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ABSTRACT 

 

Accelerated bridge construction (ABC) has been practiced in the United States 

because of the efficiency it offers as a bridge construction method. Prefabricated 

reinforced concrete components have been frequently used as part of ABC. The 

connections between such precast components may be subjected to large earthquake-

induced deformations resulting in a considerable permanent damage. The present study 

investigates the seismic performance of grouted splice sleeve (GSS) connections with the 

connectors placed in the column, footing, or cap beam of bridge subassemblies. Quasi-

static cyclic loads were used to test five half-scale precast subassemblies and two cast-in-

place control specimens. Two different GSS connectors were used; the column-to-footing 

connections incorporated one type of GSS with the bars grouted at both ends, whereas the 

column-to-cap beam connections used another type where one bar was threaded into one 

end and the other bar was grouted into the opposite end. Experimental results show that 

the precast subassemblies had similar strength but lower displacement capacity compared 

to the control specimens. Improved seismic response was observed when the location of 

the connectors was changed or when debonding was applied to dowel bars adjacent to the 

connectors.  

Computational models were developed and validated with the experiments to 

further investigate the application of such precast connections in bridge bents with full-

size configurations. Force-based beam-column elements with fiber sections were used to 
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construct the computational models based on plastic hinge weighted integration. The 

modeling strategy is based on transformation of the model for the precast column with 

GSS connectors, to an idealized equivalent cast-in-place column with a fictitious plastic 

hinge length that is capable of simulating both the global and local response. Bond-slip 

effects as well as low-cycle fatigue were included to address the performance differences 

between the precast and cast-in-place alternatives. Prototype precast bridge bent models 

designed with GSS connections were subjected to scaled ground motion records 

compatible with the earthquake demand in downtown Salt Lake City. Comparing the 

capacity and demand levels, the GSS connection was found to be promising for 

applications in high-seismic areas.   
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CHAPTER 1 

 

INTRODUCTION 

 

Accelerated bridge construction (ABC) refers to a bridge construction type that 

incorporates innovative techniques, methodologies, and materials to efficiently reduce 

construction time and traffic disruptions. ABC also provides a higher level of work-zone 

safety for workers and commuters, and improves environmental-friendly procedures. 

Prefabrication of bridge structural components is highly effective and is one of the ABC 

methods under the category of prefabricated bridge elements and systems (PBES) 

promoted by the Federal Highway Administration (FHWA). 

Many bridges have been built or rehabilitated following ABC standards. Local 

examples include the I-15 CORE Provo Center Street Interchange, the Riverdale Road 

over I-84, and the I-15 South Layton Interchange. Precast concrete deck panels, 

substructures, and superstructures have been frequently utilized as effective ABC 

methods. Connections between such precast elements are among the most critical 

components of the structure. Researchers are in the process of investigating the suitability 

of various connection configurations, especially in moderate-to-high seismic regions. 

These connections not only have to conform to ABC standards in terms of the overall 

construction delivery time, but also must resist high levels of earthquake-induced 

deformations and stresses. Lateral load capacity, ductility capacity, and reparability are 
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three significant acceptance criteria for any bridge connection considered in earthquake-

prone regions.   

To achieve a moment-resisting column connection, continuity of column 

reinforcing bars is essential for the integrity of the structure. Therefore, splicing of 

reinforcement is used following one of the conventional splicing techniques available in 

the construction industry. 

 

Development and Splicing of Reinforcement for Bridge 

 Components 

 Reinforcing bars are spliced to achieve structural continuity or a greater length 

when maximum available length of reinforcement is limited due to transportation 

restrictions.  According to AASHTO LRFD Bridge Design Specifications (2012), 

splicing of reinforcement may be implemented using lap splices, mechanical connections, 

and welded splices, as long as respective code provisions are met. Tension lap splices are 

not permitted for bars larger than No. 11. Therefore, a full-mechanical connection or full-

welded splice may be used for No. 14 and No. 18 bars. A full-mechanical connection 

must develop 125% of the specified yield strength of the bar in tension or compression; 

moreover, the slip of bar within the splice region after loading to 30.0 ksi and unloading 

to 3.0 ksi should not be more than 0.01 in. for bars up to No. 14, and 0.03 in. for No. 18 

bars. A full-welded splice must develop 125% of the specified yield strength of the bar in 

tension; welding needs to comply with the Structural Welding Code—Reinforcing Steel 

(AWS 2011). 

 



3 
 

 

Lap Splices in Tension 

The length of a lap splice in tension specified by the AASHTO LRFD is the larger 

of 12.0 in. or the tension development length for a Class A splice, 1.3 times the tension 

development length for a Class B splice, or 1.7 times the tension development length for 

a Class C splice. The splice class is determined using the ratio of provided to required 

reinforcement and percent of spliced bars at a particular section. The basic tension 

development length (𝑙𝑙𝑑𝑑𝑑𝑑) is defined in Eq (1.1) for No. 11 bars and smaller, Eq (1.2) for 

No.14 bars, and Eq (1.3) for No. 18 bars. The basic tension development length should be 

multiplied by proper increasing and decreasing modification factors as instructed by the 

AASHTO LRFD.  

𝑙𝑙𝑑𝑑𝑑𝑑 = 1.25𝐴𝐴𝑏𝑏𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

≥ 0.4𝑑𝑑𝑑𝑑𝑓𝑓𝑦𝑦                                                (1.1) 

𝑙𝑙𝑑𝑑𝑑𝑑 = 2.7𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

                                                                       (1.2) 

𝑙𝑙𝑑𝑑𝑑𝑑 = 3.5𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

                                                                       (1.3) 

where, 𝐴𝐴𝑑𝑑 is the cross-sectional area of bar (in.2), 𝑓𝑓𝑦𝑦 is the specified yield strength (ksi), 

and 𝑓𝑓′𝑐𝑐 is the 28-day specified compressive strength of concrete. 

 

Splice of Column Reinforcement in Seismic Zones 

Seismic bridge design guides such as AASHTO Guide Specification (2011) and 

Caltrans Seismic Design Criteria (2010) prohibit splicing of column longitudinal bars in 

plastic hinge regions of bridge columns located in seismic zones. This corresponds to 

Seismic Design Category (SDC) C for which the 1-sec period design spectral acceleration 

for the design earthquake is equal or greater than 0.3 and smaller than 0.5, along with 
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SDC D with a 1-sec period design spectral acceleration equal to or greater than 0.5. It is 

noted that the design earthquake is characterized using a probabilistic ground motion and 

the spectral response for 7% probability of exceedance in 75 years.  

The plastic hinge region within which splicing of reinforcement is prohibited is 

the larger of 1.5 times the gross cross-sectional dimension in the direction of loading, the 

region of column with a moment demand larger than 75% of the plastic moment, or the 

analytical plastic hinge length (𝐿𝐿𝑃𝑃) as defined in Eq (1.4) (Priestley et al. 1996): 

𝐿𝐿𝑃𝑃 = 0.08𝐿𝐿 + 0.15𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑏𝑏 ≥ 0.3𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑏𝑏                          (1.4) 

where, 𝐿𝐿 is the length of column from the point of maximum moment to the point of 

moment contraflexure (in.), 𝑓𝑓𝑦𝑦𝑦𝑦 is the expected yield strength of longitudinal column steel 

bars (ksi), and 𝑑𝑑𝑑𝑑𝑏𝑏 is the nominal diameter of longitudinal column steel bars (in.).  

 

Research Motivation 

Considering the current no-splice zone provisions for ductile columns in high-

seismic regions, prefabrication of bridge substructure components as part of ABC cannot 

be implemented easily. Hence, numerous research studies have been investigating various 

forms of moment-resisting connections between precast bridge substructure components. 

One such connection type, grouted splice sleeve connection, was studied experimentally 

and analytically as presented in subsequent chapters. 

 

Common ABC Connection Types for Seismic Regions 

Various emulative connections have been studied for potential application in 

seismic regions. An emulative connection is a connection type that results in a precast 
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structural system with equivalent performance to the conventional monolithic 

construction (ACI 550).  

 

Grouted Duct Connection 

The grouted duct connection has been introduced as a viable ABC technique for 

both column-to-footing and column-to-cap beam connections. In this method corrugated 

steel ducts are accommodated in a footing or cap beam, and column reinforcement 

dowels are inserted and grouted inside the ducts. 

A series of monotonic and cyclic tests on No. 8 bars grouted in ducts was reported 

in the work of Raynor et al. (2002). The experimental study investigated the bond-slip 

behavior of the confined bars, and provided data for further analytical and parametric 

studies. Failure of each specimen initiated by crushing of the grout adjacent to the 

reinforcing bar lugs, with no radial bond-related cracking as observed for bars embedded 

in unconfined reinforced concrete.  

Brenes et al. (2006) investigated the response of reinforcing bars grouted in 

galvanized steel and plastic ducts under monotonic tension loading. The effect of 

different embedment length of bars grouted in the ducts was studied in addition to the 

group effect on the overall response. The duct clear spacing in the group tests, bar 

eccentricity, and epoxy coating were among the experimental parameters investigated in 

this research. No. 11 reinforcing bars were grouted in 4-in. diameter ducts for 32 

experiments. Test results indicated that the response was not highly dependent on the 

variation of the embedment depth considered in the experimental program (8db, 12db, and 

16db). On the other hand, the duct material was found to affect the failure mode of the 
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test specimens.  

Steuck et al. (2009) described a series of pullout tests on 14 large-size reinforcing 

bars grouted into 8-in. diameter corrugated steel ducts. An anchorage length range of 2 to 

14 bar diameters was considered in the experimental program. A monotonic displacement 

protocol was applied up to failure of each specimen. Polypropylene fibers which were 

utilized in the grout mix of only four specimens were not found to be advantageous in the 

overall response. A grout cone failure was observed for each test at the opening end of 

the duct due to an unsupported strut formation in the vicinity of the unconfined rebar 

outside the duct. The test results were used to develop a nonlinear model for this type of 

connector.  According to both the test results and the analytical model, the required 

anchorage length in the grouted ducts was found to be 6 and 10 times the bar diameter to 

achieve bar yielding and fracture, respectively.  

Pang et al. (2010) investigated the cyclic response of four 40% scale column-to-

cap beam specimens in which the precast columns and cap beams were connected using 

grouted ducts. The corrugated steel ducts were located in the precast cap beam. The 

control specimen was constructed monolithically with 16 No. 5 longitudinal reinforcing 

bars in the column and no grouted duct, while the three precast specimens had 6 No. 8 

column longitudinal bars and 12 No. 3 discontinuous bars which did not extend into the 

cap beam. The response of all models was comparable in terms of initial stiffness and 

lateral load capacity. A pinched hysteretic behavior was evident for the precast 

specimens. This resulted in a slightly lower energy dissipation capacity when compared 

to the control specimen. The intentional partial debonding of bars which was 

implemented over a length of 8 times the bar diameter within the ducts was found to be 
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ineffective under the applied cyclic loading. Bar fracture occurred for all four test 

alternatives due to low-cycle fatigue.  

An experimental research study on one grouted duct connection was carried out 

by Matsumoto (2009a). The 20-in. diameter column was reinforced with 16 No. 5 

longitudinal bars and No. 3 transverse hoops at 2 in. in the plastic hinge zone. The dowel 

bars protruding from the column end were grouted into ducts which were cast previously 

in the cap beam. Comparing the cyclic quasi-static test results from the grouted duct 

specimen with those of the cast-in-place specimen, the grouted duct connection was 

emulative of the monolithic construction in terms of strength, but a compromised 

displacement capacity was noted from the load-displacement response.  

Tazarv and Saiidi (2015a, b) conducted experimental and analytical studies on 

two half-scale precast bridge column-to-footing subassemblies connected by means of 

grouted ducts. The 4-in. diameter corrugated steel ducts were cast 28 in. into the footing, 

and column dowel bars were grouted inside the ducts using ultra-high performance 

concrete (UHPC). A partial debonded bar region was considered for both test models to 

provide a superior strain distribution and prevent the concentration of strain at the 

column-to-footing interface. Shape memory alloy (SMA) bars were incorporated in the 

plastic hinge zone of one of the test specimens to study the self-centering effects and 

consequent minimal residual drift. The response of both test models under cyclic quasi-

static lateral loading suggested that the grouted duct connection with the implemented 

detailing was viable in terms of strength, displacement capacity, and hysteretic 

performance. 
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Pocket Connection 

The pocket connection was studied and implemented to connect bridge columns 

to cap beams. It is constructed by placing a circular corrugated steel duct inside the cap 

beam. Projected column bars are inserted into the pocket that is filled with concrete at the 

end.  

Matsumoto (2009b-2009d) conducted an experimental study on two 42% scale 

precast column-to-cap beam joints utilizing the pocket connection method. One of the 

specimens had a higher level of joint detailing and was expected to achieve full ductility 

under quasi-static lateral loading, while the second test model was designed for a limited 

ductility by eliminating the stirrups within the joint and reducing the cap beam main and 

transverse reinforcing bars to a minimum required amount. An identical column 

configuration was incorporated in both tests, that is, 20-in. diameter column with 16 No. 

5 longitudinal bars and No. 3 hoops at 2 in. on center. Compared to the control cast-in-

place specimen, the performance of both precast test models was acceptable and met the 

objectives of the design. The control specimen had a nominal displacement ductility of 10 

while the two precast specimens with pocket connections reached a nominal 

displacement ductility of 8. Plastic hinging was dominant for the full ductility specimen 

and column bar slip was similar to the control specimen. On the other hand, considerable 

joint shear cracking developed for the limited ductility specimen which resulted in 

softening of the joint. Also, decomposition of displacement revealed that the bar slip 

contribution was 11 times larger than the control and the full ductility test specimens.  

Weinert (2011) evaluated several ABC connection types for precast bridges in 

seismic regions. According to this study, the pocket connection was considered feasible 
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for column-to-cap beam joints, while it could be utilized for the column-to-footing and 

pile-to-pile cap connections as well. However, this connection type achieved the lowest 

rank among all other precast connection types of bar coupler, grouted duct, socket 

connection, and hybrid connection. This was mainly because the time saving feature 

offered by this method was not great due to a relatively long curing time for the pocket 

concrete. In addition, there has not been sufficient research on the seismic performance of 

the pocket connection. 

 

Socket Connection 

The socket connection is another type of ABC connection that has recently 

become popular. A socket foundation was studied at the University of Washington and 

later used to connect columns to spread footings in a bridge constructed in the State of 

Washington over I-5 (Khaleghi et al., 2012). In this method, the bottom end of the precast 

column is roughened and embedded in the footing which is commonly cast-in-place, after 

which the footing concrete is cast around the column base. This connection type could be 

incorporated for column-to-cap beam joints as well as pile-to-pile cap joints, while it has 

mostly been utilized for column-to-footing joints (Weinert, 2011). Special detailing is 

required for column-to-cap beam and pile-to-pile cap joints connected with the socket 

connection. A comprehensive evaluation of this connection type was carried out in the 

work of Weinert (2011). The socket connection achieved the highest rank among other 

common precast connection types for applications in seismic zones, including the bar 

coupler, grouted duct, pocket connection, and hybrid connection. All connection types 

were evaluated relative to equivalent cast-in-place construction based on constructability 
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advantages, seismic performance and reparability, durability, technology readiness, and 

time savings potential. There have been many seismic experimental studies on this 

connection type which greatly helped to develop the fundamental understanding of the 

load transfer mechanism and the overall response under simulated seismic loads. Some of 

the most relevant experiments are briefly discussed in the following. 

The force transfer mechanism in a socket was studied in the work of Osanai et al. 

(1996) using eight half-scale specimens along with an analysis based on the equilibrium 

of forces generated under combined axial and lateral loading. The two most significant 

test parameters were: (1) socket embedment depth, and (2) application of shear keys to 

the surface of the column base and socket. The authors found that an embedment depth of 

1.5 times the dimension of the column was required for a rigid connection, in case shear 

keys were not used. When shear keys were used on the surface of the two connecting 

components, an embedment depth equal to the dimension of the precast column was 

found adequate because of higher friction forces at the interface plane.  

Belleri and Riva (2012) conducted experimental tests on connections of four 

precast subassemblies, one of which was a socket connection for a 15 ¾-in. square 

column and a 23 5/8-in. deep footing. The column was reinforced with four No. 7 

longitudinal bars and No. 3 closed hoops at 2 in. and at 4 in. up to 47 in. above the 

column base. The surface of the column base and interior surface of the socket were not 

roughened. Column main bars were bent inward at the base of the column. The socket 

connection showed a stable force-displacement response, compared to the control 

specimen which was a cast-in-place component. A slight strength deterioration was 

observed for the socket specimen at the 3% drift ratio, only for the pull direction. The 
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energy dissipation capacity of the socket connection was found slightly higher than the 

dissipation capacity of the control specimen in almost every drift ratio. Overall, the 

performance of the socket connection was found promising to be used as a connection 

between precast components.  

Haraldsson et al. (2013) studied three socket foundations with varying test 

parameters including the socket depth and footing reinforcement. The precast specimens 

were scaled to 42% scale of the prototype bridge with headed longitudinal bars used for 

the column main reinforcement. The column and socket interface were roughened to 

achieve a higher level of shear-friction force transfer. An embedment depth equal to 1.1 

times the column diameter was used for two specimens, while the third specimen had a 

socket depth equal to 0.5 times the column diameter to force failure to occur in the 

column-footing joint instead of the column base. The second specimen had a more 

simplified footing reinforcement layout than the first specimen. This was carried out by 

reducing the number of shear-friction reinforcement in addition to reduction of the 

footing ties down to 50% of the code specified numbers. This reduction was implemented 

as previous studies revealed that the original number of footing ties would have been 

needed if the main bars were bent outward. Cyclic quasi-static lateral loading was applied 

to the column under a constant axial load representing the gravity load effect on the 

subassemblies. Spalling occurred at drift ratios of 2.2% to 2.6%, and bar buckling 

occurred at the 7% drift ratio for all three specimens. Column bars fractured at 10.5% 

drift ratio for the first two specimens with the same footing depth, while the third 

specimen failed due to punching shear at 10.7% drift ratio, which implies an overall 

ductile performance for all three subassemblies. The first two specimens underwent pure 
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axial load up to failure, after completion of testing. Axial load test results showed that the 

axial load capacity of the columns was 3.5 times the factored tributary gravity load. 

Measurements obtained from strain gauges indicated that the heads of the column bars 

were most effective in the specimen with shallower footing, compared to the other two 

specimens. In addition, the low strain values in the shear-friction reinforcement plus the 

undamaged footing for the first two specimens implied that the diagonal shear-friction 

reinforcement was ineffective in the force transfer mechanism.  

As part of experimental research on substructure connections for precast bridges, 

White (2014) discussed the response of four half-scale specimens, denoted as high 

damage (HD) connection type. This designation was used because a plastic hinging 

mechanism in the column base was expected to be severe in such a connection type; in 

another category of experiments, White (2014) presented the results of a controlled 

damage (CD) connection in which posttensioning and energy dissipative devices were 

incorporated to mitigate damage progression in the system. Two half-scale test specimens 

(out of four HD specimens), comprised of a precast column and a precast footing, were 

constructed and later connected during installation of the subassemblies using the socket 

connection. Both specimens had an identical dimension and configuration, but one was 

tested under uniaxial lateral loading and the other specimen was tested under biaxial 

lateral loading protocol. The footing depth was set to 20 in. which was equal to the 

diameter of the circular precast column. Since both column and footing were precast, the 

gap between the roughened column base and socket was filled with grout. A 

posttensioned bar was cast in a corrugated duct in the center of the column to apply the 

scaled axial load on the test assembly. Both specimens were tested until failure which 
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occurred because of column bar fracture during the 6% drift ratio. Well-distributed 

flexural cracks, concrete spalling, and buckling of the column bars were observed during 

application of lateral loads.  

An application of the socket connection could be found under the category of 

concrete-filled steel tube (CFST) research studies, where a socket connection was utilized 

to achieve a moment-resisting base connection. One such study was presented in the 

work of Marson and Bruneau (2004). Four CFST columns were tested under constant 

axial and cyclic lateral loading. The column diameter and tube thickness were different to 

study the effect of diameter-to-thickness ratio on the response. The socket foundation was 

made by welding the steel tube end of the column to steel plates and channels. The socket 

was then encased in the concrete foundation. Test results showed that the foundation 

details were adequate and damage progressed away from the foundation. All four 

specimens performed well up to a 7% drift ratio which implies a ductile response under 

reversed cyclic quasi-static loads.  

Lehman and Roeder (2012), and Moon et al. (2013) evaluated a series of 

experimental studies on CFST columns which were conducted at the University of 

Washington and presented in technical manuscripts from 2005 to present. The results of 

such experiments were used to evaluate the base connection for such components in 

seismic regions. As a result of this investigation, a simple design procedure was proposed 

for the base connection including all significant parameters such as embedment depth and 

required depth of concrete underneath the column to resist punching shear. A finite 

element model was developed and validated with the experiments, in the aforementioned 

study.  
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Grouted Splice Sleeve Connection 

The grouted splice sleeve (GSS) connection and other types of bar splicing 

devices are considered to be an effective connection type for ABC. Such connections 

have been frequently used, specifically in nonseismic regions, because they offer ease 

and speed of construction. In this connection type each individual reinforcing bar in 

connecting precast components is spliced by means of a mechanical coupler which is 

located within one of the components, normally the precast component that is built at the 

precast plant. Two common types of the GSS connectors which are used in this research 

are shown in Fig. 1.1. The shorter GSS connector is referred to as FGSS in which the 

threaded factory dowel is fastened to one end while the field dowel is grouted in the other 

end of the sleeve (fastened/grouted splice sleeve). The longer GSS connector is referred 

to as GGSS indicating that reinforcing bars are grouted at both ends of the sleeve 

(grouted/grouted splice sleeve). Tensile and compressive force transfer between the two 

spliced bars occurs by means of bond stress between the bars, the high-strength grout, 

and the grouted splice sleeve connector. Fig. 1.2 shows a schematic of the interaction 

between reinforcing bar, grout, and connector. Sources of bond stress are: (1) chemical 

adhesion between bar and grout; (2) frictional forces due to roughness of the interface, 

forces transverse to the bar surface, and relative slip between the bar and the surrounding 

grout; and (3) mechanical anchorage or bearing of the ribs against the concrete surface, 

which is the main component after initial slip (ACI 408 2003). The relatively high level 

of confinement provided by sleeve connectors prevents splitting failure by restraining 

dilation of the splitting cracks. Therefore, reinforcing bars will develop sufficient strength 

in much shorter embedment lengths compared to the unconfined anchorage condition. 
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For instance, the embedment length required for spliced bars using the GGSS connector 

is about 25% of the code prescribed development length, for materials with typical 

properties. Bar embedment length, bar deformations (ribs), and grout strength are the 

most effective parameters for achieving a viable GSS connection.  

The evaluation of several ABC connections in moderate-to-high seismic regions 

was conducted and summarized in NCHRP Report 698 (Marsh et al. 2011). Verified 

connection types include bar couplers, grouted ducts, pocket connections, socket 

connections, hybrid connections, integral connections, and emerging technologies, such 

as shape memory alloys and elastomeric bearings. These connections were either utilized 

in actual practice, or are being developed in research studies. The aforementioned ABC 

connections were then ranked according to technology readiness, performance, and time 

savings potential, relative to cast-in-place construction for the same connection type. One 

of the significant outcomes of this synthesis study was the prioritization of more research 

studies essential for each connection type in order to fully understand their behavior 

under seismic actions.  

A bar coupler was defined as a mechanical coupler used to splice two bars 

together. This synthesis report addressed several types of couplers, such as threaded 

sleeves, headed bars with separate sleeves, external clamping screws, and GSS 

connectors. Application of the GSS connector, which is typically used in bridges, 

provides the benefit of larger tolerances in comparison with other types of couplers. 

Despite extensive use of such connections in regions of moderate seismicity, in-depth 

knowledge of their inelastic behavior has not been achieved, necessitating more research 

and experimental investigation. The need for further studies discussed in NCHRP Report 
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698 was based on the urgency level of the unknown aspects of this connection type. First 

priority was given to the cyclic performance of the couplers with the bars in their plastic 

range of stress, and strain distribution for the bars being spliced; second priority studies 

included the investigation of strength details, such as magnitude of stress that each bar 

can develop, together with verification of bar coupler placement. The latter refers to the 

proper location of the coupler (e.g., in the column or footing), so it does not affect the 

overall response to earthquake loads, but could still be a constructible detail. The effect of 

surrounding concrete and level of provided confinement on the coupler is the third 

category of priorities, as the last necessary study to be conducted on this type of ABC 

connection. 

As part of a comprehensive research study on the seismic performance of next 

generation bridge components for ABC, researchers at the University of Nevada, Reno, 

investigated the behavior of four column-to-footing connections under cyclic lateral 

loading, utilizing two different proprietary couplers (Haber et al. 2014). The research 

program also considered a cast-in-place specimen as the control test. GSS connectors and 

HRC 500 Up-Set Headed Couplers (HC) were used to connect the longitudinal 

reinforcement in the column and footing. For each coupler, two specimens were 

constructed and tested under cyclic quasi-static load. A precast pedestal was incorporated 

in one specimen for each category to reduce the moment demand over the coupler region. 

Considering the hysteretic behavior of all specimens, it was noted that the HC connection 

showed a similar response to the cast-in-place detail and withstood a relatively large 

amount of drift. In spite the ease of construction achieved by the grouted couplers, their 

ductility capacity was found to be less than both the cast-in-place and HC connections. 
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Comparing the results of the cyclic tests, it was noted that all specimens exhibited similar 

performance in terms of ultimate load capacity and energy dissipation, but the ductility 

capacity was different. Tazarv and Saiidi (2014) described a remedial procedure to 

improve the ductility capacity of the columns with the GSS connectors embedded in the 

pedestal. The footing dowel bars were debonded within the pedestal to allow for spread 

of plasticity along the bars and to postpone rebar fracture.  

Haber et al. (2015) described a series of connector tests on the two 

aforementioned splicing systems. The tests were conducted to obtain results necessary for 

numerical modeling focusing on the connector region. To study the stress-strain behavior, 

strain gages were used on the spliced bars and mid-section of the coupler. Results showed 

that the bar fractured away from the coupler region. Results also showed that the imposed 

displacement rate made a slight difference in the overall performance of the systems.  

Jansson (2008) performed a series of connector tests on FGSS and GGSS 

connectors and studied their performance under slip, fatigue, ultimate load, and creep. As 

a result of this study, both connectors were approved for bridge applications in the State 

of Michigan, by meeting the requirements set by the AASHTO LRFD Bridge Design 

Specifications. The results showed that both GGSS and FGSS connectors conformed to 

the Type 2 connection requirements of ACI 550, enabling their application even in the 

plastic hinge regions of building elements in Michigan.  

Aida et al. (2005) reported on experimental testing of three ¾-scale specimens in 

Japan, two of which used GGSS connectors to connect columns to footings. The 

specimens, representing railroad bridge column-to-footing connections, were heavily 

reinforced and tested under cyclic loading to investigate their inelastic performance. The 
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precast specimens showed acceptable inelastic behavior under cyclic loads compared to 

the cast-in-place specimen. The maximum load resisted by the two precast subassemblies 

was 7% to 11% greater than that of the cast-in-place specimen. 

Yoshino et al. (1996) had proposed an innovative shear reinforcing configuration 

called the intensive shear reinforcing (ISR) method, for precast concrete elements 

connected by means of GGSS connectors. Transverse reinforcement in this configuration 

was concentrated at both ends of the sleeves, contrary to the conventional method in 

which hoops are placed at a particular spacing everywhere along the member. The ISR 

method offers the advantage of better constructability as there is no need to change the 

dimensions and arrangement of the transverse reinforcement. According to results from 

the experimental phase of the study, including monotonic and cyclic loading of both 

systems, the ISR method is comparable with the conventional detail. A strut-and-tie 

model was also developed in the analytical phase of the study, depicting load transfer in 

the connector zone. This patented technique is used in building construction in Japan. 

The Splice Sleeve Company carried out cyclic tests on building column specimens that 

incorporated GGSS connectors to splice the column longitudinal bars. Different levels of 

axial load, shear reinforcement, existence of shear keys, and ultimately the location of 

connectors, were considered as test variables and investigated in this experimental study 

that included a total number of nine specimens. Test results indicated acceptable 

performance of the connectors in terms of both strength and ductility properties. It was, 

however, observed that both the test setup and test specimens were not typical of bridge 

substructures. 

Matsuzaki et al. (1987) conducted research studies on individual GGSS 
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connectors as well as test subassemblies connected by means of such devices. The results 

of monotonic and cyclic tests on various sleeve sizes connecting different size steel bars 

were presented. A significant contribution of this investigation was the characterization 

of slip and pull-out properties of the system, in addition to illustration of the stress 

transfer between bars and grouted splice sleeves. Results of this study were utilized in an 

analytical effort to replicate the response of precast components connected by means of 

such devices, under reversed cyclic load. All specimens showed a similar response under 

the applied loading, in terms of strength and displacement capacity up to a displacement 

ductility of 6.0. 

 

Layout of Dissertation 

The research presented in this dissertation investigates the seismic performance of 

GSS connections for reinforced precast concrete bridge piers. The dissertation includes 

two main sections: experimental program and computational study. The experimental 

section is presented in Chapter 2 and Chapter 3 and describes a series of quasi-static 

cyclic tests on three half-scale column-to-cap beam and four column-to-footing 

subassemblies, respectively. In addition, tension test results are discussed for both FGSS 

and GGSS connectors in respective chapters. The two experimental chapters present 

design and detailing of the subassemblies. Cyclic performance of the specimens is 

discussed in terms of strength, displacement capacity, and spread of nonlinearity. A cast-

in-place monolithically constructed specimen is included for each category of 

experiments to provide a baseline for comparisons. The results show distinct performance 

benefits when the location of the GSS connectors is changed.  
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The first part of the computational study, which describes the development of a 

modeling strategy for monolithic and precast columns, is presented in Chapter 4. This 

modeling strategy is based on transformation of the precast column to an equivalent 

idealized monolithic column using distributed plasticity elements with a plastic hinge 

integration scheme. The computational model is validated with the experiments discussed 

in Chapter 3 through both local and global response comparisons. The objective of the 

computational study is to develop a predictive model capable of accounting for the 

differences between precast and monolithic bridge subassemblies. 

Chapter 5 focuses on a parametric study conducted to ascertain the response 

sensitivity of the proposed computational model to varying parameters. A monolithic and 

a precast cantilever column with similar configuration were studied with two different 

levels of reinforcing bar ratio, column height, axial load, and displacement ductility 

capacity. Overall, 32 columns were investigated and results are discussed in terms of 

strength, displacement capacity, global response, and local response; moreover, 

comparisons are made between the monolithic and precast alternatives. 

Chapter 6 presents the design and analysis of a prototype multicolumn bridge bent 

system in accordance with AASHTO Guide Specifications. The proposed model which 

was validated in Chapter 4 and later verified using a parametric study in Chapter 5 is used 

to model one monolithic and two precast concrete bridge bents with different GSS 

connection configurations. The objective of Chapter 6 is to study the application of GSS 

connectors in multicolumn bents and investigate the effects of such a connection on the 

response of bridge bents. Furthermore, the strength and displacement capacity of each 

bent is obtained by performing static cyclic analyses; subsequently, drift demands are 



21 
 

 

discussed using a series of nonlinear time-history analyses.  

Concluding remarks on the present research and recommendations for future 

research are presented in Chapter 7 and Chapter 8, respectively.  
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Fig. 1.1. Two types of grouted splice sleeve connectors used in this research, FGSS on 
the left and GGSS on the right. 
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Fig. 1.2. Force transfer for a GSS connector. 
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Abstract 

Connections between precast concrete elements must be able to withstand 

significant stresses and deformations in earthquakes. The grouted splice sleeve connector 

is being considered for use in accelerated bridge construction. Although the application 

of grouted splice sleeve connectors facilitates the construction of precast concrete bridges 

and accelerates construction work, seismic bridge design codes inhibit their use in 

column plastic hinges. Half-scale bridge column–to–cap beam assemblies were tested to 

investigate their response under cyclic quasi-static load. The grouted splice sleeve 

connectors were located in the column plastic hinge zone for the first alternative and in 

the cap beam for the second. A monolithic cast-in-place concrete specimen with identical 

details served as a control. Satisfactory drift capacity and displacement ductility were 

achieved when the grouted splice sleeve connectors were inside the cap beam joint. The 

research shows that precast concrete joints constructed with the specific type of grouted 

splice sleeve connectors in the cap beam should perform adequately in moderate to high 
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seismic regions.  

Keywords: Accelerated bridge construction; column; connection; cyclic load test; grouted 

splice sleeve; joint; mechanical coupler. 

 

Introduction 

Accelerated bridge construction is a method that incorporates innovative 

techniques and materials to efficiently reduce construction time and traffic disruption. It 

also improves work-zone safety for workers and commuters. Prefabrication of bridge 

structural components is a highly effective technique and is one of the accelerated bridge 

construction methods under the category of prefabricated bridge elements and systems 

promoted by the Federal Highway Administration. Several bridges have been built or 

rehabilitated with accelerated bridge construction methods. Examples in Utah include the 

Interstate 15 (I-15) Core Provo Center Street interchange, the Riverdale Road over 

Interstate 84 (I-84) bridge, and the I-15 South Layton interchange. Precast concrete deck 

panels, substructures, and superstructures have been frequently used in accelerated bridge 

construction. Connections between such reinforced precast concrete elements are among 

the most critical components of the structure. Researchers are investigating the adequacy 

of various connection configurations, especially in moderate to high seismic regions. 

These connections not only have to conform to accelerated bridge construction standards 

in terms of construction delivery time but must also resist earthquake-induced 

deformations and stresses. Lateral load capacity, displacement ductility, and reparability 

are three significant criteria for any connection considered in seismic regions. In this 

paper, a column–to–cap beam joint is investigated using grouted splice sleeve connectors 
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in either the column or the cap beam to construct precast concrete column–to–cap beam 

joints; the performance of the precast concrete joints is compared with an identical cast-

in-place column–to–cap beam joint. 

 

Previous Research 

The grouted duct connection is a typical accelerated bridge construction 

connection for reinforced precast concrete column–to–cap beam joints; corrugated steel 

ducts are cast in the cap beam, and column reinforcement dowels are inserted and grouted 

inside the ducts. This connection was found to be a viable technique for accelerated 

bridge construction in seismic regions.1–3 

Pocket connections were used to connect bridge columns to cap beams. These are 

constructed by placing a circular corrugated steel duct inside the cap beam; projected 

column bars are inserted into the pocket that is filled with concrete. Matsumoto reported 

that the pocket connection was emulative of conventional monolithic construction in 

terms of the overall hysteretic performance, force-displacement response, and plastic 

hinging mechanism.4 

Prestressing has been incorporated in research studies to improve seismic 

performance of bridge subassemblies by providing self-centering. This connection is 

identified as a hybrid connection because both prestressing and mild steel reinforcing 

bars are used. Residual displacements and overall damage are reduced compared with 

nonprestressed connections.5,6 

Grouted splice sleeve connectors and other reinforcing bar splicing devices are 

also effective accelerated bridge construction methods. Such connectors have been used 
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in bridge construction in nonseismic regions because they accelerate the construction 

process. Each individual reinforcing bar connecting precast concrete components is 

spliced by means of a mechanical coupler located within one of the components. The 

response of such connections to cyclic loading was studied to investigate their 

performance in high-seismic regions.7,8 

Grouted splice sleeve or mechanical reinforcing bar splices are hollow steel 

cylinders made of ductile iron. Figure 2.1 shows the grouted splice sleeve used in this 

research. One of the steel reinforcing bars from the two components to be connected is 

grouted at one end and fastened to the opposite threaded end. Hence, the connector is 

denoted here as fastened and grouted splice sleeve (FGSS) (Fig. 2.1 and 2.2). 

NCHRP report 698 includes an evaluation of several accelerated bridge 

construction connections in moderate to high seismic regions.9 Verified connection types 

include bar couplers, grouted ducts, pocket connections, socket connections, hybrid 

connections, integral connections, and emerging technologies, such as shape memory 

alloys. These connections were either used in actual projects or were being developed in 

research studies. One of the outcomes of this study was the prioritization of more 

research, considered essential for each connection type, to fully understand its behavior 

under seismic actions. For the bar coupler which is in the general category of mechanical 

couplers, including the grouted splice sleeve connectors, NCHRP report 698 

recommended further experimental studies to ascertain strength properties of the grouted 

splice sleeve along with the displacement ductility of components joined with such 

connectors.  

Experimental studies have been conducted on various types of mechanical 
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couplers comprising only two connecting bars, cast iron sleeves, and high-strength 

grout.10–12 Such experiments, referred to as air tests, were conducted to study the strength, 

reinforcing bar slip, bond characteristics, and fatigue life of the mechanical couplers. 

Jansson (2008) reported a series of air tests on fastened and grouted splice sleeve 

connectors for no. 6 (19M) and no. 11 (36M) steel bars.10 Test results showed acceptable 

performance in terms of reinforcing bar slip and fatigue life. Tensile test results indicated 

that all no. 6 assemblies failed due to fracture of the reinforcing bar in the threaded 

region, thereby reaching the nominal tensile strength of the bars. 

Cyclic tests were conducted on large-scale precast concrete specimens joined by 

means of various grouted splice sleeve connectors.12–17 The presence of grouted splice 

sleeve connectors in the plastic hinge region did not considerably change the lateral force 

capacity of the assembly. However, the displacement capacity was found to be smaller 

than that of monolithic specimens. Damage progression and the plastic hinge mechanism 

were also different relative to monolithic specimens.  

This paper presents experimental results of three quasi-static cyclic tests of half-

scale column–to–cap beam specimens, two of which used fastened and grouted splice 

sleeve connectors, to investigate their performance compared with the third specimen, 

which was built using cast-in-place concrete construction. Table 2.1 shows the test 

matrix, and Fig. 2.3 demonstrates the test configuration alternatives. All specimens were 

assembled and tested in an inverted position compared with actual construction for ease 

of construction and testing. A second objective of the study was to investigate the 

influence of the location of the fastened and grouted splice sleeve connectors within the 

precast concrete specimens. Specimen FGSS-1 was composed of a precast concrete 
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column and cap beam with the connectors in the column end, whereas specimen FGSS-2 

was composed of a precast concrete column and cap beam with the connectors in the cap 

beam. Specimen CIP was the cast-in-place concrete alternative, or control specimen, a 

monolithic construction without any connectors or bar lap splices. 

 

Monotonic Tensile Tests on Individual Connectors 

A series of tensile tests were conducted on six individual fastened and grouted 

splice sleeve connectors, referred to as air tests, to ascertain essential information on the 

performance of the connectors under monotonic tensile loads. Results from the air tests 

were used to assess the strength capacity and failure mode of the fastened and grouted 

splice sleeve connectors, in addition to providing an insight into the overall performance, 

specifically the stress transfer within the connector.  

Two no. 8 (25M) reinforcing bars were connected using a proper size fastened 

and grouted splice sleeve connector for each air test specimen. The reinforcing bars had a 

nominal yield strength of 60 ksi (400 MPa) and an actual yield strength of 76 ksi (525 

MPa). The test-day compressive strength of the high strength grout was 9.4 ksi (65 MPa). 

This grout was used to confine the reinforcing bar grouted inside the connector.  

Monotonic tensile loading was applied until failure occurred when the bottom reinforcing 

bar pulled out from the connector due to bond failure. Strains were monitored on the 

rebar portion outside the connector, the rebar portion inside the connector, and on the 

connector itself. The average strength achieved by the air test specimens was 1.44 ± 

0.0488 (SD, n=6) times the nominal yield strength of the reinforcing bar. The strain 

gauge located 5 in. (127 mm) from the end of the reinforcing bar grouted inside the 
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connector showed that the rebar yielded at that section.  

The gradual pull out failure was initiated by a grout cone failure at the opening 

end of the connector (Fig. 2.4). A subsequent crushing of the grout in front of the 

reinforcing bar deformations formed a shear failure surface with a diameter slightly larger 

than the diameter of the reinforcing bar, and therefore the reinforcing bar pulled out from 

the connector. Table 2.2 includes the results of the air tests. No sign of damage was noted 

on the threaded reinforcing bar and it was well developed beyond the yield point. 

 

Design and Construction of Specimens 

Specimen Design 

The specimens were designed and detailed to simulate prototype bridges 

constructed in Utah, following the American Association of State Highway and 

Transportation Officials’ AASHTO LRFD Bridge Design Specifications18 and the 

AASHTO Guide Specifications for LRFD Seismic Bridge Design19 in accordance with 

capacity-based design principles. A circular configuration of column longitudinal bars 

and an octagonal column cross section were adopted for precasting the columns because 

this is the method of choice in Utah. The aforementioned design codes in addition to the 

Caltrans Seismic Design Criteria (SDC)20 inhibit the splicing of reinforcing bar, including 

mechanical anchorage devices, in the plastic hinge region of ductile members for bridges 

located in moderate to high seismic regions. In the AASHTO LRFD seismic bridge 

design, this would apply to seismic design categories C and D. Thus, the preliminary 

design and detailing were developed for specimens without fastened and grouted splice 

sleeve connectors (the cast-in-place concrete specimen). The design was then adjusted to 
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accommodate the fastened and grouted splice sleeve connectors inside the precast 

concrete specimens, and essential modifications were considered accordingly.  

The specimens were half-scale models of common prototype highway bridges, 

specifically the Riverdale Road bridge over I-84 in Utah. The column and cap beam 

dimensions and main longitudinal bars and their configuration were acquired by 

considering 50% of the actual properties. The column height for all specimens was 8 ft 

6 in. (2.6 m) with a 21 in. (530 mm) octagonal cross section to facilitate casting of the 

concrete. The top 18 in. (460 mm) of the column was changed to a 21 in. (530 mm) 

square for testing purposes. Six no. 8 (25M) bars in a circular arrangement and a no. 4 

(13M) spiral with a pitch of 2½ in. (64 mm) made up the column reinforcement. The 

longitudinal and volumetric transverse reinforcement ratios were 1.3% and 1.9%, 

respectively.  

A preliminary nonlinear static analysis and a series of sectional analyses were 

conducted to estimate the maximum lateral load and displacement of the CIP test model 

and to design the cap beam accordingly. Probable material properties for steel and 

concrete were used in addition to beam-column elements to perform the preliminary 

analysis. Detailed nonlinear analyses are currently ongoing which include the effect of 

the connectors in the system. The cap beam was designed as a 9 ft long × 2 ft wide × 2 ft 

deep (2.8 m × 0.6 m × 0.6 m) precast concrete member with no. 8 (25M) longitudinal 

bars enclosed by no. 4 (13M) double hoops. The cap beam was designed to remain 

linearly elastic and not undergo plastic deformations. The design inhibits shear failure 

from occurring in the column by using a shear span-to-depth ratio of more than 5.0 

(corresponding to slender columns) along with closely spaced adequate shear 



35 
 

reinforcement. The desirable column failure mode was set to be either flexural or splice 

failure. 

Figure 2.5 shows the steel reinforcement without the fastened and grouted splice 

sleeve connectors. This could be considered the monolithic joint design for cast-in-place 

concrete construction. The design details for each specimen are summarized in the next 

section. Dowel bar tails were bent inward to achieve a better performance under lateral 

cyclic loads as required for seismic design category D in accordance with AASHTO 

LRFD seismic bridge design. 

 

Fabrication of Test Specimens 

The three specimens had identical geometric properties and similar details in the 

plastic hinge region. Figure 2.6 shows the details of specimen FGSS-1 in addition to the 

column and cap beam reinforcing bar cages. Specimen FGSS-1 comprised a precast 

concrete column with the fastened and grouted splice sleeve connectors embedded in the 

column end and a precast concrete cap beam with dowel bars projecting 7 in. (180 mm). 

In the first step of the construction phase, column longitudinal bars were fastened to the 

threaded end of the fastened and grouted splice sleeve connectors. All bars were initially 

hand tightened to the connectors before being fully tightened using a pipe wrench. A 

form mounting fixture was used to fasten the grouted splice sleeve connectors to a 

wooden template arranging the column bars in the desired configuration. The spiral over 

the fastened and grouted splice sleeve connector region had a 1 5/8 in. (42 mm) larger 

diameter than the spiral for the rest of the column due to the larger diameter of the 

fastened and grouted splice sleeve connector compared with reinforcing bar. This resulted 
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in an overlapping spiral region right above the fastened and grouted splice sleeve 

connectors.  

Figure 2.7 shows the details of specimen FGSS-2 along with the column and cap 

beam reinforcing bar cages. The location of the fastened and grouted splice sleeve 

connectors was changed from the column end to inside the cap beam. Such a 

modification would make the specimen conform to the bridge design code because the 

fastened and grouted splice sleeve connectors would not be located inside the column 

plastic hinge region.19,20 A second reason for examining this alternative was to investigate 

the reduced disruption to the column plastic hinge region compared with specimen 

FGSS-1. Such a connection configuration was successfully implemented in the Provo to 

Salt Lake Frontrunner rail bridge construction using an alternative grouted splice sleeve 

connector in which both connecting bars were grouted inside the splice sleeve. The 

precast concrete column reinforcing bar cage was built first for specimen FGSS-2. Dowel 

bars measuring 7 in. (180 mm) long protruded from the column end. The joint core was 

built and centered in the cap beam. Threaded hooked bars were previously fastened onto 

the fastened and grouted splice sleeve connectors by means of a pipe wrench and 

arranged in a circular fashion using a template. Horizontal joint reinforcement consisting 

of a closely spaced spiral was tied to both the vertical fastened bars and the fastened and 

grouted splice sleeve connectors. The tails of the fastened bars were oriented into the 

joint core and had a length of 2 ft 4 in. (0.7 m). 

Specimen CIP represents monolithic construction without any fastened and 

grouted splice sleeve connectors. Figure 2.8 shows the details of specimen CIP and the 

reinforcing bar cage before casting the concrete. The column longitudinal bars had no lap 
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splice. The spiral reinforcement did not have any splice and extended from the column 

top to the cap beam bottom as continuous helical steel reinforcement around the 

longitudinal bars. The diameter of the spiral was kept the same as for the spiral around 

the column bars in the other two specimens, thus ensuring an identical moment arm for 

column longitudinal bars.  

A proprietary high-strength and ready-to-mix grout formulated for this particular 

grouted splice sleeve was used. One 50 lb (23 kg) bag of grout mixed with 0.7 gal. 

(2.6 L) of water was sufficient to fill all six fastened and grouted splice sleeve  

connectors and cast the ¼ in. (6 mm) bed grout. An electric mortar mixer with a jiffler 

paddle attachment was used to continuously mix the grout with water for 5 min. The flow 

test conducted after mixing indicated that the grout had a good consistency with an 

acceptable spread diameter of 5 in. (130 mm) for specimen FGSS-1. The high-strength 

grout was used to complete the installation. A postgrout technique was implemented for 

specimen FGSS-1 in which the grout was pumped into the bottom nozzle of the 

connector. The grout traveled up against gravity and filled the inside space of the 

connector using a hand pump. Both inlet and outlet ports were plugged when the 

connector was completely filled with grout. A pregrout technique was conducted for 

specimen FGSS-2 to facilitate installation. Both inlet and outlet ports of the six 

connectors were sealed during construction of the cap beam reinforcing bar cage. During 

erection of specimen FGSS-2 and before lowering and positioning the column, the high-

strength grout was pumped into the wide end opening (Fig. 2.9). The flow test showed an 

acceptable grout consistency with a spread diameter of 5.25 in. (133 mm) for specimen 

FGSS-2.  
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Tension tests of reinforcing bars were conducted along with compression tests on 

concrete cylinders and grout cubes for each specimen.21–23 Table 2.3 presents the results 

of tension tests on reinforcing bars. The column bars for specimen FGSS-1 and the cap 

beam dowel bars for specimen FGSS-2 had different material properties than the rest of 

the steel bars because these were obtained from the manufacturer as threaded bars. 

Table 2.4 contains the compression test results for the concrete and grout reported for 

both the 28th day of curing and the day of the specific test.  

 

Test Procedure 

Instrumentation 

Test specimens were instrumented with strain gauges in the plastic hinge region 

and the joint area on both longitudinal and transverse steel. For the precast concrete 

specimens, strain gauges were placed in the middle section of the fastened and grouted 

splice sleeve connectors to obtain the strain on the sleeves. String potentiometers were 

used to measure column displacements during the test. They were attached to the column 

head at the actuator centerline. The two potentiometers were oriented in two opposite 

directions. Column displacements were obtained by taking the average of the two 

potentiometer readings. Linear variable differential transformers (LVDTs) were used to 

study the curvature distribution and base rotation, bond slip, and global vertical and 

horizontal movement of the specimens.  

Ten LVDTs were mounted to the column end, over a 30 in. long region to 

measure the relative vertical displacements and provide data for curvature analysis. 

Figure 2.10 shows an example of strain gauges installed on both longitudinal and 
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transverse reinforcement of specimen CIP along with LVDTs attached to fixtures on the 

east side of the column.  

 

Experimental Setup 

Each specimen was connected to the floor by means of eight high-strength 

threaded rods on each side, half of which ran through PVC pipes embedded in the cap 

beam. The rods were then bolted to the strong floor to prevent the specimens from 

moving or slipping. This support condition was designed to provide limited rotational 

restraint simulating a hinged support condition.  

The axial load system consisted of a cylindrical 500 kip (2200 kN) hydraulic 

actuator, a 4 ft (1.2 m) long stiffened W14 × 90 (W360 × 134) spreader beam, a 3 in. 

(76 mm) thick A36 (248 MPa) steel plate, and two 14 ft 6 in. (4.4 m) long 150 ksi 

(1030 MPa) all-thread rods. The actuator rested on the column top and applied a 

compression force to the steel beam above it, causing the all-thread rods to pull on the 

steel plate underneath the cap beam. An axial compressive load of 6% of column axial 

capacity was applied to simulate gravity loads. Figure 2.11 shows a schematic and a 

picture of the specimen fastened to the floor girders. 

A 120 kip (530 kN) servo-controlled actuator with an overall stroke of 18 in. 

(440 mm) was used to apply the quasi-static displacement history; however, specimen 

CIP was tested using a 250 kip (1100 kN) servo-controlled actuator with an overall stroke 

of 24 in. (610 mm).  
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Displacement History 

A reversed cyclic quasi-static displacement-controlled protocol was applied to the 

column at an elevation of 8 ft (2.4 m) above the cap beam. The history comprised 

increasing amplitudes as multiples of the predicted yield displacement of the column.24 

Two cycles were employed for each displacement cycle to the east and west (Fig. 2.11). 

The displacement rate was set to 1.2 in./min (30 mm/min) up to the end of the 3 in. 

(76 mm) displacement cycle, after which it was changed to 4 in./min (100 mm/min) and 

was kept constant until test completion.  

 

Test Results 

Hysteretic Response 

Figure 2.12 shows the hysteresis curves of the specimens. They include four 

major damage states: concrete cracking and spalling, reinforcing bar pullout, yield 

penetration, and reinforcing bar fracture. 

 

Hysteresis Response of Specimen FGSS-1 

The pinched hysteresis loops for specimen FGSS-1 (Fig. 2.12) indicate that the 

overall force-displacement performance was controlled by the bond-slip characteristics of 

the fastened and grouted splice sleeve connectors. In addition to pinching from excessive 

slippage of the cap beam dowel bars inside the fastened and grouted splice sleeve 

connectors, reinforcing bar slippage introduced another type of disruption in the 

unloading branch of the response in the east direction. This was attributed to closure of 

the gap originally formed as a result of bond deterioration and bar slip. This gap closure 
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phenomenon at the column–to–cap beam interface is visible for the unloading branch of 

the hysteresis loops at the 4% to 6% drift ratio in the east direction. The lateral force 

peaked at the 5% and 3% drift ratio in the east and west direction, respectively. A gradual 

strength reduction or cyclic strength deterioration was noted as a result of bond 

degradation between the dowel bar and grout inside the fastened and grouted splice 

sleeve connectors. The test was terminated at the end of the 6% drift ratio due to a load 

reduction of 20% and 30% for the east and west directions, respectively. Failure of 

specimen FGSS-1 was caused by excessive bar slippage and pullout of reinforcing bar 

from the fastened and grouted splice sleeve connectors. It is noted that the axial load 

applied to this specimen was unintentionally 40% higher than the height of the other two 

test specimens. This introduced a slight increase in the lateral force capacity for FGSS-1. 

 

Hysteresis Response of Specimen FGSS-2 

Hysteresis loops of specimen FGSS-2 (Fig. 2.12) were relatively wide and stable 

compared with specimen FGSS-1, without any considerable strength degradation before 

reinforcing bar fracture or pullout, in the last drift ratio of 7%. The peak lateral force of 

34.7 kip (154 kN) and 36.3 kip (161 kN) occurred at the 4% and 5% drift ratio, in the east 

and west directions, respectively. The column west reinforcing bar fractured in the first 

cycle of the 7% drift ratio, while column east bars underwent excessive slippage, which 

resulted in considerable strength reduction. Ultimately, the test was terminated after 

completion of the 7% drift ratio because a strength drop of 42% and 45% occurred in the 

lateral force capacity as a result of west reinforcing bar fracture and east reinforcing bar 

pullout. This was a unique failure mode because it included both a ductile failure and a 
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bond-slip failure. The gap closure phenomenon at the column–to–cap beam interface 

described for specimen FGSS-1 was also observed for this specimen, an indication of 

excessive reinforcing bar slip at the 4% drift ratio.  

 

Hysteresis Response of Specimen CIP 

The overall response of specimen CIP was satisfactory, and the wide and stable 

hysteresis loops implied a high energy dissipation capacity. This desirable performance 

represents a ductile response of a well-detailed reinforced concrete flexural component, 

under both axial and lateral loading. The peak lateral force was 37.8 kip (168 kN) during 

the 2% drift ratio and 33.9 kip (151 kN) during the 3% drift ratio for the east and west 

direction, respectively.  

This test was terminated at the end of the 10% drift ratio due to the fracture of 

both extreme east and west column longitudinal steel bars. The west reinforcing bar 

fractured when the column top was close to the peak displacement during the first cycle 

of the 10% drift ratio. Subsequently, the bar on the east side of the column fractured 

during the first cycle of the 10% drift ratio. The superior hysteretic response of the 

control specimen is evident when compared with both precast concrete alternatives in 

Fig. 2.12.  

 

Experimental Observations and Damage States 

Visual observations made during testing of the precast concrete and control 

specimens are summarized in Fig. 2.13 to 2.15. This includes damage progression along 

with damage states of the most significant events throughout the response. 
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Visual Observations for Specimen FGSS-1 

All major cracks developed by the end of the 3% drift ratio. Spalling initiated at 

the corners of the octagonal column during the first cycle of the 3% drift ratio. The 

largest crack, which had formed previously at the bed grout section, turned into a gap at 

the column–to–cap beam interface during the 3% drift ratio. This is evident in Fig. 2.13, 

which shows the gap opening while the column was at the peak displacement of the 3% 

drift ratio.  

Cracks widened and concrete spalling progressed at higher drift ratios. During the 

6% drift ratio, the cone shape of the expelled grout became visible; this condition is 

presented in Fig. 2.13. This grout failure resembles the air test results shown in Fig. 2.4. 

The test was terminated after completion of the 6% drift ratio due to bond deterioration, 

and subsequent reinforcing bar pullout. The height of the spalled concrete was 8 in. 

(200 mm) and 12 in. (300 mm) on the west and east sides of the column, respectively. 

The spiral was partially exposed, and the bed grout was crushed at the column peripheral. 

The permanent opening at the bed grout had a residual gap equal to 0.1 in. (2.5 mm). The 

cap beam remained intact with only a few scattered hairline cracks in the joint region. 

 

Visual Observations for Specimen FGSS-2 

A hairline flexural crack formed at a section 12 in. (300 mm) above the column 

base during the 0.5% drift ratio. During the next drift ratio of 1%, this crack had a width 

of 0.002 in. (0.05 mm). Two more flexural cracks developed at 20 in. (510 mm) and 

28 in. (710 mm) above the column end during the same drift ratio. More cracks 

developed during the 2% and 3% drift ratio including one at the bed grout. There were 
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overall seven major flexural cracks that formed along the column by the end of the 3% 

drift ratio. The width of the crack formed during the 2% drift ratio at a section 8 in. 

(200 mm) from the column base measured 0.03 in. (0.8 mm) at the end of the 3% drift 

ratio. Concrete cover spalling initiated during this drift ratio with a height of 8 in. on the 

column east side (Fig. 2.14). Cracks opened further and concrete spalling intensified after 

the 3% drift ratio up to test termination. Flexure-shear cracks formed on the north and 

south sides of the column during the 5% drift ratio, and the representative crack at 8 in. 

above the column base had a width of 0.04 in. (1 mm). Spalling became deeper and wider 

during the 6% drift ratio, and a strength reduction was noted at the end of the second 

cycle in the west direction. This was attributed to bond deterioration between the grout 

and the embedded column dowel. The column extreme west bar broke at the end of the 

first cycle in the 7% drift ratio, whereas the east bar did not fracture; however, the drop in 

the lateral force capacity for the west direction implied that a bond-related phenomenon 

had caused a sudden reduction in strength. Post-test observations showed that the spiral 

became exposed near the column end, and the largest flexural crack was found 4 in. 

(100 mm) above the column base measuring 0.06 in. (1.5 mm) wide. The location of the 

reinforcing bar fracture was 1 in. (25 mm) above the column base, right below the spiral. 

Low cycle fatigue was the cause of reinforcing bar fracture as a result of successive 

bending and straightening of the column extreme bars. A permanent gap equal to 0.125 

and 0.0625 in. (3.18 and 1.59 mm) remained at the bed grout section on the east and west 

sides of the column, respectively. Figure 2.13 shows the damage condition at the 3% and 

7% drift ratio for specimen FGSS-2.  

 



45 
 

Visual Observations for Specimen CIP 

A few hairline flexural cracks appeared at the end of the 0.5% drift ratio over a 

40 in. (1020 mm) long region up from the column end. More hairline flexural cracks 

developed during the 1% drift ratio, up to 60 in. (1500 mm) above the column end. The 

cracks, which had formed within the lowermost 12 in. (300 mm) portion of the column, 

grew larger in width during the 2% drift ratio. Also, a 0.03 in. (0.8 mm) wide crack 

formed at the column–to–cap beam interface. The crack at 12 in. from the column end 

had a width of 0.005 in. (0.1 mm) at this drift ratio. All major flexural cracks developed 

by the end of the 3% drift ratio, and concrete cover spalling began at the column corners. 

The crack at the column–to–cap beam interface remained unchanged, while the crack at 

12 in. (300 mm) from the column end was 0.01 in. (0.3 mm) wide. Figure 2.15 shows the 

damage condition at the end of the 3% drift ratio.  

Inclined cracks formed on the north and south sides of the column base in the 4% 

drift ratio. By the end of the 4% drift ratio, the largest three cracks measured 0.04, 0.06, 

and 0.013 in. (1, 1.5, and 0.30 mm) wide for the crack at the column–to–cap beam 

interface, 6 in. (150 mm) from the column end, and 12 in. (300 mm) from the column 

end, respectively.  

Yield penetration was noted around the two column extreme bars at the end of the 

6% drift ratio. Spalling became wider and deeper, covering the cracks that developed in 

the previous cycles. Figure 2.14 shows the state of damage to the column at the end of the 

6% drift ratio. In the 7% drift ratio, the column spiral became visible and the depth of 

yield penetration increased to 1 1/8 in. (29 mm). The column extreme longitudinal 

reinforcing bar was visible during the 8% drift ratio. The concrete cover was crushed, 
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which led to buckling of the reinforcing bar during the next drift ratio.  

Low cycle fatigue caused fracture of the column extreme bars on both sides in the 

first cycle of the 10% drift ratio. The west column bar fractured first when the load was 

applied in the east direction, and then the east column bar fractured when the load was 

applied in the west direction. Reinforcing bar fracture occurred in the column end, at 1 

and 1 ½ in. (25 and 38 mm) from the cap beam surface for the west and east column bars, 

respectively. The spalled region had an effective width of 21 in. (530 mm) and height of 

8 in. (200 mm), though the maximum height of the spalled area was 16 and 20 in. (400 

and 510 mm) for the east and west column sides, respectively. The cap beam horizontal 

reinforcing bar was revealed as a result of continuous yield penetration of the column 

reinforcing bar. Figure 2.14 shows the damage state for this specimen at the end of the 

test. The cap beam remained intact with only two hairline cracks developed in the joint 

region during the 2% drift ratio.  

 

Displacement Ductility 

Displacement ductility capacity is the ability of a structural component to perform 

beyond the yield point without excessive strength deterioration; this was computed based 

on the concept of equal energy of an idealized elasto-plastic system.25 The average 

backbone curve was first constructed using the peak values of the first cycle for each drift 

ratio. To obtain the effective yield displacement of the system, it was assumed that the 

ideal elasto-plastic curve intersects the average backbone curve at a force equal to 70% of 

the effective yield force.24 The ultimate displacement was taken as the displacement 

corresponding to a 20% drop in lateral load capacity.26 Displacement ductility is the ratio 
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of the ultimate displacement to the yield displacement. Table 2.5 shows the displacement 

ductility of all specimens. 

The displacement ductility of specimen FGSS-1 was 4.9, while specimen FGSS-2 

had an improved value equal to 5.8 due to a more pronounced bending action along the 

entire column height. Specimen CIP had a ductile performance and a displacement 

ductility of 9.9, which was superior to the precast concrete specimens. The displacement 

ductility capacity obtained for the precast concrete specimens exceeded the minimum 

displacement ductility capacity of 3.0 for ductile components specified in Caltrans 

SDC.20 According to the AASHTO seismic bridge design provisions, the local ductility 

demand for ductile members in high seismic zones is limited to 5.0 for single-column 

bents and 6.0 for multiple-column bents.19 The backbone curve of the force-displacement 

response or cyclic envelope was constructed by joining the peak values of the load for the 

first cycle at each drift ratio. Figure 2.16 presents the cyclic envelopes for the three 

specimens. The response is similar up to 0.5% drift ratio, after which there were 

differences in the nonlinear response, especially in terms of displacement capacity. The 

lateral load capacity was similar for specimens FGSS-2 and CIP, whereas specimen 

FGSS-1 had a relatively higher strength. This is attributed to the fact that the axial load 

applied to specimen FGSS-1 was unintentionally 40% higher than the other two 

specimens. In addition, based on previous experiments, when the bulky cast-iron grouted 

splice sleeve connectors are incorporated in the column plastic hinge, there is a 7% to 

13% increase in the lateral force capacity due to a partial transition of the flexural action 

to the section right above the grouted splice sleeve.12,16,27 A third reason is the additional 

compression component from the cast-iron connectors, which provide some resistance 
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against the applied lateral forces. Hence, the lateral force capacity of specimen FGSS-1 

was 11% greater than that of specimen CIP. 

 

Energy Dissipation  

One of the desirable features of ductile elements in high seismic regions is their 

ability to dissipate energy through inelastic deformations. This is an indication of the 

quality of the hysteretic response. The area enclosed by the hysteresis loops, referred to 

as the hysteretic energy, was computed cumulatively for each specimen to obtain the 

energy dissipation capacity. 

Figure 2.17 shows the cumulative hysteretic energy capacity. The three specimens 

had similar hysteretic energy dissipation up to 3% drift ratio, after which specimens CIP 

and FGSS-2 had a slightly better performance. Specimen FGSS-2 with the fastened and 

grouted splice sleeve connectors inside the cap beam had wide and stable hysteresis loops 

that compared well with specimen CIP.  

Equivalent viscous damping is another quantity used to evaluate relative energy 

dissipation capacity under cyclic loads. The equivalent viscous damping offers more 

information about the hysteretic response of the system because both hysteretic and strain 

energy are considered. The equivalent viscous damping ratio ξeq was obtained as the ratio 

of the hysteretic energy to the energy of the equivalent viscous system as defined in 

Eq. (2.1).28 

04
D

eq
S

E
E

ξ
π

=                                                                 (2.1) 

where 

ED = hysteretic energy (area inside hysteresis loop) 
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ES0 = strain energy 

Figure 2.18 presents the average ξeq of both cycles for each drift ratio. Specimen 

FGSS-2 had the closest hysteretic performance to specimen CIP. Specimen CIP had a ξeq 

of 35% at the 10% drift ratio, which is a desirable value for ductile components. The 

equivalent viscous damping ratio at 6% drift ratio was 14%, 22%, and 24% for specimens 

FGSS-1, FGSS-2, and CIP, respectively. This implies that the hysteretic response was 

improved when the fastened and grouted splice sleeve connectors were located inside the 

cap beam because of a reduced level of flexural demand in the fastened and grouted 

splice sleeve region.  

 

Column Curvature and Dowel Bar Yielding Patterns  

LVDTs installed on both the east and west sides of the column were used to study 

curvature distribution. Four curvature segments were specified by using four LVDTs on 

each side of the column. The average curvature was computed using Eq. (2.2): 

                                                                            
A B
wh

φ
−

=                                                                 (2.2) 

where  

φ = average curvature 

A = west LVDT reading 

B = east LVDT reading 

w = width of curvature segment 

h = height of curvature segment 

The average curvature profile was constructed over a 30 in. (760 mm) column 

height above the column end. The average curvature values were normalized by 
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multiplying by the column dimension of 21 in. (530 mm), and the curvature segment 

heights were divided by the column overall height of 96 in. (2440 mm). Positive 

curvature was associated with the load applied in the east direction. The calculated 

curvature was assumed to be an average over the segment height. Figure 2.19 presents the 

normalized curvature distribution along the column for all specimens. Curvatures were 

included up to a 6% drift ratio, which was the last common drift ratio. Dashed lines mark 

the top of the fastened and grouted splice sleeve connectors in the column for specimen 

FGSS-1.  

The normalized curvature profile of specimen FGSS-1 indicates that curvature 

capacity was a minimum over the FGSS connectors and that flexural action was 

concentrated at sections above and below the fastened and grouted splice sleeve 

connectors. An examination of this curvature profile reveals that the fastened and grouted 

splice sleeve connectors did not develop considerable stresses. The asymmetric curvature 

profile of specimen FGSS-1 was attributed to early bond deterioration of the east cap 

beam dowels inside the connectors. Considering the hysteretic response of this specimen 

(Fig. 2.12), a drastic strength drop was noted after the 3% drift ratio, when the load was 

applied in the west direction. This implies gradual strength degradation as a result of 

severe bond deterioration, which caused a more pronounced rocking behavior than 

bending, and thus smaller curvature values when the column was in the west direction. 

A satisfactory curvature distribution was achieved for specimen FGSS-2 

(Fig. 2.19). This is similar to the curvature distribution for cast-in-place concrete bridge 

bents with either well-detailed standard lapped splices or monolithic construction. 

Neglecting the asymmetric curvature distribution for the load applied in the west and east 
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directions, this curvature profile resembles an acceptable distribution of curvature 

demand along the column, with the highest curvature values at the column end where 

moment is also a maximum and a gradual decrease in curvature away from the joint. The 

asymmetric curvature profile was caused mainly because of a movement of one of the 

LVDT fixtures located on the column east side as a result of damage occurring in the 

plastic hinge zone during the 3% drift ratio. 

Specimen CIP had a desirable curvature distribution along the column base. This 

was attributed to the well-detailed column plastic hinge region without fastened and 

grouted splice sleeve connectors.  

Strain gauges located on the two extreme longitudinal bars in the column end 

within the joint core of specimen FGSS-1, covered an area with a depth of 7 in. (180 mm) 

into the cap beam and 16 ¼ in. (413 mm) above the column end. Both extreme bars 

yielded over the whole range covered by strain gauges, except for the initial 5 in. 

(125 mm) portion of the field dowels, which was embedded and confined inside the 

fastened and grouted splice sleeve connectors. 

For specimen FGSS-2, strain gauges were installed over an area with a depth of 

13 in. (330 mm) into the cap beam and 18 in. (460 mm) above the column end. The 

extreme column dowels yielded starting at 5 in. (125 mm) from the tip of the column 

dowel bars, which were confined within the fastened and grouted splice sleeve 

connectors, or 2 in. (50 mm) into the cap beam from the column–to–cap beam interface. 

The cap beam dowel bars did not yield. 

Strain gauges located on the extreme longitudinal bars, in the column end, and 

within the joint core of specimen CIP showed that the extreme bars yielded over an area 
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with a depth of 9 ½ in. (240 mm) into the cap beam and 38 in. (970 mm) above the 

column end.  

 

Residual Drift 

During a major seismic event it is highly probable for bridge piers to have a 

permanent residual displacement (drift), indicating the system is in the inelastic range of 

response without the ability to return to its original position. A reduced residual drift is 

more desirable in regions of high seismicity as it implies a lower level of significant 

damage to the plastic hinge region of bridge columns. To compare the residual drift of the 

three test specimens, this parameter was obtained by collecting the drift values associated 

with zero lateral force for each drift ratio. The average residual drift of the push and pull 

response was considered from the second cycle of each drift ratio. 

Figure 2.20 shows that specimen CIP had larger residual drift values within the 

inelastic range of response starting at 1% drift ratio. The response of FGSS-2 is similar to 

CIP as anticipated, since the connectors were outside the column. Specimen FGSS-1 had 

the smallest residual drift values for every cycle. This was mainly attributed to the 

pinched hysteretic response of FGSS-1. 

 

Conclusion 

The experimental evaluation of the column–to–cap beam joint tests conducted in 

this research provided qualitative and quantitative measures to evaluate the specimens 

under quasi-static lateral cyclic loads. A summary of findings is offered: 

1. Specimen CIP had a good hysteretic response with ductile failure (reinforcing bar 
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fracture on opposite sides of the column). Well-distributed flexural cracks formed 

along the column height and the concrete cover spalled completely at the column 

end. The overall performance of specimen CIP was dominated by flexural action 

and formation of a plastic hinge at the column end. More localized damage was 

observed for precast concrete specimen FGSS-1 with the fastened and grouted 

splice sleeve connectors in the column. This involved fewer flexural cracks along 

the column height compared to specimen CIP. The spalled region was also 

smaller as a result of the presence of the fastened and grouted splice sleeve 

connectors in the column end. Precast concrete specimen FGSS-2 with the 

fastened and grouted splice sleeve connectors in the cap beam had a damage state 

similar to specimen CIP because there were no sleeve connectors in the column. 

More flexural cracks formed along the column compared with specimen FGSS-1, 

and the spalled region had a similar height, width, and depth to that of specimen 

CIP.  

2. Reinforcing bar fracture for specimen CIP occurred at a 10% drift ratio due to low 

cycle fatigue. Premature reinforcing bar fracture occurred in the west column bar 

of specimen FGSS-2 at a 7% drift ratio, which was accompanied by pullout 

failure of the east column bar. Specimen FGSS-1 failed early at a drift of 6% 

because of reinforcing bar pullout due to excessive bond slip.  

3. Specimen CIP had a displacement ductility of 9.9 with hysteresis loops that were 

wide and stable, implying excellent energy dissipation. A displacement ductility 

of 5.8 was achieved for specimen FGSS-2 for which the fastened and grouted 

splice sleeve connectors were inside the cap beam. Compared with specimen 
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FGSS-1, with a displacement ductility of 4.9, a more ductile response along with 

a better hysteretic performance was obtained by placing the fastened and grouted 

splice sleeve connectors in the cap beam. The displacement ductility obtained for 

all alternatives exceeded the minimum component displacement ductility of 3.0 

specified in the Caltrans SDC. The displacement ductility for specimen FGSS-2 

was greater than the maximum ductility of 5.0 for single-column bridge bents but 

less than the maximum ductility of 6.0 for multiple-column bridge bents specified 

in the AASHTO seismic guide for ductile members in high seismic zones.  

4. The distribution of inelasticity at the column end for precast concrete specimen 

FGSS-2 was similar to that of specimen CIP because there was no disruption of 

the natural stress transfer in the column end; however, for specimen FGSS-1 a 

different distribution of inelasticity was observed. This was attributed to the 

presence of the fastened and grouted splice sleeve connectors in the column end 

and the inelastic action shifting to locations at the top and bottom of the 

connectors. Strain gauge data for specimen FGSS-1 showed that dowel bars 

developed their yield strength both in the column and cap beam. By contrast, for 

specimen FGSS-2, the bars in the column yielded, but the bars in the cap beam 

did not yield. This is desirable and closely emulates cast-in-place concrete 

construction. 

5. Column–to–cap beam specimen FGSS-2, constructed with fastened and grouted 

splice sleeve connectors in the cap beam, achieved a drift capacity of 7.0%, which 

exceeds the drift demand expected in large earthquakes. Specimen FGSS-2 

achieved satisfactory hysteretic performance and energy dissipation. In addition it 
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achieved a displacement ductility of 5.8 and a curvature distribution that closely 

emulates cast-in-place construction. Precast concrete joints constructed with the 

specific details of specimen FGSS-2 are expected to perform adequately in 

moderate to high seismic regions.  
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Notation 

A = west linear variable differential transformers reading 

B = east linear variable differential transformers reading 

ED = hysteretic energy (area inside hysteresis loop) 

ES0 = strain energy 

fy = nominal yield strength of reinforcing bars 

F = force 

Fy = effective yield force 

h = height of curvature segment 

Keff = effective stiffness 
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P = axial load 

w = width of curvature segment 

Δu = effective ultimate displacement 

Δy = effective yield displacement 

μ∆ = displacement ductility 

ξeq = equivalent viscous damping 

φ = average curvature 
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Table 2.1. Test matrix for column–to–cap beam joints 

Test 

identification Specimen Connector type Connector location Other 

1 FGSS-1 LK-8 Column n/a 

2 FGSS-2 LK-8 Cap beam n/a 

3 CIP n/a n/a Cast-in-place 

Note: n/a = not applicable. 

 

Table 2.2. Tension test results for air test specimens 

Air test 

identification 

Maximum 

load (kip) 

Maximum bar 

stress (ksi) 

Maximum bar stress 

normalized to fy
* 

Observed failure mode 

Air test-1 69.7 88.2 1.47 Reinforcing bar pullout 

Air test-2 71.5 90.5 1.51 Reinforcing bar pullout 

Air test-3 66.4 84.1 1.40 Reinforcing bar pullout 

Air test-4 68.0 86.1 1.43 Reinforcing bar pullout 

Air test-5 64.6 81.8 1.36 Reinforcing bar pullout 

Air test-6 69.1 87.5 1.46 Reinforcing bar pullout 

*Nominal yield strength of reinforcing bar is used. 
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Table 2.3. Yield and ultimate strength of reinforcing bars 

Specimen 

Column reinforcing bar Cap beam reinforcing bar 

Longitudinal (no. 8) Transverse (no. 4) Dowel bar (no. 8) Transverse (no. 4) 

Yield, 

ksi 

Ultimate, 

ksi 

Yield, 

ksi 

Ultimate, 

ksi 

Yield, 

ksi 

Ultimate, 

ksi 

Yield, 

ksi 

Ultimate, 

ksi 

FGSS-1 77 102 63 103 68 93 63 103 

FGSS-2 68 93 63 103 77 102 63 103 

CIP 68 93 63 103 68 93 63 103 

Note: no. 4 = 13M; no. 8 = 25M; 1 ksi = 6.89 MPa 

 

Table 2.4. Compressive strength of concrete and grout, ksi 

Specimen 

Concrete Grout 

28-day, ksi Test day, ksi 28-day, ksi Test day, ksi 

FGSS-1 5.3 6.2 12.5 13.3 

FGSS-2 3.9 5.2 10.3 10.3 

CIP 5.2 6.7 n/a n/a 

Note: n/a = not applicable. 1 ksi = 6.89 MPa. 

 

Table 2.5. Effective yield properties and displacement ductility values 

Specimen 
Last drift 

ratio, % 
Fy, kip Δy, in. Δu, in. Keff, kip/in. μΔ 

FGSS-1 6 35.35 1.08 5.32 32.70 4.9 

FGSS-2 7 33.29 1.11 6.50 29.92 5.8 

CIP 10 32.33 0.90 8.95 35.84 9.9 

Note: 1 kip = 4.448 kN; 1 in. = 25.4 mm; 1 kip/in. = 175.1 kN/m. 
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Fig. 2.1. Grouted splice sleeve incorporated in this research. 

 

 

Fig. 2.2. Fastened and grouted splice sleeve connectors in precast concrete components. 
 



62 
 

 
Fig. 2.3. Configuration of test alternatives. 
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Failure of air test specimen in testing apparatus 

 

Grout cone failure and reinforcing bar pullout 

Fig. 2.4. Pullout failure of air test specimen. 
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Fig. 2.5. General design and detailing of joint region for monolithic specimen. Note: 
no. 4 = 13M; no. 8 = 25M; 1 in. = 25.4 mm; 1 ft = 0.305 m. 
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Specimen FGSS-1 details 

 

 
 

 
Specimen FGSS-1 reinforcing bar cages 

 
Fig. 2.6. Specimen FGSS-1 construction details. Note: no. 4 = 13M; no. 8 = 25M; 1 in. = 

25.4 mm; 1 ft = 0.305 m. 
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Specimen FGSS-2 details 

 

 
 

 
 

Specimen FGSS-2 reinforcing bar cages 

Fig. 2.7. Specimen FGSS-2 construction details. Note: no. 4 = 13M; no. 8 = 25M; 1 in. = 
25.4 mm; 1 ft = 0.305 m. 
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Specimen CIP details 

 

 
Specimen CIP reinforcing bar cages 

Fig. 2.8. Specimen CIP construction details. Note: no. 4 = 13M; no. 8 = 25M; 1 in. = 
25.4 mm; 1 ft = 0.305 m. 
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Pregrout technique prior to installation 

 

 
Bed grout at column-to-cap beam interface 

 
Fig. 2.9. Grout operation for FGSS-2. 
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Strain gauges on reinforcing bars 

 
LVDTs adjacent to column end 

 
Fig. 2.10. Instrumentation details. 
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Schematic test setup 

 

 
Actual test setup 

 
Fig. 2.11. Experimental configuration and displacement history. Note: 1 kip = 4.448 kN. 
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Specimen FGSS-1 

 
Specimen FGSS-2 

 
Specimen CIP 

 
Fig. 2.12. Hysteresis response of precast concrete and control specimens. Note: F = force; 

P = axial load. 
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      Bed grout opening at 3% drift ratio (peak)                  Damage state at 3% drift ratio 
 

  
 
             Bar pullout during 6% drift ratio                         Damage state at end of test (6%)  
 

Fig. 2.13. Specimen FGSS-1 visual observations. 
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Damage state at 3% drift ratio: cracks and spalling 
 

  
 

Damage state at 7% drift ratio: cracks, spalling, and exposed spiral 
 

Fig. 2.14. Specimen FGSS-2 visual observations. 
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Damage state at 3% drift ratio 
 

    
 

Damage state at 6% drift ratio: cracks and spalling, yield penetration 
 

    
 

Damage state at end of test: cracks and spalling, reinforcing bar buckling and fracture 
 

Fig. 2.15. Specimen CIP visual observations. 
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Fig. 2.16. Force-displacement response. Note: F = force; P = axial load; μ∆ = 
displacement ductility. 

 

 
 
 

Fig. 2.17. Cumulative hysteretic energy. 
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Fig. 2.18. Equivalent viscous damping. 
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Curvature distribution for specimen FGSS-1 

 
 

Curvature distribution for specimen FGSS-2 

 
Curvature distribution for specimen CIP 

 
Fig. 2.19. Normalized curvature distribution. Note: F = force; P = axial load; Average 
curvature values are multiplied by the column dimension (21 in.) for normalization. 
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Fig. 2.20. Residual drift for all test specimens. 
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Abstract  

Mechanical couplers have been utilized in connections between prefabricated 

reinforced concrete elements. Grouted splice sleeves offer good construction tolerance 

and a bond-related load transfer mechanism between the connecting members. The 

present study investigates the seismic performance of grouted splice sleeve connections 

with the connectors placed in the column or footing of bridge subassemblies, and 

intentional debonding of the footing dowel bars. Quasi-static cyclic loads were used to 

test three half-scale precast column-to-footing specimens and one cast-in-place control 

specimen. The precast concrete specimens incorporated grouted splice sleeve connectors 

in which two bars were grouted at both ends. Experimental results show that the precast 

subassemblies had a lower displacement ductility capacity than the control specimen. 

Improved seismic response was observed when the splice sleeve connectors were located 

inside the footing rather than the column end. An intentional debonded rebar zone was 

used to further improve the displacement ductility capacity of the bridge subassembly. 

Keywords: accelerated bridge construction; connection; joint; concrete column; cyclic 
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load test; grouted splice sleeve; mechanical coupler. 

 

Introduction 

Accelerated bridge construction (ABC) has been practiced in the United States 

because of the efficiency it offers as a bridge construction procedure. Prefabricated 

reinforced concrete components have been frequently used as part of ABC. In moderate-

to-high seismic zones, special care must be taken in the design and detailing of moment-

resisting connections of such precast components since they play a critical role in 

maintaining integrity of the whole structure. These connections may be subjected to large 

earthquake-induced deformations at the interface of precast members that could cause 

considerable permanent damage. Hence, there is a need to conduct research on potential 

precast connection types which offer improved constructability, increased construction 

speed, and enhanced reliability. 

Many bridges have been constructed, retrofitted, or replaced using different ABC 

methods. Within regions of high seismicity several States including Washington, Utah, 

and California are adopting ABC. One recent application of ABC column-to-footing 

connection can be found in Washington over Interstate 5 where reinforced precast 

columns were connected to spread footings using a socket connection.1 In this method, 

the bottom end of precast columns is roughened and embedded in footings, after which 

footing concrete is cast around the column bases. This connection type could be 

incorporated for column-to-cap beam joints as well as pile-to-pile cap joints; it has been 

utilized mostly in column-to-footing joints.2 An experimental study conducted prior to 

application of the socket connection showed that the response of such a connection under 



82 
 

 

simulated seismic loads was acceptable.3 Other studies revealed similar results on the 

overall response of such column-to-footing connections, for buildings and bridges.4,5  

Another viable connection type is the grouted duct connection. In this method, corrugated 

steel ducts are cast in a footing or cap beam, and column reinforcement dowels are 

inserted and grouted inside the ducts. In bridge construction applications, the grouted 

duct connection was originally developed for column-to-cap beam connections.6,7 

Experiments on large-scale column-to-footing subassemblies with grouted ducts 

embedded in the footing were conducted by Tazarv et al. (2015); the performance of this 

connection type was found to be promising and emulative of conventional monolithic 

construction.8  

The grouted splice sleeve connection has been used in bridges located in low 

seismic regions since it accelerates construction while being a reliable method in terms of 

resisting gravity loads. A grouted splice sleeve connector is a type of reinforcing bar 

splicing device in which load transfers between the two connecting bars by means of 

stress transfer through bond between the reinforcing bar, high strength grout, and cast 

iron splice sleeve coupler. Recently, experimental and analytical studies were conducted 

on this precast connection type to investigate its application in high seismic zones. 

NCHRP report 698 recommended further investigation of the grouted splice sleeve 

connection, in terms of strength details and hysteretic performance.9 To study the strength 

properties of individual splicing systems, researchers have performed experiments on 

assemblies composed of two connecting reinforcing bars, high strength grout, and a cast 

iron sleeve.10-12 Jansson (2008) carried out such experiments on No. 6 (19M) and No. 11 

(36M) subassemblies and studied bar slip, fatigue life, creep behavior, and ultimate load 



83 
 

 

capacity. Different ultimate failure modes were observed including fracture or pullout of 

both No. 6 (19M) and No. 11 (36M) reinforcing bars and fracture of No. 11 (36M) cast 

iron connectors. However, the nominal tensile strength of the reinforcing bar was 

achieved for all specimens.10  

Reversed cyclic quasi-static tests were conducted on large-scale precast concrete 

specimens connected by means of grouted splice sleeve connectors at various locations 

along the precast column, footing or cap beam.13-20 The results indicated that a different 

hysteretic performance, damage progression, and plastic hinging mechanism occurred 

when the splice sleeve connectors were used to splice reinforcing bars in precast concrete 

members. Strength and stiffness of the precast concrete specimens were found to be 

similar or slightly different than the corresponding monolithic specimens without grouted 

splice sleeve connectors.   

This paper presents the results of four half-scale specimens, three of which were 

composed of precast concrete components connected using grouted splice sleeve 

connectors. The performance of the three precast specimens is compared to a fourth 

specimen without grouted splice sleeve connectors which represents cast-in-place 

concrete monolithic construction.  

 

Research Significance 

The research presented herein provides valuable information on the seismic 

performance of grouted splice sleeve connections with a focus on the location of the 

connectors within the column-to-footing joint. Currently, bridge design codes prohibit the 

application of any type of mechanical connectors in the column plastic hinge zone of 
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bridges located in high-seismic regions. This study presents findings from cyclic 

experiments in terms of load capacity, hysteretic response, ductility capacity, and spread 

of inelasticity along the column. The seismic performance was investigated for two 

connector location alternatives: (1) at the column plastic hinge zone with and without 

intentional debonding of reinforcing bars inside the footing, and (2) outside the column 

plastic hinge zone, i.e., in the footing. 

 

Tensile Tests of Grouted Splice Sleeve Connectors 

Fig. 3.1 shows the grouted splice sleeve used in this research. The spliced 

reinforcing bars are both grouted in the two ends of the connector, hence the connector is 

denoted as grouted/grouted splice sleeve or GGSS. A series of tensile tests were 

conducted on six individual grouted splice sleeve connectors to investigate the 

performance of the connectors under monotonic tensile load. Results from these tests 

were used to assess strength capacity and failure mode of this type of grouted splice 

sleeve connectors, in addition to providing insight to their overall performance under 

pure tensile loading.  

Two No. 8 (25M) reinforcing bars were connected using a grouted splice sleeve 

connector for each connector specimen. The reinforcing bars had a nominal yield strength 

of 60 ksi (400 MPa) and an actual yield strength of 76 ksi (525 MPa). The test-day 

compressive strength of the high strength grout was 13.8 ksi (95 MPa).  

A monotonic tensile load was applied to each connector assembly until failure 

which occurred when the reinforcing bars fractured outside the connector zone, 3 in. (76 

mm) to 5 in. (127 mm) from the field end of the connector. The field end is the wide end 
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of the grouted splice sleeve connector which is positioned at the outermost edge of the 

precast component; this implies that the tensile strength of the connecting reinforcing 

bars was achieved. Other potential failure modes such as bar pullout or connector fracture 

did not occur for any of the test assemblies. The average ultimate strength achieved by 

the connector assemblies was 1.68 ± 0.0260 (SD, n=6) times the nominal yield strength 

of the reinforcing bar.  Table 3.1 shows the results of the connector tests; the failure mode 

for all tests was bar fracture. 

A grout cone was formed due to localized stresses at the unconfined ends of the 

connectors that resulted in an inferior bond between the reinforcing bar and surrounding 

grout, at the two ends. The depth of the grout cone ranged from ½ in. (13 mm) to ¾ in. 

(19 mm) for the larger end (field end). On the opposite end of the connector with the 

smaller opening (factory end), the grout cone depth was ¼ in. (6.5 mm) to ½ in. (13 mm). 

Fig. 3.2 shows a connector assembly with the fractured field dowel after the test was 

terminated, along with the grout cone. Acoustic emission (AE) monitoring was used to 

detect major performance benchmarks during the tensile tests. Interpretation of the AE 

event rate indicated that the formation of the grout cone occurred at approximately 1.2 

times the actual yield strength of reinforcing bars. Further discussion on AE monitoring 

of the connector experiments is available in Parks (2014).21 

Haber et al. (2015) discussed the stress-strain behavior of connector test 

subassemblies with reference to the stress-strain behavior of spliced bars, under 

monotonic tensile loads.12 Within the connector region, defined as the connector length 

plus 1 11/16 in. (43 mm) from each connector end, the strain capacity was 65% smaller 

than that of the spliced bars; this was attributed to the presence of the cast-iron sleeve 
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connector. However, the overall trend of the stress-strain behavior of the subassembly 

and spliced bars was similar. 

Previous tests on connector subassemblies with heavily-instrumented spliced bars 

showed that their yield strength was achieved at a section located 4 times the bar 

diameter from the end of the bar grouted inside the connector; beyond this point, the 

reinforcing bars underwent inelastic response.19 Strains up to 2.5% were measured at both 

ends of the spliced bars. 

 

Specimen Design and Fabrication 

The design was first carried out for the cast-in-place specimen CIP; a design 

displacement ductility equal to 11.0 was used. Detailing of the remaining specimens was 

adjusted in accordance with the required change from specimen CIP. The AASHTO 

LRFD Bridge Design Specifications and the AASHTO Guide Specifications for LRFD 

Seismic Bridge Design were followed to implement capacity based design. 22, 23 The 

application of grouted splice sleeve connectors or bar lap splices is prohibited in the 

plastic hinge region of bridge columns located in moderate to high seismic zones.23, 24 

This applies to seismic design categories C and D per AASHTO Guide Specifications.  

The half-scale columns were composed of a 21 in. (533 mm) octagonal cross section with 

six No. 8 (25M) reinforcing bars arranged in a circular configuration and confined by a 

No. 4 (13M) spiral with a pitch of 2.5 in. (64 mm). A column with an octagonal cross-

section was selected because it is easier to precast compared to a column with a circular 

cross-section. The longitudinal and volumetric transverse reinforcement ratios were 1.3% 

and 1.9%, respectively. The column height for all specimens was 8 ft 6 in. (2.6 m). The 
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precast footings were designed as 6-ft long x 3-ft wide x 2-ft deep (1.8 x 0.9 x 0.6 m) 

precast concrete elements; reinforcement consisted of No. 8 (25M) longitudinal bars with 

No. 4 (13M) double hoops. The footings were designed and detailed to remain in the 

linear elastic range, as capacity-protected members. Dowel bar tails were bent inward 

into the footing to achieve a better performance under lateral cyclic loads as required for 

seismic design category D in accordance with AASHTO Guide Specifications.23     

Fig. 3.3 shows the design details of the four test alternatives, and Table 3.2 contains the 

test matrix. For specimens GGSS-1 and GGSS-3, the connectors were placed at the 

column base; No. 8 dowel bars with an extension of 7 in. (180 mm) protruded from the 

top of the footing. To investigate the displacement ductility enhancement provided by 

debonding reinforcing bars, the footing dowel bars of GGSS-3 were debonded for a 

length equal to eight times the diameter of the reinforcing bars, adjacent to the sleeve 

connectors, as shown in Fig. 3.3(c). Debonding is expected to reduce strain localization 

of footing dowel bars at the column-to- footing interface. Weinert (2011) described the 

effectiveness of partial debonding of connecting bars outside sleeve connectors.2 For 

specimen GGSS-2, the grouted splice sleeve connectors were cast inside the footing and 

dowel bars protruded from the column. A postgrout operation was performed during 

erection of GGSS-1 and GGSS-3, during which, the column was lowered over the footing 

to match the dowel bars with the connector openings, and the grout was subsequently 

pressure pumped into the connectors. A pregrout operation was conducted for GGSS-2 in 

which the connectors were filled with grout before joining the two precast components. 

For ease of construction, the inlet and outlet grout ports of all connectors were sealed 

before casting the footing concrete. During installation, compressed air was blown into 
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the connectors to remove debris; grout was then poured into the connectors from the wide 

end opening. This configuration (except the grout operation) was implemented during the 

construction of a rail bridge in Salt Lake City in 2012; this is a practical alternative to 

commonly-used grouted splice sleeve connections.  A ¼ in. (6 mm) bed grout was 

incorporated at the column-to-footing interface for all precast specimens.  

No. 8 (25M) grade 60 (414 MPa) ASTM A706 reinforcing bars were used as 

column longitudinal bars. The results of tension tests showed that the yield and ultimate 

strength of these reinforcing bars was 68 ksi (469 MPa) and 93 ksi (641 MPa), 

respectively. The No. 4 (13 M) transverse reinforcing bars had a yield strength of 63 ksi 

(434 MPa) and an ultimate strength of 103 ksi (710 MPa). Compression tests were 

conducted using concrete cylinders and grout cubes for the 28-day and test-day 

compressive strength of the cementitious materials. Table 3.3 presents the compression 

test results for the cementitious materials used for all specimens.  

 

Experimental Procedure 

Instrumentation 

The specimens were instrumented with strain gauges in the plastic hinge region 

and joint area. For the precast concrete specimens, strain gauges were placed on the 

dowel bars inside the connectors. Column displacements were obtained by taking the 

average of readings from two potentiometers installed at the actuator level. Linear 

variable differential transformers (LVDTs) were used to study the displacement 

increments and curvature distribution along the column base in addition to the global 

vertical and horizontal movement of the specimens. Ten LVDTs were mounted at the 
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column end zone, over a 30 in. (760 mm) high region to measure the relative vertical 

displacements and provide data for curvature analysis.  

 

Test Setup and Loading Protocol 

The specimens were attached to the test frame using high strength bolts; the 

lateral cyclic load and axial load were applied simultaneously at the column top. A 120-

kip (530 kN) servo-controlled actuator, with an overall stroke of 18 in. (440 mm) was 

used to apply the cyclic load to the precast specimens; the control specimen was tested 

using a 250-kip (110 kN) servo-controlled actuator with an overall stroke of 24 in. (610 

mm). An axial load of 6% of the column compressive capacity was applied to simulate 

gravity loads. The column compressive capacity was approximated as the column cross-

sectional area multiplied by the 28-day compressive strength of the column for each 

specimen. An actuator placed on top of the column applied the compression force to a 

steel spreader beam which was connected to two high strength threaded rods pinned to a 

steel plate below the footing, as shown in the test setup of Fig. 3.4; the steel rods were 

used to apply the axial load. 

Fig. 3.5 shows the horizontal drift history applied quasi-statically to the column at 

an elevation of 8 ft (2.4 m) above the footing. Drift is defined as the lateral displacement 

of the column top, where the actuator applied the lateral load, divided by the distance 

from top of the footing to center of the lateral load application, which was 8 ft (2.4 m). 

The drift history was composed of increasing amplitudes as multiples of the predicted 

yield drift of the column.25 Two cycles were employed for each drift ratio in the east and 

west directions. The displacement rate was set to 1.2 in./min (30 mm/min) up to the end 
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of the 3% drift ratio, after which it was changed to 4 in./min (100 mm/min). 

 

Test Results 

Hysteretic Response and Damage Progression 

Fig. 3.6 shows the lateral force-drift curves for all specimens including major 

damage states observed during the cyclic tests. Spalling of concrete initiated during the 

3% drift ratio, and major flexural cracks formed by the end of the 3% drift ratio. Yield 

penetration was noted for precast specimen GGSS-1 and cast-in-place specimen CIP 

while this phenomenon was not observed for precast specimens GGSS-2 and GGSS-3 

because of embedding the connectors in the footing, and debonding of footing bars, 

respectively. Fracture of reinforcing bars was the main cause of strength degradation for 

all specimens; no damage was observed due to bond deterioration between dowel bars 

and high-strength grout in the sleeve connectors. Fig. 3.6 identifies fracture of the 

reinforcing bars on each hysteresis curve. The hysteresis loops of the precast specimens 

were wide and stable, resembling the cast-in-place alternative CIP. This indicates a 

potentially satisfactory hysteretic performance for all precast specimens.  

 

Precast Specimen GGSS-1 

A minor hairline crack developed at the bed grout, at the column-to-footing 

interface of GGSS-1, during the 0.5% drift ratio. This crack became wider and was 

accompanied by another crack forming above the connectors during the first cycle of the 

1% drift ratio. Spalling initiated during the first cycle of the 3% drift ratio and progressed 

near the corners of the octagonal column. Cracks widened and spalling progressed at 
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higher drift ratios (Fig. 3.7(a)). The crack, which had formed above the connectors, had a 

width of 0.013 in. (0.3 mm) at a drift ratio of 4%, 0.02 in. (0.5 mm) at a drift ratio of 5%, 

and 0.03 in. (0.8 mm) at a 6% drift ratio. There were only a few flexural cracks at the 

column base as damage was localized over the column-to-footing interface and the 

section above the connectors. Yield penetration was noted at the end of the 6% drift ratio 

up to a depth of 1.5 in. (38 mm) on the west and 1 in. (25 mm) on the east side of the 

column. The height of the spalled region was 8 in. (203 mm) on the west and 14 in. (356 

mm) on the east side of the column. The column spiral became visible during the 7% drift 

ratio. The bed grout deteriorated around the perimeter of the column end, while the 

spalled region over the connectors became deeper and the GGSS connectors were visible 

at the end of the 8% drift ratio; the two extreme footing dowels fractured shortly after the 

8% drift ratio at a location from 1.0 in. (25 mm) to 1.5 in. (38 mm) below the surface of 

the footing due to strain concentration. Fig. 3.7(b) shows the damage state of specimen 

GGSS-1 shortly after the 8% drift ratio.  

 

Precast Specimen GGSS-2 

Unlike GGSS-1, two hairline flexural cracks developed at sections 12 in. (305 

mm) and 28 in. (711 mm) above the column base during the 0.5% drift ratio, prior to any 

crack formation at the interface. The interface gap between the precast column and 

footing became evident during the 1% drift ratio, while a total of nine flexural cracks 

formed along the column by the end of the 3% drift ratio.  The widest crack, located 6 in. 

(152 mm) above the column base, had a width of 0.03 in. (0.8 mm) at the end of the 3% 

drift ratio, as shown in Fig. 3.7(a). Inclined cracks developed on the north and south side 
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of the column base during the 5% drift ratio due to increased tensile demand in the 

column plastic hinge zone. The extreme east column dowel ruptured during the first pull 

of the 7% drift ratio at a section 2 in. (51 mm) above the column base. At the end of the 

test, the concrete cover completely spalled at the column base which made the spiral 

visible over the bottom 8 in. (203 mm). The permanent gap at the column-to-footing 

interface had a width of 1/16 in. (1.6 mm). The state of damage for GGSS-2 is presented 

in Fig. 3.7(b) after the 7% drift ratio. 

 

Precast Specimen GGSS-3 

The damage state of GGSS-3 was similar to that of GGSS-1 with the exception of 

a slightly postponed spalling at the column section corners (Fig. 3.7(a)).  The crack 

formation pattern was similar to GGSS-1. The crack, which had formed above the 

connectors, had a width of 0.013 in. (0.3 mm) and 0.02 in. (0.5 mm) after the 4% and 5% 

drift ratio, respectively. The spiral reinforcement was exposed during the 7% drift ratio 

when the concrete cover crushed completely over the bottom column segment. The gap 

created at the bed grout section was increased, when the column was at the extreme 

position, in such a way that the footing dowel bars became visible. 

During first pull at the 8% drift ratio, the extreme column reinforcing bar 

fractured at the interface, and the test was terminated as the column strength dropped 

below 80% of the peak lateral force. Fracture of the bar was attributed to low cycle 

fatigue as a result of successive bending and restraightening. Posttest investigation 

revealed that the concrete cover deteriorated within the lowest 4-in. (102 mm) section of 

the column, and hence, one spiral hoop and the bottom end of the connectors were visible 
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(Fig. 3.7(b)). Damaged concrete was noted around the top portion of the debonded dowel 

bars in the footing. The crack, which had developed at the column-to-footing interface 

during the previous drift ratios, became a 3/32-in. (2.4 mm) permanent gap at the end of 

the test for specimen GGSS-3.  

 

Cast-in-place Specimen CIP 

Two hairline flexural cracks formed at two sections located 12 in. (305 mm) and 

32 in. (813 mm) above the column-to-footing interface, by the end of the 0.5% drift ratio. 

Spalling initiated at the column corners and a total of nine flexural cracks developed by 

the end of the 3% drift ratio. The major crack, which had developed at 4 in. (102 mm) 

above the column base, had a width of 0.06 in. (1.5 mm) at the end of the 3% drift ratio. 

Another major crack which had formed 12 in. (305 mm) above the column base during 

the previous drift ratio widened and measured 0.007 in. (0.2 mm) at the end of the 3% 

drift ratio. During the 5% drift ratio, inclined or flexure-shear type cracks developed on 

the north and south sides of the column. During the 7% drift ratio, the spalled region 

grew in such a way that the spiral became visible in part. The extreme west column bar 

fractured 1.5 in. (38 mm) above the column base, as a result of low cycle fatigue, slightly 

before the peak displacement during the second push of the 8% drift ratio while the 

extreme east bar was still undamaged but visible; this bar fractured 2 in. (51 mm) above 

the column base, during the first cycle of the 9% drift ratio, after which the test was 

terminated. Figs. 3.7(a) and (b) show the damage state of specimen CIP after the 3% and 

9% drift ratios, respectively.  

The footing and joint region remained intact with only two minor cracks developing in 
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the joint region during the 2% drift ratio for all specimens.  

 

Displacement Ductility 

In seismic design of structures, displacement ductility capacity is the ability of a 

structural component to perform beyond the yield point without excessive strength 

deterioration. This parameter was computed for each specimen based on the concept of 

equal energy of an idealized elasto-plastic system.26 The average cyclic envelope curve 

was first constructed using the peak values of the first cycle for each drift ratio; the 

idealized elasto-plastic curve was then generated in order to calculate the displacement 

ductility. To obtain the effective yield displacement of the system, it was assumed that 

the idealized elasto-plastic curve intersects the average cyclic envelope curve at a force 

equal to 70% of the effective yield force; ACI Committee 374 states that the point of 

intersection shall be between 65% and 75% of the effective yield force.25 This method 

was selected in place of the method prescribed in bridge design codes in which the 

idealized curve shall intersect the actual envelope at first yielding of reinforcing bars.23, 24 

This was done mainly because strain gauges were not installed close to the critical 

sections of GGSS-1 and GGSS-3, due to accessibility constraints. The ultimate 

displacement (∆u) was taken as the displacement corresponding to a 20% drop in lateral 

load capacity.27 Displacement ductility was subsequently obtained as the ratio of ultimate 

displacement (∆u) to effective yield displacement (∆y) of the system. The displacement 

ductility capacity of specimen CIP was 8.9, compared to displacement ductility values of 

5.4, 6.1, and 6.8 achieved by GGSS-1, GGSS-2, and GGSS-3, respectively, as presented 

in Table 3.4 which includes the properties of the idealized elasto-plastic curves.  
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Fig. 3.8 shows the average cyclic envelope for all specimens, constructed by 

using average peak values of the push and pull cycles. The last point on each curve 

corresponds to a 20% strength reduction, which is the ultimate point considered for 

displacement ductility calculations. The average cyclic envelope revealed a noticeable 

distinction between precast and CIP specimens. The CIP specimen failed by rebar 

fracture of the column longitudinal bars, due to low cycle fatigue. Premature rebar 

fracture was observed for all precast specimens that resulted in a reduced ultimate 

displacement capacity of precast subassemblies; this was attributed to higher strain levels 

concentrated at the end of the GGSS located at the column-to-footing interface. 

The overall force-displacement performance of all test specimens is similar up to 

the 1% drift ratio. Specimens GGSS-1 and GGSS-3 had the greatest strength capacity; 

this was attributed to a higher axial load that was unintentionally applied to precast 

specimen GGSS-1, and a relatively larger test-day concrete compressive strength of 

GGSS-3. The axial load for GGSS-1 was 16% larger than that of GGSS-3.  

 

Energy Dissipation  

The ability to dissipate energy during seismic events is considered a key feature 

of ductile bridge components in high seismic regions and an indication of the hysteretic 

response quality. The presence of mild steel in the plastic hinge region capable of 

undergoing inelastic behavior is important for achieving an acceptable amount of energy 

dissipation. The hysteretic energy was computed for each specimen to obtain the energy 

dissipation capacity. Fig. 3.9(a) shows the cumulative hysteretic energy dissipation of the 

test alternatives. As observed, the rate of this quantity increases with an increase in the 
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drift ratio up to failure, for all specimens. Fig. 3.9(a) shows that the four specimens had a 

similar hysteretic energy dissipation capacity up to a 3% drift ratio, after which the CIP 

and GGSS-3 specimens had a slightly better performance due to debonding effects.  

Equivalent viscous damping is another quantity used to evaluate the relative 

energy dissipation capacity of systems under cyclic load. The equivalent viscous damping 

offers more information about the hysteretic response of the system since both the 

hysteretic and strain energy are included. The equivalent viscous damping ratio (ξeq) was 

obtained as the ratio of hysteretic energy to energy of the equivalent viscous system as 

defined in Equation (3.1) 28: 

𝜉𝜉𝑒𝑒𝑒𝑒 =  
𝐸𝐸𝐷𝐷

4𝜋𝜋𝐸𝐸𝑆𝑆0
 

where ED and ES0 are the area inside the hysteresis loop and the strain energy, 

respectively. 

Fig. 3.9(b) presents the average ξeq of both cycles for each drift ratio. In the 

inelastic region of the response, which begins after completion of the 1% drift ratio, ξeq 

for all specimens increases with drift ratio. At the 8% drift ratio, specimen CIP had a ξeq 

of 31% which indicates that this reinforced concrete component had good seismic 

detailing. It is evident that GGSS-2 and CIP had greater ξeq values than GGSS-1 and 

GGSS-3, during all drift ratios. For instance, ξeq at 6% drift ratio was 26% and 24% for 

GGSS-2 and CIP, respectively, compared to 17% and 20% for GGSS-1 and GGSS-3, 

respectively. A relatively superior energy dissipation capability is achieved when the 

GGSS connector is in the footing, rather than the column base. GGSS-3 had a better 

overall performance when compared to GGSS-1 indicating that the debonded reinforcing 

bar zone was an effective modification.  

(3.1) 
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Column Base Curvature and Dowel Bar Strain 

LVDTs installed on both extreme sides of the column base were used to study 

curvature distribution and capacity. Four curvature segments were specified by using four 

LVDTs on the east and west sides of the column. The average curvature (φ) was 

computed as:  

𝜑𝜑 =  
𝐴𝐴 − 𝐵𝐵
𝑤𝑤ℎ

 

where A and B are west and east LVDT measurements, respectively; w and h are the 

width and height of the curvature segment, respectively. Constructed over a 30-in. (762 

mm) column height above the column base, the average curvature values were 

normalized by multiplying them by the column dimension of 21 in.(533 mm), and the 

curvature segment heights were divided by the column overall height of 96 in. (2338 

mm), as shown in Fig. 3.10. Positive curvature values were associated with the push 

direction and negative values with the pull. The calculated curvature value was assumed 

to be an average over the whole segment height. Curvature values are included up to a 

6% drift ratio after which the instrumentation had to be removed due to limited stroke. 

The top of GGSS connectors is identified by a dashed line for specimens GGSS-1 and 

GGSS-3. The curvature profile of GGSS-1 and GGSS-3, with the connectors in the 

column, implies that the curvature distribution was minimal over the connector length 

and inelastic response was redirected to the column-to-footing interface and the section 

above the connector. This indicates that sections with GGSS connectors were less ductile 

compared to sections without them, due to the size and stiffness of the connectors. A 

well-distributed curvature profile was achieved for GGSS-2 with the connectors cast in 

the footing; this curvature response was in a good agreement with that of specimen CIP 

(3.2) 
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as no disruption was introduced to the plastic hinge zone of the column.  

Data from strain gauges, located on the extreme two reinforcing bars, were used 

to study the yield pattern in the column plastic hinge zone and joint regions. For GGSS-1 

and GGSS-3, extreme bars yielded within the covered area with a depth of 7 ½ in. (190 

mm) into the footing, and 22 in. (559 mm) above the column base, except for the initial 

5-in. (127 mm) portion of both the factory and field dowels embedded and confined 

inside the connector. For GGSS-2, the covered area was 16 in. (406 mm) into the footing 

and 20 in. (508 mm) above the column base, within which the factory dowels did not 

yield, while the field dowels yielded starting 2 in. (51 mm) inside the footing and 

throughout the 20-in. (508 mm) height in the column base. Strain gauges located on 

extreme reinforcing bars of specimen CIP showed that bars yielded up to 34 in. (864 mm) 

above the column base and 9 ½ in. (241 mm) into the footing.  

 

Bond-Slip Rotation and Column Displacement Components 

The end rotation of each column was obtained using the four bottom LVDTs 

located adjacent to the interface of the column and the footing. The end rotation is 

commonly referred to as the bond-slip rotation since it is caused by the localized slippage 

of the dowel bars passing through the interface. Fig. 3.11(a) shows the average of the 

peak bond-slip rotations at each drift ratio for all specimens. CIP had the smallest rotation 

at every drift ratio beyond the yield drift which indicates that the performance of CIP was 

dominated by flexure. On the other hand, GGSS-3 had the largest rotations implying that 

debonding of the dowel bars resulted in considerably more localized rotations at the 

interface. The bond-slip rotation was found to be 0.0267 rad, 0.0169 rad, 0.0282 rad, and 



99 
 

 

0.0114 rad for GGSS-1, GGSS-2, GGSS-3, and CIP, respectively, at 4% drift ratio, 

suggesting that the bond-slip rotation of the precast subassemblies was 2.3, 1.5, and 2.5 

times that of CIP for GGSS-1, GGSS-2, and GGSS-3, respectively.  

The horizontal displacement of a cantilever column (∆𝑐𝑐) is made up of three main 

components, as shown in Eq. (3.3): 

                                                           ∆𝑐𝑐= ∆𝑓𝑓𝑓𝑓 + ∆𝑏𝑏𝑏𝑏 + ∆𝑣𝑣                                            (3.3) 

where, (∆𝑓𝑓𝑓𝑓) is the flexural component, (∆𝑏𝑏𝑏𝑏) is the bond-slip component, and (∆𝑣𝑣) is the 

shear component. For the slender columns investigated in this study with a shear span-to-

depth ratio of more than 5.0, shear contribution can be neglected. Lehman and Moehle 

(2000) showed that the bond-slip contribution can be as high as 50% and 30% of the 

overall column displacement capacity for monolithic columns with an aspect ratio equal 

to 4.0 and 8.0, respectively; this indicates the more slender the column is, the larger the 

flexural contribution.29 Another study mentioned that the bond-slip contribution can be up 

to 35% of the total displacement for monolithic columns.30 

Fig. 3.11(b) presents the average peak bond-slip displacement components for all 

specimens at each drift ratio. The largest bond-slip contribution for the monolithically 

built CIP was 42.8% of the overall column displacement which is comparable to the 

findings of the two aforementioned references. This quantity was found to be 73.2%, 

60.6%, and 83.0% for GGSS-1, GGSS-2, and GGSS-3, respectively, implying that the 

intentional debonding bar zone for GGSS-3 resulted in a larger bond-slip displacement 

component and consequently smaller flexural displacement component. This justifies the 

rocking behavior of GGSS-3 under the cyclic loads.  
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Conclusions 

Research was carried out to assess the overall performance of grouted splice 

sleeve connectors used to connect precast columns to precast footings. The experimental 

data provided both qualitative and quantitative measures to evaluate and study each 

specimen under quasi-static lateral cyclic loading. A summary of findings is offered: 

1. The cast-in-place control specimen (CIP) had a good hysteretic response with 

ductile failure (reinforcing bar fracture on opposite sides of the column). Well-

distributed flexural cracks formed along the column height of the specimen, and 

concrete cover spalled completely at the column base. The overall performance 

was dominated by flexural action and formation of a plastic hinge at the column 

base. The precast specimen with the connectors inside the footing (GGSS-2) had a 

damage state similar to the control specimen, because the connectors were located 

outside the column base. Hence, more flexural cracks formed along the column, 

and the spalled region was similar to specimen CIP in terms of height, width, and 

depth. Damage to the column base of precast specimens with the connectors in the 

column base (GGSS-1 and GGSS-3) was localized to the column-to-footing 

interface. This involved fewer flexural cracks along the column height compared 

to specimen CIP. The spalled region for GGSS-1 and GGSS-3 was also smaller 

than that of specimens CIP and GGSS-2.  

2. Rebar fracture occurred for all precast alternatives and specimen CIP, which 

indicated that the bond between reinforcing bars and high-strength grout was 

good, as observed from individual connector tests. Hence, a ductile performance 

was achieved for all specimens until bar fracture. Fracture of reinforcing bars in 
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all specimens was due to low cycle fatigue.  

3. Precast specimen GGSS-1 (connectors in column base) had a displacement 

ductility of 5.4. A more ductile response along with better hysteretic performance 

was achieved for precast specimen GGSS-2 with the connectors inside the footing 

which had a displacement ductility equal to 6.1. The eight bar diameter debonded 

rebar zone for the footing dowel bars implemented for specimen GGSS-3 

(connectors in column base) resulted in a displacement ductility of 6.8. The cast-

in-place control specimen had a displacement ductility of 8.9 with hysteresis 

loops that were wide and stable, implying good energy dissipation and hysteretic 

performance. The displacement ductility obtained for all test alternatives 

exceeded the minimum component displacement ductility of 3.0 specified in the 

Caltrans SDC. In addition, the displacement ductility values were greater than the 

maximum displacement ductility demand of 5.0 which was specified in the 

AASHTO Guide Specifications for single-column bridge bents. 

4. The distribution of inelasticity in the column base of specimen GGSS-2 

(connectors in the footing) was very similar to specimen CIP, as there was no 

disruption of the natural stress transfer in the column base. A different distribution 

of inelasticity was observed for specimens GGSS-1 and GGSS-3 (connectors in 

column). This was attributed to the presence of connectors in the column base in 

which the inelastic actions were shifted to locations at the bottom and top of the 

GGSS connectors. 

5. A comparison between the columns overall displacement components revealed 

that the response of the control specimen CIP was governed by flexure, whereas 
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the response of the precast specimens was governed by bond-slip. The bond-slip 

contribution to the column displacement was up to 73.2%, 60.6%, 83.0%, and 

42.8% of the total displacement capacity for GGSS-1, GGSS-2, GGSS-3, and 

CIP, respectively. 

6. Precast specimen GGSS-2 (connectors in the footing) had a better overall 

performance compared to GGSS-1 (connectors in column). The former was found 

to be more emulative of specimen CIP in terms of energy dissipation capacity, 

damage sequence, and extent of damage. 

7. All precast alternatives are expected to perform adequately in moderate-to-high 

seismic regions if the reduced displacement ductility is addressed accordingly; 

however, the precast specimen with debonded reinforcing bars in the footing is 

recommended because it achieved the highest displacement ductility among all 

precast specimens tested in this research. 
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Notation 

A = west linear variable differential transformers reading  

B = east linear variable differential transformers reading  

ED = hysteretic energy (area inside hysteresis loop)  

ES0 = strain energy  

fy = nominal yield strength of reinforcing bars  

h = height of curvature segment  

w = width of curvature segment  

Δbs = displacement component due to bond-slip  

Δc = total displacement of column 

Δfl  = displacement component due to flexure 

Δu = ultimate displacement  

Δv = displacement component due to shear 

Δy = effective yield displacement  

μ∆ = displacement ductility  

ξeq = equivalent viscous damping  

φ = average curvature 
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Table 3.1. Tension test results for connector test assemblies 

    
 

Connector test 

identifier 

Maximum load 

(kip) 

Maximum bar 

stress (ksi) 

Maximum bar stress 

normalized to fy 

Failure 

mode 

Connector test-1 81.2 102.8 1.71 Bar fracture 

Connector test-2 80.7 102.2 1.70 Bar fracture 

Connector test-3 80.1 101.4 1.69 Bar fracture 

Connector test-4 79.9 101.1 1.69 Bar fracture 

Connector test-5 80.0 101.3 1.69 Bar fracture 

Connector test-6 77.3 97.8 1.63 Bar fracture 

     
Note: fy = nominal yield strength of reinforcing bars. 1 kip = 4.448 kN; 1 ksi = 6.895 
MPa. 
 

Table 3.2. Test matrix 

Test ID Specimen Connector 

Location 

Description 

1 GGSS-1 Column base NA 

2 GGSS-2 Footing NA 

3 GGSS-3 Column base Debonded reinforcing bars inside footing 

4 CIP NA Control specimen 
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Table 3.3. Compressive strength of concrete and grout (ksi) 

Specimen 
Concrete Grout 

28-day Test day 28-day Test day 
GGSS-1 5.3 5.9 14.4 14.4 
GGSS-2 3.9 5.5 11.1 13.5 
GGSS-3 6.7 8.4 15.6 14.6 

CIP 5.2 6.7 NA NA 
 
Note: 1 ksi = 6.895 MPa. 
 

Table 3.4. Displacement ductility 

 

*Force values are set equal to 70% of effective yield force values. 
Note: 1 in. = 25.4 mm; 1 kip = 4.448 kN. 
 

 

  

Displacement (in.) Force (kip) Displacement (in.) Force (kip) Displacement (in.) Force (kip) 
GGSS-1 0.94 29.3 1.34 41.8 7.32 41.8 5.4
GGSS-2 0.74 22.8 1.05 32.6 6.42 32.6 6.1
GGSS-3 0.78 26.7 1.11 38.2 7.58 38.2 6.8
CIP 0.66 23.5 0.95 33.6 8.45 33.6 8.9

Specimen
First yield point (idealized)* Effective yield point Ultimate point

Displacement ductility
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Fig. 3.1. Grouted splice sleeve connector: (a) Details of connector with No. 8 (25M) bars; 
(b) Connectors in precast components. (Note: 1 in. = 25.4 mm). 
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Fig. 3.2. Failure of connector assembly due to reinforcing bar fracture: (a) Failure of 
connector assembly in testing apparatus; (b) Formation of grout cone. 
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Fig. 3.3. Details of specimens: (a) GGSS-1; (b) GGSS-2; (c) GGSS-3; and (d) CIP 
(Note: No. 4 = 13M; No. 8 = 25M; 1 in. = 25.4 mm). 
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Fig. 3.4. Schematic test setup (Note: 1 ft = 0.305 m; 1 kip = 4.448 kN). 

 

 

Fig. 3.5. Drift history. 
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Fig. 3.6. Hysteretic response. 

 

(a) Cracks and spalling at end of the 3% drift ratio. 

(b) End of experiment. 

Fig. 3.7. Visual observations and damage states. 
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Fig. 3.8. Average cyclic envelope. 
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Fig. 3.9. Energy dissipation capacity: (a) Cumulative hysteretic energy; (b) Equivalent 
viscous damping ratio. 
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Fig. 3.10. Column base curvature distribution (Average curvature values are multiplied 
by the column dimension [21 in.] for normalization). 
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Fig. 3.11. Effect of bond-slip on the performance: (a) Column end rotation; (b) Column 
displacement components (colored bars show bond-slip components, white bars show 

flexural components). 
 

(a) 

(b) 
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Abstract 

Reinforcing bar couplers are used in prefabricated bridge elements and bridge 

systems for accelerated bridge construction. Grouted splice sleeve connectors are used in 

bridge substructures because of the enhanced construction tolerances they offer. This 

paper presents a simplified acomputational model for seismic assessment of precast 

bridge columns connected to precast footings using grouted splice sleeve connectors. The 

proposed model was developed and validated using three half-scale bridge subassemblies 
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tested to failure. Cyclic quasi-static loading was applied to two precast specimens and 

one cast-in-place specimen. The connectors were located in the footing, for the first 

precast alternative, and in the column end for the second precast alternative along with 

debonding of reinforcing bars in the footing. Force-based beam-column elements with 

fiber sections were used to construct the model based on plastic hinge weighted 

integration; the model included low-cycle fatigue and bond-slip. The computational 

model was validated with the experiments through both local and global response 

comparisons. The results from the proposed computational model were found to be in a 

close agreement with the experiments.   

Keywords: Accelerated bridge construction; Connection; Cyclic load test; Grouted splice 

sleeve; Computational study; Precast concrete; Reinforcing bar coupler; Seismic. 

 

Introduction 

Recent advancements in bridge design and construction include innovative 

methodologies that bring about ease of construction and significant acceleration of 

project completion time. Prefabrication of bridge elements contributes to acceleration of 

construction and better quality control. Accelerated bridge construction (ABC) is an 

effective method for improving the bridge construction process in terms of speed, quality, 

safety, and reduction of environmental impacts. As part of ABC, precast concrete 

substructure components have been used in seismic regions in the US (Khaleghi et al. 

2012). A Grouted splice sleeve (GSS) connector is a type of reinforcing bar splicing 

device that is composed of a ductile iron sleeve and high-strength grout; two connecting 

bars are spliced that extend from the two ends of the connector. These connectors have 
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found applications because of the enhanced construction tolerances they offer. 

Connections between precast elements in bridge substructures could experience high 

levels of earthquake-induced deformations and stresses. When GSS connectors are used 

in precast concrete components concentrated damage accumulates in a limited and 

localized area.  

Experimental studies have been conducted on flexural precast columns to assess 

strength and deformability properties of bridge substructure subassemblies connected 

with GSS connectors. The experiments revealed that precast and corresponding cast-in-

place subassemblies have comparable strength capacity; however, the displacement 

capacity of precast subassemblies was found to be lower than that of the cast-in-place 

control specimens (Haber et al. 2014; Pantelides et al. 2014). Further research studies 

showed that the displacement capacity can be improved by implementing proper 

detailing, such as debonding of reinforcing bars outside the GSS connectors (Tazarv and 

Saiidi 2014; Pantelides et al. 2014). Haber et al. (2015) investigated the stress-strain 

behavior of GSS connector subassemblies with reference to the stress-strain behavior of 

spliced bars, under monotonic tensile loads; it was found that strain capacity of the GSS 

connector was 35% of the strain capacity of the spliced bars; this was attributed to the 

presence of the splicing device.  

Analytical models are needed for a more thorough and holistic investigation of the 

overall aspects of cyclic performance of precast concrete substructures with GSS 

connectors. Analytical models have been developed for precast bridge piers with GSS 

connectors (Tazarv and Saiidi 2014; Haber et al. 2015); these analytical models were 

successful in reproducing the corresponding experimental results. 
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As part of a comprehensive research program, three half-scale column-to-footing 

concrete specimens were tested under a quasi-static cyclic displacement history 

(Pantelides et al. 2014). Two precast specimens incorporated one type of GSS connector 

where the bars were grouted at both ends of the connector; the third specimen was built 

monolithically as the control. This paper highlights the experimental results and the 

research conducted to develop a computational model for the tested subassemblies.  

 

Experimental Study 

Quasi-static cyclic tests were conducted on three half-scale concrete specimens, 

two of which were constructed using precast components joined by means of GSS 

connectors, as shown in Fig. 4.1. The connectors were incorporated in the footing of 

specimen Precast-1, with dowel bars protruding from the column end. The second precast 

specimen, Precast-2, was composed of a precast column and precast footing connected by 

GSS connectors cast at the column base; dowel reinforcing bars protruded from the 

footing which were debonded from the concrete over a 203-mm (8.0-in.) region just 

below the footing surface. Control specimen CIP was constructed monolithically without 

any GSS connectors. Table 4.1 shows the test matrix and test configuration alternatives.  

 

Design and Fabrication of Half-scale Specimens 

The specimens were designed and detailed to simulate typical prototype bridges 

constructed in the State of Utah, according to the AASHTO LRFD Bridge Design 

Specifications (2012), and AASHTO Guide Specifications for LRFD Seismic Bridge 

Design (2011). A circular configuration of column longitudinal bars and an octagonal 
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column cross-section were implemented to facilitate precasting of the columns. The 

aforementioned design codes in addition to the Caltrans Seismic Design Criteria (2010) 

prohibit splicing of reinforcement, including mechanical anchorage devices, in the plastic 

hinge region of ductile members, for bridges located in moderate-to-high seismic areas. 

In the AASHTO Guide Specifications, this would apply to Seismic Design Categories C 

and D. Thus, the initial design and detailing was developed for an assembly without any 

GSS connectors, i.e., the cast-in-place control specimen. The design was then adjusted to 

accommodate GSS connectors within the precast subassemblies and necessary 

modifications were considered accordingly (Pantelides et al. 2014).  

The specimens were half-scale models of common prototype highway bridges, 

specifically the Riverdale Road Bridge over I-84 in Utah. Fig. 4.2 shows the details and 

configuration of the three specimens. The column height was 2.59 m (8 ft 6 in.) with a 

533-mm (21-in.) octagonal cross-section to facilitate casting. The top 457-mm (18-in.) 

length of the column was changed from an octagon to a 533-mm (21-in.) square for ease 

of testing. Six 25M (No. 8) bars in a circular arrangement and a 13M (No. 4) spiral with a 

pitch of 64 mm (2½ in.) made up the column reinforcement. The longitudinal and 

volumetric transverse reinforcement ratios were 1.3% and 1.9%, respectively. The 

footing was designed as a 1.83-m long x 0.91-m wide x 0.61-m deep (6 x 3 x 2 ft) precast 

concrete element and consisted of 25M (No. 8) longitudinal bars enclosed by 13M (No. 

4) double hoops. The footing was designed to remain elastic and not undergo plastic 

deformations. The design inhibits shear failure from occurring in the column by using a 

shear span-to-depth ratio of more than 5.0 (corresponding to slender columns) along with 

closely spaced shear reinforcement. The desirable column failure mode was either 
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flexural or splice failure.  

The GSS connectors were embedded in the footing of specimen Precast-1, with 

dowel bars projecting 178 mm (7 in.) from the precast column. A pregrout operation was 

conducted for this specimen using proprietary high-strength grout. To carry out a 

pregrout operation, both inlet and outlet ports of the six connectors were sealed during 

construction of the footing reinforcing bar cage. During erection of specimen Precast-1 

and before lowering and positioning the precast concrete column, grout was pumped into 

the wide end opening of the embedded connectors. For precast concrete specimen 

Precast-2, the GSS connectors were located in the column plastic hinge region. A 

postgrout technique was implemented in which grout was pumped into the bottom port of 

the connectors and traveled up against gravity to fill the inside space of the connector. 

 

Test Setup and Instrumentation 

The lateral cyclic displacement and axial load were simultaneously applied to the 

column top using a servo-controlled actuator as shown in the test configuration of Fig. 

4.3(a). An axial load of 520 kN (117 kip), 414 kN (93 kip), and 605 kN (136 kip) was 

applied to CIP, Precast-1, and Precast-2, respectively. This corresponds to an axial load 

index (ALI) of 0.06 that was used to simulate vertical loads tributary to the columns of a 

multicolumn bridge bent. ALI is defined as the ratio of axial load divided by the product 

of nominal concrete compressive strength and column gross cross-sectional area. An 

actuator placed on top of the column applied a compression force to a steel spreader 

beam which was connected to two high strength threaded rods. The lateral drift history 

consisted of increasing amplitudes of the predicted column yield drift ratio; two cycles 
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were employed for each drift ratio step to the east and west (ACI Committee 374 2013). 

Fig. 4.3(b) shows the drift ratio history versus number of cycles. The drift ratio is defined 

as the lateral displacement of the column top, where the actuator applies the lateral 

displacement, divided by the distance from top of the footing to center of the lateral 

displacement application, which was 2.44 m (8 ft), as shown in Fig. 4.3(a). 

String potentiometers were used to measure the true displacement of the column 

top. Linear variable differential transformers (LVDT) were used to study the curvature 

distribution along the column end. LVDTs were mounted to the column end, over an 

approximately 762-mm (30-in.) region, to measure the relative vertical displacement 

between column cross-sections and provide data for curvature analysis. 

 

Summary of Test Results 

Test-day Material Properties 

Tension tests of reinforcing bars were conducted along with compression tests on 

concrete cylinders and grout cubes for each specimen. Reinforcement consisted of  25M 

(No. 8) ASTM A706 Grade 60 (ASTM 2009) steel bars with an average yield and 

ultimate strength of 469 MPa (68 ksi) and 641 MPa (93 ksi), respectively. Table 4.2 

shows the compressive strength of the concrete and high-strength grout on the test day of 

the specific test. 

 

Hysteretic Performance  

The response of the three specimens shows wide and stable hysteresis loops that 

indicate a relatively high energy dissipation capacity, as shown in Fig. 4.4. The damage 
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states mark three major events during the cyclic tests: end of flexural crack formation and 

initiation of cover spalling, yield penetration, and fracture of column longitudinal 

reinforcing bars. The extent of the damaged zone after termination of each test is also 

shown in Fig. 4.4.  

 Control specimen CIP had stable hysteresis loops with slight strength degradation 

caused by spalling of the relatively large unconfined concrete cover. To keep the 

sectional configuration of column reinforcing bars identical among all specimens, 

specimen CIP had the thickest cover so that the location of column longitudinal bars 

remained unchanged. Specimen CIP had the longest performance life. The extreme west 

column reinforcing bar fractured at the end of the second cycle of the 8% drift ratio, at a 

section 38 mm (1 ½ in.) above the column-to-footing interface. Subsequently, the 

extreme east column reinforcing bar fractured during the first cycle of the 9% drift ratio, 

51 mm (2 in.) above the interface due to low-cycle fatigue; the specimen achieved a 

displacement ductility of 8.9; this quantity was calculated using the average cyclic 

envelope of the force-displacement response based on the concept of equal energy of an 

idealized elasto-plastic system (Park 1989). Major cracks and spalling of concrete were 

observed in the plastic hinge region, in addition to the fractured column bar and exposed 

spiral, as shown in Fig. 4.4(a). 

Specimen Precast-1 had a stable performance up to the first cycle of the 7% drift 

ratio, during which the column east reinforcing bar fractured at a section 51 mm (2 in.) 

above the column-to-footing interface, due to low-cycle fatigue.  There was no sign of 

excessive in-cycle or cyclic strength deterioration before fracture of the east reinforcing 

bar. The test was terminated after completion of the 7% drift ratio as a result of a 35% 
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strength reduction. The displacement ductility of this specimen was found to be equal to 

6.1. A damage state similar to that of CIP was observed, with spalled concrete, flexural 

cracks, and exposed spiral, as shown in Fig. 4.4(b). 

The overall hysteretic response of specimen Precast-2 indicated an entirely 

satisfactory and ductile performance. The hysteresis loops were wide and stable with 

minimal strength deterioration up to the first cycle of the 8% drift ratio, when the extreme 

east column reinforcing bar fractured 13 mm (½ in.) below the column-to-footing 

interface due to low-cycle fatigue. Debonding of dowel bars inside the footing resulted in 

an extended performance life, compared to Precast-1. The displacement ductility of this 

specimen was 6.8 implying that a more ductile response was achieved because of the 

debonded reinforcing bar region inside the footing. Compared to the other specimens, 

Precast-2 had a less severe damaged area near the column-footing interface. Fewer 

flexural cracks and concrete spalling with a smaller depth can be seen for this test 

subassembly in Fig. 4.4(c). The extreme east GSS connector and spiral reinforcement 

were visible in part at the end of the experiment. More detailed discussion of the 

experimental results can be found in Pantelides et al. 2014. 

 

Computational Study 

The application of prefabricated bridge elements and systems (PBES) as part of 

ABC is becoming a method of choice in many States in the US. In regions of high 

seismicity, the connections between such prefabricated elements may be critical for the 

structural integrity of the bridge, especially if the GSS connectors are used at moment-

resisting joints. The results of the experiments discussed in the preceding sections, as 
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well as other experimental studies, suggest that there are significant performance 

differences between precast and conventional cast-in-place construction, under simulated 

seismic loads (Haber et al. 2014; Tazarv and Saiidi 2014; Pantelides et al. 2014). The 

performance differences include a distinct plastic hinging mechanism and a reduced 

displacement capacity for the precast subassemblies. Therefore, a reliable modeling 

strategy capable of predicting the seismic response of precast columns with GSS 

connectors is a valuable analysis and design tool for researchers and engineers. 

 

Analysis Objective 

The objective of the computational study was to develop a predictive modeling 

strategy for simulation of precast concrete bridge columns with GSS connections. 

Nonlinear analysis of reinforced concrete components is complex. To develop an 

efficient computational model, it is helpful if simplified yet accurate models are 

incorporated. The proposed computational model is composed of a beam-column (stick-

based) element with distributed plasticity. In the distributed plasticity models or fiber 

models, nonlinear material behavior can occur at any element cross-section. These cross-

sections are discretized into a finite number of fibers and pertinent uniaxial material 

stress-strain relationships are assigned to each type of fiber. Numerical integration is 

evaluated along the element to obtain the global response.  

 

Description of Proposed Computational Model 

The proposed computational model was developed using the force-based beam-

column element object in the OpenSees framework (McKenna et al. 2000; McKenna et 
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al. 2010). This includes incorporating a certain number of integration points, commonly 

between four and six, along the element; however, when dealing with strain-softening 

sections in structural members, the response of the element changes with a change in the 

number of integration points (Scott and Fenves 2006). This is because deformations are 

localized at one integration point only (located at the critical section along the beam-

column element) leading to a loss of objectivity. Therefore, the response varies as the 

integration weight of that single integration point changes when changing the total 

number of integration points used in the element. Sideris (2012) investigated the response 

properties of force-based beam-column elements containing strain-softening sections, 

under quasi-static loading condition; lack of solution uniqueness was found to occur 

when such softening materials were used in force-based beam-column elements. The 

results of a preliminary pushover analysis of specimen CIP using one force-based beam-

column element with four, five, or six Gauss-Lobatto integration points is presented in 

Fig. 4.5. As observed in this figure, the response is nonobjective as it varies considerably 

with the number of integration points. To address this issue, the plastic hinge integration 

scheme developed by Scott and Fenves (2006) was adopted in this study so that the 

proposed model could be used for a wide range of reinforced or precast concrete 

components. A modified version of this element found in the element library of 

OpenSees was used in this study. The modified element allows for spread of nonlinearity 

beyond the plastic hinge region unlike the original formulation that confines nonlinear 

behavior to the plastic hinge region, while the interior segment of the element remains 

linear elastic. One major advantage of using the force-based beam-column element with 

the plastic hinge integration scheme is that the user can specify a predefined plastic hinge 
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length using empirical equations available in the literature or based on direct observations 

from experiments.  

The proposed computational model was developed using an iterative procedure to 

obtain the unique plastic hinge length that would result in an acceptable response under 

quasi-static cyclic load. Two criteria were incorporated to achieve a high level of 

accuracy: (1) Global response validation, which refers to the overall response of the 

model. In particular, the hysteretic performance of the proposed model is compared with 

that of the corresponding specimen to verify if strength and stiffness are in good 

agreement. A quantitative measure for this acceptance criterion is to compare the peak 

lateral force of the models and experiments. (2) Local or sectional response validation of 

the performance, which is implemented using a moment-curvature approach. A 

secondary local response criterion is fracture of reinforcing bars due to low-cycle fatigue 

which was the cause of failure for all specimens in this study based on experimental 

observations. Low-cycle fatigue is included in the proposed model as an indication of the 

ultimate displacement capacity.  

The validation process is presented in the flowchart of Fig. 4.6. To initiate the 

process, sectional properties along with a trial value of plastic hinge length (Lp) were 

selected and the computational model was run. The iteration was continued until the 

difference between the response of the model and experiment was less than 12% for both 

the global and local response. Low-cycle fatigue was employed to determine the 

termination point in Fig. 4.6. This procedure is based upon transformation of the model 

for the precast specimens into an idealized equivalent cast-in-place model with a 

fictitious plastic hinge length capable of reproducing an acceptable global and local 
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performance.  

The application of GSS connectors for connecting precast columns to precast 

footings altered the load transfer mechanism in the subassemblies. This load transfer is 

highly based upon the bond between reinforcing bars and surrounding high-strength 

grout; this signifies the importance of bond-slip in the response of such subassemblies. 

The bond-slip characteristics of all specimens were included in the proposed modeling 

strategy. 

 

Bond-slip  

Bond-slip of reinforcing bars is an important phenomenon that may influence the 

response of reinforced/precast concrete components during extreme seismic events. This 

is particularly significant at the interface of bridge piers and footings, cap beams, or pile 

caps due to the large inelastic demand adjacent to the joint region. Past research studies 

have shown that bond-slip affects both the local and global response of reinforced 

concrete members (Zhao and Sritharan 2007) and needs to be considered in the detailed 

analysis of reinforced/precast concrete components.  

A nonlinear one-dimensional finite element model was used to investigate the 

bond-slip of reinforcing bars grouted inside the GSS connectors. This model was 

developed in OpenSees, based on the general schematic model described in past research 

studies (Viwathanatepa et al. 1979; Raynor et al. 2002; Steuck et al. 2009). The proposed 

model was composed of a series of discretized reinforcing bars (using nonlinear truss 

elements) connected to bond-slip springs (represented by zero-length elements) at each 

node. Both confined and unconfined regions were included in the model, as shown in Fig. 
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4.7(a), which presents the schematic of the bond-slip model. The unconfined region 

represents the grout cone that forms near the two ends of the GSS connector because of 

localized stresses around the unsupported ends; this would result in an inferior bond 

between the reinforcing bar and the surrounding grout. Acoustic emission (AE) 

monitoring was implemented in this research for a series of connector assembly 

experiments under monotonic tensile loads (Parks 2014). Fig. 4.7(b) shows a connector 

test assembly with AE sensors mounted near the factory and field ends (definition in Fig. 

4.1), along with the grout cones which formed at the two ends. The AE event rate data 

revealed that formation of the grout cone started at the beginning of bar strain hardening, 

and was completed at approximately 1.2 times the bar actual yield strength. Bond 

constitutive laws for the unconfined and confined regions of grout were taken from the 

experimental results of bars grouted in corrugated steel ducts, as this was the closest 

condition to GSS connectors (Steuck et al. 2009); such experimental data is not yet 

available for GSS connectors. Fig. 4.8 shows the result of a tensile test of a GSS 

connector specimen connecting two 25M (No. 8) bars from Haber et al. (2013), along 

with the result of the proposed model developed in this study. A discretization study 

revealed that 50 bond-slip springs for each dowel bar are sufficient to obtain adequate 

performance; Fig. 4.8 shows that the overall response of the proposed model and the 

tension experiment are in good agreement.  

For the case of reinforcing bars embedded in regular concrete, that is the CIP 

specimen, a similar model was created with different bond constitutive laws than the bar 

grouted in a GSS connector. The bond constitutive law for this model was taken from 

Eligehausen et al. (1983) for confined and unconfined concrete regions. Fig. 4.9 shows 
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the bond constitutive laws for confined and unconfined regions of the models for bars in 

the GSS connector assembly and bars embedded in regular concrete.  

The depth of the unconfined region of the GSS connector was taken as 11.3 mm 

(0.445 in.) at the field end and 3.8 mm (0.15 in.) at the factory end of the connector (field 

and factory dowels are shown in Fig. 4.1); this corresponds to a cone angle of 45˚ and 

was comparable to observations made during tests on connector assemblies (Parks 2014). 

The depth of the unconfined region for a bar embedded in regular concrete as in the CIP 

specimen was assumed to be five times the bar diameter (Eligehausen et al. 1983), that is 

127 mm (5.0 in.) for a 25M (No. 8) reinforcing bar. 

To implement the results of the proposed one-dimensional bond-slip idealization 

in the computational model of the half-scale column specimens, a pseudo stress-strain 

relationship is derived for the reinforcing bar in the plastic hinge region, using the output 

results of the one-dimensional bond-slip idealization. The pseudo stress is defined as the 

output force in the outermost bar element divided by the reinforcing bar area, and the 

pseudo strain is defined as: 

   𝜀𝜀 = 𝑢𝑢
𝐿𝐿𝑝𝑝

         (4.1) 

where, u is the total end displacement of the bond-slip model that represents the 

displacement at the column-footing interface as shown in Fig. 4.10(a); Lp is the plastic 

hinge length of the half-scale computational model. However, for specimen CIP, u refers 

to the end displacement of the reinforcing bar embedded in conventional concrete. The 

fictitious elastic modulus of the resulting pseudo reinforcing bar is smaller than the 

elastic modulus of the original reinforcing bar without bond-slip. Fig. 4.10(b) shows a 

schematic stress-strain relationship for the pseudo and original reinforcing bars which 
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will be assigned to column longitudinal bars inside and outside the plastic hinge, 

respectively.  

 The precast subassemblies represent a bond-slip condition that is relatively 

concentrated at the column-footing interface where the GSS connectors are located. 

Therefore, the one-dimensional idealization was composed of reinforcing bars grouted 

inside the connector to obtain the pseudo stress-strain relationship for reinforcing bars 

within the plastic hinge zone of specimen Precast-1. For specimen Precast-2, the 203-mm 

(8-in.) debonded bar segment was also included in the one-dimensional idealization. The 

pseudo stress-strain relationship of specimen CIP was obtained using two separate parts 

representing a reinforcing bar embedded in the footing and column as described in 

D’Amoto et al. (2012) for a cast-in-place assembly. Consequently, the outcome of both 

parts was combined by adding strain values with an equal stress as observed for two 

systems in series. The resulting fictitious elastic modulus was found to be 119.2 GPa 

(17,291 ksi), 95.3 GPa (13,821 ksi), and 145.6 GPa (21,111 ksi) for Precast-1, Precast-2 

and CIP specimens, respectively, implying that bond-slip was more pronounced for 

precast subassemblies compared to the CIP specimen; debonding of the footing bars for 

Precast-2 resulted in a lower fictitious elastic modulus. The resulting fictitious elastic 

modulus was employed for the reinforcement in the plastic hinge region of the half-scale 

specimen models. A conventional elastic modulus equal to 200 GPa (29,000 ksi) was 

used for the reinforcement outside the plastic hinge area. 
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Low-cycle Fatigue 

From the experimental results, two extreme column bars of specimen CIP 

fractured due to low-cycle fatigue as a result of successive bending and restraightening. A 

premature reinforcing bar fracture occurred for Precast-1, while debonding of bars in the 

footing of Precast-2 resulted in a delayed fracture. To account for low-cycle fatigue in the 

proposed model, the ReinforcingSteel material in OpenSees was assigned to reinforcing 

bars. This material is capable of predicting low-cycle fatigue life of reinforcing bars, by 

using the Coffin-Manson (Manson 1965) expression along with a cumulative linear 

damage rule, as shown in Eq. (4.2) and Eq. (4.3), respectively (Kunnath et al. 2009).  

𝜀𝜀𝑝𝑝 = 𝐶𝐶𝑓𝑓(2𝑁𝑁𝑓𝑓)−𝛼𝛼                                         (4.2) 

𝐷𝐷𝑓𝑓 = 1
∑ (2𝑁𝑁𝑓𝑓)𝑖𝑖𝑛𝑛
𝑖𝑖=1

                                          (4.3) 

where, εp is plastic strain amplitude, Cf and α are material constants, and 2Nf is the 

number of half-cycles to failure. In this study, Cf and α values of 0.26 and 0.506 were 

used, respectively, based on the experimental investigation carried out by the 

ReinforcingSteel material developers (Mazzoni et al. 2007). 

 

Model Layout 

The proposed model consists of two nodes joined by one force-based beam-

column element with the plastic hinge integration scheme. The schematic layout of the 

proposed model is shown in Fig. 4.11 for the three specimens. The lateral cyclic 

displacement, Δ, and axial monotonic load, P, are applied to the top node, as shown. A 

unique plastic hinge length was obtained for each specimen following the iterative 

process described previously in Fig. 4.6. For the case of specimen CIP, a plastic hinge 
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length of 305 mm (12.0 in.) was found to be adequate. This value correlates well with 

empirical expressions such as those provided by Priestley and Park (1987), or 

alternatively by Panagiotakos and Fardis (2001) for cyclic loading when reinforcing bar 

pullout is not present. The proposed model estimated fictitious plastic hinge lengths equal 

to 203 mm (8.0 in.) and 254 mm (10.0 in.) for Precast-1 and Precast-2, respectively; thus 

the fictitious plastic hinge length obtained for Precast-1 and Precast-2 was 67% and 83% 

of the plastic hinge length obtained for CIP, respectively. In this modeling strategy, the 

performance life of the subassemblies depends on the low-cycle fatigue life of 

longitudinal steel bars. By reducing the plastic hinge length of precast subassemblies, the 

plastic strain amplitude was increased and as a result, the number of half-cycles to failure 

was decreased; hence, premature bar fracture which was observed in the tests was 

determined for the Precast-1 and Precast-2 computational models.  

The octagonal column was approximated by a circular section of equal cross-

sectional area, to simplify the sectional discretization process. There were 40 

circumferential and 20 radial subdivisions for the confined core concrete, and 40 

circumferential and 5 radial subdivisions for the unconfined cover concrete as shown in 

Fig. 4.11. Fig. 4.12 presents the uniaxial material properties used for the model of 

specimen Precast-2. Concrete04 material was used for both confined and unconfined 

concrete with appropriate stress-strain properties, as shown in Fig. 4.12(a). 

ReinforcingSteel was used to define the uniaxial pseudo stress-strain relationship of the 

reinforcing bars in the plastic hinge region, and the original uniaxial stress-strain 

relationship outside the plastic hinge region (Fig. 4.12(b)).  
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Analysis Results and Comparison  

Global Response 

The global response of the proposed computational model is investigated using 

the hysteretic performance of each model developed for the corresponding specimen, 

namely the lateral force-drift response and energy dissipation capacity. Fig. 4.13 shows 

the lateral force-drift response for the proposed model along with experimental results up 

to one drift ratio before termination of the experiments. This corresponds to the drift ratio 

prior to bar fracture for the precast subassemblies as bar fracture happened during the 

first cycle of the subsequent drift ratio. For specimen CIP, however, one reinforcing bar 

fractured at the peak of the second cycle during the 8% drift ratio and another bar 

fractured during the first cycle of the 9% drift ratio; hence, the global response is 

presented up to the end of the 8% drift ratio. The proposed model correctly identified the 

cycle and drift ratio within which bar fracture occurred. For specimen CIP, the model 

identified the first cycle of the 9% drift ratio for bar fracture, and the first cycle of the 7% 

and 8% drift ratio for Precast-1 and Precast-2, respectively. The overall lateral force-drift 

results from the proposed model are in close agreement with the experiments, and the 

strength and stiffness parameters are satisfactory. The absolute difference between the 

peak lateral force of the experiment and the model was 6%, 1%, and 5% for CIP, Precast-

1, and Precast-2, respectively. 

 Fig. 4.14 shows the hysteretic energy predicted by the proposed model in addition 

to that of the corresponding experiment, for each drift ratio. The hysteretic energy of the 

proposed model is slightly larger than the hysteretic energy from the experiments but 

within an acceptable range. There is only a 12.6%, 3.9%, 7.9% difference between the 
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experimental energy dissipation capacity and that of the computational model at 6% drift 

ratio, for CIP, Precast-1, and Precast-2, respectively. This difference may be attributed to 

inaccuracy of the proposed modeling strategy in simulating the reloading stiffness 

degradation.  

 

Local Response 

To investigate the accuracy of the proposed model for local response, curvature 

was selected as the acceptance criterion. The lowermost pair of LVDTs extending from 

the top of the footing to an elevation of 152 mm (6 in.) above the column-footing 

interface was used to obtain the end curvature from the experiments. The end curvature 

includes both the column base curvature and the effect of column end rotation due to 

bond-slip. This was found to be the most consistent experimental quantity to be compared 

with the curvature values obtained from the lowermost section of the proposed model as 

it represents the strain demand on the reinforcing bars near the column-footing interface.  

The moment-end curvature envelope for the push direction of each specimen is 

presented in Fig. 4.15, up to the end of the 6% drift ratio, when LVDTs were removed 

from the specimens due to the limited stroke length. The end curvature values are 

normalized by multiplying the average curvature values by the column dimension of 533 

mm (21 in.) The corresponding computational results suggest that the proposed model is 

capable of replicating local as well as global response. At 6% drift ratio, there is an 

11.1%, 4.1%, and 10.8% difference between the peak curvature capacity obtained from 

the experiments and that of the proposed models for CIP, Precast-1, and Precast-2, 

respectively. The softening effect of the bond-slip which was incorporated by using a 
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pseudo stress-strain relationship in the plastic hinge region of the model, is included in 

Fig. 4.15 by presenting the moment-end curvature envelopes when bond-slip was not 

present in the analysis. The effective flexural stiffness (EIeff) of the response including 

bond-slip was reduced by 20.0%, 31.6%, and 40.3% for CIP, Precast-1, and Precast-2, 

respectively, indicating a closer performance compared to the pertinent experimental 

results. The bond-slip effects were more pronounced for the precast subassemblies, 

especially Precast-2 with the elongation due to debonded reinforcing bars. Fig. 4.15 also 

shows photos of the specimens when the column top was at peak displacement during the 

6% drift ratio corresponding to the curvature capacity of the critical sections for each 

specimen.  

 

Conclusions 

Experimental evaluation of column-to-footing tests conducted in this research 

provided qualitative and quantitative measures to evaluate precast and cast-in-place 

specimens under quasi-static cyclic loads. Key experimental findings and observations 

include the following: 

(1) The control specimen, CIP, had a good hysteretic response with ductile 

performance. Extreme column bars fractured during the 8% and 9% drift ratio for 

specimen CIP because of low-cycle fatigue.  

(2) Both precast concrete specimens had ductile performance comparable to the 

performance of specimen CIP, up to the failure point that was caused by premature 

reinforcing bar fracture because of strain concentration in the dowel bars near the 

column-footing interface.  
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(3) Specimen Precast-1, with grouted splice sleeve connectors inside the footing, 

had a stable performance up to a 7% drift ratio, when a reinforcing bar fractured. 

(4) Specimen Precast-2, with grouted splice sleeve connectors in the plastic hinge 

region of the column and debonded bars in the footing, had a longer performance life up 

to an 8% drift ratio, when a reinforcing bar fractured. 

A two-dimensional computational model was developed for seismic analysis of 

flexural bridge columns connected with grouted splice sleeve connectors. The modeling 

strategy is based on transformation of the model for the precast column with grouted 

splice sleeve connectors, to an idealized equivalent cast-in-place column with a fictitious 

plastic hinge length that is capable of simulating both the global and local response. A 

summary of findings for the computational study is offered: 

(1) A force-based beam-column element type with plastic hinge integration 

scheme was used in an iterative procedure to determine the unique fictitious plastic hinge 

length of the equivalent cast-in-place columns and reproduce the experimental results. 

The plastic hinge integration scheme was implemented to avoid nonobjective response, 

and simulate premature reinforcing bar fracture, which had occurred in the tests of the 

precast subassemblies.  

(2) The proposed model includes bond-slip of reinforcing bars in addition to low-

cycle fatigue, and was successful in replicating both the global and local response.  

(3) To account for bond-slip effects, a pseudo stress-strain relationship was 

obtained from the results of a one-dimensional model. The computed uniaxial pseudo 

stress-strain was subsequently incorporated into the column model over the plastic hinge 

region of each specimen and resulted in a closer agreement between the computational 
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model and the experiments.   

(4) Low-cycle fatigue fracture of the reinforcing bars was determined for each 

model by incorporating a reinforcement material capable of tracking the cumulative 

plastic strain for the reinforcing bars.   

(5) The plastic hinge length of the validated computational model for specimen 

CIP was in good agreement with available empirical relationships, while a fictitious 

plastic hinge length equal to 4/6 and 5/6 times the CIP specimen plastic hinge length was 

obtained for the idealized equivalent model of specimens Precast-1 and Precast-2, 

respectively.  

(6) The implementation of a plastic hinge modeling strategy offers a simplified 

approach to seismic design and analysis of flexural precast concrete columns with 

grouted splice sleeve connectors.  
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Notation 

The following symbols are used in this paper: 

2𝑁𝑁𝑓𝑓 = number of half-cycles to failure 

𝐶𝐶𝑓𝑓 = low-cycle fatigue material constant 

𝐷𝐷𝑓𝑓 = fatigue damage 

𝐸𝐸𝐸𝐸𝑒𝑒𝑓𝑓𝑓𝑓 = effective flexural stiffness 

𝑓𝑓′𝑐𝑐 = compressive strength of concrete 

𝑓𝑓′𝑔𝑔 = compressive strength of high-strength grout 

𝐿𝐿𝑝𝑝 = length of plastic hinge 

𝑁𝑁𝑝𝑝 = number of integration points 

P = axial monotonic load 

𝑢𝑢 = end displacement of one-dimensional connector model 

𝛼𝛼 = low-cycle fatigue material constant 

Δ = lateral cyclic displacement 

𝜀𝜀 = pseudo strain  

𝜀𝜀𝑝𝑝 = plastic strain amplitude 

𝜏𝜏 = bond stress 
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Table 4.1. Test matrix. 
    

No. Specimen Connector 
Location Details 

1 CIP -- Cast-in-place 
2 Precast-1 Footing Precast 

3 Precast-2 Column Precast with debonding of 
bars in footing 

 

Table 4.2. Test-day compressive strength of concrete and high-strength grout  

 

Specimen Concrete 
High-Strength 

Grout 
 (ksi) (MPa) (ksi) (MPa) 

CIP 6.7 46 NA NA 
Precast-1 5.5 38 13.5 93 
Precast-2 8.4 58 14.6 101 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

 

 

Fig. 4.1. Grouted splice sleeve (GSS) connector. 

 

 

Fig. 4.2. Details of specimens: (a) Subassembly dimensions, (b) CIP, (c) Precast-1, and 
(d) Precast-2. 
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Fig. 4.3. Experimental setup: (a) Test configuration, and (b) Drift ratio history. 
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Fig. 4.4. Hysteretic response and damaged zone of specimens: (a) CIP, (b) Precast-1, and 
(c) Precast-2. 

 
 

 

Fig. 4.5. Nonobjective pushover response (Np: number of integration points). 
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Fig. 4.6. Validation process. 
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Fig. 4.7. Nonlinear bond-slip idealization: (a) Schematic of proposed bond-slip model, 
and (b) Connector test assembly with AE sensors and grout cone formation. 

 
 

 

Fig. 4.8. Validation of proposed model for GSS connector in tension (experimental data 
from Haber et al. 2013). 
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Fig. 4.9. Bond constitutive laws used for bars embedded in GSS connectors and regular 
concrete. 
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Fig. 4.10. End displacement representation: (a) GSS connector end displacement, and (b) 
Schematic of pseudo stress-strain relationship. 
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Fig. 4.11. Schematic layout of proposed model: (a) CIP, (b) Precast-1, and (c) Precast-2. 
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Fig. 4.12. Uniaxial material properties for Precast-2: (a) Concrete, and (b) Reinforcing. 
Bar. 
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Fig. 4.13. Comparison of global response, in terms of hysteretic performance: (a) CIP, (b) 
Precast-1, (b) Precast-2. 

 
 

 

Fig. 4.14. Comparison of global response, in terms of energy dissipation: (a) CIP, (b) 
Precast-1, (b) Precast-2. 
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Fig. 4.15. Comparison of local response, in terms of moment-end curvature up to 6% drift 
ratio: (a) CIP, (b) Precast-1, (b) Precast-2. 

 



CHAPTER 5 

 

PARAMETRIC STUDY 

 

Introduction 

The proposed modeling strategy, which was validated in Chapter 4 using a series 

of half-scale experiments, may be applied to actual-size columns with similar 

configurations and under comparable loading conditions. This application requires a 

comprehensive study on the response sensitivity of the model to potential changes in 

pertinent modeling parameters. For a conventional medium-size bridge bent system with 

modern seismic detailing, the most important column parameters include longitudinal 

reinforcing bar ratio, column aspect ratio, axial load, and design displacement ductility. 

Therefore, a parametric study was developed by considering two different values 

associated with each of the aforementioned four parameters, using a 3-ft circular column 

reinforced with No. 9 longitudinal bars. Two levels of longitudinal reinforcing bar ratio 

were selected considering practical aspects of the design, that is, 1.38% and 1.96% 

corresponding to 14 No. 9 and 20 No. 9 bars, respectively. Two column aspect ratios 

equal to 4.0 and 5.0 were included indicating a column height of 12 ft and 15 ft, 

respectively. Two axial load levels were employed with an axial load index (ALI) equal 

to 5% and 10%; and lastly, design displacement ductility values equal to 7.0 and 11.0 

were considered to study different transverse reinforcement alternatives. 
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The parametric study was carried out for columns with details similar to CIP, i.e., 

monolithic construction with no grouted splice sleeve (GSS) connectors, and alternatively 

for columns with details similar to Precast-2 which had GSS connectors in the column 

and debonding of footing bars for a length of 8.0 times the bar the diameter.  

 

Design and Details of the Column Models 

Sixteen CIP column models in addition to sixteen Precast-2 column models were 

studied to investigate the response of the proposed modeling strategy to varying 

parameters. The columns were assumed to represent bridge piers from a single-column 

bent implying a cantilever configuration. Fig. 5.1 shows a schematic of the two 

alternatives. The footing is assumed to be a 7-ft long x 7-ft wide x 3-ft deep capacity 

protected member with adequate reinforcement to resist the load effects transferred from 

the column.  

 

Design Procedure 

Table 5.1 shows the 32 modeling cases considered for this study and highlights 

the major differences between each alternative. The alternatives were grouped in pairs 

with exactly identical details for the models representing CIP and Precast-2 type columns 

as discussed in Chapter 4. The transverse reinforcement which was composed of closed 

circular single or double hoops was designed for a required level of confinement. This is 

the critical variable for the design displacement ductility values equal to 7.0 and 11.0; 

shear reinforcement would not govern the design for such slender and ductile columns. 

A series of sectional analyses were carried out to determine the size and number 
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of hoops required to achieve a certain level of displacement ductility. Eq. (5.1) relates 

displacement ductility capacity (𝜇𝜇𝐷𝐷) of a cantilever column to curvature ductility (𝜇𝜇𝜑𝜑) of 

the corresponding section, length of the plastic hinge (𝐿𝐿𝑝𝑝), and height of the column (𝐻𝐻) 

(Priestley et al. 1996). 

                       𝜇𝜇𝐷𝐷 = 1 + 3(𝜇𝜇𝜑𝜑 − 1) 𝐿𝐿𝑝𝑝
𝐻𝐻

(1 − 0.5 𝐿𝐿𝑝𝑝
𝐻𝐻

)                             (5.1) 

By rearranging Eq. (5.1) we can define the curvature ductility as a function of the given 

displacement ductility, as shown in Eq. (5.2): 

                              𝜇𝜇𝜑𝜑 =
𝜇𝜇𝐷𝐷−1+3

𝐿𝐿𝑝𝑝
𝐻𝐻 (1−0.5

𝐿𝐿𝑝𝑝
𝐻𝐻 )

3
𝐿𝐿𝑝𝑝
𝐻𝐻 (1−0.5

𝐿𝐿𝑝𝑝
𝐻𝐻 )

                                               (5.2) 

According to AASHTO Guide Specifications (2011) and Caltrans Seismic Design 

Criteria (2010), the plastic hinge length is to be obtained from Priestley et al. (1996); 

however, it was noted in the previous chapter that the plastic hinge length relationship by 

Panagiotakos and Fardis (2001) has a better agreement with the experiments conducted in 

this research. The reason lies in the fact that actual displacement capacity of the tested 

CIP column was smaller than the predicted value using the plastic hinge length 

relationship of Priestley et al. (1996), because a different failure mode of low-cycle 

fatigue bar fracture occurred before the more typical hoop fracture (or core concrete 

crushing). From Panagiotakos and Fardis (2001), the plastic hinge length is given as: 

𝐿𝐿𝑝𝑝 = 0.12𝐻𝐻 + 0.095𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑏𝑏𝑓𝑓𝑦𝑦                                         (5.3) 

where, 𝑎𝑎𝑠𝑠𝑠𝑠 is equal to 0.0 if bar pullout is not present and is equal to 1.0 if pullout is 

present, 𝑑𝑑𝑏𝑏 is the diameter of the column longitudinal bar (in.), and 𝑓𝑓𝑦𝑦 is the bar yield 

strength in ksi. 

Parameter 𝑎𝑎𝑠𝑠𝑠𝑠  was assumed to be zero for validation of the modeling strategy in 
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the previous chapter as pullout of column bar with GGSS connectors was not present 

during the column-to-footing experiments; hence, it was assumed that 𝑎𝑎𝑠𝑠𝑠𝑠 was zero for 

the models used in this chapter as well, knowing that modern seismic design procedures 

would prevent anchorage issues and pullout failure. As a result, Eq. (2) can be simplified 

further and be presented as a function of the required displacement ductility capacity, as 

shown in Eq. (4). 

     𝜇𝜇𝜑𝜑 = 2.96𝜇𝜇𝐷𝐷 − 1.96                                                    (4) 

When the required curvature ductility is known, a moment-curvature analysis is carried 

out using a trial transverse reinforcement scheme. Subsequently, an idealized moment-

curvature curve is constructed to obtain the curvature ductility for the assumed column 

section. The idealized moment-curvature curve consists of: (1) an initial sloped line that 

intersects the actual curve at a point where the extreme reinforcing bar yields; (2) a 

horizontal line connecting the effective yield point and the ultimate point of the section. 

The ultimate point on the curve corresponds to onset of confined core crushing; the 

effective yield point is found by balancing the areas under the actual and idealized 

curves. 

If the obtained curvature ductility is equal to or larger than the required value the 

design is accepted, otherwise more trials are needed.  

 

Material Properties 

An expected concrete compressive strength (𝑓𝑓′𝑐𝑐𝑐𝑐) equal to 6.0 ksi was used for 

the unconfined concrete along with an ultimate unconfined strain (𝜀𝜀𝑐𝑐𝑐𝑐) of 0.005 in./in. 

The properties for confined concrete were found using Mander’s model (Mander et al. 
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1988) for each case. Concrete04 from the OpenSees material library was used for both 

unconfined concrete cover and confined concrete core.  

ReinforcingSteel from the OpenSees material library was assigned to the column 

reinforcing bars. Table 5.2 includes the stress properties for the Grade 60 ASTM A706 

No. 9 reinforcing bars used in this study. These properties conform to the AASHTO 

Guide Specifications (2011). 

 

Plastic Hinge Length for Models with Precast-2 Detailing 

Based on the findings of Chapter 4, the reduced displacement capacity of precast 

specimens was simulated by incorporating a reduced plastic hinge length. In the absence 

of empirical relationships for precast columns with GSS connectors the reduction factor 

previously found for specimen Precast-2 was applied to the precast alternatives for the 

parametric study, as shown in Eq. (5.5). 

𝐿𝐿𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺 = 𝛾𝛾𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝑃𝑃                                                  (5.5) 

where, 𝐿𝐿𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺 is the reduced plastic hinge length of a precast column with GSS 

connectors in the column end and debonding of footing dowels for a length 8.0 times the 

bar diameter, and 𝛾𝛾𝐺𝐺𝐺𝐺𝐺𝐺 is a reduction factor for columns with such details; this was found 

to be equal to 5/6 according to the results from the computational study in Chapter 4.  

 

Pseudo Stress-strain Relationship for Reinforcing Bars 

The one-dimensional bond-slip idealization developed in Chapter 4 was used to 

obtain the pseudo stress-strain relationship for reinforcing bars inside the plastic hinge 

region, and includes softening effects from bond-slip, as shown in Fig. 5.2. For this, the 
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end displacement of a No. 9 bar embedded in conventional concrete was obtained for 

each modeling alternative with a different column height, then divided by the 

corresponding plastic hinge length to find the pseudo strains.  

The bond-slip idealization for the models of precast columns was composed of a 

No. 9 factory dowel and a No. 9 field dowel grouted inside a No. 9 GSS, in addition to 

the debonded bar segment which was an extension of the field dowel, as shown in Fig. 

5.3. The grout strength was assumed as 14.6 ksi. Confined and unconfined bond 

constitutive laws were used as described in Chapter 4; the unconfined properties were 

employed over unconfined areas near the two openings, referred to as the cone depth. The 

cone depth was obtained assuming a cone angle of 45̊ which resulted in 0.441 in. and 

0.146 in. for the field and factory dowel, respectively. The total embedded length was 

taken as 7.88 in. and 7. 56 in. for the field and factory dowel, respectively. The resulting 

pseudo elastic modulus obtained for each model is presented in the following sections.  

 

Details of Model Alternatives 

Fig. 5.4 shows the moment-curvature plots for the final design of CIP columns 

including the idealized bilinear curves to obtain the curvature ductility capacity of the 

sections. The design details of the precast alternatives remained identical to the 

associated CIP to assess their performance comparatively. The final details for the 

column model alternatives that share the same height and number of main bars are 

presented in the same figure. Fig. 5.5 includes details for column models with a height 

equal to 12 ft and reinforced with 14 No. 9 longitudinal bars. The plastic hinge length for 

CIP and precast models was found to be 17.28 in. and 14.40 in. according to Eqs. (5.3) 
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and (5.5), respectively. The pseudo elastic modulus, which was obtained using the results 

of the bond-slip idealization, was found to be 24,159 ksi and 17,596 ksi for the CIP and 

precast models, respectively. The pseudo elastic moduli were used for the reinforcing 

bars in the plastic hinge region of the column models, whereas a nominal elastic modulus 

of 29,000 ksi was assigned to the reinforcing bars outside the plastic hinge region. 

Fig. 5.6 shows the details for the 15-ft high column models reinforced with 14 

No. 9 longitudinal bars. The plastic hinge length for these CIP and precast models was 

found to be 21.60 in. and 18.00 in., respectively. The pseudo elastic modulus for 

reinforcing bars inside the plastic hinge was found to be 27,483 ksi and 21,980 ksi, 

respectively.  

The details for the 12-ft high column models reinforced with 20 No. 9 

longitudinal bars are shown in Fig. 5.7. The plastic hinge lengths and therefore the 

pseudo elastic moduli are identical to the 12-ft high columns with 14 No. 9 bars.  

Fig. 5.8 shows the details for column models with a height equal to 15 ft and 

reinforced with 20 No. 9 longitudinal bars. The plastic hinge lengths and therefore the 

pseudo elastic moduli are identical to the 15-ft high columns with 14 No. 9 bars. 

Table 5.3 summarizes the design details for all column models including the required and 

provided curvature ductility capacity along with the provided transverse hoops. It is noted 

that double hoops were essential to achieve a target displacement ductility demand of 

11.0. The provided curvature ductility was slightly smaller than the required value for 

four column models as shown in Table 5.3; this slight difference was found to have 

insignificant effect on the response of the columns. The spacing of the closed hoops 

conformed to the AASHTO Guide Specifications (2011), which require the maximum 
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allowable spacing to be the smallest of: (a) 20% of the column diameter, i. e., 7.20 in., (b) 

six times the longitudinal bar diameter or 6.77 in., and (c) 6.00 in., which controls the 

spacing for the specific columns used in this chapter.   

 

Model Layout 

The layout for the cantilever column models is composed of two end nodes 

connected by a nonlinear beam-column element with a plastic hinge integration scheme. 

Fig. 5.9 shows the overall layout for the proposed model. The axial load was applied to 

the top node before the static cyclic displacement was applied using a similar 

displacement history to the experiments composed of two cycles per drift ratio with an 

increasing amplitude. The orientation of the model indicates that the analysis is carried 

out in the transverse direction of the bridge with columns in a single-curvature 

configuration. A shorter plastic hinge length was used for the precast model compared to 

the CIP model, as discussed in previous sections. The column sectional arrangements are 

shown in Fig. 5.9; the details are different for regions inside and outside the plastic hinge 

length. Fig. 5.10 shows cyclic envelopes for the uniaxial materials assigned to each fiber. 

Mander’s model (Mander et al. 1988) was used to obtain the properties for the confined 

core. Concrete04 material was used for both confined and unconfined concrete. 

ReinforcingSteel material was assigned to steel fibers inside and outside the plastic hinge 

region; however, as discussed, a pseudo stress-strain behavior was used inside the plastic 

hinge region to account for the softening effects of bond-slip. ReinforcingSteel with 

conventional steel properties (Table 5.2) was incorporated for the column longitudinal 

bars outside the plastic hinge region.   
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Analysis Results 

Analysis Termination Criteria and Mode of Failure 

The analysis termination criteria, which represent the failure point for each 

column model, were set to be either the crushing of the extreme core concrete fiber or 

fracture of column longitudinal bars as a result of low-cycle fatigue. In the case of low-

cycle fatigue, ultimate displacement was taken as the peak displacement of the cycle prior 

to low-cycle fatigue fracture of column bars. For example, considering column model 1 

and column model 2, Fig. 5.11 shows the hysteresis response of the two alternatives; bar 

fracture due to low-cycle fatigue is also identified for both models. Fig. 5.11(a) indicates 

that for column model 1, two column bars fractured during the first cycle of the 7% drift 

ratio while four column bars fractured during the second cycle of the 7% drift ratio. On 

the other hand, Fig. 5.11 (b) shows that two column bars fractured during the second 

cycle of the 6% drift ratio, for column model 2. This implies that the precast model had a 

premature bar fracture due to the simulated localized demand which was introduced by 

shortening the plastic hinge length; furthermore, the failure mode was found to be low-

cycle fatigue fracture of column bars, as the strain history for the core concrete suggests 

that crushing strain was not exceeded prior to bar fracture. Therefore, the ultimate drift 

was equal to 6% or 8.64 in. of displacement for both columns.  

Considering column models 5 and 6 with identical details to column models 1 and 

2 except a larger axial load equal to 610.7 kip (compared to the original value of 305.4 

kip), crushing of the core occurred before reinforcing bar fractured for column model 6. 

Fig. 5.12(a) shows that the core concrete crushed barely after the fracture of the east 

column reinforcing bar for column model 5. Hence the failure mode was bar fracture due 



165 
 

 

to low-cycle fatigue. Column model 6 failed due to crushing of the core concrete near the 

peak displacement of the first cycle during the 6% drift ratio. The ultimate displacement 

for column model 6 was found to be equal to 7.65 in., corresponding to 5.3% drift ratio, 

while it was 8.64 in. (or 6.0% drift ratio) for column model 5.  

 

Comparison of CIP and Precast-2 Alternatives 

The major difference between CIP and Precast-2 alternatives is the length of the 

plastic hinge. In fact, the integration weight associated with each integration point along 

the column will change by specifying a new plastic hinge length for the precast model. 

This will mainly affect the integration point at the column end which, for the particular 

case of a cantilever column, is the most effective integration point.  

A comparison of the model responses is provided in terms of both global and 

local response. The cyclic envelope of the hysteresis response is presented for models in 

respective groups along with the variation of strains in an extreme column longitudinal 

bar. The displacement ductility capacity (𝜇𝜇𝐶𝐶) is then obtained using a similar approach 

implemented to determine the curvature ductility. The failure mode for each column is 

discussed in addition to the peak compressive strain in the extreme fiber of the core 

concrete.  

 

Column Model 1 and 2 

The two columns were 12-ft high and were reinforced with 14 No. 9 main bars; 

under an axial load equal to 305.4 kip, the transverse reinforcement was composed of No. 

6 closed circular hoops spaced at 3 in. on center. Fig. 5.13 shows both the global and 
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local response. The global response represented by the cyclic envelope indicates that 

there was a minimal difference between the two alternatives; a slightly lower initial 

elastic slope was achieved for the precast model due to a more pronounced bond-slip. On 

the other hand, the strain variation in the extreme longitudinal bar implies that a larger 

demand was introduced to the column end of the precast alternative which resulted in a 

premature fracture of column bars. As discussed earlier in this section, column bar 

fracture occurred during the first and second cycle of the 7% drift ratio for CIP, whereas 

bar fracture occurred during the second cycle of the 6% drift ratio for Precast-2.  At the 

peak displacement during the 7% drift ratio, the compressive strain in the extreme fiber 

of the core concrete was 0.0171 in./in. and 0.0190 in./in. for CIP and Precast-2, 

respectively. Compared to the strain at onset of core crushing for these two models (core 

concrete ultimate strain), 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0190 in./in., it is observed that there was a margin of 

9.8% before the core crushed for CIP, while the core compressive strain was equal to the 

ultimate strain for Precast-2 implying that the compressive strains were 10.8% larger than 

that of the CIP.  

The failure mode of both column models was found to be bar fracture due to low-

cycle fatigue. Therefore, the ultimate displacement was associated with the peak 

displacement of the cycle prior to occurrence of bar fracture. This was found to be 8.64 

in. or 6% in terms of drift ratio. The displacement ductility capacity was equal to 6.82 

and 6.13 for CIP, and Precast-2, respectively. Fig. 5.14 shows the cyclic envelope along 

with the idealized curve constructed to obtain the displacement ductility values. Table 5.4 

includes the summary of performance for both column models.  
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Column Model 3 and 4 

The columns in this category were 12-ft high, reinforced with 14 No. 9 main bars, 

and 2 No. 6 closed hoops spaced at 3 in. on center to achieve a large displacement 

ductility of 11.0. An axial load equal to 305.4 kip was applied to the column top. Fig. 

5.15 shows the global and local response comparison between the two columns. Similar 

to column model 1 and 2, there was no major difference between the global responses, 

but the local response, represented by strain variations in an extreme column bar, was 

different; the precast model had a larger local demand which resulted in early fracture of 

the column bars for column model 4. The failure mode was found to be column bar 

fracture due to low-cycle fatigue for both columns, similar to column model 1 and 2 in 

terms of drift ratio and cycle number. At peak displacement during the 7% drift ratio, 

compressive strain in the extreme fiber of the core concrete was found to be 0.0153 in./in. 

and 0.0189 in./in. for CIP and Precast-2, respectively. Compared to the strain at onset of 

core crushing for these two models (core concrete ultimate strain), 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0280 in./in., 

it is observed that there was a margin of 45.4% (measured at 7% drift ratio) and 32.6% 

(measured at 6% drift ratio) before the core crushes for CIP and Precast-2, respectively. 

Comparing the peak strain values for the two columns, there was a 23.3% increase in 

compressive strain in the extreme fiber of the core concrete for the precast column.  

The displacement ductility capacity was equal to 7.11 and 6.09 for CIP, and 

Precast-2, respectively. Fig. 5.16 shows the cyclic envelope along with the idealized 

curve constructed to obtain the displacement ductility values. Table 5.5 includes the 

summary of performance for both column models. 
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Column Model 5 and 6 

Column models 5 and 6 were 12-ft high, reinforced with 14 No. 9 bars 

longitudinally, and a No. 6 closed hoop with a spacing equal to 2 ¾ in. on center. The 

axial load for these two columns was increased to 610.7 kip to investigate the axial load 

effects on the model. Fig. 5.17(a) shows that the precast column failed at a displacement 

of 7.65 in. unlike CIP which failed at an ultimate displacement equal to 8.64 in. Early 

failure of the precast alternative is attributed to crushing of the confined concrete core 

before column bars fractured due to low-cycle fatigue. This was caused by the increased 

axial load compared to the previous precast column models. On the other hand, the local 

response of the critical section, represented by the column bar strain variation shown in 

Fig. 5.17(b), indicates that the bar strain was larger for the precast column model. 

Considering the compressive strains in the extreme fiber of the concrete core at peak 

displacement of the column top during the 5% drift ratio, the strain value was 18.6% 

larger than that of the CIP—0.0189 in./in. versus 0.0159 in./in. for Precast-2 and CIP, 

respectively. 

Displacement ductility capacity equal to 7.27 and 5.62 was obtained using the 

standard procedure for CIP and Precast-2, respectively. Fig. 5.18 shows the cyclic 

envelope for the two column models in addition to the respective idealized curves to find 

the displacement ductility capacity. A summary of performance characteristics is 

provided in Table 5.6.  
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Column Model 7 and 8 

These columns were 12-ft high with 14 No. 9 longitudinal bars and 2 No. 7 closed 

hoops spaced at 3 ¼ in. on center. A 10% ALI equal to 610.7 kip axial load was applied 

to the columns. Fig. 5.19 shows the global and local responses obtained for the two 

columns. The global performance represented by the cyclic envelope was comparable 

while the local response differed considerably, as shown for the strain variation in the 

column bar. During the 7% drift ratio, the peak compressive strain in the extreme fiber of 

the concrete core was 0.0189 in./in. and 0.0235 in./in. for CIP and Precast-2, respectively, 

corresponding to a 24.3% increase in strains for the precast column.  Compared to the 

strain at onset of core crushing for these two models (core concrete ultimate strain), 

𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0318 in./in., it is observed that there was a margin of 40.5% (measured at 7% 

drift ratio) and 39.1% (measure at 6% drift ratio) before the core crushed for CIP and 

Precast-2, respectively. Fig. 5.20 presents the cyclic envelope and idealized curve for CIP 

and Precast-2. The displacement ductility capacity was found to be 7.28 and 6.27 for CIP 

and Precast-2, respectively. Table 5.7 includes the summary of performance for both 

column models. 

 

Column Model 9 and 10 

The height of column models 9 and 10 was 15 ft; they were reinforced with 14 

No. 9 longitudinally and No. 6 closed hoops spaced at 3 in. on center transversely. An 

axial load equal to 305.4 kip was applied to the column top node. Fig. 5.21(a) shows that 

global response of the columns was similar; on the other hand, the local response, shown 

in Fig. 5.21 (b), was found to be different, as anticipated from the performance trend 
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observed for previous cases. The compressive strain in the extreme fiber of the core 

concrete was 0.0151 in./in. and 0.0190 in./in. for CIP and Precast-2, respectively, at the 

peak displacement of the 8% drift ratio—a 25.5% increase in compressive strains for 

Precast-2 with GSS connectors. Compared to core concrete ultimate strain, 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0190 

in./in., it is observed that there was 20.3% (measured at an 8% drift ratio) remaining 

compressive strain capacity for CIP. At the peak of the 7% drift ratio for Precast-2 

(occurrence of bar fracture for this model), the remaining compressive strain capacity 

was 13.2%. 

The displacement ductility capacity was found to be 6.45 and 5.95 for CIP and 

Precast-2, respectively. Fig. 5.22 includes the cyclic envelopes used to obtain the 

displacement ductility capacity of the two column models. A summary of performance 

characteristics is presented in Table 5.8.  

 

Column Model 11 and 12 

Similar to the previous two columns, column models 11 and 12 were 15-ft high 

reinforced with 14 No.9 main bars. The axial load was also identical to column 9 and 10, 

equal to 305.4 kip. To achieve a target displacement ductility of 11.0, the transverse 

reinforcement consisted of 2 No. 6 closed hoops at 3 in. on center. Fig. 5.23 presents the 

global and sectional response of the two columns. A similar trend in the sectional 

response comparison was observed for these two columns, compared to the previous 

models, as a result of an increased sectional demand at the interface of the precast 

column. The compressive strain was 0.0140 in./in. for the extreme core fiber, implying a 

50.2% remaining compressive strain capacity for CIP at 8% drift ratio, when compared to 
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the ultimate compressive strain equal to 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0280 in./in. For Precast-2, the peak 

compressive strain was 0.0171 in./in. during the 8% drift ratio. This corresponds to 

22.7% increase in compressive strains evaluated at the same global displacement, 

compared to CIP. When bar fracture occurred for Precast-2, at peak of the 7% drift ratio, 

the compressive strain in the extreme core concrete fiber was equal to 0.0146 in./in. 

indicating a remaining compressive strain capacity of 47.8%.  

Table 5.9 includes a performance summary for column models 11 and 12. The 

displacement ductility capacity was found to be 6.47 and 5.90 for CIP and Precast-2, 

respectively. Fig. 5.24 shows the cyclic envelopes and respective idealized curves.  

 

Column Model 13 and 14 

These columns were 15-ft high, reinforced with 14 No. 9 longitudinal bars, and 

No. 6 closed hoops at 2 ¾ in. on center. An axial load equal to 610.7 kip was applied to 

the columns. Fig. 5.25(a) shows that the ultimate displacement of Precast-2 was smaller 

than that of CIP. This is attributed to crushing of the core concrete which occurred at a 

drift of 6.66% slightly before bar fracture due to low-cycle fatigue; hence, the failure 

mode of Precast-2 was crushing of the concrete core. CIP failed due to low-cycle fatigue 

bar fracture during the first cycle of the 8% drift ratio. Comparing the compressive strains 

during the 5% drift ratio, the compressive strain in the extreme core fiber was 0.0152 

in./in. and 0.0179 in./in. for CIP and Precast-2, respectively. This indicates a 17.5% 

increase for the precast column which can be seen in Fig. 5.25(b) for strains in the 

column bars.  

Table 5.10 contains the performance summary for column model 13s and 14. The 
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displacement ductility capacity was 6.75 and 5.86 for CIP and Precast-2, respectively. 

This was obtained using the cyclic envelopes along with the idealized curves presented in 

Fig. 5.26.  

 

Column Model 15 and 16 

The columns in this category had a height equal to 15 ft, and reinforcement 

composed of 14 No. 9 longitudinal and 2 No. 7 closed hoops spaced at 3 ¼ in. on center. 

An axial load of 610.7 kip was applied to the column corresponding to a 10% ALI. Fig. 

5.27 shows a comparable global response for the two columns which failed as a result of 

low-cycle fatigue bar fracture. The sectional response was found to be different due to 

larger strain demands in the bars for the precast column, although this did not change the 

ultimate displacement value compared to CIP, since low-cycle fatigue occurred during 

the second cycle of the last drift ratio. Compared to 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0318 in./in., there was a 

46.0% remaining compressive strain capacity at the peak displacement of the 8% ratio for 

CIP with a compressive strain equal to 0.0172 in./in.; for Preacst-2, a 43.8% margin was 

found at peak displacement of the 7% drift ratio during which column bars fractured.   

Fig. 5.28 shows the cyclic envelopes and idealized curves used to obtain the displacement 

ductility capacity for both columns. A displacement ductility capacity equal to 6.67 and 

6.12 was found for CIP and Precast-2, respectively. Table 5.11 includes a summary of 

performance characteristics for the two columns.  
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Column Model 17 and 18 

The columns in this category were 12-ft high, reinforced with 20 No. 14 

longitudinal bars, and No. 6 closed hoops at 2 ½ in. on center transverse reinforcement. 

An axial load equal to 305.4 kip was maintained on both columns throughout the 

simulation. Fig. 5.29 shows the envelope of the force-displacement relationship for both 

columns, in addition to the strain variation in one extreme column bar. Both columns 

failed due to bar fracture as a result of low-cycle fatigue. The compressive strain in the 

extreme fiber of concrete core of Precast-2 was 0.0187 in./in. at the peak displacement 

during the 6% drift ratio. The compressive strain in the extreme fiber of CIP was also 

0.0187 in./in. at the peak displacement of the 7% drift ratio. This implies that there was 

an 11.0% remaining compressive strain capacity at failure due to bar fracture, for both 

columns. At 7% drift, the compressive strain in the extreme fiber of Precast-2 was 0.021 

in./in. which indicates a 12.7% increase with respect to that of CIP.  

Fig. 5.30 shows the cyclic envelopes and the idealized curves constructed to 

obtain the displacement ductility capacity of column model 17 and 18, which was found 

to be 6.35 and 5.66, respectively. Table 5.12 includes a summary of performance 

characteristics for the two columns. 

 

Column Model 19 and 20 

 A column height of 12 ft and main bar arrangement composed of 20 No. 9 were 

incorporated for the columns in this category. Under an axial load equal to 305.4 kip, 

transverse reinforcement consisted of 2 No. 7 closed hoops at 3 in. on center to achieve a 

target displacement ductility of 11.0. However, column bars fractured due to low-cycle 
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fatigue before the provided level of confinement resulted in a large displacement 

capacity. Fig. 5.31 shows the global and local response of both columns. A slightly more 

softened force-displacement was achieved for Precast-2 as a result of more pronounced 

bond-slip at the interface. The local demand was considerably larger at the interface of 

Precast-2 by incorporating a shorter plastic hinge length, imposing a premature bar 

fracture one cycle prior to CIP bar fracture. Due to the high confinement level, there was 

a large remaining compressive strain capacity at bar fracture for both columns, that is, 

52.1% and 51.0% for CIP and Precast-2, respectively, when compared to 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0333 

in./in.. At 7% drift ratio, the compressive strain in the extreme fiber of the core concrete 

was 0.0159 in./in. and 0.0189 in./in. for CIP and Precast-2, respectively, indicating an 

18.9% increase for the precast alternative.  

The displacement ductility capacity of CIP and Precast-2 was found to be 6.37 

and 5.61, respectively, as presented in Fig. 5.32. Table 5.13 contains a performance 

summary for column model 19 and 20.  

 

Column Model 21 and 22 

No. 7 closed hoops at 3 in. on center were used for these two 12-ft columns which 

were reinforced with 20 No. 9 longitudinal bars. The axial load was increased to 610.7 

kip to study the effect of a larger axial load level. Fig. 5.33(a) shows that the cyclic 

envelopes were similar, whereas the sectional response, presented in Fig. 5.33(b), was 

different between the two alternatives; the precast column experienced a larger sectional 

demand as represented by the column bar strain variation. The ultimate compressive 

strain, 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0226 in./in., was exceeded after extreme column bars fractured for CIP, 
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hence the failure mode was bar fracture due to low-cycle fatigue. Precast-2 failed because 

of core concrete crushing which occurred slightly before fracture of extreme bars, at 

5.77% drift ratio, during the first cycle of the 6% drift ratio. Comparing the peak 

compressive strains at 5% drift ratio, the compressive strain was 0.0163 in./in. and 0.0195 

in./in. for CIP and Precast-2, respectively, indicating a 19.4% increase for the precast 

column.  

Table 5.14 includes a summary of performance characteristics for both columns. 

The displacement ductility was found to be 6.46 and 5.57 for CIP and Precast-2, 

respectively. Fig. 5.34 shows the cyclic envelopes along with the idealized curves which 

were used to obtain displacement ductility capacity.  

 

Column Model 23 and 24 

These two columns had a height equal to 12 ft, 20 No. 9 longitudinal bars, and 2 

No. 7 at 2 ¾ in. on center. The design objective for displacement ductility was 11.0; an 

axial load equal to 610.7 kip was applied to both column models. The global and local 

response are shown in Fig. 5.35 for both column models. An increased sectional demand 

for Precast-2 is observed in Fig. 5.35(b). Both columns failed because of bar fracture due 

to low-cycle fatigue. CIP had a peak compressive strain of 0.0202 in./in. during the 7% 

drift ratio, whereas Precast-2 had a peak compressive strain equal to 0.0228 in./in. This 

corresponds to a 13.0% increase in sectional demand for Precast-2. Compared to the 

𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0349 in./in., there was a 42.1% remaining compressive strain capacity for CIP. 

On the other hand, at bar fracture of Precast-2, which happened during the 6% drift ratio, 

Precast-2 had a 43.0% remaining compressive strain capacity.  
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Fig. 5.36 shows the cyclic envelopes in addition to the idealized curves 

constructed to obtain displacement ductility capacity. Table 5.15 includes the 

performance characteristics for both columns. The displacement ductility capacity was 

found to be 6.54 and 5.73 for CIP and Precast-2, respectively.  

 

Column Model 25 and 26 

Columns 25 and 26 were 15-ft high and reinforced with 20 No. 9 longitudinal 

bars, and No. 6 hoops at 2.5 in. spacing on center. An axial load equal to 305.4 kip was 

applied to the columns which were designed to achieve a displacement ductility of 7.0. 

The global and section responses are presented in Fig. 5.37 which shows a very similar 

global but different sectional performance. Both columns failed due to low-cycle fatigue 

bar fracture, during the 1st cycle of the 8% drift ratio and the 2nd cycle of the 7% drift 

ratio for CIP and Precast-2, respectively. The ultimate compressive strain capacity of the 

core concrete was 0.021 in./in. which was not exceeded before fracture of bars. CIP had a 

peak compressive strain of 0.0165 in./in. during the 8% drift ratio indicating a reserve 

compressive strain capacity equal to 21.5%. The remaining compressive strain capacity 

for Precast-2 was 18.8% during the 7% drift ratio when bar fracture occurred for this 

column. Precast-2 had a peak compressive strain of 0.0200 in./in. during the 8% drift 

ratio which implies a 21.1% increase in strain demand.  

The displacement ductility capacity was found to be equal to 6.00 and 5.62 for 

CIP and Precast-2, using the cyclic envelopes shown in Fig. 5.38. Table 5.16 contains a 

summary of key performance characteristics for both columns.  
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Column Model 27 and 28  

Columns 27 and 28 were 15-ft high under a 305.4-kip axial load, and reinforced 

with 20 No. 9 longitudinal bars and 2 No. 7 hoops at 3 in. spacing on center. The columns 

were detailed in such a way to achieve a displacement ductility capacity of 11.0.  Fig. 

5.39 shows the cyclic envelopes and column bar strain variation during the response. 

Both columns failed due to low-cycle fatigue bar fracture, during the first cycle of 8% 

drift ratio and second cycle of the 7% drift ratio, for CIP and Precast-2, respectively. CIP 

had a reserve compressive strain capacity of 56.7% while Precast-2 had a reserve 

compressive strain capacity equal to 55.3%, when bar fracture occurred. The peak 

compressive strain was 0.0144 in./in. and 0.0179 in./in. for CIP and Precast-2, 

respectively, during the 8% drift ratio, corresponding to a 23.9% increase in section 

strains. 

Table 5.17 includes a summary of response parameters for both columns. The 

displacement ductility capacity obtained using the cyclic envelopes and pertinent 

idealized curves of Fig. 5.40, was found to be 5.94 and 5.60 for CIP and Precast-2, 

respectively.   

 

Column Model 29 and 30 

These two columns were 15-ft high, reinforced with 20 No. 9 longitudinal bars, 

and No. 7 hoops at 3 in. spacing on center. An axial load equal to 610.7 kip was applied 

to both columns which were detailed to achieve a displacement ductility of 7.0. Fig. 5.41 

shows the global and sectional response of the columns. The force-drift envelopes were 

comparable but the column bar strain was larger for Precast-2. Both columns failed due 



178 
 

 

to low-cycle fatigue bar fracture, even though the compressive strain in the core concrete 

was very close to the ultimate strain 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0226 in./in., because of a relatively large 

axial load. At fracture of the column bars, there was only a 4.0% and 5.0% remaining 

compressive strain capacity for CIP and Precast-2, respectively. During the 6% drift ratio, 

the compressive strain of the extreme core concrete fiber was 0.0155 in./in. and 0.0182 

in./in. for CIP and Precast-2, respectively. This strain comparison was carried out during 

the 6% drift ratio because there was a convergence error for Precast-2 after bar fracture 

occurred during the 7% drift ratio.  

Fig. 5.42 shows the cyclic envelopes in addition to the idealized curves to obtain 

the displacement ductility capacity which was found to be 6.16 and 5.80 for CIP and 

Precast-2, respectively. Table 5.18 includes the key analysis results for both column 

models.  

 

Column Model 31 and 32 

The last two column models were similar to columns 29 and 30 with the 

exception of a design target displacement ductility which was increased to 11.0; 

therefore, 2 No. 7 hoops spaced at 2 ¾ in. were used uniformly along the 15-ft high 

columns which had 20 No. 9 longitudinal bars. Fig. 5.43(a) shows that both columns had 

a similar strength and displacement capacity while Fig. 5.43(b) indicates a difference in 

strain demands for the critical section. Both columns failed because of low-cycle fatigue 

bar fracture. Compared to 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.0349 in./in., there was a 47.2% and 47.7% reserve 

compressive strain capacity for CIP and Precast-2, respectively, when bar fracture 

occurred. During the 8% drift ratio, CIP and Precast-2 had a peak core concrete strain 
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equal to 0.0184 in./in. and 0.0207 in./in. (a 12.1% increase), respectively, implying that a 

more localized demand was present for the precast column.  

Table 5.19 includes the key response parameters for both columns such as 

displacement ductility capacity values which were obtained using Fig. 5.44. A 

displacement ductility capacity equal to 6.10 and 5.65 was found for CIP and Precast-2, 

respectively.  

 

Effect of Parameters on Response of Column Models 

This section includes a discussion on the influence of each parameter on the 

overall performance of the column models. The four aforementioned parameters were 

design displacement ductility, axial load on column, column height, and number of 

column longitudinal bars. Fig. 5.45 shows the cyclic envelopes for all CIP models 

reinforced with 14 No. 9 longitudinal bars. The overall response of the columns follows a 

logical trend which is expected to occur for reinforced concrete members under 

simultaneous lateral and axial loading. For instance, the strength capacity of the columns 

increased with an increase in axial load, whereas the strength decreased with an increase 

in column height. Similarly, columns with 20 No.9 longitudinal bars had an expected 

performance under varied parameters. Fig. 5.46 shows the cyclic envelopes for all eight 

CIP alternatives with 20 No. 9 longitudinal bars. It is important to note that the effects of 

parameter variation are only discussed using CIP columns for brevity. It was observed in 

the previous section that the precast alternatives had a similar global response to the 

corresponding CIP columns, while an increased sectional deformation was achieved 

representing a more localized demand. Nevertheless, for the precast columns, the 
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response trend was the same as in CIP alternatives under changing parameters.  

Table 5.20 includes the displacement ductility capacity values obtained for all 32 

column models. As discussed previously, all precast columns had a smaller displacement 

ductility capacity compared to their respective CIP columns. Also, it is noted that the 

obtained displacement ductility capacity values were always smaller than the required 

values except for the case of column model 7 which is very close to the required quantity. 

The difference between required and obtained values was more pronounced for the 

columns with a design displacement capacity equal to 11.0. The reason lies in the fact 

that the termination criterion used in the design displacement ductility procedure was 

based on the onset of core concrete crushing; analysis results showed that low-cycle 

fatigue bar fracture occurred prior to core concrete crushing for 29 column models out of 

the total 32 columns. It is noted that low-cycle fatigue bar fracture is highly sensitive to 

characteristics of the loading history and therefore the strain history for individual main 

column bars. The findings of this chapter apply to the specific loading history which was 

developed based on extensive research on reinforced concrete components (ACI 

Committee 374 2013).  

Precast column model 22 had the lowest displacement ductility capacity, 𝜇𝜇𝐶𝐶 =

5.57, among the columns under study. This was attributed to a relatively large axial load 

applied to this column which had a shorter analytical plastic hinge compared to its CIP 

alternative. As a result core concrete crushing occurred before bar fracture.  

The results suggest that there is an upper bound displacement ductility capacity 

due to low-cycle fatigue bar fracture which is likely to happen under the ground motions 

with many large-amplitude cycles. For instance, displacement ductility capacity of 11.0 is 
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not achievable for bridge columns with details similar to the columns studied herein. The 

following sections provide a more detailed discussion on the effect of each parameter on 

the response of the columns.  

 

Design Displacement Ductility  

Two different design displacement ductility values equal to 7.0 and 11.0 were 

studied. As discussed earlier in this chapter, the conventional design procedure outlined 

in bridge specifications takes into account core crushing, or hoop fracture, when 

obtaining the design displacement ductility. However, it was noted that for the specific 

column configurations considered herein, a different failure mode was achieved for all 

CIP columns, which is low-cycle fatigue bar fracture. Therefore, regardless of the design 

objective, most of the columns only performed up to a 7% and 8% drift ratio for the 12-ft 

and 15-ft high columns, respectively.  

Fig. 5.47(a) shows the cyclic envelopes of column models 1 and 3 with a design 

displacement ductility equal to 7.0 and 11.0, respectively. It is observed that both 

columns had a similar initial and postcracking stiffness. The postyield strength of column 

model 3 was slightly larger than that of column model 1 which is due to a stronger core 

concrete as a result of larger confinement. The ultimate displacement capacity was 

identical as both columns failed during the same cycle and drift ratio because of low-

cycle fatigue bar fracture.  

Fig. 5.47(b) shows the strain variation for an extreme column bar of both columns 

which indicates that the difference between the columns was insignificant. It was noted 

that tensile strains were slightly larger while compressive strains were slightly smaller for 
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column model 3. This is attributed to a stronger core concrete which resulted in a 

reduction of the depth of the section neutral axis.  

 

Axial Load 

Axial load values of 305.4 kip and 610.7 kip which corresponds to a 5% and 10% 

ALI, respectively, were employed to study the global and local response of the column 

models. In general, for columns with relatively low axial load such as bridge columns, 

the lateral force capacity increases with an increase in axial load as long as the sectional 

demand remains below the balanced point of the sectional capacity. This behavior is 

observed in Fig. 5.48(a) which shows the cyclic envelopes for column model 1 and 

column model 5 under 5% and 10% axial load, respectively. There was a 14.2% increase 

in the peak strength when axial load was increased from 305.4 kip to 610.7 kip. This 

resulted in a larger stiffness for column model 5. However, the displacement capacity is 

usually expected to decrease under larger axial loads as concrete crushing happens earlier 

in the response. This phenomenon was not observed for column model 5 because low-

cycle fatigue bar fracture occurred before crushing of concrete; Fig. 5.48(b) illustrates 

why low-cycle fatigue bar fracture for this particular column was rather insensitive to this 

level of change in axial load. It is noted that the increased axial load did affect the 

displacement capacity of three other column models. In particular, column models 6, 14, 

and 22, all of which were precast and under 10% axial load, failed due to core concrete 

crushing, thus achieving a reduced ultimate displacement.  

Fig. 5.48(b) shows the strain variation in extreme longitudinal bars of column 

models 1 and 5. Under larger axial load, there was an increase in compressive strains and 
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a decrease in tensile strains for column model 5, caused by a deeper neutral axis due to a 

higher axial load. Comparing the two curves, it appears that a strain shift occurred for 

column model 5 under a larger axial load implying that the strain range, which is the 

main parameter in determining the low-cycle fatigue life of a reinforcing bar, remained 

similar to the strain range for column model 1. This explains why column model 5 did 

not fail before column model 1. 

 

Column Height 

The simulated columns had two distinct heights of 12 ft and 15 ft corresponding 

to an aspect ratio equal to 4 and 5, respectively. It is known that an increase in the column 

height (with identical sectional configurations) would result in a reduction in lateral force 

capacity of the column as the moment arm becomes larger. This can be seen in Fig. 

5.49(a) which shows the cyclic envelopes for column model 1 and column model 9. 

Consequently, stiffness decreased resulting in a softer response for column model 9. 

However, the displacement capacity of column model 9 was found to be 45.8% larger 

than that of column model 1 which is attributed to delayed bar fracture because of a lower 

demand on the critical section. This is shown in Fig. 5.49(b) which compares the 

variation of strains for the extreme column bar of the two column models. It is noted that 

even though the displacement capacity of column model 9 increased because of a larger 

height, the displacement ductility capacity decreased from 6.82 to 6.45, as discussed in 

the previous section. The reduction is due to the fact that the yield displacement also 

increases with an increase in the column height, as shown Fig. 5.49(a).  
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Column Longitudinal Reinforcing Bars 

Two reinforcing bar ratios equal to 1.38% and 1.96%, which correspond to 14 No. 

9 and 20 No. 9 longitudinal bars, were considered. It is evident that a column reinforced 

with more longitudinal bars has a larger strength than an identical column reinforced with 

fewer bars. This is verified in Fig. 5.50(a) that shows the cyclic envelopes for column 

model 1 and column model 17; there was a 32.1% increase in the lateral force capacity 

when 20 No. 9 bars were used instead of 14 No. 9 bras. The postcracking stiffness also 

increased by incorporating more longitudinal bars, as anticipated. The ultimate 

displacement, however, remained the same since both columns failed due to low-cycle 

fatigue bar fracture and the strain range in column bars did not change significantly as 

shown in Fig. 5.50(b). The strain variation presented in Fig. 5.50(b) indicates a small 

reduction in tensile strains followed by a slight increase in compressive strains implying 

an insignificantly deeper neutral axis which did not change the bar fracture drift ratio and 

cycle. The displacement ductility capacity was reduced from 6.82 for column model 1 to 

6.35 for column model 17 because of a small increase in the effective yield displacement 

for column model 17.  

 

Effects of P-Δ 

P-Δ effects can cause loss of lateral resistance, ratchetting, and dynamic 

instability (Deierlein et al 2010). Hence they need to be included in nonlinear static or 

dynamic analyses of bridges in seismic zones, unless the effect of gravity load is found to 

be negligible. P-Δ was not included in the validation process of the modeling strategy due 

to the experimental setup preventing P-Δ effects, nor was it studied for the 32 column 
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models discussed herein so far. Chapter 6 will focus on a prototype bridge bent under 

static and dynamic loads, which will require P-Δ to be considered. Therefore, one CIP 

and one Precast-2 are examined, when a P-Δ transformation is activated in the 

computational model. 

 

P-Δ Effects on Half-Scale Column Experiments 

Fig. 5.51 shows the test setup that was used for the experiments reported in 

Chapter 3. It is observed that the axial load was transferred to the column using a 

follower force system. That is, it can be assumed that the direction of the axial load 

always followed the longitudinal axis of the column. A spherical plate which was 

mounted on top of the column along with a pinned rod connection at the bottom helped 

direct the axial load to follow the longitudinal axis of the column at every instant during 

the test. A schematic approximation of the load transfer mechanism and P-Δ effects is 

shown in Fig. 5.52. Assuming a rigid body rotation of the axial load transfer system, 

which consisted of two high-strength threaded rods in addition to a hydraulic actuator and 

the top and bottom pinned fixtures, the axial load is decomposed into a vertical and a 

horizontal load component. This results in clockwise (Mv) and counterclockwise (Mh) P-Δ 

moment components at the base of the column. The axial load components, bending 

moment components, and the rotation angle (θ) are defined as follows. 

                          𝑃𝑃𝑣𝑣 = 𝑃𝑃 cos 𝜃𝜃                                          (5.6) 

                                                              𝑃𝑃ℎ = 𝑃𝑃 sin𝜃𝜃                  (5.7) 

    𝑀𝑀𝑣𝑣 = 𝑃𝑃𝑣𝑣∆                  (5.8) 

 𝑀𝑀ℎ = 𝑃𝑃ℎ𝐻𝐻 cos 𝜃𝜃        (5.9) 
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  𝜃𝜃 = tan−1 ∆
𝐻𝐻

                                                   (5.10) 

where, Pv and Ph are the vertical and horizontal components of the axial load, Δ is the 

horizontal displacement at the column top, and H is the distance from the column base to 

the elevation of the lateral load.  

Assuming small angles as a result of small horizontal displacements, compared to 

the overall column height, an approximation using Taylor Series up to the 2nd order 

reveals that the P-Δ moments can be defined as shown in Eq. (11) and Eq. (12). 

     𝑀𝑀𝑣𝑣 = 𝑃𝑃∆(1 − ∆2

2𝐻𝐻2) ≈ 𝑃𝑃∆                            (5.11) 

   𝑀𝑀ℎ = 𝑃𝑃 ∆
𝐻𝐻
𝐻𝐻(1 − ∆2

2𝐻𝐻2) ≈ 𝑃𝑃∆     (5.12) 

Hence, the P-Δ moments are counterbalanced and consequently P-Δ effects were not 

included in the experimental data analysis, nor was it considered for the computational 

model validation process.  

 

P-Δ Effects on Column Model 29 and 30 

Column model 29 and 30 were 15-ft high, and reinforced with 20 No. 9 

longitudinal bars and No. 7 hoops at 3 in. spacing on center. An axial load equal to 610.7 

kip (10% ALI) was applied to these two columns, which were detailed to achieve a 

displacement ductility of 7.0. As anticipated, inclusion of P-Δ resulted in a different 

global response for both columns while the sectional response remained identical to the 

sectional response of the columns without P-Δ. The hardening postyield performance of 

both columns changed to a softening performance with a small negative slope as shown 

in Fig. 5.53(a) and Fig. 5.54(a) for CIP and Precast-2, respectively. The softening force-

displacement relationship resulted in a smaller effective yield displacement, and a larger 
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displacement ductility capacity, as presented in Fig. 5.53(b) and 5.54(b) for CIP and 

Precast-2, respectively. There was a 13.1% and 13.3% increase in the displacement 

ductility capacity of CIP and Precast-2, respectively, when P-Δ was present. Since this 

increase is only attributed to the softening response and is not a realistic property of the 

column, it is more prudent to obtain the displacement ductility capacity without P-Δ 

effects to achieve a higher level of conservatism. On the other hand, there was a 17.4% 

and 18.0% reduction in the peak strength for CIP and Precast-2, respectively.  

 

Effects of Plastic Hinge Length Variation 

 The local response of columns is a function of the analytical plastic hinge length 

incorporated in the proposed model. The design procedure which was discussed 

previously included recommendations about applying a fictitious plastic hinge length for 

precast columns with GSS connectors. This section investigates the sensitivity in both the 

global and local response of a Precast-2 column model when the plastic hinge length is 

varied using 0.5-in. length increments. The objective is to ascertain the response 

sensitivity due to a change in the assumed plastic hinge length. The precast column 

model 30 was selected which had 20 No. 9 longitudinal bars, a column height equal to 15 

ft, an ALI of 10%, and a design displacement ductility equal to 7.0. It was previously 

shown that the fictitious plastic hinge length was found to be 18.0 in. for this column 

model. An upper-bound and a lower-bound plastic hinge length equal to 20.0 in. and 16.0 

in. was used, respectively. Table 5-21 includes the response variation as a result of a 

change in the plastic hinge length. The failure mode was found to be either low-cycle 

fatigue bar fracture or crushing of concrete core. Table 5-21 shows that the yield 
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displacement of the column was unaffected while the sectional ultimate curvature, 

ultimate displacement, displacement ductility capacity, and mode of failure changed with 

a variation in the assumed plastic hinge length.  

Fig. 5. 55(a) shows how the ultimate curvature at 6% drift ratio changes as a 

result of a varying plastic hinge length. As anticipated, sectional curvature increased with 

a decrease in the plastic hinge length. The largest absolute curvature difference was found 

to be 10% for an 11% (2.0-in.) change in the plastic hinge length. Fig. 5. 55(b) shows the 

displacement ductility capacity values obtained for the plastic hinge length variation 

incorporated in the column model. The displacement ductility capacity decreased with a 

decrease in the plastic hinge length because of a larger sectional demand. However, the 

displacement ductility capacity remained relatively unchanged with an increase in the 

plastic hinge length up to 20.0 in. because low-cycle fatigue bar fracture occurred during 

the 2nd cycle of the 7% drift ratio or 1st cycle of the 8% drift ratio for plastic hinge 

lengths equal or larger than 18.0 in. This resulted in an ultimate drift ratio equal to 7% 

(12.6 in.) for a plastic hinge length equal to or greater than 17.5 in. and smaller than 20.0 

in. 

 

Conclusions 

A parametric study was conducted on actual size bridge columns to assess the 

accuracy of the proposed modeling strategy which was introduced Chapter 4. The 

objective was to ascertain the applicability of the proposed model to both cast-in-place 

monolithic columns and precast bridge columns with grouted splice sleeve connectors. In 

addition, the effect of varying the parameters on column response was investigated. Two 
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alternatives were considered: a cast-in-place column with monolithic details representing 

CIP in the previous chapter and a precast column with grouted splice sleeves in the 

column end and debonding of dowel bars in the footing (Precast-2). Sixteen CIP and 

sixteen Precast-2 columns were studied with varying parameters. The findings of this 

parametric study can be summarized as follows. It is noted that the findings apply to 

ductile slender columns investigated in this chapter in addition to similar cases. Extension 

of this modeling strategy to a more general group of columns with considerable design 

differences requires further investigation. 

• The results from the analysis were in good agreement with anticipated 

performance for cast-in-place monolithic and precast column models with grouted 

splice sleeve connectors.  

• An empirical relationship was used to determine the length of the plastic hinge for 

cast-in-place column models. To include a more localized damage for the precast 

column models, the computational model was constructed with a shorter plastic 

hinge. In the absence of an empirical plastic hinge length relationship, the 

reduction factor, which was obtained in Chapter 4, was incorporated. This 

resulted in a low-cycle fatigue bar fracture in fewer cycles, for all precast column 

models compared to CIP models.  

• All cast-in-place column models failed due to low-cycle fatigue bar facture, while 

precast column models failed due to low-cycle fatigue bar fracture and crushing 

of core concrete. The amount of axial load played an important role in the failure 

mode of precast column models.  

• The global strength of cast-in-place and precast column models was similar for all 
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column models. Even though bar fracture occurred in fewer cycles for the precast 

alternatives, the ultimate displacement was found to be identical to the cast-in-

place models; this is because bar fracture occurred during the second cycle of the 

last drift ratio for the precast column models. That is, the displacement capacity of 

Precast-2 column models was close to that of CIP column models as observed in 

the experiments.  

• The displacement ductility of precast column models was found to be smaller than 

that of cast-in-place column models mainly due to a larger effective yield 

displacement, as a result of a larger bond-slip for the precast alternatives.  

• A very large displacement ductility capacity is unachievable for bridge columns 

with modern seismic detailing under several displacement reversals due to the 

presence of low-cycle fatigue fracture of longitudinal bars. Even though a design 

displacement ductility of 11.0 was aimed for half of the column models, the 

maximum displacement ductility capacity reached in the simulations was found to 

be 7.28.  

• An increase in the design displacement ductility resulted in increased confined 

concrete properties in terms of both stress and strain. Consequently, there was a 

small increase in the lateral force capacity of the column model; however, the 

displacement capacity was unaffected because bar fracture occurred before 

crushing of the core concrete. Higher confinement was found to have a small 

effect on the low-cycle fatigue life of the column bars. 

• Column lateral strength increased with an increase in the column axial load as 

anticipated for column models with design capacities below the balanced point. 
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The displacement capacity of three column models was reduced because of the 

increased compressive demand which resulted in crushing of the core concrete. 

The displacement capacity of the other 29 column models was not affected by the 

axial load increase because there was a considerable remaining compressive strain 

capacity when low-cycle fatigue bar fracture occurred.  

• An increase in the column model height resulted in a decrease in lateral strength 

of the column as expected. On the other hand, the displacement capacity increased 

with an increase in column model height because of a lower strain demand at the 

column end. However, the displacement ductility capacity did not increase 

because the effective yield displacement of the higher column model was larger 

than that of the shorter column model. 

• Column models reinforced with more longitudinal bars had a larger lateral 

strength than column models with fewer bars. The displacement capacity was not 

affected by this change because the sectional strain demand did not change 

drastically due to incorporating more longitudinal bars; thus the low-cycle fatigue 

life of the longitudinal bars was similar to that of the column models with fewer 

bars.  

• Inclusion of P-Δ effects changed the hardening post-yield global response to a 

softening post-yield global response, but did not make any modifications in the 

sectional response. The lateral strength was reduced by 18% due to P-Δ effects, 

but the displacement capacity was unaffected. The displacement ductility capacity 

was increased by 13% because the negative slope of the force-displacement 

response imposed a smaller effective yield displacement.  
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• For the Precast-2 column model, sectional curvature was magnified when reduced 

plastic hinge lengths compared to the assumed plastic hinge length were 

incorporated. There was a 10% change in the value of the ultimate curvature as a 

result of an 11% change in the assumed plastic hinge length. 

• The displacement ductility capacity of the Precast-2 column model remained 

relatively unchanged for values of the assumed plastic hinge length above the 

value established based on the half-scale experiments. This is the case since 

failure of the column was due to low-cycle fatigue bar fracture. 
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Table 5.1. Modeling alternatives for parametric study. 

Model No. Details Bar Ratio 
(%) 

Column Aspect 
Ratio ALI (%) Displacement 

Ductility 
1 CIP 1.38 4 5 7.0 
2 Precast-2 1.38 4 5 NA 
3 CIP 1.38 4 5 11.0 
4 Precast-2 1.38 4 5 NA 
5 CIP 1.38 4 10 7.0 
6 Precast-2 1.38 4 10 NA 
7 CIP 1.38 4 10 11.0 
8 Precast-2 1.38 4 10 NA 
9 CIP 1.38 5 5 7.0 
10 Precast-2 1.38 5 5 NA 
11 CIP 1.38 5 5 11.0 
12 Precast-2 1.38 5 5 NA 
13 CIP 1.38 5 10 7.0 
14 Precast-2 1.38 5 10 NA 
15 CIP 1.38 5 10 11.0 
16 Precast-2 1.38 5 10 NA 
17 CIP 1.96 4 5 7.0 
18 Precast-2 1.96 4 5 NA 
19 CIP 1.96 4 5 11.0 
20 Precast-2 1.96 4 5 NA 
21 CIP 1.96 4 10 7.0 
22 Precast-2 1.96 4 10 NA 
23 CIP 1.96 4 10 11.0 
24 Precast-2 1.96 4 10 NA 
25 CIP 1.96 5 5 7.0 
26 Precast-2 1.96 5 5 NA 
27 CIP 1.96 5 5 11.0 
28 Precast-2 1.96 5 5 NA 
29 CIP 1.96 5 10 7.0 
30 Precast-2 1.96 5 10 NA 
31 CIP 1.96 5 10 11.0 
32 Precast-2 1.96 5 10 NA 
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Table 5.2. Reinforcing bar material properties 

Specified Yield 
Stress, fy (ksi) 

60 

Expected Yield 
Stress, fye (ksi) 

68 

Expected Tensile 
Stress, fue (ksi) 

95 

Strain at Onset of 
Strain Hardening, 
εsh, (in./in.) 

0.0125 

Reduced Ultimate 
Tensile Strain, 
εR

su, (in./in.) 

0.09 

Ultimate Tensile 
Strain, εsu, 
(in./in.) 

0.12 
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Table 5.3. Design details of column models. 

Model   Axial  H Lp Main μD μϕ Transverse μϕ 

 No. Details Load (kip) (ft) (in.) Bar Required Required Bar Provided 

1 CIP 305.4 12 17.28 14 No. 9 7.0 18.73 No. 6 @ 3" 19.04 

2 Precast-2 305.4 12 14.40 14 No. 9 NA NA No. 6 @ 3" NA 

3 CIP 305.4 12 17.28 14 No. 9 11.0 30.55 2 No. 6 @ 3" 31.10 

4 Precast-2 305.4 12 14.40 14 No. 9 NA NA 2 No. 6 @ 3" NA 

5 CIP 610.7 12 17.28 14 No. 9 7.0 18.73 No. 6 @ 2 ¾" 18.80 

6 Precast-2 610.7 12 14.40 14 No. 9 NA NA No. 6 @ 2 ¾" NA 

7 CIP 610.7 12 17.28 14 No. 9 11.0 30.55 2 No. 7 @ 3 ¼" 31.23 

8 Precast-2 610.7 12 14.40 14 No. 9 NA NA 2 No. 7 @ 3 ¼" NA 

9 CIP 305.4 15 21.60 14 No. 9 7.0 18.73 No. 6 @ 3" 19.04 

10 Precast-2 305.4 15 18.00 14 No. 9 NA NA No. 6 @ 3" NA 

11 CIP 305.4 15 21.60 14 No. 9 11.0 30.55 2 No. 6 @ 3" 31.10 

12 Precast-2 305.4 15 18.00 14 No. 9 NA NA 2 No. 6 @ 3" NA 

13 CIP 610.7 15 21.60 14 No. 9 7.0 18.73 No. 6 @ 2 ¾" 18.80 

14 Precast-2 610.7 15 18.00 14 No. 9 NA NA No. 6 @ 2 ¾" NA 

15 CIP 610.7 15 21.60 14 No. 9 11.0 30.55 2 No. 7 @ 3 ¼" 31.23 

16 Precast-2 610.7 15 18.00 14 No. 9 NA NA 2 No. 7 @ 3 ¼" NA 

17 CIP 305.4 12 17.28 20 No. 9 7.0 18.73 No. 6 @ 2 ½" 18.29* 

18 Precast-2 305.4 12 14.40 20 No. 9 NA NA No. 6 @ 2 ½" NA 

19 CIP 305.4 12 17.28 20 No. 9 11.0 30.55 2 No. 7 @ 3" 30.85 

20 Precast-2 305.4 12 14.40 20 No. 9 NA NA 2 No. 7 @ 3" NA 

21 CIP 610.7 12 17.28 20 No. 9 7.0 18.73 No. 7 @ 3" 18.75 

22 Precast-2 610.7 12 14.40 20 No. 9 NA NA No. 7 @ 3" NA 

23 CIP 610.7 12 17.28 20 No. 9 11.0 30.55 2 No. 7 @ 2 ¾" 30.22* 

24 Precast-2 610.7 12 14.40 20 No. 9 NA NA 2 No. 7 @ 2 ¾" NA 

25 CIP 305.4 15 21.60 20 No. 9 7.0 18.73 No. 6 @ 2 ½" 18.29* 

26 Precast-2 305.4 15 18.00 20 No. 9 NA NA No. 6 @ 2 ½" NA 

27 CIP 305.4 15 21.60 20 No. 9 11.0 30.55 2 No. 7 @ 3" 30.85 

28 Precast-2 305.4 15 18.00 20 No. 9 NA NA 2 No. 7 @ 3" NA 

29 CIP 610.7 15 21.60 20 No. 9 7.0 18.73 No. 7 @ 3" 18.75 

30 Precast-2 610.7 15 18.00 20 No. 9 NA NA No. 7 @ 3" NA 

31 CIP 610.7 15 21.60 20 No. 9 11.0 30.55 2 No. 7 @ 2 ¾" 30.22* 

32 Precast-2 610.7 15 18.00 20 No. 9 NA NA 2 No. 7 @ 2 ¾" NA 

 

  



196 
 

 

Table 5.4. Summary of performance for column models 1 and 2. 

Performance Characteristic Column Model 1 Column Model 2  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.27 1.41 

Effective yield force (kip) 140.3 136.2 

Displacement ductility capacity 6.82 6.13 

Peak compressive strain @ 7% drift 

(in./in.) 

0.0171 0.0190 
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Table 5.5. Summary of performance for column models 3 and 4. 

Performance Characteristic Column Model 3 Column Model 4  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.22 1.42 

Effective yield force (kip) 136.9 139.2 

Displacement ductility capacity 7.11 6.09 

Peak compressive strain @ 7% drift 

(in./in.) 

0.0153 0.0189 
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Table 5.6. Summary of performance for column models 5 and 6. 

Performance Characteristic Column Model 5 Column Model 6  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Crushing of core 
concrete 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 5.31 

Ultimate displacement (in.) 8.64 7.65 

Effective yield displacement (in.) 1.19 1.36 

Effective yield force (kip) 155.5 157.2 

Displacement ductility capacity 7.27 5.62 

Peak compressive strain @ 5% drift (in./in.) 0.0159 0.0189 
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Table 5.7. Summary of performance for column models 7 and 8. 

Performance Characteristic Column Model 7 Column Model 8  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.19 1.38 

Effective yield force (kip) 160.5 162.9 

Displacement ductility capacity 7.28 6.27 

Peak compressive strain @ 7% drift (in./in.) 0.0189 0.0235 
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Table 5.8. Summary of performance for column models 9 and 10. 

Performance Characteristic Column Model 9 Column Model 10  

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 1.95 2.11 

Effective yield force (kip) 107.5 108.8 

Displacement ductility capacity 6.45 5.95 

Peak compressive strain @ 8% drift (in./in.) 0.0151 0.0190 
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Table 5.9. Summary of performance for column models 11 and 12. 

Performance Characteristic Column Model 11 Column Model 12  

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 1.95 2.14 

Effective yield force (kip) 109.6 111.2 

Displacement ductility capacity 6.47 5.90 

Peak compressive strain @ 8% drift (in./in.) 0.0140 0.0171 
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Table 5.10. Summary of performance for column models 13 and 14. 

Performance Characteristic Column Model 13 Column Model 14  

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Crushing of core 
concrete 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 6.66 

Ultimate displacement (in.) 12.60 12.00 

Effective yield displacement (in.) 1.87 2.05 

Effective yield force (kip) 124.5 125.9 

Displacement ductility capacity 6.75 5.86 

Peak compressive strain @ 5% drift (in./in.) 0.0152 0.0179 
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Table 5.11. Summary of performance for column models 15 and 16. 

Performance Characteristic Column Model 15 Column Model 16  

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 1.89 2.06 

Effective yield force (kip) 128.5 130.3 

Displacement ductility capacity 6.67 6.12 

Peak compressive strain @ 8% drift (in./in.) 0.0172 0.0213 
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Table 5.12. Summary of performance for column models 17 and 18. 

Performance Characteristic Column Model 17 Column Model 18  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.36 1.53 

Effective yield force (kip) 175.7 178.0 

Displacement ductility capacity 6.35 5.66 

Peak compressive strain @ 7% drift (in./in.) 0.0186 0.0210 
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Table 5.13. Summary of performance for column models 19 and 20. 

Performance Characteristic Column Model 19 Column Model 20  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.36 1.53 

Effective yield force (kip) 180.2 183.1 

Displacement ductility capacity 6.37 5.61 

Peak compressive strain @ 7% drift (in./in.) 0.0159 0.0189 
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Table 5.14. Summary of performance for column models 21 and 22. 

Performance Characteristic Column Model 21 Column Model 22  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Crushing of core 
concrete 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 5.77 

Ultimate displacement (in.) 8.64 8.31 

Effective yield displacement (in.) 1.34 1.50 

Effective yield force (kip) 196.7 198.3 

Displacement ductility capacity 6.46 5.57 

Peak compressive strain @ 5% drift (in./in.) 0.0164 0.0195 
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Table 5.15. Summary of performance for column models 23 and 24. 

Performance Characteristic Column Model 23 Column Model 24  

Column type CIP Precast-2 

Plastic hinge length (in.) 17.28 14.40 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 7 6 

Bar fracture cycle 1 2 

Ultimate drift (%) 6 6 

Ultimate displacement (in.) 8.64 8.64 

Effective yield displacement (in.) 1.32 1.51 

Effective yield force (kip) 202.3 205.7 

Displacement ductility capacity 6.54 5.73 

Peak compressive strain @ 7% drift (in./in.) 0.0202 0.0228 
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Table 5.16. Summary of performance for column models 25 and 26. 

Performance Characteristic Column Model 25 Column Model 26  

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 2.10 2.24 

Effective yield force (kip) 140.3 142.0 

Displacement ductility capacity 6.00 5.62 

Peak compressive strain @ 8% drift (in./in.) 0.0165 0.0200 
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Table 5.17. Summary of performance for column models 27 and 28. 

Performance Characteristic Column Model 27 Column Model 28 

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 2.12 2.25 

Effective yield force (kip) 143.9 145.7 

Displacement ductility capacity 5.94 5.60 

Peak compressive strain @ 8% drift (in./in.) 0.0144 0.0179 
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Table 5.18. Summary of performance for column models 29 and 30. 

Performance Characteristic Column Model 29 Column Model 30 

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 2.05 2.17 

Effective yield force (kip) 157.0 158.7 

Displacement ductility capacity 6.16 5.80 

Peak compressive strain @ 6% drift (in./in.) 0.0155 0.0182 
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Table 5.19. Summary of performance for column models 31 and 32. 

Performance Characteristic Column Model 31 Column Model 32 

Column type CIP Precast-2 

Plastic hinge length (in.) 21.60 18.00 

Failure mode Bar fracture Bar fracture 

Bar fracture drift (%) 8 7 

Bar fracture cycle 1 2 

Ultimate drift (%) 7 7 

Ultimate displacement (in.) 12.60 12.60 

Effective yield displacement (in.) 2.08 2.23 

Effective yield force (kip) 161.6 163.9 

Displacement ductility capacity 6.10 5.65 

Peak compressive strain @ 8% drift (in./in.) 0.0184 0.0207 
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Table 5.20. Comparison of the obtained displacement ductility capacity values. 

Model Column Axial  H Main Transverse μD μD Failure 

 No. Details Load (kip) (ft) Bar Bar Required Obtained Mode 

1 CIP 305.4 12 14 No. 9 No. 6 @ 3.00" 7.0 6.82 BF* 

2 Precast-2 305.4 12 14 No. 9 No. 6 @ 3.00" NA 6.13 BF 

3 CIP 305.4 12 14 No. 9 2 No. 6 @ 3.00" 11.0 7.11 BF 

4 Precast-2 305.4 12 14 No. 9 2 No. 6 @ 3.00" NA 6.09 BF 

5 CIP 610.7 12 14 No. 9 No. 6 @ 2.75" 7.0 7.27 BF 

6 Precast-2 610.7 12 14 No. 9 No. 6 @ 2.75" NA 5.62 CC** 

7 CIP 610.7 12 14 No. 9 2 No. 7 @ 3.25" 11.0 7.28 BF 

8 Precast-2 610.7 12 14 No. 9 2 No. 7 @ 3.25" NA 6.27 BF 

9 CIP 305.4 15 14 No. 9 No. 6 @ 3.00" 7.0 6.45 BF 

10 Precast-2 305.4 15 14 No. 9 No. 6 @ 3.00" NA 5.95 BF 

11 CIP 305.4 15 14 No. 9 2 No. 6 @ 3.00" 11.0 6.47 BF 

12 Precast-2 305.4 15 14 No. 9 2 No. 6 @ 3.00" NA 5.90 BF 

13 CIP 610.7 15 14 No. 9 No. 6 @ 2.75" 7.0 6.75 BF 

14 Precast-2 610.7 15 14 No. 9 No. 6 @ 2.75" NA 5.86 CC 

15 CIP 610.7 15 14 No. 9 2 No. 7 @ 3.25" 11.0 6.67 BF 

16 Precast-2 610.7 15 14 No. 9 2 No. 7 @ 3.25" NA 6.12 BF 

17 CIP 305.4 12 20 No. 9 No. 6 @ 2.50" 7.0 6.35 BF 

18 Precast-2 305.4 12 20 No. 9 No. 6 @ 2.50" NA 5.66 BF 

19 CIP 305.4 12 20 No. 9 2 No. 7 @ 3.00" 11.0 6.37 BF 

20 Precast-2 305.4 12 20 No. 9 2 No. 7 @ 3.00" NA 5.61 BF 

21 CIP 610.7 12 20 No. 9 No. 7 @ 3.00" 7.0 6.46 BF 

22 Precast-2 610.7 12 20 No. 9 No. 7 @ 3.00" NA 5.57 CC 

23 CIP 610.7 12 20 No. 9 2 No. 7 @ 2.75" 11.0 6.54 BF 

24 Precast-2 610.7 12 20 No. 9 2 No. 7 @ 2.75" NA 5.73 BF 

25 CIP 305.4 15 20 No. 9 No. 6 @ 2.50" 7.0 6.00 BF 

26 Precast-2 305.4 15 20 No. 9 No. 6 @ 2.50" NA 5.62 BF 

27 CIP 305.4 15 20 No. 9 2 No. 7 @ 3.00" 11.0 5.94 BF 

28 Precast-2 305.4 15 20 No. 9 2 No. 7 @ 3.00" NA 5.60 BF 

29 CIP 610.7 15 20 No. 9 No. 7 @ 3.00" 7.0 6.16 BF 

30 Precast-2 610.7 15 20 No. 9 No. 7 @ 3.00" NA 5.80 BF 

31 CIP 610.7 15 20 No. 9 2 No. 7 @ 2.75" 11.0 6.10 BF 

32 Precast-2 610.7 15 20 No. 9 2 No. 7 @ 2.75" NA 5.65 BF 

 
*Bar Fracture 
**Core Crushing 
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Table 5.21. Effect of plastic hinge length variation on sectional and global response of 
column model Precast-2. 

 
Lp  Failure ϕu @ 6% Δy Δu μΔ 

(in.) Mode (1/in.) (in.) (in.)   
16.0 BF* 0.00318 2.19 10.80 4.92 
16.5 BF 0.00309 2.19 10.80 4.93 
17.0 CC** 0.00302 2.20 12.31 5.61 
17.5 BF 0.00295 2.19 12.60 5.75 

18.0*** BF 0.00288 2.17 12.60 5.80 
18.5 BF 0.00282 2.18 12.60 5.77 
19.0 BF 0.00275 2.18 12.60 5.78 
19.5 BF 0.00269 2.18 12.60 5.79 
20.0 BF 0.00264 2.17 12.60 5.80 

   
*Bar Fracture 

                        **Core Crushing 
***Plastic hinge length was equal to 18.0 in. based on proposed modeling        
strategy. 
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Fig. 5.1. Schematic of the two model types: (a) CIP; (b) Precast-2. 
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Fig. 5.2. Schematic of a pseudo stress-strain relationship. 

 

 
Fig. 5.3. Schematic of bond-slip idealization for precast column models. 
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Fig. 5.4. Moment-curvature response for CIP models:  (a) model 1 and 9, 𝜇𝜇𝜑𝜑 = 19.04; 
(b) model 3 and 11, 𝜇𝜇𝜑𝜑 = 31.10; (c) model 5 and 13, 𝜇𝜇𝜑𝜑 = 18.80; (d) model 7 and 15, 
𝜇𝜇𝜑𝜑 = 31.23; (e) model 17 and 25, 𝜇𝜇𝜑𝜑 = 18.29; (f) model 19 and  27, 𝜇𝜇𝜑𝜑 = 30.85; (g) 

model 21 and 29, 𝜇𝜇𝜑𝜑 = 18.75; (h) model 23 and 31, 𝜇𝜇𝜑𝜑 = 30.22. 
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Fig. 5.5. Details of column models with H = 12 ft and 14 No. 9 bars. 
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Fig. 5.6. Details of column models with H = 15 ft and 14 No. 9 bars. 
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Fig. 5.7. Details of column models with H = 12 ft and 20 No. 9 bars. 
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Fig. 5.8. Details of column models with H = 15 ft and 20 No. 9 bars. 
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Fig. 5.9. Example of column model layout: (a) column model 9 (CIP); (b) column model 
10 (Precast-2). 
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(a) 

 
(b) 

 

Fig. 5.10. Uniaxial material properties for column model 10: (a) concrete (CIP); (b) 
reinforcing bar. 
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(a) 

 
(b) 

Fig. 5.11. Example of hysteresis response: (a) column model 1 (with CIP details), 
ultimate drift = 6.0%; (b) column model 2 (with Precast-2 details), ultimate drift = 6.0%. 
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(a) 

 
(b) 

Fig. 5.12. Example of hysteresis response: (a) column model 5 (with CIP details), 
ultimate drift = 6.0%; (b) column model 6 (with Precast-2 details), ultimate drift = 5.3%. 
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(a) 

 
(b) 

 
Fig. 5.13. Comparison of column model 1 (CIP) and 2 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.14. Displacement ductility capacity: (a) column model 1 (CIP), 𝜇𝜇𝐶𝐶 = 6.82; (b) 
column model 2 (Precast-2), 𝜇𝜇𝐶𝐶 = 6.13. 
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(a) 

 
(b) 

 
Fig. 5.15. Comparison of column model 3 (CIP) and 4 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.16. Displacement ductility capacity: (a) column model 3 (CIP), 𝜇𝜇𝐶𝐶 = 7.11; (b) 
column model 4 (Precast-2), 𝜇𝜇𝐶𝐶 = 6.09. 
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(a) 

 
(b) 

Fig. 5.17. Comparison of column model 5 (CIP) and 6 (Precast-2): (a) cyclic envelope; 
(b) strains in the column extreme bar. 
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Fig. 5.18. Displacement ductility capacity: (a) column model 5 (CIP), 𝜇𝜇𝐶𝐶 = 7.27; (b) 
column model 6 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.62. 
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(a) 

 
(b) 

 
Fig. 5.19. Comparison of column model 7 (CIP) and 8 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.20. Displacement ductility capacity: (a) column model 7 (CIP), 𝜇𝜇𝐶𝐶 = 7.28; (b) 
column model 8 (Precast-2), 𝜇𝜇𝐶𝐶 = 6.27. 
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(a) 

 
(b) 

 
Fig. 5.21. Comparison of column model 9 (CIP) and 10 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.22. Displacement ductility capacity: (a) column model 9 (CIP), 𝜇𝜇𝐶𝐶 = 6.45; (b) 
column model 10 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.95. 
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(a) 

 
(b) 

 
Fig. 5.23. Comparison of column model 11 (CIP) and 12 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.24. Displacement ductility capacity: (a) column model 11 (CIP), 𝜇𝜇𝐶𝐶 = 6.47; (b) 
column model 12 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.90. 
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(a) 

 
(b) 

 
Fig. 5.25. Comparison of column model 13 (CIP) and 14 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.26. Displacement ductility capacity: (a) column model 13 (CIP), 𝜇𝜇𝐶𝐶 = 6.75; (b) 
column model 14 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.86. 
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(a) 

 
(b) 

Fig. 5.27. Comparison of column model 15 (CIP) and 16 (Precast-2): (a) cyclic envelope; 
(b) strains in the column extreme bar. 
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Fig. 5.28. Displacement ductility capacity: (a) column model 15 (CIP), 𝜇𝜇𝐶𝐶 = 6.67; (b) 
column model 16 (Precast-2), 𝜇𝜇𝐶𝐶 = 6.12. 
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(a) 

 
(b) 

 
Fig. 5.29. Comparison of column model 17 (CIP) and 18 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.30. Displacement ductility capacity: (a) column model 17 (CIP), 𝜇𝜇𝐶𝐶 = 6.35; (b) 
column model 18 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.66. 
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(a) 

 
(b) 

 
Fig. 5.31. Comparison of column model 19 (CIP) and 20 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.32. Displacement ductility capacity: (a) column model 19 (CIP), 𝜇𝜇𝐶𝐶 = 6.37; (b) 
column model 20 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.61. 
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(a) 

 
(b) 

 
Fig. 5.33. Comparison of column model 21 (CIP) and 22 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.34. Displacement ductility capacity: (a) column model 21 (CIP), 𝜇𝜇𝐶𝐶 = 6.46; (b) 
column model 22 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.57. 

  



247 
 

 

 
(a) 

 
(b) 

 
Fig. 5.35. Comparison of column model 23 (CIP) and 24 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.36. Displacement ductility capacity: (a) column model 23 (CIP), 𝜇𝜇𝐶𝐶 = 6.54; (b) 
column model 24 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.73. 
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(a) 

 
(b) 

 
Fig. 5.37. Comparison of column model 25 (CIP) and 26 (Precast-2): (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.38. Displacement ductility capacity: (a) column model 25 (CIP), 𝜇𝜇𝐶𝐶 = 6.00; (b) 
column model 26 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.62. 
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(a) 

 
(b) 

Fig. 5.39. Comparison of column model 27 (CIP) and 28 (Precast-2): (a) cyclic envelope; 
(b) strains in the column extreme bar. 
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Fig. 5.40. Displacement ductility capacity: (a) column model 27 (CIP), 𝜇𝜇𝐶𝐶 = 5.94; (b) 
column model 28 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.60. 
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(a) 

 
(b) 

 
Fig. 5.41. Comparison of column model 29 (CIP) and 30 (Precast-2) (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.42. Displacement ductility capacity: (a) column model 29 (CIP), 𝜇𝜇𝐶𝐶 = 6.16; (b) 
column model 30 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.80. 
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(a) 

 
(b) 

 
Fig. 5.43. Comparison of column model 31 (CIP) and 32 (Precast-2) (a) cyclic envelope; 

(b) strains in the column extreme bar. 
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Fig. 5.44. Displacement ductility capacity: (a) column model 31 (CIP), 𝜇𝜇𝐶𝐶 = 6.10; (b) 
column model 32 (Precast-2), 𝜇𝜇𝐶𝐶 = 5.65. 
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Fig. 5.45. Comparison of global response for CIP columns reinforced with 14 No. 9 bars. 
  



258 
 

 

 
 
Fig. 5.46. Comparison of global response for CIP columns reinforced with 20 No. 9 bars. 
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(a) 

 
(b) 

 
Fig. 5.47. Effect of change in design displacement ductility for CIP columns with 14 

No.9 bars. 
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(a) 

 
(b) 

 
Fig. 5.48. Effect of change in axial load for CIP columns with 14 No.9 bars. 
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(a) 

 
(b) 

 
Fig. 5.49. Effect of change in height for CIP columns with 14 No.9 bars. 
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(a) 

 
(b) 

 
Fig. 5.50. Effect of change in number of longitudinal bars for 12-ft high CIP columns. 
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Fig. 5.51. Test setup for column-to-footing specimens. 
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Fig. 5.52. Schematic approximation of P-Δ effects. 
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(a) 

 
(b) 

 
Fig. 5.53. P-Δ effects on column model 29 (CIP): (a) comparison of cyclic envelopes; (b) 

displacement ductility capacity, 𝜇𝜇𝐶𝐶 = 6.98. 
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(a) 

 
(b) 

 
Fig. 5.54. P-Δ effects on column model 30 (Precast-2): (a) comparison of cyclic 

envelopes; (b) displacement ductility capacity, 𝜇𝜇𝐶𝐶 = 6.56. 
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(a) 

 
(b) 

 
Fig. 5.55. Effects of plastic hinge length variation on the response of Precast-2: (a) 

change in ultimate curvature during 6% drift ratio; (b) change in displacement 
ductility capacity. 

 
 
 



CHAPTER 6 

 

NONLINEAR TIME-HISTORY ANALYSIS  

OF A BRIDGE BENT SYSTEM 

 

Introduction 

This chapter presents the design and analysis of a prototype multicolumn bridge 

bent system in accordance with AASHTO Guide Specifications. The analytical model 

which was validated with the experiments and later verified using a parametric study is 

used to model one monolithic and two precast bridge bents with similar details to Precast-

1 and Precast-2 specimens, which were discussed in Chapter 4. The objective of this 

chapter is to study the application of grouted splice sleeve (GSS) connectors in multi-

column bents and investigate the effect of GSS connections on the response of the bridge 

bents. Two types of analysis are performed: (1) static cyclic analysis to find the capacity 

of the system, and (2) nonlinear time-history analysis to find the level of demand on the 

bridge bent. This will provide information on capacity-demand relationships for the 

bridge bent alternatives considered in this study, and will reveal more insight into the 

overall behavior of the bents under various input ground motions. The following three 

main sections include the design and details of the models, results of the static cyclic 

analyses for the three bent systems, and results of the nonlinear time-history analyses for 

the three bent systems including a discussion on demand levels compared to capacity of 
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the bridge bents.  

 

Design and Details of the Bridge Bents 

Selection of a Baseline Bridge Bent 

The bridge bent was designed based on the configurations of Bent #6 of the South 

Temple Bridge at Interstate 15 in Salt Lake City, Utah, which was tested to failure in-situ 

as part of a research study focused on seismic rehabilitation of seismically deficient 

bridges (Pantelides et al. 2001). The bridge was built in 1963 prior to the application of 

modern seismic detailing that is outlined in the current bridge seismic codes such as the 

AASHTO Guide Specifications and Caltrans Seismic Design Criteria; therefore, 

appropriate changes were made to include a modern scheme of seismic detailing for the 

purposes of this chapter.  

The original bent was composed of three 36-in. square columns with 16 No. 10 

bars which is equal to a reinforcement ratio of 1.57%. The cap beam had a 3 ft by 4 ft 

rectangular cross section. The compressive strength of the concrete was measured to be 

4.64 ksi and the yield strength of the reinforcement was measured to be 48 ksi.  

Bent #6 was retrofitted using carbon fiber reinforced polymer (CFRP) jackets for flexural 

improvement of the column plastic hinge regions, shear strengthening of columns, 

increased clamping pressure for lap splice regions, and shear strengthening of the joints. 

In addition, a CFRP U-strap concept was incorporated to prevent the column bars from 

pulling out of the joint area. Other rehabilitation techniques that were implemented on 

Bent #6 include improvement of the pile-to-pile cap connections using high-strength 

rods, and application of a reinforced concrete grade beam to minimize the lateral 
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movement of the pile caps.  

Bent #6 which was tested under quasi-static cyclic loads with increasing 

amplitudes had a peak lateral force capacity of 495 kip and achieved a peak lateral 

displacement equal to 10.4 in., after application of the seismic rehabilitation techniques. 

A similar bent with no seismic enhancement (Bent #5) had only achieved 340 kip peak 

lateral force capacity and 5.9 in. peak lateral displacement.  

To incorporate seismic detailing into the design and follow current design practice 

in Utah, several changes were made to Bent #6. The columns were changed to 3-ft 

diameter circular cross-sections. The columns were reinforced with 14 No. 9 longitudinal 

bars which is equivalent to a 1.38% steel ratio to adopt ABC recommendations for 

prefabricated bridge piers. Transverse reinforcement was made of No. 6 closed hoops 

spaced at 3 in. on center following the design procedure discussed in the parametric study 

in Chapter 5, to achieve a target displacement ductility of 7.0. A 2-in. cover was used for 

both the monolithic and precast bridge bents. The width of the cap beam was increased to 

4 ft to account for current design recommendations; the footing depth was assumed to be 

3 ft. An expected concrete compressive strength equal to 6 ksi was used in addition to 

Grade 60 ASTM A706 reinforcing bars as discussed in Chapter 5. 

Three bridge bents were considered for this study as shown in Table 6.1. A bridge 

bent constructed monolithically was used as an ideal system without GSS connectors or 

lap splices (CIP); the second alternative was composed of precast columns with GSS 

connectors inside the footings and the cap beam (Precast-1); and the third bent consisted 

of precast columns with GSS connectors inside the columns and debonding of footing 

and cap beam bars over a length of 8.0 bar diameters (Precast-2). Fig. 6.1 to Fig. 6.3 
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show the details for bridge bents CIP, Precast-1, and Precast-2, respectively.  

 

Layout of the Bridge Bent Model 

The bridge bent was assumed to have a Type 1 earthquake resisting system 

(ERS), which is a ductile substructure along with an essentially elastic superstructure. 

Thus, the cap beam was modeled using an elastic element called elasticBeamColumn in 

the OpenSees element library. This implies that plastic hinging could only occur in the 

columns; therefore, the columns were modeled using forceBeamColumn elements with a 

plastic hinge integration scheme (Scott and Fenves 2006) which allows nonlinear 

behavior along the column. Elastic elements with rigid links (rigidLink) were 

incorporated at the upper end of the ductile columns inside the cap beam to constrain the 

rotational and translational degrees of freedom. Overall, the computational model was 

composed of 11 nodes and 10 elements as shown in Fig. 6.4. The length of the plastic 

hinges was obtained from the equations discussed in Chapter 5 for monolithic and precast 

conditions. The plastic hinge length for CIP was found to be 17.28 in. The plastic hinge 

reduction factor (γGSS) was found to be 2/3 and 5/6 for Precast-1 and Precast-2, 

respectively, resulting in a plastic hinge length equal to 11.52 in. and 14.40 in.  

An axial load equal to 305.4 kip, corresponding to an axial load index (ALI) of 

5%, was applied to the upper node of each column. Masses were assumed to be lumped at 

nodes 8, 9, and 10 for the dynamic analysis; a tributary nodal mass equal to 0.9478 k-

s2/in., 0.9669 k-s2/in., and 0.9478 k-s2/in. was applied to node 8, 9, and 10, respectively, 

in the horizontal direction of the bent parallel to the cap beam longitudinal axis.  

Confined and unconfined concrete were assigned to the concrete core and cover using 
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concrete04 material; ReinforcingSteel was incorporated for column bars inside and 

outside the plastic hinge region. A pseudo stress-strain relationship was derived for 

reinforcing bars inside the plastic hinge region based on the results of the one-

dimensional bond-slip model for the three alternatives. The resulting pseudo modulus 

which was found using a linear regression with respect to the bond-slip model output was 

assigned to the reinforcing bars inside the plastic hinge region, to account for the 

softening effects of the bond-slip. The pseudo modulus was equal to 24,159 ksi, 20,631 

ksi, and 17,596 ksi for CIP, Precast-1, and Precast-2, respectively. As can be observed, 

bond-slip was more pronounced for Precast-2 with the intentional debonding.  

The columns were assumed to be fully fixed at the bottom and soil-foundation 

effects were not considered in this study.  

 

Analysis of the Bridge Bents 

Static Cyclic Analysis 

Nonlinear Static cyclic analysis was performed to obtain the capacity of the 

bridge bents under a cyclic displacement loading history. According to the AASHTO 

Guide Specifications, a pushover analysis is required to find the reliable displacement 

capacity for bridges located in seismic design category (SDC) D which includes areas in 

Salt Lake City, Utah. The objective of performing a cyclic analysis, which can also be 

referred to as cyclic pushover analysis, was to investigate the low-cycle fatigue bar 

fracture. It was intended to first ascertain the potential failure mode of the bridge bents, 

and then find their ultimate displacement capacity. A cyclic displacement history similar 

to that of the experiments was used; it was composed of increasing displacement 
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amplitudes in terms of the bridge bent drift with two cycles per drift ratio. The 

displacement history was applied to Node 7 at an elevation equal to 312 in. above the 

footings as shown in Fig. 6.4. 

 

Analysis Results for Bent CIP 

Bridge bent CIP had a ductile response until five column reinforcing bars 

fractured due to low-cycle fatigue during the second cycle of the 6% drift ratio. 

Examination of the sectional response revealed that the core stayed intact until Node 7 

reached a drift ratio of 6.59% which is equal to 20.56 in., indicating that low-cycle 

fatigue bar fracture was the failure mode for this bridge bent. Hence, the ultimate 

displacement was governed by bar fracture at 18.72 in. or 6% in terms of the lateral drift 

ratio. Fig. 6.5 shows the hysteresis response of CIP including the low-cycle fatigue 

fracture of the columns longitudinal bars. P-Δ effects were included in the cyclic analysis 

to consider the effects of geometric nonlinearity.  

Bent CIP achieved a peak lateral force capacity equal to 370.0 kip which occurred 

at a displacement of 12.36 in. (3.96% drift ratio). The displacement ductility capacity of 

the right column was found to be 7.09 which is close to the assumed target displacement 

ductility of 7.00. On the other hand, a similar approach was taken to obtain the 

displacement ductility of the bridge bent using the base shear for the three columns. The 

cyclic envelope along with the idealized curve is shown in Fig. 6.6(a) and Fig. 6.6(b) for 

the single column and the bridge bent, respectively. The displacement ductility capacity 

of the bridge bent was found to be 7.04. It is noted that P-Δ transformation was not 

included for the results that were used to compute the displacement ductility capacity 
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values for the sake of conservatism and to be more consistent with the simplified 

procedure for the target displacement ductility.  

A capacity envelope was constructed using the cyclic response of CIP (including 

P-Δ), with four significant performance points identified on the capacity curve. These 

four points indicate the occurrence of column bar yielding, onset of concrete cover 

crushing, onset of concrete core crushing, and low-cycle fatigue bar fracture. The low-

cycle fatigue bar fracture marks the peak displacement of the last cycle without any bar 

fracture. For example, CIP column bars began to fracture during the second cycle of the 

6% drift ratio. Therefore the low-cycle fatigue life of CIP would end one cycle earlier, 

which is the first cycle of the 6% drift ratio; thus, the ultimate drift can still be considered 

as 6%. Fig. 6.7 shows the capacity envelope for bent CIP. The capacity envelope will be 

used in the upcoming sections that discuss the results of the dynamic analyses.  

 

Analysis Results for Bent Precast-1 

Bridge bent Precast-1 had premature bar fractures during the second cycle of the 

5% drift ratio, when eight column bars fractured due to low-cycle fatigue. The sectional 

response indicated that the onset of concrete core crushing was reached at a drift of 

4.60% which happened prior to bar fracture. Therefore, the ultimate displacement was 

governed by onset of core concrete crushing at 14.35 in. or 4.6% drift ratio. Fig. 6.8 

shows the hysteresis response of Precast-1 including the occurrence of the core concrete 

crushing and low-cycle fatigue bar fracture.  

Bent Precast-1 had a peak lateral force capacity equal to 378.0 kip corresponding 

to a displacement of 11.86 in. (3.80% drift). The displacement ductility capacity of both 
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the right column and the bridge bent was found to be 5.82, as shown in Fig. 6.9.  

The capacity envelope for Precast-1 is presented in Fig. 6.10 including the four 

previously mentioned performance points. Compared to CIP, it is observed that Precast-1 

had a smaller displacement capacity; in addition, core crushing occurred before bar 

fracture for bent Precast-1.  

 

Analysis Results for Bent Precast-2 

Precast-2 had a relatively good hysteresis response which was terminated during 

the first cycle of the 6% drift ratio due to crushing of the concrete core under 

compression; this occurred at a displacement equal to 17.16 in. which is equivalent to a 

5.50% drift ratio. Subsequently, 10 column bars fractured because of low-cycle fatigue 

during the second cycle of the 6% drift ratio. Hence, crushing of the core governs the 

displacement capacity of the system at 5.5%drift ratio. Fig. 6.11 presents the hysteresis 

response of Bent Precast-2 in which core crushing occurs prior to bar fracture.  

Precast-2 achieved a peak force capacity equal to 362.5 kip corresponding to a 

displacement of 12.39 in. (3.97% drift). The displacement ductility capacity of the right 

column was 6.48, whereas the displacement ductility capacity of the bridge bent was 

6.47. This is shown in Fig. 6.12 for both cases, using the cyclic envelopes (without the P-

Δ effect) and idealized curves.  

The capacity envelope of Bent Precast-2 which was constructed using the cyclic 

response is shown in Fig. 6.13. It contains useful information on the performance of the 

bent by showing the points at which first bar yielding, crushing of the cover, crushing of 

the core, and bar fracture happened.  
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Comparison of the Three Bent Systems 

Under the imposed cyclic displacement history, the three bridge bents had a 

similar response in terms of the lateral force capacity. This can be seen in Fig. 6.14 in 

which a pushover comparison is provided. Precast-2 had a slightly smaller force capacity 

which is due to the fact that the column bars were located ¾ in. closer to the centroid of 

the cross-section. This was carried out to keep the 2-in. cover consistent for all three 

bents—a scenario that would be implemented for actual construction. On the other hand, 

Bent Precast-1 had a slightly larger force capacity; this is attributed to the increased level 

of sectional demands as a result of the reduction in the assigned plastic hinge length.  

The application of the intentional debonding for the dowels of Precast-2 resulted in a 

reduced postcracking stiffness compared to the other two bents. In addition to debonding, 

the reduced stiffness was caused in part due to a smaller sectional moment arm for the 

column bars of this bent. As anticipated, the most important performance difference was 

found in displacement capacity of the three bent models. CIP which failed due to the low-

cycle fatigue column bar fracture had a displacement capacity of 18.72 in., whereas, 

bents Precast-1 and Precast-2, both of which failed because of crushing of the concrete 

core, reached an ultimate displacement equal to 14.35 in. and 17.16 in., respectively. 

Therefore, the precast bents achieved a smaller displacement ductility capacity compared 

to CIP. Table 6.2 provides a comparison between the performance capacities of the three 

bents.  
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Nonlinear Time-History Analysis 

Nonlinear dynamic analysis may be required by the bridge design codes for 

irregular bridges located in seismic regions. A series of nonlinear dynamic analyses were 

performed to study the demand levels of the three bridge bent alternatives under historic 

ground motions. The objective was to investigate the nonlinear dynamic response of the 

bridge bents and compare the displacement demand levels with the predicted capacity. 

Also, it was intended to compare the displacement demand levels among the three bent 

alternatives.  

The computational model used for the nonlinear time-history analyses was 

identical to the model which was used for the cyclic analysis in the previous section (Fig. 

6.4). A nodal mass equal to 0.9478 kip-s2/in., 0.9669 kip-s2/in., and 0.9478 kip-s2/in. was 

applied to Node 8, Node 9, and Node 10, respectively, including the tributary dead 

weight of the structural components in addition to the 5% ALI for the columns. A 

stiffness-proportional damping was incorporated using a 5% damping ratio. An average 

acceleration method was adopted for the iterative solution process.  

 

Selection of Ground Motions 

AASHTO Guide Specifications requires at least three spectrally matched ground 

motion records for a time-history analysis. It was assumed that this bridge bent was 

located in downtown Salt Lake City, Utah, which is in close proximity to active normal 

faults capable of producing major ground shaking. Site Class D (stiff soil) was used to 

determine the design response spectrum that is based on the USGS ground motion maps 

with 7% chance of exceedance in 75 years (or a return period equal to 1035 years). Using 
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the USGS design maps tool, the design spectral coefficients were found to be 0.489 g for 

the effective peak ground acceleration (As), 1.167 g for the short-period spectral 

acceleration (SDS), and 0.666 g for the long-period spectral acceleration (SD1). Since the 

one-second period design spectral acceleration exceeds 0.50 g, this bridge is considered 

to be in seismic design category (SDC) D which implies that downtown Salt Lake City is 

among the regions of highest seismicity.  

The PEER Ground Motion Database was used to find records that were 

representative of the seismic characteristics for the bridge location. Priority was given to 

earthquake magnitude, faulting mechanism, proximity to fault rupture, and finally site 

class condition. To study near-field effects, four pulse-like ground motions were selected 

with a Joyner-Boore distance of less than 10 km. Another suite of ground motions were 

also selected which included four independent records without a distinct pulse in the 

velocity time-history. Table 6.3 contains the eight selected events used in this study, 

while Fig. 6.15 shows the design acceleration response spectrum along with the 

acceleration response spectra for the selected records. 

The principal components of the ground motions were found by obtaining the 

transformed acceleration records following the procedure outlined in Bartlett (2004). 

Subsequently, the events were spectrally matched using SeismoMatch, then baseline-

corrected in SeismoSignal to remove the unwanted drift that was introduced into the 

records (SeismoSoft 2013). The response spectra for the processed records are shown in 

Fig. 6.16. The time-histories for two records, one pulse-like (Montenegro) and one not 

pulse-like (Iwate), are shown in Fig. 6.17 and Fig. 6.18, respectively, including both the 

unmatched (after transformation) and spectrally matched condition. 
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In addition to the eight selected ground motions, four more extreme conditions 

were considered for each bent by applying a uniform scale factor of 1.5 and 2.0 to the 

ground accelerations of Montenegro and Iwate records. This was carried out to 

investigate the response at a near-failure condition. Therefore, each of the three bridge 

bents was studied under 12 records overall.  

 

Analysis Results for Bent CIP 

The fundamental natural period for the bridge bent CIP was found to be 0.436 s. 

The force-drift response of CIP was constructed and plotted with the CIP capacity 

envelope for the selected ground motions as shown Fig. 6.19. The largest drift demand 

for bent CIP was achieved under Iwate with a 1.97% drift ratio corresponding to a 6.15-

in. bent displacement. Compared to the capacity envelope, the demand was beyond 

crushing of the concrete cover which implies a relatively large spalling close to column-

footing and column-cap beam interfaces. However, compared to the CIP drift capacity of 

6%, the capacity-to-demand ratio for this particular record was equal to 3.05. Table 6.4 

includes drift demands for all ground motions along with the corresponding capacity to 

demand ratio. The average peak drift demand was found to be 1.77% (5.52 in.) which 

results in a capacity-to-demand ratio equal to 3.40. The bent displacement response is 

presented in Fig. 6.20 for the eight ground motions.  

The application of a uniform scale factor of 1.5 and 2 for the ground acceleration 

records resulted in a magnified bent displacement response as presented in Fig. 6.21 for 

Montenegro and Iwate ground motions. The increased demand was more pronounced 

under the scaled Montenegro with a peak drift demand equal to 2.90% (9.05 in.) and 



280 
 

 

5.57% (17.38 in.) resulting in a capacity-to-demand ratio of 2.07 and 1.08 for a scale 

factor of 1.5 and 2.0, respectively. For the scaled Iwate record, a peak drift demand equal 

to 2.43% (7.58 in.) and 2.88% (8.99 in.) was achieved which implies a capacity-to-

demand ratio of 2.47 and 2.08 for a scale factor of 1.5 and 2.0, respectively. Compared to 

the capacity envelope, bent CIP did not fail under these scaled records even though the 

drift demand was considerably close to bar fracture and the onset of concrete core 

crushing under Montenegro with a scale factor equal to 2.0. Strain reversals for the 

column bars were not large enough to cause a low-cycle fatigue bar fracture for any of 

the ground motions. Fig. 6.22 shows the bent displacement response for the scaled 

ground motions, and Table 6.5 includes the capacity-to-demand ratios for bent CIP under 

the scaled Montenegro and Iwate.  

 

Analysis Results for Bent Precast-1 

The fundamental natural period of the bridge bent Precast-1 was 0.436 s. Fig. 6.23 

shows the force-drift response of bent Precast-1 to the eight ground motions compared 

against the capacity envelope with the performance points of reinforcing bar yield, cover 

crushing, core crushing, and low-cycle fatigue bar fracture. The largest drift demand 

equal to 1.90% (5.93 in.), was achieved under the Iwate and Superstition Hills events, 

and corresponds to a capacity-to-drift ratio of 2.42 considering the Precast-1 drift 

capacity of 4.6% against core crushing. In terms of the damage state at the end of the 

response, most of the ground motions caused crushing of the 2-in. cover close to the two 

ends of all columns. The average peak drift demand was found to be 1.75% (5.46 in.) 

corresponding to a capacity-to-demand ratio of 2.62. Table 6.6 includes drift demands 
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and capacity-to-demand ratios for all ground motions. The bent displacement response is 

shown Fig. 6.24 for all records. 

Bent Precast-1 had an increased response under the uniformly-scaled Montenegro 

and Iwate. Fig. 6.25 shows that the drift demand under Montenegro with a scale factor of 

2.0 exceeded core crushing and bar fracture which implied a failure condition; however, 

plastic strain reversals were not severe enough to cause a low-cycle fatigue bar fracture. 

For the scaled Iwate with both 1.5 and 2.0 factors, the drift demand went well beyond the 

cover crushing condition which indicates a complete spalling in the plastic hinge regions 

for all columns. The peak drift demand was 2.61% (8.14 in.) and 5.58% (17.41 in.) 

corresponding to a capacity-to-demand ratio of 1.76 and 0.82, under Montenegro with a 

scale factor of 1.5 and 2.0, respectively. For the scaled Iwate record, a peak drift demand 

equal to 2.50% (7.80 in.) and 3.00% (9.36 in.) was achieved which implies a capacity-to-

demand ratio of 1.84 and 1.53 for the scale factor of 1.5 and 2.0, respectively. Fig. 6.26 

shows the bent displacement response for the two scaled records, and Table 6.7 contains 

the demand levels due to the scaled Montenegro and Iwate. 

 

Analysis Results for Bent Precast-2 

The fundamental natural period of Precast-2 was 0.439 s. The force-drift response 

of this bridge bent under the eight ground motions is shown in Fig. 6.27, with the 

capacity curve for Precast-2. The largest drift demand was found to be 2.08% (6.49 in.) 

due to Iwate; this corresponds to a capacity-to-demand ratio of 2.64 for Precast-2 with a 

drift capacity equal to 5.5% against core crushing. The demand resulted in crushing of the 

cover adjacent to the column-footing and column-cap beam interface for all three 
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columns. Table 6.8 includes the capacity-to-demand ratios for all ground motions. The 

average peak drift demand was 1.9% (5.93 in.) resulting in a capacity-to-demand ratio of 

2.90. The bent displacement response is shown in Fig. 6.28 for all ground motions. 

An amplified response was achieved as a result of the uniformly-scaled records as shown 

in Fig. 6.29 for both Montenegro and Iwate. This was more critical for Montenegro with 

a scale factor of 2.0 as Precast-2 reached a peak drift equal to 5.79% (18.06 in.) which 

exceeded the threshold for the core crushing implying failure condition, but stayed below 

the onset of bar fracture. The capacity-to-demand ratio for Montenegro with scale factor 

of 2.0 was 0.95. Precast-2 had a peak drift equal to 3.61% (11.26 in.) under Montenegro 

with a scale factor of 1.5 which corresponds to a drift capacity-to-demand ratio of 1.52. 

The peak drift due to the scaled Iwate was found to be 2.42% (7.55 in.) and 2.72% (8.49 

in.) for the scale factor equal to 1.5 and 2.0, respectively, exceeding the cover spalling 

capacity but still considered to be in a functional condition as the capacity-to-demand 

ratio was 2.27 and 2.02, respectively. Table 6.9 includes the demands under the 

uniformly-scaled Montenegro and Iwate, while Fig. 6.30 shows the displacement 

response of bridge bent Precast-2.  

 

Comparison of the Three Bent Systems 

Overall, the three bent alternatives had a comparable response to the ground 

motions. Table 6.10 and Table 6.11 include the peak drift ratios achieved for every bent 

system under each ground motion for the original eight records and the uniformly-scaled 

records, respectively. The tabulated drift ratios along with the resulting capacity-to-

demand ratios suggest that the demand levels were of a similar order of magnitude, 
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particularly for bents CIP and Precast-1. On the other hand, bent Precast-2 drift demands 

were larger for six out of eight ground motions which is due mostly to the intentional 

debonding implemented for the footing and cap beam dowel bars. Moreover, the flexural 

stiffness of bent Precast-2 columns was slightly smaller as the column bars were ¾-in. 

closer to the column cross-sectional centroid to keep the minimum cover constant for all 

three bent systems. Fig. 6.31 presents the drift demands for all bridge bents under all 

ground motions considered in this study; it also includes the drift capacity of each bent 

using horizontal lines in respective colors. Drift demands were increased under Iwate 

with a scale factor of 1.5 and 2.0 and Montenegro with a scale factor of 1.5 for the three 

bents, but did not cause failure. However, Montenegro with a uniform scale of 2.0 

resulted in a failure for the two precast bents as the drift demands exceeded the onset of 

concrete core crushing criteria. Low-cycle-fatigue bar fracture did not occur for any of 

the bridge bents as a result of the nonlinear time-history analyses. 

Fig. 6.32 shows the drift capacity-to-demand ratios for the three bents under all 12 

ground motions. Among the three bent alternatives and under the original eight ground 

motions, CIP and Precast-1 had the highest and lowest drift capacity-to-demand ratios, 

with Precast-2 always in between, except under Darfield for which Precast-2 achieved a 

smaller drift capacity-to-demand ratio than Precast-1. This ratio remained above 3.05, 

2.42, and 2.62 for CIP, Precast-1, and Precast-2, respectively. For the scaled records, the 

three bent alternatives achieved a drift capacity-to-demand ratio above 1.0 under Iwate 

with a scale factor of 1.5 and 2.0, and Montenegro with a scale factor of 1.5. Bents 

Precast-1 and Precast-2 failed due to Montenegro with a scale factor of 2.0, as both 

reached the threshold of core crushing; for this scaled record, a capacity-to-drift ratio of 
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1.08, 0.82, and 0.95 was achieved for CIP, Precast-1, and Precast-2, respectively.  

Two parameters were found to affect the dynamic response of the bridge bents 

simulated with the proposed modeling strategy: pseudo modulus of the steel reinforcing 

bars and the plastic hinge length. It was noted that a reduction in the pseudo modulus 

resulted in an increase in the natural period of the system because of the consequent 

reduction in stiffness. This was anticipated as it is perceived that slippage of reinforcing 

bars or application of intentional debonding, both of which were implicitly modeled 

herein by obtaining a reduced steel modulus, would elongate the vibration period of the 

structural system. The plastic hinge length was found to have a smaller effect on the 

response compared to the pseudo modulus. A reduction in the plastic hinge length caused 

a slight reduction in the natural period of the system. This was attributed to an increase in 

the stiffness as an unreduced nominal reinforcing bar modulus of 29000 ksi was used 

outside the plastic hinge area. Depending on the characteristics of the ground motion 

records, the period change may result in a different response.  

 

Conclusions 

In the absence of experiments on full-scale precast bridge substructures connected 

with grouted splice sleeves, this chapter was developed to ascertain the performance of 

such components. A typical multicolumn bridge bent was designed and detailed in 

accordance with the current recommendations of bridge seismic design codes to achieve a 

ductile performance. Three bent systems were considered, one cast-in-place bridge bent 

with monolithic details (CIP), one precast bent composed of precast columns with 

grouted splice sleeves in the footings and the cap beam (Precast-1), and one precast bent 
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made of precast columns with grouted splice sleeves in the column and debonded footing 

and cap beam dowel bars (Precast-2). The mathematical models used to simulate the 

structures were constructed based on the modeling strategy which was developed and 

validated in previous chapters. Static cyclic analysis was performed to find the capacity 

of the bridge bents, as if these bents were tested under a quasi-static cyclic displacement 

history, and nonlinear time-history analysis was performed using eight spectrally 

matched records to obtain the demand levels. The findings are summarized as follows: 

• The static cyclic analysis revealed that strength of the three bents was similar, but 

displacement capacity of the precast bridge bents was smaller than that of bent 

CIP.  

• Bent CIP had a displacement capacity of 18.72 in. (6.0% drift) and a displacement 

ductility capacity of 7.04. The displacement ductility capacity of a column in this 

bridge bent was 7.09 which was close to the design objective equal to 7.00. Bent 

CIP failed due to low-cycle fatigue fracture of the column bars at 6.0% drift ratio. 

• Precast-1 had a reduced displacement capacity of 14.35 in. (4.6% drift); both the 

bridge bent and the column achieved a displacement ductility of 5.82. Precast-1 

failed due to crushing of concrete core prior to the low-cycle fatigue bar fracture 

at 5.0% drift ratio. 

• Bent Precast-2 had a reduced displacement capacity of 17.16 in. (5.5%) and a 

displacement ductility capacity of 6.47. The displacement ductility capacity of a 

column in this bridge bent was 6.48. Precast-2 failed due to crushing of the 

concrete core prior to the low-cycle fatigue bar fracture at 6% drift ratio. 

• The nonlinear time-history analysis revealed that the displacement demands due 
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to the spectrally matched suite of ground motions are below the displacement 

capacity for both cast-in-place and precast bridge bents. A peak displacement 

demand equal to 6.15 in. (1.97% drift), 5.93 in. (1.90% drift), and 6.49 in. (2.08% 

drift) was achieved for bents CIP, Precast-1, and Precast-2, respectively. 

• Compared to displacement capacity of the bridge bents under study, an acceptable 

level of remaining displacement capacity was available before failure occurs for 

the three bent systems. A drift capacity-to-demand ratio of 3.1, 2.4, and 2.6 was 

achieved for bents CIP, Precast-1, and Precast-2, respectively, using the peak drift 

demand.  

• Compared to capacity envelopes and performance points, damage to the columns 

under the spectrally matched records consisted of yielding of main column bars 

and spalling of the cover. 

• The precast bridge bents failed under a pulse-like ground motion with a uniform 

scale factor of 2.0 due to crushing of the concrete core. Low-cycle-fatigue bar 

fracture did not occur for any of the bridge bents as a result of the nonlinear time-

history analyses.  

• Debonding of the dowel bars increased the displacement capacity as well as 

displacement demands for Precast-2. Further investigation is needed to make a 

comprehensive assessment of debonding effects on the overall performance.  
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Table 6.1. Bridge bent models. 

Bent No. Designation Details 

1 CIP Monolithic construction 

2 Precast-1 GSS connectors inside footings and cap beam 

3 Precast-2 GSS connectors in column, debonding in footings and cap 

beam 

 

 

Table 6.2. Comparison between the three bent systems. 

Bridge 
Bent 

Failure 
Mode 

Ultimate 
Drift (%) 

Effective Yield 
Displacement 

(in.) 

Ultimate 
Displacement 

(in.) 

Displacement 
Ductility 
Capacity 

Peak Force 
Capacity 

(kip) 
CIP LCF bar 

fracture 
6.0 2.66 18.72 7.04 370.0 

Precast-1 Crushing of 
core 

4.6 2.47 14.35 5.82 378.0 

Precast-2 Crushing of 
core 

5.5 2.65 17.16 6.47 362.5 
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Table 6.3. Characteristics of time-histories used in this study. 

 

*Rjb is the Joyner-Boore distance (The shortest distance to the surface projection of the 
rupture plane). 
**Rrup is the closest distance to the rupture plane. 
 

 

Table 6.4. Drift demands and capacity-to-demand ratios for CIP. 

No. Ground Motion Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Irpinia 1.25 1.76 1.76 3.41 
2 Montenegro 1.33 1.76 1.76 3.41 
3 Darfield 1.28 1.68 1.68 3.57 
4 El Mayor 1.71 1.48 1.71 3.51 
5 Corinth 0.94 1.65 1.65 3.64 
6 Iwate 1.97 1.08 1.97 3.05 
7 Kobe 1.72 1.25 1.72 3.49 
8 Superstition Hills 1.87 1.49 1.87 3.21 
   Average =  1.77 3.40 

 

  

No. Event Year Mw Station Mechanism Rjb* Rrup** Pulse Site Class

(km) (km)

1 Irpinia_ Italy-01 1980 6.90 Sturno Normal 6.78 10.84 Yes C

2 Montenegro_ Yugoslavia 1979 7.10 Ulcinj-Hotel Olimpic Reverse 3.97 5.76 Yes D

3 Darfield_ New Zealand 2010 7.00 DSLC Strike Slip 5.28 8.46 Yes D

4 El Mayor-Cucapah_ Mexico 2010 7.20 Westside Elementary Strike Slip 10.31 11.44 Yes D

5 Corinth_ Greece 1981 6.60 Corinth Normal 10.27 10.27 No D

6 Iwate_Japan 2008 6.90 IWTH24 Reverse 3.10 5.18 No C

7 Kobe_ Japan 1995 6.90 Amagasaki Strike Slip 11.34 11.34 No D

8 Superstition Hills-02 1987 6.54 Westmorland Fire St. Strike Slip 13.03 13.03 No D
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Table 6.5. CIP drift demands and capacity-to-demand ratios for uniformly scaled records. 

No. Ground Motion Scale 
Factor 

Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Montenegro-1.5 1.5 2.90 1.59 2.90 2.07 
2 Montenegro-2 2.0 5.57 1.36 5.57 1.08 
3 Iwate-1.5 1.5 2.22 2.43 2.43 2.47 
4 Iwate-2 2.0 2.54 2.88 2.88 2.08 

 

 

Table 6.6. Drift demands and capacity-to-demand ratios for Precast-1. 

No. Ground Motion Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Irpinia 1.28 1.77 1.77 2.60 
2 Montenegro 1.30 1.77 1.77 2.60 
3 Darfield 1.29 1.57 1.57 2.93 
4 El Mayor 1.72 1.44 1.72 2.67 
5 Corinth 0.96 1.65 1.65 2.79 
6 Iwate 1.90 1.05 1.90 2.42 
7 Kobe 1.74 1.27 1.74 2.64 
8 Superstition Hills 1.90 1.54 1.90 2.42 
   Average =  1.75 2.62 

 

 
Table 6.7. Precast-1 drift demands and capacity-to-demand ratios for uniformly scaled 

records. 

No. Ground Motion Scale 
Factor 

Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Montenegro-1.5 1.5 2.61 1.65 2.61 1.76 
2 Montenegro-2 2.0 5.58 1.26 5.58 0.82 
3 Iwate-1.5 1.5 2.22 2.50 2.50 1.84 
4 Iwate-2 2.0 2.46 3.00 3.00 1.53 

 

  



291 
 

 

Table 6.8. Drift demands and capacity-to-demand ratios for Precast-2. 

No. Ground Motion Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Irpinia 1.36 1.76 1.76 3.13 
2 Montenegro 1.90 1.63 1.90 2.89 
3 Darfield 1.53 1.90 1.90 2.89 
4 El Mayor 1.59 2.04 2.04 2.70 
5 Corinth 1.09 1.63 1.63 3.37 
6 Iwate 2.08 1.16 2.08 2.64 
7 Kobe 1.90 1.42 1.90 2.89 
8 Superstition Hills 1.98 1.60 1.98 2.78 
   Average =  1.90 2.90 

 

 

Table 6.9. Precast-2 drift demands and capacity-to-demand ratios for uniformly scaled 
records. 

No. Ground Motion Scale 
Factor 

Pos. Drift 
(%) 

Neg. Drift 
(%) 

Peak Drift 
(%) C/D 

1 Montenegro-1.5 1.5 3.61 1.04 3.61 1.52 
2 Montenegro-2 2.0 5.79 1.54 5.79 0.95 
3 Iwate-1.5 1.5 2.16 2.42 2.42 2.27 
4 Iwate-2 2.0 2.60 2.72 2.72 2.02 
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Table 6.10. Drift demands for the three bents. 

  CIP Precast-1 Precast-2 

No. Ground Motion Peak Drift 
(%) C/D Peak Drift 

(%) C/D Peak Drift 
(%) C/D 

1 Irpinia 1.76 3.41 1.77 2.60 1.76 3.13 
2 Montenegro 1.76 3.41 1.77 2.60 1.90 2.89 
3 Darfield 1.68 3.57 1.57 2.93 1.90 2.89 
4 El Mayor 1.71 3.51 1.72 2.67 2.04 2.70 
5 Corinth 1.65 3.64 1.65 2.79 1.63 3.37 
6 Iwate 1.97 3.05 1.90 2.42 2.08 2.64 
7 Kobe 1.72 3.49 1.74 2.64 1.90 2.89 
8 Superstition Hills 1.87 3.21 1.90 2.42 1.98 2.78 
 Peak = 1.97 3.05 1.90 2.42 2.08 2.64 
 Average = 1.77 3.40 1.75 2.62 1.90 2.90 

 

 

Table 6.11. Drift demands for the three bents under uniformly scaled ground motions. 

   CIP Precast-1 Precast-2 

No. Ground Motion Scale 
Factor 

Peak Drift 
(%) C/D Peak Drift 

(%) C/D Peak 
Drift (%) C/D 

1 Montenegro-1.5 1.5 2.90 2.07 2.61 1.76 3.61 1.52 
2 Montenegro-2 2.0 5.57 1.08 5.58 0.82 5.79 0.95 
3 Iwate-1.5 1.5 2.43 2.47 2.50 1.84 2.47 2.23 
4 Iwate-2 2.0 2.88 2.08 3.00 1.53 2.72 2.02 
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Fig. 6.1. Details of bridge bent CIP. 

  



294 
 

 

 

Fig. 6.2. Details of bridge bent Precast-1. 
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Fig. 6.3. Details of bridge bent Precast-2. 
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Fig. 6.4. Computational model schematic.  
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Fig. 6.5. Hysteresis response of CIP. 
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Fig. 6.6. Displacement ductility capacity for CIP: (a) right column, 𝜇𝜇𝐶𝐶 = 7.09; (b) bridge 
bent, 𝜇𝜇𝐶𝐶 = 7.04. 
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Fig. 6.7. Capacity envelope for CIP. 
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Fig. 6.8. Hysteresis response of Precast-1. 
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Fig. 6.9. Displacement ductility capacity for Precast-1: (a) right column, 𝜇𝜇𝐶𝐶 = 5.82; (b) 
bridge bent, 𝜇𝜇𝐶𝐶 = 5.82. 

  



302 
 

 

 

Fig. 6.10. Capacity envelope for Precast-1. 
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Fig. 6.11. Hysteresis response of Precast-2. 
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Fig. 6.12. Displacement ductility capacity for Precast-2: (a) right column, 𝜇𝜇𝐶𝐶 = 6.48; (b) 
bridge bent, 𝜇𝜇𝐶𝐶 = 6.47. 
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Fig. 6.13. Capacity envelope for Precast-2. 

  



306 
 

 

 

Fig. 6.14. Pushover comparison of the bridge bents. 
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Fig. 6.15. Design acceleration response spectrum and unmatched response spectra. 
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Fig. 6.16. Design acceleration response spectrum and matched response spectra. 
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Fig. 6.17. Time-histories for Montenegro ground motion (pulse-like). 
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Fig. 6.18. Time-histories for Iwate ground motion (not pulse-like). 
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Fig. 6.19. Force-Drift response of CIP to ground motions. 
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Fig. 6.20. CIP displacement response to ground motions. 
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Fig. 6.20 (continued).  
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(a) 

 

(b) 

Fig. 6.21. Force-Drift response of CIP to uniformly scaled ground motions: (a) scale 
factor of 1.5; (b) scale factor of 2.0. 
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Fig. 6.22. CIP displacement response to uniformly scaled ground motions. 
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Fig. 6.23. Force-Drift response of Precast-1 to ground motions. 
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Fig. 6.24. Precast-1 displacement response to ground motions. 
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Fig. 6.24 (continued).  



319 
 

 

  

(a) 

 

(b) 

Fig. 6.25. Force-Drift response of Precast-1 to uniformly scaled ground motions: (a) scale 
factor of 1.5; (b) scale factor of 2.0. 
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Fig. 6.26. Precast-1 displacement response to uniformly scaled ground motions. 
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Fig. 6.27. Force-Drift response of Precast-2 to ground motions. 
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Fig. 6.28. Precast-2 displacement response to ground motions. 



323 
 

 

 

 

 

 

Fig. 6.28 (continued).  
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(a) 
(a) 

 

(b) 

Fig. 6.29. Force-Drift response of Precast-2 to uniformly scaled ground motions: (a) scale 
factor of 1.5; (b) scale factor of 2.0. 

  



325 
 

 

 

 

 

 

Fig. 6.30. Precast-2 displacement response to uniformly scaled ground motions.  



326 
 

 

 

Fig. 6.31. Comparison of drift demands for all bridge bents (horizontal lines indicate drift 
capacity of respective bents). 
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Fig. 6.32. Comparison of drift capacity-to-demand ratios for all bridge bents. 



CHAPTER 7 

 

CONCLUSIONS 

 

The grouted splice sleeve connection was studied for accelerated bridge 

construction in high-seismic regions. The research program described in this dissertation 

was executed to ascertain the performance of two proprietary grouted splice sleeve 

connectors used in different configurations within the bridge substructure. It was found 

that the strength properties of all half-scale test subassemblies were comparable 

indicating a moment-resisting connection type; however, the specimens had distinct 

displacement capacities when the location of the connectors was changed. 

 

Experiments 

The experimental data analysis provided both qualitative and quantitative 

measures to study the performance of the specimens under quasi-static cyclic loads. The 

summary of the findings from the experimental data analysis is presented separately for 

each category of specimens. The conclusions for the column-to-cap beam subassemblies 

with FGSS connectors are as follows: 

• A reduced displacement capacity was achieved for the precast subassemblies. The 

cast-in-place control specimen had a ductile response up to a 10% drift ratio when 

column bars fractured due to low-cycle fatigue. The precast subassembly with FGSS 
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connectors in the column end (FGSS-1) failed during the 6% drift ratio because of bar 

pullout, while the precast specimen with FGSS connectors in the cap beam (FGSS-2) 

failed during the 7% drift ratio when a column bar fractured prematurely due to low-

cycle fatigue.  

• A localized damage was noted for FGSS-1 with few flexural cracks along the column, 

whereas FGSS-2 had a similar damage state to the control specimen. 

• A displacement ductility capacity of 9.9, 4.9, and 5.8 was obtained for the control 

specimen, FGSS-1, and FGSS-2, respectively, which is greater than the minimum 

component displacement ductility capacity of 3.0 specified in the Caltrans SDC. The 

displacement ductility capacity obtained for FGSS-2 is greater than the maximum 

displacement ductility demand of 5.0 for single column bents specified in the 

AASHTO Guide Specifications.  

The findings for the column-to-footing connections which incorporated GGSS 

connectors are as follows: 

• All of the subassemblies failed due to low-cycle fatigue bar fracture. The precast 

subassemblies failed prematurely because of strain concentration in dowel bars 

outside the connectors adjacent to the column-footing interface.  

• The precast subassembly with GGSS connectors in the column end (GGSS-1), along 

with the precast subassembly with GGSS connectors in the column end and debonded 

bars in the footing (GGSS-3), had a localized damage near the column-footing 

interface. Bond-slip rotation comprised at least 60% of the column displacement 

capacity for GGSS-1 and GGSS-3. The precast subassembly with GGSS connectors 

in the footing (GGSS-2) had a distributed damage state which was similar to the 
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control specimen. 

• A displacement ductility capacity of 8.9, 5.4, 6.1, and 6.8 was obtained for the control 

specimen, GGSS-1, GGSS-2, and GGSS-3, respectively, which exceeds the minimum 

component displacement ductility capacity of 3.0 specified in the Caltrans SDC, as 

well as the maximum displacement ductility demand of 5.0 for single column bents 

specified in the AASHTO Guide Specifications. 

 

Computational Study 

A simplified computational modeling strategy was developed for seismic 

assessment of precast bridge columns connected to precast footings using GGSS 

connectors. The computational model was developed and validated using three half-scale 

bridge subassemblies tested to failure. Force-based beam-column elements with fiber 

sections were used to construct the proposed model based on plastic hinge weighted 

integration; the model included low-cycle fatigue and bond-slip. A summary of findings 

is offered: 

• The one-dimensional idealization of a bar grouted inside a GGSS connector which 

included both the bar elongation component and bond-slip component was able to 

determine the overall response of the connector under monotonic tensile loads. 

• Results from the column computational models were in close agreement with both the 

global and local response of the test subassemblies implying that the modeling 

strategy was capable of addressing the reduced displacement capacity of the precast 

columns. The largest absolute error between the models and experiments was 6% and 

11% in terms of peak lateral force and peak curvature, respectively. 
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• The plastic hinge length of the cast-in-place control specimen (CIP) which was 

obtained iteratively is in close agreement with empirical relationships. The fictitious 

plastic hinge length determined for Precast-1 (GGSS in footing) and Precast-2 (GGSS 

in column end and debonded bars in footing) was found to be 4/6 and 5/6 times that 

of CIP, respectively. 

 

Parametric Study 

A parametric study was conducted on actual size bridge columns to assess the 

accuracy of the proposed modeling strategy introduced in Chapter 4. The objective was to 

ascertain the applicability of the proposed model to both cast-in-place monolithic 

columns and precast bridge columns with grouted splice sleeve connectors. Two 

alternatives were considered: a cast-in-place column with monolithic details (CIP) and a 

precast column with grouted splice sleeves in the column end and debonding of dowel 

bars in the footing (Precast-2). The findings of this parametric study are summarized as 

follows: 

• Results from the analyses are in good agreement with the anticipated behavior of 

reinforced concrete columns, based on mechanics, under changing parameters.  

• For the Precast-2 column model, sectional curvature was magnified when reduced 

plastic hinge lengths compared to the assumed plastic hinge length were incorporated. 

• The displacement ductility capacity of the Precast-2 column model remained 

relatively unchanged for values of the assumed plastic hinge length above the value 

established based on the half-scale experiments. 

• The parametric study showed that the proposed model was capable of capturing the 
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reduced displacement capacity of precast columns as a result of an increased sectional 

demand. 

 

Prototype Bridge Bents 

In the absence of experiments on full-scale precast bridge substructures connected 

with grouted splice sleeves, a prototype multicolumn bridge bent was designed and 

detailed in accordance with current recommendations of bridge seismic design codes to 

achieve a ductile performance. Three bent systems were considered, one cast-in-place 

bridge bent with monolithic details (CIP), one precast bent composed of precast columns 

with grouted splice sleeves in the footings and the cap beam (Precast-1), and one precast 

bent made of precast columns with grouted splice sleeves in the column and debonded 

footing and cap beam dowel bars (Precast-2). Nonlinear time-history analysis was 

performed using eight spectrally matched records to obtain the demand levels. The 

findings are summarized as follows: 

• The static cyclic analysis showed that the displacement capacity of the precast bridge 

bent models was smaller than that of bent model CIP. 

• The nonlinear time-history analysis revealed that displacement demands due to the 

spectrally matched ground motions were smaller than the displacement capacity for 

both CIP and precast bridge bent models. 

• Potential damage to the columns of the bent models consisted of yielding of column 

longitudinal bars and spalling of the cover under the spectrally matched ground 

motion records. 
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• A drift capacity-to-demand ratio of 3.1, 2.4, and 2.6 was achieved for bent models 

CIP, Precast-1, and Precast-2, respectively, using the maximum drift demand. 



CHAPTER 8 

 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Further research should be conducted to improve the existing knowledge on 

precast connections with grouted splice sleeve connectors for bridge substructures. This 

includes further experiments on large-scale subassemblies or tests on the connectors 

using improved grout properties and under various loading protocols, in addition to 

improvements to the computational model and the constitutive laws.  

Based on the experimental results of the subassemblies with FGSS connectors 

along with the FGSS connector tensile test results, it is apparent that an improved high-

strength grout can be utilized to prevent pullout failure of the dowel bars, thus achieving 

the tensile strength of the spliced bars. The one-dimensional bond-slip model developed 

in Chapter 4 of this dissertation shows that if the compressive strength of the grout were 

12.2 ksi (instead of the actual strength of 9.4 ksi), it would be possible to achieve bar 

fracture instead of pullout failure. Considering that the fastening capability (using the 

threaded end) is a viable feature of this specific type of splicing devices, further 

experiments should be carried out using grouts with a higher compressive strength.  

Three precast alternatives were studied in Chapter 3 of this dissertation. It is informative 

to experiment another alternative with GGSS connectors inside the footing and 

debonding of bars in the column plastic hinge region. However, since the high-strength 
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confined grout inside the footing will postpone and decrease the yield penetration which 

is advantageous to column displacement capacity, it would be more effective to make a 

recess at the top of the footing and debond the column dowel bars in the recessed region.  

Debonding of reinforcing bars has become a popular method for enhancing the 

deformability of precast connections. Even though existing experiments, including 

GGSS-3 which was discussed in Chapter 3, justify the usefulness of debonding, further 

research is needed to ascertain the effect of debonding on the response in more depth. In 

particular, it is important to understand the relationship between the debonded length and 

the reduction in bar strain, and subsequently the increase in displacement capacity.  

The application of the GGSS connection could be investigated in a hybrid setting. 

That is, mild steel is spliced by means of GGSS connectors while high-strength bars or 

tendons are utilized to achieve self-centering effects to reduce the residual drift and 

damage levels. If this is combined with mechanisms to increase the low-cycle fatigue life 

of the reinforcing bars, the resulting system will be resilient and suitable for applications 

in high seismic zones. 

A proposed analytical modeling strategy which includes a predefined plastic 

hinge length for precast columns with GGSS connectors was developed; currently 

empirical relationships are not available due to a very small number of experiments on 

such components. Given the current design procedure required by the bridge seismic 

design codes which uses an analytical plastic hinge length, it is useful to conduct a series 

of experiments with a sole objective of deriving an empirical plastic hinge relationship as 

a function of the effective parameters. 

The one-dimensional bond-slip model discussed in Chapter 4 was developed 
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based on experiments on bars grouted in ducts. Experiments are needed to be performed 

on bars grouted in GGSS or FGSS connectors to derive more accurate constitutive laws 

for the unconfined and confined regions of the embedded bars in sleeve connectors. 

Another level of improvement can be achieved by conducting cyclic tests in addition to 

monotonic tests. Therefore cyclic effects could be included. 

Although the tested columns had an octagonal cross section, the computational 

model used an equivalent circular column because of a simpler fiber discretization 

available for circular sections in OpenSees. Even though this has a relatively minor effect 

on the overall response of the model, an automated discretization of typical concrete 

sections can result in higher level of accuracy.  

Lumped plasticity models can be used to simulate the response of bond-critical 

structural components such as the subassemblies that incorporated FGSS connectors. 

These particular models are especially useful when all the deterioration modes are to be 

investigated including pinching as a result of bond-slip effects. In addition, more accurate 

simulation of bond-slip effects may be possible by combining the distributed plasticity 

models (to include flexural response) and the lumped plasticity models (to include the 

bond-slip response).  
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