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ABSTRACT

Fluid production from tight and shale gas formations has increased signicantly, and this

unconventional portfolio of low-permeability reservoirs accounts for more than half of the

gas produced in the United States. Stimulation and hydraulic fracturing are critical in

making these systems productive, and hence it is important to understand the mechanics

of the reservoir. When modeling fractured reservoirs using discrete-fracture network repre-

sentation, the geomechanical effects are expected to have a signicant impact on important

reservoir characteristics. It has become more accepted that fracture growth, particularly

in naturally fractured reservoirs with extremely low permeability, cannot be reliably rep-

resented by conventional planar representations. Characterizing the evolution of multiple,

nonplanar, interconnected and possibly nonvertical hydraulic fractures requires hydraulic

and mechanical characterization of the matrix, as well as existing latent or healed fracture

networks. To solve these challenging problems, a reservoir simulator (Advanced Reactive

Transport Simulator (ARTS)) capable of performing unconventional reservoir simulation is

developed in this research work. A geomechanical model has been incorporated into the

simulation framework with various coupling schemes and this model is used to understand

the geomechanical effects in unconventional oil and gas recovery. This development allows

ARTS to accept geomechanical information from external geomechanical simulators (soft

coupling) or the solution of the geomechanical coupled problem (hard coupling). An iterative

solution method of the flow and geomechanical equations has been used in implementing the

hard coupling scheme. The hard coupling schemes were verified using one-dimensional and

two-dimensional analytical solutions. The new reservoir simulator is applied to learn the

influence of geomechanical impact on unconventional oil and gas production in a number of

practical recovery scenarios. A commercial simulator called 3DEC was the geomechanical

simulator used in soft coupling. In a naturally fractured reservoir, considering geomechanics

may lead to an increase or decrease in production depending on the relationship between

the reservoir petrophysical properties and mechanics. Combining geomechanics and flow in

multiphase flow settings showed that production decrease could be caused by a combination



of fracture contraction and water blockage. The concept of geomechanical coupling was

illustrated with a complex naturally fractured system containing 44 fractures. Development

of the generalized framework, being able to study multiphase flow reservoir processes with

coupled geomechanics, and understanding of complex phenomena such as water blocks are

the major outcomes from this research. These new tools will help in creating strategies for

efficient and sustainable production of fluids from unconventional resources.
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Ĥp Molar enthalpy of phase p
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CHAPTER 1

INTRODUCTION

Unconventional resources provide a significant amount of oil and gas in North America.

In 2007, almost half of the natural gas production was contributed by unconventional

resources [1]. In the annual energy review of 2010 [2], unconventional gas resources were

predicted to be almost 60% of the total proved reserves. Unconventional oil and gas resources

are those that are extracted by new technologies. These unconventional resources include oil

shale, tight gas, shale gas and coal bed methane, and their extractions typically incorporate

either hydraulic fracturing, thermal processing, or a combination of these and other methods

[3]. Unconventional oil and gas reservoirs behave differently than conventional ones, and

the production schemes are still not clearly understood. All these differences make it hard

to learn and predict the reservoir behavior using conventional methods.

Reservoir simulation has proven to be a promising tool to learn about oil and gas reservoir

behaviors, but it is difficult to simulate the behavior of unconventional reservoirs in an

accurate manner as several physical models like geomechanics are not properly integrated.

Geomechanics has proven to be important in the recovery process of unconventional oil and

gas, as the permeability and porosity change significantly during this process. In order to

accurately simulate unconventional oil and gas recovery processes, a geomechanical model

is needed in the conventional reservoir simulator. For instance, in the hydraulic fracturing

process (Figure 1.1), new fractures are created and the geomechanical properties in the

reservoir, such as in situ stress and deformation, are considered to vary when compared

to the original [4]. In this case, it is difficult to simulate this process as the reservoir rock

media is assumed to be static. A geomechanical model must be incorporated to simulate the

dynamic behavior of the reservoir induced by hydraulic fracturing. Another example is the

thermal process. The reservoir has considerable deformation because of the heating in the

thermal process such as field heating or steam injection. In general, the reservoir property

changes induced by the geomechanical effects have impact on production and recovery.
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Producing
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and Sand
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Figure 1.1: Typical hydraulic fracturing process

1.1 Unconventional Reservoir Simulation

As a result of the significance of unconventional oil and gas, several adaptations of

conventional reservoir simulation are introduced to learn the behavior of unconventional

reservoirs. For example thermal components have been integrated to simulate the thermal

process in developing Canadian oil sand. Other components like reactive transport and

geomechanics also need to be integrated to simulate recovery processes. Among all the

adaptations, the integration of geomechanics with conventional reservoir simulator is the

most important. With the help of geomechanics, many oil field physical phenomena such

as compaction [5], subsidence, wellbore failure, and sand production can be explained.

Therefore, the most important consideration in unconventional reservoir simulation is the

integration of geomechanics.

1.1.1 Commercial and Research Simulators

The integration of geomechanics with reservoir simulation is generally referred to as the

coupling of a geomechanical model. Conventional reservoir simulators normally do not incor-

porate deformation and stress changes in response to pressure, saturation and temperature

changes, but instead assume that the mechanical properties do not change. The properties

related to geomechanics like porosity are solely computed from rock compressibility and this

is not accurate. A variety of methodologies have been introduced to take geomechanics into

account. Several commercial and research reservoir simulators have been integrated with

geomechanics in recent years. For Instance, ECLIPSE (a commercial reservoir simulator

from Schlumberger) [6] has a geomechanical model coupled with a thermal module E300,
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STARS [7] (a commercial thermal reservoir simulator from Computer Modeling Group) has

integrated a thermal stress model.

Other reservoir simulators developed for research purposes are also in development to add

geomechanical models in their frameworks. For example, GPRS (General Purpose Reservoir

Simulator) [8] developed at Stanford University and IPARS (Integrated Parallel Accurate

Reservoir Simulator) [9, 10, 11] at the University of Texas are integrating geomechanical

models in the existing frameworks to learn the geomechanical effects on oil and gas recovery

[12].

However, introducing geomechanical models in the conventional reservoir simulator has

several limitations. The geomechanical model is typically a finite element model for the

calculation of the displacement vector, while the reservoir simulation model is finite differ-

ence based. There may be some conflicts between these two discretization methods, and the

computational time increases considerably. In the worst scenario, the reservoir simulator

may become unstable and the result may not reflect the reality. Research and further

development are still going on into integrating geomechanics in those simulators mentioned

above, while more sophisticated techniques have been applied to make the unconventional

reservoir simulator stable and accurate [13, 14].

1.1.2 Difficulties in Unconventional Reservoir Simulation

Geomechanical models are governed by a vector field equation set which is solved using

the finite element method. Conventional reservoir models like the black oil model and

thermal model, however, are governed by balance equations of scalar fields. In order to

couple these two models, different schemes can be applied such as a soft coupling scheme

and a hard coupling scheme. In the soft coupling approach the geomechanical problems

are solved externally and the input data are generated to modify the physical properties

in the conventional reservoir simulator. In contrast, hard coupling approaches solve the

geomechanical problems inside the reconstructed reservoir simulator, and the solution of the

two problems is simultaneous or separate. Several different variations of the hard coupling

scheme can be applied to achieve optimization in respect to computational efficiency and

accuracy. Different coupling schemes have been described previously [15, 16].

Coupling geomechanics with fractured systems is even more difficult. Fractures (natural

or hydraulic) are thought to be the primary production pathway in the low permeability

and porosity formations like shale [17]. Hence, the key component of a geomechanical

coupling method is the fracture modeling method. In the conventional reservoir simulator,



4

the fractured reservoirs are usually modeled using single-porosity, dual-porosity or discrete

fractured network representations. The integration of geomechanics with single and dual

porosity fracture models has been introduced by several researches [18, 19]. It is hard,

however, to model a reservoir with complex fracture networks with these approaches. The

discrete fracture network method has the advantage to represent complex fracture geometry

and networks, and it can be integrated with geomechanical models. This methodology may

be the ideal solution to simulate a reservoir with a complex fracture network [20, 21].

As the complexity of the system increases dramatically with more models integrated in

the unconventional reservoir simulation. The running speed is a big bottleneck in practical

simulations. So, finding the balance of the running speed, accuracy and adaptability is a

challenge. In previous studies, different models and coupling methods have been applied

to overcome this problem [22, 23, 24]. Coupling geomechanics in reservoir simulators

is becoming more important in the oil and gas industry, especially after the shale gas

boom in North America. However, it is difficult to model the geomechanics in traditional

reservoir simulation. Adding a geomechanical model in the traditional reservoir simulation

dramatically increases the complexity of the system. Building a reservoir simulator with

geomechanical functionality is a complex task. Two important tasks among all the tasks

required to integrate geomehcanics are overcoming the difficulties due to the use of different

discretization methods and improving the computational efficiency.

The method of combining DFN with geomechanics is unique. It gives us an opportunity

to model real work complex systems. The integrated simulator will be capable of carrying

out simulations to learn the dynamic behavior of the reservoir system, which is another

significant advantage compared to conventional simulators.

1.2 Geomechanics

The record of observations related to geomechanics dates back to A.D. 77, when two

men noticed that the level of water in a well corresponded to the ocean tides and then

recorded this in a book [25]. Starting from 1900, more phenomena related to geomechanics

were recorded by scientists through the observation of water level change in wells and

other underground facilities [26]. Since then, the research of geomechanics progressed

slowly. Since the petroleum exploration and production boom in the early 20th Century,

more observations have been noticed in the oil and gas reservoirs which are related to

geomechanics. For example, an oil field in Texas was reported to sink into the sea after oil

production in the early 20th century [27]. Starting from 1920s, the research of the physical
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theory behind all these observations was developed with the contribution of Biot and other

scientists.

1.2.1 Theoretical Background

The theory of geomechanics was first introduced by Karl Terzaghi (1883-1963) through

a series of lab experiments [28]. In these experiments, a fully saturated soil sample was

confined laterally in a cylinder with a constant load. This theory can be described by the

following equation:

∂pter

∂t
= c

∂2pter

∂z2
ter

(1.1)

where c is a diffusivity known as the consolidation coefficient, t is the time, pter is the fluid

pressure and zter is the distance along the soil column in the experiment. Terzaghi [29] also

defined the concept of effective stress, which has influenced ongoing research today. The

effective stress law describes the relationship between pore pressure and the total stress σ:

σi,j = σ
′
i,j ± δi,jp (1.2)

where σ
′
is the effective stress contributed by the solid. The use of + or − in the equation is

dependent on how to define the positive stress direction. If compressible stress is defined as

positive, then + should be used. Later, the effective stress laws were modified by introducing

a coefficient α [30, 31] in equation 1.2:

σi,j = σ
′
i,j ± αδi,jp (1.3)

where the coefficient α is the Biot parameter, and it can be calculated by:

α = 1 − Kb

Kg

(1.4)

The value of α is between 0 and 1. 0 which represents rocks which are without interconnected

pores, and 1 represents highly porous and compliant rocks. The physical meanings of each

term in equation 3.3 can be illustrated by Figure 1.2.
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Figure 1.2: Illustration of effective stress law

Biot (1941) developed a theoretical governing equation system for the 3-D consolidation

[32]. This model is considered to be the basis of computational geomechanics and this Biot

3-D consolidation model describes the soil consolidation with pore pressure change. Biot

coefficient and effective stress was formally introduced in this research. This consolidation

theory was later expanded to model the dynamic behavior of the soil [33]. Then, some other

theories were developed for modeling fluid flow in the soil, based on Biot theory [34]. In

order to deal with more complex problems, incremental forms of the Biot equation have

been developed [35]. The original Biot theory has also been further developed by modifying

some of his original assumptions [36].

Zienkiewicz summarized some of the research work on geomechanics and pointed out a

possible numerical solution method to the dynamic problem [35]. Several other papers also

introduced analytical solutions to the Biot equation. However these are extensions of the

original analytical solution given by Biot, and are applicable only in limited scenarios [37].

But, with the development in Finite Element Method (FEM) and computer science, more

research has been done on the numerical solution of geomechanical problems.
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1.2.2 Numerical Method

Solving mechanical problems with FEM has proven to be successful in various applica-

tions and provided the basis for solving geomechanics problems numerically. The original

geomechanical governing equation can be expressed in the variational formulation, and

discrete formulation can be developed based on the FEM method. Finally, the system

can be solved numerical with specific nonlinear and linear solvers. The advantage of this

method is that the result is guaranteed to be the exact solution, because the variational

formulation is mathematically identical to the original equation. Furthermore, a number

of established numerical methods and codes in classical mechanical computations can be

applied to geomechanics with little modification.

In order to develop the discrete formulation of the variational formulation, various

methods can be applied. The Galerkin method and Least Squares(LS) method are the most

common methods applied [28]. Most solid mechanics simulators prefer the Galerkin method

for simplicity. Generally speaking, the FEM method is the best for solving geomechanical

problems numerically. Several algorithms have been reported for the stabilization of the

system and for improving the accuracy of the computation [38].

Some hybrid methods have been developed to solve geomechanics problems numerically

to improve the speed of computation [39]. For example, the combination of FEM and

DEM (Discrete Element Method) has been applied in flood induced landslide simulation.

Particle models were also introduced to solve specific geomechanical problems such as rock

failure. All these methods introduced above are computationally expensive. FLAC and

3DEC are two popular numerical codes for solving dynamic geomechanical problems. The

basic methodology is DEM in both software, but the computational time is still considered

to be long and the flow model coupled with the geomechanics is too simple to model the

fluid flow in the reservoir [40]. Some research also introduced BEM (Boundary Element

Method) in geomechanics. This method is more complicated to implement than others, and

is only applied in limited scenarios.

The numerical methods for solving geomechanical problems are well established. FEM is

the most common method, but is computationally challenging for dynamic problems, hence

a more sophisticated method is necessary for coupling the dynamic geomechanics and flow

model.
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1.2.3 Constitutive Relationships

The constitutive relationships are used to describe deformation behaviors of the material

during loading. Elastic, poroelastic and thermoporoelastic models are three major categories

of geomechanical constitutive relationships which are widely used in reservoir simulations.

The behavior of a material under load is complicated based on observations, but all the

constitutive laws mentioned above are just some simplifications of reality and they can be

expressed in linear or nonlinear mathematical formulations depending on the requirement

of the practical application.

Figure 1.3 shows how to simplify a stress strain relationship. The point A in Figure

1.3(A) is the elastic limit of the material. Meaning that, the material behaves linearly

before this point and the deformation is reversible. The point B is the yield point; the

material behaves nonlinearly in the region between A and B. If the stress is unloaded, the

deformation is nonreversible. In the reservoir simulation, the stress strain relationship can be

simplified to linear, which is shown in Figure 1.3(B). It is also called the ideal elastic-plastic

constitutive relationship. Although a linear relationship is convenient for simulation, lab

experiments show that the soil never behaves linearly even in the elastic region [41]. Hence,

it is important to apply the appropriate stress strain relationship to gain accuracy and

efficiency. In practical unconventional reservoir simulations, the linear poroelastic model is

widely applied. This model is simple but reflects the mechanical change due to pore pressure

depletion. Thermoporoelastic models are more complex due to the combined effects of

pressure and temperature. A large variety of constitutive relationships, which are available

in the literature, based either on theory or on experimental data, can also be applied in

unconventional reservoir simulation, but linear relationships are most common[42].

Another important task in applying stress constitutive relationships is to decide when

the material behaves plastically, and failure criteria is used to accomplished this. In Figure

1.3, if stress loads are continuously applied to the material after point B, the material will

eventual collapse or form fractures. This phenomenon is important in recovering oil and gas

from ultra low permeability and porosity reservoirs, such as the created fractures (natural

fractures) may be the primary flow path for the production. Furthermore, this is also

important in some thermal recovery processes like SAGD (Steam Assist Gravity Drainage)

as the material failure may cause the crash of the productive steam chamber. In order to

avoid the damage caused by rock failure, several failure functions are applied. There are

generally four kinds of classical failure functions:
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Figure 1.3: Typical stress strain relationships (A) lab experiment (B) simulator used)

1. Mohr Coulomb criterion

2. Tresca criterion

3. Von Mises criterion

4. Drucker-Prager criterion

1.3 Geomechanics in Reservoir Simulation

Since the discovery of geomechanical effect in the oil reservoir, simulation techniques

have been used to prevent geomechanical disasters and predict the reservoir behavior.

In modern reservoir simulations, geomechanics is the key component in simulating the

unconventional reservoirs like shale gas and tight gas reservoirs. However, to include

geomechanics in reservoir simulation is a difficult task and it requires a variety of advanced

physical, mathematical and computational methods.

1.3.1 Field Examples

In the real reservoir system, oil, water and natural gas all exist in the pore space

and fractures. Rock compaction occurs as oil and gas are produced. The magnitude of

compaction depends on the geomechanical properties and the fluid flow in the reservoir.

Under certain circumstances, reservoir subsidence can dramatically affect production and

even safety. Consideration of geomechanics became important due to several high profile

subsidence incidences.

Ekofisk is a large oil field where geomechanics has played an important role. The Ekofisk

field is located in the North Sea off the coast of Norway. The total area of the North-

South anticline reservoir is about 12,000 acres [43]. The chalky limestone Ekofisk and Tor

formations are the producing horizons of the field. There is an extensive natural fracture
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system in the field, and these fractures form the primary conductive path for production

and injection. Water depth is about 235 ft (72 m) and the production rate was about

349,000 barrels/day in 1976. Seabed subsidence was first reported in 1984, with the total

subsidence at about 14 ft (4.3 m) in 1989 [44]. Subsidence is also accompanied by lateral

movement of the seabed towards the center of the subsidence bowl [45]. Possible reasons

for subsidence have been investigated. The subsidence was believed to be related to the

reservoir pressure depletion alone. However, after more observations and data collection

from the production after water injection, some researchers suggested that the compaction

indicated a weakening of the chalk material in contact with nonequilibrium sea water [44].

Research on 3-D finite element model to demonstrate the impact of compaction on the oil

production has subsequently been performed [46].

Other field examples include the Wilmington field in California [47], Vahall field in

the North Sea [48] and the South Belridge field in California [49]. All these fields had

compaction and subsidence related problems with reservoir management. Research showed

that the numerical modeling of geomechanics could provide guidance for reservoir manage-

ment. Laboratory studies have confirmed the findings of numerical simulations. Table 1.1

summarizes some of the famous field examples of geomechanical influence.

1.3.2 Compressibility Modification

In order to solve the geomechanical problems in the field, one simplified solution was

introduced in the conventional reservoir simulation. This solution was to model the change

of porosity by using the pore compressibility concept. The fluid compressibility and the

Table 1.1: Some field examples of subsidence

Name of the field Location
Venice field Venice, Italy
Ekofisk field North Sea, Norway

Valhall field North Sea, Norway

Wilmington field Long Beach, California, U.S.A

South Belridge field Kern County, California, U.S.A

Bolivar field Lake Maracaibo, Venezuela

Latrobe Valley field Victoria, Australia

Wairakei field Wairakei, New Zealand
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pore volume compressibility [50] can be defined as:

Cf =
1

ρ
(
∂ρ

∂p
)T (1.5)

Cp =
1

φ
(
∂φ

∂p
)T

where φ is the porosity of the reservoir, and when integrated the equation 1.5 by assuming

the compressibility is fairly small:

φ = φ0(1 + Cp(p − p0)) (1.6)

where ϕ0 is the reference porosity, and ϕ is the porosity used in the reservoir simulation. The

term Cp (or Cr [51] in some legacy books for reservoir simulations) refers to rock compress-

ibility. Based on equation 1.6, the porosity will change linearly during the production as the

pressure changes in the reservoir. But the equation 1.6 cannot address the geomechanical

accurately when it is applied to the stress sensitive reservoir where the rock properties

changes dramatically with stress evolution. In reality, the rock compressibility concept can

not adequately represent the mechanical property changes of rock, this is partially because

the deformation of rock may be nonlinear depending on the pore pressure as stress changes

and failure happens [52]. In addition, the parameter Cp is not easy to obtain through the lab

experiment. A better method to incorporate geomechanical effect in the reservoir simulation

is needed to address the problem accurately, not just with a simplified assumption.

1.3.3 Geomechanical Coupling

Geomechanical coupling is introduced to accurately model the rock property change due

to the geomechanical effect. One of the first researches done on geomechanical coupling was

a 3-D finite element model reported by Lin and Prevost [46]. Other extensive efforts have

also been reported [53]. The basis of coupling geomechanics is the Biot consolidation model,

but several modifications have been introduced. The most important part of coupling ge-

omechanics is the coupling scheme. One-way, two-way, interactive, fully and other coupling

schemes have been discussed. These different coupling schemes differ in the way in which

the geomechanical problem with flow is solved. The geomechanical model is introduced first

before the literature review of the various coupling schemes.
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The governing equation for geomechanics in reservoir simulation is based on the 3-D

consolidation theory. It shows the force balance of the stress field and pore pressure field in

the reservoir:

∇ · σ + ρr
�b = 0 (1.7)

where σ is the stress tensor and is assumed to be symmetric. Various models can be

used to calculate the in-situ stress based on the characteristics of the reservoir system.

The governing equation reflects the equilibrium between the stress field and the pore

pressure field in the reservoir. In addition to the geomechanical governing equation, a

set of conventional material balance equations will need to be solved. Several methods have

been used to couple geomechanical models with reservoir models, and Figure 1.4 illustrates

how different coupling schemes work.

In the one way coupling scheme, the geomechanical model is solved separately and the

reservoir properties are updated from time to time. As the term indicates, information

is transformed only in one direction: geomechanical model to flow simulation. Two way

coupling is an extension of this concept and the data from the flow portion of the model is

also used to update the geomechanical implementation. Data exchange and frequency are

the considerations in making one way and two way coupling schemes work. Convergence and

numerical stability are issues that these coupling schemes must deal with, and the iterative

coupling scheme addresses some of these. The results from these models may not be accurate

and some kind of simultaneous (geomechanics and flow) modeling may be necessary.

Figure 1.4: Different methods of coupling the geomechanical model in reservoir simulation
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Fully coupled schemes are used to solve the geomechanical and flow problems simulta-

neously. The advantage of the fully coupled approach is the accuracy of the solution, but

the computation complexity is significant. Matrix free algorithms have been introduced to

address some of these issues [54]. The choice of the coupling schemes would depend on the

required accuracy and available computation time.

In summary, adaptability, computational effort and accuracy are the three aspects of

coupling a geomechanical model with reservoir simulations. Different coupling schemes and

models have different characteristics with respect to these three aspects. For example, a

model or coupling scheme that has good adaptability and computational speed may not

have the accuracy desired. There is a trade-off between these three aspects. In the practical

application, different schemes may be used based on the requirement of the project, but a

coupling scheme which has reasonably good properties in all three aspects is always needed

in the reservoir simulation for real oil and gas fields. Figure 1.5 represents the three aspects

as the corner of a triangle, and the different coupling schemes can be fit inside the triangle

to reflect the advantages and disadvantages.

1.3.4 Numerical Modeling

The numerical modeling of geomechanics in reservoir simulation follows the idea of

traditional geomechanical modeling. FEM is still the default discretization method, and

this is a major challenge for integrating reservoir simulation and geomechanics. In order to

solve the geomechanical problems in a stable and accurate manner, several algorithms have

been introduced in traditional reservoir simulation.

Mixed finite element was introduced in a research code at Stanford [55] to make the

Figure 1.5: Triangle of aspects of coupling geomechanics in reservoir simulation
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coupling more stable numerically. This mixed finite element formulation was first applied

to Darcy flow problems to stabilize the finite element formulation and reduce the mesh

dependence [56]. A mixed finite element formulation was also developed for black oil

reservoir simulation [38]. Recently, a stabilization term was introduced in the discrete

geomechanical governing equation to obtain fast convergence and stability [57]. Both mixed

finite element and stabilization terms are targeted to solve the instability and oscillation

caused by LBB (Ladyshenskaya, Babuska, Brezzi [55]) condition. However, the application

of these two algorithms may increase the computational time of geomechanical simulation

significantly and make it difficult for implementation.

Another numerical problem for modeling geomechanics in reservoir simulation is due

to the difference between discretization methods. Most geomechanical models in reservoir

simulation are FEM based, but discretization method applied to conventional reservoir

simulation varies. The difference between two discretization systems contributes to the

numerical instability. Schur complement was introduced to couple geomechanics with a

finite difference based reservoir simulator [19, 54]. This algorithm was reported to solve

part of the discretization conflict. The discretization difference is still a big challenge for

coupling geomechanics even with some advanced algorithms, because the interpolation for

the properties in different systems is computationally expensive.

Numerical modeling for geomechanics in reservoir simulation is well established theo-

retically. However, in the practical implementation and computation, stability and com-

putational cost are challenges. Finding the balance between applying advanced algorithms

and manageable computational time is another big challenge for modeling geomechanics in

reservoir simulation.

1.3.5 Dynamic Modeling

One goal of performing geomechanical simulation is to predict the dynamic behavior

of the reservoir such as hydraulic fracturing and reservoir compaction. To simulate that,

a dynamic model of geomechanics and an appropriate reservoir model are needed. 3DEC

is one of the commercial softwares with this capability, but the integrated flow model is

too simple to simulate real reservoir flow. Particle and hybrid models were introduced

for fracturing creation modeling, the problem for these two methods was the expensive

computational cost. Other FEM based methods can also be applied in order to reduce the

complexity.

The Material point method (MPM) is applied to dynamically model the geomechanics in
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some research. The computational cost of this method is usually very expensive and super

computers may be required. If modeling a real field project, this method is not practical.

Other research uses the particle model to simulate the fracture growth dynamically, but it

still has problems like slow running speed and considering multiphase fluid flow.

The other important factor of dynamic modeling is the integration of the fracture

representation model. Generally speaking, three main fracture models, single porosity, dual

porosity and discrete fracture network, are used in reservoir simulation. Single and dual

porosity models consider matrix and fracture separately. Structured mesh is usually coupled

with these types of fracture models, which makes it difficult to model the dynamic behavior.

In contrast, the DFN model is able to integrate with unstructured mesh and FEM methods.

These characteristics of the DFN model benefit the dynamic modeling of geomechanics in

reservoir simulation. A number of papers have been published on this aspect, but there

are still major difficulties for a dynamic model with reasonable computational time. The

dynamic modeling is still an unsolved problem in the geomechanical modeling aspect in

reservoir simulation.

1.4 Fracture Modeling

Unconventional reservoirs often contain gelogic discontinuities, such as natural fractures,

faults, and damage zones. These are considered to be potential pathways for the oil

and gas flow. However, modeling these geologic discontinuities in the reservoir is difficult

especially in the unconventional reservoirs where geomechanics must be considered. There

are three common methods of fracture modeling in conventional reservoir simulation. These

models are introduced in the following sections, including the advantage and disadvantage

of integrating each method in unconventional reservoir simulation.

1. Single porosity model

2. Dual porosity model

3. Discrete fractured model

1.4.1 Single Porosity Model

In the single porosity model, the fracture and matrix are considered to be the same

continua with different properties. There are two approaches for the single porosity model.

The first approach is to represent fracture explicitly. The fracture has the same or even

thinner mesh [58, 59] compared with matrix, but different porosities and permeabilities are
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assigned to fractures and matrices. Local grid refinement is usually applied to address the

complexity of fractured reservoir in this approach, which results in a dramatic increase of

the quantity of blocks and more computational time. Figure 1.6 shows the basic concept of

this method.

The second approach is to modify the permeability term to represent fractures. In the

effective permeability method, an effective permeability tensor, which can be obtained using

cell-based upscale methods such as Oda’s method [60] or the boundary element method[61],

is calculated for a grid block to reflect the influence of fractures on fluid flow. A multiple

point flow simulator was integrated with this method to perform flow simulation in fractured

reservoirs [62], but the results were accurate only when the characteristic length of the

fractures was smaller than the characteristic length of the grid block. Another method in

this approach is the modification of the relative permeability term. The concept of pseudo

relative permeability curves was introduced for modeling stratified water flooding in Hearn’s

work [63], but several restrictions of this method were found in other research work [64].

The single porosity model can be integrated with geomechanics with modifications

of porosity and permeability terms in the reservoir simulation. However, it lacks the

power for modeling complex fractures. Indeed, a mapping method is needed when a finite

element geomechanical model is integrated because the default discretization method in

single porosity model is the finite difference method. This also reduces the computational

speed and accuracy.

Figure 1.6: Local grid refinement used in single porosity model
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Figure 1.7: Fracture representation within a finite difference mesh using the single porosity
model for 2-D complex fracture

1.4.2 Dual Porosity Model

In dual porosity model, matrices and fractures are represented separately by two different

continua. This method was introduced in the research work of Warren and Root (1963) [65]

to model single phase flow in fractured reservoirs. The major assumption of this model is

that real reservoir can be an interconnected parallel fracture system which is surrounded by

numerous small matrix blocks. This means that matrix blocks contain most of the reservoir

volume and act as sources or sinks to fractures. The only fluid flow path is through fractures

and all matrix blocks are isolated.

During the discretization procedure of a reservoir, fractures are represented by the

connections of grid blocks and each grid block is given a fracture porosity (Figure 1.8).

A grid block can have more than one matrix block. In the original dual porosity model,

identical physical properties are assigned to matrix blocks. The matrix and fracture are

actually in the same grid block, and the whole discretization process is just to divide the

whole reservoir into two continuum models. Various models have been implemented to apply

the original dual porosity model in the reservoir simulation. In most of the implementations,

a shape factor is needed to calculate the flow between fracture and matrix.

Kazemi applied the dual porosity model to perform the simulation of multiphase flow

in 1976 [66]. The material balance for two immiscible phases in the simulation can be

represented by the following formulation:

Ωf :
∂

∂t
(
φSp

Bp

)f = qp,mf + ∇ · (krp

μp

)f
¯̄Kf∇Φp (1.8)

Ωm :
∂

∂t
(
φSp

Bp

)m = −qp,mf (1.9)
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Figure 1.8: Discretization procedure for dual porosity model

The qp,mf term shown in Equation (1.8) and (1.9) is the matrix - fracture transfer

function. It can be calculate using the shape factor:

qp,mf = σ ¯̄Km(
krp

μp

)(Φp,m − Φp,f ) (1.10)

Matrix permeability is used in Equation (1.10).

There are several approaches to computing shape factor (σ) (α in some references):

The first approach is the original Warren and Root formulation [65]

σ =
4N(N + 2)

l2
(1.11)

where N is the number of normal sets of fracture that are equal to 1, 2 or 3 and l is

the representative of matrix block dimension which can be computed by the following
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formulations:

l =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lx N = 1

2lxly
lx + ly

N = 2

3lxlylz
lxly + lylz + lxlz

N = 3

(1.12)

lx,y,z is the dimension of idealized matrix block in x, y, z direction. The second approach is

the Gilman and Kazemi formulation [67]

σ = 4(
1

Lx
2 +

1

L2
y

+
1

Lz
2 ) (1.13)

where Lx, Ly, Lz are the spacing of fracture planes existing in x, y and z directions. In

addition, the shape factor in transfer function has long remained controversial because a

solid theoretical system was missing, and strong evidence was found for its dependence on

the flow mechanism and the uniqueness of different fracture systems. Thus, it is necessary to

improve the calculation of the shape factor to make the modeling of physics more rigorous.

The classic dual porosity model did not consider several important mechanisms in frac-

ture and matrix flow exchange, such as gravity drainage, capillary continuity, re-infiltration,

and viscous displacement. Many studies have been proposed to improve the dual porosity

model [68, 69]. Subdomain, or “multiple-interacting continua” (MINC) refines the matrix

blocks within the grid block to include the influence of the driving force gradient in matrix

[70]. Two possible pseudo function methods have been investigated for capillary continuity

[71, 72]. Static pseudo function computes pseudo capillary curves, which combine the

capillary and gravity forces by using the vertical equilibrium assumption. The dynamic

pseudo function obtains the pseudo functions from fine grid simulations or history data.

The dual porosity/dual permeability model extends the assumptions of the dual porosity

model by considering both matrix-to-matrix and fracture-to-fracture flow between grid

blocks . Thus, the material balances for any phase in two continua become [73, 74]:

Ωm :
∂

∂t
(
φSp

Bp

)m = qp,mf + ∇ · (krp

μp

)m
¯̄Km∇Φp (1.14)

Ωf :
∂

∂t
(
φSp

Bp

)f = −qp,mf + ∇ · (krp

μp

)f
¯̄Kf∇Φp (1.15)
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The dual porosity/dual permeability model requires greater computational effort than the

dual porosity model. Figure 1.9 shows the conceptual connectivity difference among the

dual porosity model, subdomain model, and dual porosity/dual permeability model in the

one-dimensional domain.

However, in some applications, it is very difficult to estimate good parameters of the

shape factor. The dual porosity model over-regularizes geometrical representation of the

fracture network and oversimplifies assumptions of the conventional dual continuum mod-

els, which poses many uncertainties. Thus, extensive calibration techniques and accurate

descriptions on the fracture network distribution and mass transfer between matrix and

fractures are required before using these dual porosity models.

The coupling of geomechanics with dual porosity model is not easy and may be expensive

in computational time as the challenges existed in the dual porosity model. Also, it is

not easy to model the geomechanics as the two continua classifications in the reservoir. In

summary, the dual porosity model is not the ideal fracture model working with geomechanics

because of the complexity in computation.

1.4.3 Discrete Fracture Model

The discrete fracture model is similar to the single porosity model, but it reduces the

dimensionality of the fracture instead of mesh it as same as the matrix. The dimensionality

of fractures is reduced from n to n − 1, as shown in Figure 1.10. For instance, the fracture

is represented by a line in 2-D simulation and by a surface in 3-D simulation.

The discrete fracture model was introduced by Wilson and Witherspoon [75] in their

work to examine fluid flow in a fractured porous medium. Two different finite element

models were developed in this research for steady state flow in fractured media. In the

first model, fractures were represented by triangular elements and different properties can

be assigned to fractures and matrices like the single porosity model. In the second model,

fractures were represented by line elements and this model required fewer nodes, hence large

problem can be solved. Most of discrete fracture models developed later were based on finite

element method.

Gureghian [76] developed a finite element based discrete fracture model for simulating

fluid flow in a 3-D fractured porous medium. In this work, tetrahedron element represents

the matrix, and the faces of a selected matrix element represent the fracture. The upstream

finite element method was introduced by Noorishad (1982) [77] and Baca (1984) [78] to
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Figure 1.9: Connectivity of (A) dual porosity model, (B) subdomain model and (C) dual
porosity/dual permeability model in 1-D domain

avoid the numerical oscillations that ocuured in simulating the convective dominated flow.

A discrete fracture model for multiphase flow was developed by Bourbiaux (1999) [71] based

on a finite volume method, and a joint-element method was applied to represent the fracture

networks in his work.

In addition to the finite element based discrete fracture model, various finite difference-

based discrete fracture models have also been developed. For example, Karimi-Fard et al.

(2001) [79] [80] applied two point flux approximations in the control volume finite difference

based reservoir simulator and introduced a technique based on a “ star-delta ” to eliminate

control volumes at the fracture intersection, which impacted the numerical stability and

computational efficiency.

In 1999, Kim [81] first developed a finite element two-phase black oil model at the

University of Utah. Karimi-Fard et al. [79] applied the same method to develop a two-
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Figure 1.10: Finite element mesh for discrete fracture model, fracture is represented by a
line in 2-D

phase black oil model using implicit pressure-explicit saturation (IMPES) method instead

of the original the fully implicit method in Kim’s work. Yang (2003) [82] and Fu (2007)

[83] [84] developed a new control-volume finite element method (CVFEM) based discrete

fracture model for two-phase, two-dimensional and three-phase, three-dimensional block

oil simulation. Huang (2009) [85] extended the functionality of the simulator to address

thermal compositional problems. Gu [86] added a reactive transport model to simulate the

co2 sequestration in geological formations.

Monteagudo et al. [87] improved the discrete network model by introducing a cross flow

equilibrium concept between fracture and matrix: Φp,m = Φp,f and suggested a variable

substitution scheme to avoid singular situation. Some other works were published on

treatments to reduce CPU time and memory usage, such as hybrid meshes [88], and some

works are dedicated to higher-order accurate representations of the flux terms [89].

The coupling between geomechanics in a discrete network fracture model is similar to

the coupling between single porosity model and geomechanics. Because the matrix and

fracture are models as the same continua, it is easy to add the geomechanical effect into

the calculation. Furthermore, the discrete fracture model can use finite element method,

which is also applied in most geomechanical models. Hence, it would save a huge amount

of computational effort by sharing discretization information.
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A geomechanical model is coupled with the discrete fracture network model at the

University of Utah. This coupling method can represent a complex fracture network in the

real reservoir, and it is integrated with the traditional finite element model which reduces

the computational complexity by avoiding massive mapping effort and information sharing.

1.5 Previous Work of the Research Group

The research group at the University of Utah has contributed significantly to the DFN

model and reservoir simulation. The Utah Finite Element Simulator (UFES) has been under

developed for years with the continuous contribution from group members [82, 83, 90]. The

Control Volume Finite Element (CVFE) discretization method was developed for reservoir

simulation [84, 91], this method has the advantage to model unstructured fracture and

complex fluid flow behavior in the reservoir. A transmissibility based finite volume method

was also developed to integrate the UFES with other reservoir simulators. A 3-D black

oil model and Compositional K value Thermal (CKT) model were developed to simulate

conventional and unconventional oil and gas recovery. A geochemical reactive transport

model was also introduced for modeling co2 sequestration and EOR [86]. Modularization

implementation was applied to the CKT model development [85]. A variety of simulations

have been performed previously to evaluate the UFES and to show the advantages of

DFN model in modeling conventional reservoir recovery processes. In summary, the UFES

developed from previous research works was proved to be effective and accurate in modeling

a conventional reservoir with complex fractures.

Based on all these previous works, a generalized reservoir simulator with geomechanics

(Advanced Reactive Transport Simulator (ARTS)) was developed to model the unconven-

tional oil and gas recovery process in this research. DFN is used as the default fracture

representation method, and several submodels have been implemented in ARTS to improve

the computational efficiency and to extend the capability.

1.6 Summary

Narr (2006) [92] stated that “all reservoirs should be considered fractured until proven

otherwise”. Modeling fractures in an accurate and effective manner is important in reser-

voir simulation especially in unconventional reservoir simulation. In this research work,

a geomechanical model is integrated with a Discrete Fracture Network (DFN) reservoir

simulation framework. The DFN fracture representation method has the advantage of

modeling unstructured complex fracture networks. This reservoir model is also capable of
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performing reservoir simulations with finite element or finite difference methods. There are

three major objectives of the research:

First, a new framework that is capable of integrating a geomechanical model and multiple

physical models has been developed. The Utah Finite Element Simulators (UFES) have been

developed as DFN based reservoir simulators based on research continued over a number

of years at the University of Utah. Applications such as water flooding, steam flooding

and co2 sequestration can be examined with different physical models (black oil, thermal,

reactive transport) and discretization methods. A new reservoir simulation framework,

ARTS (Advanced Reactive Transport Simulator) was developed based on UFES. ARTS

is a generic reservoir simulation framework integrated with different physical models and

discretization methods. Various models including geomechanical models are integrated.

Modularization, generalization and compatibility are the governing principles for the ARTS

framework.

Second, a geomechanical model was developed and fully integrated with ARTS. The

geomechanical is integrated with various coupling schemes and constitutive relationships.

Furthermore, other modules inside ARTS can be easily combined with this geomechanical

model to perform a variety of reservoir simulations. It is also possible to integrate other

submodels and new schemes in the geomechanical model with the designed generic imple-

mentation.

Third, a number of reservoir simulations were performed to understand the geome-

chanical effect on the unconventional oil and gas recovery processes. The input data

will be derived from the field, or from some physical systems with known answers, to

verify the capability and accuracy of the geomechanical model. Some simulations will be

performed to learn the dynamic behavior of reservoirs with few fractures, and then the same

methodology will be applied to a complex reservoir system with a number of natural and

hydraulic fractures. In summary, an advanced reservoir simulation framework integrated

with geomechanics is developed and various applications are performed using the ARTS

framework.

In this dissertation, the second chapter discusses the development work of the latest

ARTS framework. Then, the third chapter discusses the governing equations and numerical

methods for solving the geomechanical and reservoir models, and the coupling schemes

developed in this research are also discussed. The fourth chapter discusses the discretization

methods applied in solving the coupled or decoupled equations introduced in Chapter 3. A
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series of verification and validation studies are discussed in Chapter 5 to show the validity of

the ARTS framework. ARTS has also been applied to study various real reservoir problems

related to geomechanics like the “water block” in Chapter 6. Finally, a summary of this

research work and some suggested further work are discussed in Chapter 7.



CHAPTER 2

ARTS FRAMEWORK

Reservoir simulation is the science of predicting the performance of subsurface oil, gas

and other reservoirs, given their geologic characteristics. A number of different physical

processes occur within the reservoir over its life time. In a conventional oil reservoir, pressure

depletion, oil expansion and solution gas drive are the primary production mechanisms. As

the reservoir pressure declines to cause uneconomical oil rates, water is injected in the sec-

ondary recovery process. In some reservoirs, carbon dioxide is injected in a tertiary process

to recover additional oil. It is not uncommon to use different types of reservoir simulators

to model the primary recovery, the water flooding, and the carbon dioxide enhanced oil

recovery processes. Steam is typically injected for recovering heavy oils with high viscosities.

Physical mechanisms relevant to the process are usually incorporated into the simulation

model. For example, when steam is injected, the thermal simulation model requires the

solution of the energy balance equation, while co2 injection usually requires the use of an

equation of state thermodynamic phase behavior model. Some of the important physical

processes (shown for illustration, but not all inclusive) that would make up a given physical

model are shown in Figure 2.1. The multiphase, thermodynamic and thermal components

are needed to address the different physical processes identified. A geomechanical model

maybe necessary for describing the dynamic changes in the reservoir geological properties

during the production process. A modularized framework would provide the benefit of

using only the features necessary for the solution of the relevant problem. A variety of

discretization methods have also been used in the solution of subsurface multiphase flow

problems. The finite difference technique is the most common, but the finite element method

is necessary for the representation of complex geometries. Different approaches are used to

represent and model fractures, which are already discussed in Chapter 1. A generalized

reservoir simulator is needed to incorporate all models mentioned previously. Indeed, as

more technologies are applied in the oil and gas industry, the reservoir simulator should
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Figure 2.1: Example of physical processes involved in reservoir simulation.

have the capacity to integrate models more easily.

In order to achieve the goal of generalized reservoir simulation, Advanced Reactive

Transport Simulator (ARTS) was developed. ARTS is a fully modularized frame work with

various integrated models such as black oil model, compositional k value thermal model,

reactive transport model, and geomechanical model. It is developed based on several years

of research work in the University of Utah, and a DFN model is integrated in the frame

work to represent complex natural or hydraulic fracture networks. A generic geomechanical

model with different coupling schemes is also integrated in ARTS to learn unconventional

oil and gas reservoirs.

2.1 Framework Structure

The structure of ARTS is designed to integrate a variety of physical and discretization

models in one single framework. Indeed, it also has the capability to facilitate further

development. Based on these requirements for designing the framework, the mathematical

representations of an oil and gas reservoir have be generalized and then modularized in

ARTS. The generalization is performed with respect to the governing equations in the
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reservoir simulation. Several terms in the equation are identified to be implemented into

a generic structure in the framework and these can be reused in different models. Some

common numerical methods are also implemented into a generic structure to improve the

efficiency. The modularization is performed with respect to the reservoir physical model

(as well as geomechanical model) and domain discretization method. Various discretization

schemes basically divide the subsurface into numerous, small but finite volumes in order

to solve the governing equations. The selection of domain discretization method changes

the way in which spatial operators and related properties (volume, depth from a datum,

thickness, and the cross sectional area between control volumes) are computed. Choice of

a specific domain discretization method to achieve accurate representation may depend on

the specific geology of the system. Furthermore, different physical models are needed for

various oil and gas recovery processes, and a geomechanical model may be important in

specific reservoirs. In order to take all these models into account, ARTS has a structure

that has a generic module in the higher level, with integrated modularized models in the

lower level. The details of how to achieve generalization and modularization are discussed

in the following sections.

2.1.1 Generalized Mass and Energy Conservation Equations

In a reservoir system, the material balance equations, energy balance equations and

force balance equations describe the physical system. All these equations are essentially

nonlinear partial differential equations and can be solved by using specific discretization

method and physical model. In order to solve these equations in ARTS, the equations have

been generalized first.

Generally speaking, the balance or conservation relationship is a scalar equation (except

force). A common equation can be used to describe all of the mass conservation relation-

ships.

If C is any scalar quantity per unit volume, the conservation of this property C is

expressed by:

∫∫∫
V

(
∂C

∂t
+ Qsource,sink)dV +

∮
A

(∇ · (�Fconvective + �Fdiffusive)dA = 0 (2.1)

where V is the volume and A is the surface area of any finite volume. The corresponding

discrete form of Equation 2.1:
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ΔV (
∂C

∂t
+ Qsource,sink) +

Nj∑
j=1

(�Fconvective + �Fdiffusive)ΔAj = 0 (2.2)

The equation shown above is equivalent to R = RAcc + RFlow = 0. Then the equation is

divided into two terms, the flow term and the accumulation term.

The accumulation term can be calculated from the volume information of a control

volume and the physical properties of the system. As shown in the equation 2.2: RAcc =

ΔV (∂C
∂t

+Qsource,sink), the only discretization related information is ΔV , all other terms are

independent of discretization method. For the flow term, it is complex to calculate, but

with further decoupling, it can be simplified.

In RFlow, the convective and diffusive fluxes can be computed using the following equa-

tions:

�Fconvective = C�v (2.3)

�Fdiffusive = ¯̄Dρ∇(
C

ρ
) (2.4)

where ¯̄D is the diffusivity of the property of interest, v is the velocity and ρ is the density.

In multiphase flow, volumetric flux �v for phase p can be computed by the Darcy flow

equation.

�vp = ¯̄K
krp

νp

(∇pp + γ̄p∇z) (2.5)

where ¯̄K is the absolute permeability tensor, krp is the relative permeability, νp is the

viscosity. Therefore, the convective flow term in the finite volume across the surface AJ can

be generalized as:

�F · �Aj = ζ ¯̄τ∇Φ∗ · Aj (2.6)

where ζ is any arbitrary scalar volumetric property, ¯̄τ and Φ∗ are the tensor property

(like permeability) and the potential of the flow respectively. For instance, in convective

flux calculation, ζ = krp

νp
, ¯̄τ = ¯̄K, and the potential term is p or z. In a Nv nodes finite
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element domain, Φ∗ can be expressed by [83]:

Φ∗(�r) =
Nv∑
i=1

αi(�r)Φ
∗
i (2.7)

Then Eq.(2.6) can be expressed as:

�F · �Aj = ζ ¯̄τ
Nv∑
i=1

∇αi(�r)Φ
∗
i · Aj = ζ

Nv∑
i=1

Ti,jΦi (2.8)

where Ti,j is the transmissivity coefficient, which is determined by domain discretization.

The summation term in the above equation indicates the contributions of the potentials

from a set of nodes that have flow across AJ . As a result, the following computations are

only related to the discretization method:

1. The volume of the finite volume

2. The transmissivities between connected finite volumes

3. The depth or elevation of the finite volume (to compute gravitational potential)

4. The numbering index (identity) and the connectivity (graph) of finite volumes

Then the above four items can be separated from the governing equation system and treated

independently. In addition, the scheme also applies to the finite difference method with a

few minor modifications to the calculation of the transmissivity terms.

The scalar property C in the generalized governing equation is determined by the physical

model applied to this reservoir system. For instance, in the conventional black oil model [84],

the scalar property C can be described as ΦSp

Bp
for phase p; in compositional model, the scalar

property C could be either mass density or molar density ΦρvSvxv,i; in energy conservation

equation, the scalar property C is the energy per unit volume U̇pΦρpSp + U̇r(1 − Φ). Also,

various models can be applied to calculate the saturation, density and porosity in the

physical model. All these lead to a considerable amount of individual models for representing

the scalar property C. Indeed, all the computation needed for the model describing C can

be accomplished with a little, or without, the spatial information.

Besides the major governing equations, several constraint equations may be required to

determine the correct relationship between variables such as volume constraint and phase
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equilibrium constraint. These constraint equations also do not require spatial information

and therefore they are basically independent of the discretization method. In a word,

the mass and energy conservation equations can be generalized and then all terms in the

generalized equations can be identified as two different groups based on the dependence on

the discretization methods.

2.1.2 Generalized Force Conservation Equations

The force balance equations describe the mechanical behavior of a reservoir with a set of

vector equations. The following generalized formulation can be used to represent the force

balance in the reservoir:

∇ · σ + �F = 0 (2.9)

By applying the Gaussian theory, equation 2.9 can be expressed in the following formation:

∫∫∫
V

(∇ · σ + �F )dV = 0 (2.10)

where σ represents the stress tensor, and �F represents the external force load. The force

balance equation can be divided into two parts by using the same method applying in the

mass and energy conservation equations. The stress term can be expressed as the following

formulation:

σ = Dε (2.11)

The coefficient matrix D is independent of discretization method, but the calculation of ∇σ

is dependent on the discretization method used. After applying the same analysis for all

terms in equation 2.10, all discretization method related terms are listed as follows:

1. The volume of a geomechanical control volume

2. The integration calculation

3. The stress gradient calculation
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The terms listed above can be treated independently in respect to what models are applied

to the stress, and a separated module can be implemented to calculate these terms. In

addition, the module designed for calculating these terms can be reused to calculate the

discretization related terms discussed in section 2.1.1. Other terms that are independent of

discretization method can be calculated in another module. All terms in the force balance

equations can be divided into two groups using the same methods discussed in section

2.1.1. After the generalization of the governing equations in a reservoir simulation, two

“independent” groups of terms in the generalized equations are identified. This is the basic

modularization structure of ARTS, and it will be discussed in the following section.

2.1.3 Modularization

Based on the analysis in the previous sections, two basic modules have been designed and

implemented in ARTS. An independent module called DM (Discretization Method), which

was related only to spatial information of the reservoir, calculates all the discretization

method dependent terms in the governing equations. Another module called PM (Physical

Model) calculates all the other terms in the governing equations. For example, the volume

information and spacial derivatives are calculate in DM, the viscosity and relative perme-

ability are calculate in the PM. The PM and DM modules are the high level structure of

the ARTS, a variety of submodels are implemented in each module. In the latest version

of ARTS, three major DM modules and several PM modules are implemented. Indeed,

several other modules served as the utility purpose are implemented such as XML for

data I/O. The basic flow chart of the simulation is shown in Figure 2.2. In DM, Finite

Difference (SFD), Control Volume Finite Element (CVFE) and Finite Volume (FVM) are

implemented. In PM, BO (Black Oil model), CKT (Compositional K-value Thermal model)

and CKT-RT (CKT model with Reactive Transport) are implemented, and each module

has several submodules to model different physical systems.

The structure of ARTS is a like a “tree” with two major branches and numerous small

branches. PM and DM are the two major branches and other submodels with in them

are those small branches. Other needed models can be added to this open structure either

as a major branches or as a small branches underneath other models. The higher level

models serve as the communication pathway between different lower level models. This

design also minimizes the amount of information transported through different models as

only the key properties are transported. The information is shared between models that

are underneath the same higher level models through a public data I/O module design.
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Figure 2.2: Flow chart of ARTS

For example, a problem needs to be solved with finite difference method and black oil

model. The solving procedure includes the communication between modules SFD and BO,

and the only pathway of this transportation is the SFD-DM-PM-BO route. Information

transported in this case is only the pressure and the discretization information (gradient

calculation results), other information needed in the calculation is calculated locally inside

each module. If black oil module and reactive transport module need the oil property

information, they get it directly from public available PM data structure, the same method

applied to the information sharing between submodels of DM. This unique information

transportation design and the “tree” structure can be represented by Figure 2.3.

ARTS provides a “plug in and use” environment for coupling different discretization and

physical models through the “tree” structure. Different application programs can be derived

in ARTS, some examples are CVFEBO (three-phase black oil simulator with control volume

finite element), SDFBO (three-phase black oil simulator with finite difference, CVFECKT

(compositional K value thermal model with control volume finite element), etc. More

applications would be developed as potential models integrated, such as geomechanics. Now
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Figure 2.3: Information transport pathway and “tree” structure of ARTS

each application program in ARTS has the option to include geomechanics or not, and this

doubles the number of programs.

A generalized Finite Volume Method is introduced in ARTS, which requires only the

transmissivity information. This feature enables the simulator to interface with other

commercial simulators. For instance, ARTS can obtain geometry related information from

a commercial program and run a specific physical model with that information. This allows

ARTS to couple with sophisticated geological packages.

In order to illustrate the procedure of how to solve the generalized equation in the

modularized framework, the following shows how to apply a single phase black oil model

(neglect the source term and diffusive term for convenience) and finite difference method to

a reservoir with 100 control volumes through the modularization process discussed above.

In this situation, 100 equations of mass conservation need to be solved at least. The

modularized computation procedure can be applied to this specific case in the following

steps:

1. Rewrite the governing equation into decoupled form:
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ΔV (
∂

∂t
(
ΦSg

Bg

)) +

Nj∑
j=1

(�FConvective,g)ΔAj = 0

�FConvective,g = ¯̄K
krg

Bgνg

(Δpg + γgΔz)

2. Classify each term in the equation as DM or PM:

ΔV ,ΔA,ΔPg + γgΔZ should be in the DM category. Other terms belong to the PM

category.

3. Calculate each term in different modules:

Calculating terms listed in the second step with the property data provided by different

modules.

4. Apply the Newton method to the governing equation and then write it into matrix

form for all control volumes.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂R1

∂v1
−∂R1

∂v2
. . . − ∂R1

∂v100

−∂R2

∂v1
−∂R2

∂v2
. . . − ∂R2

∂v100

−∂R3

∂v1
−∂R3

∂v2
. . . − ∂R3

∂v100

...
...

...
...

−∂R100

∂v1
−∂R100

∂v2
. . . −∂R100

∂v100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v1

∂v2

∂v3

...

∂v100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1

R2

R3

...

R100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.1.4 Geomechanical Module Design

The geomechanical module is designed to be partially dependent on PM and DM. This

design makes it easy for information sharing between geomechanical modules and other

modules. As discussed in the previous sections, the term ∇·σ is divided into two parts; one

part is the calculation of ∇ operator, another part is the calculation of the stress. DM is

in charge of dealing with the first part and the second part is calculated in PM. The whole

term is finally assembled and calculated in PM.

Multiple coupling schemes and constitutive relationships have also been integrated in the

geomechanical model in ARTS, hence different models can be applied based to simulate the

diversified real reservoirs. Two different major modules, which are soft coupling and hard

coupling, are implemented to control the coupling process in ARTS. Each coupling scheme

has various submodels integrated, such as two way coupling scheme and iterative coupling



36

scheme in the hard coupling module. The communication between geomechanical modules

and other modules mainly follows the communication pathway discussed in section 2.1.4.

But, the geomechanical module also directly communicates with the submodels inside DM

or PM (as shown in the dashed line in Figure 2.4). The purpose of this structure is to make

the geomechanical model compatible with any existing or future potential submodels built

in PM and DM.

2.1.5 Integration of Different Modules

The integration of different models is done during the compile time, and SCONS [93] is

used in ARTS to achieve this goal. In the compiling process, a module in PM and a module

in DM need to be selected by specific compiler, then a final program is built. Various of

the final programs are available after this process, and the amount of final programs can

be doubled if geomechanical models are also involved. Figure 2.5 shows the procedure of

integration. For example, shale gas production process needs to be simulated in ARTS, and

the two phase black oil model with geomechanics is applied to model the complex fracture

networks in that reservoir. In this case, CVFE is chosen to be the discretization method and

two-phase black oil model is chosen to be the physical model. Indeed, the geomechanical

model is also coupled in the simulation. After all modules have been selected, a “driver”
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Figure 2.4: Flow chart of ARTS with geomechnaical module
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Figure 2.5: Flow chart of assembling an application program in ARTS

is implemented to generate the executable file for this particular application. The “driver”

is just a few lines of code to call the selected modules. The whole process of building a

new application in ARTS is fast if the modules needed already exist. If more models are

needed in the future, it can be implemented by using the generic structure in ARTS and

would work with other models properly. New application programs can be built following

the same procedure with the help of SCONS.

2.2 Implementation of ARTS

C++ programming language, which is the best suited for general purpose programming,

is applied to implement ARTS framework. The generalization and modularization design

of ARTS fits the idea of object oriented program in C++. In the implementation, PM and

DM in ARTS are the high level classes (base class) and the submodels are the lower level

classes (derived class) and inherit some generic data structure from PM and DM. Virtual

function has been used heavily in ARTS to achieve the goal of “one interface, multiple

methods” [94]. For example the calculation of the accumulation terms is different in various

submodels, but there is only one function (virtual function) implemented in PM or DM.
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The reason for this is that specific methods of calculation accumulation terms are defined

in the derived class and only one interface needs to be implemented in the base class. The

geomechanical module is implemented in the same way.

In the PM module, several base classes is implemented. These classes are in charge of

computing the spatial information independent terms and then assembling the final discrete

governing equations, hence the solver can solve the linear system. Several important classes

of PM and their major functionality are listed below:

1. PhysicalModel: main driver of the simulator, controls the whole process of the simu-

lation

2. LineSource: calculate the source and sink term

3. Rock: calculate the rock properties like porosity

4. Fluid: calculate fluid properties like viscosity and volumetric factor

5. RockFluid: calculate the relative permeability term

6. NumericalMethod: interface for linear solver packages

7. State: store the basic variable values like pressure and saturation

8. ControlVolume: assemble the linear system

9. TimestepControl: control the time step for the simulation

The detail implementations of functions in each class listed above are varied in different

inherited classes. For instance, the calculation of oil viscosity in thermal model is different

from that in Black oil model, but these two functions are all derived from the fluid class in

PM.

In the DM module, the base class is in charge of reading the basic geometry information

and calculating the terms directly related to the discretization method. All the information

calculated in DM will be passed to PM for the final assembling. DM also receives updated

PM information if the base variables like pressure changes after calculation. The basic

classes in DM are listed below:

1. DiscretizationMethod: read the geometry information and store it for further calcu-

lation
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2. Element: calculate the spatial derivative terms

3. ControlVolume: calculate the volume and pass the derivative term to PM

4. LineSource: calculate the well index and the pressure drop

5. Object: handle the connection information between blocks

Several DM modules are also implemented in detail based on the classes listed above. The

method applied is still virtual function and class inheritance in C++. In order to share

information more easily between DM and PM, some classes such as control volume are

designed to be public in PM and DM. The fracture representation methods built in DM

have some unique functions instead of specific implementation of virtual functions in the

based class. Otherwise, the basic implementation methods applied in DM are the same with

PM. Figure 2.6 illustrates the implementation of a three-phase black oil model with CVFE

as the discretization method.
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Figure 2.6: Flow chart of three-phase black oil model implementation
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The geomechanical model is implemented in DM and PM as a friend class, it can

directly use the information of PM and DM. The fracture representation method applied in

geomechanical model is discrete fracture network, so most of the functions in DM can be

reused. The control volume is created as a clone of control volume in PM and DM, all the

information calculated in geomechanical model will be directly known by DM or PM. The

controlling component of geomechanical coupling is implemented in PM. It is in charge of

how and when the geomechanical model is communicated with PM or DM. Virtual functions

and inheritance are also used to enhance the adaptability of geomechanical model.

The goal of developing a generalized reservoir simulation framework with specific applica-

tions has been reached through the generalization of governing equations and modularization

design of ARTS. Object oriented programming, polymorphism and inheritance in C++

programming are heavily applied in ARTS to achieve the generalization and modularization.

In this research, ARTS is developed with a generalized framework and further development

can be easily done to add more potential functionality.



CHAPTER 3

GEOMECHANICAL MODEL

The mathematical formulations of the geomechanical model and how to solve it are

discussed in this chapter. A classic finite element method is applied to solve the geome-

chanical equations, and various stress models like poroelastic and thermoelasticity are used.

In order to couple geomechanics with other models, the soft and hard coupling schemes are

used and these details are also discussed. With the model developed in this research, the

geomechanical module is integrated in reservoir simulations and various field observations

like subsidence, water loss and unexpected production decline or increase can be addressed.

3.1 Governing Equation

The governing equation system of ARTS includes two parts: one is the governing

equation for the conventional reservoir model, and the other part is the governing equation

for the geomechanical model.

3.1.1 Governing Equation of Geomechanical Model

The governing equations for the geomechanical model are based on force balance or

momentum balance. Several assumptions are introduced first:

1. Infinitesimal strain theory:

‖�u‖ ≤ 1 and ‖Δu‖ ≤ 1

(the norm of displacement and the displacement gradient are small compared to unity)

2. The solid velocity and acceleration is negligibly small.

3. The solid particle is impressible.

The first assumption allows the geometric linearization of the finite strain tensor. The

material derivative is the same with the partial derivative based on the second assumption,
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and the acceleration term is neglected in the momentum balance equation. Based on the

third assumption, the density of the solid is a constant, even though properties of rocks

are changing during the deformation process. With all these assumptions, the governing

equation of geomechanical model can be described in the following form, in a representative

elementary volume (REV):

∇ · σ + �F = 0 (3.1)

where σ is a tensor which represents stresses ( symmetric ): σ =

⎡
⎣σx,x σx,y σx,z

σy,x σy,y σy,z

σz,x σz,y σz,z

⎤
⎦.

If gravity is the only external force, then equation 3.1 is the same as equation 1.7 which

is Biot consolidation equation. The full expression of the equation above is:

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ Fx = 0

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ Fy = 0

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ Fz = 0 (3.2)

Biot’s effective stress model can be used to calculate the stress:

σ = σ′ − αδi,jPavg (3.3)

where σ′ is the effective stress,and P is the average pore pressure in the reservoir. In the

saturation weighted form Pavg is:

Pavg =
n∑

p=1

SpPp (3.4)

If gravity is assumed to be the only external force, equation 3.1 can be described by the
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following:

∇ · (σ′ − αδi,jP ) + ρavg
�b = 0 (3.5)

The average reservoir density ρavg is defined as:

ρ = (1 − φ∗)ρs + φ∗ρf (3.6)

where ρs is solid density in the reservoir (rock density). ρf is the fluid density in the reservoir.

Saturation weighted fluid density may be applied to multiphase flow in the reservoir.

Different constitutive laws such as linear elasticity and poroelasticity can be applied

to the stress term. The poroelasticity model reflects the stress response to the fluid flow

movement, and it is accurate enough for modeling the stress change in the reservoir due to

pore pressure variation. In this research, a linear poroelastic model is employed:

σi,j = 2Gεi,j + 2G
ν

1 − 2ν
εk,kδi,j − αpδi,j (3.7)

where G is the shear modulus, ν is the Possion’s ratio. The strain εi,j is defined as:

εij =
1

2
(
∂ui

xj

+
∂uj

xi

) (3.8)

A linear thermal stress model is also applied in ARTS to couple with the thermal reservoir

model. The linear thermoporoelasticity model can be expressed as the following formulation:

σi,j = σ
′ − αpδi,j − 3βKbT (3.9)

where β is the linear thermal expansion coefficient. It describes how the solid deforms due

to temperature change. The effective stress σ
′
can be expressed in poroelastic formulation

(equation 3.7). In ARTS, the incremental formulation of equation 3.7 and 3.9 are used to

facilitate the coupling process.

The geomechanics governing equation set uses vector variables. Deformation vector

is usually the primary variable. The theory is based on a 3-D consolidation model, and
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different stress models are implemented in the research. Indeed, the governing equations for

geomechanics are expressed in various formulation to gain efficiency in different coupling

schemes.

3.1.2 Governing Equations of Reservoir Model

In ARTS framework, various reservoir models are integrated. Isotherm and thermal

models are the two major categories of phyisical models implemented in ARTS and the

geomechanical model is designed for both of them.

In the latest version of the framework, the isotherm model includes single phase, two-

phase and three-phase black oil models. The thermal model includes the CKT model and

reactive transport model. The governing equation for black oil model is the material balance

equation, and it can be described in the following formulation:

∇ · ( ¯̄K
krp

Bpμp

∇ϕp) =
∂

∂t
(φ

Sp

Bp

) + qp (3.10)

where ¯̄K is the absolute permeability tensor, krp is the relative permeability, Sp is the

saturation, Bp is the volumetric factor, ql is the source or the sink term, ϕp is the potential

term. The fluid potential term can be described by the following equation:

ϕp = P + γpZ (3.11)

Various models can be applied to the source and sink term. The well model for production

and injection is also integrated into this term, and will be discussed later.

The governing equations for thermal model are the mass balance equation and the energy

balance equation. For a system consisting of Np phases, Nf fluid phases, Nc components,

Nreq chemical equilibrium reactions, and Nr kinetics control chemical reactions, the mass

conservation equation for component i can be described as:

∂
∑Np

p=1(φSpρpxp,i)

∂t
= −∇ · (

Nf∑
p=1

xp,iρp�vp) +

Nreq∑
req=1

sreq,iRreq (3.12)

+
Nr∑
r=1

sr,iRr +

Nf∑
p=1

xp,iQp
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where �vp is computed by the following equation:

�vp = ¯̄K
krp

μp

(∇Pp + γp∇z) (3.13)

Rreq represents the chemical equilibrium reaction rate and Rr is the kinetics control chemical

reaction rate. Aqueous phase reactions are assumed to reach equilibrium instantly, and the

rates will be eliminated from the governing equations. The source or sink term
∑Nf

p=1 xp,iQp

is attributed to wells or aquifers.

The energy balance equation is:

∂(Up + Urock)

∂t
= ∇ · ¯̄Kc∇T −∇ · (

Nf∑
p=1

Ĥpρp�vp) + Qe + Qloss (3.14)

where Up and Urock can be written as:

Up =

Np∑
p=1

φSpρpÛp (3.15)

Urock = (1 − φ)Ūrock (3.16)

All the essential governing equations in the ARTS framework are discussed above. Several

other constrain equations are needed to solve the system mathematically. These equations

are listed below:

1. Saturation constrain: sum of all phase saturations is equal to one.

Np∑
p=1

Sp − 1 = 0 (3.17)
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2. Molar fraction constraint: sum of mole fractions for all components in a phase is equal

to one.

Nc∑
i=1

xp,i − 1 = 0 (3.18)

3. Ne thermodynamic equilibrium constraint equations

RKk
= Kp1−p2,i · xp2,i − xp1,i (3.19)

p1, p2 ∈ [1, Np]

i ∈ [1, Nc]

k ∈ [1, Ne]

The fast reaction is assumed to be in equilibrium in ARTS to improve the stability of

the simulator.

RKk
= fgas,i − faqu,i (3.20)

The fugacity fgas,i is calculated from the Peng-Robinson Equation of state. The

fugacity faqu,i of gaseous components soluble in aqueous phase is calculated using

Henry’s law as:

fgas,i = xaqu,iHi (3.21)

where Henry’s law constant Hi is a function of temperature, pressure, and salinity.
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The thermodynamics equilibrium constant Kgas−aqu,i is calculated as:

Kgas−aqu,i =
Hi

γgas,iP
(3.22)

The number of thermodynamic equilibrium constraints is determined by the number

of equilibrium pairs in the component-phase matrix of the input file.

4. Nreq chemical equilibrium constraint equations

Rreq =
Nc∏
i=1

a
sreq,i

i − Kreq (3.23)

The activities ai are related to the morality of mi for component i (mole/kgH2O) as

follows:

ai = γimi (3.24)

With all the mathematical formulations listed above, the system can be solved with

certain numerical methods. The geomechanical model can also be coupled to the reservoir

model by using various coupling schemes and methods. All these methods are discussed in

the following sections.

3.2 Numerical Methods

In this section, the numerical algorithms used to solve the governing equations are

discussed. Control Volume Finite Element (CVFE), Finite Difference (FD) and Finite

Volume Method (FVM) can be used as discretization methods in ARTS for the black oil

and thermal model. Newton’s method is used for solving the nonlinear algebraic equations.

In order to couple geomechanics, several specific coupling schemes are also developed in

ARTS.

3.2.1 Representative Element Volume

In a discretization scheme, the governing equations are applied over representative

elementary volumes. The governing equation integrated over all the REVs is written as
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follows:

∫
V

(∇ · (σ′ − αδi,jP ) + ρavg
�b)dV = 0 (3.25)

The traction term �t is defined as a surface force per unit area on the external surface of

an REV. This traction term is obtained when the divergence theory is applied to equation

3.25. The incremental form of the governing equation is valid with the assumption of linear

stress models.

Further evaluation of the integrated formulation of the governing equation requires

appropriate matrix formulation. The stress tensor is represented as a vector format for

convenience.

The total stress tensor σ can be formulated in to a 6 × 1 vector format �σ by merging

the symmetric off diagonal part:

�σ =
[
σxx σyy σzz σxy σyz σzx

]T
(3.26)

If we define:�ε =
[
εxx εyy εzz εxy εyz εzx

]T
and �m =

[
1 1 1 0 0 0

]T
then the stress

vector can be simplified further by applying the effective stress law:

�σ = D�ε − α�mP (3.27)

where D is the coefficient matrix of the stress-strain relationship. The choice of the D

matrix depends on the stress model used. A linear poroelastical stress model with matrix

Dl can be used, for example. This equation can also represent the thermal stress effect

(linear or nonlinear) in practical thermal recovery processes by incorporating the thermal

stress coefficient matrix DT . The thermal stress model can be expressed in the following

form:

�σ = DT �εT + D�ε − α�mP (3.28)

In ARTS, an independent submodule is designed for switching the D matrix to provide a

platform for considering other geomechanical effects (thermal stress, stress change due to
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reaction) in the future. This module is also capable of incorporating nonlinear and other

complex models.

3.2.2 Virtual Work Formulation of Geomechanical Model

Virtual work theory in computational mechanics can be applied for geomechanical com-

putations. The solution of the virtual work formulation is the exact solution of the original

equation theoretically. Based on this, the geomechanical governing equation is transformed

to a virtual work formulation.

A general virtual work formulation can be derived for the geomechanical model: (The

body force is neglected for convenience since it is only gravity force in most cases):

∫
Ω

δ�εT Δσ′dΩ − α

∫
Ω

δ�εT ΔpdΩ −
∫

Γσ

δ�uT Δ�tdΓ = 0 (3.29)

where Γsigma is the surface of the arbitrary volume Ω. Substituting equation 3.27 in equation

3.29 and applying the basis function from FEM; the following is obtained:

(

∫
Ω

BT DBdΩ)(Δ�u) − α(

∫
Ω

BT �mNdΩ)(Δp) −
∫

Γσ

δ�uT Δ�tdΓ = 0 (3.30)

where u is the deformation vector inside the volume Ω. It can be written in the FEM type

of formulation with the basis function Ni as the following (how to calculate Ni is discussed

in chapter 4):

�u =

⎡
⎣N1 0 0 N2 0 0 N3 0 0 . . .

0 N1 0 0 N2 0 0 N3 0 . . .
0 0 N1 0 0 N2 0 0 N3 . . .

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

w1

u2

v2

w2

u3

v3

w3
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= N �ue (3.31)

B is the divergence matrix manipulator defined as: B = [B1, B2, B3, . . . , Bi]. Each compo-
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nent Bi is a matrix:

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z

∂Ni

∂y
∂Ni

∂x
0

0 ∂Ni

∂z
∂Ni

∂y

∂Ni

∂z
0 ∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.32)

Then the strain vector can be written in the following formulation:

�ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣N1 0 0 N2 0 0 N3 0 0 . . .

0 N1 0 0 N2 0 0 N3 0 . . .
0 0 N1 0 0 N2 0 0 N3 . . .

⎤
⎦ (�ue) = B(�ue) (3.33)

If we substitute equation 3.31 in equation 3.30 and express Δp in the FEM formulation, a

linear system is formed: AΔ�ue = ΔB. The linear system can be solved for the deformation

vector by using appropriate linear solvers.

3.2.3 The Galerkin Method

The Galerkin method is widely used in FEM type numerical models. The geomechanical

model can be simplified with the divergence theorem and the application of the Galerkin

method. In order to demonstrate this procedure, the stress is defined as σ and the external

force is defined as b. The original governing equation 3.1 can be written as:

∇σ + b = 0 (3.34)

By multiplying a “constant” displacement vector on both sides of the equation 3.34:

�u(∇σ + b) = 0 (3.35)

Rewriting the first term in equation 3.35 by applying the rule of integration, �u∇σ =

∇(�uσ) − σ∇�u is obtained. Integrating over the entire volume of one element (REV), the
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following integration formulation can be derived:

∫
V

(∇(�uσ) − σ∇�u + �ub)dV = 0 (3.36)

Then we can apply the Gaussian-Green theory to the term
∫

V
∇(�uσ)dV . Equation 3.36 can

be written as the following (S is the surface area of the REV):

∮
S

�uσ�ndS −
∫

V

σ∇�udV +

∫
V

�ubdV = 0 (3.37)

Notice that σ∇�u can be written as �uST�σ. where ST is a 3 × 6 matrix:

ST =

⎡
⎣

∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

⎤
⎦ (3.38)

Then equation 3.37 can be rewritten as:

∮
S

�uσ�ndS −
∫

V

�uST σdV +

∫
V

�ubdV = 0 (3.39)

If the “constant” displacement vector �u is divided from both sides and the Galerkin weighted

residual method is applied in equation 3.39 (basis function NT is the weighting factor); the

following is obtained:

∮
S

NT�tdS −
∫

V

BT σdV +

∫
V

NT�bdV = 0 (3.40)

where BT = NT ST and ue is the displacement for each node. Then the effective stress

relationship and stress model can be applied to equation 3.40:

∮
S

NT�t −
∫

V

BT DBue +

∫
V

BT α�m�p +

∫
V

NT�b = 0 (3.41)

Finally, �t , �p , can be expressed in the FEM formulation and equation 3.41 can be written
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as the final discrete formulation:

∮
S

NT Nte −
∫

V

BT DBue +

∫
V

BT α�mNpe +

∫
V

NT Nbe = 0 (3.42)

Equation 3.42 is constructed for just one REV. Similarly, the entire equation system can be

assembled through the element by element assembling process. Based on the choice of basis

function and algorithm, the calculation of each term in equation 3.42 may be different.

The surface traction term is calculated only at the boundary. The traction terms for

two connected element are cancelled out in the assembling procedure. If B and D are

assumed to be independent of the location, then terms related to B and D can be taken

out of the volume integration term. For the calculation of the integration terms, certain

types of Gaussian quadrature can be applied. Finally a linear system is constructed for

the whole reservoir system, and the displacement of each node can be obtained from the

geomechanical model with the correct set of initial and boundary conditions.

3.2.4 Boundary and Initial Conditions

Appropriate boundary and initial conditions are essential for solving the entire reservoir

governing equation set. The initial condition module in the framework is to set initial values

for pressure, saturation, displacement and other primary variables for the entire reservoir

system. In addition, the initial stress field is crucial to the geomechanical model. The initial

condition setting should follow some reference or practical measurement in the field. The

traction term or displacement needs to be specified on the boundary. This is important

for a reasonable result of the displacement. In ARTS, an individual class is used for the

management of boundary conditions (degrees of freedom) under the geomechanical module.

There are generally two types of boundary conditions involved in the geomechanical

formulation. One is called forced or geometric or essential boundary condition, and the

other is called natural or free boundary condition. The natural boundary condition is

already incorporated in the virtual formulation of geomechanical model when the traction

term is calculated. The geometric boundary condition needs to be satisfied in the solving

procedure. In the geomechanical model of ARTS, the stress or force condition is considered

as the first type of boundary condition and the other conditions, like predefined deformation,

is considered as the second type. The detail of how to incorporate these boundary conditions

is discussed in the following sections.
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Initially, the reservoir is assumed to be at the static state which means the force balance

is valid. Hence, the initial deformation in the reservoir (u0) is euqal to the deformation at

the equilibrium conditon (ueq). The boundary and initial conditions can be summarized in

the following formulation (assuming Ωr is the domain of a deformable reservoir, and Γs is

the boundary of the domain):

The initial condition:

u = u0 in Ωr (3.43)

If the incremental formulation is used, then the values of u0 are not used in the simulation.

The boundary condition:

u = ubc on Γu (3.44)

σ · �n = �t on Γσ

where Γs = Γu+Γσ, and Γu and Γσ represent the surfaces have fixed displacement boundary

and fixed stress boundary. �n is the unit normal vector of the boundary surface.

3.3 Geomechanical Coupling

After construction of the discrete formulations of the geomechanical model and the

reservoir model, specific coupling schemes are to be employed to solve the entire coupled

problem. In general, there are two types of coupling schemes in the research work: soft

coupling and hard coupling. Soft coupling means the geomechanical model is not directly

integrated and solved in the reservoir simulation framework. Hard coupling method inte-

grates the geomechanical model in the reservoir simulator with a specific coupling scheme.

Both methods are implemented in ARTS.

In addition to the coupling scheme, certain coupling parameters are needed as a con-

nection between the two models. Usually, the geomechanical effect on the reservoir is

due to the change of permeability and porosity. As a result, permeability and porosity

introduce the geomechanical effect into the reservoir model. For the geomechanical model,

the pore pressure and temperature change will influence the force balance and change the

displacement field. So the pore pressure and temperature change in the reservoir have an

impact on the geomechanical model.
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3.3.1 Coupling Parameters

Porosity is related to the displacement or other geomechanical variables by performing

the mass balance for the rock. The permeability is related to the geomechanical properties

through the porosity permeability relationship. The continuity or mass balance equation

for solid media in the reservoir is:

∂ρ̇s

∂t
+ ∇(ρ̇svs) = 0 (3.45)

where ρ̇s is the real solid density, vs is the solid velocity. Substituting ρ̇s = ρs(1 − φ) and

∇vs = dεv

dt
in equation 3.45, the following equation can be derived:

∂ρs(1 − φ)

∂t
+ ∇((1 − φ)vs) = 0 (3.46)

The above is integrated to relate porosity and strain (φ0 is initial reservoir permeability):

φ∗ = 1 − (1 − φ0)e
−εv (3.47)

Equation 3.47 can be linearized by assuming a small strain:

φ = (
1 − φ0

1 − φ∗ )φ∗ (3.48)

Permeability can be related to the geomechanics factor with the following equation:

k

k0

=
1 + εv

φ0

1 + εv

(3.49)

where εv = δV
V

= εxx + εyy + εzz, and k0 is the initial permeability of the reservoir. Through

these equations above, the impact of geomechanics is introduced into the reservoir model.

On the other hand, the pore pressure and saturation (temperature) change can influence

the geomechanical force balance through the effective stress equation. The geomechanical

model and the reservoir model are connected through these theoretical formulations. Based

on the coupling parameters and the equations described above, different coupling schemes

can be applied.
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3.3.2 Soft Coupling

The geomechanical effect is implemented in reservoir simulation by using updated poros-

ity and permeability fields. The permeabilities and porosities are assigned as functions of

pressure and saturation, and are updated using an external geomechanical model. This

information could come from field data or from real simulations. Take the geomechanical

model with a poroelastic constitutive relationship as an example. The original permeability

and porosity are described in the following equations:

k = Korg(1 + DK) (3.50)

φ = φorg(1 + Dphi)

where Korg and φorg are the original permeability and porosity calculated by the reservoir

model, Dk and Dphi are the parameters that represent the permeability and porosity in-

crease related to the geomechanical model, and are obtained through external geomechanical

packages.

A soft coupling scheme is developed based on the Itasca 3DEC geomechanical simulator

in ARTS. The geomechanical software 3DEC provides the information of fracture aperture

change versus the pore pressure. Then, a look-up table is introduced in ARTS for calculating

the additional permeability and porosity (Dk and Dphi ) changes based on the information

provided by 3DEC. Cubic law [95, 96] is employed to perform the calculation of permeability

change in the fracture. The same geometry is used in both simulations, and this is a

restriction of this coupling scheme. The scheme costs a little more computational time

compared with the uncoupled simulation, and the importance of geomechanical changes on

the recovery processes can be understood in this manner. Figure 3.1 shows the coupling

procedure of this method.

This method is just an approximation of the geomechanical effect in the reservoir model,

as it assumes that the fracture aperture in the coupled system is similar to the result

that comes from 3DEC. However, this is a fast study tool for understanding how the

geomechanical model influences the reservoir behavior. This scheme is also adaptable to

work with most reservoir models with little change in the source code. Some results of this

method are discussed in Chapter 6.
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ARTS
External 

geomechanical 

model

K=f(p)

Φ=f(p)

(1)(2)

(1): Generate func�on (table) of permeability and porosity change

(2): Integrate the func�on (table) into ARTS  

Figure 3.1: Soft coupling scheme in ARTS

3.3.3 Hard Coupling

If the geomechanical model is integrated in the reservoir simulator, it is called hard

coupling. The geomechanical equation set and conventional reservoir simulation equation

set are solved either “separately” or “together” depending on the complexity of the problem.

In ARTS, an individual geomechanical module is integrated for performing the hard coupling

scheme. The geomechanical module is divided into two parts in the framework. One part is

coupled with DM and the other part is coupled with PM. Different hard coupling schemes

such as iterative coupling are implemented. This method is designed to work with all

potential reservoir models in ARTS with little modification in the source code of the reservoir

model. The basic flow chart of this coupling scheme is described in Figure 3.2.

In order to perform different coupling schemes, the governing system of conventional

reservoir simulation is modified to introduce the geomechanical variables. The original

mass balance equation for the fluid flow in porous media in equation 3.10 can be written as:

−∇ · �vl

Bl

=
∂

∂t
(φ∗ Sl

Bl

) + ql (3.51)

where vl is the fluid velocity in the porous media. If the velocity of the rock is considered,

the fluid velocity needs to be modified as the relative velocity with respect to the solid

velocity:

�vls = �vl − �vs (3.52)

Then equation 3.51 becomes:
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Figure 3.2: Basic flow chart of hard coupling scheme in ARTS

−∇ · �vl − �vs

Bl

=
∂

∂t
(φ∗ Sl

Bl

) + ql

−∇ · �vl

Bl

+ ∇ · �vs

Bl

=
∂

∂t
(φ∗ Sl

Bl

) + ql (3.53)

The definition of solid velocity in the reservoir is:

∇ · �vs = ∇ · D �us

Dt
=

D(∇ · �us)

Dt
=

Dεv

Dt
(3.54)

By substituting equation 3.54 in equation 3.53, and by applying Darcy’s law, the following

equation is derived:

∇ · (
¯̄Kkrl

Blμl

∇ϕl) +
D

Dt
(
εv

Bl

) =
∂

∂t
(φ∗ Sl

Bl

) + ql (3.55)

The above equation is the modified mass balance equation of the black oil model, and it

includes the geomechanical variables for the coupling with the geomechanical model. An-

other accumulation term is added to introduce the geomechanical effect. The modification

of other models follows the same idea. If a solid continuity equation is applied, the following
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assumption can be made: D
Dt

( εv

Bl
) ≈ ∂

∂t
( εv

Bl
). Then equation 3.55 can be written as:

∇ · (
¯̄Kkrl

Blμl

∇ϕl) +
∂

∂t
(
εv

Bl

) =
∂

∂t
(φ∗ Sl

Bl

) + ql (3.56)

The energy balance equation can apply the same method and the true porosity and the

updated permeability can be used. The modified governing equations, together with the

geomechanical governing equation, are basic to applying the hard coupling scheme.

3.4 Linear Solver

After Newton’s method is applied, the reservoir models can be represented by a Jacobian

system of the form:

−�R =

[
∂R

∂Y

]
δ�Y (3.57)

where �R and �Y are the residual and solution vector. J =
∂R

∂Y
is the Jacobian matrix. The

final form of the geomechanical model can be represented in the following formulation:

�b = K�u (3.58)

where K is the global stiffness matrix, �b is the global force load vector, and �u is the

deformation vector. Equations 3.57 and 3.58 can be solved either by using a direct solver

or an iterative solver.

The direct method typically uses variations on Gaussian elimination. It is robust and

reliable in most scenarios. Hence, it is widely implemented in many numerical packages like

LAPACK [97]. A number of linear systems can be solved by this method with a reasonable

computational effort.

There are a number of iterative methods for solving a linear equation. For example,

Jacobi, Gauss-Seidel and SOR are called stationary methods and have been widely applied

in many simulators. These methods are simple to derive and implement, but convergence

is guaranteed only for a limited class of matrixes [98]. In modern simulators, Krylov space

methods (for example, CG, BICG, GMRES, ORTHOMIN, BiCBSTAB, etc.) are widely

implemented and applied. These methods work by forming a basis of the sequence of

successive matrix times the initial residual (the Krylov sequence), and the approximations
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to the solution are formed by minimizing the residual over the subspace formed. The

convergence is somehow guaranteed, but it still depends on the size of the linear system

[99].

For a linear system ¯̄A �X = �B, the Krylov space at kth iteration is defined as Kk =

span( �B, ¯̄A�B0, ..., ¯̄Ak−1 �B0), where B0 = ¯̄A�B0− �B. Krylov subspace methods obtain the new

solution by [100]:

�Xk+1 = �Xk + ωk
�dk (3.59)

where ωk is called the “step length” and �dk is the “search direction.” Different Krylov

subspace algorithms have various ways of constructing these two parameters. In general,

the number of iterations can be estimated by the following:

k ≥ c

√
cond( ¯̄A)ln

2

ε
(3.60)

where cond is the condition number of the system, and ε is the tolerance of the iteration.

Gaussian elimination is applied in solving the CKT model. It is considered as a O(N3)

algorithm [101]. The number of iterations k is determined by the tolerance ε and a method-

related constant c [102],

k ≥ −lnε

c
(3.61)

Preconditioner is applied in solving the linear system. For example, GMRES is applied

to solve the black oil governing equations in this research and a preconditioner that is

generated by ILU factorization is applied. The method is proven to be effective and fast

when applied to a number of case studies. Some preconditioners based on physics [103] have

been applied to reservoir simulation, and have proven to be more effective than traditional

methods.

Krylov subspace methods obtained from external libraries are used exclusively for solving

the linear systems in this research. Two powerful numerical packages, Trilinos from Sandia
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National Laboratory [104, 105], and PETSc from Argonne National Laboratory [106], are

applied in ARTS. Only the linear solver parts of these two packages are used, and the parallel

computational functions are built inside the solver. For instance, Aztec00 and KSPsolve

have been used in ARTS, and MPICH2 [107] is applied to solve the linear system with

parallel computation.

3.5 Solving Procedure

In order to solve the governing equations in a accurate and fast way, center solving

procedure is designed in ARTS (Figure 3.3). First, before the solving procedure begins, the

geomechanical model will or will not be initialized depend on the modeling requirements.

After that, other reservoir models are initialized and the input information is taken in

different modules. Then, various solving sequences can be applied depending on which

models are used and which coupling scheme is applied. Once all the input information is

transported to the framework, the calculation process starts.

During the calculation process, the whole system is written in the discrete formulation

which will be discussed in Chapter 4. Newton’s method is applied to linearize the system

and then the global linear system is assembled. Finally, the linear system is solved by using

the method discussed in section 3.4. Figure 3.3 shows the work flow of solving the governing

equation system.
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Figure 3.3: Basic flow chart of solving procedure in ARTS



CHAPTER 4

DISCRETIZATION METHOD

As mentioned in the last chapter, the partial differential equations need to be solved by

using the discretization formulation. Different temporal and spatial discretization methods

are applied in this research to achieve the goal of multiple purpoese reservior simulation.

Regular first order method is applied to do temporal discretization. For spatial discretiza-

tion, serveral different methods have been applied in ARTS:

1. Control Volume Finite Element Method (CVFEM)

2. Finite element method

3. Standard two-point finite difference method

4. Corner-pointer finite difference method

A general finite volume method is also applied [85, 86], and this method enables ARTS to

work with arbitrary geometry input from other commercial simulators. In this chapter,

the CVFE (Control Volume Finite Volume) discretization method and the concept of

transmissibility is introduced first. The discrete fracture model associated with CVFE

method is also discussed. Finally, other discrete methods used in ARTS are discussed in

general.

4.1 Control Volume Finite Element Method

The CVFE method, which is developed by Yang and Yao [91], is implemented in ARTS

framework. In 3-D, the reservoir domain is discretized into numerous tetrahedral elements.

The tetrahedral elements represent the matrix, and the surface of the tetrahedron represents

fractures. The concept of transmissibility is also introduced and defined in the framework.
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In the CVFE discretization method, a tetrahedral element is divided into four parts:

CV1(ΩE,1), CV2(ΩE,2), CV3(ΩE,3) ,and CV4(ΩE,4) (shown in Figure 4.1).

4∑
i=1

Ωi = ΩE (4.1)

Point o is the center point of the element. Within a tetrahedral element, CVi(ΩE,i) called

a subcontrol volume of the control volume CVi. The sum of all subcontrol volumes that

surround the vertex i is called the control volume associates with the vertex i. Hence, each

tetrahedron element is composed of four subcontrol volumes which belong to four different

control volumes. The flux between each two subcontrol volumes is calculated using the

general transmissibility, which is based on the finite volume method. The transmissibility

can be generally expressed as:

Ti,I,J = ¯̄k∇Ni · �nI,JAI,J (4.2)

where ¯̄k is the permeability tensor, Ni is a discretization related parameter. The detail of

�
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Figure 4.1: A schematic illustration of a tetrahedral element in CVFE method.
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how to define and calculate the transmissibility for CVFE method is discussed in the next

section.

4.1.1 Transmissibility Definition

The concept of transmissibility based on flow calculation [108, 109] has been developed in

several reservoir simulators which used the finite difference method, such as Eclipse, CMG

and Nexus. The transmissibility between two connected control volumes is computed in

advance by using geometrical information, absolute permeability, and net to gross ratio of

these two control volumes. After that, all transmissibilities and connection information is

stored and passed to the simulator during the flux calculation. In ARTS, this concept is

extended to model complex geometry with finite element discretization methods such as the

CVFE with discrete fracture model. The flux of phase p between control volumes CVI and

CVJ can be expressed as:

Fp,I,J = mp
�f · �nI,JAI,J (4.3)

where mp =
krp

μp

is the mobility term of phase p, AI,J is the surface area of boundary ΓI,J ,

and �nI,J is the normal vector of ΓI,J . If a linear basis or interpolation function is used for

element ΩE which contains Nv nodes for the finite element method, the potential (Φ) can

be expressed by Φ =

NV∑
i=1

αiΦi. This is also valid for modeling any finite region that contains

two connected control volumes in the finite difference method. Hence, �f can be expressed as:

�f = ¯̄k∇Φi = ¯̄k

NV∑
i=1

∇αiΦi (4.4)

The transmissibility Ti,I,J between two finite volumes ΩE,I and ΩE,J is defined as:

Ti,I,J = ¯̄k∇αi · �nI,JAI,J (4.5)

Then the flux of phase p between finite volumes CVI and CVJ can be expressed in the
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following simplified formulation:

FP,I,J = mp

Nv∑
i=1

Ti,I,Jφp,i (4.6)

Ti,I,J in equation (4.6) only depends on discretization method, the geometry of the domain

and absolute permeability. Therefore, it can be computed in advance and stored before the

major reservoir simulation process. Different discretization methods can be implemented

using this transmissibility concept and are discussed in the following sections.

4.1.2 Mobility Term and Upstream Weighting

In general, the flux of phase p is calculated using the equation 4.6 and the mobility term

mp is defined as:

mp =
kr,p

μp

(4.7)

where Krp is the relative permeability of phase p. The mobility term that is not related to

discretization method is calculated in PM.

Upstream weighting method was developed by Yang to keep the flux across the interface

area between two subcontrol volumes continuous. This method also ensure the local mass

balance in the system. The upstream condition can be decided by:

mp = mp,I if ∇Φ · �nI,JAI,J � 0 (4.8)

mp = mp,J if ∇Φ · �nI,JAI,J � 0

This means if the flux term is form control volume I to J , all the properties used in flux

calculation should come from the upstream control volume I.

4.1.3 Transmissibility Calculation

If certain discretization methods are used to obtain N and other parameters in the

equation 4.2, the transmissibility term Ti,I,J in CVFE method, can be expressed as:
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Ti,I,J =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎤
⎥⎥⎥⎦ ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎠

T

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nx

ny

nz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

AI,J (4.9)

All the parameters listed in equation 4.9 can be calculated based on finite element dis-

cretization method. This is introduced in section 4.2.

4.1.4 Fracture Model

As discussed in Chapter 1, three methods, single porosity model, dual porosity model and

discrete fracture model, are commonly used for fracture modeling in reservoir simulation

[110]. The single porosity model represents fracture in an explicit way and no special

formulation is needed for calculating the flux term, to or from the fracture. In the dual

porosity model, the fracture is treated differently and has its own porosity and permeability.

The detail of this model is already discussed in Chapter 1, and the flux term can also be

calculated using the transmissibility concept by the following equation in a finite difference

method:

Fp,I,J = mp(Ti,I,JΦp,i + Tj,I,JΦp,j) (4.10)

Tj,I,J = −Ti,I,J

where Φp,i is the potential term of phase p in control volume I.

In order to calculate the flux term between fracture and matrix, a special transmissibility

is defined. Several methods have been used to derive this special transmissibility such as

the Warren and Root formulation (equation 4.11), and the Gilman and Kazemi formulation

(4.12).

TM,F =
20

3
km((

1

Lx

+
1

Ly

+
1

Lz

)2)Vmatrix (4.11)

TM,F = 4km(
1

L2
x

+
1

L2
y

+
1

L2
z

)Vmatrix (4.12)

where km is the permeability of the matrix and Vmatrix is the total matrix volume. Lx, Ly,

and Lz are the fracture spacings in x, y, and z directions.
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The single porosity and dual fracture models are not directly coupled in ARTS in

this research due to the limitation of modeling complex fracture geometry. Instead, the

discretization fracture model with CVFE method is the default fracture model in ARTS.

As discussed in Chapter 1, the discrete fracture model is based on the concept of cross-

flow equilibrium between the fluid in the fractured node and the fluid in the matrix node

connected to the fracture. The dimensionality of fractures is reduced from n to n−1 in this

model. The discrete fracture model offers several advantages:

1. It greatly reduces the complexity of the geometry and hence the computational time

2. It models the fracture impact on fluid flow explicitly

3. No shape function is needed to calculate fluid flow between fracture and matrix

The discrete fracture model can be applied in both the Finite Difference and Finite

Element methods. In ARTS, the discrete fracture model is coupled with CVFE method to

model complex fracture networks existing in reservoirs. There are several ways to represent

fractures in the CVFE method based on discrete fracture models such as Fu’s method and

Monteagudo’s method.

For a reservoir domain Ω = Ωm+Ωf , the matrix formation is discretized by tetrahedrons

and the fracture network is represented by triangle elements along the faces of the tetrahedral

matrix elements. Figure 4.2 illustrates three common methods to represent fractures in a

discrete fracture model.

• Fu’s method:

The fracture representation method in Figure 4.2a, was introduced by Fu et al. (2007)

[83]. The basis of this method is property sharing between matrix and fracture at the

fracture nodes (A, B and C in Figure 4.2a). This means the fracture nodes will have

the same properties with corresponding matrix nodes. However, a different rock and

rock-fluid property may be applied for the fracture, like relative permeability curve,

capillary pressure curve or absolute permeability. In this research, the fractures have

no storage and only provide the flow channels for reservoir fluids. Hence, an additional

flow term is introduced into the mass conservation equations to represent the fluid flow

contributed by fractures.

• Monteagudo’s method

The fracture representation method in Figure 4.2b was first introduced by Monteagudo
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(a) Discrete fracture representation method 1

(b) Discrete fracture representation method 2

(c) Discrete fracture representation method 3

Figure 4.2: Possible representations of fractures in CVFEM-based discrete fracture models
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et al. (2007) [111]. In this method, the nodes represent when the fracture element is

separated from the corresponding matrix nodes, and two sets of different properties

are assigned to the matrix and fracture. Some models were developed to relate to

the pressures and saturations between fracture and the corresponding matrix. This

method is somehow similar to the dual porosity model as the fracture and matrix are

modeled differently. The cross-flow equilibrium concept is introduced to calculate the

flow term between the matrix and fractures. However, this method is not implemented

with compositional models yet.

• Combined method

The fracture representation method in Figure 4.2c is to combine the first and the

second methods. The fracture nodes and corresponding matrix nodes share properties,

but the fracture also works as a storage of gas and oil, besides an additional fluid flow

channel. An additional accumulation term is needed to add in the mass balance

equation in this method.

4.1.5 Transmissibility of Fractures

The fracture is modeled as a 2-D triangular element in CVFEM based discrete fracture

model as shown in Figure 4.3, the fracture flow term can be expressed in following equation:

F f
I,J = mf

p

3∑
i=1

T f
i,I,JΦi (4.13)

and the fracture transmissibility T f
i,I,J can be calculated by:

T f
i,I,J = ¯̄kf∇αf

i · �nf
I,JAf

I,J (4.14)

where �nf
I,J is the normal vector and Af

I,J is the area of the fracture element. Certain

interpolation models can be applied to calculate these terms; the detail of the calculation is

discussed in section 4.2. Equation 4.14 can be expressed in matrix form:

T f
i,I,J =

⎛
⎜⎜⎜⎝
[
kf

xx kf
xy

kf
yx kf

yy

]
·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂N f
i

∂x

∂N f
i

∂y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

T

·
{

nx′

ny′

}
wLI,J (4.15)
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Figure 4.3: A fracture element shown as the side of a matrix tetrahedral element

w is the width or aperture of the fracture and LI,J is the length of the interface between

two finite volumes ΩE,I and ΩE,J .

4.2 Finite Element Method

The finite element method is the base to calculate the gradient of flux term in the

reservior model and it is also used in the geomechanical model to calculate the stiffness

matrix. The basic idea of finite element method is to find the solution of a complicated

problem by replacing it with a simpler one, and the simpler problem is constructed by apply-

ing interpolation model [112, 113]. After that, all terms (include derivative terms) existed

in the mathematical formulation of the problem can be calculated and the approximate

solution can be found.

In ARTS, the same idea is applied and the interpolation models for both reservoir and

geomechanical models are based on a tetrahedron or a triangle element. The detail of how

to apply finite element in ARTS is discussed in following subsections.

4.2.1 Interpolation Model

First, the interpolation model of a tetrahedron element is introduced. This is the base

of calculate Ni term in the flux calculation of CVFE and the basis function Ni in the
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geomechanical model (equation 3.31).

If �r = (x, y, z) represents the location of a point within a tetrahedral element, the field

variable Φ which is a function of �r can be represented through the combination of nodal

variable values and some coefficients in the following equation [114, 115]:

Φ (�r) =
4∑

i=1

αi (�ri) Φi (4.16)

where αi is called the interpolation function or shape function. Φi is the nodal variable

value at points 1, 2, 3, and 4 in Figure 4.4 and point �ri has the global coordinate (xi, yi,

zi).

There are different interpolation methods to calculate αi (�ri). In this research, the

interpolation model can be derived by the natural coordinate method or the direct method.

In the natural coordinate method, the tetrahedron element is divided into four sub-

volumes. Let X be a point located inside the tetrahedral finite element ΩE with the

coordination (x, y, z). ΩE can be divided into four subvolumes by drawing the lines between

the vertices and point X, as shown in Figure 4.4.

The natural coordinates are defined as Ni =
Vi

VΩE

, which is actually the volume fraction.

Hence, the sum of all volume fractions is equal to 1:

1 = N1 + N2 + N3 + N4 (4.17)

The property Φ at any point within a tetrahedral element can be rewritten as:

Φ (�r) =
4∑

i=1

Ni (�ri) Φi (4.18)

There are two important features of natural coordinates:

1. The coordinates (x, y, z) are related to the volume fraction by the following relation-

ships:
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Figure 4.4: The expression of subvolumes within a tetrahedron: (a)V1 = VX234, (b)V2 =
VX134, (c)V3 = VX124, (d)V4 = VX123

x = N1x1 + N2x2 + N3x3 + N4x4 (4.19)

y = N1y1 + N2y2 + N3y3 + N4y4

z = N1z1 + N2z2 + N3z3 + N4z4

2. Φ = Φi when X is located on the i vertex.

In the direct method, equation 4.16 is expressed in a linear algebra formulation and then

the coefficients can be solved:

Φ1 = α1 + α2x1 + α3y1 + α4z1 (4.20)

Φ2 = α1 + α2x2 + α3y2 + α4z2

Φ3 = α1 + α2x3 + α3y3 + α4z3

Φ4 = α1 + α2x4 + α3y4 + α4z4

After solving equation 4.20, αi can be obtained:
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α1 =
1

6V
(a1Φ1 + a2Φ2 + a3Φ3 + a4Φ4) (4.21)

α2 =
1

6V
(b1Φ1 + b2Φ2 + b3Φ3 + b4Φ4)

α3 =
1

6V
(c1Φ1 + c2Φ2 + c3Φ3 + c4Φ4)

α4 =
1

6V
(d1Φ1 + d2Φ2 + d3Φ3 + d4Φ4)

where V is the volume of the tetrahedral element, and can be calculated by:

V =

∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣
(4.22)

The coefficients a, b, c and d can be calculated by the following equations:

a1 =

∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣ (4.23)

b1 = −
∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣ (4.24)

c1 = −
∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣ (4.25)

d1 = −
∣∣∣∣∣∣
x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣ (4.26)

Other constants can be calculated using the same equation set (4.23 to 4.26) but with cyclic

interchange of the subscripts in the order 4, 3, 2, 1. The signs of determinants in equations

4.23 to 4.26 are to be reversed when calculating a2, b2, c2, d2 and a4, b4, c4, d4. If the

calculated αi is substituted into equation 4.20:

Φ(x, y, z) = N1Φ1 + N2Φ2 + N3Φ3 + N4Φ4 = ¯̄N �φ(e) (4.27)

Equation 4.27 is similar to equation 4.18 but with different derivation methods.

For triangular elements, the same method discussed above can be applied. The triangle

domain can also be divided into three subdomains (4.5).
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As shown in Figure 4.5, the total area of three triangles is equal to the triangle element.

If we define Li = Ai

A
, then the following equation is derived:

3∑
i=1

Li = L1 + L2 + L3 = 1 (4.28)

The term Li is actually Ni in the tetrahedron based finite element interpolation model,

hence the term Ni is also used in the triangle based interpolation model. A linear system

can be derived if the relationship between natural and cartesian coordinates is applied:

⎧⎨
⎩

1
x
y

⎫⎬
⎭ =

⎡
⎣ 1 1 1

x1 x2 x3

y1 y2 y3

⎤
⎦
⎧⎨
⎩
N1

N2

N3

⎫⎬
⎭ (4.29)

If equation 4.29 is solved, then the shape function Ni for a triangular element can be

calculated as:

⎧⎨
⎩
N1

N2

N3

⎫⎬
⎭ =

1

2A

⎡
⎣(x2y3 − x3y2) (y2 − y3) (x3 − x2)

(x3y1 − x1y3) (y3 − y1) (x1 − x3)
(x1y2 − x2y1) (y1 − y2) (x2 − x1)

⎤
⎦
⎧⎨
⎩

1
x
y

⎫⎬
⎭ (4.30)

where A is the area of the triangle 1, 2, 3, and it can be calculated as:

A =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ (4.31)

A transformation to convert the coordinates of the nodes from 3-D (x, y, z) to 2-D (x′, y′)

is required for the calculation of normal vector and area A (�nf
I,J and Af

I,J in equation

4.14). Figure 4.6 shows the process of transformation. After the transformation, the new

coordinates (x
′
i, y

′
i) will be used in equation 4.29 to 4.31.

All the derivative terms in the calculation of fracture or matrix transmissibilities can be

derived based on the finite element representation discussed above.

4.2.2 Calculation of Derivative Terms

Equation 4.19 can be expressed as:

�X = ¯̄C · �N (4.32)
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Figure 4.5: Triangular element in finite element method

where �X = [x, y, z, 1]T , ¯̄C =

⎡
⎢⎢⎣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

⎤
⎥⎥⎦ , and �N = [N1,N2,N3,N4]

T .

Then N can be derived by solving equation 4.32:

�N = ¯̄C−1 ·

⎡
⎢⎢⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.33)

Hence, ∇Ni can be calculated by:

∇ �N = ¯̄C−1 ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇x

∇y

∇z

∇1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= ¯̄C−1 ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.34)

The term N is already obtained when solving coefficients α in the second method of

deriving the interpolation model. With the calculated Ni, the derivative of the field variable

Φ�r can be obtained:

∇Φ (�r) =
4∑

i=1

∇Ni (�ri) Φi (4.35)
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Figure 4.6: Transformation of 3-D fracture element into 2-D.

The derivative of Φ depends on all four nodal field variables and the interpolation

functions. The calculation of the gradient of N can be derived from equation 4.21.

For a triangular element, the same method is used to derive the gradient term. The

derivative of the shape function of fracture element is:

∇ �N =

⎡
⎢⎢⎢⎣

x′
1 x′

2 x′
3

y′
1 y′

2 y′
3

1 1 1

⎤
⎥⎥⎥⎦
−1

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇x′

∇y′

∇1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.36)

By applying equation 4.31, the ∇ �N can be rewritten as:

∇ �N =

⎡
⎢⎢⎢⎣

x′
1 x′

2 x′
3

y′
1 y′

2 y′
3

1 1 1

⎤
⎥⎥⎥⎦
−1

·

⎡
⎢⎢⎢⎣

1 0

0 1

0 0

⎤
⎥⎥⎥⎦ (4.37)

Then the derivative term for a property Φf in the fracture element can be expressed as:

∇Φf (�r) =
3∑

i=1

∇Ni (�ri) Φfi
(4.38)
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All the derivative terms in matrix or fracture transmissibility calculation are derived above,

but some geometrical properties like interface area are also needed to calculate the trans-

missibility.

4.2.3 Geometric Property Calculation

As shown in equation 4.9, the geometrical properties are also needed in calculating the

transmissibility and the flux term. For example, in a tetrahedral element, �n and AI,J are

required for the calculation of the flux between two control volumes ΩE,I and ΩE,J . Figure

4.7 shows a tetrahedron element and some of the geometrical properties that need to be

calculated. Point O is the center point of the tetrahedron. Point VfaceI,J,K
is the center

point of the triangle I, J , K which is the external surface of a tetrahedron element. Point

VedgeI,J
is the center point of the edge I, J in a triangle surface. The corner point of the

tetrahedron is defined as VI .

In order to obtain the interface area and corresponding normal vector, all the coordinates

of these special points should be calculated. In a tetrahedron, the coordinates of the center

point O are calculated using the following formulation:

νo =

4∑
i=1

νVi

4
(4.39)

where ν ≡ x, y, z, and it is also used in equation 4.40. The coordinates of the center points

of a triangle and an edge can be calculated as:

νV,face =

3∑
i=1

νVi

3
(4.40)

νV,edge =

2∑
i=1

νVi

2

The normal vector of the plane shown �n in Figure 4.7 is obtained by:

�n =

−−−−−−→
Vedge12VV3 ×

−−−−−−→
Vedge12VV4

‖−−−−−−→Vedge12VV3 ×
−−−−−−→
Vedge12VV4‖

(4.41)
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Figure 4.7: Illustration of some geometrical properties in a tetrahedron element in CVFE
method

While the interface area AI,J corresponding to vector �n in Figure 4.7 can be calculated as:

AI,J =
1

12
‖−−−−−−→Vedge12VV3 ×

−−−−−−→
Vedge12VV4‖ (4.42)

the geometric properties in a triangle element shown in Figure 4.3 can be calculated by:

ν
′
VO

=

3∑
i=1

ν
′
Vi

3
(4.43)

ν
′
Vi,j

=
ν

′
Vi

+ ν
′
Vj

2

�n =

−−−→
VO

′
V

′
i,j

‖−−−→VO′V ′
i,j
‖
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where ν
′
is the new coordinate after coordinate transformation, the subscripts are also ap-

plied in calculating the normal vector �n to indicate that the new coordinates are used. With

all the derivative terms and geometrical properties, the transmissibilities of a tetrahedron

or a triangle element can be calculated. Hence, the governing equations can be written into

discretization formulations.

4.3 Finite Volume Method

The finite volume method developed in the framework is to connect the framework with

external geometrical information to perform reservoir simulation. In order to achieve this

goal, two types of information (volumes and transmissibilities of the finite volumes in a

reservoir) are passed into ARTS from other software. As discussed above, these types of

information can be computed in advance and used in the flow simulation later. Therefore,

the general finite element method is created to read and store volume and transmissibility

information from external software and perform reservoir simulations.

Figure 4.8 shows the general geometric that can be handled by finite volume method.

In a finite region ΩE, two connected parts ΩE,I ∈ CVI and ΩE,J ∈ CVJ share a common

boundary ΓI,J = ΩE,I ∩ ΩE,J . The flux between these two finite volumes can also be

calculated using equation 4.2.

Figure 4.8: Illustration of a finite volume domain
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4.4 Finite Difference Method

Finite difference method is also applied in ARTS. In this method, the reservoir is divided

into numerous blocks and all the reservoir properties are assigned in the center point of the

block. Each block is defined as a finite volume, and the combination of all the finite volumes

is the finite region.

Two kinds of finite difference methods are generally used, one is the standard finite

element method, the other is the corner point finite difference method. In the standard finite

difference method, the whole reservoir is divided into numerous rectangle blocks and the

geometric information can be defined by the center point of the block. In the corner point

finite difference method, the whole reservoir is divided into numerous irregular rectangle

blocks and the geometric information is defined by the corner points in each block. All

these methods are discussed in detail.

4.4.1 Standard Finite Difference Method

For the standard finite difference method, all finite volumes are rectangle blocks, and

the primary variables are block-based. The volume is computed as ΔVCV = DxDyDz. In

Figure 4.9, the transmissibility Ti,i,j between two x-direction connected control volumes i

and j are calculated as:

Ti,i,j =
Ai,jDi,j

Bi,j

(4.44)

Ai,j =
DxiDyiDzi + DxjDyjDzj

Dxi + Dxj

Di,j =
(Dxi + Dxj)

2

(Dxi + Dxj)2 + 4(Di − Dj)2

Bi,j = 0.5(
Dxi

kx,i

+
Dxj

kx,j

)

The flux of phase p can be calculated using the transmissibility formulation:

Fp,i,j = mp(Ti,i,jΦp,i + Tj,i,jΦp,j) (4.45)

Tj,i,j = −Ti,i,j
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Figure 4.9: Illustration of the transmissibility calculation in the standard finite difference
method

4.4.2 Corner Point Method

For the complex reservoir model, the coarsening corner point grid mesh is a good

approach to reduce the number of gridblocks. The primary variables are still block-based

as in the standard finite difference method. However, the finite volume is defined by

the location of eight corner points. The volume of the grid block is very complex. The

grid block can be divided into 6 tetrahedrons. Each tetrahedron has four vertices, a =

(a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), and d = (d1, d2, d3), and the volume is equal to
1

6
| |det(a − b, b − c, c − d) | |.
In Figure 4.10, the transmissibility Ti,i,j between two connected finite volumes in x

directionblocki and blockj is calculated as

Ti,i,j =
1

1
Ti

+ 1
Tj

(4.46)

Ti = kx,i
Ax,i,jDxi + Ay,i,jDyi + Az,i,jDzi

Dx2
i + Dy2

i + Dz2
i

Tj = kx,i
Ax,i,jDxj + Ay,i,jDyj + Az,i,jDzj

Dx2
j + Dy2

j + Dz2
j

where Ax,i,j, Ay,i,j, and Az,i,j are the projections of interface area between the control volume

i and j. Dj is the distance between the center of the block and interface. Dxj, Dyj, and

Dzj are the projections of Dj in x,y and z directions.
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Figure 4.10: Schematic illustration of the transmissibility calculation in the corner point
method

The same form is applied to calculate the flux of phase p as in the standard finite

difference method.

Fp,i,j = mp(Ti,i,jΦp,i + Tj,i,jΦp,j) (4.47)

Tj,i,j = −Ti,i,j

Thus, both structured and unstructured meshes can be implemented for the finite difference

method in this model.

4.5 Well Model

Line source is implemented in ARTS. In this model, the well is discretized as a series of

point sources in the reservoir domain (Figure 4.11). The production or injection rate of a

well can be expressed as:

qwell,p = WIλp(Pwell,p − Pcv,p) (4.48)

where WI is the well index, λp is the mobility term of phase p, Pwell,p is the pressure in the

well of phase p, Pcv,p is the pressure of phase p in the control volume connected with the well.

The calculation of the well index (WI) in equation (4.48) is related to the discretization

method. Peaceman [116] developed a classic well model and the well index can be calculated
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Figure 4.11: Illustration of line source well in ARTS

as:

WII =

⎛
⎜⎝2πhKwbfhf

ln
reff

rwb

+ s

⎞
⎟⎠

I

(4.49)

where h is the length of the well segment, Kwb is the permeability perpendicular to the well,

fh is the interval length factor, f is the well fraction, rwb is the well bore radius, s is the skin

factor and reff is the effective radius reff . Among all parameters listed above, the effective

radius is related to discretization methods. In a finite difference method with cartesian grid

(Figure 4.12), it can be calculated by:

reff =
2√
π

√√
kyy/kxxΔx2 +

√
kxx/kyyΔy2

(kyy/kxx)1/4 + (kxx/kyy)1/4
(4.50)

Figure 4.12 shows some of the parameters in calculating the effective radius in a 2-D

CVFE model. It can be obtained by:

reff =

(
Acv

π

)1/2

(4.51)

For the 3-D CVFE model, the calculation of reff is related to the volume of the correspond-

ing control volume and the length of the well segment in that control volume [117]. It can
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Figure 4.12: Illustration of well index calculation for 2-D finite difference method and
CVFE method

be obtained by:

reff =

(
Vcv

πLwb

)1/2

(4.52)

where Lwb is the length of well segment within the control volume, Vcv is the volume of the

control volume.



CHAPTER 5

VERIFICATION OF THE FRAMEWORK

A numerical framework needs to be verified and validated before it can be applied to

solve some scientific or real field problems. In this process, the accuracy and stability of the

framework are checked to see if these meet the specifications of the original design. There

are various verification and validation methods, like analytical solution method, and index

method, which are widely used in the industry. These methods are also applied in this

research.

In order to validate and verify the ARTS framework, several studies have been done.

Since several submodels have been validated and verified in previous work [82, 83, 85, 86],

the verification studies discussed in this chapter are focused on the geomechanical part. It

is hard to obtain real field data, hence most studies in this chapter come from the literature

and other widely used commercial software. Several verification and validation case studies

are discussed in this chapter, and the result shows the agreement between ARTS and other

software or analytical solutions.

5.1 1-D Consolidation Problem

The first verification case is a 1-D consolidation problem with linear poroelasticity. The

analytical solution to this problem is provided by Jaeger et al. (2007) [118]. This is actually

a 1-D Terzaghi problem [28, 119], in which a layer of porous media was subjected to a

normal external load at the surface. Analytical solutions of this problem have been derived

from the original research work done by Terzaghi in 1923, but the original solution was

restricted to the problem where the vertical strain is small. To extend the limitation of the

problem, several researches [120, 121, 122] have modified the original formulations.

A fluid filled poroelastic layer of soil extending from the surface z = 0 down to the depth

z = h is under a normal traction load p at time t = 0 on the upper surface. The analytical

solutions of pore pressure and vertical displacement can be derived if the linearized theory

is applied.
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The initial pore pressure and initial vertical displacement can be calculated by:

P 0
p =

αM

λ + 2G + α2M
P (5.1)

w0 =
P

λ + 2G + α2M
(z − h)

where λ is the Lame’s first parameter, P 0
p is the initial pore pressure, w0 is the initial vertical

displacement, and M is the Biot modulus which can defined as:

M =
BK

α(1 − αB)
(5.2)

where K is the bulk modulus, B is the Skempton coefficient which is equal to one when the

fluid is assumed to be incompressible.

In this case, the initial strain (εxx and εyy) in the horizontal direction is assumed to be

zero. By applying the force balance equation and the initial conditions, the evolution of the

pore pressure and vertical displacement can be derived. The pore pressure can be calculated

by:

Pp(z, t) =
αMP

λ + 2G + α2M

∞∑
n=1,3,···

4

nπ
sin

(nπz

2h

)
exp

(−n2π2kt

4μSh2

)
(5.3)

where k is the permeability and μ is the viscosity, S is the storage factor defined as:

S =
1

M
+

α2

K + 4G/3
(5.4)

The steady state time for this system to reach equilibrium can be expressed as:

teq ≈ 20μSh2

π2k
≈ 2μSh2

k
(5.5)

The dimensionless pore pressure can be calculated as:

Pp(z, t)

P 0
p

= 1 −
∞∑

n=0

(−1)n

{
erfc

[
2nh + z

(4kt/μS)
1
2

]
+ erfc

[
2(n + 1)h − z

(4kt/μS)
1
2

]}
(5.6)
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where erfc(x) is the coerror function and it can be calculated as [123]:

erfc(x) ≡ 1 − erf(x) =
2

π

∫ ∞

x

e−η2

dη (5.7)

The vertical displacement can be calculated as:

w(z, t) =
P

λ + 2G

[
(z − h) + Ce

∞∑
n=1,3,···

8

n2π2
cos

(nπz

2h

)
exp

(−n2π2kt

4μSh2

)]
(5.8)

where Ce is a coefficient defined as:

Ce =
α2Mh

λ + 2G + α2M
(5.9)

The upper surface vertical displacement can be calculated as:

w(0, t) =
−Ph

λ + 2G

[
1 −

∞∑
n=1,3,···

8

n2π2
exp

(−n2π2(λ + 2G)kt

4μh2

)]
(5.10)

The ARTS framework is used to solve this problem and the result is compared with the

analytical solution, some of the important properties used in the simulation are listed in

Table 5.1. In this verification study, the fluid is assumed to be incompressible and the strain

in the horizontal direction is enforced to be zero in the simulation. A source term is applied

to simulate the drained condition.

Results of this case study are summarized in Figures 5.1 and 5.2. The pore pressure

and vertical displacement obtained from ARTS match closely with the analytical solution.

This excellent agreement shows the validity of the simulation result of ARTS, and hence we

can conclude that ARTS solves the governing system correctly. The evolution of the soil’s

displacement with respect to the initial surface pressure load is clearly shown in this case

study. Initially, the rock deforms elastically when the excess pore pressure is introduced

in the rock. After some time, the pore pressure will relax back to the initial state, but

the deformation still propagates downward in the rock. This whole process is a typical

consolidation process with a drained condition.
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Table 5.1: Summary of important properties of 1-D consolidation case

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 1,1,300

Number of fractures 0

Rock property
φ 0.20

Pore compressibility
(

1
PSI

)
2.2e-6

Permeability (mD) 150.0

Biot coefficient 0.60

Shear modulus (PSI) 8.7e5

Lame’s parameter (PSI) 5.8e5

Fluid property
Water viscosity (cp) 1.0

Initial conditions
P (PSI) 15.0

Sw 0.3
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Figure 5.1: Comparison of pressure for 1-D consolidation
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Figure 5.2: Comparison of displacement for 1-D consolidation

The purpose of this case study is to prove the validity of ARTS in solving the 1-D coupled

problem, and the result is excellent. In this simple 1-D problem, the consolidation process

and the trend of the displacement changes with respect to pressure depletion are clearly

illustrated. But, the governing equation for the 1-D problem is a simplified version of the

governing equations which ARTS solves, hence a 2-D problem is studied in the following

section to provide more evidence of the validity of ARTS.

5.2 2-D Problem

The second verification case study is a 2-D rock under pressure load. This problem

comes from the reversion of Mandel’s problem. Mandel (1953) [124] presented one of the

first solutions for the three dimensional consolidation of Biot’s problem which demonstrates

the nonmonotonic pore pressure effect. The effect of Poission’s ratio on the magnitude of

pore pressure development and dissipation was illustrated by later research which is based

on Mandel’s original research [125]. The nonmonotonic pressure effect has been referred to

as the Mandel-Cryer effect [126, 127, 128]. The physical phenomenon has been confirmed in

the field as the Noordbergum effect [129]. Hence, the solution of Mandel’s problem has been

used as a benchmark problem for testing the validity of numerical code for poroelasticity

[130, 131]. In this research, Mandel’s problem is also used as a verification case study but

with some modifications to simplify the original problem.
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The original Mandel problem involves an infinitely long rectangular specimen, sand-

wiched at the top and the bottom by two rigid plates with no friction [132]. Figure 5.3

shows the basic geometry of Mandel’s problem.

The specimen contains incompressible solid saturated single phase fluid. The initial

pore pressure is p0. The lateral sides are free from normal and shear stress, and the top

and bottom of the specimen have an external force load which is 2F per unit thickness at

time t = 0+. The lateral boundary surfaces S1 and S2 perpendicular to x direction are

traction free and exposed to the surrounding environment, which also has the pressure p0.

According to the Skempton effect [133], a pressure rise will be observed inside the specimen

as the force starts to be applied on the boundary. Drainage will occur at the side surfaces,

and pressure dissipation will also happen. The pressure depletion will later propagate to

the inner region of the specimen. Once the pressure rise vanishes, the drainage will stop.

This is a fairly simple physical process, but obtaining the analytical solution is not easy.

The original solution provided by Mandel only includes pore pressure. Then, Abousleiman

et al. (1996) [132] revisited the problem and extended the solution to compressible fluids and

skeletons, and the material behavior was generalized from isotropy to transverse isotropy.

Indeed, the complete solutions of stress, displacement and pore pressure are provided

[134, 135, 136].

For the particular verification problem, the rock media is assumed to be isotropic, and

the original solution is modified to meet this assumption. The modified analytical solutions

of this problem are listed in equations 5.11 to 5.14. The displacement in x direction can be

calculated by:

ux =

[
Fν

2Ga
− Fνu

Ga

∞∑
i=1

sinβicosβi

βi − sinβicosβi

exp

(−β2
i ct

a2

)]
x (5.11)

+
F

G

∞∑
i=1

sinβicosβi

βi − sinβicosβi

sin
βix

a
exp

(−β2
i ct

a2

)

the displacement in y direction can be expressed as:

uy =

[
−F (1 − ν)

2Ga
+

F (1 − ν)

Ga

∞∑
i=1

sinβicosβi

βi − sinβicosβi

exp

(−β2
i ct

a2

)]
y (5.12)

the pore pressure can be calculated by:
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Figure 5.3: Original geometry of Mandel’s problem

p =
2FB(1 + νu)

3a

∞∑
i=1

sinβicosβi

βi − sinβicosβi

(
cos

βix

a
− cosβi

)
exp

(−β2
i ct

a2

)
(5.13)

the stress in y direction can be calculated by:

σyy = −F

a
− 2F (νu − ν)

a(1 − ν)

∞∑
i=1

sinβicosβi

βi − sinβicosβi

cos
βix

a
exp

(−β2
i ct

a2

)
(5.14)

+
2F

a

∞∑
i=1

sinβicosβi

βi − sinβicosβi

exp

(−β2
i ct

a2

)

the stress in x direction and the shear stress are eliminated by the problem setting:

σxx = σxy = 0 (5.15)

βi is a coefficient defined as:

tanβi =
1 − ν

νu − ν
βi (5.16)

In the above equations, G is the shear modulus, B is the Skempton pore pressure coefficient,

c is the diffusivity coefficient, vu is the undrained Poisson’s ratio. These coefficients can be
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related to some basic mechanical parameters such as Young’s modulus E and Poission’s

ratio ν by the following equations [137]:

G =
E

2(1 + ν)
(5.17)

B = 1 − φK(Ks − Kf )

Kf (Ks − K) + φK(Ks − Kf )

νu =
3ν + B(1 − 2ν)(1 − K

Ks
)

3 − B(1 − 2ν)(1 − K
Ks

)

c =
2KB2G(1 − ν)(1 + νu)

2

9μf (1 − νu)(νu − ν)

where K is the bulk modulus of the skeleton, Ks is the bulk modulus of the solid, Kf is

the bulk modulus of the fluid in the pore space. If the fluid in the pore space and the solid

skeleton are assumed to be incompressible (Kf = 0 and Ks = 0), then equation 5.17 can be

rewrite as:

B = 1 (5.18)

νu = 0.5

c =
2KG(1 − ν)

μf (1 − 2ν)

In order to study the 2-D problem in ARTS, the geometry of the Mandel’s problem has

been modified. The geometry of the domain studied and some of the boundary conditions

used in the simulation are illustrated in Figure 5.4. The study area shown in Figure 5.4 has

a width of 330 ft and a height of 33 ft. The bottom and left boundaries are confined in

the horizontal and vertical direction. The top boundary has a load P0 and a source term is

applied at the right boundary to simulate the drained condition. The shear stress terms are

enforced to be zero by adjusting the coefficient matrix. The fluid saturated in the domain

is assumed to be incompressible and has the viscosity of water at room temperature; hence

the parameters listed in equation 5.18 can be applied. Some of the important parameters

and properties used in this case study are listed in Table 5.2.

As illustrated above, the physical phenomenons observed in this case are governed by

the Skempton effect and results are displayed in Figure 5.5 and 5.6. From the comparison of
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P0

Figure 5.4: Geometry of the 2-D verification problem

Table 5.2: Summary of important properties of 2-D verification problem

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 330,33,200

Number of fractures 0

Rock property
φ 0.20

Pore compressibility
(

1
PSI

)
0

Permeability (mD) 150.0

Biot coefficient 1

Young’s modulus (PSI) 1.45e6

Shear modulus (PSI) 6e5

Possion’s ratio 0.2

Surface P0 (PSI) 1.45e4

Fluid property
Water viscosity (cp) 1.0

Initial conditions
Sg 0.0

Sw 1.0



94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Di
m

en
si

on
le

ss
 P

Dimensionless length

Analy�cal t=0.3 day

Analy�cal t=1 day

Analy�cal t=2 day

Analy�cal t=3 day

Analy�cal t=5 day

Analy�cal t=8 day

ARTS t=0.3 day

ARTS t=1 day

ARTS t=2 day

ARTS t=3 day

ARTS t=5 day

ARTS t=8 day

Figure 5.5: Comparison of pressure for 2-D problem

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10 12

Time/Day

Top Plane Displacement/�

Analy�cal

ARTS

Figure 5.6: Comparison of displacement for 2-D problem



95

dimensionless pressure P
2FLx

and the vertical displacement, an excellent agreement between

the analytical solution and ARTS simulation can be observed. This confirms the validity

of ARTS and proves that the simulation results from ARTS are the correct solution of the

governing equations in this case. In this case, the governing equations are in 2-D and the

flow equation is just the continuity equation with Darcy’s law. It is not exactly the same

with the equations solved in ARTS, but we can still obtain excellent results with some

assumptions. A 3-D analytical solution is needed to fully verify ARTS, however a 3-D

analytical solution for this type of problem is not well established.

In summary, the two case studies discussed prove the validity of ARTS and verify the

numerical results with the analytical solution. Although the problem solved in ARTS is

3-D, these verification studies are enough for the conclusion that ARTS solves the governing

equation correctly. The agreement with analytical solution shows the validity of ARTS in

solving certain types of equations, but the goal of developing ARTS is for solving real field

problems. Hence, another case study is discussed in the next section to compare ARTS with

the commercial software which is widely used in the oil and gas industry.

5.3 Benchmark with STARS

As discussed in the previous section, verification with commercial software is necessary

to verify ARTS framework. This is also called index method for verifying and validating a

computational code. In this case study, the reservoir simulator, STARS from the Computer

Modeling Group (CMG), is used for verification purposes with ARTS.

STARS is a widely used compositional reservoir simulator in the oil and gas industry.

A geomechanical model has been integrated in recent years [138, 139]. However, there is

no industry standard for geomechanical reservoir simulations as a result of some unsolved

difficulties involved in coupling geomechanics with reservoir simulation, such as running

speed and adaptability. The comparison of ARTS and STARS is just to show the agreement

between these two simulators and that ARTS has the potential to be applied in solving real

field problems.

The reservoir model in STARS has a K value based compositional model with a ge-

omechanical model that has nonlinear elasticity and plasticity models. Some parameters

are adjusted in STARS to enforce the linear poroelasticity model, which is used in ARTS.

Indeed, the black oil simulation data is converted to a data set which meets the requirements

of a K value thermal model, some important properties are listed in Table 5.3.
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Table 5.3: Summary of important properties of benchmark study with STARS

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 2200,2200,200

Number of fractures 0

Rock property
φ 0.25

Initial k (mD) for matrix 100.0

Initial depth (ft) 4010.0

Pore compressibility
(

1
PSI

)
3.0e-6

Biot coefficient 1.0

Young’s modulus (PSI) 1e4

Possion’s ratio (PSI) 0.3

Rock fluid data
Pcgw (PSI) 0

Sw 0.2,0.3,0.4,0.5,0.65,0.7,0.8,0.9,1.0

krg 0.0,0.07,0.15,0.24,0.33,0.65,0.83,1.0

krw 1.0,0.8,0.6,0.46,0.34,0.1,0.022,0.0

Initial conditions

P (PSI) 3010.0

Sw 1.0

Well conditions
Production BHP control(PSI) 500

Well location middle of the reservoir
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This case study models a reservoir with a relatively soft rock in the production process

with the coupling of geomechanics and reservoir simulation. The comparisons of pressure,

subsidence, and the production rate are discussed. From these results, we can see a

reasonable agreement between ARTS and STARS. This proves the validity of ARTS again,

and shows the potential of applying ARTS in real field problems.

The block at the center of the top surface is chosen to be the check area for comparing

pressure, subsidence, volumetric change in this case study. Figure 5.7 shows the comparison

of pore pressure at the check area. The results from STARS and ARTS match closely

and the maximum difference between ARTS and STARS is around 9%. The trend of the

pressure change is the same for both simulators and it clearly shows the pressure depletion

procedure after production begins. During the 300-day study period, the pressure declines

as the fluid is producing from the reservoir. The reason for choosing a relatively short time

in this case is to ensure the volumetric change is small and the linear poroelasticity model is

used. The close match of pressures verifies the coupling scheme applied in ARTS solves the

coupled system correctly. Although the match is not prefect, it is still enough to show the

validity of pressure calculation in the coupled model in ARTS. The coupling scheme used is

iterative coupling in STARS, and the same kind of coupling scheme is applied in ARTS.
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Figure 5.7: Comparison of pressure at the check area at the top of the reservoir
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Figure 5.8 shows the subsidence of the check area in the reservoir. Again, agreement

between ARTS and STARS is shown. The reservoir has a trend to move downwards after the

production begins and the pressure starts to decline. This trend is displayed from the results

from both simulators. The results for subsidence between ARTS and STARS are close but

not perfectly close as shown in Figure 5.8. One possible reason is the difference for stress

modeling. In ARTS, a linear poroelasticity model is applied, but an elastic plastic model is

used in STARS. Although some parameters have been set to enforce the linear elasticity in

STARS, the stress models in these two simulators are not the same. Despite the difference

for stress models, the physical phenomenon modeled in these two simulators are the same

and similar mechanical response of rocks during the production process are observed. This

proves the validity of ARTS in calculating the geomechanical property change caused by

pressure depletion.

Figure 5.9 and 5.10 show the comparisons of volumetric change and production rate.

Again, an agreement is shown between ARTS and STARS. In STARS, the compressible

force is defined as positive and sign conversion is made in ARTS to reflect this change. The

volume of rock at the check area shrinks as the production begins. Both the results of ARTS

and STARS capture this trend, which has a huge impact on the reservoir simulation. The

agreements seen in the volumetric change and production rate show that ARTS solves the

coupled system correctly.
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Figure 5.8: Comparison of subsidence at the check area at the top of the reservoir
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Overall, the verification results between ARTS and STARS are reasonable and it shows

the validity of ARTS in solving the coupled system. After a series of case studies from 1-D,

2-D, and benchmark, the conclusion can be drawn that ARTS solves the governing equations

of the coupled system correctly. This is a remarkable result and shows that ARTS can be

applied to solve real field problems. In order to verify and validate ARTS in a more rigorous

way, validation with field data is needed. However, the case studies discussed in this chapter

are enough to show the validity of ARTS as a research tool that can be safely applied to

study some real field problems.



CHAPTER 6

APPLICATIONS AND PERFORMANCE

EVALUATION

This chapter discusses some of the applications studied by the simulator developed in this

research. The geomechanical effect is studied through these applications, and the capability

of ARTS in performing reservoirs simulation with coupled geomechanics is shown.

6.1 Soft Coupling

Soft coupling scheme is created to extend the capability of ARTS in working with other

geomechanical simulators. In this research, 3DEC is used as the external geomechanical

simulator for obtaining geomechanical properties, then all these properties are passed to

ARTS to perform reservoir simulation. In this way, the geomechanical effect is integrated

in the flow simulation and the work flow of this particular scheme is showed in Figure 6.1.

In this application, the geometry of the reservoir and fractures comes from real field

data with some simplifications. Initially, thousands of natural fractures were generated, but

only 16 major fractures are considered in this case. Figure 6.2 shows the geometry of the

reservoir. Some of the major properties are listed in Table 6.1.

The reservoir geometry and fracture location in ARTS simulation are the same with those

in 3DEC simulation, and this guarantees the consistency of the geomechanical properties

information between these two simulators. Three sets of simulations are studied based on

the geomechanical information provided by 3DEC. The first simulation is performed without

geomechanical coupling (no coupling). The second simulation (coupled case 1) is performed

with identical look-up table input information based on the major fracture’s aperture change

from 3DEC. The third simulation (coupled case 2) is performed with various look-up tables

for individual fracture set. The first simulation is designed as a reference case study, and

the second simulation is designed to be the upper limit of the geomechanical impact as the

geomechanical information from the fracture with the largest aperture change is used. The

third simulation is set up to reflect the reality of the 3DEC simulation.
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Figure 6.1: Work flow of soft coupling with 3DEC and ARTS

Figure 6.2: Geometry of soft coupling case study
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Table 6.1: Summary of important properties of soft coupling case studies

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 820,820,132

Number of fractures 16

Number of elements 40612

Rock property
φ 0.30

Initial k (mD) for matrix 0.001

Initial k (mD) for fracture 10.0

Rock fluid data
Sw 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0

krg 0.0,0.07,0.15,0.24,0.33,0.65,0.83,1.0

krw 1.0,0.8,0.6,0.46,0.34,0.1,0.022,0.0

Initial conditions

P (bar) 3000.0

Sw 0.3

Sg 0.7

Well conditions
Production BHP (PSI) 1800

Smart well Maximum rate (MSCF ) 2000

Well location (coordinates) ( 96,49,-29) (95,68,-26)

In Figure 6.3 and 6.4, the gas pressure and saturation distributions are displayed in a

x-y plane view (no coupling). The impact of fracture network is seen in the results as the

gas transport mainly happens near the fracture, and the fractures in the far field are not

fully activated because the pressure depletion in that area is relatively small.

Figure 6.5 and 6.6 illustrate the gas pressure and saturation for the case (coupled case 1)

in which an uniform table input is used. When comparing these figures with Figure 6.3 and

6.4, we can see the gas pressure depletion is faster and reaches more area in the reservoir

if geomechanics is considered. As a result, more gas production is expected and will be

discussed later. From the comparison of the pressure and saturation distribution, we can

see that the geomechanical effect is an important factor for predicting production in the

reservoir system with low permeability.
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Figure 6.3: Gas pressure distribution at 1800 days for the case without geomechanical
coupling

Figure 6.4: Gas saturation distribution at 1800 days for the case without geomechanical
coupling
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Figure 6.5: Gas pressure distribution at 1800 days for coupled case 1

Figure 6.6: Gas saturation distribution at 1800 days for coupled case 1
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In this particular case, the major conductivity path for the gas flow is the fractures,

which have been modeled dynamically by using the input from 3DEC. The apertures of

fractures are increasing due to the injection of hydraulic fracturing fluid in the geomechanical

simulator (3DEC), and this information is integrated in the ARTS simulation by adjusting

the fracture permeability. An uniform table that comes from the fracture that has the

largest aperture (near the injection location in 3DEC) is applied to the whole reservoir.

This brings a dramatic change to the reservoir simulation, which are shown in the gas

pressure and saturation distributions. Overall, the geomechanical effect somehow enhances

the gas production as the permeability increases.

Figure 6.7 and 6.8 demonstrate the gas pressure and saturation distributions for coupled

case 2. In this case, various geomechanical inputs are applied to different fractures in the

reservoir. In the 3DEC simulation, fractures have diverse apertures and some of the fractures

in the far field have much less aperture than the major fractures near injection locations.

These heterogeneous properties have been fully integrated in ARTS simulation in this case

study. The gas flow is also enhanced as a result of geomechanical effect, but the enhancement

is at a lower magnitude compared with coupled case 1. The less activated fractures in left

corner of the reservoir (x-y plane view) are clearly showed in the gas pressure depletion

figures. This case reflects the reality of the real field scenario, and less gas production than

was produced in case 1 is expected.

Figure 6.9 and 6.10 clearly show the comparisons of gas production rates for these three

case studies. Coupled case 1 has the largest cumulative rate, which is almost 25% more

than the case without geomechanical coupling. The gas production from coupled case 2 is

less than coupled case 1, but is still about 7% more than the case without geomechanical

coupling. The instant rate shows the same trend, and it also shows the well control method

changing as a result of smart well control module designed in ARTS.

In this application, the geomechanical effect is a key factor. Enhancement of gas

production is observed from the comparisons of the three case studies. We can conclude

that the increased permeability in the fractures is important for gas production, but this

effect may differ as fractures have different mechanical responds to the hydraulic fracturing

process.
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Figure 6.7: Gas pressure distribution at 1800 days for coupling case 2

Figure 6.8: Gas saturation distribution at 1800 days for coupling case 2
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Overall, soft coupling is a powerful tool which has almost the same computational cost

as a conventional reservoir simulation. Furthermore, the effect of proppant can be simulated

by using the soft coupling scheme. If we have knowledge of where the proppant goes, the

fracture containing the proppant can be assumed to have some minimal permeability, which

is implemented in the look-up table in ARTS. In this way, the reservoir simulation would

reflect the impact of proppant. A demonstration case study of this kind of application is

discussed later.

In order to show the impact of proppant, another case study is performed with soft

coupling scheme. The same fluid properties and geometry information are used as the

previous application, but the number of fractures and the well control method are changed.

The properties and parameters used in this case study are summarized in Table 6.2.

Table 6.2: Summary of important properties of case study for the influence of proppant

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 820,820,132

Number of fractures 20

Number of elements 46449

Rock property
φ 0.30

Initial k (mD) for matrix 0.1

Initial k (mD) for fracture 100.0

Initial conditions
P (PSI) 3000.0

Sw 0.3

Sg 0.7

Well conditions
Production BHP (PSI) 1000

Smart well Constant BHP (PSI) 1000

Location (Coordinate) (164,-46,-66)
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Figure 6.11 to 6.13 illustrate the effect of proppant on the gas production. As shown in

those figures, we can see that production declines slowly when the proppant exists in certain

fractures. The two major fractures with proppant can be identified from the comparison of

Figure 6.11 and 6.12. This case study clearly shows the effect of proppant and the potential

capability of the soft coupling scheme.

In summary, the soft coupling scheme are applied to a series of case studies to learn the

geomechanical effect in the reservoir simulation. This coupling scheme is a powerful tool

with a good running speed. But, it is still an approximation of the geomechanical effect, and

the decoupled approach may not be appropriate in certain conditions. As a result, the hard

coupling scheme is developed in ARTS, and some of the applications using that method are

discussed in the following sections.

Figure 6.11: Gas saturation distribution for the case without proppant
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Figure 6.12: Gas saturation distribution for the case with proppant
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Figure 6.13: Gas production rate for case studies with and without proppant
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6.2 Production Problem

During the production process, the permeability and the porosity changes as the pore

pressure depletes. These changes may dramatically alter the reservoir behavior and po-

tentially change the production. For example, field observations show that the injected

fluid cannot be totally reproduced after hydraulic fracturing process. The geomechanical

effect and natural fracture networks are considered to be the possible reasons. With the

capability of coupling geomechanics, ARTS is applied to study the geomechanical effect

during the production process in a reservoir.

6.2.1 Gas Production from Low Permeability Reservoirs

The first case studied is a gas production problem in a reservoir with three major hy-

draulic fractures. The goal for this cast study is to learn the general impact of geomechanics

in producing gas in an extremely low permeability reservoir. Some of the important reservoir

properties used in the simulation are listed in Table 6.3.

In this case study, different mechanical properties of rock are applied to study the

importance of each parameter. The magnitude of Young’s modulus is a measure of the

stiffness of the material and it is an important parameter to determine how the material

deforms under external force. In this case study, two values of Young’s modulus are selected,

the case with a relatively large Young’s modulus (1e7 PSI) represents the reservoir filled

with stiff rock, which is hard to deform, and the case with a relatively small Young’s modulus

(1e5 PSI) represents the reservoir filled with soft rock, which is easy to deform. Through

these two cases, the impact of Young’s modulus on the gas production can be understand,

and it may provide some valuable guidance to avoid some unexpected incidents in field

operations.

The second mechanical parameter variation is the Poission’s ratio, which is a measure of

the Poisson’s effect. This effect refers to the physical phenomenon that a material tends to

expand in directions other than the direction which has a compressive force. The reservoir is

assumed to be isotropic and obeys the linear poroelastic constitutive relationship in ARTS,

hence the Poission’s ratio is usually assumed to be positive and not greater than 0.5. Two

values (0.2 and 0.35) are applied in this case study. The impact of the variation of this

parameter is discussed later. Generally speaking, a larger Poission’s ratio should reduce the

volumetric change of the reservoir and hence reduces the coupling effect. The reason is that

a larger Poission’s ratio induces a larger transverse strain which may offset the compressive

strain caused by production and make the volume unchanged overall.
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Table 6.3: Summary of important properties of case study for gas production

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 800,800,200

Number of fractures 3

Number of elements 21746

Rock property
φ 0.10

Initial k (mD) for matrix 0.001

Initial k (mD) for fracture 10.0

Pore compressibility
(

1
psi

)
4.0E-6

Biot coefficient 1.0

Young’s modulus (psi) 1e5,1e7

Poisson’s ratio (psi) 0.2,0.35

Rock density
(

lb
ft3

)
156.0

Initial conditions
P (PSI) 3500.0

Sw 0.5

Sg 0.5

Boundary conditions
Top surface load P (PSI) 0,6000

Top surface displacement u (ft) Not confined

Bottom surface displacement u (ft) 0

Left surface displacement u (ft) 0

Right surface displacement u (ft) 0

Front surface displacement u (ft) 0

Back surface displacement u (ft) 0

Well conditions
Production BHP (PSI) 1000

Smart well Constant BHP (PSI) 1000

Location (Coordinates) (200,380,100)

(400,380,100)

(600,380,100)
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Another parameter that varies in this case study is the surface load. The surface load

induced by gravity is assumed to be zero as the incremental formulation is applied in ARTS.

In order to artificially increase the deformation in the vertical direction, a surface load at

time t = 0+ is applied to see how the reservoir behavior changes. It should be noticed that

the surface load is generally assumed to be zero in most case studies discussed in this thesis.

In this case study and other case studies discussed later, an iterative coupling schemes

is applied by default. This scheme has been verified and has been used in the industry as a

standard. Although other types of hard coupling schemes are also developed in ARTS, only

the iterative scheme is applied for case studies discussed in this chapter. Some results from

the simulation are discussed and a primary conclusion of the geomechanical impact on gas

production is drawn.

Figure 6.14 shows the gas pressure distribution without geomechanical coupling after

1800 days of production. The pressure depletion zone is near the fracture and the minimal

pressure in the reservoir is 1300 PSI. Figure 6.15 shows the gas pressure distribution

after 1800 days of production with geomechanical coupling (the reservoir is filled with stiff

rock). we can see the minimal pressure in the reservoir is 1500 PSI. Figure 6.16 shows the

gas pressure distribution after 1800 days of production with geomechanical coupling (the

reservoir is filled with soft rock). The minimal pressure in the reservoir is 1450 PSI in this

case.

Figure 6.14: Gas pressure distribution at 1800 days without geomechanical coupling



115

Figure 6.15: Gas pressure distribution at 1800 days with geomechanical coupling (stiff
rock)

Figure 6.16: Gas pressure distribution at 1800 days with geomechanical coupling (soft
rock)
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From the comparison of the gas pressure distribution in Figures 6.14 to 6.16, we can see

the geomechanical coupling has a huge impact on the pressure depletion of the reservoir. The

pressure solution of the reservoir is increased as the geomechanics is coupled, and it seems

that the pressure increases most in the reservoir with stiff rock. This dramatically changes

the pressure distribution and is supposed to have significant impact on the saturation

distribution and the gas production. The reason for this is not trivial, but the geomechanical

coupling does impact the reservoir. Some possible reasons are discussed later.

Figure 6.17 shows the gas saturation distribution for the uncoupled case after 1800

days of production. The major region having gas flow is the area near the fractures. The

maximal gas saturation is around 0.59. Figure 6.18 shows the gas saturation after 1800

days of production for the coupled case (the reservoir is filled with stiff rock). The maximal

gas saturation in the fracture is around 0.55. Figure 6.19 shows the gas saturation for

the coupled case (the reservoir is filled with soft rock) after 1800 days of production. The

maximal gas saturation in the fracture is around 0.56. The gas saturation distributions are

also changed due to the geomechanical coupling and this phenomenon has the potential to

dramatically impact gas production.

Figure 6.17: Gas saturation distribution at 1800 days without geomechanical coupling
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Figure 6.18: Gas saturation distribution at 1800 days with geomechanical coupling (stiff
rock)

Figure 6.19: Gas saturation distribution at 1800 days with geomechanical coupling (soft
rock)
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As shown in Figures 6.14 to 6.19, the conclusion that geomechanical coupling is signifi-

cant in reservoir modeling, can be drawn. The Poisson’s ratio is 0.2 and the surface load is

zero in all cases discussed above. In the geomechanical coupling process in ARTS, both the

porosity and the permeability are updated based on the geomechanical model, and hence

the geomechanical impact is mainly from variations of permeability and porosity. It should

be noticed that the update of permeability is through the “transmissibility multiplier”in

ARTS, and this is a unique feature because most reservoir simulators can not easily updated

permeability. With this capability, ARTS has the advantage to learn the geomechanical

effect in an accurate manner. As a result of the variation of pressure seen in the pressure

distribution figures, the production is expected to be different for the three case studies

discussed.

Figure 6.20 shows the comparison of instant gas production rate for uncoupled case, cou-

pled case (stiff reservoir) and coupled case (soft reservoir). The comparison of cumulative gas

production is shown in Figure 6.21. In these figures, we can see the geomechanical coupling

dramatically changes the gas production, and the impact on production is positive in this

case study. The soft rock seems to have larger geomechanical effect as the pressure declines

and the resulting production curve varies more dramatically during the production process.

In the reservoir with stiff rock, relatively small changes are seen in instant production rates

until 1000 days of production. Figure 6.22 shows the volume and permeability change of

reservoir with stiff rocks at 1800 days.
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Figure 6.20: Gas production rate comparison (no coupling, soft rock, stiff rock)
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(a) Volumetric change

(b) Change of permeability K
K0

Figure 6.22: Volume and permeability changes at 1800 days (stiff rock)
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The volume and permeability changes in the stiff reservoir are relatively small, but these

smaller changes in the geomechanical properties do cause huge changes to the reservoir

production as shown in the instant and cumulative production curves. The geomechanical

properties change in a larger scale in the soft reservoir, and the results are shown in Figure

6.23. We can see that permeability reduced to 94.9% in the fracture in the soft reservoir

compared with 99.9% in the stiff reservoir. The permeability change is a linear function

of volumetric change and the distributions of those two are similar. The production well

is located at the center of each fracture and we can see that the production of gas causes

a reduction in volume and permeability in the reservoir area near the producing fractures.

The different simulation results of soft and stiff reservoirs shown above indicate the impact

of Young’s modulus. This is discussed further when the results of parameter variation case

studies are shown.

(a) Volumetric change

(b) Change of permeability K
K0

Figure 6.23: Volumetric and permeability changes at 1800 days (soft rock)
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The influence of geomechanical coupling is significant as seen in this case study. Some

possible reasons are proposed as an illustration of the physical phenomenon behind the

simulation results. First, the pressure is increased if geomechanical coupling is applied as

shown in the gas pressure distribution comparisons. This should have a positive impact

on the production because the pressure difference between the well and the reservoir is

increased. The reason for the increased pressure is possibly the decrease of the pore volume.

This hypothesis is not trivial to illustrate as the system is coupled, but we can take a

example in a simple system. Assuming that some fluid is stored in a close container and

the volume of the container is somehow reduced as a result of external force, the pressure of

the fluid should increase as a result of the shrinking space in the container. The reason for

increased pressure in coupled simulation is not as simple as what is described above because

the complexity of the multiphase fluid flow system in the reservoir. The impact of shrinking

volume inducing higher pressure should be observed in the reservoir.

In order to illustrate the phenomenon of increased pressure further, the average reservoir

pressures are compared in Figure 6.24. The average pressure in the reservoir is clearly

displayed and we can see that the geomechanical coupling does increase the pressure in the

reservoir. The stiff reservoir has the largest average reservoir pressure, the reservoir without

geomechanical coupling has the smallest average pressure. However, the reuslt, which shows

that the soft reservoir has a smaller average pressure (larger volume change) than the stiff

reservoir, may invalidate the hypothesis discussed above. This question actually leads to

the second hypothesis which is related to the permeability variation.
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The second possible reason for the production variation in coupled case study is related

to the permeability modification during the production process. As shown in Figures 6.22

and 6.23, the permeability of the reservoir is decreasing during the production, and it has a

negative impact on the production. Hence, the decreased permeability has a reverse impact

on gas production compared with the decreased volume and the final simulation results

show there is a complicated relationship between permeability and volume changes when

predicting gas production with coupled geomechanics. Indeed, the reduced permeability

also has an impact on the reservoir pressure as the conductivity of fluid flow is changed

in the reservoir. This may have positive or negative influence on the production. So the

combination effect of volume and permeability changes determines the overall geomechanical

coupling effect. The relationship between these two factors is complicated as each individual

factor may be positive or negative to gas production .In summary, the geomechanical effect

is really a result of the coupled effect and it is hard to quantitatively learn the impact of each

parameter separately. However, the hypothesis stated here is that the geomechanical effect

on the reservoir behavior (production, pressure, etc.) is a result of the complex combination

effect between the volume and permeability changes of the reservoir.

In order to illustrate the complex relationship between volumetric change and permeabil-

ity change on gas production, several case studies is performed by artificially update only

one term (permeability or porosity) during the coupling process. With the same properties

and geometry as the case studies discussed above, four additional simulations are studied:

• Case 1: Geomechanical coupling only with updated porosity in soft reservoir

• Case 2: Geomechanical coupling only with updated permeability in soft reservoir

• Case 3: Geomechanical coupling only with updated porosity in stiff reservoir

• Case 4: Geomechanical coupling only with updated permeability in stiff reservoir

The comparisons of average pressure and instant gas production rate of these cases and

the baseline cases (both permeability and porosity are updated) are shown in Figure 6.25

and 6.26. In the average pressure comparison, we can see that the pressure change for

case 3 is almost the same with the baseline case (stiff reservoir). This means that the

porosity modification does have a huge impact on the pressure solution. The results for

soft reservoir shows the same trend. From the average pressure curves of case 2 and case

4, we can see that reducing permeability also helps to increase the reservoir pressure. The
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Figure 6.25: Average pressure comparison for case studies on the impact of changing
volume and permeability

instant production curve reflects a similar trend which shows the impact of permeability and

porosity updating. These results confirm the hypothesis discussed above, but also indicate

that the coupled effect is not a simple linear combination of the effects caused by volume

and permeability changes.

From the results discussed, we can see that the geomechanical coupling (with updated

porosity and permeability) does have a huge impact on the reservoir simulation. The

complex combination effect of the changes of volume and permeability decides the overall

impact of geomechanical coupling on gas production. In this particular case study, the

geomechanical effect acts as a positive factor for production, but it may be a negative

factor in certain conditions. For example, if the reduction of permeability is large enough to

significantly block most of the fluid flow paths in a reservoir, the production is expected to be

less. In this research, the infinitesimal strain theory which assumes a small volumetric strain

is applied, and the permeability reduction cannot be very large. Hence the geomechanical

effect is a positive factor for production in most case studies.

As mentioned in the beginning of this section, the variation studies are performed to

learn the effects of some parameters that govern the geomechanical model implemented in

the research. The Young’s modulus, Poission’s ratio and the surface load are varied to learn

the impact of each individual parameter. Some of the cases studied are listed in Table 6.4.
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Figure 6.26: Gas production rate comparison for case studies on the impact of changing
volume and permeability

Table 6.4: List of case studies for variation of geomechanical parameters

Case name Young’s modulus (PSI) Poission’s ratio Surface load (t+, top,PSI)
Case A 1e7 0.2 0,0,0

Case B 1e7 0.35 0,0,0

Case C 1e5 0.2 0,0,0

Case D 1e5 0.35 0,0,0

Case E 1e7 0.2 0,0,6000

Case F 1e7 0.35 0,0,6000

Case G 1e5 0.2 0,0,6000

Case H 1e5 0.35 0,0,6000

Case A and case C are the cases for stiff and soft reservoirs discussed above. These

parameter variation case studies can illustrate the general impact of each parameter to the

geomechanical model and hence to the reservoir model. The reservoir geometry and other

properties are the same with previous case studies and are listed in Table 6.3. As discussed

before, the geomechanical parameter is vital for the calculation of volumetric change in the

reservoir. The purpose of this case study is to understand the impact of each individual
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parameter and this can also help to test the stability of the framework.

The results from case studies listed in Table 6.4 are compared and some primary conclu-

sions regarding the impact of individual parameters are drawn. The parameter applied in

this case study is not based on the real field data and some parameters such like surface load

are not usually defined in most simulations. After this study, the parameter of geomechanical

model is fixed in case studies discussed in the following sections.

Figure 6.27 shows the comparison of volumetric change near fracture in the plane where

the production well is located. we can see that the magnitudes of volume changes are

different as the Young’s modulus varies from 1e7 to 1e5, but the distribution of the volume

change does not vary significantly. This means the mechanical change of the reservoir with

respect to pressure change is mainly determined by Young’s modulus. The variation of

Poission’s ratio alters the distribution of volumetric changes, and we can see the difference

of volume change area in the reservoir from the result. The magnitude of volume change

does not vary much. This means the Poission’s ratio mainly determines the distribution of

displacement and hence volumetric change in the reservoir.

Figure 6.27: Comparison of volumetric change near fractures for case A, B, C and D
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From the result of volume change comparison of case A, B, C and D, the impact of

Young’s modulus and Poission’s ratio can be illustrated. But, each individual parameter is

related to other parameters used in the coupled system of geomechanical model and reservoir

model, and it is hard to identify the influence of an individual parameter. The case study

performed here is just a primary illustration of the impact of some parameters used in the

coupled simulation, and it would help to understand the geomechanical coupling effect in

reservoir simulation and the geomechanical model itself.

Figure 6.28 shows the comparison of volumetric change near fracture in the plane where

production well is located when a surface load is applied at t = 0+. The impacts of varying

Young’s modulus and Poission’s ratio are also observed in this figure. Compared with Figure

6.27, we can see differences in the magnitude of the volume change, and this illustrates

the impact of the surface load. The influence of surface load is fairly straightforward to

understand as this additional force at the surface would force the reservoir to deform in

that particular direction.

Figure 6.28: Comparison of volumetric change near fractures for case E, F, G and H
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Overall, the results for the case studies with surface load are similar to case A, B, C,

and D, except in regards to the magnitude of the values (volume change, displacement, etc).

Hence, we can conclude that surface load mainly changes the magnitude of the displacement

and volume change. Indeed, the results for soft and stiff reservoirs have similar distributions

of geomechanical variables like volume change. As a result, only the displacement figures

for case C and D are showed to illustrate the displacement distribution in the coupled

simulations. Figure 6.29 shows the displacement in x, y and z direction for case C and

D. The displacement figures for other cases are similar but with a different magnitude of

values.

Case C Case D

Figure 6.29: Comparison of displacement near fractures for case C and D
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The displacement distributions of cases A, B, E, F, G and H have the same patterns

compared with case C and D. In Figure 6.29, the difference of displacement distributions

for case C and D are well illustrated. The impact of Poission’s ratio can be seen again.

A relatively large displacement in the vertical direction is seen as well, this means there

may be a subsidence in the reservoir during production. The values of the vertical direction

displacement may not show the real field scenario as the boundary condition applied in this

case (all surfaces are confined expect top surface) does not reflect the real field conditions.

In this case, the only way to compensate the pressure change is the deformation of the top

surface. In real field simulation, the boundary condition of stress should be given and the

value of vertical direction displacement can be larger or smaller than the result seen in this

particular case study.

In order to show the impact of varying geomechanical parameters on the production,

Figures 6.30 and 6.31 display the instant and cumulative gas productions for case studies

listed in Table 6.4. From the production curves, the impacts of different geomechanical

parameters on the production are clearly shown, and the complex relationship between vol-

ume and permeability changes can be seen again. For example, case G gets less production

than the case without geomechanical coupling, which shows that the reducing permeability

controls the production process.

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500

Time/Day

Gas Produ�on Rate (MSCF/Day)

No coupling

Case A

Case B

Case C

Case D

Case E

Case F

Case G

Case H
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Figure 6.31: Gas production rate for case A, B, C, D, E, F, G, H

In summary, the impacts of different geomechanical parameters and the mechanism for

increasing and decreasing production can be seen in the production curves of case studies

A to H again. We can conclude that the geomechanical coupling can be a positive or

negative factor for production. The varying porosity and permeability are two major factors

to determine the overall effect of geomechanical coupling on reservoir simulation and the

prediction of production in the coupled model. Indeed, different geomechanical parameters

have various impacts on the geomechanical model and hence the reservoir simulation. A

set of appropriate geomechanical parameters is needed for the real field reservoir simulation

with coupled geomechanics.

6.2.2 Oil Production from Low Permeability Reservoirs

The second reservoir simulation case study performed is the process of producing oil

from a low permeability reservoir. The purpose of this simulation is to show the capability

of geomechanical coupling with a three-phase black oil model, and the different impacts of

geomechanical coupling on oil production are expected to be illustrated. Some important

parameters used in this case study are summarized in Table 6.5. The reservoir has extremely

low matrix permeability and only has three vertical fractures initially.

Some analysis is stated before the results for the oil production cases are shown. First,

the effect of reducing permeability to oil production is supposed to less than that to gas

production. The reason is that the viscosity of the oil is much higher than gas, and the
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Table 6.5: Summary of important properties of case study for oil production

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 1000,1000,300

Number of fractures 3

Number of elements 43666

Rock property
φ 0.30

Initial k (mD) for matrix 0.00001

Initial k (mD) for fracture 1000.0

Pore compressibility
(

1
psi

)
4.0E-6

Biot coefficient 1.0

Young’s modulus (psi) 5.8e5

Poisson’s ratio (psi) 0.2

Rock density
(

lb
ft3

)
156.0

Initial conditions
P (PSI) 5000.0

So 0.8

Sw 0.2

RS
(

MSCF
STB

)
1.13

Boundary conditions
Top surface load P (PSI) 6000

Top surface displacement u (ft) Not confined

Bottom surface displacement u (ft) 0

Left surface displacement u (ft) 0

Right surface displacement u (ft) 0

Front surface displacement u (ft) 0

Back surface displacement u (ft) 0

Well conditions
Production BHP (PSI) 1000

Smart well Constant BHP (PSI) 1000

Location (coordinates) (300,479,118) (394,465,126)

(500,480,115) (586,483,125) (700,500,148)
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mobility term KKr

μ
is much smaller for oil. Hence, the influence of decreased permeability

is relatively small for oil. Indeed, the magnitude of permeability change is relatively small

as we see in the gas production case. The dominate factor in predicting the oil production

should be the changing pressure due to the porosity (permeability) change, and we expect to

see an increase in production as well. Second, the higher permeability ratio between fracture

and matrix is important. In this case the matrix permeability is only 0.00001 md and the

fracture has a relatively large permeability of 1000 md. This means the fluid flow happens

only in the area near fractures. Also, reservoir properties are becoming more heterogeneous

due to the introduction of geomechanics. All these factors are important and can potentially

change the reservoir production.

Figure 6.32 shows the oil pressure distribution at 2500 days after production, we can

see the area where oil pressure declines is near the fracture. Figure 6.33 shows the oil

saturation distribution after 2500 days of production and we can see the oil flow mainly

occurs in fractures. The pressure and saturation figures are x-y plane view at the surface

where z = 150ft.

Figure 6.32: Oil pressure distribution at 2500 days with coupled geomechanics (x-y plane
z = 150ft)
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Figure 6.33: Oil saturation distribution at 2500 days with coupled geomechanics (x-y
plane z = 150ft)

Figure 6.34 shows the average pore pressure for coupled and uncoupled cases, and we

can see the coupled case has higher pressure. Figure 6.35 shows the change of permeability

in the reservoir after 2500 days of production, and this change is relatively small across the

reservoir. As a result of increased pressure and small reduction of permeability, we expect

an increase of oil production and this is proved by the simulation results.

As shown in Figure 6.36, coupled simulation result shows a 20% increase of production.

This dramatic change is similar with what we saw in the gas production case studies,

and shows the combination effect of volume and permeability changes again. The volume

change and displacement distributions are shown in figure 6.37. The patterns of volume

change and displacement distributions are similar to the case study of gas production, and

shrinking pore volumes due to production are observed. The shrinking pore volume can be

an additional driving force for oil production and this is also known as compaction driven

oil production.

In summary, the case study of oil production from extremely low permeability reservoirs

proves the capability of ARTS to perform three-phase black oil simulation with coupled

geomechanics. More oil production is predicted by the coupled simulation as a result of

additional driving force of decreased pore volume.
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Figure 6.34: Average pressure for the case study of oil production

Figure 6.35: K
K0

at 2500 days (x-y plane z = 150ft)
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6.2.3 Complex Fracture Networks

In previous case studies, the fracture network in the reservoir is relatively simple.

However, the real reservoir is always assumed to have complex fracture networks and the

impact of geomechanical coupling in those systems is an interesting problem. The goal of

this case study is to show the capability of ARTS in simulating complex fracture networks

with coupled geomechanics, and some preliminary conclusions of the geomechanical effect

in a reservoir with complex fracture networks are drawn. In this case study, a reservoir

model which has 44 fractures with different dip angles is created, the basic geometry of the

fractured reservoir is shown in Figure 6.38.

As shown in Figure 6.38, the fractures existing in the reservoir are highly connected.

This means that more areas with higher permeability exist in the reservoir, and it will have

a significant impact on the coupled simulation. The reservoir is assumed to have water and

gas in place initially. Some important properties used in this case study are listed in Table

6.6. The matrix permeability is extremely low (0.00001md) and the fractures have much

higher permeability (100md). Nine production wells are located at the top of the reservoir

and the production continues for 3000 days.

Figure 6.38: Geometry of case study for complex fracture networks
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Table 6.6: Summary of important properties of case study for complex fracture networks

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 1200,1200,200

Number of fractures 44

Number of elements 52157

Rock property
φ 0.20

Initial k (mD) for matrix 0.00001

Initial k (mD) for fracture 100.0

Pore compressibility
(

1
psi

)
4.0E-6

Biot coefficient 1.0

Young’s modulus (psi) 1e5

Poisson’s ratio (psi) 0.35

Rock density
(

lb
ft3

)
156.0

Initial conditions
P (PSI) 4000.0

Sw 0.2

Sg 0.8

Boundary conditions
Top surface load P (PSI) 0

Top surface displacement u (ft) Not confined

Bottom surface displacement u (ft) 0

Left surface displacement u (ft) 0

Right surface displacement u (ft) 0

Front surface displacement u (ft) 0

Back surface displacement u (ft) 0

Well conditions
Production BHP (PSI) 1000

Smart well Constant BHP (PSI) 1000

Location (coordinates)

(486,788,200) (494,532,200) (470,258,200)

(777,256,200) (761,256,200) (786,790,200)

(274,792,200) (288,531,200) (258,300,200)
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Two sets of simulations are performed. The first simulation is coupled with geomechan-

ics, the second is not. The results from these two simulations are compared to see the

geomechanical effect. As we seen in the previous case studies, a positive geomechanical

effect is expected in this case study. However, the highly connected fracture networks may

change the characteristics of geomechanical coupling. For example, one possible reason

for the increasing pressure seen in previous case studies is the relatively low permeability

and limited fracture area in the reservoir. This is not valid due to the highly connected

fracture networks, and the area of fractures may be large enough to make the reservoir more

permeable overall. Furthermore, the geomechanical coupling in these type of reservoirs adds

another level of heterogeneity to a heterogeneous system. This makes the system behavior

even harder to predict. This case study is an excellent showcase for evaluating the advantage

of ARTS in modeling complex fracture network with geomechanical coupling, and we expect

a fundamentally different result compared with previous cases.

Figure 6.39 and 6.40 display the gas pressure and saturation distributions at 2800

days after production (coupled geomechanics) in a x-y plane view. The gas pressure and

saturation for the uncoupled case is almost the same compared with the coupled case.

In order to illustrate the pressure difference between uncoupled and coupled simulations

clearly, the variation of average reservoir pressure is shown in Figure 6.41. The pressure

differences shown in the result are relatively small, and have both positive and negative

values. This is totally different with what we observed in previous case studies and a

similar production is expected for these two cases. Figure 6.42 shows the cumulative gas

production for coupled and uncoupled cases, and an almost identical production curve is

observed. Figure 6.43 shows the difference in cumulative productions between these two

cases, and a negligible difference is observed. Indeed, the comparisons of average pressure

and cumulative production also illustrate the heterogeneity in the system as the differences

observed have both positive and negative values. These results are different than what we

saw in previous cases, and the combination effect of fracture networks and geomechanical

coupling is the main reason.

Figure 6.44 and 6.45 display the values of K
K0

at 2800 days in the fractures and in the

matrix. Figure 6.46 shows the volume change and displacement distribution in the reservoir

at 2800 days. The influence of fracture networks is clearly shown, and the heterogeneity in

this system can be seen from the volume change and displacement again. This shows that

the geomechanical coupling can potentially bring heterogeneity in the reservoir simulation.
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Figure 6.39: Gas pressure distributions at 2800 days with coupled geomechanics (x-y plane
z = 100ft)

Figure 6.40: Gas saturation distributions at 2800 days with coupled geomechanics (x-y
plane z = 100ft)
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Figure 6.41: Difference of average pressure between coupled and uncoupled cases
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Figure 6.44: K
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at 2800 days in fractures
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Figure 6.45: K
K0

at 2800 days in matrix
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Figure 6.46: volume change and displacement at 2800 day (x-y plane z = 100ft)
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In summary, this case study demonstrates the capability of ARTS in modeling complex

fracture networks with coupled geomechanics. The geomechanical coupling brings hetero-

geneity in the reservoir system, and the combination effect of geomechanics and fracture

networks governs the system. The geomechanical effect in a reservoir with complex fracture

networks is fundamentally different from a normal reservoir.

6.2.4 Water Block

As discussed before, water loss has been observed in the field operation and geomechanics

is thought to be a factor contributing to this phenomenon. A demonstration case study is

designed to learn the possible causes of water loss or how water block happens in the field

operation. A reservoir with six major fractures are created, one of the fractures is located

in the middle of the reservoir, the other five fractures are perpendicular to this fracture.

The matrix permeability is set to be 0.001 md and fractures’ permeability is 10 md. The

fractures are assumed to be water filled (Sw = 0.8), and the matrix has much less water

initially. The boundary conditions are adjusted to make the reservoir more deformable

overall. Some of the important properties used in this case study are listed in Table 6.7.

Some of the results from the simulation are summarized, Figures 6.47 and 6.48 show

the water pressure and saturation distributions at 3000 days. The major pressure depletion

area is near the fractures, and there is still a lot of water in the fractures especially vertical

fractures at 3000 days. We do not see dramatic difference of the distribution of water

pressure for the uncoupled case. In order to illustrates the pressure variation between

coupled and uncoupled cases, the average pressure is shown in Figure 6.49. The pressure

predicted by coupled model is smaller than that predicted by the uncoupled model. As

the average pressure curve suggests, less water production is expected for the coupled

model. Figures 6.51 and 6.50 display the instant and cumulative water production curves

for uncoupled and coupled simulations. A significant decrease of water production (more

than 20%) is observed, and this shows that the water block happening in field operation

can be caused by geomechanics.

The volume and permeability change are shown in Figure 6.52 and 6.53. A relatively

large change is observed, and this data may not reflect the real field conditions as the

demonstration purpose of this case study. We can also see the volume change is large in the

area near production well. These results show that the possible reason for declining water

production may be the potential closeness of the producing fractures.
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Table 6.7: Summary of important properties of case study for water block

Discretization method CVFE
Geometry information
Lx, Ly, Lz (ft) 2000,2000,200

Number of fractures 6

Number of elements 56993

Rock property
φ 0.10

Initial k (mD) for matrix 0.001

Initial k (mD) for fracture 10.0

Pore compressibility
(

1
psi

)
4.0E-6

Biot coefficient 1.0

Young’s modulus (psi) 1e5

Poisson’s ratio (psi) 0.35

Rock density
(

lb
ft3

)
156.0

Initial conditions
P (PSI) 4000.0

Sw matrix 0.2

Sw fracture 0.8

Boundary conditions
Top surface load P (PSI) 6000

Top surface displacement u (ft) Not confined

Bottom surface displacement u (ft) 0

Left surface displacement u (ft) Confined in y direction

Right surface displacement u (ft) Confined in y direction

Front surface displacement u (ft) Confined in x direction

Back surface displacement u (ft) Confined in x direction

Well conditions
Production BHP (PSI) 500

Smart well Constant BHP (PSI) 500

Location (coordinates) (200,1000,100) (600,1000,100)

(1000,1000,100) (1400,1000,100) (1800,1000,100)
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Figure 6.47: Water pressure distribution at 3000 days in the reservoir

Figure 6.48: Water saturation distribution at 3000 days near production well
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Figure 6.51: Cumulative water production of water block case study

Figure 6.52: Volume change at 3000 days in the reservoir
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Figure 6.53: K
K0

at 3000 days near production well

Base on the results discussed above, the water may be trapped in the fractures or other

natural fractures if the volume change is large enough. The problem is more interesting if

different imbibitions are considered. This case study’s goal is to demonstrate that the water

block can be caused by geomechanics. Additional studies can be performed in ARTS but

are not included in this thesis.

In summary, geomechanical effect is a potential factor causing water block in the field

operation. This case study supports this through a simple demonstration simulation. ARTS

has the capability to simulate this kind of field problems in more detail and helps to find a

solution to these problems.

6.3 Summary

In this chapter, several case studies are performed to learn the geomechanical effect

in reservoir simulation. We can conclude that the geomechanical coupling is significant

and must be considered in an accurate reservoir simulation. All these applications also

demonstrate the capability and good performance of ARTS, which is the major purpose of

this chapter. ARTS has the potential to simulated a variety of problems with geomechanical

coupling, but these applications are not discussed in this thesis. In a word, ARTS is an



148

effective tool for simulating reservoir transport phenomenons with or without geomechanics.

The validity and capability of ARTS is proved through the case studies discussed in this

thesis.



CHAPTER 7

SUMMARY AND FUTURE WORK

In this chapter, the summary of the work done in this research is discussed, and some

future work is recommended.

7.1 Summary of Research Work

ARTS (Advanced Reactive Transport Simulator) has been developed in this research

with geomechanical capabilities. This framework has been verified and validated, through a

series of studies. A number of case studies have been performed to understand physical phe-

nomena in tight or unconventional reservoirs. One of the advantages for the geomechanical

model in ARTS is the integration of the Discrete Fracture Network (DFN) model. A series

of studies has been performed to learn the impact of fractures in unconventional reservoirs.

This is a unique and powerful feature in ARTS compared to other simulation tools currently

available. The case studies shown that it is important to consider geomechanical effects in

certain simulations, particularly when considering simulations with hydraulic and natural

fractures.

7.1.1 Major Accomplishments

This research work has three basic contributions: 1). Development of a new generalized

reservoir simulation framework. 2) Creation of a geomechanical model within the new

framework. 3). Examination of important applications in unconventional oil and gas recov-

ery using the tools developed. This research helped create a better platform for studying

unconventional oil and gas reservoir simulation. Some of the important accomplishments

and findings of this research are summarized as the following.

1. Framework development

(a) Development of ARTS

ARTS, a generic and modularized computational framework, is developed in this
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research based on the original University of Utah Finite Element Simulators

(UFES) with multiple physical models and various discretization methods. A

black oil model (single phase, two-phase, three-phase) has been implemented

in ARTS. Other models developed in previous research such as compositional

K-value thermal model and reactive transport model are also integrated in ARTS.

Future modules can be integrated in ARTS efficiently through generic and mod-

ularized framework structure. The computation efficiency of ARTS has been

improved through the integration of the latest linear solvers and mesh quality

control module. Postprocessing codes are developed to visualize results, and

several utility tools such as well location selection and production data conversion

have also been developed. An entire work flow from the input data to final results

has been established in this research through the development of ARTS and other

utility tools.

(b) Geomechanical model development

A generic geomechanical model is developed in ARTS using the finite element

method. The DFN model is used as the fracture representation method. Sev-

eral constitutive relationships such as linear poroelasticity and linear thermal

poroelasticity are integrated in the geomechanical model. An incremental formu-

lation is used to facilitate the further implementation of nonlinear constitutive

relationship. The implementation of the geomechanical model is based on the

modularized framework structure of ARTS, and enables effective integration of

submodels.

(c) Development of soft coupling scheme

A soft coupling scheme is implemented in ARTS through a look-up table, and

this scheme enables communication between ARTS and other geomechanical

simulators. 3DEC is used as the external geomechanical simulator to perform

soft coupling in this research. The capabilities and usefulness of soft coupling

scheme are demonstrated through case studies.

(d) Development of hard coupling scheme

Hard coupling scheme is implemented to couple the reservoir model and the

geomechanical model in ARTS. The implementation allows multiple submodels

for coupling such as one way, two may and iterative coupling schemes. Iterative
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coupling schemes is applied to perform coupled reservoir simulations in this

research and has been verified through a variety of case studies.

2. Verification

(a) 1-D consolidation problem

An excellent agreement between the analytical solution and the results from

ARTS for a one dimensional consolidation problem is observed. This shows the

one-dimensional problem is solved correctly and the right physical phenomena

are captured.

(b) 2-D consolidation problem

The comparison of the simulation result and the analytical solution for a two-

dimensional consolidation problem shows the validity of the geomechanical im-

plementation in ARTS. ARTS also captures the pore pressure and deformation

response to a surface load correctly.

(c) Indexing method: benchmark with STARS

A reservoir with single phase fluid is simulated using ARTS and STARS (com-

mercial reservoir simulator with geomechanics) in three dimensions. A reasonable

agreement between the results from those two simulators is observed. ARTS is

an unstructured mesh simulator and can be used to solve problems in complex

geometry. This shows that ARTS can be used to solve the real field problems

and the result from ARTS can be trusted.

3. Studies of geomechanical impact on reservoir simulations

(a) Gas production forecasting with soft coupling

The impact of using soft coupling was studied in a case where a hydraulic frac-

ture was embedded in a tight naturally fractured reservoir. The geomechanical

simulator was 3DEC, and the fracture network properties (permeabilities) were

transferred to ARTS as the reservoir pressure changed. It was observed that the

gas production increased with soft coupling in comparison to the baseline case

where the fracture properties were static. Fracture permeabilities increased and

caused this effect. Impact of the presence of the proppant was also examined.

When the proppant holds the main fracture open, the gas production decline rate

is arrested.
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(b) Gas production in a fractured reservoir

The hard coupling scheme of combining geomechanics and flow was used to

study the effect of incorporating geomechanics in simulating production of gas in

fractured reservoirs. Geomechanical coupling may result in increased or reduced

gas production in a fractured reservoir. The decreased pore volume caused by

production is a positive factor for production, but the decreased permeability of

the entire reservoir (fracture and matrix) may be a negative factor for production.

The complex combination effect of the variations of permeability and porosity due

to volume changes determines the overall impact of geomechanics on production.

Young’s modulus was observed to be the most important of the geomechanical

parameters in parameter sensitivity studies conducted. Poission’s ratio and

surface load have limited impact on geomechanical calculation and hence the

production.

(c) Oil production in a fractured reservoir

Hard coupling was also used to study the effect of incorporating geomechanics

in simulating oil reservoirs. Three-phase black oil model was the physical model

used in this study. Geomechanical coupling was observed to increase production

in an oil reservoir. Possible reasons are the relatively low mobility of oil and

extremely low matrix permeability. The capability of ARTS in performing mul-

tiphase reservoir simulation with geomechanics was demonstrated through this

case study. Indeed, the extremely low matrix permeability used in the case shows

the potential of ARTS in simulating a large variety of unconventional reservoir

simulations.

(d) Complex fractured reservoirs

Most of the studies described previously examined situations with only a few

fractures. In this study, geomechanics and flow were combined to study gas

production in a 44-fracture discrete-fracture network model. The fractures were

planes in three dimensions and were assigned arbitrary lengths, angles and pen-

etrations. In this particular case, incorporating geomechanics did not change

gas production significantly. The heterogeneity and relatively larger surface area

of fractures were primary reasons. The capability and advantage of ARTS in

simulating complex fracture networks were demonstrated through this case study.

(e) Water block
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Water blockage is a phenomenon where the water occupies certain areas of

the fracture network and is trapped when the fracture contracts on pressure

depletion. Using ARTS as a tool to study this phenomenon was demonstrated

by using a handful of fractures off of a horizontal well. As microseimic sensing is

used to pinpoint fracture locations, this type of identification of possible water

blockage in exact locations will be particularly applicable.

7.2 Recommendation of Further Work

Possible future work is discussed for three fields. The first includes some elements that

are very important to geomechanical simulation but not yet implemented in our model. In

the second, some work related to computation efficiency improvement is discussed. Finally,

some suggestions are made on future framework development and potential submodels which

are needed in reservoir simulation.

1. Geomechanical model:

(a) Nonlinear constitutive relationships

The rock or soil media always behaves nonlinearly in the field, it is important

to model the nonlinearity in some cases. In ARTS, the geomechanical model is

already solved in the incremental form, which is the basis for implementing a

nonlinear constitutive relationship. Hence, the nonlinear models can be imple-

mented in ARTS in a fairly easy manner. The computational efficiency may be

a potential problem if a nonlinear model is applied.

(b) Nonisotropic geomechanical parameter

The mechanical properties of rock are assumed to be isotropic in ARTS. In some

cases, nonisotropic parameters are important and it is worth it to implement this

functionality in the geomechanical model. The parameter I/O part of geome-

chanical model and coefficient calculation parts in ARTS need to be modified for

the implementation of this functionality.

(c) Dynamical modeling

In order to model the fracture growth and propagation in an appropriate way,

a dynamical model is needed in ARTS. The difference between the dynamical

model and the static model implemented in ARTS, is the time derivative term in

the geomechanical model. Some advanced technologies for the discretization of
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time are needed to resolve the potential instability involved in adding this term

to the governing equations.

(d) New fracture representation methods

One limitation for modeling geomechanics dynamically in ARTS is the fracture

representation method. As introduced in the previous chapter, the DFN model,

which models the fracture as a surface with no volume, is applied in the geome-

chanical model. The impact of volume change is limited because the fracture

does not have aperture or volume in this model. A modified DFN model, which

models the fractures as surfaces with virtual apertures and volumes, is worth

implementing in ARTS to overcome this limitation. A accumulation term due

to the virtual volume should be added for fractures. In this way, the fracture

growth can be simulated using ARTS.

(e) Other discretization methods

The finite element method applied in the discretization of geomechanical govern-

ing equations is sufficient in most applications, but more alternative discretiza-

tion methods have been developed as the running speed is improving. Discrete

element method and boundary element method are recommended for implemen-

tation in ARTS, to extend the functionality of the geomechanical model. Other

methods like material point method and mesh free method are also worth a try in

modeling geomechanics. However, in order to take advantage of the integration

of the DFN model and geomechanics, only finite element based methods are

recommended to be implemented in ARTS.

(f) Calibration with field data

In this study, the framework has been verified and validated with some problems

that have known solutions and with the commercial software. This is sufficient

to validate the code but a calibration with field data is needed to make this

framework applicable in solving field problems. Indeed, the model can be im-

proved based on the calibration of field data, hence a new model can be applied

to future study. A work flow can be created in this way as the calibration and

model improvement are done iteratively.

2. Computation efficiency improvement:



155

(a) Linear solver improvement

PETSC and Trilinos are used as the linear solver packages in this research. Gen-

erally, these two solvers are stable and fast. However, as the physical problems

solved in the framework vary, different schemes need to be implemented to solve

different linear systems. Further work is recommended to implement a model

to construct different solving schemes and preconditioners for different linear

system.

(b) Optimization in the assembling process

Assembling the matrix and vector is a time consuming part in the simulation. The

element by element scheme applied in ARTS is efficient and accurate. However,

it is still slow when the problem becomes complex. There are some potential

methods to optimize the assembling scheme to improve the speed. For example,

changing the data structure to store and pass the matrix and vector may improve

the speed for the whole process.

(c) Nonlinear solver improvement

As some new technologies are developed for solving a nonlinear system in recent

years. It is worth it to implement new schemes in the nonlinear solver model of

ARTS. The improvement in nonlinear solver can potentially reduce the running

time of simulation, dramatically. Secant method and bisection method are rec-

ommended to be implemented in ARTS to improve the running speed in certain

scenarios.

(d) Alternating implicitness level

The stability of a numerical solution is related to the implicitness of a formula-

tion. Generally, higher implicitness method is more stable. However, the high

implicitness method costs more computational effort since a nonlinear equation

is solved in each iteration for all variables. However, it may not be necessary

to treat each property with the same implicitness method as some variables

are changing much less over time. To optimize the computational efficiency, a

function is needed to switch the implicitness level for different variables. It is

even possible to apply explicit method for some variables during the simulation.

For example, the implicit level should be different for solving the variables near

or far away from the well.
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3. Framework development:

(a) Independent solver module

In order to modularize further, an independent solver module is needed. In this

way, future submodels are more easily integrated in ARTS. To implement this,

a generalized data structure for matrix and vector needs to be developed to

separate the solver from the physical model.

(b) Data sharing module

Some data like pressure and saturation are needed in both PM and DM. If DM

needs to know pressure from PM, then DM needs to initialize a function to fetch

the data and vice versa. A data sharing module may be valuable as the efficiency

to pass data in that way is not great. The data sharing module should store the

common data in memory level and be a derived module of the modules which need

the stored data. In this way, no information passing is needed in the framework.

(c) GUI integration

A GUI is needed in order to form an entire work flow from geological data to

final reservoir simulation results. A GUI module should be integrated with ARTS

for a better user experience. Java and Phyton can be applied to implement the

user interface. Also a web-based interface is highly recommended to integrate in

ARTS.

(d) Potential future modules

In order to apply ARTS to solve more types of reservoir problems, some sug-

gestions are made to implement potential modules in ARTS. Diffusion module

is important to learn the mechanism for producing oil from an ultra low perme-

ability system. Adsorption module is also needed in certain gas reservoirs. An

equation of state module is recommended to learn gas condensate reservoir. All

these modules will make ARTS more powerful in solving the existing problems

in reservoir simulations.
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