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ABSTRACT

Shale resources provide a tremendous opportunity for a long-term viable energy 

source, but the lower hydrocarbon recovery rates are hindering the economic development 

o f shale reservoirs. One o f the main reasons for the lower hydrocarbon recovery rates is 

the inadequate understanding o f the fate o f various injected fluids and the recovered 

hydrocarbons during various stages o f exploration and production.

As Darcy’s law is limited in describing the multiphase fluid transport in shale, a 

comprehensive simulation framework is necessary, enabling the replication o f the 

nanometer and subnanometer pores found in organic and inorganic matrices, and the 

simulation o f the multiphase fluid flow in these nanopores, thus improving the 

comprehension o f the pore-scale fluid transport process in shale reservoirs.

A molecular dynamics simulation-based framework is developed in present 

research to address the above-defined challenges. The applications o f various open-source 

molecular modeling tools are integrated to develop molecular pore structures found in the 

organic and inorganic matrices. An application o f the general-purpose DREIDING force 

field is extended to simulate the kerogen. A gas-liquid (methane and water) transport is 

simulated in nanopores confined in the organic and inorganic matrices, and various 

dynamic transport properties o f fluids (subjected to confinement) are determined to gain 

the qualitative and the quantitative understanding o f the fluid flow.

The present research provides a powerful molecular dynamics simulation-based



framework that will enable the development o f more complex models o f nanoporous shale 

structures and address numerous challenges encountered in hydrocarbon recovery from 

shale reservoirs.
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CHAPTER 1

INTRODUCTION

Shale gas comprises a significant fraction o f the total gas production in North 

America and other parts o f the world including the South America, Australia, Africa, and 

Asia. It is estimated that 16,000 trillion cubic feet (TCF) o f shale gas are in place globally 

(Holditch et al. 2007), which represents a long-term global energy resource. Figures 1.1 

and 1.2 show the expected natural gas production from different sources and reservoir 

formations in the United States.

The successful exploitation o f shale resources relies on the numerous techniques, 

including hydraulic fracturing ands multistage completions. Still, the expected ultimate 

recovery rates from shale gas reservoirs, which increased from 2 % to 50 %, are believed 

to be in the range o f 15 to 35 % (King 2010), and this is, in large part, due to the limited 

understanding o f the fate o f injected fluids and recovered hydrocarbons during different 

stages o f exploration and production.

Reservoir modeling and simulation techniques based on continuum physics (e.g., 

D arcy’s law) have played a significant role in developing a better understanding o f the 

processes that occur during conventional oil and gas recovery. However, an alternative 

strategy is required to model and simulate the hydrocarbon recovery process in 

unconventional reservoirs due to the following challenges:

• the complicated pore network that defines the shale fabric



• the pores with a dimension o f 50-nm or less where the mean free path o f the 

molecules becomes comparable with the pore size

• the heterogeneous distribution o f the kerogen and inorganic matter (e.g., 

quartz and calcite) throughout the reservoir matrix

• the strong fluid-pore surface interaction at the molecular level, which results 

in the variety o f sorption phenomena and affects the hydrocarbon recovery

A molecular dynamics (MD) simulation-based approach is presented in this thesis 

to model and simulate the atomistic pore-scale multiphase fluid transport in a realistic 

unconventional reservoir matrix. To achieve this goal, the present dissertation is organized 

into chapters and are summarized as follows:

Chapter 1 provides the overview o f the dissertation and contains the summary for 

each chapter. Chapter 2 presents a literature review, which describes the fundamental 

aspects o f unconventional reservoirs, identifies the significant challenges in hydrocarbon 

production from unconventional reservoirs, and provides the background o f the MD 

simulation method. Further, the applications o f the MD simulations are also summarized. 

In addition, the Coarse-Grained M olecular Dynamics (CGMD) technique is introduced to 

extend MD simulation capabilities for the longer time and length scales, which are suitable 

for characterization o f the slow-evolving recovery process observed in unconventional 

reservoirs. Chapter 3 outlines the problem statement o f the present research.

Chapter 4 describes the MD simulation-based workflow to develop realistic organic 

and inorganic pore models and to simulate an atomistic, multiphase fluid transport in these 

pores. An example o f a cocurrent imbibition mechanism in the 5-nm inorganic pore, 

consisting o f an amorphous quartz, is shown to demonstrate the application o f the proposed

2



workflow. Moreover, the important fluid properties including the diffusion coefficient and 

water and methane distribution inside the nanopore are evaluated.

Chapter 5 includes the parametrization o f the general-purpose DREIDING force 

field to model and simulate a representative kerogen structure, having variable thermal 

maturities —  Type I (immature kerogen), Type II (middle-end oil window kerogen), and 

Type III (matured kerogen) —  and elemental composition. A kerogen density and the 

carbon-carbon pairwise distribution function are evaluated for each kerogen type and 

compared with the experimental and simulation results available in the literature. Further, 

the atomic structure o f kerogen is analyzed to characterize the subnanometer scale features 

(subnanometer size pores) within kerogen matrix —  which is difficult with conventional 

transmission electron microscopy (TEM)/scanning electron microscopy (SEM) techniques.

Chapter 6 includes simulation o f pore-scale multiphase flow (water displacing 

methane) for open and closed pore configurations in Type II kerogen for various reservoir 

attributes, including the pore diameter, the force applied to water molecules, and the 

reservoir temperature. The diffusion coefficients o f water and methane are compared to 

analyze various aspects o f the methane recovery process in a Type II kerogen.

Further, molecular simulations were optimized to run them on graphics processing 

units (GPUs) to extend the capability o f MD simulation to a longer timescale. Also, the 

coarse-grained molecular dynamics models for water confined in a quartz nanopore were 

developed to upscale the molecular models o f these systems. Finally, Chapter 7 

summarizes the conclusions o f the present dissertation, the research contribution and the 

utility o f present study in future research.

3
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FIGURE 1.1 Natural gas production in the United States by source 
(Source: U.S. Energy Information Administration 2015)
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FIGURE 1.2 Natural gas production in the United States by reservoir formation 
(Source: U.S. Energy Information Administration 2015)
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CHAPTER 2

LITERATURE REVIEW

Unconventional reservoirs (shale gas, tight gas, and coal-bed methane) are the types 

o f  resources that require additional recovery techniques besides those methods used in 

conventional reservoirs. The technological advances in horizontal drilling and multistage 

hydraulic fracturing have changed the landscape o f  shale gas production in the United 

States, and shale gas has emerged as one o f  the crucial and strategic energy sources to 

offset the declining hydrocarbon production from conventional oil and gas reservoirs. 

Figure 2.1 depicts the active and prospective shale resources in the United States along 

with the structure o f these shale plays.

A significant effort has been spent to understand shale structures, the shale 

composition, and the multiphase fluid transport in shales —  which is summarized in Table 

2.1. These studies were significant in increasing the understanding o f various macroscopic 

and the microscopic aspects o f  shales, but provided very limited information on nanoscale 

fluid transport processes in realistic shale nanopores, which is, indeed, the primary mode 

o f  fluid transport in shales and the key to understanding various transport processes —  

adsorption, absorption, and diffusion —  in the shale matrix. The main reason for the limited 

understanding o f  the fluid transport in shales is the typical shale reservoir structure, which 

fundamentally differs from the conventional reservoir in many aspects. These differences 

are summarized in section 2.1.



2.1 Fundamental differences between conventional 
and unconventional reservoirs

First, the porosity and the permeability o f shale reservoirs is significantly lower 

than in conventional reservoirs. This is in large part due to the nanoporous structure of 

shales, which consist o f poorly connected pore networks. In addition, the hydrocarbons and 

other reservoir fluids are subjected to confinement effects coupled with the significantly 

higher surface forces and the thermo-geo-chemical effects o f the reservoir matrix. As a 

result, most o f the hydrocarbons remain trapped in shale nanopores and the hydrocarbon 

migration between disconnected pore networks, which constitutes a significant fraction of 

shale reservoir, is almost impossible and depends mainly on the size o f the migrating 

hydrocarbon molecules. Small molecules such as methane may diffuse through the 

reservoir matrix, provided that the conduits o f sizes equal or greater than the methane 

molecules exist within the reservoir matrix. On the other hand, the migration of 

hydrocarbons containing long molecular chains is extremely difficult in the confined 

spaces such as nanometer and subnanometer scale pores, due to the size and the structure 

o f hydrocarbon chains. Also, the reservoir structure, which consists o f an atomically 

bonded structure on a molecular scale, may act like a sieve that restricts the migration of 

long hydrocarbon chains.

Secondly, the shale reservoirs function as a source rock, a reservoir, and trap (Ma 

and Holditch 2015). Unlike the conventional reservoirs, where hydrocarbons from the 

source rock (rocks responsible for the hydrocarbon production) migrate through high 

permeability pathways and accumulate near the impermeable structure (thus forming 

reservoir) —  the hydrocarbons from unconventional source rocks (which is kerogen) do 

not migrate and accumulate in large quantities, they usually remain trapped in the
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nanopores. As a result, a reservoir stimulation method such as hydraulic fracturing that 

can open existing or new fractures (break the bond between atoms on the molecular scale 

to create the pathways for the hydrocarbon transport and their accumulation), improve the 

pore connectivity and release the trapped hydrocarbons is required.

Third, shale reservoir structures are extremely heterogeneous and consist o f organic 

(e.g., kerogen) and inorganic (e.g., quartz, calcite, and clay minerals) matrices, which are 

dispersed throughout the reservoir matrix. The individual organic/inorganic grain size can 

vary from few nanometers to micrometers (Bernard et al. 2010). Further, the size o f the 

grain changes significantly for grains separated even by a very small distance (e.g., the 

separation distance o f p,m or less), thus resulting in a multiscale mineralogical 

heterogeneity in shales. Moreover, the fundamental properties o f organic and inorganic 

phases such as structure and elemental composition also vary due to different origins of 

these phases and the transformation o f the phases over the geological time scale. As a 

consequence, the shale reservoir composition varies from the reservoir to reservoir and is 

shown in Figure 2.2. Figure 2.2 is also called a ternary diagram that differentiates the shale 

reservoirs based on their mineralogical composition. Typically, clay minerals, quartz, and 

calcite are shown on the ternary diagram.

Fourth, the continuum theory, which can be used to simulate the multiphase fluid 

transport in conventional reservoirs, is not applicable to shale reservoirs, mainly due to the 

length scales (nanoscale) o f the simulation (Falk et al. 2015). Thus, modeling and 

simulation in shales require an inclusive approach that can accommodate various factors 

that affect the behavior o f reservoir fluids and the reservoir fluid transport in shale 

nanopores. The important factors are summarized in Figure 2.3 and described in the

8
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following paragraphs.

2.2 The factors affecting the pore-scale multiphase 
fluid flow modeling in shale reservoirs

First, the underlying pore structure, the pore size distribution, and the pore 

connectivity are the important factors in the pore-scale modeling o f  shale reservoirs, as 

they determine the reservoir quality (i.e., effective porosity and permeability o f shales) and 

affect the fluid flow. Various studies (Kuila and Prasad 2013; Loucks et al. 2009; Nelson

2009) showed that the typical pore size distribution in shales ranges from a few angstroms 

to micrometers. First, the pore size distribution identifies the most dominant pores (mode 

o f the pores in statistical terms) that are potentially responsible for the storage o f a large 

number o f hydrocarbon molecules. Second, the pore size distribution provides an estimate 

o f  the fluid flow regime (explained later in the chapter) that exists in the pore system based 

on pore sizes, and the identification o f  the pore sizes that are potentially responsible for the 

hydrocarbon transport, and which can be used for the pore-scale modeling and simulation.

A total number o f pores obtained with the pore size distribution can be segregated 

into two parts: pores that exist in the organic phase, and pores that exist in the inorganic 

phase. Further, the pores, both in organic and inorganic phases, can be classified into 

interparticle pores (pores that exist on the boundary o f  two mineral phases or the boundary 

o f  a mineral and organic matter phase) and the intraparticle pores (pores exist exclusively 

in the mineral phase or the organic phase) (Loucks et al. 2012), and are shown in Figure 

2.4. The interparticle pores are generally o f a larger size, rare, and hard to detect, whereas 

intraparticle pores can be identified if  they fall within the detection limits o f the focused 

ion beam (FIB)/scanning electron microscopy (SEM).



The pores in the organic phase are o f the utm ost importance as they store a 

significant amount o f hydrocarbons produced during the thermal maturation o f organic 

matter, and act as a source o f hydrocarbon in shales. Further, there may exist subnanometer 

size pores, which are outside o f the detection limit o f the focused ion beam (FIB)/scanning 

electron microscopy (SEM), and their characterization requires an experimental approach 

such as low-pressure adsorption or high-pressure mercury intrusion (Clarkson et al. 2013).

The second important factor in the pore-scale modeling is the variability o f the fluid 

flow regime, which is mainly dependent on the pore size. As the pore size decreases, the 

mean free path o f fluid molecules becomes comparable or even greater than the 

characteristic length o f the pore (pore diameter is taken as the characteristic dimension in 

most o f the cases) and results in various fluid flow regimes (Civan 2010). The Knudsen 

number (Kn), which is given by Equation 2.1, is defined as the ratio o f the mean free path 

(A) o f the fluid molecules and the characteristic dimension o f the pore and is used to 

determine the fluid flow regime. Further, the pore sizes and shapes are irregular due to the 

fusion o f different pores into a single pore during the pore formation process, thus 

potentially resulting in the simultaneous existence o f multiple fluid flow regimes, such as 

molecular flow, slip flow, and continuum flow. Table 2.2 summarizes various fluid flow 

regimes based on the range o f Knudsen number.

K n =  j  (2.1)

The third important factor in the pore-scale modeling is the pore composition. As 

described earlier, the shale consists o f a mixture o f organic and inorganic phases (e.g.,

10



laminated siliceous mudstone, laminated argillaceous lime mudstone, etc.). Thus, the 

accurate modeling and simulation of the pore-scale transport phenomena in shales requires 

a precise description o f the phases that hosts the pore structure —  as the structural 

properties o f various phases along with the material properties (on atomic scale) such as 

van der W aals forces o f atoms and the electrostatic interactions between charged atoms 

affect the underlying fluid transport.

The fourth important factor in the pore-scale modeling is the confinement effects. 

The fluid properties subjected to confinement vary significantly from the bulk properties 

o f the fluid (Firincioglu et al. 2012). The main reason for the difference is the restricted 

movement o f the fluid molecules within the confined space, which results in the deviation 

o f confined reservoir fluid properties from bulk fluid properties. A few examples have been 

shown in Table 2.1 that show the difference between bulk and confined reservoir fluid 

properties.

The fifth important factor in pore-scale modeling is the pore anisotropy. The pore 

anisotropy refers the pore structure where pore surface exhibits the irregular shape and size 

and composed o f various types o f atoms/chemical functional groups. In the scientific 

literature, perfectly cylindrical pores have been extensively used to model pores (Chen et 

al. 2008; Sokhan et al. 2002). However, realistic pore structure deviate from the ideal 

(cylindrical) structure and consists o f a variable sizes and shapes. The main reason for this 

deviation can be explained as follows. The atomic structure o f shales nanopores undergoes 

geo-thermo-transformation over the geological scale and results in a pore structure where 

atoms are not perfectly arranged (pores do not result in a perfectly cylindrical shapes), thus 

resulting in irregular pores. Figure 2.5 shows the difference between the ideal pore, which

11



is o f a cylindrical shape and consists o f pure carbon that are mostly used to simulate the 

pore scale flow; and the representative (realistic) pore, which is not perfectly cylindrical, 

as imagined, and that consists o f various atoms/functional groups. Thus, the structural 

differences between ideal and real pore will result in differences in the fluid transport 

properties.

Finally, the sixth important factor in the pore-scale modeling is the reservoir 

temperature. At the pore level it is challenging to integrate all reservoir attributes in the 

modeling and simulation —  e.g., the impact o f the effective geomechanical stresses can be 

incorporated in the pore model, but the stresses generated as a result o f thermal fluctuation 

(at an atomic scale), sometimes are high (depending on the size o f the pore) and become 

comparable with the effective geomechanical stresses, thus making it difficult to 

differentiate the contribution o f each stress component on the behavior o f the underlying 

system.

The experimental-based techniques can provide some insight into the fluid flow in 

shale reservoirs, but the challenge with the experimental studies is that they lacked the 

ability to show the in-situ pore-scale fluid flow transport details maintaining the prevalent 

pore-scale conditions, e.g., the confinement effect. The limitations in the experimental 

pore-scale characterization, in large part, are due to the following factors.

2.2.1 Physical isolation of organic/inorganic nanopores and the pore networks

A physical separation o f mineral and organic phases in shales, particularly kerogen, 

from the source rock is a complex process, thus the isolation o f the pore network found in 

these phases is an even more complex task. Also, during the physical separation o f minerals 

and organics from source rock, the organic and inorganic phases may undergo a structural

12
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transformation, thus resulting in a structure that may not necessarily resemble the original 

structure.

2.2.2 Limitations in the visualization of the in-situ pore-scale transport 
process

The visualization o f the in-situ transport processes in shale nanopores is extremely 

difficult while simultaneously maintaining the pore-scale thermodynamic conditions and 

the confinement effects. A few visualization techniques, such as radiotracers and chemical 

tracers can provide some insight into the processes, but they cannot reveal the fine details 

o f fluid flow in the nanopores (e.g., adsorption and diffusion processes which are the main 

characteristics o f  the fluid transport in shale reservoirs).

2.2.3 Requirement of sophisticated instrumentation and the skilled 
personnel to perform the experimental studies

A sophisticated instrumentation is required that can capture the multiphase pore-

scale fluid flow details on the atomic scale. The main challenge with such instrumentation

setup is the resolution o f the length scale. Further, skilled personnel is required who have

had prior experience building and operating such complex systems.

2.2.4 The time needed to set up the experimental studies

Even if  it is possible to build the experimental setup for the pore-scale flow analysis, 

a significant amount o f time is required to design, develop, and integrate individual 

components and ensure the accurate functioning o f experimental setups for the intended 

use.



2.2.5 The reliability of experimental studies

At the molecular scale, the fluctuation o f properties, (e.g., the atomic 

displacements) is very high, and it is difficult to isolate the noise in data collection. Thus, 

the accuracy o f the collected data may be questionable.

The limitations o f the pore-scale experimental studies can be mitigated to some 

extent by the various reservoir modeling and simulation techniques, such as numerical 

reservoir modeling, the lattice Boltzmann method, and the discrete element method. 

However, the main challenge with these techniques is the simultaneous integration o f all 

o f the pore-scale factors (e.g., the pore composition, the pore anisotropy) in modeling.

Considering the challenges in pore-scale fluid flow modeling, the molecular 

dynamics (MD) simulation appears to be a better alternative, since the M D simulations 

have shown the capability to model such complex processes in the fields o f biological 

science, material sciences, and provide a detailed understanding o f the underlying transport 

processes (summarized in Table 2.3). The next section provides a brief discussion o f the 

M D simulation method, the capabilities o f M D simulations, some important applications 

o f MD simulations, and the limitations o f MD simulations. The detailed description o f the 

MD workflow that will demonstrate the modeling and simulation o f the pore-scale 

multiphase fluid transport phenomena in shales is provided in Chapter 4.

2.3 Molecular dynamics simulation method

The MD simulation solves the equations o f motion to evaluate the temporal position 

o f atoms, velocities o f atoms, and the intermolecular forces between atoms. This 

information is used to determine the key fluid transport properties. The important attributes 

o f MD simulations are listed below, which extends the capability o f the MD simulation

14



method to model the multiphase transport phenomena in shale nanopores. MD simulations 

have the ability to:

• provide the most detailed representation o f the complex multiphase fluid 

transport in nanopores

• provide access to the length scale (nanometers) and time scale 

(femtosecond), which are physically impossible

• model various transport processes simultaneously e.g., diffusion and 

adsorption o f molecules in shale nanopores

• model various inorganic and organic phases explicitly with found 

pores/pore networks, irrespective o f the origin and the geological 

transformation o f organic and inorganic phases

Hence, considering the potential o f the MD simulations, they have been widely 

used in many fields. Only the selected studies are summarized in Table 2.3. From Table 

2.3, it can be seen that MD simulations are mostly used to model a single phase fluid 

transport in a nanotube (nanopores) which consists o f carbon, but these studies provide 

the information necessary to model and optimize the simulation parameters o f the 

multiphase fluid flow in shale nanopores.

The following paragraph summarizes a few important aspects/definitions, which 

are important to comprehend the MD simulation workflow presented in Chapter 4. 

Additional MD aspects/definitions will be explained wherever necessary.
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2.3.1 Fundamental aspects of MD simulations

2.3.1.1 The simulation domain

This is the box size that encloses the system being simulated. The system domain 

may be open or closed. In a open domain, the atoms are allowed to leave/reenter the 

simulation box, whereas the closed simulation box does not allow atoms to leave or enter 

into the system.

2.3.1.2 The boundary conditions

There are various types o f boundary conditions that can be used in MD simulations 

to describe the fluid transport in nanopores. Primarily, two boundary conditions, periodic 

boundary condition, and fixed boundary condition are widely used. The periodic boundary 

condition assumes the three-dimensional (3D) replica o f the system as shown in Figure 2.6 

(showing a two-dimensional (2D) slice o f the 3D replica), where atoms leave the system 

from one side and enter from another side.

In addition, the atoms near the simulation domain edge interact with the atoms in 

the 3D replica that falls within the specified cut-off distance in the interatomic potential 

calculations. Contrarily, in the fixed boundary conditions, the atoms do not escape and 

reenter through the boundaries; they accumulate near the wall o f the simulation box and 

affect the overall simulation results.

2.3.1.3 Ensemble

In MD simulations, different types o f ensembles can be used. The ensemble is the 

representative state o f the system where all simulations are carried out. There are different 

types o f ensembles depending on the properties o f the system held constant and explained
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as follows.

In NPT ensemble, the number o f molecules (N), the system pressure (P), and the 

system temperature (T) are constant (shown in Figure 2.7). Energy can flow in and out in 

this ensemble. The volume and resulting density o f the system can change.

In NVT ensemble, the total number o f molecules (N), the system volume (V), and 

the system temperature (T) remain constant (shown in Figure 2.8). In addition, the energy 

can flow in and out o f the system. Since the volume and the number o f molecules (thus, 

total mass o f the system) are constant, the density does not change. Usually, either NVT or 

NPT ensembles can be used if  experimental verification is sought.

In NVE ensemble, the total number o f atoms (N), the total system volume (V), and 

the energy o f the system (E) remain constant. Energy cannot flow in and out in this 

ensemble. This type o f ensemble is not practically feasible as it is difficult to maintain a 

constant energy state o f a system.

2.4 Limitations of MD simulations

One o f the major limitations o f the MD simulations is the requirement for 

significant computational resources, depending on the number o f atoms/molecules being 

simulated. Also, the parameters used for MD simulation (e.g., the timestep used, and the 

cut-off distance to calculate the electrostatic interaction between two charged atoms) 

affects the total computational time and requires optimization. However, due to the advent 

o f modern, massively-parallel computational techniques, the computational power can be 

leveraged to enhance the capability o f the MD simulations for the longer simulation times. 

Further, the capability o f MD simulations can be upscaled for the larger length scales that 

can enable the simulation o f larger systems (pore networks) with the coarse-grained

17



18

molecular dynamics (CGMD) technique. The following section provides a brief discussion 

on the massively-parallel computing and the CMGD technique that will permit upscaling 

the MD models and simulate them for a longer period.

2.5 Enhancing the capabilities of MD simulations 
for longer time and length scales

W ith the traditional serial computing, where only one set o f instructions is executed 

at a time, performing computationally demanding simulations is a cumbersome task. Thus, 

the CPU-based and the GPU-based high-performance computing (HPC) has become an 

indispensable tool and integral part for applications that requires a multidisciplinary 

approach. Hence, the HPC offers cost-effective tools that allow the simulation o f  the 

computationally demanding MD simulation o f  the pore-scale multiphase fluid transport in 

shale reservoirs. Before summarizing the applications o f HPC in MD simulations and 

possible speedups that can be achieved, the key concepts are summarized in the following 

paragraph.

First, it is necessary to identify various computational tasks (e.g., the electrostatic 

interactions calculation between charged atoms, the building o f  neighbor list, the 

evaluation and storage o f  atomic positions, velocities and forces) that require 

parallelization. This helps to allocate the available computational resources to maximize 

the computational performance by optimizing various aspects o f parallelization such as the 

interprocessor communication and the simultaneous access o f  the memory by the multiple 

processors.

Two different mechanisms can be used for the parallelization including the data 

parallelism and the functional parallelism. In data parallelism, multiple processors work on



various parts o f the same data. On the other hand, larger numerical problems are broken 

into subtasks and executed on various processors in functional parallelism, where different 

processors work together by data exchange and synchronization. The functional 

parallelism requires optimization as the various subtasks may have different computational 

times and hardware requirements, and may result in wastage o f computational resources if 

not properly parallelized.

Further, the computational processors can be classified as single instruction single 

data (SISD), single instruction multiple data (SIMD), multiple instructions single data 

(MISD), and multiple instructions multiple data (MIMD) based on the how processors 

handle the data and instructions during the computational task. The most o f the modern 

parallel computers falls in the MIMD category, where every processor executes different 

instruction streams on its own data stream (W olf 2010).

The typical example o f the MIMD is the modern parallel computer architecture (as 

shown in Figure 2.9) that uses the shared-memory and distributed-memory. In parallel 

computer architecture, a network is required to enable the data transfer between shared 

memory processors. Further, the total computational job is broken into subparts and 

executed on the available processors.

Typically, the parallel computer architecture uses symmetric multiprocessors made 

o f identical processing elements and uniform memory, which help to simplify the 

computational task executed on different processors (W olf 2010). In addition, the shared 

memory computers used in the parallel computer architecture are the systems where a 

number o f processors work on a common physical address space whereas the distributed 

memory computers are the systems where each processor has its own local memory. The
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architectures o f shared and distributed memory systems are shown in Figures 2.10 and 

2.11. For the shared-memory architecture, an additional mechanism is required to ensure 

the content o f the given location and this is what the user intends. Another challenge with 

the shared memory is the difficulty in understanding how the memory access patterns (by 

different processors) affect the computational performance.

2.5.1 Porting in parallel computing applications

Porting refers to the conversion o f the existing application code to the parallel 

architecture. Based on the efforts and modifications required in the existing code, the 

porting can be categorized into different strategies is shown in Figure 2.12 (Morse 2014). 

The first strategy consists o f automatic parallelization, which requires minimum efforts and 

existing code and it can be ported with minimum modifications. On the other hand, the 

major recoding strategy requires significant changes and development code from scratch.

After optimization o f parallelization parameters, the MD simulations can be 

performed efficiently, minimizing the total computational time o f simulations. The 

performance o f parallel computing is highly dependent on the architecture. Table 2.4 

summarizes selected GPU architecture and their applications in the MD and CGMD 

simulations that emphasize the possible speed-up.

The coarse-grained molecular dynamics (CGMD) is a powerful mesoscale 

simulation tool that enables access to the longer length and time scales that are beyond the 

reach o f traditional all-atom MD simulations. The coarse-grained molecular dynamics, as 

the name suggests in which the group o f atoms is represented by a bead (particle), is 

extensively used in slow-process-evolving applications, such as protein folding 

mechanisms, where the typical protein folding time is on the order o f |is or more and the
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use o f the all-atom MD simulations in such scenarios is not practically feasible. Table 2.5 

summarizes the applications o f the CGMD simulation technique.

W hile defining the CGMD model from the atomistic model (also called as all-atom 

model where molecules are used for the simulation instead o f beads), two distinct steps are 

used and are represented in Figure 2.13. First, the mapping o f atoms is done (as shown in 

Figure 2.14) that combines a certain number o f atoms to form a bead. As there is no 

standard procedure for defining the level o f coarse-graining, it solely depends on the 

application.

The next step in the coarse-graining model is an accurate definition o f the 

interaction potential between CG beads, as it has profound effects on the accuracy o f the 

CGMD simulations. Once the atomic mapping and the interatomic potential parameters 

between beads are determined, these parameters require further calibration. All-atom 

molecular dynamics simulations o f an equivalent system can be performed to evaluate the 

static (e.g., atomic pairwise distribution function) and the dynamic (e.g., the mean square 

displacement) properties, which can be compared with the CGMD results. This process 

continues until the reasonable agreement between all-atom simulation results, and CGMD 

simulation results are found. Once the calibration process is complete, the atomic mapping 

information and the interatomic potential parameters are used to define the larger and more 

complex system.

In summary, the present chapter provides the overview o f the shale reservoirs, the 

challenges in shale gas reservoir recovery, the limitations o f experimental methods, and 

various simulation methods simulating the multiphase fluid transport in shale reservoirs. 

Further, various factors affecting the pore-scale fluid modeling are discussed. In addition,
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the fundamentals o f the MD simulation, the capability o f MD simulations, the applications, 

and the limitations o f the MD simulations are also provided. Finally, the high-performance 

computing and the coarse-grained molecular dynamics methods are introduced to extend 

the capability o f the MD simulations for the longer length and time scales.
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FIGURE 2.1 Shale gas plays in the United States (Source: U.S. Energy 
Information Administration 2015)
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FIGURE 2.2 Ternary diagram showing shale composition (Adapted from  
Ma and Holditch 2015 with permission from Elsevier)



FIGURE 2.3 Factors affecting pore-scale fluid flow modeling and simulation in shale nanopores
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FIGURE 2.4 a) Intraparticle pores and b) Interparticle pores



FIGURE 2.5 a) Ideal pore structure and b) Representative (realistic) pore
structure
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FIGURE 2.6 Periodic boundary condition
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Time = t2

FIGURE 2.7 NPT ensemble
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FIGURE 2.8 NVT ensemble
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FIGURE 2.9 The typical modern parallel computer architecture
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P rocesso r 2

FIGURE 2.10 Shared-memory computer architecture
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Communication network 

FIGURE 2.11 Distributed-memory architecture
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FIGURE 2.12 Porting strategies a) Automatic parallelization, b) Parallel 
libraries, and c) Major recoding
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FIGURE 2.13 All-atom molecular dynamics to coarse-grained molecular dynamics



FIGURE 2.14 Schematic representation of mapping in CGMD
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TABLE 2.1 Review of important studies summarizing shale structure, shale 
composition, and modeling and simulation in shales

Reference Study Main findings

(Firouzi and Wilcox 
2012)

Molecular modeling to determine 
the transport properties of pure 
carbon dioxide, methane, 
nitrogen, and the binary mixtures 
nitrogen-carbon dioxide and 
methane-carbon dioxide in 3D 
carbon based pore network

Found that the pore morphology 
plays a significant role in flow 
and transport properties of 
fluids
Permeability is zero due to low 
pore connectivity (low porosity)

(Hao and Cheng
2010)

Performed pore-scale simulation 
of two-phase flow in packed- 
sphere bed and carbon paper gas 
diffusion layer with the lattice 
Boltzmann method

Relative permeability of the 
packed bed evaluated with 
lattice Boltzmann method was 
in agreement with the 
experimental method

(Yan et al. 2013)

Simulation of two-phase 
microscale flow in shale 
reservoirs using the multiple 
porosity models

Diffusion mechanism in kerogen 
plays an important role in the 
total gas production

(Firincioglu et al.
2012)

Extension of vapor-liquid 
equilibrium calculations to 
include the capillary and the 
surface van der Waals forces

• Phase behavior of liquid-rich 
reservoirs subjected to 
confinement effect, the capillary 
discontinuities and surface 
forces significantly deviates 
from conventional phase 
behavior

• Phase behavior in 
unconventional reservoir 
depends on the pore geometry, 
the fluid configuration, and the 
mineralogical content of the 
pore surface

(Teklu et al. 2014)

Used modified vapor-liquid 
equilibrium (VLE) calculations to 
study the phase behavior of 
reservoir fluids in unconventional
reservoirs

• Results showed that the bubble 
point pressure, gas/oil 
interfacial tension, and 
minimum miscibility pressure 
decreases with the confinement

• Work applies to single pore size 
and requires the model of 
unconventional matrix with 
surface-chemical heterogeneity 
and the pore size distribution

(Takahashi and 
Kovscek 2010)

Experimental study of the 
spontaneous countercurrent 
imbibition in siliceous shale rocks

• Evaluated the water saturation 
profiles
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TABLE 2.1 continued

Reference Study Main findings

(Roychaudhuri et al.
2013)

Experimental investigation of the 
spontaneous imbibition of water 
in Appalachian basin shale to 
investigate the role of the 
capillarity in the fluid loss 
mechanism

The significant amount of 
injection fluid can be absorbed 
by the shale

(Curtis et al. 2011)

Investigated the relationship 
between organic porosity and 
thermal maturity in the Marcellus 
shale

Observed no significant 
differences in pore sizes and 
the amount of porosity and 
emphasized the need for 
further investigation

(Wang and Reed 
2009)

Investigated the effects of organic 
matter on the petrophysical 
properties, pore network and fluid 
flow in nonorganic matter, 
organic matter, natural fractures, 
and hydraulic fractures

Significant amount of free gas 
stored in the organic matter 
Gas permeability in organic 
matter is significantly higher 
than the nonorganic matrix

(Ahmad and 
Haghighi 2012)

Performed mineralogical, 
porosity, and petrophysical 
characterization of Roseneath and 
Murteree shale formations from 
southern Australia

• Concluded that the Roseneath 
and Murteree shale samples 
contain clay, organic matter, 
quartz, and fine-grained 
minerals

• Observed linear/elongated, 
wedge-shaped, and triangular 
void spaces in these shale 
samples and the pores are of 
irregular size and shapes

(Bernard et al. 2010)

Performed multiscale 
characterization of an over
matured organic-rich calcareous 
mudstone from northern Germany 
with combination of transmission 
electron microscopy and scanning 
transmission X-ray microscopy

Reported multiscale 
mineralogical and chemical 
heterogeneities from 
millimeter to the nanometer 
scale

(Chareonsuppanimit 
et al. 2012)

Measured adsorption isotherms of 
methane, nitrogen and carbon 
dioxide in New Albany shale 
samples from Illinois basin

Found that adsorption in shales 
is an order of magnitude lower 
than the coals. Also, presence 
of ash reduces gas adsorption 
capacity of shales

(Falk et al. 2015)

Performed molecular dynamics 
and statistical mechanics to 
simulate the sub-continuum mass 
transport of condensed 
hydrocarbons in disordered 
carbon structure (used to 
represent the kerogen)

Showed that the Darcy’s law 
fails to describe the fluid 
transport in nanoporous media
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TABLE 2.1 continued

Reference Study Main findings
• Significant changes in the

(Hu et al. 2015)

Investigated the dynamics of water 
molecules and NaCl electrolytes 
confined in an activated kerogen 
and MgO pores

water distribution within the 
nanopores when surface 
roughness and surface 
functionalized groups 
incorporated in the kerogen 
structure

• Observed that the kerogen,
clay, and/or carbonate

(Chalmers et al. 
2012)

Characterized shale samples from 
Barnett, Woodford, Marcellus, 
Haynesville, and Doig shales to 
analyze the pore systems

together holds most of the 
macropores and mesopores

• Pore distribution and their 
orientation affect the fracture 
design

• Pore structure in kerogen is 
very complex
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TABLE 2.2 Fluid flow regimes in shale nanopores

Fluid flow regime Knudsen number 
(Kn)

Graphical representation
■ Pore wall O  Fluid molecules

Continuum flow Kn < 0.001

Flow direction

Slip flow 0.001 < Kn < 0.1

Transition flow 0.1 < Kn < 10

Free molecular 
flow

Kn > 10
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TABLE 2.3 MD simulation applications

Reference Study Main findings/ 
Recommendations

(Wang et al. 
2004)

Evaluated the effect of the carbon 
nanotube (CNT) diameter and 
helicity on the static properties of 
water molecules confined in 
armchair and zigzag CNTs

The bulk water properties differ 
from water properties subjected 
to confinement

(Xu et al. 2012)

Investigated the effect of 
temperature on the fluid flow in 
CNTs as a function of pore radius 
and fluid transport rate

Shear rate of fluid increases with 
the increased fluid transport rate 
The length of the CNTs should 
be at least eight times the pore 
radius for the robust data 
collection

(Thornton et al. 
2009)

Developed the mathematical 
model to study the transport of 
lighter molecules (methane and 
carbon dioxide) in carbon and 
silica slits and nanopores

Described the theoretical pore 
size range for which activation, 
surface diffusion, and Knudsen 
diffusion mechanisms can be 
differentiated

(Hanasaki and 
Nakatani 2006)

Analyzed the water flow in a 
convergent nozzle consisting of 
carbon nanotube

Observed the rise in the pressure 
and temperature in the 
convergent portion of the nozzle 
Also, found the density 
difference in the upstream and 
downstream region of nozzle

(Chun-Yang and 
Mohanad 2009)

Characterized the effect of the 
force applied to liquid Argon on 
velocity and pressure profiles of 
liquid Argon

• Observed the noticeable
difference observed in velocity 
and pressure profiles due to 
reduced effect of the attractive 
and the repulsive forces at the 
higher applied forces

(Huang et al. 
2006)

Examined the entrance and exit 
effect on Argon molecules flow in 
the neutral and hydrophobic wall

No difference observed in the 
pressure and velocity profiles in 
presence of the natural wall 
A significant difference observed 
in streamwise velocity for the 
hydrophobic wall

(Hui and Chao 
2012)

Evaluated the Behavior of Argon 
molecules in a Janus interface 
(molecular configuration with 
hydrophilic and hydrophobic 
interfaces)

Observed nonlinear velocity 
profile, where the velocity 
profile is skewed more towards 
the hydrophobic surface

(Huang et al. 
2010)

Analyzed the effect of the cut-off 
distance on the static and dynamic 
properties of Argon molecules

Recommended the use of the 
minimum cut-off distance (four 
times the characteristics length 
of NVT simulations) to 
minimize the error in the 
dynamic fluid properties
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TABLE 2.3 continued

Reference Study
Main findings/ 

Recommendations

(Clarkson et al. 
2012)

Discussed the need for better 
understanding of the transport of 
liquid hydrocarbons in 
unconventional reservoirs in 
presence of variable pore structure, 
mineralogical and organic content

• Did not mention how to tackle 
the fluid transport challenges in 
the presence of the variable 
pore structure, mineralogical 
and organic content

(Janecek and 
Netz 2007)

Performed the Monte Carlo (MC) 
simulation of adsorption and 
depletion of water molecules in 
presence of hydrophobic and 
hydrophilic surfaces

• Stressed the requirement of 
large number of simulation 
parameters to model complex 
systems (which will reduce the 
uncertainty in the results)
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TABLE 2.4 Applications of GPUs in MD and CGMD simulations

Author Applications
GPU

Architecture
Speed up 

(max)

(Che et al. 2008)
Miscellaneous (Structured grid, 
unstructured grids, optimization 
problems, data mining)

NVIDIA GTX260 72

(Hou et al. 2013) MD with many-body potentials NVIDIA TESLA 
C2050 65.4

(Levine et al. 
2011)

Analysis of MD trajectories for 
RDF histogramming

NVIDIA GeForce 
GTX480 92

(Anandakrishnan 
et al. 2010)

Evaluation of surface electrostatic 
potential for viral capside

ATI
Radeon 4870 182.8

(Yokota et al. 
2011)

Evaluation of the electrostatic 
interaction protein-drug binding NVIDIA GTX295 26

(Shkurti et al. 
2013)

GPU optimization of CGMD 
models NVIDIA GTX480 14

(Chen et al. 2009) MD study of cavity flow and 
particle-bubble interaction

NVIDIA 
Tesla C870 60

(Kim et al. 2012) Characterization of zeolites to 
find local adsorption properties

NIVIDA 
Tesla C2050 50

(Rizk and 
Lavenier 2009) Study of RNA folding mechanism NVIDIA GTX280 17
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TABLE 2.5 Coarse-grained molecular dynamics applications

Reference Study Major findings

(Riniker and 
van Gunsteren 
2011)

Developed CG model of water 
and evaluated thermodynamic and 
physical properties of water

• The comparison of surface 
tension and the thermal expansion 
did not agree with the 
experimental results and SPC 
water model

(Gohlke and 
Thorpe 2006)

Performed CG simulation of 
biomolecules

• Compared the mobility of 
biomolecules evaluated with 
CGMD with the experimental 
results and found a good 
agreement

(Izvekov et al. 
2005)

Utilized force-matching algorithm 
to develop CG model of C60 and 
carbonaceous nanoparticle from 
all-atom MD simulation

• Found good agreement in 
structural properties (radial 
distribution function) between 
CG and all-atom MD models

(Jusufi et al. 
2011)

Investigated the effect of the 
fullerene size on their adsorption 
capacity into biomolecular 
bilayers

• Found good agreement for the 
potential mean force (PMF) with 
CG and all-atom MD models

(Baron et al. 
2006)

Compared the configurational 
entropy properties of n-alkane up 
to hexa- and octa-decane

• Provided the guidelines to the 
check the quality of CG model 
that includes the model 
resolution, the CG mapping 
procedure, and the experimental 
verification to optimize the CG 
parameters

(Stukan et al. 
2012)

Simulated the imbibition 
mechanism to understand the 
recovery of asphaltenic crude oil 
using surfactants

• Achieved the qualitative 
understanding of imbibition 
mechanism is nanopores

(Markutsya et 
al. 2013)

Simulated polysaccharide chains 
in cellulose and comparison with 
the all-atom MD simulations

• Emphasized the number of atoms 
that needs to be selected to form a 
bead (small number of beads will 
be still computationally 
expensive while large number of 
beads will reduce the accuracy of 
the simulations)



CHAPTER 3

PROBLEM STATEMENT

The inadequate understanding of the pore-scale multiphase fluid transport, in 

particular, the adsorption, absorption, and diffusion of hydrocarbons, in realistic organic 

and inorganic matrices is one of the many factors that affect the hydrocarbon recovery rates 

and economic development of unconventional resources such as shale reservoirs. As 

Darcy’s law is not applicable for the nanoscale multiphase fluid transport simulation, a 

comprehensive modeling and simulation framework is required to improve our predictive 

capability. A molecular dynamics based workflow is presented in this dissertation that is 

used to:

• develop molecular models of nanometer and subnanometer pores found in organic 

and inorganic matrices,

• simulate the pore-scale multiphase fluid flow in these nanopores, and

• characterize the transport processes in nanometer and subnanometer pores.

The present research will enable the simulation of complex pore-scale fluid transport 

in unconventional reservoirs, which will enhance our predictive capability of hydrocarbon 

recovery from unconventional reservoirs.



CHAPTER 4

A MOLECULAR DYNAMICS SIMULATION WORKFLOW

4.1 Introduction

A workflow for molecular dynamics (MD) simulations of the pore-scale multiphase 

fluid transport in nano-structured inorganic pore is presented in this chapter. The workflow 

is comprised of three distinct phases. First, a molecular model of the pore, characteristic of 

unconventional source rocks with embedded nanopores, is developed. Then, MD 

simulations of the multiphase gas-liquid flow in the pore are performed using LAMMPS 

(Large-scale Atomic/Molecular Massively Parallel Simulator), an open source molecular 

dynamics package developed by Sandia National Laboratory (Plimpton 1995). Finally, 

upscaling of MD simulations to longer time scales, using a highly scalable parallel 

computing algorithm, is tested. An application of the proposed workflow is demonstrated 

by simulating a pore-scale cocurrent imbibition of water in a methane-saturated pore. 

Various flow properties under nano-confinement, including the mean square displacement 

(MSD) and the effective diffusion coefficient of water and methane, are evaluated and the 

simulation scalability is tested for up to 600 computing cores.

4.2 MD model development

Typical MD simulation workflow consists of three distinct stages: initial system 

definition, a solution of equations of motion, and analysis of atomic trajectories and 

determination of key system parameters (Haile 1993). Figure 4.1 summarizes these three
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stages, and a brief description of tasks performed in each stage is described in the 

subsequent paragraphs.

The accuracy of the MD simulation is highly dependent on a precise description of 

the atomistic structure and model geometry. Description of the initial molecular 

configuration, which includes the assignment of all fundamental atomic properties 

including the mass, partial atomic charges, and the interatomic potential between 

atoms/molecules, is performed during the first stage. The key model parameters, which are 

used to characterize the atomic interactions, are assigned based on the force field.

In the second stage, the equations of motion are solved to obtain temporal positions 

of the atoms. Various numerical schemes can be used. The most widely used solution 

scheme is the velocity Verlet algorithm, due to its simplicity and minimal computational 

and data storage requirements (Young 2004). The general form of the equation of motion 

can be written as (Ungerer et al. 2005):

and, expressed as a function of the total potential energy of the system, Equation 1 

becomes:

where, mi is the mass of an atom, r  represents (x, y, z) coordinates of an atom, and U is the 

total potential energy of the system. In the absence of information about the kinetic energy 

of the system, the total potential energy can be estimated using bonded (Eb) and non

bonded (Enb) atomic interactions:

(4.1)

Ft =  V (U (rd ) (4.2)
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The bonded atomic interaction consists of bond stretching (Eb), bond bending (Ea), 

and the dihedral angle torsion (Et) while the nonbonded interactions consist of van der 

W aal’s (Evdw) contribution and the electrostatic (Ec) contribution. The individual energy 

terms are given below (Equations 4.6 - 4.10):

U - E b +  Enb (4.3)

Eb =  Eb +  Ea +  Et (4.4)

Enb =  Evow +  Ec (45)

EB = - K e( R - R e) 2 (4.6)

EA = \ K e ( 6 - 6 ey  (4.7)

-
Er = - V { 1 - c o s [ n ( < t - < t e)]}  (4.8)

Evc,w =  4 e [ ( !; ) 12- ( :; f ]  (4.9)

and

Ec =  C q~ § L (4.10)

The Lorentz-Berthelot rule (Anderson et al. 2005; Hui and Chao 2012),
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£ij =  V£i£j

and

(411)

are used to calculate the van der Waals parameters for dissimilar atoms.

To minimize the total computational time and provide an accurate representation 

of the underlying processes, a number of MD simulation parameters have to be accurately 

selected and optimized prior to simulation. Table 4.1 summarizes some important 

simulation parameters and their potential impact on the MD simulation results.

In the last stage, the atomic trajectories evaluated at different time steps are used 

for qualitative and quantitative analysis of the underlying physical processes. In this study, 

which is focused on the investigation of multiphase fluid flow in nano-confined geometry, 

diffusion coefficients and spatial variation of the number densities of both methane gas 

(displaced phase) and water (displacement fluid) are evaluated.

4.3 MD simulation of the cocurrent imbibition in inorganic pore

An MD simulation of cocurrent imbibition of water in nano-structured inorganic 

pore saturated with methane gas is performed using LAMMPS. An inorganic pore 

consisting of amorphous quartz is used in this study. The cross-section of the pore is shown 

in Figure 4.2. The length and the diameter of the pore are 5-nm and 80-nm, respectively, 

whereas the pore wall thickness is 2-nm. The pore structure is fixed to maintain the integrity 

of the pore during the simulation and to avoid the pore collapse. A total of 1,500 water



molecules, 1,500 methane molecules, and 14,000 unit quartz structures were used in the 

simulation. Each quartz unit structure consists of three silicon and six oxygen atoms. A 

number of molecules used in the simulation are selected to get accurate representation of 

the system while minimizing the total computational cost of the MD simulations.

The SPC/E model (Mark and Nilsson 2001) is used to simulate water molecules; 

methane molecules were simulated as independent rigid bodies (Ungerer et al. 2005). The 

MD simulation parameters used in the present study are summarized in Table 4.2. For 

dissimilar atoms, the Lorentz-Berthelot rule is used to estimate the £ (interatomic potential 

well depth) and o  (distance at which the interatomic potential is zero) parameters.

The particle-particle particle-mesh (pppm) algorithm is used to evaluate the long- 

range Coulombic interactions having a tolerance of 1e-5 (in per-atom force calculation) 

with the cut-off distance of 12 A. A periodic boundary condition is utilized in all directions. 

The system is simulated in the NVE ensemble, and the Langevin thermostat is used to 

maintain the system temperature at the desired level. An adaptive time stepping is used to 

perform the time integration with minimum and maximum time steps of 0.00001 fs and 0.1 

fs respectively. The atomic trajectory information is stored at every 1,000 time steps and 

is used to evaluate the mean square displacement (MSD) of water and methane.

Further, the effective diffusion coefficients of water and methane molecules are 

also evaluated using Equation 4.13.
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D =  1 <|rW-r(0)|2> (4.13)

The diffusion coefficient reported for water and methane are the effective diffusion 

coefficient in the quartz nanopore, as they are the result of interactions between the fluid-



fluid molecules, as well as the fluid molecules-pore surface at a 0 Kcal/mol-A applied force 

(no externally applied force) to water molecules.

Finally, the methane number density is determined as a function of time, applied 

force to the water molecules, and the system temperature. The resulting methane number 

density is used to evaluate methane distribution within the pore and on the pore surface, 

and to assess the impact of above-defined attributes on the methane behavior inside the 

quartz pore.

4.4 Results and discussion

Figure 4.3 shows the comparison between overall water and methane displacements 

in quartz nanopore along the x-direction at two distinct times — at the beginning, and at 

the intermediate time — to examine the impact of the various applied forces on methane 

recovery. Three distinct scenarios are depicted in Figure 4.3 where the force of 0 Kcal/mol- 

A, 0.1 Kcal/mol-A, and 1 Kcal/mol-A were applied to each atom of water molecules. The 

visual molecular dynamics (VMD) package (Humphrey et al. 1996) is used for all 

visualization.

From Figure 4.3 a), it can be observed that the overall water and methane molecules 

displacements are small at the 0 Kcal/mol-A force, and the primary mode of transport, in 

this case, is the diffusion caused by the fluid (water and methane) and the pore surface 

(quartz) interactions. A very small displacement of water and methane show the typical 

characteristics o f  unconventional reservoirs having extremely slow hydrocarbon recovery 

rates. Further, significant water and methane displacements were observed for an applied 

force of 1 Kcal/mol-A to water molecules and are shown in Figure 4.3 c). Thus, it implies 

the requirement o f  the higher applied force to water molecule (numerically, force o f  1
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Kcal/mol-A = 69.5 pN) to overcome the dominant fluid-pore surface interactions and to 

enhance the hydrocarbon recovery rates from unconventional reservoirs.

4.4.1 The mean square displacement and the effective diffusion 
coefficient

Figures 4.4 and 4.5 show the mean square displacement (MSD) of water and 

methane molecules for various applied forces (AF) to water molecules. From Figure 4.4 

and Figure 4.5, it can be observed that the MSD of water and methane increases with an 

increase in a cumulative simulation time and the applied force to water molecules, as 

expected. Further, the MSD of methane was higher than the MSD of water. In addition, the 

effective diffusion coefficient of water and methane in the quartz nanopore is calculated 

with Equation (13) and summarized in Table 4.3. The time steps between 950,000 and

1,000,000 (time between 0.09 and 0.095 ns) were used to calculate the diffusion 

coefficients. From Table 4.3, it can be seen that the effective diffusion coefficient of 

methane is higher than the effective diffusion coefficient of water. Further, the effective 

diffusion coefficient increases with an increase in the temperature of the system.

4.4.2 The number density

Figures 4.6 and 4.7 show the variation of the methane number density along the y- 

direction, at the temperature of 340 K and 360 K, for various applied forces to water 

molecules. The number densities reported at 0 ps represent the distribution of molecules 

after a small fraction of time when the actual data logging process started. From Figures 

4.6 and 4.7, it is observed that the methane number density is higher around the center of 

the pore at the beginning of the simulation and becomes wider near the pore wall as the 

simulation progresses, suggesting the enhanced rate of adsorption on the pore wall is due
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to the influence of fluid-pore surface interactions. Further, Figures 4.6 and 4.7 show that 

the methane distribution is skewed towards the lower side o f  the pore, which is the direct 

consequence o f the initial distribution o f  water molecules inside the pore as shown in 

Figure 4.8.

At 0 Kcal/mol-A applied force, the rate o f  molecule getting closer to the pore 

surface is low and increases with an increase in the applied force (shown in Figure 4.9). 

Also, the water molecules near the pore wall prefer to remain on the wall, even under the 

influence o f high applied forces to water molecules, thus indicating the water retention by 

the pore surface during the hydrocarbon recovery process. Further, the water molecules 

away from the pore wall undergo displacement and are primarily responsible for the 

displacement of the methane molecules.

The double methane density peak is observed when the force on the water 

molecules increases. For 0.1 Kcal/mol-A force on water molecules, the double number 

peak is observed but becomes more evident for 1 Kcal/mol-A force. By increasing the 

system temperature to 360 K, similar behavior is observed in the methane number density 

(shown in Figure 4.7), except the methane number density peak becomes wider near the 

pore wall, suggesting the enhanced rate of adsorption on the wall.

4.4.3 Extension of MD simulation capability for longer time scale 
with massively parallel CPU-based computing

MD simulations are computationally expensive and most o f  the simulation time is 

used to calculate the long-range electrostatic interactions. Figure 4.10 shows the typical 

time utilization in MD simulations. There are many MD simulation parameters, which play 

a significant role in the total simulation time, e.g., the force field used to characterize the
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molecular interaction, and the cut-off distance to calculate electrostatic interactions. 

However, due to the advent of modern CPU- and GPU-based computational capabilities, 

it is possible to extend the capability of MD simulations for longer simulation times (Hou 

et al. 2013; Levine et al. 2011; Pohl and Heffelfinger 1999).

In the present study, a different number of computing cores were used to compare 

the computational efficiency and the scalability of the MD simulations with a large number 

of massively parallel CPUs. The comparison of total simulation time is shown in Figure 

4.11. It can be observed that the total computational time decreases with an increase in a 

number of cores used. However, the observed trend of the total computational time is not 

linear. This is potentially due to the distribution of various MD simulation tasks on 

different cores and the increased intercore communication time with a large number of 

cores.

In summary, the molecular dynamics simulation-based workflow is presented to 

model and simulate the pore-scale multiphase fluid transport in organic/inorganic phases, 

containing nanopores. An example of a cocurrent imbibition mechanism (water displacing 

methane) in a quartz pore is shown to demonstrate the application of the proposed 

workflow. The diffusion coefficient and the number density of methane were evaluated to 

obtain insight into the pore-scale methane recovery process. Overall, the proposed 

workflow will enable the simulation of complex pore-scale fluid transport in 

unconventional reservoirs, which will enhance our predictive capability of hydrocarbon 

recovery from unconventional reservoirs.
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MODEL CONFIGURATION

Definition of atomic unit structures 
(building blocks)

Packing of the building blocks into 
representative 3D model

Definition of atomic properties 
(charge, mass, interatomic potential)

SOLUTION OF EQUATIONS 
OF MOTION

Initial state of the system 
(position, velocity)

Time step definition (4t) and total 
simulation time

Definition of thermostat properties

ANALYSIS OF ATOMIC 
TRAJECTORIES

Evaluation of atomic trajectories at 
different time-steps

Qualitative and quantitative analysis 
of underlying physical processes

This study:
Estimation of diffusion coefficients 
and spatial distribution of number 

density of displaced phase and 
displacement fluid

FIGURE 4.1 MD simulation stages
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Flow Direction
FIGURE 4.2 Atomistic representation of a methane saturated pore model
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Time = 10 ps

FIGURE 4.3 Fluid molecules at different time steps for three applied injection 
forces: a) 0 Kcal/mole-A, b) 0.1 Kcal/mole-A, and c) 1 Kcal/mole-A
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FIGURE 4.5 Mean square displacements of methane at 340 and 360 K
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FIGURE 4.7 Methane number density at 360 K and applied force to water of 
a) 0 Kcal/mol-A, b) 0.1 Kcal/mol-A, and c) 1 Kcal/mol-A
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FIGURE 4.8 Water number density at 340 K and applied force to water of 
a) 0 Kcal/mol-A, b) 0.1 Kcal/mol-A, and c) 1 Kcal/mol-A
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FIGURE 4.9 Methane distribution within the pore at 340 K and applied force to 
water of a) 0 Kcal/mol-A, b) 0.1 Kcal/mol-A, and c) 1 Kcal/mol-A
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FIGURE 4.10 Typical computational time utilization in pore-scale MD simulation 
with 600 computing cores and 25,000 time-steps
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FIGURE 4.11 Computational performance of the typical pore-scale MD simulations 
for 25,000 time-steps with a different number of computing cores
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TABLE 4.1 MD simulation parameters optimization and 
their potential impact on the simulation results

Parameter Aspect of the MD simulation

Time step
• Affects the total simulation time
• Larger time step reduces the number of simulation 

steps and time but decreases accuracy of the 
simulation

Total simulation 
time

• Shorter simulation time affects the convergence of 
the system to equilibrium state (particularly for 
slow fluid flow and transport processes, which are 
characteristics of unconventional reservoirs)

• Many quasi-equilibrium states can exist at a given 
temperature, and longer simulation times are 
required to ensure that the system has reached 
equilibrium

Cut-off distance

• Affects the total simulation time and the accuracy 
of the simulation

• Smaller cut-off distance results in shorter 
simulation time but reduces accuracy

• Large cut-off distances lead to improved accuracy 
but higher computational cost

Force field
• Affects the predicted system properties
• Improper force field selection may lead to 

simulation results that deviate from experimental 
observations

Trajectory
information
storage
frequency

• Too frequent storing of trajectory information 
results in an extremely large data file, which is 
particularly difficult to handle, analyze, and 
visualize

• Less frequent data logging results in a loss of 
simulation details
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TABLE 4.2 MD simulation parameters

Parameter s [kJ/mol] a [A] q [e-] Reference

O (water) 0.6502 3.166 -0.8476 (Reed and Westacott 2008; 
Zielkiewicz 2005)

H (water) - - 0.4238 (Reed and Westacott 2008; 
Zielkiewicz 2005)

C (methane) 1.231 3.73 - (Docherty et al. 2006; Reed 
and Westacott 2008)

Si (quartz) 0.5335 3.795 2.4 (McCaughan et al. 2013)

O (quartz) 0.6487 3.154 -1.2 (McCaughan et al. 2013)
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TABLE 4.3 The effective diffusion coefficient of water and methane
at 340 and 360 K

Fluid
Effective diffusion coefficient, D x 10-9 m2/s

T = 340 K T = 360 K

Methane 2.15 2.16

Water 0.83 1.08



CHAPTER 5

EXTENSION OF THE GENERAL-PURPOSE DREIDING 

FORCE FIELD TO MODEL KEROGEN

5.1 Introduction

Hydrocarbon production from unconventional resources has grown enormously in 

recent years, due to advances in recovery methods, including hydraulic fracturing, fracture 

propping, and directional drilling, but the overall hydrocarbon recovery factors from these 

hydrocarbon accumulations have remained much lower than the recovery rates from 

conventional reservoirs. The lower recovery factors are due, in large part, to the nanoscale 

porosity, large specific surface area, and the high solid organic matter (kerogen) content of 

the host rocks, which results in very low permeability, very high capillary pressures, and a 

variety of hydrocarbon sorption phenomena.

In particular, the adsorption and absorption of hydrocarbons and other small 

molecules by kerogen, and the transport of small molecules in kerogen plays a significant 

role in the retention of hydrocarbons in source rocks and the production of oil and gas from 

kerogen containing tight rocks. A better understanding of these processes, at the molecular 

level, could provide a rational basis for the development of new improved recovery 

technologies.

However, the development of representative kerogen models is challenging 

because of its complex and heterogeneous nature that depends on the biological precursors



and the processes that occur during diagenesis and catagenesis. Kerogens do not have well- 

defined chemical structures, and because of their various biological origins, and possibly, 

because they underwent different biogeochemical transformations during diagenesis, one 

kerogen particle may have a different chemical composition and a different morphology 

than another kerogen particles that are separated from it by distances on the order of only

1 ^m. It is likely that most of the organic matter in a kerogen particle consists of one or 

more enormous cross-linked macromolecules that would be much too large to simulate 

using molecular dynamics.

Various two-dimensional (2D) (Behar and Vandenbroucke 1987; Siskin et al. 1995) 

and three-dimensional (3D) (Liu et al. 2015; Orendt et al. 2013) kerogen models have been 

developed to obtain the representative kerogen structure. Two-dimensional models define 

the way in which the atoms are connected by chemical bonds, and three-dimensional 

models describe, in addition, the way in which the molecule pervades three-dimensional 

space.

Several force fields including the ReaxFF (Liu et al. 2015), PCFF+ (Collell et al. 

2014; Ungerer et al. 2014), MM+ (Orendt et al. 2013) have been used in the literature to 

model and simulate the behavior of kerogen on the molecular level. The outcome of any 

molecular dynamics simulation, including the predicted equilibrium state and transport 

properties, depends on the force field. For some applications such as the development of 

a better understanding of generic behaviors, simple force fields such as the Lennard-Jones 

and Born-Lande (electrostatic plus short range repulsion) force fields can be used. On the 

other hand, tailored force fields have been developed for some commercially and 

scientifically important materials, such as silicon and water. For complex and variable
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organic materials such as kerogens, which contain C, H, O, N, and S atoms, the simplest 

force fields cannot be used to obtain results of predictive value, and tailored force fields, 

based on quantum mechanical calculations and/or optimization to reproduce key physical 

properties are often not practical. Hence, generalized force fields, such as the DREIDING 

force field (Mayo et al. 1990) provide a reasonable compromise between the simplest force 

fields that reduce the computational burden, facilitate the simulation of larger systems, or 

enable processes with longer physical time scales to be simulated, and tailored force fields 

that are costly in terms of human resources.

The primary purpose of the present chapter is to investigate the capability of the 

general-purpose DREIDING force field to simulate a kerogen and evaluate it by 

comparison of molecular modeling results with experimental and simulation results 

reported in the scientific literature, bearing in mind the limitations of representative 

molecular structure models for kerogen. This chapter is organized into sections as follows.

• Section 5.2 describes the development of realistic kerogen matrix models 

of Type I (immature), Type II (middle-end oil window), and Type III (over 

matured) kerogens.

• Section 5.3 includes the explanation of the DREIDING force field that will 

be significant to parametrize the DREIDING force field for the Type I, Type

II, and Type III kerogens.

• Section 5.4 provides the molecular simulation details. Finally, Section 5.5 

discusses the results obtained for kerogen density and atomic pairwise 

distribution function for each kerogen type and the comparison of the results 

with the prior experimental and simulation results from the literature.
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5.2 Development of a realistic kerogen matrix model

Twenty identical unit kerogen molecules of Type I, Type II, and Type III were 

packed in a periodic cubic simulation box with sides of length 7-nm. The workflow and 

the resulting initial kerogen matrix structure is shown in Figure 5.1. The representative unit 

structures of Type I, Type II, and Type III kerogens were taken from literature (Ungerer et 

al. 2014) and are shown in Figure 5.2. The Type I kerogen molecule, dominated by 

aliphatic carbons, corresponds to the immature lacustrine kerogen, similar to the Green 

River oil shale Kerogen. The Type II and Type III kerogen molecules represent middle- 

end oil windows and over mature kerogens, and they are dominated by aromatic carbons. 

The Type III kerogen molecule is more aromatic than the Type II kerogen, as is expected 

for a more mature humic kerogen. Further details of these unit kerogen models can be 

found elsewhere (Ungerer et al. 2014).

5.3 DREIDING force field

The DREIDING force field has been successfully used to model a variety of organic 

molecules, biological molecules, and main-group inorganic molecules. The total potential 

energy in the DREIDING force field consists of bonded (Eh) and nonbonded (Enb) atomic 

interactions. The bonded atom interactions include the bond stretching (Eb), bond bending 

(Ea), and dihedral angle torsion (Et), while the nonbonded interactions consist of van der 

Waals (Evdw) and the electrostatic (Ec) contributions to the potential energy. The 

mathematical expression for the molecular interaction parameters (Equations 4.4 -  4.10) 

are already described in Chapter 4.

The bond (Ke), angle (Ke), and torsion parameters (V) are determined by simple 

rule-based relations (Mayo et al. 1990). The selected kerogen molecules were initially

72



73

analyzed with the visual molecular dynamics (VMD) tool (Humphrey et al. 1996) to 

identify the unique number of bonds, angles, and dihedrals present in the unit kerogen 

structures. The VMD analysis prevents the assignment of spurious bonds and angles while 

developing an initial kerogen molecular configuration containing a large number of unit 

kerogen structures.

In the original DREIDING force field implementation, the partial atomic charges 

were either neglected or evaluated using the Gasteiger method (Gasteiger and Marsili 

1980). In the present study, the partial atomic charges were estimated using the Gasteiger 

algorithm implemented in the Chimera molecular package (Pettersen et al. 2004). In the 

Gasteiger method, the partial atomic charges are determined by an iterative partial 

equalization of the orbital negativities.

5.4 Molecular simulation details

The LAMMPS package was used to perform the numerical MD simulations. The 

particle-particle particle-mesh (PPPM) algorithm was used to compute the electrostatic 

interactions between charged atoms with an accuracy of 1e-5 (relative root mean square 

(RMS) error in per-atom force calculation). An adaptive time-stepping algorithm was used 

to perform the time integration, with minimum and maximum time steps of 0.00001 and 

1.0 fs. A velocity verlet algorithm was used to solve the equations of motion and to obtain 

the temporal position of the atoms.

Further, the high temperature of 2000 K and pressure of 1000 atm were used to 

anneal complex kerogen structure (which consists of a large number of, and different types 

of atoms). Because of the large number of atoms in each kerogen molecule and the even 

larger number of atoms in the simulated system, there are many molecular conformations



with energies that are not much different from that of the conformation with the lowest 

energy, and there is an extremely large number of configurations in the system as a whole, 

with energies that are very similar to that of the lowest energy configuration (on the order 

of kBT higher or less, where kB is the Boltzmann constant, and T is the absolute 

temperature). These low energy states are separated by energy barriers that are often 

substantially higher than kBT at temperatures that are typical of hydrocarbon bearing 

formations in the subsurface. Hence, a series of NVT and NPT simulations (described in 

section 2.3.1.3) were performed to generate one of many low-energy states that are typical 

of the equilibrated system (Carlson 1992) and summarized in Table 5.1.

Two different sets of simulations were performed for each kerogen type to verify 

that the density had converged to a constant value and that the kerogen had reached an 

equilibrium state. The total simulation times of (0.79 ns, 1.35 ns), (0.72 ns, 1.25 ns), and 

(0.82 ns, 1.39 ns) were used for Type I, Type II, and Type III kerogens, respectively. The 

total number of simulation steps utilized in all cases was the same, but the total simulation 

time was different due to the utilization of adaptive time stepping. Additional simulations 

were performed for each kerogen type to analyze the effect of different initial simulation 

box sizes on the kerogen density. A periodic cubic simulation box with sides of length 5.5

nm was used to perform additional simulations. A small difference (< 3 %) was observed 

in the final kerogen density values.

5.5 Results and discussion

Various key molecular properties including the structural characterization, the 

molecular vibrational frequencies, and the heats of formation can be reproduced to validate 

the force field. The most routinely analyzed properties, which were evaluated in the present
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study, are the kerogen density and the atomic pair distribution function between carbon 

atoms.

5.5.1 Kerogen density

The kerogen density depends on thermal maturity, the elemental composition of the 

kerogen and its molecular architecture. Figure 5.3 shows the equilibrated structures of Type

I, Type II, and Type III kerogens. The gray, white, red, blue, and yellow colors represent 

C, H, O, N, and S atoms, respectively. From Figure 5.3, it can be seen that the aliphatic 

carbon along with hydrogen (high H/C ratio) dominate Type I kerogen with traces of sulfur. 

As the thermal maturity of kerogen increases, the overall H/C ratio decreases, due to the 

decomposition of the long aliphatic carbon chains and the formation of low molecular mass 

products with high H/C ratio, during the geochemical transformation of kerogen. Further, 

the sulfur content decreases as the maturity of kerogen increases.

Figure 5.4 depicts the variation of kerogen densities for Type I, Type II, and Type 

III kerogens at different annealing stages (temperatures and pressures). The kerogen 

densities at the beginning of the simulation were 0.3684, 0.3359, and 0.3381 g/cm3 for 

Type I, Type II, and Type III kerogens, which were determined by knowing the total mass 

and the initial simulation box size of respective kerogen structures. The kerogen density 

remains constant during NVT simulations and changes during the NPT simulations.

Figure 5.4 shows that the kerogen density increases as kerogens become more 

thermally mature, resulting in the lowest density for Type I kerogens and the highest 

density for Type III kerogens. Further, the difference observed between Type II and Type 

III kerogen densities was small, which is consistent with the previous simulation study 

(Ungerer et al., 2014). The final kerogen densities obtained for Type I, Type II, and Type



III kerogens after equilibration were 0.71, 0.84, and 0.89 g/cm3, respectively. Table 5.2 

summarizes kerogen densities from the literature and provides a comparison with the 

present study. The kerogen densities obtained in the present study are lower than the 

simulation and experimental kerogen densities reported in the literature.

The primary reason for the underprediction in the kerogen densities is the 

generalized nature of the DREIDING force field that has a tendency to underpredict density 

values (Nakamura et al. 1993; Wu and Xu 2006). There are additional factors that also 

affect the kerogen densities which include:

1. the existence of the free volume and the intrinsic subnanometer scale 

porosity within kerogen matrix,

2. the lack of cross-linking between unit kerogen molecules,

3. the generalized nature of the DREIDING forcefield, and

4. incomplete equilibration during the annealing simulations.

The following sections provide a detailed description of these factors.

5.5.1.1 The existence of the free volume and intrinsic subnanometer 
scale porosity within the kerogen matrix

A kerogen matrix consists of cross-linked aliphatic and aromatic carbon chains that 

form a complex polymeric structure. During the thermal maturation process, kerogen is 

exposed to temperatures and pressures that are high, relative to surface temperatures and 

pressures. In particular, the elevated temperature enables extensive chemical 

transformation to occur on geological time scales. During this process, the functional 

groups rearrange themselves to reduce the system free energy, as the temperature, pressure, 

and chemical environment change. Because of the constraints imposed by chemical
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bonding, molecular rigidity, and complex molecular shapes, kerogen molecules cannot 

pack together without small voids remaining. These voids, frequently referred to as free 

volume or intrinsic porosity in polymers (Budd et al. 2005), play an important role in the 

sorption and transport of small molecules in kerogens. The intrinsic porosity within a 

kerogen matrix may be continuous, intermittently connected, or completely isolated, thus 

affecting the retention of hydrocarbons in a kerogen and their release during hydrocarbon 

production. This intrinsic porosity is on a much smaller scale than the nanoscale porosity 

often seen in focused ion beam-scanning electron microscopy (FIB-SEM) images of high 

maturity kerogen, Therefore, small molecule -  kerogen interactions are expected to have a 

strong influence on this extremely small scale “porosity.” The percent of intrinsic porosity 

depends on the thermal maturity of the kerogen, the kerogen molecular structure, and the 

overall kerogen molecular rigidity (McKeown and Budd 2010).

A preliminary analysis was performed to characterize the intrinsic porosity and 

improve understanding of the subnanometer scale features within the kerogen matrix. The 

equilibrated kerogen matrix structures were virtually sliced, using the VMD tool to obtain 

a series of 2D cross-sections of kerogen matrix with a slice thickness of 5 A. The 2D images 

were analyzed with ImageJ (Abramoff et al. 2004), revealing the internal kerogen matrix 

structure shown in Figure 5.5. The white and dark portion represents the kerogen and 

intrinsic porosity, respectively. The overall dimensions of each kerogen matrix (which 

contains both kerogen and intrinsic porosity) is approximately 5-nm x 5-nm. It can be seen 

that a significant number of subnanometer scale pores exist within the kerogen matrix, 

which can act as nano-reservoirs that retain hydrocarbons and other fluids. Although a 

direct relationship between the subnanometer scale porosity and the thermal maturity of
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kerogen is not established at this stage, the analysis provides an insight into subnanometer 

scale features within kerogen matrices, which cannot be investigated using currently 

available experimental methods, including Transmission Electron Microscopy (TEM) or 

even Scanning Electron Microscopy (SEM), because they are unable to resolve the 

subnanometer scale features within kerogen matrices. In addition, kerogen isolation from 

the source rock is a complex process that may alter the kerogen structure.

Focused ion beam and broad ion beam milling are frequently used to prepare “flat” 

surfaces and thin specimens for high-resolution imaging, but even these “gentle” methods 

may cause severe damage on the subnanometer scale. Presently, we believe that the 

existence of intrinsic porosity affects the predicted kerogen densities, and higher kerogen 

densities can be expected, if  intrinsic porosity is reduced by annealing for a longer time.

5.5.1.2 The lack of cross-linking between unit kerogen molecules

Because they are not soluble in nonreactive solvents, it is not possible to determine 

the molecular mass distribution of kerogens. However, it is very likely that these 

geopolymers have extremely high molecular masses, and that they consist of highly cross

linked molecular networks, similar to elastomers in a glassy or rubbery state. In the work 

described here, we did not consider crosslinking between unit kerogen molecules, which 

results in comparatively small molecular masses. It has been observed that the long carbon 

chains help to increase the coal density (Carlson 1992), and hence, the lack of cross-linking 

between kerogen molecules may be one of the reasons why the kerogen densities predicted 

by molecular dynamics with the DREIDING force field are lower than experimental 

kerogen densities.

The inclusion of cross-linking between unit kerogen molecules would result in a

78



more accurate prediction of the kerogen densities. A detailed investigation is required to 

determine the cross-linking mechanism between kerogen molecules, to analyze the effect 

of the kerogen maturity on the cross-link density, and the distribution of various types of 

cross-links and their effects on kerogen stiffness.

5.5.1.3 The generalized nature of the DREIDING force field

The DREIDING force field is a general-purpose force field that can be used for any 

organic molecule and main-group of inorganic molecules. The parameterization of the 

force field is based on simple hybridization rules and does not depend on the particular 

combination of atom types, e.g., the bond stiffness constant is the same irrespective of the 

combination of atoms. As a result, the properties evaluated with the DREIDING force field 

may differ from their actual values. Various studies (Hu et al. 2010; Wu and Xu 2006) have 

compared the performance of the DREIDING force field and found that the DREIDING 

force field underpredicts the material densities (epoxy resin and coal density) owing to the 

generalized nature of the force field.

5.5.1.4 Incomplete annealing

In these and other molecular dynamics simulation that aim to simulate kerogen 

under equilibrium conditions, the system is quenched from a high temperature to the 

purported equilibrium state on a timescale on the order of 10-8 s at most, and the rate of 

temperature change is on the order of 1011 K/s-1. This is > 106 times the critical quench 

rates needed to form mixed-metal glasses. At these fast quench rates, it is unlikely that 

annealing is complete, particularly for large complex molecules of low flexibility. The 

challenge of annealing large kerogen molecules is similar to the problem of protein folding.
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While some small proteins fold over time scales of 10-6 -10 -4 s (very long for all-atom 

molecular dynamics simulations), the folding times for large proteins may be very much 

longer. In practice it is difficult to determine when the equilibrium density has been 

reached. Kerogen is formed via a long sequence of chemical transformations that occur on 

time scales of up to ^1016 s, and while molecular dynamics with reactive force fields might 

better represent this process in principle, it is not practical under the (P, T) conditions 

encountered in hydrocarbon bearing formations, because of the high reaction activation 

energies. All molecular dynamics simulations are faced with these challenges, which are 

exacerbated by the very small time steps required for accurate integration.

5.5.2 Carbon-carbon pairwise distribution function

The atomic pairwise distribution function, g (r), is the probability of finding atoms 

at a given radial distance from the reference atoms. The pairwise distribution function 

provides local and average structural information (Petkov et al. 2013) about kerogen that 

can be used to characterize the structural evolution of kerogen, during geological 

transformation or to compare different representative kerogen structures.

Figure 5.6 shows the overall carbon-carbon pairwise distribution function for 

different equilibrated kerogen structures considered in the present analysis and the detailed 

carbon-carbon pairwise distribution function between 1-A and 2-A. The well-defined 

peaks reveal the dominance of aliphatic or aromatic carbon in a given kerogen structure. 

In particular, the first and second peak of g (r), observed at distances 1.39-A and 1.54-A, 

corresponds to the aromatic carbon (with the shorter bond length) and the aliphatic carbon 

(with the longer bond length). Figure 5.6 confirms that the Type I kerogen is dominated by 

aliphatic carbon, since the magnitude of the peak in g (r), corresponding to aliphatic carbon,
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is greater than the magnitude of the peak corresponding to aromatic carbon. Further, the 

magnitude of the aromatic carbon increases as the thermal maturity of the kerogen 

increases.

Finally, the pairwise distribution function beyond 2.0-A corresponds to the carbon 

atoms which are not directly bonded to each other. Overall, the carbon-carbon pair 

distribution function is consistent with the results reported in the literature (Orendt et al. 

2013; Ungerer et al. 2014).

In summary, molecular dynamics simulations were performed to evaluate the 

capability of the general-purpose DREIDING force field to model and simulate 

representative kerogen structures, having the variable thermal maturity and elemental 

composition. The kerogen density and pairwise distribution functions are determined by 

molecular dynamics simulations and are compared with the experimental and simulation 

results available in the literature. Kerogen density increases with increasing thermal 

maturity. The kerogen densities were under-predicted by molecular dynamics simulations, 

using DREIDING force field for all kerogen models, due to the existence of subnanometer- 

scale intrinsic porosity within the kerogen matrix, the lack of cross-linking between 

kerogen molecules, the generalized nature of the force field, and by incomplete annealing. 

The pair distribution function obtained for all kerogen models was consistent with the 

results from the literature.

The present study shows that the general-purpose DREIDING force field can be 

used to simulate the complex kerogen matrix, where little or no experimental data is 

available. Further, the outcomes from the present study can be coupled with modern CPU 

and GPU-based high-performance computational capabilities to simulate the larger and
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more complex kerogen models that will help in the better understanding of the kerogen 

structure, which is crucial in supercritical carbon dioxide enabled hydrocarbon recovery 

processes in unconventional reservoirs.
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FIGURE 5.1 The workflow to develop a realistic kerogen matrix structure
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FIGURE 5.2 Different kerogen types a) Type I (immature Green River shale 
kerogen), b) Type II (middle-end oil window kerogen), and c) Type III (matured 
kerogen) “Reprinted (adapted) with permission from (Ungerer 2015). Copyright

2015 American Chemical Society”
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FIGURE 5.4 Kerogen density variation during different annealing stages
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TABLE 5.1 Kerogen annealing stages

Annealing
sequence

P (atm)/ 
T (K)

Number of steps
Ensemble Type I 

kerogen
Type II 
kerogen

Type III 
kerogen

1 NVT 300 -  
2000 K 400,000 400,000 400,000

2 NPT 1000 atm, 
2000 K 70,00,000 70,00,000 70,00,000

3 NPT 100 atm, 
1000 K 30,00,000 30,00,000 30,00,000

4 NPT 10 atm, 
500 K 30,00,000 30,00,000 30,00,000

5 NPT 1 atm, 
300 K 46,00,000 46,00,000 46,00,000
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TABLE 5.2 Comparison of kerogen densities

Kerogen Type

Type I Type II Type III

Experimental 0.95 
(Facelli 2011)

1.18-1.25 
(Okiongbo et al.

2005)
1.18-1.22 

(Stankiewicz et al.
1994)

1.25 
(Jimenez et al. 

1998)

Simulation

1.00
(Ungerer et al. 2015) 

0.66 
(Liu et al. 2015) 

0.90 
(Facelli 2011)

1.13-1.28 
(Ungerer et al. 2015)

1.16-1.20 
(Ungerer et al. 

2014)

Present work 0.71 0.84 0.89



CHAPTER 6

THE MULTIPHASE SIMULATION IN REALISTIC 

NANOMETER AND SUBNANOMETER PORES 

FOUND IN KEROGEN MATRIX

6.1 Introduction

A significant research effort characterizing various aspects of shale reservoirs 

manifest the potential of shale gas as the one of the vital energy sources, which constitute 

the major fraction of the total natural gas used in the United States. Despite the enormous 

potential of shale resources, the lower hydrocarbon recovery rate is one of the major factors 

hindering the economic development of shale reservoirs. This is mainly due to the complex, 

heterogeneous, nanoporous structure of shales having a permeability of the order of nano- 

darcy, the existence of poorly connected pore networks, the presence of the multiscale 

mineralogical and structural heterogeneity, the random distribution of organic matter 

throughout the reservoir matrix, and the limited application of the Darcy’s law describing 

the fluid transport in the nanostructures shales. Further, the fluid flow in shales is controlled 

by more than one factor — the pore size distribution, the pore connectivity, the pore 

composition, the pore surface anisotropy, the pore injection pressure, and the pore 

temperature — altogether coupled with the pore confinement effects, making the fluid flow 

modeling and simulation in shales a challenging task. As a result, various hydrocarbon 

migration and storage mechanisms in shale are not fully comprehended.



Numerous attempts (Falk et al. 2015; Hu et al. 2015; Javadpour et al. 2007) have 

been made to reduce the gap in the present understanding of the nanoscale multiphase fluid 

transport, but mostly pure carbon-based/activated carbon-based systems were used to 

define the organic matter — which is one of the most important component of shales and 

the source of hydrocarbons. However, in reality, the kerogen structure is complex; it 

consists of long aliphatic and aromatic carbon chains, and has a varying elemental 

composition — the presence of C, H, N, O, and S atoms that define the oxygen and 

hydrogen indices — depending on the type and the thermal maturity of kerogen.

Further, most of the studies performed in the literature focused on the fluid transport 

in the perfectly cylindrical nanopores. However, in practice, as described by numerous 

shale petrophysical characterization studies (Ahmad and Haghighi 2012; Loucks et al. 

2009), the pores observed in organic matter are not perfectly cylindrical, and they deviate 

from the ideal to a more irregular pore size and shape. One of the main reasons for the 

observed irregularity in pore sizes and shapes is the fundamental arrangement of the atomic 

structure/functional groups of the organic and the inorganic matter, during the geo-thermal 

transformation of shales. As a result, the realistic pore structures exhibit features such as 

heterogeneous and irregular pore surfaces, which affect the underlying fluid transport, the 

fluid storage, and the fluid migration. Thus, it is imperative to model and simulate a 

multiphase flow transport in a realistic kerogen pore structure enabling a more accurate 

characterization of the nanoscale fluid transport in shales.

A molecular dynamics (MD) simulation approach is used in the present chapter to 

model and to investigate the multiphase flow of liquid-gas (water-methane) transport in 

methane saturated pores with open and closed (pore with a dead end) configurations found
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in an organic matrix. The pore sizes of 0.8 and 5-nm (subnanometer and nanometer size) 

were used, and the impact of an external driving force applied to water and the effects of 

the pore system temperature was investigated based on the dynamics of the methane 

molecules in the confined system.

6.2 The development of a molecular model of a nanopore found 
a kerogen matrix

(Dow 1977) described a kerogen as the portion of organic matter in sedimentary 

rocks which is insoluble in organic solvents. The kerogen is distributed randomly 

throughout the reservoir matrix, and the total organic content varies from the reservoir to 

reservoir, which determines the quality and the quantity of hydrocarbons generated, based 

on the kerogen concentration, the kerogen type, and the thermal maturity of kerogen. The 

structural characterization of the kerogen shows that the nanoporous kerogen structure 

consists of the mixture of the well-connected, the partially-connected, or the completely 

isolated pores, where the pore diameters vary from a few angstroms to a micrometer.

Thus, considering the complexities of the kerogen structure, the development of the 

molecular model of a nanopore structure found in a kerogen matrix is not a straight forward 

task and requires a significant optimization of MD simulation parameters at various stages 

of the model development process. The key considerations in the kerogen model 

development are summarized in the subsequent paragraphs.

First, kerogen is differentiated into various types based on the Van Krevelen 

diagram (Van Krevelen 1984) based on a biological precursor of kerogen, and the thermo

geo-chemical transformation of the kerogen over the geological timescale, and the thermal 

maturity of kerogen. The replication of the kerogen evolution procedure, which occurs over
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a significant amount of time, is nearly impossible with an MD simulation (where most of 

the simulations are carried on the time scale of a few nanoseconds), and thus requires 

simplifying assumptions.

Most of the experimental kerogen characterization studies provide the average 

kerogen structure corresponding to the specific geological time/thermal maturity of the 

kerogen, which can be used as a reasonable initial molecular configuration of the kerogen 

required for the MD simulations. Very few 3D kerogen models are available in the 

literature where the typical size of an unit kerogen structure is less than a nanometer. 

Hence, a large number of such 3D kerogen structures are required to develop an average 

representative kerogen structure.

Second, while developing an initial molecular configuration of kerogen (the first 

stage of MD simulations), a large number of unit kerogen molecules are loosely packed in 

a simulation box with predefined dimensions. The dimensions of the simulation box should 

be optimized to minimize the higher computational time required to equilibrate the large 

simulation box and to avoid the overlap between atoms.

Third, the annealing (the equilibration) of the kerogen structure is a complex 

process and requires optimization of many simulation parameters, including the simulation 

time step, the total simulation time, and the cut-off distance of long-range atomic 

interactions. This is due to the complex and heterogeneous kerogen structure that consists 

of C, H, O, N, and S atoms and the difference in the fundamental atomic properties, such 

as atomic masses and the partial atomic charges.

Fourth, the pore structure can be modeled as a rigid pore (as in the case of the 

present research) or a flexible pore (where the organic matrix surrounding the pore is
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allowed to deform during the simulation). For rigid pores, it is important to maintain the 

pore structural integrity during the kerogen equilibration process to avoid the pore collapse 

and the expulsion of reservoir fluids. This can be achieved by the stepwise annealing 

process where the kerogen structure is equilibrated first, excluding the reservoir fluids from 

the time integration, and following a similar procedure to equilibrate the reservoir fluids. 

Also, the kerogen structure can be excluded from the production simulation run if the pore 

is rigid and only the properties of the fluids are of interest. This will help to minimize the 

computational cost of the simulation.

Fifth, the force applied to water molecules is important as the water molecules in 

small pores displaces relatively faster than the larger pores for the same applied force.

Finally, the pore surfaces are not regular and exhibit surface anisotropy, which 

results in small voids on the pore surface, thus making the pore surface discontinuous. For 

the organic matrix with subnanometer pores, the surface discontinuity is less and increases 

with an increase in the pore diameter. The primary reason for this observation is the atomic 

arrangement during the equilibration process. For an organic matrix with subnanometer 

pores, the simulation box is like a perfect cube where atoms can be exchanged easily on 

the periodic boundaries of the simulation box, during high pressure and temperature 

annealing. On the other hand, for the larger pore sizes, the atoms prefer to remain near the 

pore surface, and atoms are not exchanged easily on the periodic boundaries, resulting in a 

discontinuous pore surface.

After implementing the above-defined consideration, initial molecular 

configurations of a kerogen matrix with nanopore is developed for both open-pore 

configurations and the closed-pore configuration. A total of two pore sizes are used,
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including 0.8-nm and 5-nm. The numbers of kerogen, water, and methane molecules 

utilized in each configuration are summarized in Table 6.1. Figure 6.1 shows the graphical 

representation of various pore configurations used for the present study.

6.3 Molecular simulation details

The three-stage MD simulation workflow proposed in Chapter 4 is used, and only 

the parameters relevant to multiphase flow simulation in kerogen are summarized here. 

The LAMMMPS simulation package is used to perform the MD simulations. The general- 

purpose DREIDING force field is used to characterize the bonded and nonbonded 

interactions between kerogen molecules; the SPC/E water model is used to simulate water 

molecules, whereas the methane is simulated as independent rigid bodies. The standard 

velocity Verlet algorithm is used to solve the equations of motion. The particle-particle 

particle-particle mesh algorithm is used to calculate the electrostatic interactions with a 

cut-off distance of 10 A. The Nose-hover thermostat is used to maintain the system at the 

desired temperature. The atomic trajectories were stored every 1,000 time steps and used 

to evaluate the dynamic fluid properties of water and methane and is summarized in the 

next section.

6.4 Results and discussion

A qualitative and quantitative assessment of water and methane transport properties 

in nanometer and subnanometer size pores found in a kerogen matrix is performed. In 

particular, the impact of various pore scale attributes — summarized in Section 2.3 — on 

the water and methane diffusion and on methane number density (methane distribution 

within the nanopores) are analyzed and described in the following sections.
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6.4.1 Qualitative comparison

6.4.1.1 The impact of the force applied to water molecules

Figure 6.2 shows the water and methane behavior in 0.8-nm diameter pores found 

in a kerogen matrix. Part a) of Figure 6.2 represents the positions of water and methane 

molecules at the beginning of the simulation while parts b) through d) of Figure 6.2 depict 

the final positions of water and methane molecules for 0, 0.05, and 0.1 Kcal/mol-A forces 

applied to each atom of water molecules.

At a force of 0 Kcal/mol-A, there is no significant displacement observed for water 

and methane molecules. The displacement of water and methane increases with an increase 

in the force applied to the water molecules. The displacement of water and methane in 

subnanometer pores is limited primarily by two factors: the extremely high surface forces 

in subnanometer pores and the surface anisotropy. The surface forces compete with the 

externally applied forces to water molecules, and thus, significantly high force on water 

molecules are required to overcome the surface forces. Further, the surface anisotropy 

results in either in the voids or the obstructions in the pore surface that affect the flow of 

water and the number of water molecules reaching to the methane molecules.

The above-defined observations have various implications on the fluid transport in 

subnanometer scale pores. First, the results depicted in Figure 6.2 show the existence of a 

threshold force limit (depending on the pore size and pore composition) that needs to be 

overcome before inducing a noticeable displacement in injected reservoir fluid (water in 

this case). Second, the injected reservoir fluids and the displaced hydrocarbons (e.g., 

methane) will remain trapped inside the subnanometer pores until the resultant force is 

below the threshold value.
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Also, the state of hydrocarbons (free, adsorbed, or absorbed forms) cannot be 

defined accurately in subnanometer size pores due to the pore size, which affects fluid 

transport in all directions.

Figure 6.3 depicts the water and methane transport in a 5-nm kerogen pore. Part a) 

of Figure 6.3 depicts the initial position of the water and methane molecules in a 5- nm 

pore, while part b) through d) of Figure 6.3 shows the final positions of water and methane 

molecules for various applied forces to water molecules.

The behavior of water and methane in a 5-nm pore is different from the 0.8-nm 

pore in various aspects. First, the free methane and methane in other forms (adsorbed and 

diffused) within the pore can be distinguished easily. Second, the water molecules can 

reach the methane molecules and displace them in the axial direction of the pore as the 

force applied to water molecules increases. Only the water molecules near to the pore 

surface are retained on the pore wall (suggesting possible water adsorption on the pore 

surface and give an idea about the possible water loss during the hydrocarbon recovery 

process), while the water molecules away from the pore are mainly responsible for the 

methane displacement. Also, at zero applied force (shown in Figure 6.3b), the methane 

molecules are mainly diffused in the kerogen matrix. On the other hand, the methane 

molecules preferred to remain within the pore for higher applied forces to water molecules. 

This is potentially due to the minimum time available for diffusion of methane molecules 

into the kerogen matrix before water molecules come in the contact with the methane 

molecules in response to the higher forces applied to water molecules.

For the closed pore, similar kinds of observations can be made for 0.8-nm and 5

nm diameter pores, except for the following differences. The water and methane molecules
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are subjected to additional long-range interaction forces due to the presence of the pore 

surface on the exit side of the pore. Also, a high surface anisotropy exists near the entrance 

of the pore due to the molecular arrangements during the kerogen equilibration. As a result, 

there exists a larger size cavity near the entrance of the pore affecting the displacements 

and the dynamic properties of water and methane molecules. As a result, the water 

molecules are not able to reach the closed end of the 5-nm pore, whereas water and methane 

are diffusing in the available conduits of a size equal to or greater than molecules at the 

closed end of the 0. 8-nm pore.

The major difference in the hydrocarbon recovery between subnanometer and 

nanometer pores is that few molecules are displaced in subnanometer-sized pores as a result 

of the pore size and pore anisotropy, resulting in a comparatively lower recovery from these 

pores. On the other hand, for the larger pores, the comparatively large number of methane 

molecules reaches to the end, enhancing the recovery rates.

Also, both the open pore and closed pore configurations retain water and methane 

molecules on the pore surface, and some molecules are absorbed in the organic matrix, 

resulting in a simultaneous adsorption and diffusion in the kerogen matrix.

6.4.1.2 The impact of the pore system temperature

Figures 6.4 and 6.5 show the effect of temperature on water and methane behavior 

in the 0.8 and 5-nm pores at 0 Kcal/mol-A force applied to water molecules. The 0 

Kcal/mol-A is selected for the analysis to exclude the contribution of the applied force on 

the displacements of water and methane molecules. Three different temperatures of 300 K, 

325 K, and 340 K, were used for the analysis. Figure 6.4 shows that the mobility of water 

and methane increases with the rise in the pore system temperature and results in a
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displacement of molecules towards the pore surface and into the kerogen matrix. A similar 

observation can be made for the 5-nm diameter pore, which is more distinguishable. 

Further, the increased temperature results in frequent collisions of water and methane 

molecules with the pore wall, especially for the 0.8-nm diameter pore.

6.4.1.3 The impact of the pore diameter on the fluid flow

From the analysis presented in the previous sections (in Figures 6.2 through 6.5), 

the overall impact of the pore size on the water and methane displacements in pores of 0.8

nm and 5-nm diameters is summarized here to analyze the effect of pore size. It is observed 

that the water and methane confined in pores are subjected to very high surface forces, 

where the effect of the surface forces on fluid molecules decreases as the distance between 

fluid molecules and pore wall increases. For the 0.8-nm pore, the confined fluids are 

subjected to high surface forces at all locations within the pore, due to the comparable 

dimensions of fluid molecules and the pore size. For larger pores, e.g., 5-nm pore, the effect 

of surface forces is high around the pore surface and decreases towards the pore center. 

This is the main reason for the observation of the retention of the fluid molecules near the 

pore wall and transport of only the molecules at the center of the pore, which are primarily 

responsible for the methane recovery.

6.4.2 The quantitative comparison

The mean square displacements of water and methane molecules, the number 

density of methane molecules, and the effective diffusion coefficients of water and methane 

were determined for the 0.8-nm and 5-nm diameter open and closed pores at different pore 

system temperatures. The important observations are summarized in the following
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sections.

6.4.2.1 The mean square displacements of water and methane

Figures 6.6 through 6.9 show the mean square displacement (MSD) of water and 

methane molecules in 0.8-nm and 5-nm open and closed pores, respectively, at various 

forces applied to water molecules and at different system temperatures. From Figures 6.6 

and 6.8, it can be seen that the MSDs of water and methane in 0.8-nm size pores 

(subnanometer pores) are chaotic and do not show any obvious correlation. The primary 

reason for this observation is the comparable sizes of the fluid molecules and the actual 

pore size, which results in frequent collisions of fluid molecules with the pore wall. Further, 

the MSDs of water molecules in 0.8-nm diameter open and closed pores are more chaotic 

than those of methane, due to the additional contribution of the forces applied to the water 

molecules. Also, the chaotic behavior of fluid molecules increases with the increase in 

system temperature. Further, the MSDs of methane, which is a gas, are higher than the 

water molecules in all simulation cases. At 0 Kcal/mol-A applied force, the difference 

between MSDs in a 5-nm pore at various temperatures is very small.

6.4.2.2 The methane number density

The methane number density in nanometer and subnanometer pores represents the 

distribution (concentration) of methane molecules at different regions in the radial direction 

from the pore center. Figures 6.10 -  6.13 show the variation of methane number density 

for 0.8-nm and 5-nm open and closed pores at various forces applied to water molecules 

and the different system temperatures. Labels ti and t2 represent the initial and the final 

times where methane number densities are recorded. Note that times ti and t2 are not same



due to the utilization of the adaptive time stepping. Table 6.2 summarizes ti and t2 for 

different simulation cases.

From Figures 6.10 and 6.12, it can be seen that the methane molecules are 

concentrated around the pore center at the beginning of the simulation in the 0.8-nm 

diameter pore due to the small pore size, thus representing a layered distribution of water 

and methane molecules. With the increase in the simulation time, methane molecules move 

close to the pore surface and in the kerogen matrix and they are evident with small tails 

observed in the number density curves. Further, various trends in the methane number 

density are observed for the 0.8 diameters including methane concentrated on the pore 

surfaces, methane concentration only on the one side of the pore surface, and at methane 

concentration at the center of the pore. This is due to the coupled effect of the pore size, 

the pore composition, the pore system temperature, and the force applied to water 

molecules.

As the pore diameter increases, the molecules are distributed almost evenly in the 

pore (except at the pore surface) due to the comparatively large size of the pore. Also, the 

number densities shown in Figures 6.10 through 6.13 are not symmetric, which means the 

mobility of atoms is not symmetrical and potentially affected by an initial molecular 

distribution or the affinity of the one type of molecule(s) towards another type of molecules 

from kerogen.

6.4.2.3 The effective diffusion coefficient in nanometer and subnanometer pores

Figures 6.14 and 6.15 depict the variation of the effective diffusion coefficients of 

water and methane in open and closed pore configurations at different system temperatures. 

The effective diffusion coefficients are evaluated from the mean square displacement at 0
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Kcal/mol-A. As previously described, the mean square displacements in 0.8-nm pores are 

chaotic. Thus, the evaluation of the diffusion coefficient from such complicated behavior 

needs to be done carefully. A statistical approach is used to accomplish this task. Mean 

square displacements are selected at sufficiently long simulation times such that the 

standard deviation of the mean square displacement is less than three times the standard 

deviation of the sample analyzed. Tables 6.3 through 6.6 provide a brief summary of the 

diffusion coefficient along with the standard deviation of the mean square displacements.

From Figure 6.14, it can be observed that the effective diffusion coefficient of both 

water and methane are low in 0.8-nm and increases as the pore diameter increases. Further, 

the diffusion coefficient of methane is higher than the diffusion coefficient of water, due 

to the higher mobility of methane (gas) molecules as compared to water (liquid) molecules. 

Also, as the temperature of the system increases, the effective diffusion coefficients of 

water and methane increase. The rate at which the diffusion coefficient increases are higher 

than the rate of increase of diffusion coefficient of water.

For the closed pore shown in Figure 6.15, the diffusion coefficients of water and 

methane are higher than the open pore, due to the additional long-range interactions 

between water and methane and the closed pore wall.

6.5 GPU implementation of molecular dynamics simulations

The development of an initial molecular configuration is the least computationally 

expensive task and can be completed on a regular CPU-based workstation. However, the 

solution of the equations of motion requires a significant amount of computational 

resources. Thus, a high-performance massively parallel computing is necessary. The utility 

of the graphics processing units (GPUs) is shown to model a water-methane-quartz system
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(similar to the system presented in Chapter 4). A total of 1285 water molecules, 191 

methane molecules, and 5337 quartz molecules were used, and the computational 

performance of GPUs were compared for 10,000 time steps.

The NVIDIA 2090 GPU architecture was used, where the number of GPU nodes 

varied from 1 to 6 (2 GPUs/node). The total computational time for each test case is 

determined and plotted, and shown in Figure 6.16. As expected, the total computational 

time decreases with an increase in the number of nodes (total number of GPUs). Further, 

the total computational time for six nodes is comparatively higher than the five nodes. The 

observed nonlinearity may be due to the increased communication time between GPUs.

Further, the computational speedup is also compared with a different number of 

GPUs. The computational times of NVIDIA 2090 GPU architecture and the Intel Xeon 

(Sandybridge E5-2670) node were used for the comparison. Figure 6.17 depicts the 

computational speedup achieved for a different number of GPUs. It can be seen that the 

maximum computational speedup of 4 is achieved with 5 GPU nodes. The present analysis 

was restricted up to 6 available GPU nodes but can be extended further to achieve the 

similar computational speedup reported in the literature review.

6.6 Dissipative particle dynamics (DPD) simulation method

Due to the slow evolving processes in shale reservoirs, the traditional MD method 

can not be used to simulate the fluid flow for more than a few nanoseconds, due to the 

computational requirements. Thus, a dissipative particle dynamics (DPD) simulation 

technique, which is a type of coarse-grained simulation technique, is a suitable choice that 

can bridge the gap between the traditional molecular dynamics simulations and the 

continuum simulations, thus providing an opportunity to model the transport processes in
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shale reservoirs for the longer length and time scales. As the hydrodynamics of the fluids 

confined in nanopore and subnanometer-sized pores found in organic and inorganic 

matrices is less studied, the upscaling of all-atom molecular models is a challenging task 

— but has significant potential — and requires a step-by-step approach, as summarized in 

the literature review. Presently, the DPD analysis is limited to explore the behavior of water 

confined in a quartz nanopore.

Before providing the details of the DPD model of water confined in a quartz 

nanopore, a brief introduction to the DPD method is presented. Additional details of the 

DPD method can be found elsewhere (Groot and Warren 1997).

6.6.1 The DPD formulation

In the DPD method, Newton’s laws are used to describe the motion of the particles 

and the total force acting on a particle “i” is given as,

where f text is the external force acting on a particle, e.g., the gravitational force, while f tint 

is the internal force particle acting on the particle (Liu et al. 2007). The total internal force 

consists of three components and is given by Equation 6.2:

dyi _  f  _  fint  i fext  
dt _  J i _  Ji + Ji (6.1)

(6.2)

where, Ffj is the conservative force due to the soft interactions along the line of particle 

centers, Ff- is the dissipative force that characterizes the effect of viscosity, and F-j is the



random force due to the thermal fluctuations of the particles. The mathematical expression 

for the conservative, dissipative, and random forces are given by Equations 6.3 -  6.5,
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Ffi =  a ijw c (r)r^l (6.3)l] — "-IJ™ V' J'lJ

Fl j =  - Y w D (n jX n j.V ij)^  (6.4)

Fij = ^ w R(rij ) ( r ij)^ ijf^J (6.5)

where atj  is the maximum repulsion between particles, Y is the viscosity coefficient, a  is 

the coefficient for the repulsive force, and w c , w D, and w R are the weight functions for the 

conservative, dissipative, and the repulsive forces. Further, the relation between different 

coefficients described above can be given as,

w D(r) =  [w R(r )]2 (6.6)

and

y =  22̂  <6-7>

where, kB is the Boltzmann constant and all interaction energies are expressed in terms of 

kBT.



6.6.2 MD and DPD simulation of water confined in a quartz 
nanopores

An MD simulation of the water confined in a quartz nanopore is performed to 

obtain the mean square displacement and the diffusion coefficient of water molecules that 

can be used to calibrate the DPD simulation parameters. The interatomic potential 

parameters described in Chapter 4 were used to simulate the water-quartz system. A total 

of 1000 water molecules, and the total simulation time of 16.7 ps with adaptive time 

stepping algorithm were used. LAMMPS package was utilized to perform both the MD 

and the DPD simulations.

The DPD simulations are complex and require the matching of numerous fluid 

properties including the Schmidt’s number, viscosity, and the dimensional compressibility 

of the real fluid. Presently, only the mean square displacement and the diffusion coefficient, 

a dynamic fluid transport properties, are compared, as the primary purpose of this section 

is to show the capability of the DPD method to simulate the fluid transport for the longer 

length and time scales, which is challenging with the traditional all-atom MD simulation 

technique. A rigorous analysis is required for the detailed study.

For the DPD simulations, the method described by (Ghoufi and Malfreyt 2011) is 

used. Three water molecules are combined to form a water bead, resulting in about 333 

water beads. The particle mass, the system temperature, and the interaction range are taken 

as units of mass, temperature, and length respectively. An iterative approach is used to 

calibrate the DPD (particle interaction) parameters. The repulsive parameter (%■), the 

interatomic potential cut-off distance, and the viscosity coefficient (V ) are optimized. 

Initially, the repulsion parameters of water and water-quartz were taken as a = 25.0 with 

the cut-off distance of 1.0 and optimized further during the calibration process.

107



Figures 6.18 and 6.19 show the graphical representation of the all-atom and the 

DPD simulation of water confined in quartz nanopore. Further, Figures 6.20 and 6.21 

depicts the mean square displacement of water molecules obtained with the all-atom MD 

simulation and the DPD simulation. A diffusion coefficient of water, 2.15 x 10-8 m2/s, is 

extracted from Figure 6.20 and converted into an equivalent DPD diffusion coefficient, 

0.068 (in DPD units), using the relation provided by Ghoufi and Malfrey (2011). The DPD 

simulations performed with various possible combinations of the repulsive parameter, the 

cut-off distance, and the viscosity coefficient, and corresponding mean square 

displacement and diffusion coefficient are determined and shown in Figures 6.21 and 6.22. 

It was observed that the combination of a = 25, rc = 0.08, and Y = 0.25 predicted the 

diffusion coefficient more closely to the value predicted by all-atom simulations. As 

expected, the DPD simulations were significantly faster than the all-atom MD simulations 

and able to simulate the fluid flow for the longer length and time scales.

To summarize the present chapter, a pore-scale dynamics of the water-methane 

system is simulated in the nanometer and subnanometer pores found in a kerogen matrix 

as a function of the system temperature and the external driving force to liquid molecules. 

The mean square displacement, the effective diffusion coefficients, and the number 

densities were determined. The results show that the realistic pore structures are not perfect. 

High external driving forces applied to water molecules are necessary to overcome the 

fluid-pore surface interactions and to enhance the mobility of methane. Further, the 

diffusion coefficient increases with increases in the pore diameter and the system 

temperatures, but the variation is not linear. The fluid molecule shows the asymmetric 

number density due to the underlying pore surface structure, the distribution of the water
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molecules in the initial configuration, and the possible affinity of the molecules toward 

specific function groups from kerogen.
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a)
Pore diameter = 0.8 nm

b)
Pore diameter = 0.8 nm

Pore diameter = 5 nm

FIGURE 6.1 Initial molecular configuration of a) open pores and b) closed pores



111

Cross-section of Front view of
the pore the pore

FIGURE 6.2 a) Initial molecular configuration, and final molecular configuration of 
0.8-nm pore at applied force of b) 0 Kcal/mol-A, c) 0.05 Kcal/mol-A, and 

d) 0.1 Kcal/mol-A to water molecules
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FIGURE 6.3 a) Initial molecular configuration, and final molecular configuration of 
5-nm pore at applied force of b) 0 Kcal/mol-A, c) 0.05 Kcal/mol-A, and d) 0.1

Kcal/mol-A to water molecules
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FIGURE 6.4 The impact of the system temperature on the water and methane 
behavior in 0.8-nm open pore at the temperature of 

a) 300 K, b) 325 K, and c) 340 K
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FIGURE 6.5 The impact of the system temperature on the water and methane 
behavior in 5-nm open pore at the temperature of 

a) 300 K, b) 325 K, and c) 340 K
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FIGURE 6.6 Mean square displacements of a) water and b) methane in 0.8-nm 
diameter open kerogen pore at various forces applied to water molecules and at

different system temperatures
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FIGURE 6.7 Mean square displacements of a) water and b) methane in 5-nm 
diameter open kerogen pore at various forces applied to water molecules and

at different system temperatures
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FIGURE 6.8 Mean square displacements of a) water and b) methane in 0.8-nm 
diameter closed kerogen pore at various forces applied to water molecules and

at different system temperatures
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FIGURE 6.9 Mean square displacements of a) water and b) methane in 5-nm 
diameter closed kerogen pore at various forces applied to water molecules and

at different system temperatures
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AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A

AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A

c) AF =  0 kcal/mol-A AF =  0.05 kcal/mol-A

— time = t1 ps 

— time = t ps

0 0.2 0.< 
Methane number density

AF =  0.1 kcal/mol-A

FIGURE 6.10 The methane number density in 0.8-nm diameter open pore for
various forces applied to water molecules at temperature of a) 300 K, b) 325 K,

and c) 340 K (meaning of “pore dimension” axis label explained on p. 50)
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a) - -  ■ 'v-i.
7 50

AF =  0.05 kcal/rnol-A AF =  0.1 kcal/mol-A
— time = t„

0 0.2 0.4
Methane number density

AF =  0 kcal/mol-A AF =  0.05 kcal/mol-A

— time = t1 ps 

— time = t„ ps

0 0.2 0.4
Methane number density

AF =  0.1 kcal/mol-A

AF =  0 kcal/mol-A AF = 0.05 kcal/mol-A AF =  0.1 kcal/mol-A

— time = t1 ps 

— time = t_ ps

0 0.2 0.̂  
Methane number density

FIGURE 6.11 The methane number density in 5-nm diameter open pore for various
forces applied to water molecules at temperature of a) 300 K, b) 325 K, and c) 340 K
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a) A I-' = :i soil . AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A

Methane number density

b) AF -
Methane number density

AF =  0.05 kcal/mol-A

c)

Methane number density

AF =  0 kcal/mol-A

Methane number density

AF =  0.1 kcal/m ol-A

AF =  0.05 kcal/m ol-A  AF =  0.1 kcal/m ol-A

Methane number density Methane number density Methane number density

FIGURE 6.12 The methane number density in 0.8-nm diameter closed pore for
various forces applied to water molecules at temperature of a) 300 K,

b) 325 K, and c) 340 K
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a )  i l i.. . \ AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A
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f
,

b)

0 0.2 0.4
Methane number density

AF =  0 kcal/mol-A AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A

—time = t1 ps 

—time = t2 ps ■

It....\
I

7...1
,

0 0.2 0.4
Methane number density

AF =  0 kcal/mol-A AF =  0.05 kcal/mol-A AF =  0.1 kcal/mol-A

— time = t1 ps

0 0.2 0.4
Methane number density

FIGURE 6.13 The methane number density in 5-nm diameter closed pore for
various forces applied to water molecules at temperature of a) 300 K,

b) 325 K, and c) 340 K



Di
ffu

si
on

 
co

ef
fic

ie
nt

 (
m 

/s
)

123

Temperature (K)

FIGURE 6.14 The water and methane effective diffusion coefficient in open pores at 
0 Kcal/mol-A force applied to water molecules and at temperature of a) 300 K,

b) 325 K, and c) 340 K
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FIGURE 6.15 The water and methane effective diffusion coefficient in closed pores 
at 0 Kcal/mol-A force applied to water molecules and at temperature of a) 300 K,

b) 325 K, and c) 340 K



To
ta

l 
co

m
pu

ta
tio

na
l 

tim
e 

(s
ec

)

125

5000
4500
4000
3500
3000
2500
2000
1500
1000
500

0
1 2 3 4 5

Number of nodes (2 GPUs/node)
0 6 7

FIGURE 6.16 Comparison of the total computational time
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FIGURE 6.17 Computational speed up with GPUs
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FIGURE 6.18 All-atom MD simulation of water confined in a quartz nanopore 
showing initial system configuration (top) and the final system configuration

(bottom)
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FIGURE 6.19 DPD simulation of water (gray color) confined in a quartz (orange 
color) nanopore showing initial system configuration (top) and the final system

configuration (bottom)
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FIGURE 6.20 Mean square displacement of water confined in a quartz nanopore 
obtained with the all-atom MD simulation
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FIGURE 6.21 Mean square displacement of water (in DPD units) confined in a 
quartz nanopore obtained with the DPD simulation
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FIGURE 6.22 Calibration of DPD parameters to evaluate the diffusion coefficient; 
the y-axis represents the test run number whereas the x-axis represents 

the diffusion coefficient in DPD units
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TABLE 6.1 Number of kerogens, water, and methane molecules used in the
simulation

Flow Diameter
(nm)

Number of kerogen 
molecules

Number of water 
molecules

Number of methane 
molecules

Open 0.8 60 25 25
pore 5 60 250 250

Closed 0.8 100 25 25
pore 5 100 250 250
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TABLE 6.2 Summary of initial and final simulation times

Pore
configuration

Pore diameter 
(nm)

Temperature
(K)

Initial (ti) and final (t2) 
simulation time (fs)

Open pore

0.8
300 t1 = 0, t2 = 7370
325 t1 = 0, t2 = 7370
340 t1 = 0, t2 = 5965

5
300 t1 = 0, t2 = 9563
325 t1 = 0, t2 = 13822
340 t1 = 0, t2 = 14898

Closed pore

0.8
300 t1 = 0, t2 = 14624
325 t1 = 0, t2 = 7000
340 t1 = 0, t2 = 14108

5
300 t1 = 0, t2 = 1507
325 t1 = 0, t2 = 14196
340 t1 = 0, t2 = 3376
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TABLE 6.3 Diffusion coefficients in a 0.8-nm open pore

Methane Water
300 K 325 K 340 K 300 K 325 K 340 K

Diffusion coefficient (10-9, m2/s) 4.28 10 10.8 0.118 0.497 2.89
Standard deviation 2.61 2.16 3.05 0.30 0.43 0.74
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TABLE 6.4 Diffusion coefficients in a 5-nm open pore

Methane Water
300 K 325 K 340 K 300 K 325 K 340 K

Diffusion coefficient (10-9, m2/s) 70.1 76.7 94.0 1.32 1.82 11.6
Standard deviation 1.68 2.66 2.71 0.11 0.15 0.35
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TABLE 6.5 Diffusion coefficients in a 0.8-nm closed pore

Methane Water
300 K 325 K 340 K 300 K 325 K 340 K

Diffusion coefficient (10-9, m2/s) 36.3 33.8 57.1 4.67 5.78 6.70
Standard deviation 2.24 1.43 2.97 0.36 0.33 0.38
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TABLE 6.6 Diffusion coefficient in a 5-nm closed pore

Methane Water
300 K 325 K 340 K 300 K 325 K 340 K

Diffusion coefficient (10-9, m2/s) 66 38.8 65.3 19.2 10.8 22.4
Standard deviation 1.64 3.08 2.60 0.48 0.93 0.90



CHAPTER 7

CONCLUSION

Motivated by the challenge of the inadequate understanding of the pore-scale 

multiphase fluid transport, which affects the hydrocarbon recovery rates and economic 

development of shale reservoirs, a molecular dynamics simulation-based framework is 

used to model, simulate, and characterize the pore-scale multiphase fluid transport in 

nanometer and subnanometer pores found in organic and inorganic shale matrices. Besides, 

various aspects of shale reservoirs such as subnanometer scale features in kerogen were 

uncovered while fulfilling the primary objective of the present research.

First, it is found that the pores found in organic and inorganic matrices deviates 

from the ideal cylindrical shape and have more irregular size and shapes as a consequence 

of the atomic arrangement of the underlying functional groups, which occurred during the 

geo-thermo-chemical transformation of organic and inorganic matrices.

Next, it is observed that the general-purpose DREIDING force provides a better 

alternative among the simple force fields and the tailored force fields to simulate the 

complex kerogen structure irrespective of the thermal maturity, the total organic content, 

and the elemental composition of the kerogen. Although the DREIDING force field 

underpredicts the kerogen densities when compared with the experimental and simulation 

studies from the literature, it provides a better approximation of the structural (pair 

distribution function) and physical properties (density) of kerogen — when there is no or



very little experimental data available.

Also, the structural characterization analysis of kerogen matrix showed the 

existence of significant numbers of the subnanometer size pores. The subnanometer size 

pores are one of the crucial factors that determine the reservoir porosity (reservoir quality) 

and may act as a nano-reservoir that holds a substantial amount of the displacement fluid 

and the displaced hydrocarbons, thus affecting the overall recovery rates.

The comparative analysis of the multiphase fluid flow (water as an displacement 

fluid and methane as an displaced phase) in subnanometer and nanometer pores suggests 

that the characterization of methane transport mechanisms (adsorption, absorption, and 

diffusion) in subnanometer pores is challenging due to the comparable size of the methane 

molecule and subnanometer pore. As a result, a strong pore-surface interaction exists that 

results in a chaotic movements (chaotic mean square displacements) of water and methane 

molecules and frequent collisions of these molecules with the pore wall. On the other hand, 

the behavior of water and methane changes with an increase in the pore diameter, which is 

confirmed with the analysis of deterministic mean square displacement of the water and 

methane molecules.

Furthermore, it was observed that the migration of the displacement fluid (water) 

and the displaced hydrocarbons (methane) are negligible in the absence of the force applied 

to water molecules, which shows the typical characteristic of shale reservoirs. 

Subsequently, a noticeable displacement of water molecules is observed with increases in 

the force applied to water molecules; thus showing that there exists a threshold force that 

needs to overcome the strong pore surface-fluid interactions, and to have noticeable 

displacements of injected reservoir fluid. However, the force applied to water molecules
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that expedite the recovery process are high and may be beyond the practical limits, and 

also may change the phase of the fluids confined in nanopores.

Further, the water molecules near the pore surface tend to remain on the pore 

surface even under the application of a very high force, thus suggesting the possible water 

retention mechanism in the shale reservoirs. Also, the methane number density exhibits a 

preferential distribution of methane molecules in kerogen nanopores.

Finally, the dissipative particle dynamics (DPD) simulation approach along with 

the graphics processing units (GPU) technique show the potential of molecular dynamics 

(MD) simulations to simulate a complex and slow evolving transport process in shale 

reservoirs for longer length and time scales. The results obtained with the current research 

are valuable for future research in many aspects and useful to

• build the more complex shale nanopore structures, and simulate and 

characterize the transport mechanism of a variety of injection fluids

• study the phase behavior of the hydrocarbons confined in the shale 

organic/inorganic matrices

• optimize current production practices, and potentially develop new production 

methods aimed towards enhancing the hydrocarbon recovery rates from shales 

reservoirs

In conclusion, the present research enables the development of molecular models 

of nanopores found in organic and inorganic matrices, the simulation of complex pore- 

scale fluid transport in matrices, and the extension of the capabilities of MD simulations to 

model a slow transport processes for longer length and time scales, which will enhance our 

predictive capability of hydrocarbon recovery from unconventional reservoirs.
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