption 

Ordered Probit Duncan et al. 

(1998); Klop 

and Khattak 

(1999); Quddus 

et al. (2002); 

Kockelman and 

Kweon (2002); 

Adbel-Aty 

(2003) 

Recognizes the 

ordering of injury 

severity 

outcomes 

The shift in 

thresholds are 

restricted to 

move in the 

same direction 

Parallel slope 

assumption; The 

error terms 

should be 

normally 

distributed 

Mixed Logit Eluru et al. 

(2008); Gkritza 

and Mannering 

(2008); Milton 

et al. (2008); Pai 

et al. (2009); 

Kim et al. 

(2010) 

It is highly 

flexible that it 

obviates the 

limitations of 

standard logit 

Does not 

recognize the 

ordering of 

injury severity 

outcomes 

 



 

 

 

 

 

 

CHAPTER 3  

METHODOLOGY 

3.1 Model Selection 

    The multinomial logit model was selected to estimate the relationship between crash 

severity and contributing factors in this masters thesis.  The multinomial logit results in 

choice probabilities that take a closed form and is readily interpretable. Also, the 

multinomial logit model allows the coefficients of variables to vary for different 

categories so that the different impact of variables for each severity category is clearly 

shown.  A full understanding of the multinomial logit is an important transition to my 

doctoral studies. 

3.2 Modeling Approach 

    The logit model was first derived by Luce (1959), and it is the most widely used model 

because of the fact that the choice probabilities take a closed form and is readily 

interpretable.  

    In the multinomial logit model, the probability that accident n will have severity i is 

given by: 

p n (i) =exp( i X n )/ 
I

nI X )exp(

   

                                                                             (3.1)

                                

where 
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p n (i) =the probability that crash n will be in severity level i 

X n = a set of variables that will determine the crash severity  

i  
= a vector of parameters to be estimated 

Utility functions defining the severity likelihoods are defined as: 

S in  
=

 i  X n + in         
                                                                                                    (3.2) 

where  

in  = error terms that account for unobserved variable.  

    The error terms for each choice should follow independent extreme value distributions 

(also called Gumbel or type I extreme value). The key assumption is that the errors are 

independent of each other. This independence means that the unobserved portion of 

utility for one alternative is unrelated to the unobserved portion of utility for another 

alternative. 

    If the researcher thinks that the unobserved portion of utility is correlated over 

alternatives, then there are three options: (1) use a different model that allows for 

correlated errors, such as the nested logit or mixed logit model, (2) respecify the 

representative utility so that the source of the correlation is captured explicitly and thus 

the remaining errors are independent, or (3) use the logit model under the current 

specification of representative utility, considering the model to be an approximation. 

3.3 Goodness-of-Fit Test 

    In logit model, the method used to test how well the model fits the data is Goodness-

of-Fit, which is known as the likelihood ratio index. Stated more precisely, the statistic 
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measures how well the model, with its estimated parameters, performs compared with a 

model in which all the parameters are zero (which is usually equivalent to having no 

model at all).  

The likelihood ratio index is defined as: 

)0(

)(
1

LL

LL

                                                                                                                (3.3) 

 

where 

 

likelihood ratio index 

 

 LL ( ) = the value of the log-likelihood function at the estimated parameters  

 

LL(0) = the value when all the parameters are set equal to zero. 

 

    Values for this goodness of fit value have generally varied from 0.2 to 0.5 for crash 

severity analysis using multinomial logit models estimated by other researchers such as 

Shankar and Mannering (1996), and Ulfarsson and Mannering (2004). 

3.4 IIA Test 

    Whether IIA (independence of irrelevant alternatives) holds is an important issue for 

the application of the multinomial logit model. If IIA holds, the ratio of probabilities for 

any two alternatives is entirely unaffected by the systematic utilities of any other 

alternatives. Tests of IIA were first developed by McFadden et al. (1978). Under IIA, the 

ratio of probabilities for any two alternatives is the same whether or not other alternatives 

are available. As a result, if IIA holds in reality, then the parameter estimates obtained on 

the subset of alternatives will not be significantly different from those obtained on the full 

set of alternatives. A test of the hypothesis that the parameters on the subset are the same 

as the parameters on the full set constitutes a test of IIA (Mcfadden and Hausman 1984). 
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    Denote the following: 

 

a= full set alternatives 

 

b= specified subset of alternatives     

 

b  = estimates from b, an n*r matrix in which n represents number of categories and r 

represents number of parameters in each category  

b  = estimated covariance matrix of b 

 

a  = estimates from a, an n*r matrix that n represents number of categories (consistent 

with b) and r represents number of parameters in each category 

a  = estimated covariance matrix of a 

 

Null hypothesis: the coefficients of variables are equal for full set alternatives and subset 

alternatives. 

The null hypothesis can be tested by: 

( a - b  ) ' ( b - a ) 1 ( a - b  )                                                                                    (3.4) 

    The quadratic has a chi-square distribution with the degrees of freedom equal to the 

number of coefficients estimated in the constrained model. If the null hypothesis is not 

rejected, then the IIA assumptions hold and the multinomial logit model is appropriate. 

Table 3 shows the important variables used in this chapter and their notations. 
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Table 3 Notations of Variables Used in Chapter 3 

variables notations 

p n (i) probability that crash n will be in severity level i 

X n  a set of variables that will determine the crash severity 

i  a vector of parameters to be estimated 

 likelihood ratio index 

LL ( ) the value of the log-likelihood function at the estimated parameters 

LL(0) the value when all the parameters are set equal to zero 

a full set alternatives 

b specified subset of alternatives 

a  estimates from a 

a  estimated covariance matrix of a 

b  estimates from b 

b  estimated covariance matrix of b 

 

 



 

 

 

 

 

 

CHAPTER 4 

CRASH-LEVEL MODEL DATA 

4.1 Description of Data 

    The data used for this study come from the Highway Safety Information System (HSIS) 

for crashes that occurred on rural, two-lane highways in Illinois from 2001 through 2005. 

There are four datasets that can be merged together using linkage variables. The accident 

file has information about crashes including where and when the accident occurred as 

well as the characteristics of the crash.  Details like roadway condition, accident type, 

traffic control condition, and weather are included in the accident file. The road file 

includes basic characteristics of the roadway segment where the accident occurred. 

Information such as lane width, shoulder width, average annual daily traffic (AADT), 

speed limit, and horizontal curvature are included in road file. The vehicle file includes 

vehicle type and the driver characteristics and conditions such as driver age, driver sex, 

physical condition of the drivers, and restraint use of drivers. The occupant file includes 

information about the vehicle occupants involved in the crash other than drivers, 

including occupant age, restraint use, and their seat position when the accident occurred. 

4.1.1 Merging Data 

    The accident file and road file were linked by using the “milepost” and “cntyrte” 

variables.  These variables describe the county, route number, and location along the 
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route where the accident occurred. Only those accidents and segments labeled as 

“rodwycls=8” were selected representing rural, two-lane roads. After road and accident 

files were merged, the occupant and vehicle files were matched to the combined accident 

and road file. The accident file includes information about the most severe injured 

occupant while the vehicle and occupant files includes the severity level experienced by 

the driver and all the occupants. Therefore the dataset was expanded after the occupant 

and vehicle file were merged to the accident and roadlog file.  This merging was done 

using the accident case number. 

    For the accident-level database used for this study, one row represented one accident 

with all the variables associated with that accident. If there were three persons involved 

in the accident, the accident severity was coded as the most severe injury sustained by all 

of the occupants. For the occupant-level database, one row represents one person 

involved in the crash with all the variables associated with that occupant and crash. If 

there were three persons involved in the accident, there were three rows containing 

information concerning the condition of each specific person and the level of injury 

severity that each particular person sustained. 

4.1.2 Variable Definitions and Descriptive Statistics 

    Table 4 shows all the contributing factors used in the severity analyzing model. There 

are 21 independent variables altogether. Roadway characteristics variables include lane 

width, shoulder width, edgeline width, speed limit (whether the speed limit is 55mph or 

less than that), horizontal curvature, and average annual daily traffic. There are three 

types of collisions for single vehicle crashes: animal collisions, fixed-object collisions, 

and rollover collisions.  The animal collisions were set to be the base crash type, with 
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indicator variables included for fixed-object collisions and rollover collisions. Light 

conditions and weather conditions were also important factors potentially influencing 

crash severity. Driver sex, driver age, restraint use of occupants, an indicator for alcohol-

impaired driving, and the numbers of occupants by sex were also included in the models.   

Table 5 shows the summary statistics for all the variables. A total of 9194 observations 

were included in the model. The observations for which “unknown” was recorded were 

excluded from further analysis.                       
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Table 4 Description of Variables Used in the Accident-Level Model 

variables description 

male Number of male occupants other than driver 

Female Number of female occupants other than 

driver 

No_Back_rest Restraint use for back seat occupants 

 (0=yes 1=no) 

No_Front_rest Restraint use for front seat occupants 

 (0=yes 1=no) 

drvage Driver age 

alcohol Alcohol impaired driving (0=no 1=yes) 

drvsex Driver sex (0=female 1=male) 

drvrest Restraint use for driver (0=yes 1=no) 

fixed Fixed object collision (0=no 1=yes) 

rollover Rollover collision (0=no 1=yes) 

daylight Light condition (0=good 1=dark) 

weather Weather condition (0=normal 1=rainy 

2=snowy 3=foggy) 

lanewid Lane width (ft) 

R_shdr_wid Right shoulder width (ft) 

Spd_limt Speed limit indicator (0=speed limit less than 

55mph 1=speed limit equal to 55mph) 

Edg_line_wid Edgeline width (inches) 

horizontal Horizontal curve (0=no 1=yes) 

aadt average annual daily traffic ( 1000 vehicles 

per day) 
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Table 5 Summary Statistics for Variables in the Accident- Level Model 

Variable  Mean  Standard deviation Min  Max  

Male  0.144 0.441 0 5 

Female  0.188 0.513 0 10 

No_Back_rest 0.006 0.075 0 1 

No_Front_rest 0.01 0.098 0 1 

drvage 38.468 16.074 12 96 

alcohol 0.064 0.245 0 1 

drvsex 0.616 0.486 0 1 

drvrest 0.042 0.201 0 1 

animal 0.629 0.483 0 1 

fixed 0.269 0.443 0 1 

rollover 0.102 0.302 0 1 

daylight 0.622 0.485 0 1 

rainy 0.087 0.281 0 1 

snowy 0.06 0.238 0 1 

foggy 0.019 0.137 0 1 

lanewid 11.758 0.733 9 16 

R_shdr_wid 6.446 2.503 0 14 

Spd_limt 0.912 0.283 0 1 

Edg_line_wid 0.129 0.335 0 1 

horizontal 0.078 0.269 0 1 

aadt 3.715 2.351 0.1 25.9 

             



 

 

 

 

 

 

CHAPTER 5   

CRASH-LEVEL MODEL ESTIMATION RESULTS 

5.1 Modeling Results 

    Table 6 shows the magnitude of relative impact of variables on each severity level. The 

coefficients of the estimated model can be interpreted as follows. A positive significant 

coefficient on a variable indicates that the variable is associated with a higher probability 

of being in that group choice relative to the reference group. The implication is that the 

probability of a crash at that level of severity is greater than the probability of placing it 

in the reference group. The negative sign means that the probability of a crash at that 

level of severity is smaller than the probability of placing it in the reference group. For 

example, “3.881” means that compared to animal collision, fixed object collision increase 

the log odds of fatality by 3.881. Of all the variables, number of female occupants, front 

seat occupants restraint use, snow weather fixed object collision, and rollover crash are 

significant. Driver sex and alcohol impaired driving are significant for most severity 

categories. 

5.2 Marginal Effects 

The marginal effects, defined as the derivative of the probability with respect to an 

independent variable, have substantive behavioral meaning, and are provided below to 

explain the role of each parameter. For continuous variables, a marginal effect is the 
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influence a one unit change in an explanatory variable has on the probability of selecting 

a particular outcome. For dummy variables, the marginal effects are the derivative of the 

probability given a change in the dummy variable and thus represent the influence of a 

change in the variable upon the probability of choosing a given outcome. Table 7 shows 

the marginal effects outcomes in the accident-level model. 

5.3 Fit of the Model 

 

    The Goodness of Fit test result is 0.254. 

 

    The expected probability for each severity level is calculated based on the mean level 

of all variables. We can see from Table 8 that although the result of goodness of fit test is 

not very high compared to least squares modeling in more controlled environments, the 

predicted probability for each severity level is very close to the actual condition. The 

predicted result for fatal crashes is not as accurate as the others probably due to the 

relatively small sample size of fatal crashes. 

5.4 IIA Test Results 

An important assumption of the multinomial logit model is that outcome categories for 

the model have the property of independence of irrelevant alternatives (IIA) (described 

above). Stated simply, this assumption requires that the inclusion or exclusion of 

categories does not affect the relative risks associated with the regressors in the 

remaining categories. Hausman test is used to test IIA property.  

If the p-value is greater than 0.05 or chi2 statistic is actually negative, we might 

interpret this result as some evidence that we cannot reject the null hypothesis, that is, the 

IIA assumption holds. Table 9 indicates that for each of the categories being eliminated, 
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the IIA property holds, so the multinomial logit model is good for estimating the 

accident-level model without violating its important assumptions. 
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Table 6 Modeling Results for Accident-Level Model 

 

 Possible Injury Non-

incapacitating 

Incapacitating Fatal 

Variables  Coeffi

cient 

P-

value 

Coeffici

ent 

P-

value 

Coeffici

ent 

P-

value 

Coeffici

ent 

P-

value 

constant -4.225 0.000 -2.447 0.001 -4.898 0.000 -6.771 0.004 

male -0.280 0.140 0.128 0.173 0.200 0.126 0.400 0.141 

Female 0.399 0.000 0.302 0.000 0.260 0.032 0.500 0.050 

No_Back_rest 0.307 0.709 0.051 0.922 1.048 0.047 0.394 0.659 

No_Front_rest 1.668 0.022 1.878 0.000 2.137 0.000 3.091 0.000 

drvage -0.003 0.570 -0.002 0.451 0.010 0.008 0.030 0.001 

alcohol -0.224 0.509 0.932 0.000 1.034 0.000 1.871 0.000 

drvsex -0.458 0.002 -0.413 0.000 -0.242 0.060 0.019 0.953 

drvrest 0.549 0.227 1.755 0.000 2.911 0.000 3.216 0.000 

fixed 1.613 0.000 2.326 0.000 2.539 0.000 3.881 0.000 

rollover 2.646 0.000 3.343 0.000 3.535 0.000 3.766 0.000 

daylight -0.061 0.689 -0.231 0.016 -0.301 0.024 -0.272 0.379 

rainy 0.182 0.409 -0.072 0.616 -0.272 0.202 -0.830 0.179 

snowy -0.441 0.081 -0.764 0.000 -1.207 0.000 -2.327 0.024 

foggy -1.517 0.135 -0.212 0.512 0.280 0.453 -0.070 0.947 

lanewid 0.061 0.511 -0.054 0.344 0.020 0.805 -0.172 0.334 

R_shdr_wid 0.013 0.661 -0.043 0.021 -0.073 0.005 -0.030 0.622 

Spd_limt -0.022 0.931 0.131 0.410 0.266 0.240 -0.224 0.608 

Edg_line_wid -0.169 0.486 0.141 0.320 -0.046 0.826 -0.984 0.124 

horizontal 0.114 0.641 0.219 0.127 0.024 0.903 0.493 0.198 

aadt -0.132 0.000 -0.054 0.006 -0.041 0.126 -0.024 0.673 
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Table 7 Marginal Effects of Independent Variables in the Accident- Level Model 

 

variable No injury Possible 

Injury 

Non-

incapacitating 

Incapacitating Fatal 

male -0.005 -0.007 0.007 0.004 0.0004 

Female -0.030 0.009 0.016 0.005 0.0005 

No_Back_rest -0.044 0.007 0.000 0.037 0.0005 

No_Front_rest -0.337 0.054 0.177 0.092 0.014 

drvage -0.00006 -0.00006 -0.0001 0.0002 0.00003 

alcohol -0.099 -0.007 0.070 0.031 0.005 

drvsex 0.038 -0.010 -0.023 -0.004 0.00007 

drvrest -0.351 0.001 0.138 0.198 0.014 

fixed -0.320 0.037 0.186 0.084 0.013 

rollover -0.609 0.070 0.364 0.164 0.011 

daylight 0.020 -0.0009 -0.012 -0.006 -0.0003 

rainy 0.005 0.005 -0.004 -0.005 -0.0007 

snowy 0.056 -0.008 -0.031 -0.016 -0.001 

foggy 0.021 -0.019 -0.010 0.008 -0.00005 

lanewid 0.001 0.001 -0.003 0.0005 -0.0002 

R_shdr_wid 0.003 0.0004 -0.002 -0.001 -0.00003 

Spd_limt -0.010 -0.0008 0.007 0.005 -0.0003 

Edg_line_wid -0.003 -0.004 0.008 -0.001 -0.0008 

horizontal -0.016 0.002 0.013 0.0001 0.0007 

aadt 0.006 -0.003 -0.003 -0.0007 -0.00002 

 

 

Table 8 Percentage Correct for Accident- Level Model  

 Real  Predicted  %correct 

No injury 81.84% 81.4% 99.46% 

possible 2.65% 2.82% 93.97% 

Nonincapacitating 9.22% 9.83% 93.79% 

Incapacitating  5.21% 5.1% 97.89% 

fatal 1.08% 0.85% 78.7% 

           

 

Table 9 IIA Test Result for Accident- Level Model 

Omitted severity level Chi2 p-value IIA property 

possible -5.8  holds 

nonincapacitating -3.78  holds 

incapacitating 9.9 1 holds 

fatal -2.59  holds 



 

 

 

 

 

 

CHAPTER 6 

 CRASH-LEVEL MODEL INTERPRETATION 

6.1 Interpretation of Impacts of Variables 

    There were 21 variables identified by the crash-level model as contributing to the 

severity. In this part, the analysis conducted to investigate the impact of these factors on 

crash severity and the possible reason why there is such impact is reported. 

    We can see from modeling results that, the more occupants there are in the vehicle, the 

more likely at least one or more of them experience a more severe injury in single vehicle 

crashes. It is probable that when the driver or one occupant is severely injured, the others 

have higher probability to sustain similar level of severity. The results show that male 

drivers suffer less severe injury than female in a single vehicle accident. However, the 

crash is more likely to be fatal if the driver is male. The older the driver is, the higher the 

possibility that the crash is more severe. Although they are experienced and may be more 

careful while driving, once involved in an accident, they tend to more severely injured 

because of more fragile bodies. Undoubtedly, using restraint will decrease the injury 

severity. Figure 1 shows the percentage of drivers, front seat occupants, and back seat 

occupants not using restraint by different levels of accident severity. We can see from 

Figure 1 that with the increase of crash severity, the percentage of occupants not using 
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restraint increases significantly. The percentage of drivers that do not use restraint in fatal 

crashes is about 35% while for PDO it is only 1%. 

    The crash severity decreases when it is dark. This is probably because people pay more 

attention to the road condition in the night and they tend to lower the speed when they are 

driving at night. The result was consistent with Eluru and Bhat (2007) though it was a 

little counterintuitive. It is surprising to see that crash severities are lower in rainy, snowy, 

foggy weather than in normal weather because when it is bad weather, there is shorter 

sight distance and less reaction time. However, drivers may drive more slowly when the 

weather is bad.  In addition, 60% of crashes in bad weather are animal collisions, which 

tend to be less severe. Both fixed object collision and rollover will increase crash severity 

compared to an animal collision. 

    The wider the lane width, shoulder width, and edgeline width, the less severe crash it is. 

The shoulder and edgeline will help mitigate the impact when the car runs off the road 

and hits some fixed object. When there is a horizontal curve, the crash become more 

severe because it will affect steering control and reduce sight distance. With the increase 

of AADT, the crash severity decreases because speeds are slower as volumes increase. 

Figure 2 shows that higher speed limit will increase the probability of nonincapacitating 

injury and incapacitating injury, but decrease the probability of fatal crash, likely due to 

more forgiving designs with higher speed limits. 

Alcohol is one of the most influential factors in determining whether a crash will be 

fatal. Figure 3 shows that male drivers are more likely to be involved in alcohol-related 

crashes for each level of crash severity. The proportion difference for male and female 

drivers involved in alcohol-related crashes for each severity level do not change much 
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except fatal crashes—90% of fatal crashes involving an impaired driver have male 

drivers. It is also shown in Figure 4 that the younger the driver is, the more likely they 

will drive after drinking. The numbers of alcohol-impaired drivers decrease with the 

increase of age. Young drivers who are below 25 have the highest rate of alcohol-

impaired driving and drivers who are below 45 are dominant in alcohol-related driving. 

Figure 5 shows the relationship between alcohol-impaired driving and crash severity. The 

more severe the crash is, the higher percentage of drivers involved in that type of crash 

that are under the influence of alcohol. For fatal crashes, there are 60% that include 

drivers under the influence of alcohol. 
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FIGURE 1 The percentage of not using restraint by different groups of people 
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FIGURE 2 The relationship between speed limit and lane width and shoulder width 

 

 

 

FIGURE 3 Alcohol-impaired driving by sex 
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                                      FIGURE 4 Alcohol-impaired driving by age  

 

 

 

            FIGURE 5 The percentage of alcohol-impaired driving for each severity leve
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CHAPTER 7   

OCCUPANT-LEVEL MODEL DATA 

7.1 Variable Definitions and Descriptive Statistics 

    Table 10 shows all the contributing factors used in the occupant-level model. There are 

18 independent variables altogether. Roadway variables and environmental factors are 

the same as for the accident-based model. For human factors, due to the reason that one 

row represents the condition of one person, occupant sex, occupant age, restraint use of 

occupants, whether it is alcohol-impaired driving, and seat position are included in the 

model. The variables are associated with each individual occupant, unlike the accident-

level models where more general variables had to be developed (e.g., number of male 

occupants). Table 11 shows the summary statistics for all the variables. A total of 12243 

observations were included in the model. The observations for which “unknown” was 

recorded were excluded from further analysis.                       
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Table 10 Description of Variables Used in the Occupant-Level Model 

variables description 

age Age of occupant 

sex occupant sex (0=female 1=male) 

norest Restraint use for occupant (0=yes 1=no) 

alcohol Alcohol impaired driving (0=no 1=yes) 

seatpos Seat position for occupant (0=driver or front 

seat occupant 1=back seat occupant) 

fixed Fixed object collision (0=no 1=yes) 

rollover Rollover collision (0=no 1=yes) 

daylight Light condition (0=good 1=dark) 

weather Weather condition (0=normal 1=rainy 

2=snowy 3=foggy) 

lanewid Lane width (ft) 

R_shdr_wid Right shoulder width (ft) 

Spd_limt Speed limit indicator (0=speed limit less than 

55mph 1=speed limit equal to 55mph) 

Edg_line_wid Edgeline width (inches) 

horizontal Horizontal curve (0=no 1=yes) 

aadt average annual daily traffic ( 1000 vehicles 

per day) 
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Table 11 Summary Statistics for Variables in the Occupant-Level Model 

Variable  Mean  Standard 

deviation 

Min  Max  

age 36.103 17.754 1 96 

sex  0.579 0.494 0 1 

norest 0.048 0.213 0 1 

seatpos 0.098 0.298 0 1 

alcohol 0.072 0.259 0 1 

animal 0.631 0.483 0 1 

fixed 0.269 0.443 0 1 

rollover 0.1 0.3 0 1 

daylight 0.636 0.481 0 1 

rainy 0.088 0.284 0 1 

snowy 0.062 0.242 0 1 

foggy 0.018 0.135 0 1 

lanewid 11.762 0.731 9 16 

R_shdr_wid 6.443 2.509 0 14 

Spd_limt 0.911 0.285 0 1 

Edg_line_wid 0.128 0.334 0 1 

horizontal 0.078 0.268 0 1 

aadt 3.709 2.312 0.1 25.9 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 8 

OCCUPANT-LEVEL MODEL ESTIMATION RESULTS 

8.1 Modeling Results 

    Table 12 shows the magnitude of relative impact of variables on each severity level. 

The coefficients of the estimated model can be interpreted as follows. A positive 

significant coefficient on a variable indicates that the variable is associated with a higher 

probability of being in that group choice relative to the reference group. The implication 

is that the probability of a crash at that level of severity is greater than the probability of 

placing it in the reference group. The negative sign means that the probability of a crash 

at that level of severity is smaller than the probability of placing it in the reference group. 

For example, the coefficient “2.404” indicates that the log odds of fatality increases 2.404 

when driving impaired by alcohol. 

8.2 Marginal Effects 

    The marginal effects, defined as the derivative of the probability with respect to an 

independent variable, have substantive behavioral meaning, and are provided below to 

explain the role of each parameter. We can see from Table 13 that older driver age, no 

restraint use, alcohol-impaired driving, front-seat occupant, fixed object collision and 

rollover collision rather than animal collision, higher speed limit, and horizontal curve are 

more likely to suffer from more severe accident. 
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8.3 Fit of the Model 

    The Goodness of Fit test result is 0.253 and the result is similar to the accident-level 

model. 

    The expected probability for each severity level is calculated based on the mean level 

of all variables. We can see from Table 14 that the predicted probability for each severity 

level is very close to the actual condition for “no injury” to “incapacitating injury.” The 

predicted result for fatal crashes is not as accurate as the others, probably due to the 

relatively small sample size of fatal crashes. The percentage accuracy for the occupant- 

level model is close to that of the accident-level model, but the accident- level model has 

a better prediction for fatal crashes because the predicted severity proportion 

underestimates the fatality rate, and for the accident-level model, it only captures the 

most severe person in an accident, so the prediction for fatality is more appropriate for 

the accident-level model.                  

8.4 IIA Test Results 

    Hausman test is used to test IIA property.  

    If the p-value is greater than 0.05 or chi2 statistic is actually negative, we might 

interpret this result as some evidence that we cannot reject the null hypothesis, that is, the 

IIA assumption holds. Table 15 indicates that for each of the categories that are 

eliminated, the IIA property holds. This means that the multinomial logit model is good 

for estimating the data without violating its important IIA assumption. 
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Table 12 Single Vehicle Crashes Modeling by Occupant-Level Model 

 Possible Injury Non-

incapacitating 

Incapacitating Fatal 

Variables  Coeffici

ent 

 

P-

value 

Coeffici

ent 

 

P-

value 

Coeffici

ent 

 

P-

value 

Coeffici

ent 

 

P-

value 

constant -4.578 0.000 -3.020 0.000 -5.178 0.000 -8.173 0.001 

age -0.0002 0.960 -0.001 0.602 0.011 0.002 0.027 0.008 

Sex -0.672 0.000 -0.432 0.000 -0.373 0.002 -0.063 0.852 

norest 1.144 0.000 1.782 0.000 2.813 0.000 3.658 0.000 

Seatpos  -0.728 0.012 -0.401 0.01 -0.726 0.004 -0.616 0.347 

alcohol -0.217 0.466 0.951 0.000 1.085 0.000 2.404 0.000 

fixed 1.749 0.000 2.282 0.000 2.673 0.000 3.139 0.000 

rollover 2.707 0.000 3.354 0.000 3.647 0.000 3.037 0.000 

daylight -0.046 0.752 -0.212 0.018 -0.197 0.13 -0.519 0.130 

Rainy 0.049 0.816 -0.114 0.398 -0.316 0.126 -1.025 0.168 

snowy -0.545 0.020 -0.727 0.000 -1.207 0.000 -14.387 0.978 

Foggy -1.586 0.117 -0.060 0.837 0.734 0.019 -13.184 0.987 

lanewid 0.106 0.223 -0.054 0.739 0.032 0.676 -0.015 0.937 

R_shdr_wid 0.009 0.736 -0.028 0.104 -0.059 0.019 0.001 0.982 

Spd_limt -0.252 0.258 0.121 0.406 0.275 0.217 0.157 0.780 

Edg_line_wid -0.159 0.492 0.282 0.029 0.095 0.625 -0.411 0.481 

horizontal 0.026 0.912 0.200 0.136 0.189 0.304 0.267 0.519 

aadt -0.138 0.000 -0.047 0.009 -0.081 0.003 -0.184 0.018 
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Table 13 Marginal Effects for Occupant-Level Model 

variable No injury Possible 

Injury 

Non-

incapacitating 

Incapacitating Fatal 

age -0.0001 0.000 -0.00008 0.0002 0.000 

sex 0.041 -0.014 -0.021 -0.006 0.000 

norest -0.317 0.021 0.144 0.146 0.005 

seatpos 0.037 -0.011 -0.017 -0.009 -0.0001 

alcohol -0.09 -0.006 0.068 0.026 0.002 

fixed -0.291 0.040 0.174 0.076 0.002 

rollover -0.591 0.071 0.366 0.152 0.001 

daylight 0.015 -0.0006 -0.011 -0.003 -0.0001 

rainy 0.009 0.001 -0.005 -0.004 -0.0002 

snowy 0.049 -0.008 -0.028 -0.012 -0.0007 

foggy 0.002 -0.017 -0.003 0.018 -0.0003 

lanewid -0.002 0.002 -0.001 0.0005 0.000 

R_shdr_wid 0.002 0.0002 -0.001 -0.0009 0.000 

Spd_limt -0.004 -0.006 0.006 0.004 0.0004 

Edg_line_wid -0.014 -0.003 0.016 0.001 -0.00009 

horizontal -0.014 0.0002 0.011 0.003 0.00007 

aadt 0.006 -0.002 -0.002 -0.001 -0.00005 

 

 

Table 14 Percentage Correct for Occupant-Level Model 

 Real  Predicted  %correct 

No injury 83.38% 82.86% 99.38% 

possible 2.43% 2.64% 92.04% 

Non-incapacitating 8.72% 9.45% 92.27% 

Incapacitating  4.61% 4.44% 96.31% 

fatal 0.85% 0.61% 71.76% 

 

 

Table 15 IIA Result for Occupant-Level Model 

Omitted severity level Chi2 p-value IIA property 

possible Negative value  holds 

Non-incapacitating 1.41 0.7 holds 

incapacitating 2.36 0.98 holds 

fatal -0.15  holds 

 



 

 

 

 

 

 

CHAPTER 9 

 OCCUPANT-LEVEL MODEL INTERPRETATION 

9.1 Interpretation of Impacts of Variables 

    There were 17 variables identified by occupant-level model as contributing to the 

severity. In this part, the analysis conducted to investigate the impact of these factors on 

crash severity and the possible reason why there is such impact is reported. 

    The results show that male occupants suffer less severe injuries than female occupants. 

Compared to the accident-based model, occupant sex has less significant impact on fatal 

crashes than driver sex. Older occupants are more likely to experience more severe 

injuries when involved in a crash. Compared to the accident-level model, occupant age 

does not have as significant impact on fatal crashes as driver age. The drivers and front 

seat occupants (occupants who sit beside the drivers) are more likely to have more severe 

injuries than back seat occupants when there is an accident. We can see from the model 

results that if the drivers drink alcohol, both the drivers and the occupants in the vehicle 

have a higher chance to suffer from more severe injuries when involved in a crash.  

    Undoubtedly, using restraint will decrease the injury severity of any occupant. Figure 6 

shows the percentage of occupants not using restraint for different levels of crash severity. 

We can see from Figure 6 that with an increase of crash severity, the percentage of 
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occupants not using restraint is much higher. For fatal crashes, the percentage of 

occupants that do not use restraint is over 40%, while for PDO it is only around 1%. 

    The injury severity of occupants decreases when it is dark. This is probably because 

people pay more attention to the road when at night and they tend to lower the speed 

when they are driving at night. It is surprising to see that occupants experience less severe 

injuries in rainy, snowy, foggy weather than normal weather because when it is bad 

weather, there is shorter sight distance and less reaction time. However, drivers may drive 

slower in bad weather and 60% of bad weather crashes are animal collisions which tend 

to be less severe. Both fixed object collision and rollover will increase the injury severity 

of occupants compared to occupants involved in animal collisions. 

There is not a consistent modeling result for the impact of lane width in the occupant-

based model. The widening of the lane width increase the chance of an incapacitating 

injury while at the same time has insignificant negative impact on the chance of a fatality. 

The wider the shoulder width is, the less severe the occupant injury is. The shoulder will 

help mitigate the impact when the car runs off the road and hits some fixed object.  The 

impact of edgeline is a little inconsistent for the occupant-level model. Compared to the 

previous model result, the occupant-based modeling shows that the widening of edgeline 

width will help to decrease fatal outcomes but increase the possibility of incapacitating 

injuries while the accident-level model shows that the widening of edgeline width will 

help to decrease both. The modeling results also show that higher speed limit will 

increase the probability of non-incapacitating injury, incapacitating injury, and fatality to 

the vehicle occupants. When there is horizontal curve, the injury becomes more severe 

for occupants because it will affect steering control and reduce sight distance. With the 
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increase of AADT, the crash severity decreases because speeds tend to decrease when 

volumes increase.         
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                 FIGURE 6 The percentage of not using restraint for each severity category 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

    This study examined the effect of roadway, environmental, and human factors on 

injury severity in single vehicle collisions. A multinomial logit model for injury severity 

was estimated using the HSIS data set for rural, two-lane roadways. An accident-based 

model and an occupant-based model were estimated to provide different perspectives of 

crash analysis. The model parameters and the marginal effects of variables were used to 

examine the influence of roadway and crash characteristics on injury severity. 

Although the magnitudes of impacts of independent variables on injury level changes 

slightly between the two models, there was consistent modeling results related to the 

impact of independent variables on severity level, probably due to the fact that large 

proportions of vehicles (77.45%) are single-occupant (only driver is included) so it is not 

a big difference whether it is an accident-level model or occupant-level model. 

    For roadway characteristics and environmental factors, lower crash severities are 

associated with wider lane widths, shoulder widths, and edge line widths, and larger 

traffic volumes. Crashes that occurred in darkness, or on rainy, snowy, and foggy days 

tended to be less severe than crashes occurred in clear, daylight conditions.  Crashes 

occurring on horizontal curves, and on road segments with lower than a 55 mph speed 
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limit were more severe.  Fixed object collisions and rollover collisions were more severe 

than animal collisions. For human factors in the occupant-based model, older occupants, 

female occupants, an alcohol-impaired driver, and occupants not using restraint or 

improperly using restraint suffered from more severe injuries. The driver and front seat 

occupants were more likely to sustain more severe injuries than back seat occupants. The 

accident-based model shows similar results, but it indicates that males are more likely to 

be involved in fatal crashes because they are more likely to drive while impaired. It also 

shows that the more occupants there are in the vehicle, the more severe the crash is likely 

to be. 

    The modeling results show that alcohol-impaired driving and no restraint use have 

significant impacts on crash severity in the directions expected. More strict restrictions or 

policies that help to reduce the incidence of driving under the influence of alcohol and 

not using restraint should be an effective way to reduce crash severity. Also, providing or 

widening shoulder and edgeline would also help to mitigate the impact when the car runs 

off the road and hits some fixed object and further decrease the possibility of having 

more severe crashes. 

Some of the findings were counterintuitive, such as those associated with the light 

condition and weather condition. It is probably because people tend to be more careful 

when driving in bad environmental conditions and due to the fact that over 60% of the 

crashes are animal collisions, which are usually less severe than fixed object or rollover 

collisions. So countermeasures based on these findings—such as providing warning signs 

in rainy or foggy days and street lights where it is too dark to have enough sight distance 

to enhance visibility—should be examined more deeply.  



51 

 

Goodness of fit test and the comparison of predicted distribution of severity with actual 

distribution of severity were used to assess the model fit. The goodness of fit test shows 

two models perform equivalent, and the accident-based model estimates the distribution 

of severity more accurately than the occupant-level model. 

10.2 Recommendations 

    The methodological approach demonstrated for severity analysis needs to be applied to 

larger and more detailed databases, resulting in more precise safety insights to factors 

affecting crash severity. Also, the crash related data used were collected from police 

accident reports. The severity level is recorded according to the police officer judgments 

rather than using actual medical records so it may cause some statistical biases. And for 

some environmental factors, previous studies (Shinar et al. 1983) have shown the records 

of police officers to be unreliable (e.g., how to tell if it is a foggy day or how to 

distinguish rainy day from snowy day). The existence of missing data would also 

decrease the accuracy of the modeling results. The use of more professional records (e.g., 

records from medical experts for severity level) would permit an improvement of any 

potential biases that may result from using police officer judgments that are commonly 

available in national accident databases. 
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