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ABSTRACT

Chapter 1 introduces a classic question from optimal foraging theory regarding space-

use strategies of a forager, and gives context for addressing similar questions in groups of

foraging ants.

Chapter 2 generalizes the marginal value theorem (MVT) model by describing a rate-

maximizing forager searching for pointwise resources with a specific searching distribution

around previous resource finds, and giving-up value (GUV) strategy at resources. The

model shows that the optimal ARS breadth increases, and the optimal GUV decreases,

with increased dispersion of the resource distribution.

Chapter 3 builds an agent-based model (ABM) and corresponding PDE model derived

from an isotropic diffusion limit. The model links individual movement biases in the presence

of pheromone to the colony-wide searching distribution. Parameterized with movement data

obtained from Tetramorium caespitum (the pavement ant), the model predicts bistability

in pheromonal recruitment at resource distances of 3 - 6 m; the onset-distance of bistability

increases with colony size.

Data collected from the field are used to estimate parameters of the PDE model for T.

caespitum in Chapter 4. The ability of T. caespitum to find autocorrelated resources during

recruitment is analyzed using a Cox proportional hazards model, the results of which are

compared to those predicted by the PDE model developed in Chapter 3. Finally, Chapter 5

develops a simulation to assess the effect of individual trail fidelity on the ability of a colony

to capitalize on autocorrelated resources in different resource scenarios; the results suggest

that T. caespitum is tuned to exploit large, nonautocorrelated resource distributions.



For my family.
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CHAPTER 1

INTRODUCTION

Optimal foraging theory (OFT) seeks to understand how foraging behavior has been

tuned by natural selection to optimize food collection. Two major goals of OFT are

to understand the optimal foraging strategy given a particular resource scenario, and to

determine how that strategy can be realized from the perspective of the forager using

information from its environment [65]. The latter goal is especially important when applying

OFT-based questions to an ant colony; here, a strategy that is optimal at the colony level

may require the coordination of thousands of individuals. Understanding how individual

behavior is tuned to facilitate this coordination and attain a desired colony-wide response

is a major challenge in applying OFT to colonies of ants.

A classic question in OFT concerns how foraging effort should be allocated by a soli-

tary forager in space when the resource distribution is heterogeneous [65]. One of the

earliest mathematical descriptions of space use strategies is given by Charnov’s 1976 patch

exploitation model. The model describes a rate-maximizing forager that must decide how

much time to spend in a patch before traveling to another, with diminishing returns at

each patch providing the impetus to leave. The optimal strategy is given by the so-called

marginal value theorem (MVT), which states that an optimal forager will leave a patch

when its instantaneous collection rate is equal to its longterm average collection rate. The

MVT result gives several qualitative predictions of foraging trends: a forager should remain

in a patch until its marginal rate of return is equal to its longterm collection rate, and all

patches should be depleted to the same giving-up density (GUD) [15].

Though useful in predicting a diversity of foraging trends, the MVT does not describe

the individual behaviors that gives rise to the optimal strategy [4]. A more mechanistic

development of space use in a rate-maximizing forager comes from the concept of area-

restricted search (ARS), a strategy in which a forager intensifies its search effort around a
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previous resource find by modifying attributes of its random walk [10, 13, 40]. Computer

simulation models have been used to understand how the forager’s search strategy should

vary with the resource distribution being foraged, and generally show that a smaller breadth

ARS around a previous find is optimal in more autocorrelated resource environments [61,79].

These models are able to qualitatively predict how aspects of the forager’s movements should

vary with its typical resource distribution to optimize collection.

Continuing this line of research, Chapter 2 presents a spatially explicit version of Charnov’s

patch exploitation model. The model describes a forager that searches for pointwise re-

sources in explicit 2D space and faces diminishing returns at a resource; the strategy it uses

is its ARS breadth and giving-up value (GUV) at a resource. The results show that the

optimal search breadth increases with spatial autocorrelation of the resource distribution,

and that the optimal GUV at a resource decreases with increased resource dispersion. This

model improves upon previous ARS work in that it contains both analytical and simulation

components, and includes a description of exploitation dynamics (the GUV) at the resource;

previous work assumes resource collection is instantaneous [61].

Ant colonies also benefit by directing searching effort to profitable regions of space;

however, coordinating the movements of many individual ants is a challenge, as individual

ants lack central leadership, operate on simple behavioral rules, and have small perceptual

radii that limit the amount of the environment that can be tracked, as well as communication

between individuals [35]. The behavioral response of a colony is realized by local information

transmitted between individuals, along with subsequent changes in individual behavior [24].

Of course, natural selection operates at the colony level; predicting the optimal individual

behavior that scales up to the optimal colony-wide behavior is a major challenge of applying

OFT to an ant colony.

Pheromonal recruitment is an example of a colony-wide behavior that serves as an

efficient means of directing individuals to a resource. During recruitment, an ant that

discovers a resource returns to the nest, laying a pheromone trail. At the nest, she prompts

nestmates to leave via “antennal beating” and trophollaxis (food sharing) [72]. The so-called

recruited nestmates follow the pheromone trail and repeat the recruitment process [35].

More generally, pheromonal recruitment is a means to efficiently spread information

through the colony. The rate at which information spreads is influenced by positive feed-



3

back as more individuals become recruiters, information decay as a result of pheromone

evaporation, and noise from differential success in following the pheromone trail. These

three factors give pheromonal recruitment the potential to act as a bistable system in 2D

space. If bistable, the longterm dynamics of the process can either equilibrate at high levels

of recruitment, with a strong pheromone trail and high levels of workers moving between the

nest and resource or low levels of recruitment, with a weak trail and few foragers outside

the nest. The equilibrial dynamics that are realized depend on the initial state of the

colony [9]. If present, bistability influences the ability of a colony to generate a colony-wide

foraging response, and has also been implicated in the evolution of group recruitment in

Tetramorium caespitum [18].

Understanding whether positive feedback, information decay, and noise give rise to

bistability requires a mathematical model. Though some experimental results suggest

bistability being prevalent in certain species during pheromonal recruitment, it is generally

difficult to untangle the effects of a particular experimental setup (i.e., a 1D or otherwise

limited foraging arena) [9, 18]. A mathematical model built from movement behavior can

be implemented on any foraging arena and used to understand the existence of bistability

from the perspective of an individual’s behavioral program.

Chapter 3 builds an agent-based model (ABM) and partial differential equation (PDE)

model that links individual movement biases in the presence of pheromone to the colony-

wide searching distribution, as well as exploitation dynamics at the resource. The ABM

allows the modeling description to start at the individual level, and incorporates stochas-

ticity in behavioral responses. The PDE model allows the results of the ABM to be clearly

interpreted without relying on the averages of many simulations. The model improves upon

past work by being spatially explicit, parameterized by individual behavior, and tracking the

positions and behavioral states of all individuals. The model result shows that pheromonal

recruitment is bistable in 2D space, and gives quantitative predictions of the distribution

of foragers at both high and low recruiting equilibria. Parameterized with T. caepsitum

movement parameters, the model shows that bistability is present in this system with an

onset at 3 - 6 m, depending on colony size.

A classic tradeoff in OFT applied to ants is between exploitation, or an efficient response

to an environmental opportunity, and exploration, the ability to quickly learn about new
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environmental opportunities that appear. The scout-recruit tradeoff, for example, seeks

to understand the optimal fraction of the colony that should be scouting the environment

for new finds, and the complement that stay at the nest ready to aid in exploitation [39].

The tradeoff also appears in the optimal number of nests to divide a colony into; a colony

divided into many nests is on average better at exploring its environment and tracking

newly appearing resources, but at a cost to recruitment capabilities due to smaller nest

sizes [19].

Another example of the exploration-exploitation tradeoff concerns the trail fidelity of

individuals during pheromonal recruitment. Ants following a pheromone trail make errors;

some become lost, and do not move directly from the nest to the resource [23]. Deneubourg

et al. (1983) hypothesized that this noise in the pheromonal recruitment process could

be tuned by natural selection to allow a colony to simultaneously exploit a resource and

search for spatially autocorrelated resources, generating a colony-wide ARS. In this scenario,

individual error in trail-following increases the spread of searching ants around a resource

being exploited, resulting in efficient finding of autocorrelated resources [23]. Though

Deneubourg et al. (1983) give empirical measurements of ants that differ in trail fidelity,

the experiment does not determine whether lost ants actually contribute to autocorrelated

resource finds.

This hypothesis is investigated with empirical experiments in Chapter 4. Using T.

caespitum as the study organism, empirical work shows that autocorrelated resources are

found more quickly during recruitment than the initial resource find. The parameterized

PDE model is validated by simulating scenarios similar to the empirical work, and is shown

to qualitatively match the empirical finding trends. In Chapter 5, a simulation model is

used to understand how trail fidelity could tune the recruitment process to capitalize on

autocorrelated resource distributions. The results indicate that T. caespitum’s trail fidelity

is tuned to maximize exploitation of single, large resources.



CHAPTER 2

A SPATIALLY EXPLICIT MARGINAL

VALUE MODEL

The marginal value theorem (MVT) provides an important framework for understanding

animal foraging behavior in patchy environments. The MVT describes a rate-maximizing

forager that must choose its foraging duration in a patch of food items before seeking out

another patch, and states that a forager should leave a patch when its marginal rate of food

collection in the patch is equal to its longterm average collection rate in the environment [15].

The impetus to leave comes from diminishing returns of food collection, attributed to patch

depletion and the subsequent increased search time to find resources within the patch. If

the forager remains in the patch for too long, this decreased collection rate becomes an

opportunity cost; the forager would be better off paying the travel time cost of moving to

a new patch [15].

The MVT gives three testable predictions of how organisms should forage in patchy

environments: 1) an organism should spend more time in higher quality patches before

departing; 2) patches should be depleted to the same “giving-up density” before departure,

regardless of their starting value; and 3) foragers should spend more time in patches when

the average travel travel time between patches is large. The MVT has been used to interpret

foraging behavior in a wide range of organisms, including ants [42], parasitoids [68, 74],

plants [49], and birds [58]. However, while it may be evident that a forager is following

qualitative predictions of the MVT (i.e., staying longer in more profitable regions of the

environment), the MVT gives little insight into how such a strategy is realized [4].

A more mechanistic development of the MVT comes from the concept of an area-

restricted search (ARS), where a forager searches with higher intensity after finding a

resource. Many organisms modify the intensity of search in response to information collected

from the environment, including nematodes searching for bacteria [34], ants searching
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for carbohydrate and protein food sources [30], bees searching for flowers [20], and birds

searching for marine prey [54,77]. In these examples, foraging success is a cue for animals to

adjust movement attributes so as to slow net displacement as the animal continues to search,

thus focusing searching activity on profitable parts of the environment. ARS provides a link

between qualitative foraging patterns that resemble predictions of the MVT with individual

movement behavior.

Random walk models have given insight into the value of particular individual search

strategies in different resource distributions. The search strategy is modeled as a series

of steps whose length and changes in direction are random variables. ARS results when

a forager reduces its net displacement, either by taking smaller steps or by increasing its

turning angle after locating a resource [10,13,40]. Simulations of solitary foragers following

a random walk show that the optimal movement rules of an individual depend on the

resource distribution in the environment; a more restricted search strategy performs better

when searching for patchier resources [61,79].

Empirical evidence shows that some organisms adjust the intensity of ARS according to

the type of resource that is encountered. For example, the Namaqua sand lizard’s (Pedio-

planis namaquensis) searching intensity (as measured by first passage times) is significantly

higher after consuming termite prey when compared to fly prey [27]. Searching intensity is

influenced by the anticipated distribution of other termites nearby; because termite colonies

are a clumped resource, ARS is more likely to result in subsequent finds. As a less clumped

resource, fly prey do not give information on the location of subsequent fly finds, decreasing

the benefits of subsequent ARS. Similarly, individual ants can adjust the breadth of their

ARS in response to the food type they are searching for [30,63,70]. Schultheiss and Cheng

(2012) presented Melophorus bagoti colonies with either a protein source (mealworm) or

carbohydrate resource (cookie crumbs). The ants were allowed to learn the resource’s

position for 2 days, after which the resource was removed and ant searching behavior was

observed. Foragers that had experienced cookie crumbs had tighter ARS’s than foragers that

experienced mealworms. In the field, M. bagoti encounters carbohydrate resources in the

form of plant exudates or aphid secretions; these sources are typically clustered on a plant,

and renewable. Protein resources are typically dead insects, and are not spatially clustered

or renewable. Schultheiss and Cheng argue that natural selection has primed the ants to
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better remember the spatial location of carbohydrate sources than protein sources [63].

Foragers that follow the MVT might benefit from an ARS strategy when a patch has

been depleted to its giving-up density or is rejected upon encounter. Though giving-up

densities of ants at a resource have not been directly measured, it is known that ants reject

sucrose and protein solutions below a threshold concentration [42]. An ant foraging on an

aphid’s honeydew secretions, for example, must decide a threshold intake rate at which

to abandon the aphid and seek out another; however, little is known of how a resource

encounter influences subsequent searching behavior once a resource is abandoned. The

goal of this paper is to build a spatially explicit model of a forager that exploits pointwise

resources in its environment, and link predictions of the MVT, such as the relationship

between giving-up density and inter-resource travel time, to predictions of the optimal ARS

intensity following the abandonment of a depleted resource. Specifically, this model will

connect the inter-resource travel time to a specific ARS search strategy.

Resource scenarios can pose different kinds of challenges for foragers: resources may

appear infrequently or disappear quickly, be dispersed throughout the environment (lack

a spatial signal), or be difficult to locate when present. This paper uses simulation and a

mathematical model, centered around a general, solitary forager, to investigate the optimal

search intensity following a resource find in each of these scenarios. Previous models of

optimal ARS have focused on resources that are collected instantaneously [61,79]; however,

resource exploitation by small organisms, such as ants on aphids or bees on flowers, can

represent a significant fraction of time spent foraging. This paper shows that the optimal

amount of time to spend foraging at a particular resource is influenced by the search strategy

chosen and the spatial distribution of resources in the environment. The mathematical

model describes an iterative process that ignores resource depletion by the focal forager. To

test the validity of the results under this assumption, they are compared to a nonrenewal

process version of our model that accounts for forager depletion. Comparison of the two

highlights when a forager’s strategy will be most influenced by the depletion that it causes.

Specifically, the model will address (1) how the optimal standard deviation of searching

spread depends on the resource distribution and the rate of resource appearance and

disappearance, (2) the payoff of this optimal strategy compared to a null searching strategy,

(3) the optimal resource value to cease foraging at a resource and search for another (the



8

giving-up value, hereafter referred to as the GUV), and (4) how the optimal collection rate

of the renewal process compares to a process with forager-induced depletion.

2.1 Methods

This section models a renewal process describing an individual forager that switches

between two nonoverlapping phases: exploiting a resource, and an area-restricted search

centered around the resource until the next resource is found.

2.1.1 Exploitation phase

During the exploitation phase, the forager collects food at rate bA(t), where A(t) is the

fraction of food remaining at the resource t hours into collection, and b is the collection

rate (measured as fraction of resource collected per time) at the resource. Resource items

all begin with initial value A0 = 1. If C(t) denotes the amount of food collected by time t,

then C(t) = A0 −A(t), where
dA

dt
= −bA (2.1)

Solving Equation (2.1) with A(0) = 1 yields collection as a function of time:

C(t) = 1− e−bt. (2.2)

The forager is assumed to switch from exploitation to searching at some critical time tcrit.

Mechanistically, this sudden quitting represents the individual abandoning the resource

when its intake rate falls below some threshold bcrit. At time t, the collection rate is

dC
dt = be−bt, so formulating the model in terms of either tcrit or bcrit is equivalent. For ease

of presentation, work with tcrit. Define Ccrit as the amount of food collected by time tcrit,

and T̂ as the average time taken to locate the next resource. With these assumptions, the

longterm collection rate is
Ccrit

tcrit + T̂
(2.3)

The marginal value theorem states that the optimal quitting time, t∗, and food collected,

C∗ = C(t∗) satisfies [15]

dC

dt

∣∣∣∣
t∗

=
C∗

t∗ + T̂
(2.4)

be−bt
∗

=
1− e−bt∗

t∗ + T̂
(2.5)
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The optimal leaving time can be found by numerically solving Equation (2.5). The optimal

leaving time depends on T̂ , the average time spent searching for the next resource, and T̂

in turn depends on the rate at which resources fall into the environment, the rate at which

they disappear, the way in which resources are distributed throughout the environment, and

the searching strategy of the forager. Determining T̂ requires a more thorough description

of these attributes, and is the goal of the remainder of the methods section. The 1-D

environment case is addressed first, then extended to 2-D.

2.1.2 1-D environment

The environment is assumed to consist of infinitely many independent, nonoverlapping

patches, indexed by i = {−∞, ...,−2,−1, 0, 1, 2, ...,∞}, each of width 4y and centered at

yi = i4y. Patches may contain 1 or 0 resources, and switch between these states according

to probabilistic rates. Resources fall into the entire environment at rate r, and fall into patch

i at rate ri = rB(yi)4y, where B(yi) is a discrete probability distribution (
∑
i
B(yi)4y = 1)

describing where resources land. While unexploited, resources are instantly removed at

probabilistic rate δ by agents other than the focal forager.

Once the threshold Ccrit is reached, the forager ceases collecting and performs an area-

restricted search centered around the most recently exploited resource. Throughout this

section, ŷi refers to the position of the resource most recently exploited. After exploitation

at resource ŷi has ceased, the probability of the forager searching at patch yj immediately

obeys the distribution f(ŷi, yj), where
∑
j
f(ŷi, yj)4y = 1 for all t, and f is symmetric

around ŷi. f(ŷi, yj) represents an equilibrium concentration of search effort, given some

random walk model of movement. If patch j contains a resource, it is found at a rate

proportional to the probability that the forager is searching the patch. Denoting v as the

constant of proportionality, the finding rate is vf(ŷi, yj).

To find the optimal strategy of this iterative scheme of finding and eating, the following

are derived: (1) the distribution of times until the next resource is found, given that

search effort is centered around ŷi, and (2) the longterm distribution of locations at which

exploitation occurs.



10

2.1.2.1 Deriving the discovery-time distribution

The forager searches the environment according to f(ŷi, yj) until a resource is found.

For now, consider each patch as being in one of three states: E, the patch is empty; P, a

resource is present in the patch; and F, the patch has been discovered by the forager. Let

Eij(t), Pij(t), Fij(t) denote the probability of patch j being in the respective states at time

t, given that the individual’s search effort is centered around patch i. These probabilities

obey the differential equations

Ėij = −rjEij + δPij
Ṗij = rjEij − (δ + vfij)Pij
Ḟij = vfijPij

(2.6)

where fij = f(ŷi, yj). For initial conditions when the search begins, assume that patch j

is at its quasisteady state equilibrium; Eij(0) = δ
rj+δ

, Pij(0) =
rj
rj+δ

, and Fij(0) = 0. This

system of linear equations can be solved, giving the probability of finding a resource in

patch j by time t as

Fij(t) =
rjfij

(rj + δ)(λ2 − λ1)

(
λ2 + fij
λ1

(eλ1t − 1)− λ1 + fij
λ2

(eλ2t − 1)

)
(2.7)

where λ1,2 = 1
2(−δ− fij − rj)±

√
−4fijrj + (δ + fij + rj) are the eigenvalues of the system

(2.6).

The next patch that is exploited is the first one found during this process. Referring

to the cumulative distribution of time to first find from patch ŷi as F (t, ŷi), and using the

initial condition that no patch is found at time 0, F (0, ŷi) = 0,

F (t, ŷi) = 1−
∏
j

(1− Fij(t)) . (2.8)

In words, F (t, ŷi) is one minus the probability that nothing has been discovered up to time

t.

2.1.2.2 Deriving the finding location distribution

Now, the next-resource find location is derived. Let P (ŷi, yj) be the probability that the

next resource found is at position yj , given that searching is centered around position ŷi

according to f(ŷi, yj). Let τij denote the random finding time of patch j in isolation. The
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probability of patch j being found next is the probability that τij < τik for k 6= j, summed

over all possible τij . Thus

P (ŷi, yj) =

∞∫
0

dFij
dt

∣∣∣∣
τij

∏
k 6=j

(1− Fik(τij)) dτij (2.9)

In words, the integrand is the probability that patch j is found at time τij , times the

probability that no other patch has been found up to time τij . The integral sums all the

ways in which this can occur.

2.1.2.3 Continuous space limit

Letting the width of each patch4y → 0 gives continuous forms of P (ŷi, yj) and F (t, ŷi).

In this limit, both the searching and resource distributions become continuous functions:

f(ŷ, y), with
∞∫
−∞

f(ŷ, y) dy = 1, and B(y) with
∞∫
−∞

B(y) dy = 1.

First, we derive the continuous form of the cumulative finding time distribution, F (ŷ, t).

Taylor expanding Fij(t) around 4y = 0 and using rj = rB(yj)4y yields

Fij(t) =
rB(yj)fij
δ(δ + fij)

(
δt+

fij
δ + fij

(
1− e−(δ+fij)t

))
4y +O(4y2) (2.10)

as 4y → 0.

From Equation (2.8), let M =
∏
j=1

(1−Fij(t)). Equation (2.10) shows that Fij(t) is small

for each j as 4y → 0, justifying a Taylor expansion of lnM around Fij(t) = 0.

lnM = ln

(∏
j

(1− Fij(t))

)
=
∑
j

ln (1− Fij(t))

≈ −
∑
j
Fij(t)

≈ −
∑
j
F (t, ŷ, y)4y

(2.11)

where F (t, ŷ, y) is the O(4y) term of Fij(t), y = j4y is the continuous variable representing

the location of each patch as 4y → 0, and ŷ for the patch position most recently occupied.

As 4y → 0, lnM = −
∞∫
−∞

F (t, ŷ, y)dy. By Equation (2.11), M = e−R(ŷ,t), where R(t, ŷ) =

∞∫
−∞

F (t, ŷ, y)dy. Combining Equations (2.8) and (2.11), the cumulative distribution of the

time until the finding of the first resource while searching from position ŷ, F (t, ŷ), is

F (t, ŷ) = 1− e−R(t,ŷ) (2.12)
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The expected search time after exploiting a resource at position ŷ is then

T (ŷ) =

∞∫
0

e−R(t,ŷ)dt (2.13)

Similarly, the discrete finding location distribution from Equation (2.9) becomes the con-

tinuous distribution,

P (ŷ, y) =

∞∫
0

f(ŷ, y)rB(y)

δ(δ + f(ŷ, y))

(
δ + f(ŷ, y)e−(δ+f(ŷ,y))t

)
e−R(t,ŷ) dt (2.14)

2.1.2.4 longterm searching time average T̂

Define χn(ŷ) as the probability distribution of the location of the nth resource found.

These distributions obey the recursion

χn+1(y) =

∞∫
−∞

χn(ŷ)P (ŷ, y) dŷ (2.15)

which is a sum of the transitions from ŷ to y multiplied by the probability of being at

position ŷ. To find the longterm average collection rate, we must find the equilibrium

distribution of resource finds, χ∗, which satisfies

χ∗(y) =

∞∫
−∞

χ∗(ŷ)P (ŷ, y) dŷ (2.16)

Thus far, we have derived the finding time distribution given the forager is searching around

a resource at position ŷ (Equation (2.13)), and have an expression for the equilibrium

distribution of resource finds (Equation (2.16)). The longterm average time to find the

next resource is an expectation of average finding times given position ŷ, weighted by the

probability that a resource is found at position ŷ

T̂ =

∞∫
−∞

χ∗(ŷ)T (ŷ) dŷ (2.17)

2.1.3 Extension to 2-D

The 2-D case follows quite naturally with sums over two dimensions instead of one.

Patch i’s position is now of the form (xi, yi), and its area is (4y)2. The resource probability

distribution becomes B(xi, yi), and the probabilistic rate at which resources fall into the

patch located at (xi, yi) is r B(xi, yi)(4y)2.
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Each patch’s state during the finding phase is still given by the system (2.6). Let (x̂, ŷ)

denote the continuous space position of the most recently foraged patch. The approximation

technique performed in Equation (2.11) can be applied again, yielding a double integral form

for the 2-D version of R(t, x̂, ŷ)

R(t, x̂, ŷ) =

∞∫
−∞

∞∫
−∞

F (t, x̂, ŷ, x, y)dx dy

Likewise, the rest of the calculations in the 1-D case extend naturally, with

T (x̂, ŷ) =

∞∫
0

e−R(t,x̂,ŷ) dt (2.18)

as the equation for the finding time after exploiting a resource at x̂, ŷ, and

P (x̂, ŷ, x, y) =

∞∫
0

f(x̂, ŷ, x, y)rB(x, y)

δ(δ + f(x̂, ŷ, x, y))

(
δ + f(x̂, ŷ, x, y)e−(δ+f(x̂,ŷ,x,y))t

)
e−R(t,x̂,ŷ) dt (2.19)

as the pdf describing the probability of exploiting a resource at (x, y) on the next iterate.

Likewise, the equilibrium distribution of resource discovery locations satisfies

χ∗(x, y) =

∞∫
−∞

∞∫
−∞

χ∗(x̂, ŷ)P (x̂, ŷ, x, y) dx̂ dŷ (2.20)

and the longterm average finding time between patches is

T̂ =

∞∫
−∞

∞∫
−∞

χ∗(x̂, ŷ)T (x̂, ŷ) dx̂ dŷ (2.21)

2.1.4 Parameter values and functional forms

All parameter values are summarized in Table 2.1. The searching and resource distri-

butions are assumed to be Gaussian with standard deviations σf and σr, respectively. The

resource distribution is always centered at the origin, the searching distribution is centered

around the position of the last discovery. In two dimensions,

f(x̂, ŷ, x, y) =
1

2πσ2
f

Exp

[
− 1

2σ2
f

(
(x− x̂)2 + (y − ŷ)2

)]
(2.22)

B(x, y) =
1

2πσ2
r

Exp

[
− 1

2σ2
r

(x2 + y2)

]
(2.23)

These forms are chosen to allow a direct comparison between the spread in the resource

distribution and the spread in the optimal search strategy. The resource dynamics are
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completely determined by the three parameters r, δ, and σr. σr values range from 0.5 to 3

m2 with a step-size of 0.25, and r takes on the values 1,3,5 and 10 1
hr .

The constant v relates the finding rate to the probability density distribution of the

forager, and may depend on several factors; in a foraging ant, for example, v depends on

searching attributes, such as velocity, perceptual radius, and the parameters of individuals’

correlated random walk [1,55], the terrain that the forager is searching [11], and the resource

that is being searched for [56]. We set v = 0.5 or 2 m2

hr to investigate the optimal strategy

in scenarios with slow and fast discovery.

The fractional collection rate parameter b depends on food type, size, and feeding rate.

Instead of trying to incorporate all of these factors, we set b = 0.5 or 2 1
hr to investigate the

optimal strategy when resource consumption is slow and fast.

The optimal foraging strategy is given by t∗, the optimal leaving time at a resource item,

and σf , the standard deviation of its searching distribution. t∗ is determined by numerically

solving Equation (2.5), and depends on the choice of σf through T̂ . Large values of σf result

in a wide searching distribution and smaller values produce high levels of area-restricted

search.

2.2 Algorithms to Find the Expected Collection Rate

Given a resource distribution B(x, y) and renewal and disappearance rates r and δ, the

optimal giving-up value and search strategy can be found by using the analytical equations

derived above, or by stochastic simulation.

2.2.1 Using analytical calculations

For given resource dynamics, find the equilibrium collection rate for a given σf by

calculating

1. T̂ for that choice of σf by numerically solving Equation (2.21) (see Appendix A)

2. The best GUV, using Equation (2.5)

3. The corresponding equilibrium collection rate with Equation (2.3)

The optimal σf produces the largest longterm collection rate in an environment. This

algorithm requires substantial numerical calculations, but provides a method of verifying
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the average longterm collection rate of the stochastic process without relying on the mean

of many simulations. All integration was performed numerically in R [59].

To compare the value of the optimal search strategy across different resource scenarios,

we divide the optimal collection rate by the collection rate when σf = σr. This latter

collection rate represents a null strategy, where the forager searches for a resource according

to its distribution in space.

2.2.2 Stochastic simulation

The mathematical model presented above is an iterative process that does not include

the effects of depletion of resources in the environment due to the forager; instead, the

environment “resets” to its equilibrial dynamics after each resource exploitation. Two

stochastic simulations, termed the “memoryless” and “true” simulations, were built to verify

the longterm average collection rate C in a 2-D environment. In the memoryless simulation,

the resource distribution is reinitialized after each resource exploitation event; thus the local

depletion caused by exploitation is forgotten by the environment. In the “true” simulation,

the resource dynamics are not reset after each exploitation; local depletion can occur and

may have an impact on the optimality of the foraging strategy. Parameters were varied as

outlined above.

Both simulations use a Gillespie-like algorithm to determine the waiting time until the

next event [31]. The simulation differs from the Gillespie algorithm in that the exploitation

event takes a fixed amount of time to complete. Events are (1) A resource falls into the

environment, (2) A resource disappears from the environment, and (3) The forager finds

a resource, and exploits it deterministically for a time tcrit. During the exploitation time,

only resource appearance and disappearance events are allowed to occur, but not to the

exploited resource. For a given set of resource parameters, tcrit is set to t∗ from Equation

(2.5), using T̂ determined by Equation (2.21).

As in the mathematical derivation, the forager switches between exploitation and ex-

ploration as resources appear and disappear in the environment. Collected food and

position of resource finds were tracked for 10000 hours of simulation time. The simulations

were initialized by laying down n resources in the habitat; n was chosen from a Poisson

distribution with mean r
δ . The random initial position of the forager, (x̂, ŷ), was drawn
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from the resource distribution B(x, y).

2.2.2.1 Resource falls into the environment

Resources fall into the environment at rate r. The new resource’s position is determined

in polar coordinates, (ρ, θ). θ is chosen from a uniformly distributed distribution between

0 and 2π. The probability of a resource falling in an annulus with radii (ρ, ρ+4ρ) is

2πρB(ρ)4ρ =
1

σ2
r

ρ Exp

[
− ρ2

2σ2
r

]
4ρ (2.24)

We use the cumulative distribution of (2.24) to draw a random radial distance. The

cumulative distribution of Equation (2.24) is found by integrating the density from 0 to

ρ:

Bcdf (ρ) = 1− e−
ρ2

2σ2r (2.25)

A uniformly distributed random number X is chosen between 0 and 1 and plugged into the

inverse of the cumulative distribution, B−1
cdf (X) =

√
−2σ2

r ln(1−X). The resulting (ρ, θ)

coordinate is randomly distributed according to the pdf B(x, y). The position of the ith

resource is tracked in the ith row of a matrix called ResMat.

2.2.2.2 Resource disappears

The resource disappearance event occurs at rate δ N , where N is the number of resources

currently present in the environment. When this event occurs, a random integer between 1

and N is generated, and the corresponding row of ResMat is deleted.

2.2.2.3 The forager finds a resource

The resource discovery rate is the sum of the finding rates of each of the resources

present. Letting (x̂, ŷ) denote the position of the resource last exploited, the finding rate of

a resource at position (x, y) is given by vf(x̂, ŷ, x, y). Suppose the finding event occurs, and

the environment has N > 0 resources at positions (xk, yk), k ∈ {1, 2, ..., N}; the exploited

resource is chosen from the probability distribution

P (K = k) =
vf(x̂, ŷ, xk, yk)
N∑
i=1

vf(x̂, ŷ, xi, yi)

(2.26)
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where K is the chosen resource. When a resource is found it is exploited for a time t∗,

resulting in C(t∗) resource being collected. After exploitation, the resource is removed from

the environment.

2.3 Results

The analytical calculations and memoryless numerical simulation of the collection rate

agree well over the range of parameter values. Figure 2.1 shows the results of the memoryless

stochastic simulation, as well as analytical calculations outlined in Section 2.2.1, for all

resource scenarios with δ = 0.25; the cases with δ = 1 give similar agreement. In each

resource scenario, a unique σ∗f value exists that maximizes the collection rate; this optimum

becomes less sharp with increasing σr. For fixed r, the maximum possible collection rate

decreases as σr increases (Figure 2.1). Thus, the degree of autocorrelation influences the

maximum collection rate a forager can achieve in any environment.

For fixed resource autocorrelation, the optimal GUV increases with r and decreases with

δ (Figure 2.2). Stated another way, resources are consumed more completely when they

are more scarce at equilibrium, either through appearing slowly or disappearing quickly,

in the environment. The optimal GUV also decreases with increasing σr; thus, resources

should be consumed more completely when they are more dispersed in the environment.

These results are more explicit analogues of the classic MVT’s prediction that the giving-up

density should decrease with increasing travel time between patches [15].

The optimal degree of ARS, σ∗f , increases in a concave-down manner with σr in all

resource scenarios (Figure 2.3). The initial increase was greater with smaller resource

appearance rates than with larger appearance rates. Larger δ values decrease the rate

at which σ∗f increases with σr. Taken together, these imply that a forager’s search strategy

should respond to changes in the resource distribution most when the resource appearance

rate and disappearance rate are small. σ∗f increases with σr more quickly when v is large.

Because the environment is set to its equilibrial dynamics after exploitation, the subse-

quent search dynamics are the same regardless of how long the forager stays at the resource.

Thus, the fractional resource consumption rate b has no effect on the optimal search strategy

in the memoryless scenario; Figure 2.3 corroborates this, as only the GUVs change when b

is increased from 0.5 to 2 with v fixed. GUVs are smaller for larger values of b, meaning
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resources that can be exploited quickly should be exploited more thoroughly.

To compare the relative value of autocorrelated search to a null search strategy, the

collection rate of the optimal strategy was divided by the collection rate when σf = σr

and the GUV was set to that which maximized collection for the σf used (Figure 2.4).

This relative collection rate measures the benefit of adopting the optimal ARS compared

to the search strategy that matches the resource distribution’s autocorrelation. For δ = 1

and v = 0.5, a concave-down relationship occurs for most of the resource appearance rates

in the range of σr values used. At small values of σr, the optimal search strategy (σ∗f ) is

very similar to the resource distribution (σr), so the collection rates are also similar and

the relative collection rate is close to 1. As σr increases, so does the relative collection

rate; intermediate values of σr give the most benefit in adopting the optimal strategy over

the null. For larger values of σr the relative benefit decreases; the optimal search strategy

still yields a higher collection rate than the null, but relatively lower than for smaller σr

values. δ = 0.25 yields similar results. Simulations with larger σr show that concave-down

relationships exist for all resource scenarios (not shown).

Simulations with memory were run to determine the effect of ignoring resource depletion

caused by the focal forager. As expected, collection rates are always smaller. Figure 2.5

compares the collection rates with memory to the memoryless model for all environments

with δ = 0.25. In this case, environments in which resources are easier to exploit or find

(b = 2 or v = 2) exhibit the greatest disparity between the true stochastic and memoryless

results. For any given b, v combination, smaller σr values yield a greater disparity than larger

σr. Stochastic simulations with δ = 1 exhibit much less of a difference in collection rates,

compared to memoryless simulations (not shown). Thus, resource depletion is an important

influence on longterm collection rate when the resource distribution is autocorrelated, and

when resources appear quickly and disappear slowly and are easy to find and exploit.

The memoryless stochastic simulations are noisy, but in many cases the optima are

shifted towards larger σf values compared to the memoryless simulations (Figure 2.5). This

matches with intuition; a more dispersed search avoids the risk of becoming trapped in a

region that is locally depleted. The optimal GUV likely differs as well because resource

depletion increases the time it takes to find the next resource.
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2.4 Discussion

The MVT gives a broad framework for interpreting foraging behavior. The MVT

predicts that organisms foraging in a patchy environment should remain in a patch until

the marginal rate of food collection in that patch is equal to their longterm average. This

study extends this result to explicit 2D space; both resources and searching effort are

modeled as specific spatial distributions. The optimal search strategy includes both a spatial

distribution of search effort and a GUV at a resource that depends on specific resource

dynamics, as well as forager consumption rate and finding ability. Analytical calculations

agree with a memoryless environment simulation in which the resource distribution “resets”

after each resource exploitation (Figure 2.1). Analytical calculations have the advantage of

giving time between resource finds, the distribution of resource finds, and collection rates

for a given strategy without averaging over many simulations.

Different resource scenarios pose different types of challenges; resources may be dispersed

through the environment (high σr), hard to find (low v), appear infrequently (low r), or

disappear quickly (high δ). Generally, a forager faced with any of these challenges should

decrease its GUV, resulting in more time spent at each resource (Figure 2.3). A relatively

dispersed search strategy is best in dispersed resource distributions. Figure 2.3 shows

that the effect of resource dispersion on search strategy weakens when resources disappear

quickly, or when they are difficult to find. The optimal strategy in these cases is to intensify

search effort to find resources before they vanish. Higher searching dispersion is optimal in

resource distributions that have a low renewal rate (r); this allows the forager to search the

environment broadly, increasing the chance that a resource is discovered.

Modification of search strategy based on prior foraging experience, such as the type of

resource found previously, is probably common in the animal kingdom, although more em-

pirical research needs to be conducted to investigate the extent that animals understand and

use the distribution of their resources in their search strategy. Ants, for example, engage in

lower intensity searches when expecting a protein resource in a location, while ants expecting

a carbohydrate resource exhibit higher intensity searches [63]. Here, we show that such a

strategy is optimal if resources are abandoned when their quality falls below a threshold.

Protein sources encountered by ants are likely dispersed and renewed infrequently; Figure

2.3 implies that a dispersed strategy is optimal, as observed in several studies [30, 63, 70].
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Carbohydrate resources (aphids, plant exudates) tend to be autocorrelated and renewable;

the model shows that an intense search strategy is indeed optimal in this case. Because

recruitment at the nest typically requires trophollaxis, or food sharing, between recruiter

and recruit, naive ants in the nest might be primed to search in a particular way after

receiving a particular type of food when prompted to help with collection [35].

The analytical calculations were compared to a null strategy to investigate the relative

value of the optimal ARS in different resource scenarios with different types of challenges

(Figure 2.4). In most environments with low disappearance rates, the value of using the

optimal strategy over the null strategy increases with increased resource dispersion. The

benefits increase further when resources are consumed quickly (b = 2) or are difficult to find

(v = 0.5). When resources disappear quickly (high δ) and searching is difficult, the relative

benefit becomes unimodal; in these poor conditions the relative benefit of the optimal

strategy decreases for large σr. For the smallest resource appearance rate, the optimal

strategy provides little advantage over the null for high values of σr (Figure 2.4). These

results imply that the search strategy of a forager should differ most from the resource

distribution’s when resources are dispersed.

The model also shows that the spatial distribution of resources affects the GUV at

individual resources (Figure 2.2). The fact that carbohydrates and proteins represent

different nutrients makes an empirical comparison between types difficult [42]. The model

could provide valuable insight for foragers that have evolved to efficiently exploit different

types of carbohydrate or protein sources with differing spatial distributions; the model

predicts that the type that is spread more uniformly will be exploited to a greater extent

than the other. Lasius niger ants routinely exploit nectaries and honeydew secretions of

aphids, both of which are carbohydrate sources; the searching attributes of ants expecting

either type of resource has not yet been compared to the distribution of each resource.

Two stochastic simulations were built to understand the impact of resource depletion

on an optimal strategy. In the “memoryless” simulation, the resource distribution was

redrawn from its equilibrium distribution following an exploitation event; in the “true”

simulation, resources were continually tracked during the exploitation event. Comparison

of the true stochastic process with the memoryless process highlights how resource depletion

by the focal forager’s strategy modifies a strategy’s realized collection rate (Figure 2.5), and
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in turn might modify the optimal search strategy and GUV. The greatest discrepancy in

collection rate occurs when the resource distribution is highly autocorrelated, and disap-

pearance rates are low. Intuitively, these environmental conditions allow for structure in

the resource distribution to be present, and in turn destroyed by a forager capitalizing

on that structure. Resource scenarios with high δ should essentially act as memoryless

environments. Generally, an optimal strategy should result in a reduction of autocorrelation

in the resource distribution due to depletion. This comparison motivates the question of

how a forager’s search strategy should be altered due to nonrandom resource depletion

caused by itself, as well as other optimal foragers in a population.

This model has several simplifying assumptions. The searching distribution is assumed

constant in time, and realized immediately after exploitation. A more explicit approach

would connect movement attributes of the forager to the probability distribution of searching

location. Modification of sinuosity in the search path of a simple individual forager can result

from changes in velocity (orthokinesis) or turning rate (klinokinesis) [10]. For example,

ladybugs, Coccinella septempunctata, increase their turning rate in response to food capture,

resulting in a tendency to stay in areas of high food concentration [40]. When searching for

a carbohydrate food source, individual Melophorus bagoti ants appear to search in loops

that repeatedly bring them back to the expected location of a resource [63]. A random

walk model of movement would allow the optimal strategy to be presented in terms of

diffusive and centralizing tendencies of individual foragers [41, 50, 73]. In this context, the

results of this paper provide an approximation to the case where the equilibrium probability

distribution of searching locations is reached quickly.

Despite these simplifying assumptions, this modeling framework bridges the gap between

patch-based MVT models that predict a giving-up density, and explicit 2D space models

that investigate the optimal ARS after a resource encounter. The methods section provides

analytical expressions of collection rates, given a spatially explicit environment, resource

dynamics, and searching strategy. Model development was motivated with innate ARS

strategies of ants, however this framework would apply equally well to other solitary foragers

as well. Experimental conditions could be used to carefully modify the autocorrelation of

resources, their renewal rate, and disappearance rate in an environment, and observe how

a forager’s strategy responds. These results could also serve as a null comparison when
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the forager does not take into account the depletion that its strategy causes. Such studies

will extend understanding of how natural selection has tuned information use strategies in

foragers.
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Figure 2.1: Each graph shows collection rate vs. searching strategy σf with a specific
σr, various values of r, and δ = 0.25. Lines represent collection rates obtained from
analytical calculations outlined in Section 2.2.1, dots are output from the memoryless
stochastic simulation. For each r, the optimal σf value is marked with an asterisk. A
vertical dashed line is placed at σf = σr for comparison of the optimal search strategy to
the resource distribution.
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Figure 2.2: GUV for various resource dynamics with b = 0.5, v = 0.5; other cases follow
similar trends. Dot size indicates the amount of food remaining (GUV) when the resource
is abandoned, given the optimal foraging strategy.
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Figure 2.3: Graph of the optimal σf vs. σr. Dot size indicates the optimal GUV for each
(σr, σ

∗
f ) coordinate. The dashed gray line is the diagonal.
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Figure 2.4: Graph of the relative collection rate vs. σr. The relative collection rate is
defined as the collection rate with the optimal strategy divided by the collection rate with
σf = σr, with the best choice of GUV for each σf .
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Figure 2.5: Collection rate vs. searching strategy σf with a specific σr, various values of r,
and δ = 0.25. Lines represent collection rates obtained from analytical calculations outlined
in Section 2.2.1, dots are output from the true stochastic simulation. For each r, the optimal
σf value of the stochastic simulation is marked with an asterisk. A vertical dashed line is
placed at σf = σr for comparison of the optimal search strategy to the resource distribution.
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Table 2.1: Parameter values used in the simulations.

Param. Description Value(s) Units

σf Standard deviation of searching distribution 0.1 to 3 m

σr Standard deviation of resource distribution 0.5 to 3 m

r Rate at which resources appear in the environment {1, 3, 5, 10} 1
hr

δ Rate at which resources disappear when unoccupied {0.25, 1} 1
hr

b Fractional collection rate {0.5, 2} 1
hr

v Relationship between search effort and finding rate {0.5, 2} m2

hr



CHAPTER 3

PHEROMONAL RECRUITMENT MODEL

Spatial organization is an important function of many biological processes. For example,

the internal environment of cells becomes polarized in order to initiate directed motion and

budding [53]. Dictyostelium amoebae organize spatially to collectively form a reproductive

structure as part of their life cycle [43]. In many cases, spatial organization is a switch-like,

or bistable, process, in which the biological system moves from an unstable spatially homoge-

neous steady-state to an inhomogeneous steady-state due to some endogenous signal [43,53].

In general, bistable switches are built from positive or negative feedbacks that amplify or

repress excitatory signals [16]; in the case of Dictyostelium, acrasin acts as the signal that

simultaneously attracts amoebas and induces acrasin production.

Many social insects, and in particular ants, must also spatially organize to respond to

colony intruders [78], direct searching effort along trails [32], and efficiently collect large

resources [35]. Ant colonies, like amoebas, do not rely on central leadership; any spatial

organization must arise out of individual responses to information in the environment,

and information passed between individuals via chemical signals or direct antennation.

A classic example is the process of pheromonal recruitment, whereby ants direct their

movement along an established pheromone trail leading to a resource. Ants that successfully

exploit the resource reinforce the pheromone trail as they return to the nest, and prompt

other nestmates at the nest to follow the pheromone trail to the resource and repeat the

process [35].

With regard to pheromonal recruitment to a resource, the positive feedback involved in

trail-use, combined with the tendency for pheromone trails to evaporate when not reinforced,

gives pheromonal recruitment the potential to exhibit spatial bistability when a resource

is present. Empirically, bistability of recruitment has been demonstrated in Monomorium

pharaonis ants, and noted in Tetramorium caespitum, the pavement ant [9, 17]. Beekman
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et al. (2001) show that small M. pharaonis colonies are not able to initiate high levels

of recruitment to a bait 50 cm from the nest; however, when recruitment is “helped” by

initially placing the bait near the colony, then gradually moved away to the 50 cm distance,

high levels of recruitment do occur. Thus, the colony can only reach the high branch of the

recruiting equilibrium when the initial state of the system is close to that equilibrium, with

high numbers of ants on or near the resource.

Collignon and Detrain (2010) argue that the bistable nature of pheromonal recruitment

has led to the evolution of group recruitment in T. caespitum [17]. In group recruitment,

the ant that first encounters a resource directly leads a group of its nestmates back to the

resource; this process continues, with returning ants laying and establishing a pheromone

trail back to the nest. As the pheromone trail becomes established, the ants gradually

reduce the tendency to participate in group recruitment, and instead rely on pheromone

trails for directional cues [17]. Group recruitment thus acts as a mechanism to drive the

dynamics of the colony away from the low branch of a bistable system.

Though informative, the empirical experiments of Beekman et al. (2001) limit ant

movement to essentially a 1D foraging arena; the first goal of this manuscript is to create

a mathematical framework to understand how various colony parameters contribute to the

spatial distribution of ants during the recruitment process in 2D, the second is to understand

whether bistability is predicted in a 2D foraging arena for the pavement ant, T. caespitum.

This is shown in Collignon and Detrain (2010); however, their model does not describe

explicit 2D space, but instead describes rate transitions to behavioral states and points

in space. Using a spatially explicit model, we find parameters that allow bistability, and

describe how the bistable regime qualitatively changes with behavioral parameters.

Mathematical models have been crucial in understanding how individual behavioral

parameters allow for spatial organization in biological processes [33, 51, 52]. With regard

to ants, agent-based models (ABM) allow explicit assumptions of individual behavior to

be modeled. By analyzing ABM output, or dynamical systems derived from ABMs, an

understanding of how individual behavioral parameters influence the colony-wide response

can be gained. This process allows researchers to infer what behavioral parameters are most

important in generating colony-wide responses, and suggest novel experiments that further

understanding. However, a major challenge in spatial ant models has been mathematically,
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and mechanistically, describing trail following in explicit 2D space.

Edelstein-Keshet et al. (1995), for example, use a spatially implicit system of ODEs

to understand how individual responses to trail strength, such as trail fidelity and trail

recruitment, result in spatial bistability as observed in a phase plane diagram [26]. This

model simplifies trail following by only considering two behavioral classes of ants: those

following a trail, and “lost” ants laying new trails. Bistability occurs when stronger trails

exhibit more attraction to nontrailing ants than weaker ones; in this case, the ants’ equi-

librial distribution can form erractic, weak trailing activity, or organized trailing along

few strong trails; the equilibrium state reached is determined by the initial state of the

system. Edelstein-Keshet et al. (1995) argue that behavioral parameters of ants should be

tuned, or behaviorally adaptable, to allow ants to switch quickly from their homogeneous

steady-state to the ordered, trailing state so that a quick, colony-wide response can be

generated to various events requiring collective organization [25].

Watmough and Edelstein-Keshet (1995) develop a PDE system analogous to Edelstein-

Keshet et al. (1995) in 1D space to understand how the shape and propagation speed

of a raiding column of army ants is influenced by individual behavioral parameters. The

results include traveling wave velocities used to estimate the ratio of lost and trail-following

ants [75].

These modeling papers rely on a vague classification of ants into lost and following

behavioral states. In reality, these states represent two points on a continuum of pheromone-

induced bias during a random walk. More recent papers of pheromone-induced bias have

developed models incorporating this continuum in explicit 2D space. Boissard et al. (2013)

construct an agent-based model (ABM) based on a velocity-jump process with jump transi-

tions as a function of pheromone vectors, and show that the ABM can exhibit spontaneous

trail formation in 2D. A continuum description of the ABM model is derived by assum-

ing that the velocity jumps instantly relax to their equilibrium distribution; thus, many

velocity-jumps occur on the macroscopic timescale. The PDE model derived from the

ABM, however, possesses only the homogeneous steady-state, highlighting the differences

that can arise in ABM and continuum descriptions of biological processes [12].

Amorim (2015) modeled pheromonal recruitment to a resource using a phenomenological

system of PDEs based on chemotaxis, and show that such a system can generate spatial
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organization typical of recruitment trails [3]. Chemotaxis models have proven successful in

understanding chemical-based migration of cells; in these models, a sensing body detects and

biases its movement along a chemical gradient [33,44]. The trailing mechanism in Amorim

(2015) requires the assumption that ants establish a trail of pheromone that increases

in density with distance from the nest, resulting in trail polarity. However, evidence for

chemotaxis, or pheromone gradient following in ants during pheromone recruitment to a

resource, does not exist; a more likely mechanism is osmotropotaxis, where an ant walks

with constant velocity and continually adjusts its direction to align with the trail using

inputs from its antennae [14].

Here, a mechanistic ABM in continuous 2D space is built, and a corresponding ODE/PDE

system is derived. We use the models to: 1) determine the general circumstances under

which pheromonal recruitment acts as a bistable system; 2) understand the ability of the

PDE to predict the searching distribution of the ABM; 3) understand how the distribution

of searching ants depends on a specific set of behavioral parameters. Finally, the model will

be parameterized with movement data to understand the conditions under which bistability

could be observed in T. caespitum (see Chapter 4 for a description of the movement data).

This model differs from previously cited work in that it tracks a full set of behavioral states,

tracks individuals across space, and presents a model of pheromone following not based on

chemotaxis. Deriving the ODE/PDE system from an ABM ensures that the model is based

on explicit individual behaviors; all of the parameters of the model can be estimated to

investigate the presence of bistability in various species by watching individual ants. The

ODE/PDE system output will be used to better understand the stochastic output of the

ABM.

A space-jump process in explicit 2D space is developed, after which a diffusion limit

is used to derive a dynamical system. In a space-jump process, an organism’s continuous

path is broken up into discrete positional changes, or jumps, at randomly distributed times;

this is different than a velocity-jump process, where an organism undergoes continuous

motion punctuated with sudden random changes in velocity. Velocity-jump models are

deemed more realistic, as they explicitly account for autocorrelation between directional

changes, and do not describe organisms with infinite velocity and zero momentum in a

continuum limit [36]. However, diffusion models are generally more tractable in two spatial



32

dimensions, and have been successful in describing oriented movement in response to a

signal similar to osmotropotaxis [48, 50, 52]. The model presented below was inspired by

Lewis and Moorecraft (2013), which describes models of wolves and red fox reacting to

urine marking. Although the diffusion limit in our model derivation closely follows Lewis

and Moorecraft (2013), it is included in appendix B for completeness.

The methods section begins with a derivation of the ABM space-jump process, after

which the continuum limit is derived. Steady states of the PDE are numerically calculated

and compared to corresponding simulations of the ABM in the results section to demonstrate

the potential for bistability.

3.1 Methods

The agent-based model tracks transitions in the behavioral state and location for each

of n ants in the focal colony over time.

3.1.1 Habitat

Define ΩH = {(x, y) : −LH

2 ≤ x ≤ LH

2 , −LH

2 ≤ y ≤ LH

2 } as the habitat, an LH × LH

square region with outer boundary ∂ΩH . Define ΩN ∈ ΩH as the nest region: an LN ×LN

square, and ∂ΩN as its boundary. Define the indicators

IN (x, y) =

{
1 if (x, y) ∈ ΩN

0 otherwise
ÎN (x, y) =

{
0 if (x, y) ∈ ΩN

1 otherwise
(3.1)

and area AN =

∫∫
ΩN

1 dA. Finally, define ΩB ∈ ΩH as the resource region and ∂ΩB its

boundary; similar to previous regions, it is chosen as a square with side length LB, with the

constraint ΩB ∩ΩN = ∅. Define the resource region indicator IB similarly to those defined

above with area AB =

∫∫
ΩB

1 dA.

3.1.2 States, transitions, and movement

The full simulation tracks ants’ transitions among seven behavioral states: waiting at

the nest (N), recruiting at the nest (E), searching (S), returning to the nest after quitting

searching (T), waiting for a feeding spot at the resource (Q), exploiting (taking a bite out

of) the resource (B), and returning to the nest to recruit nestmates (R).
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Ants not involved in recruitment are either at the nest (N), outside the nest searching

(S), or returning to the nest unexcited (T). The ants undergo the following dynamics:

N ants spontaneously leave the nest at rate wN and transition to the S state. Ants in

the searching state search the environment with movement generated by a random walk

(described below), quit searching at rate qS , and transition to returning ants (state T),

which bias their random movements in the direction of the nest relative to their position.

T ants that touch the nest boundary, ∂ΩN , transition into nest ants (N). S ants that quit

searching while in the region ΩN transition directly into N ants.

During each time step τ , nest ants transition to state S with probability τwN , and are

positioned at a random location chosen uniformly over ΩN . An ant in state S quits searching

(switches to the T state) with probability τqS ; if it does not quit searching it takes a step

with steplength chosen from an exponential distribution with mean ρ̂S , and movement angle

chosen from a uniform distribution on (−π, π] in the absence of pheromone.

Ants in state T move according to a random walk with steplength chosen from an

exponential distribution with mean ρ̂T . Let θ̂N (x,y) denote the angular direction of the

center of the nest region relative to position (x,y); for simplicity, the spatial argument is

dropped. The movement angle of a state T ant is drawn from the von Mises distribution

with mean θ̂N and fixed bias parameter κT , denoted kT (θ, θ̂N ). A T ant that contacts any

point in ΩN instantly transitions to state N. The von Mises distribution is commonly used

to model random motion with directional bias and has well-studied properties [5, 29, 50],

and is discussed further in appendix B.

A searching ant in ΩB transitions to waiting for a feeding spot near the resource (state

Q) at rate v hr−1. Ants in state Q return unexcited to the nest at rate wQ, and transition

to feeding on the resource (state B) at a rate dependent on the number of ants currently

exploiting the resource. Letting Btot denote the number of ants in state B, the Q → B

transition rate is α(Btot) = α0(A0−Btot), where A0 denotes the number of feeding sites on

the resource and α0 describes the rate at which available sites are found by state Q ants.

An ant takes a bite at rate wB, and transitions to returning to the nest (state R).

An ant in state R moves according to a random walk biased towards the nest similar

to state T ants, with analogous average step length, concentration parameter and direction

angle distribution ρ̂R, κR, and kR(θ, θ̂N ). State R ants transition to the E state upon
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contact with ∂ΩN . Ants in state E transition to state S at rate wE . In addition to N ants

spontaneously leaving to search at rate wN , an ant in state E can motivate an ant in state

N to begin searching. This occurs at a rate proportional to the total number of ants in state

E; given Etot E state ants are present, this rate is ξEtot. For example, during any timestep,

an ant in state N transitions to searching with probability (wN + ξEtot)τ .

Finally, no moving ant is allowed to cross the outer boundary ∂ΩH . Any step that results

in this crossing is truncated to keep the individual in ΩH . The behavioral states of individual

ants are summarized in Table 3.1; state transition rate parameters are summarized in Table

3.2.

To track pheromone, ΩH is divided equally into squares of area 4A, with pheromone

dynamics tracked in each square. Pheromone density levels for the current timestep are

tracked in a matrix (Pmat), with each entry representing the density of pheromone present

in a specific corresponding square. During every timestep, the discretized positions of R

ants are mapped to corresponding entries of Pmat, and the levels in each square are updated

during each timestep. It is assumed that only R state ants lay pheromone. Let Ri,jtot be the

total number of R ants in square (i, j); at the end of each timestep, Pmat is updated as

Pmat[i, j]← Pmat[i, j] + `
Ri,jtot
4A

τ − δτPmat[i, j]. (3.2)

` is the rate at which pheromone marks are laid by each R ant, and δ is the rate at which

pheromone marks disappear. The division by 4A converts Ri,jtot into a density.

The angular direction of movement of an S ant at (x,y) is chosen from a von Mises Distri-

bution kS(θ, θ̂B), where θ̂B(x, y) is the direction of the resource relative to current position.

The S ants’ von Mises bias parameter is a function of the entry in Pmat corresponding to

its spatial location; for an S ant in square (i, j) the bias parameter used is κS(Pmati,j), for

which the following functional form is assumed:

κS(P ) =
kmP

P0 + P
. (3.3)

The parameter km is the maximal response possible, and P0 is the value at which response

is half of the maximum. Thus, an S ant in a square with high levels of pheromone has high

levels of bias in its direction-angle distribution; this bias is in the direction of the resource

relative to its position, θ̂B.
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3.1.3 Continuum limit of ABM in the absence of the resource

In this section, the ODE/PDE system is derived from the ABM dynamics described

above. Begin by focusing on the nonrecruitment behavioral states: N, S, T. The behav-

ioral states are described mathematically as probability distributions with function names

corresponding to the different states. N(t), for example, describes the probability that a

particular ant of the colony is in behavioral state N at time t. The expected number of

ants in state N at time t is nN(t). S(t, x, y) and T (t, x, y) are probability densities defined

over ΩH at each time t. S(t, x, y), for example, is the probability density of a particular ant

searching at location (x, y) at time t, while nS(t, x, y) is the number density of individuals

at location (x, y) and time t. For ease of presentation, function arguments will typically be

omitted.

To derive the probability of being in state N at a given time t, start by mathematically

describing all of the ways the focal ant could arrive in state N at time t+τ . The probability

of being in state N at time t+ τ is

N(t+ τ) = N(t) (1− wNτ) + jT (t)τ + qSτ

∫∫
ΩN

S(t, x, y) dA. (3.4)

The first term on the right-hand side corresponds to the case in which the ant was in

state N at time t and did not transition out of state N during the interval [t, t + τ). jT

is the probabilistic rate of being in the T state and running into the nest boundary, thus

transitioning to state N. The last term corresponds to switching from state S directly into

the N state. Expanding the right-hand side, dividing through by τ , and rearranging terms

yields
N(t+ τ)−N(t)

τ
= −wNN(t) + jT (t) + qS

∫∫
ΩN

S(t, x, y) dA. (3.5)

Finally, taking the limit of both sides as τ → 0 gives

dN

dt
= −wNN −

∮
∂ΩN

JT · ~nN ds+ qS

∫∫
ΩN

S dA, (3.6)

with function arguments omitted. Here, JT (t) is the diffusion-limit flux vector of state

T ants (described further below), and ~nN is the outward normal vector (hence the minus

sign), parameterized by dummy variable s, around ∂ΩN ; the contour integral sums the

probabilistic flux from state T into state N from all points along the nest region boundary.
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The S and T states are more involved, as these probability distributions are functions

of space and time. Proceeding as before, the probability of being at position (x, y) at time

t+ τ is

S(t+ τ, x, y) =
IN (x, y)

AN
wNN(t)τ + (1− qSτ)

∫∫
ΩH

KS(x′, y′, x, y)S(t, x′, y′) dA. (3.7)

The first term on the right-hand side describes the probability of being in state N at time

t and transitioning into state S at a position chosen uniformly within ΩN . KS(x′, y′, x, y)

is the S state movement kernel, describing the probability density of hopping from position

(x′, y′) to (x, y). The second term incorporates the probability of being in state S at time

t and hopping to position (x, y) in time τ ; for this to occur, the ant must not quit state S,

hence the (1− qSτ) term. Expanding and rearranging as before gives

S(t+ τ, x, y) =
IN (x, y)

AN
wNN(t)τ +

∫∫
ΩH

KS(x′, y′, x, y)S(t, x′, y′) dA

− qSτ
∫∫

ΩH

KS(x′, y′, x, y)S(t, x′, y′) dA,

(3.8)

From here, use the standard isotropic diffusion limit procedure (see appendix B) to find

∂S

∂t
=

IN
AN

wNN − qSS +DS∆S. (3.9)

This step used the assumption that searchers’ walks have no bias (κS = 0) in the absence

of pheromone; thus the advection term is 0. In the diffusion limit, the diffusion constant is

related to the timestep and average step length as DS = lim
τ→0

ρ̂2
S

2τ
.

The probability distribution describing state T is similar to that of S, but assumes a

nonzero bias κT and thus results in a nonzero advection term cT . In the diffusion limit

(see appendix B) it was necessary to assume that the bias scaled with average steplength.

Define this scaling parameter as bT ; thus κT = bT ρ̂T . DT is defined similarly to DS .

The full set of equations describing the searching process in the absence of a resource

are

dN

dt
= qS

∫∫
ΩN

S dA−
∮

∂ΩN

JT · ~nN ds− wNN Nest Ants (3.10a)

∂S

∂t
= DS∆S − qSS +

IN
AN

wNN Searching Ants (3.10b)

∂T

∂t
= DT∆T −∇ (cTT ) + qS ÎNS Returning Ants (3.10c)
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The double integral term qS

∫∫
ΩN

S dA is the rate at which probability mass moves directly

from the S state to the N state. The term qS ÎNS describes the rate that S ants quit

searching while outside the nest region. −
∮

∂ΩN

JT · ~nN ds sums the flux of returning ants

into the nest state. JT is the flux of returning ants, JT = −DT∇T + cTT , and ~nN is the

unit outward normal vector along the nest boundary. The total flux is obtained by summing

the dot product of JT and ~nN around the nest boundary, which is parameterized by s. The

term
IN
AN

wNN represents the rate at which an ant in the N state spontaeously leaves and

becomes an S ant in the region ΩN . Finally, the transport terms of the S and T states arise

from the random walk model outlined in Appendix B, Section B.4.

The process described by the system (3.10) is constrained to ΩH by no-flux boundary

conditions on S and T along ∂ΩH : JT · ~nH
∣∣
∂ΩH

= 0, where ~nH is the unit outward normal

along ∂ΩH . Likewise, JS · ~nH
∣∣
∂ΩH

= 0. In addition, T ants that encounter the nest

boundary, ∂ΩN , are instantly absorbed into the N state. Thus, T
∣∣
ΩN

= 0.

3.1.4 Continuum limit with resource present

Let N(t), E(t), Q(t), and B(t) be the probabilities of a focal ant being in state N, E, Q,

B respectively, at time t. Let S(t, x, y), T (t, x, y), and R(t, x, y) be the probability densities

of location at time t defined on ΩH . The ODE/PDE derivation is similar to the dynamics

without a resource, with some key changes in states that interact with each other. The

probability of being in the nest at time t+ τ is

N(t+ τ) = N(t) (1− wNτ − ξχE(t)τ)) + τjT (t) + τqS

∫∫
ΩN

S(t, x, y) dA. (3.11)

Here, χE(t) is a binomially distributed random variable describing the number of individuals

in state E at time t, with probability of success E(t), and n−1 as the number of ants (other

than the focal ant in the N class) that represent trials. To avoid the complication of working

with this random variable, assume χE(t) is well approximated by χE(t) ≈ (n − 1)E(t) ≈

nE(t), since n is typically large. With this approximation, and the standard expansion,

rearrangement, and τ → 0 limit, Equation (3.11) yields

dN

dt
= −wNN(t)− ξnE(t)N(t) + jT (t) + qS

∫∫
ΩN

S dA. (3.12)
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The Q and B state dynamics also have between-state interactions; the rate at which Q ants

transition to state B depends on how many B ants are present. The Q state is derived as

follows:

Q(t+ τ) = Q(t) (1− wQτ − α0(A0 − χB(t))τ) + v

∫∫
ΩB

S dAτ, (3.13)

where v

∫∫
ΩB

S dA is the probabilistic rate at which an ant in state S located in ΩB transitions

into state Q, and χB(t) is the number of ants at the resource at time t. Using the same

approximation and limiting procedure,

dQ

dt
= wQQ(t)− α0(A0 − nB(t)) + v

∫∫
ΩB

S dA. (3.14)

Let P (t, x, y) be the density of pheromone marks at a point (x, y) and time t. The amount

of pheromone in a small square of area 4A, centered at (x, y) is approximately

P (t+ τ, x, y)4A = P (t, x, y)4A+ `τχR(t, x, y)− δτP (t, x, y)4A (3.15)

Here, χR(t) is the number of ants in state R in the focal square. Using the approximation

χR(t, x, y) ≈ nR(t, x, y)4A, rearranging terms, and taking a limit as τ → 0 yields

∂P

∂t
= `nR(t, x, y)− δP (t, x, y). (3.16)

Ants in the S state have pheromone-induced bias described by the advection vector cP (P ),

a function of the pheromone levels at time t and position (x, y). This advection vector

arises from the diffusion limit with a pheromone-dependent directional bias. Incorporation

of pheromone into the advection-diffusion terms is worked out in appendix B, and assumes

that the maximal bias, km (presented in Equation (3.3)), is proportional to steplength: km =

bmρ̂S . The equations for other states are derived similarly to what has been demonstrated.

The entire system is
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∂N

∂t
= qS

∫∫
ΩN

S dA−
∮

∂ΩN

JT · ~nN ds− wNN − ξnEN Nest Ants

(3.17a)

∂S

∂t
= DS∆S −∇ (cP (P )S)− qSS +

IN
AN

(wNN + ξnEN + wEE)− v IB S Searching Ants

(3.17b)

∂T

∂t
= DT∆T −∇ (cTT ) + qS ÎNS + wQQ

IB
AB

Ret., Unex.

(3.17c)

∂R

∂t
= DR∆R−∇ (cRR) +

IB
AB

wBB Ret., Excited

(3.17d)

∂E

∂t
= −

∮
∂ΩN

JR · ~nNds− wEE Excited Ants

(3.17e)

∂Q

∂t
= v

∫∫
ΩB

S dA− α0(A0 − nB)Q− wQQ Queued Ants

(3.17f)

∂B

∂t
= α0(A0 − nB)Q− wBB Exploiting Ants

(3.17g)

∂P

∂t
= `nR(t, x, y)− δP (t, x, y) Pheromone

(3.17h)

Similar to before, the terms −
∮

∂ΩN

JT · ~nNds and −
∮

∂ΩN

JR · ~nNds describe the probability

flux of state T into N, and state R into N, respectively. JI = −DI∇I + cII for I ∈ {T, R}.

3.1.5 Parameter Set

Behavioral parameters of the ABM are listed in Tables 3.3 and 3.4 (discussed further in

Chapter 4); parameters used in the PDE continuum model are listed in Table 3.5.

Behavioral parameters were varied to understand how species with different trail fidelities

might have qualitatively different equilibrium recruitment dynamics; reasonable ranges for

parameter values in ants were determined by field measurements with T. caespitum in

Chapter 4. Distance was varied from 0.4 to 30 m to understand how recruiting steady

states varied with distance. 100 resource sites were assumed (1000 resource sites gave very

similar results to 100, and are thus omitted). P0 was set to 10 or 100 to incorporate a wide
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range of half-max trail fidelities. A timestep of τ = 10 s was used, with measured average

steplengths found in Chapter 4.

The upper value of km, 2.96 (corresponding to bm = 50.7), was based on field measure-

ments on T. caepsitum; to understand how a species with lower trail fidelity would differ,

km = 1.4 (corresponding to bm = 22.6) was also included.

The habitat ΩH was chosen to be large enough to minimize boundary impacts on the

foraging dynamics. The minimum region used was 4 × 4 m2; this minimal region was

necessarily expanded as the nest-resource distance increased. In all simulations, the nest

was placed at the center of the habitat (0, 0). The resource region was a 0.2 m×0.2 m square

centered at (R, 0), where R is the distance between the centers of the nest and resource

regions. The habitat size was increased along the x-direction: the left and right boundaries

were (−4, 4 +R), while the top and bottom edges of the habitat were kept at (−4, 4). The

discretization (for both ABM and PDE) models was 0.2× 0.2 m2, which coincided with the

nest and bait region sizes.

3.1.6 Bifurcation Simulations

Bifurcation diagrams of the PDE were numerically constructed to investigate the exis-

tence of bistability regarding the effect of distance (R) on the equilibrial number of B state

ants over different behavioral parameter values. Finite-difference techniques were used to

determine the steady states; the method is outlined in detail in Appendix B.

To detect whether a similar bifurcation structure was present in the ABM, simulations

were run with the same parameter values; however, since an isotropic diffusion limit was

used to derive the continuous time dynamics in the PDE and not the ABM, it is expected

that the overall dynamics will differ. To check whether bistability exists in the ABM, the

different PDE steady states were used as a sampling distribution for the states and positions

of individuals in the ABM colony. After initializing the ABM to the PDE steady-state, the

ABM was run for 5 hours of simulation time, and the first 3 hours of dynamics were

removed to eliminate the effect of the initial condition; 10 ABM runs were completed for

each parameter set.

To compare the steady-state searching distributions of the ABM to those of the PDE,

50 simulations of the ABM were run for 5 hours of simulation time, starting at each
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equilibrium found in the PDE; the first 3 hours were discarded to remove the effect of

the initial condition. Averaged plots of the 50 distributions of searching ants are compared

to predictions of the PDE.

3.2 Results

For a range of parameter values, simulations of the ABM resulted in two generally

different types of outcomes. In the first, the resource has few ants exploiting it, and the

distribution of searching ants in sectors around the colony is relatively homogeneous. The

second type of outcome featured high levels of ants exploiting the resource and a well-

established pheromone trail from nest to resource, with a high density of searching ants

moving toward the resource (Figure 3.1 and 3.2). The overall distribution of searching

ants varied dramatically in these two outcomes, with the latter showing a highly biased

distribution of searching effort around the trail and resource.

The ABM exhibited high levels of recruitment for large colony sizes, relatively close

distances, small P0, and large km. Figures 3.1, 3.3, and 3.4 illustrate this with histogram

heatmaps. For a given heatmap, each column is a histogram with the shade of yellow

indicating the frequency of numbers of B ants for the simulations. n and qS had the

greatest impact on the bistable nature; fixing qS = 1, δ = 10, P0 = 10, and km = 2.96,

the ABM model predicts bistability in distances from 6 - 20 m when n = 2000, compared

to bistability between 4 - 8 m when n = 500 (Figure 3.1). When qS = 2, the ABM

model predicts bistability between 4 - 13 m when n = 2000. Increasing P0 or δ had the

effect of moving the onset of bistability to smaller resource distances (Figure 3.1 and 3.3,

respectively), while increasing km increased the largest value for which bistability occurred

(Figure 3.3).

Steady states of the expected number of exploiting ants (nB∗) in the PDE model (Figures

3.5 and 3.6) exhibited a similar form of bistability as the ABM (Figures 3.1 and 3.3).

Generally, the PDE predicts bistability over a slightly greater range of distances than the

ABM; however, bistability in the ABM may be difficult to observe at large distances due

to the recruiting states being unstable to perturbations; in this case, the system is driven

down to the lowest recruiting steady-state through random noise.

In the bistable regime, the distribution of S ants predicted by the PDE was strongly
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biased along the trail and around the resource when high levels of recruitment occurred,

and homogenously distributed around the nest when low levels of recruitment occurred

(Figure 3.2). Figure 3.7 shows the dependence of the searching distribution on various

parameter values in the PDE and ABM with bm = 22.6 (km = 1.4), and n = 2000. In both

the PDE and ABM searching distributions, increasing P0 increased the spread of searching

ants directly around the resource, especially when δ = 10 and qS = 1. Generally, the

ABM graphs show a greater spread of searching ants than is predicted by the PDE; this

increased spread is most prominent for parameter combinations with P0 = 10 (Figure 3.7).

Simulations with n = 500 were similar.

Increasing km from 1.4 to 2.96 results in a searching distribution with less spread around

the resource in both the ABM and PDE (Figure 3.8). The same previous qualitative

dependencies are found in the ABM and PDE models with regards to qS , δ, and P0. These

qualitative differences in the searching distribution were also present at larger distances,

but are harder to observe (Figure 3.9). Generally, the searching distributions matched least

well when n = 500 and P0 = 10.

Parameterizing the model with data from T. caepsitum shows bistability is persistent

across a wide range of colony sizes, starting at resource distances of 3 - 7 m, depending on

colony size (Figure 3.10), and extending beyond 10 m for larger colonies. Investigations on

how bistability varied with changing bait attributes (A0 and wB) show almost no effect.

3.3 Discussion

This chapter develops a mechanistic, spatially explicit model of pheromonal trail re-

cruitment in ants. The agent-based model (ABM) incorporates trail following as a biased

space-jump random walk, with the amount of bias determined by the amount of pheromone

laid by ants returning from the resource. This ABM includes a complete set of behavioral

transitions involved in the recruitment process and was used to derive an analogous system of

PDEs (partial differential equations) via a diffusion limit. Simulations with initial conditions

from various steady states of the corresponding PDE model were used to understand the

potential for bistability in this ABM. The PDE model allows investigation of how the

bistable nature of the system varies with individual behavioral parameters, and is able to

predict the bifurcation diagram of ants exploiting a resource in the ABM (Figures 3.1 and
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3.5 for comparison of ABM and PDE).

The steady states observed can be classified as one of two types: the first (referred to

as the “recruiting equilibrium”) is typified by high levels of pheromone, trail following by

ants, and resource exploitation. The second (referred to as the “null equilibrium”) lacks all

of those properties, and exhibits dynamics much like those that would be found with the

resource absent (Figure 3.2). The general structure of the ABM steady states resembled

that of the PDE; bistability was present at intermediate resource distances for many of

the parameter combinations investigated. The PDE is useful in showcasing this, as it is a

deterministic model that does not exhibit stochasticity or randomness in its output. This

allows the bistable structure of the ABM to be understood more clearly. In this case, the

PDE allowed predictions of the distances under which bistability is present.

The ABM generally predicts a greater spread of searching ants around the resource

(Figure 3.8). Despite the discrepancies in the searching distributions of the ABM and

PDE, the PDE was able to capture the general qualitative changes in the ABM with various

parameter values. This included an increased spread of searching effort around resources

when P0 or δ was large, or qS was small (Figure 3.7). The flexibility in the searching

distribution in response to changes in these parameters is greatest when the maximal bias

is small (Figure 3.7 vs. 3.8).

The discrepancies in the searching distributions may come from several sources. The

errors are generally greatest when n is small (Figure 3.9), implying that the stochasticity

in the ABM may be the cause. Averaging the searching distribution over more runs may

help clarify the contour boundaries. In addition, the PDE uses a first-order upwind scheme

to solve for the steady-state; using a second-order upwind scheme may increase the level of

matching by reducing the local truncation error in the PDE solution. Preliminary results

show that a second-order centered-difference scheme is unstable for this advection-diffusion

parameter regime. Future work will employ a second-order upwind scheme.

Bistability plays an important role in determining an ant colony’s ability to spatially

organize, and thus must influence the ability of colonies to generate foraging activity [9,12,

26]. Empirical experiments show that colony attributes, such as colony size, along with the

initial configuration of the colony, determine whether M. pharaonis ants are able to initiate

high levels of recruitment to a resource when ant movement is restricted to a 1D foraging
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arena. This model predicts that spatial bistability is also present in a 2D foraging arena in

a wide range of ants species; however, this bistability only occurs at relatively far distances

from the nest.

When parameterized specifically to T. caespitum, the model predicts that bistability

is present over a range of colony sizes, starting at resource distances of 3 - 7 m, and in

large colonies, extending beyond 10 m. Foraging ranges of T. caespitum are typically much

smaller than this (personal observation). It remains to be tested whether a large colony can

sustain foraging distances beyond 10 m. At smaller distances (< 3 m), the model predicts

no bistability in 2D space, which contradicts the theory that group recruitment has evolved

to combat bistability. Other work investigated the effect of resource type on the propensity

of ants to use group recruitment [17]; future empirical research needs to investigate whether

the tendency for group recruitment varies with resource distance.

An alternative hypothesis is that group recruitment evolved to facilitate food processing,

like cutting through exoskeleton to gain access to insect haemolymph [17]. An important

addition to this model will be a nonlinear increase in the rate at which ants can take a

bite out of the resource (wB as a function of the number of ants in behavioral state B),

which will model resource processing by multiple ants. It is expected that this addition will

shift the region of bistability to closer resource distances; however, model simulations with

a wide range of fixed wB (6 - 180 1
hr) give similar bistability ranges with regards to resource

distance to help elucidate its purpose.

This model allows measurable individual behavioral parameters to be tied with the

dynamics of a foraging ant colony. The individual parameters of this model could be

calibrated to any particular species that uses trailing. Future empirical studies need to

verify the bistable nature of pheromonal recruitment when ants are allowed to forage in 2

spatial dimensions. While insightful, models and experiments on ants limited to 1 spatial

dimension may lead to misinterpretation of the foraging dynamics that have evolved in

nature.
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Figure 3.1: Bifurcation diagrams of the ABM. For each distance, 10 simulations were run
for 5 hours of simulation time starting from the equilibria of the PDE model; the first three
hours of simulation time were excluded from all runs to remove the effect of the initial
condition. If multiple equilibria were present for a distance, 10 each were started from
the high and low equilibria. All simulations were performed with δ = 10, km = 2.96, and
qS = 1.
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Figure 3.2: Representative searching distributions of the PDE and ABM at high (“H”)
and low (“L”) steady states in bistable parameter regime. All results in this figure were
obtained with bm = 24 (km = 1.4), R = 6, qS = 1, and n = 2000.
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Figure 3.3: Bifurcation diagrams of the ABM constructed as in Figure 3.1. All simulations
were performed with P0 = 10, and qS = 1.
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Figure 3.4: Bifurcation diagrams of the ABM constructed as in Figure 3.1. All simulations
were performed with P0 = 10, and qS = 2.
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Figure 3.5: Plots of the PDE equilibrial number of B-state ants vs. distance of resource
from the nest in meters with qS = 1. B-values corresponding to δ = 10 are shifted up a
tenth of the maximum value present in the graph to better display the bistable nature of
these graphs. All curves exhibit two saddle-node bifurcations with respect to distance.
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Figure 3.6: Plots of PDE equilibrial number of B-state ants vs. distance of resource from
the nest in meters with qS = 1. B-values corresponding to δ = 10 are shifted up a tenth
of the maximum value present in the graph to better display the bistable nature of these
graphs. All curves exhibit two saddle-node bifurcations with respect to distance.
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Figure 3.7: Searching distributions of the PDE and ABM above and below the double line
break, respectively. For parameter combinations that have multiple equilibria, only the high
equilibrium was plotted. All results in this figure were obtained with bm = 24 (km = 1.4),
R = 2, and n = 2000.
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Figure 3.8: Searching distributions of the PDE and ABM above and below the double
line break, respectively. For parameter combinations that have multiple equilibria, only
the high equilibrium was plotted. All results in this figure were obtained with bm = 50.7
(km = 2.96), R = 2, and n = 2000.
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Figure 3.9: Searching distributions of the PDE and ABM above and below the double
line break, respectively. For parameter combinations that have multiple equilibria, only
the high equilibrium was plotted. All results in this figure were obtained with bm = 50.7
(km = 2.96), R = 4, P0 = 10, and δ = 10.
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Figure 3.10: Plots of the PDE equilibrial number of B-state ants relative to colony size vs.
distance with parameters found from empirical work on T. caepsitum. B-values for different
colony sizes were shifted up to better reveal the bistable nature of these curves.
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Table 3.1: Behavioral state space of the agent-based model.

State Description Transitions to

N Nest ants S

S Searching ants N,T, or Q

T Nest-bound, unexcited N

E Recruiting at nest S

R Nest-bound, excited E

Q Queued at resource B

B Feeding at the resource R

Table 3.2: Transition rates in the ABM with a resource. Note that S ants that quit
transition to state N if in ΩN , and T otherwise. B.I. represents a transition that occurs
with a “boundary interaction”.

Transition Rate

N → S wN + ξEtot
S → T qS
S → N qS
S → Q v

T → N B.I.

E → S wE
Q → B α0(A0−Btot)
Q → T wQ
B → R wB

Table 3.3: Parameter values used in the ABM model.

Parameter Description Value(s) Used Units

n Number of ants {500, 2000} # Ants

wN Rate N-ants leave the nest 0.11 1
hr

wE Rate E-ants leave the nest 36 1
hr

qS Rate S-ants quit searching {1, 2} 1
hr

wB Rate B-ants take a bite 12 1
hr

wQ Rate Q-ants quit the bait 1 1
hr

ξ Recruitment rate 0.02 1
hr·Ant

δ Pheromone decay rate {5, 10} marks
hr

` Pheromone marking rate 800 marks
hr · Ant

v S → Q rate in ΩB 13 1
hr

α0 Baseline finding rate of feeding sites 30 1
hr·site

A0 Total number of feeding sites on resource {100} sites
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Table 3.4: Movement bias values used in the ABM model.

Parameter Description Value(s) Used Units

κT T state bias parameter 1.80 -

κR R state bias parameter 1.80 -

km S state maximum bias parameter per step {1.4, 2.96} -

P0 Half-max pheromone level {10, 100} marks
m2

ρ̂T T state mean steplength 0.061 m

ρ̂R R state mean steplength 0.061 m

ρ̂S S state mean steplength 0.062 m

Table 3.5: Parameter values used in the PDE system, as calculated from the individual
movement attributes displayed above. The magnitude of cS is pheromone dependent.

Parameter Description Value(s) Used Units

DS Diffusion coefficient of state S 0.68 m2

hr

Di Diffusion coefficient of state i. i ∈ {T,R} 0.66 m2

hr

|ci| Magnitude of Adv. vector, state i ∈ {T,R} 16.4 m
hr

|cS | Magnitude of S Adv vector I1(κS(P ))
I0(κS(P ))

ρ̂S
τ

m
hr



CHAPTER 4

MODEL PARAMETERIZATION AND

VALIDATION

The goal of this chapter is to validate the potential for subsequent autocorrelated

resource finds during recruitment in an empirical system, and validate model predictions

regarding the find times of autocorrelated resources for Tetramorium caespitum. The latter

requires fitting the PDE model developed in Chapter 3. Parameter values of T. caespitum

are estimated from literature when possible; when not possible, parameters of other ants are

used (with the source noted). Movement parameters are obtained via field observations and

maximum likelihood estimates. After parameterization, experiment 1 is used to understand

how the finding rate of resources varies with distance from the nest when the colony is in

its null searching distribution and subsequently estimate the parameter qS , which describes

the rate at which searching ants quit searching to return to the nest. Experiment 2 is

used to understand how the finding rate of T. caespitum decreases with distance from a

focal resource that is being recruited to using a series of Cox proportional hazard models.

Specifically, the analysis answers the following questions: do subsequent, autocorrelated

resource finds occur more quickly than the original focal bait finds? Does the model predict

the relative finding hazards of autocorrelated baits?

4.1 Parameters obtained from literature

Colony size in T. caepsitum probably varies widely; values range from n = 2500 to

n = 14, 000 [8, 18]. The fraction of the colony that actively engages in foraging is typically

unknown, but generally decreases with overall colony size [45]. Colony sizes were set to 500

and 2000 to encompass the uncertainty in this value.

Pheromone evaporation rate is known to be temperature and substrate dependent [38,

71]. Experimentally derived values for T. caespitum could not be found; however, Collignon

and Detrain (2010) use the value δ = 18 1
hr for T. caespitum without explanation [17].
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Using a Y-bridge experimental setup, Jeanson, et al. (2003) measured how the bias of

Monomorium pharaonis ants varied over time, and estimated δ = 6.7 1
hr on plastic, and

δ = 20 1
hr on paper [38]. Preliminary work shows δ = 10 and δ = 18 give similar results; the

results presented are simulated with the value δ = 18 1
hr .

Pheromone deposition rates of T. caespitum have not been found in the literature. Lasius

niger ’s deposition rates have been carefully studied on a simple experimental bridge setup

and found to vary across individuals, resource quality, and the number of foraging trips [6].

This study finds 2 - 6 marks per 20 cm bridge length; using their estimates of 2.7 - 4.1 cm/s

and the estimate that roughly 1/3 of foragers lay pheromone, I derive 300 ≤ ` ≤ 1500markshr ,

and use the value ` = 800 1
hr as a reasonable estimate.

wN was estimated using Collignon and Detrain’s (2010) estimate that an ant spon-

taneously exits every 13 s. Assuming 2500 foragers have the same probabilistic rate of

spontaneously leaving, this gives an estimate of wN = 0.11 1
hr . The parameter wE = 36 1

hr

is also used in this paper, and used throughout this thesis for simulations [17].

4.2 Movement parameter estimation

The following data were collected near the Farmington Bay Waterfowl Management

Area in Farmington, UT, with T. caepsitum ants that occurred along an abandoned road

with dirt-gravel substrate. Preliminary analysis of individuals’ paths showed that the level

of bias by searching and returning ants changed throughout the recruitment process. In an

effort to document this change, paths of recruiting ants were analyzed at the beginning of

the recruitment process, and after it had equilibrated for 1 hour.

Individuals’ paths were recorded by placing small aquarium stones at their position at 10

s intervals for as long as the individual could be followed. Recording ceased when the ant’s

location was lost (usually due to it moving into deep grass), it switched behavioral states (it

found a resource or returned to the nest), or because it began inspecting one of the aquarium

stones. When recording ceased, the step lengths and step directions were measured with a

ruler and protractor. 10 s intervals were used to reduce interstep correlation in direction,

as required by the assumptions of the random walk model presented in Chapter 3.

Measurements involving searching ants included those outside the nest without any

obvious trailing activity (S.NP, “no pheromone”), those following a pheromone trail laid by
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exactly 1 returning excited ant (S.LP, “low pheromone”), and those involved in the recruit-

ment process 1 hour after recruitment began (S.HP, “high pheromone”). The returning

excited ants were classified as the R.NP type, which consisted of the first ant that found

a bait (before any trailing activity was started), and R.HP, which consisted of returning

excited ants in the recruitment process 1 hour after recruitment began. To measure all HP

ant movements, a pecan sandy bait was laid near a searching ant to allow easy finding, and

the recruitment process was allowed to equilibrate for an hour.

The S data consisted of 55 hops (steps and directions) of 7 searching NP ants, 155 hops

from 32 LP ants, and 114 hops from 28 HP ants. The R data consisted of 85 hops from

8 NP individuals, and 63 hops from 15 HP individuals. All told, 324 hops were recorded

from 67 searching ants, and 148 hops were recorded from 23 returning excited ants.

Let θki ,ρki be the step directions and lengths on the kth step of the random walk of indi-

vidual i, i ∈ {1, 2, ..., N}, k ∈ {1, 2, ..., ni}. I assume that each individual’s steplengths are

drawn from an exponential distribution with a fixed mean steplength, ρ̂i. Regarding turning

angle distributions, I assume that all individuals choose from a von Mises distribution with

fixed concentration parameter and bias angle specific to that individual; denote these κi

and θ̂i.

Pr(κi, θ̂i) =

ni∏
k=1

eκi cos(θki −θ̂i)

2πI0(κi)
(4.1)

The maximum likelihood estimate of ρ̂i is simply the mean of steps taken by individual i.

The maximum likelihood estimates of θ̂i, κi, denoted θ̄i and κ̄i, satisfy

θ̄i = atan2

(
N∑
k=1

cos(θki ),

N∑
i=1

sin(θki )

)
(4.2)

I1(κ̄i)

I0(κ̄i)
=

1

ni

ni∑
k=1

cos(θki − θ̄i) (4.3)

where atan2(x, y) is the generalized arctangent. The maximum likelihood estimates are

used to calculate each ρ̄i, θ̄i and κ̄i for individual i. Boxplots of ρ̄i and κ̄i estimates for each

group are shown in Figure 4.1; between-group differences in means were tested at the 0.05

significance level using an ANOVA in the statistical package R.

Mean step lengths of different groups were not significantly different from each other

(F = 0.938, p = 0.446). Means of κ̄ differed between groups (F = 13.87, p = 1.83e-08).

A multiple-comparisons test was performed using Tukey’s honest significant difference test.
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Significant differences were found between the following pairs: R.HP-R.NP (p < 0.001),

S.NP-R.HP (p < 0.001), S.LP-R.HP (p < 0.001), S.HP-R.HP (p < 0.001); S.HP-S.NP were

almost significantly different (p = 0.07). Estimates and 95% confidence intervals of the

means are shown in Table 4.1.

The model presented in Chapter 3 assumed the step length distribution was exponential.

Distributions of lumped S and R types are shown in Figure 4.2 and are roughly exponential,

justifying the model assumptions. The mean step lengths of lumped S and R types are

0.062 m and 0.061 m respectively. With the diffusion limit assumptions, these give diffusion

coefficient estimates of DS = 0.68
m2

hr
and DR = 0.66

m2

hr
. Paired with the bias parameter

estimates in Table 4.1, the average R-state advection magnitude is calculated as |cR| =
I1(κ)

I0(κ)

ρ̂R
τ

= 16.4
m

hr
. Ants in the T behavioral state are assumed to return to the nest with

the same movement attributes as R-ants. Thus, DT = 0.66m
2

hr , |cT| = 16.4
m

hr
.

The estimates of κ for low-pheromone and high-pheromone S-ants are used to fit the

concentration function in the S-ants’ von Mises distribution, κ(P ) =
kmP

P + P0
. I assume that

the bias parameter measured from HP ants is the maximum value possible, thus km = 2.96,

and related parameter bm = 50.7.

To measure P0, I use the κ estimate of 23 S.LP ants and some approximations of the

density of pheromone present from 1 R-ant’s return. The 23 ants chosen were those for

which time-since-pheromone-deposition was recorded, allowing pheromone evaporation to

be accounted for. Assume R-ants lay pheromone at rate ` 1
hr . Assuming pure advection back

to the nest, the R-ant will lay a trail with line density `/c, where c is the R-ant’s velocity.

Suppose ant i’s bias was recorded τi hours into the recruitment process. Assuming a decay

rate of δ = 18, the pheromone density in a 0.2 m wide region around the trail is roughly

P =
`

c · 0.2
eδτi .

A single P0 value is assumed for all ants; κ(P ), with the km approximation above, was

fit through the measured ki (the bias measured for the ith S.LP ant). P0 was chosen as

the value that minimized the sum squared error with c set to 16.4mhr . This method gives a

rough estimate of P0 = 5.6.
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4.3 v estimate

To estimate the finding rate in the bait region, find times of a roughly circular, 1 cm

diameter piece of pecan sandy were observed when initially placed 1, 3, 5, or 10 cm away

from an ant; 10 observations were performed with each distance. Time was tracked while

the ant searched within a 20 × 20 cm2 region around the bait, and stopped when the bait

was found or the ant left the bait region. A find-time function T (x) was fit through the

average time to find at each distance using a cubic spline (sum of the times in the resource

region for all trials at the given initial distance divided by the number of finds), and the

requirement T (0) = 0. The mean of this function was calculated over a 20×20 cm2 square,

and the inverse of the mean was used as the average find rate in the bait region. The

estimate obtained is v = 13 1
hr ; this quantity is assumed to scale with the number of ants in

the bait region. A similar procedure with a 10×10 cm2 resource region resulted in v = 25 1
hr .

As expected, the finding rate in the smaller region is greater, as the initial condition has

the ant closer to the resource.

4.4 Experiment 1: null searching state

Experiment 1 compared find times at two resource distances from 5 different colonies. A

total of 6 baits were laid around each colony used in the study; 3 were laid 50 cm from the

entrance, and 3 at 100 cm. All baits were watched for 30 minutes, and the times at which

the baits were discovered were recorded. Upon discovery, the path of the ant was tracked

for 10 cm to verify that the ant was heading towards the focal colony; discovery times of

ants that did not head toward the focal colony were ignored. After verification, the ant was

aspirated to prevent recruitment.

4.5 Experiment 2: ARS searching state

In experiment 2, ants of 6 different colonies were allowed to recruit to baits placed 50

or 100 cm away (3 colonies for each distance); these will be referred to as “focal baits”,

with corresponding distance from the nest termed the “focal distance”. The recruitment

process was allowed to equilibrate for 60 minutes, after which the number of ants passing

an imaginary line perpendicular to the trail over a two-minute period was recorded, as well

as the number at the bait. Up to 9 small additional baits were placed 5, 10, or 20 cm from
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the bait being recruited to; these will be referred to as “subsequent baits”. For 10 minutes,

recruited ants that made contact with these supplementary baits were aspirated, and the

find times were recorded.

4.6 Data Analysis

The Cox proportional hazards test is a semiparametric test that allows for comparison

of survival times by assuming that the hazard functions under different experimental treat-

ments differ by a constant scaling term. The standard Cox model describes the hazard with

independent variable(s) x, coefficient(s) β, and an unspecified baseline hazard h0(t) as

h(t,x, β) = h0(t)ex·β, (4.4)

where · denotes the dot product. Fitting is carried out via maximum likelihood tech-

niques [37]. In the case x = x, a scalar, the interpretation of two treatments x1 < x2 is

that the hazard under condition x2 is h0(t)exp [(x2 − x1)β], or exp [(x2 − x1)β] that of the

hazard under condition x1.

In the present study, colonies may have different find times of resources due to hetero-

geneity in unmeasured variables, such as colony size, motivation to forage, or local substrate.

To account for these differences, a colony-specific frailty term is included in the hazard term.

The frailty model is

h(t,xi, β) = zih0(t)exi·β, (4.5)

where xi are the independent variables measured for individual i, and zi is the frailty term

for individual i; the frailties of the data are assumed to be gamma distributed with mean 1

and variance parameter θ [37]. A significant θ indicates that individual-specific differences

in baseline hazards exist.

For experiment 1, a Cox proportional hazards test was used to estimate the ratio of the

baseline hazards with bait distance (DIST) as an independent variable, and colony ID as

a frailty term. For experiment 2, a Cox proportional hazards model was fit with DIST,

BTYPE (focal or subsequent baits), and colony ID as a frailty term to determine whether

subsequent baits were found more quickly than focal baits in experiment 1 for a given focal

distance. Finally, discovery times of baits were analyzed with focal bait distance (DIST),
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and distance (BDIST) from the focal resource (5, 10, and 20 cm) as continuous variables.

Analyses were carried out in R using the “survival” package [67].

4.7 Results

In the null searching state data, distance was found significant (p = 0.0036) with a

coefficient of -0.02274; temperature and frailty were not (p = 0.36, p = 0.94 respectively).

With 50 cm focal distance as the baseline hazard, the coefficient is interpreted as follows:

for every unit focal resource distance beyond 50 cm, the hazard of the resource is reduced

by exp(−0.02274x); written another way, for focal distance x, the hazard is reduced by

exp(−0.02274(x − 50)) = 0.9775(x−50). The lower and upper 95% confidence intervals on

the exponentiated value were (0.9627, 0.9926). Thus, 100 cm baits are found approximately

0.9775100−50 = 0.32 as quickly as 50 cm baits. This value is later used to estimate qS .

Preliminary analysis involving subsequent baits showed temperature did not play a

significant role, thus it is excluded. A Cox model with experimental bait type as a factor

(BTYPE), focal bait distance (DIST), and colony ID frailty shows significance of all 3

(p < 0.001); log-likelihood ratio tests show that both experimental bait type and distance

are significant (p < 0.001, p = 0.013). Lumped subsequent baits were found 3.326 times

faster than focal baits of experiment 1 at 50 cm, and 4.95 times faster at 100 cm from the

nest.

A Cox model and post hoc log-likelihood test showed DIST, BDIST, and colony frailty

significant (p < 0.001, p = 0.001, and p < 0.001 respectively). The coefficient estimates are

presented in Table 4.2. The log of the hazards ratio of the model is

−0.06618 · 4BDIST + 0.1931 · 4DIST, (4.6)

where 4BDIST and 4DIST are the differences in subsequent and focal bait distances that

are being compared. The 5 cm subsequent baits with 50 cm focal distance are used as the

baseline hazard. The model implies that 10 cm and 20 cm subsequent baits are found 0.72

and 0.37 times as quickly as 5 cm subsequent baits with 50 cm focal distance; for 100 cm

focal baits, 5 cm, 10 cm and 20 cm subsequent baits are found 2.63, 1.89 and 0.97 times as

quickly. For fixed BDIST, the Cox model predicts subsequent baits with focal distance 100

cm are found 2.56 times more quickly than those with focal bait distance of 50 cm.
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4.8 Model prediction

The full PDE model described in Chapter 3 was parameterized with the values described

in this section. Nest size was fixed at n = 500 and n = 2000. Steady-state searching

distributions were found for resources 50 cm and 100 cm away from the nest; all resources

had A0 = 100. The model was simulated on the same habitat described in Chapter 3,

with grid discretization of 0.1 m. Searching distributions were uploaded, and interpolated

at points corresponding to 5, 10, and 20 cm away from the focal bait; these were used to

obtain model predictions of finding rates according to vn

∫∫
ΩB

S∗dA.

For both 500-ant and 2000-ant colonies, the proportional hazards for 10 cm and 20 cm

baits were the same to 2 decimal places. Only 500-ant colonies were used, as the predicted

survival functions of subsequent baits generally matched the empirical data better. As in

the empirical work, the baseline hazard is chosen as the subsequent baits 5 cm from the

focal bait, with focal bait at 50 cm. For 50 cm focal baits, the predicted hazard ratios are

0.67 and 0.21 for 10 and 20 cm baits, respectively. For 100 cm focal baits, the predicted

hazard ratios are 1.88, 1.22, and 0.36 for 5, 10, and 20 cm subsequent baits, respectively.

With fixed BDIST, the model predicts 5, 10, and 20 cm subsequent baits at 100 cm focal

distance are found 1.88, 1.83, and 1.73 times faster than 50 cm focal distance.

The survival curves of subsequent baits at various focal bait distances are plotted in

Figure 4.3 for the empirical data and the model prediction with 500 ants.

4.9 qS Estimate

Assuming an unbiased random walk (concentration parameter κS = 0), the equilibrium

distribution of searching ants is found by setting ∂S
∂t = 0 in Equation (3.10b). Denoting the

searching steady-state by S∗, and the nest population steady-state as N∗ yields

0 = DS∆S∗ − qSS∗ +
IN
AN

wNN
∗ (4.7)

Introduce the following nondimensionalized variables ξ and σ, and parameters γ and ÂN

Ŝ∗ =
DS

qS
S∗ x =

√
DS

qS
ξ y =

√
DS

qS
σ γ =

wN
qS

ÂN =
qSAN
DS

(4.8)

The system becomes

−∆Ŝ∗ + Ŝ∗ =
γINN

∗

ÂN
(4.9)
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Equation (4.9) can be solved using Fourier transform techniques [28]. To simplify matters,

I assume the nest area, ÂN , limits to 0; in this limit, IN
ÂN

= δ(x, y), the 2D delta-function.

In dimensional variables, the solution is

S∗(r) =
wNN

∗

4πDS

∞∫
0

e
−t−qS r2

4tDS

t
dt

where r is the radial distance from the nest; r =
√
x2 + y2. This solution can be used to

numerically find the qS term that best matches our requirement S∗(1)/S∗(0.5) = 0.32. The

term wNN
∗ scales out of this ratio, and need not be known to solve for qS . Substituting in

the estimate of DS = 0.68, I find qS = 2.08 1
hr . Unfortunately, there were not enough data

to robustly estimate a qS for each colony.

4.10 Discussion

In this chapter, an empirical study was devised that assessed the ability of a colony to

find autocorrelated “subsequent” baits 5, 10, and 20 cm away from a focal bait that ants

are exploiting through recruitment. The focal bait was either 50 cm or 100 cm from the

nest; this is termed the “focal distance”. The full PDE model was parameterized through

literature searches and field work, and the experimental study was replicated by simulating

a colony recruiting to a resource either 50 cm or 100 cm away from the nest. The hazard

rates of the empirical work were estimated using a Cox proportional hazards model with

distance of subsequent bait from focal bait (BDIST) and distance of focal bait to the nest

(DIST) as explanatory variables. The corresponding hazard ratios were calculated from the

PDE’s steady-state searching ant distribution for comparison.

The model correctly predicted that subsequent baits are found faster for focal distance

of 100 cm compared to 50 cm. The exponentiated DIST coefficient in the Cox proportional

hazards model was 1.019, meaning that subsequent baits with fixed distance from a focal

bait are found 2.56 times more quickly than their 50 cm focal bait counterparts; the 95%

confidence interval includes values (1.36, 5.14). The PDE model captured the trend of

increased finding rate with focal distance (Figure 4.3); 5, 10, and 20 cm subsequent baits

were found 1.88, 1.83, and 1.73 times as quickly when the focal bait is at distance 100 cm

than when the focal bait is at distance 50 cm.
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With focal distance fixed, the Cox model predicts that 10 cm and 20 cm baits are found

0.93605 = 0.72, and 0.936015 = 0.37 times as quickly as the corresponding 5 cm subsequent

bait at the same focal distance, with 95% confidence intervals of (0.60, 0.86) and (0.22,

0.63). The model predicts 0.67 and 0.21 at 50 cm, and 0.63 and 0.19 at 100 cm focal

distance. Thus, the PDE model underestimates the hazards for subsequent baits 20 cm

from the focal bait. In turn, this means the model underestimates the density of searching

ants at 20 cm from a resource.

Although it captures the qualitative trend, the model underestimated the density of

searchers away from the focal bait. The simplest reason for the discrepancy is parame-

ter estimation, and error in the PDE steady-state solution. Better parameter estimates

will eventually come from laboratory studies that track individual movements with video

recordings, and studies with larger sample sizes. It is not believed that a poor estimate

of colony size resulted in this discrepancy, as both 500-ant and 2000-ant colonies gave

similar predictions for the proportional hazards. The scheme used to find the steady states

is a first-order method, and might not adequately describe the true solution when the

discretization is coarse relative to the focal bait distance. This can be checked by finding

the steady states on finer grids, however this is difficult because the habitat must be defined

on a large enough grid that precludes significant boundary interaction. A solution might

be to find steady states of a simpler model with a constant flux of ants from the nest, and

zero boundary conditions on a grid more tightly concentrated on the region between the

nest and bait. Another solution is to use a grid with variable mesh-width, with a finer mesh

near the trail.

The model’s predictions could also suffer from the diffusion limit used to derive the

PDE. This particular derivation assumes that the directional bias of individuals becomes

0 as the timestep becomes 0, while capturing the average bias over large timescales. At

small timescales, the predicted positional variance in the PDE will be greater than that of

the empirical system. This error might predict less bias in the walk of searching ants than

in the empirical system, and in turn result in less directed motion in searching ants. This

error should be greatest when the resource is 50 cm away from the nest, as the foragers

might not take enough steps before reaching the resource for the positional spread in the

walk to average out as it would on large timescales.
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More interestingly, the model probably simplifies the possible behavioral states of indi-

viduals in the colony. Searching individuals that have lost a pheromone trail might have

different movement patterns than individuals that never found a pheromone trail. Ants

that lose the trail near the resource might undergo a more sinuous random walk, either by

slowing down or turning more, to increase the chance that the trail is found again. Ants

are known to change their searching behavior when informed of a resource’s position, and

even tailor their searching distribution to the type of resource [63]. The behavior of ants

that “lose” the pheromone trail has not been adequately described in the literature, and is

an important future research direction.
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Figure 4.1: Boxplots of κ and ρ maximum likelihood estimates calculated for each
individual.
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Figure 4.2: Histograms of ρ̄ maximum likelihood estimates calculated for S and R
individuals. Exponential distribution plots are added with mean 1

ρ̄ .
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Figure 4.3: Survival plots of empirical data and the model prediction for a 500-ant colony;
focal bait distance is 50 cm (top row) or 100 cm (bottom row). The model correctly predicts
the qualitative trend of subsequent baits being found faster at a focal bait distance of 100
cm.

Table 4.1: Maximum likelihood estimates of step lengths (ρ̂) and concentration parameters
(κ̄), 95% confidence intervals, and significance grouping of κ̄ estimates for ants in different
behavioral types in the ANOVA model. The first letter of Type indicates behavioral state
(S: Searching, R: Returning excited), the second two letters indicate the observation period
(NP: No pheromone, LP: Low pheromone, HP: High pheromone).

Type ρ̄x κ̄ κ̄ Int. κ̄ Sig. Group

S.NP 0.078 m 0.97 (0, 2.29) A, B

S.LP 0.066 m 1.90 (1.28, 2.53) A, B

S.HP 0.058 m 2.96 (2.22, 3.70) B

R.NP 0.059 m 1.80 (0.57, 3.04) A, B

R.HP 0.067 m 6.19 (5.08, 7.29) C
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Table 4.2: Results of experiment 2. The table categories are variables, the estimated
coefficients, exponentiated coefficients, confidence intervals of exponentiated coefficients,
and p-values. The independent variables are distance from focal bait to subsequent bait,
focal distance.

Var. Coef. Exp[Coef.] Conf. Int. P-value

BDIST -0.06618 0.936 (0.9038, 0.9693) < 0.001

DIST 0.01931 1.019 (1.0062, 1.0329) < 0.001



CHAPTER 5

MECHANISM AND BENEFITS OF

COLONY-WIDE ARS

A major focus in optimal foraging theory is understanding how individuals should

allocate foraging effort in space to maximize food collection [65]. The marginal value

theorem, for example, investigates the optimal amount of time that a rate-maximizing

forager should spend foraging in a patch [15]. The optimal time is a tradeoff between

time spent traveling between patches, and diminishing returns within a patch. A more

mechanistic understanding of spatial allocation of foraging activity comes from the study of

area-restricted search (ARS), which connects information-use by individuals to subsequent

changes in movement patterns while a forager is searching [4, 41]. In patchy resource

distributions, a forager should focus its searching effort on areas in which prey are most

concentrated. However, this information is typically not available; instead, the forager can

use the number of prey that have been found in an area as a cue to increase or decrease

the intensity of its search effort [41]. The value of ARS strategies depend critically on

the resource distribution; ARS is most valuable when resources are autocorrelated, as the

discovery of a resource gives information about the probable location of others [61].

A typical ant colony may comprise thousands of individuals; the ability of a colony to

organize its foraging effort in a particular region depends on the actions by individual ants

in response to local information, and feedbacks generated by these actions [22,24]. Positive

feedbacks and stimulus decay result in nonlinear scaling of individual behavioral changes at

the colony level; small changes in individual behavior can result in drastic changes in the

behavioral state of the colony [26]. An important colony-wide behavior present in many

ants is pheromonal recruitment, a process used to efficiently exploit a resource. During

pheromonal recruitment, an ant that discovers a resource lays a pheromone trail as it

returns to the nest. At the nest, the founder ant prompts other ants to exit and follow the
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trail to the resource. Subsequent ants led to the resource repeat the process, resulting in

positive feedback in information spread and efficient colony-wide exploitation [35].

Although recruitment is classically considered a means by which a colony efficiently

exploits a resource, it may also benefit a colony by directing searching effort to profitable

regions of the environment, i.e., areas in which other resources are likely to occur due to

autocorrelation in the resource distribution. Large species-specific differences in the ability

of individual ants to follow their pheromone trails have been shown to exist, for example

between Tetramorium caespitum and Tapinoma erraticum [23]. T. caespitum (previously

called T. impurum) has been noted for its lack of trail fidelity; in an empirical experiment,

Deneubourg et al. (1983) found only 18% of recruited ants reached a food source 10 cm from

the nest entrance. In contrast, 73% of recruited individuals of the ant Tapinoma erraticum

made it to the resource in a similar experiment.

Using a spatially implicit ODE model, Deneubourg et al. (1983) show that having a low

trail fidelity increases the ability of an ant colony to locate autocorrelated resources. In the

model, ants are recruited to a particular resource with a “noise” parameter that determines

the proportions of ants that make it to the focal resource or become lost while following

the pheromone trail. Lost ants are directed to regions around the resource, where they can

contribute to the colony’s foraging efforts by finding autocorrelated resources. Deneubourg

et al. (1983) conclude that error-prone trail following allows the colony to flexibly multitask

between exploiting a resource and searching the vicinity for new resources.

The goal of this chapter is to develop a mechanistic, 2D, spatially explicit simulation

model, analogous to Deneubourg et al. (1983)’s experimental setup, and investigate whether

natural selection could tune ants’ trail fidelity to capitalize on autocorrelated resource

hotspots. Such hotspots could represent one of several autocorrelated food sources that ants

are known to use, including groups of aphids, groups of bird droppings originating from a

bird nest, or even an autocorrelated grouping of urban waste that is continually renewed.

The results focus primarily on how trail fidelity could be tuned to resource autocorrelation,

and extend previous findings by incorporating an explicit mechanism by which trail fidelity

changes the spatial distribution of ants in the colony. Addressing this question will yield

insight into how natural selection might tune individual behavioral responses to pheromone

to specific resource types.
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Agent-based models (ABMs) have been used extensively to model the collective foraging

dynamics of many individuals in a colony. Smolke (2009) and Cook et al. (2013), for exam-

ple, use ABMs to understand how colony structure influences food collection abilities [19,62].

However, ABMs can suffer from long simulation times, and may benefit by mathematical

approximations of the dynamics. Plowes et al. (2014) develop a model that spatially tracks

the foraging effort of Messor pergandei colonies without tracking individuals; instead, simple

foraging distributional forms are assumed each time a colony exploits a particular region

of space, but no attempt is made to justify the foraging distributions using individual

dynamics. The model presented here is similar in that it tracks colony foraging effort

without tracking individuals, but the foraging distributions are chosen as equilibria of a

PDE model derived from an ABM that describes individuals transitioning through a full

set of behavioral states.

The model is constructed in the methods section. The simulations investigate how

individual trail fidelity influences the ability of a colony to captilize on a resource hotspot

a fixed distance from the colony. Future modifications to the simulation are outlined in

Appendix C.

5.1 Methods

In Chapter 3, a continuum (PDE) model was built to describe the distribution of

behavioral states and spatial locations of ants within a colony. Steady states of the PDE

gave the approximate equilibrial behavior of the colony while recruiting to a resource, as

well as in the absence of a resource. Here, these equilibrial distributions will be used to

describe the distribution of colony-wide searching activity (with or without recruitment

occurring), as well as the collection rate of a colony recruiting to a specified distance from

the nest.

The distributions used in Chapter 3 described probabilities of individuals being in

different behavioral states as functions of space and time. In the absence of a resource,

the model tracked searching ants outside the nest (behavioral class S), ants returning home

unexcited after quitting searching (class T), and unexcited nest ants (class N). With a

resource present, searching ants could find the resource and become queued for exploitation

(class Q), then actively take a bite (class B), and return home excited (class R) while laying
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pheromone. Once at the nest, returning excited ants become excited ants at the nest (class

E) that prompt nonexcited ants to leave the nest to search.

The focus in this chapter is colony activity at various steady states, and hence the time

dependence of these terms is eliminated. In addition, this model uses numerical densities,

hence the probability densities will be multiplied by the number of ants in the colony to get

the expected number of ants in the various behavioral states and locations. For example,

letting N∗ denote the equilibrium probability of a colony member being in state N, the

expected number of ants in state N at equilibrium is nN∗. Spatial probability densities

are now used to predict numerical density. nS∗(x), for example, describes the expected

number density of ants in the searching class at position x = (x, y). Capital letters denote

behavioral states (i.e., S, T, R, N, B, Q), and capital letters with superscripted asterisks

denote the probability density functions obtained from the PDE system at steady state (i.e.,

S∗, T ∗, R∗, N∗, B∗, Q∗), with spatial function arguments omitted unless necessary.

5.1.1 Simulation overview

The simulation models a single colony foraging in a 2D LH×LH m2 habitat termed ΩH ,

chosen large enough to preclude significant boundary effects on the distribution of foragers;

pointwise resources fall into the habitat at rate ρ and disappear at rate µ. The mass of each

resource is initiated at B0. As described in Chapter 3, centered around each resource is an

LB × LB box, termed the “resource region” and denoted ΩB(x) for the resource centered

at position x. The resource region describes that area of space in which searching density

can contribute to resource finding.

The spatial location of resources that appear in the environment is drawn from a 2D

normal distribution with mean x0 and standard deviation σr meters, denoted B(x0, σr).

The mean resource position is chosen at the beginning of, and fixed throughout any one

simulation.

5.1.2 Non-ARS strategy

A colony of n ants is assumed to switch between two equilibrial states: recruiting and

searching. During the searching state ants transition through the searching (S), return-

ing unexcited (T), and nest (N) behavioral states, the dynamics that occur without a

resource region present in the PDE model (described by equation set (3.10)). Denote
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S∗N (x) = nS∗(x) as the equilibrium number density of searching ants in this process (the null

searching process). Transitions from searching to recruiting occur when a resource is found

by searching ants in the colony. The rate at which a resource is discovered is proportional to

the expected number of ants in the resource region: a resource with resource region centered

at position x = (x, y) is found at rate v

∫∫
ΩB(x)

S∗N (y) dy, where v is the probabilistic rate of

discovery for ants in the resource region ΩB(x), and dy is the area differential.

After the colony finds a resource, it transitions to the recruiting state specific to that

resource. For example, if the resource is a distance r from the nest, the PDE is used to

find the equilibrial dynamics of the colony when individuals transition between the full set

of behavioral states (S,T,E,R,N,B,Q) in the PDE model with a resource region centered at

that distance. The steady-state of the PDE gives equilibrial number densities of ants in

states S,T,R, and expected numbers of individuals in states E, N, B, and Q. The dynamics

between the searching and recruiting equilibrial states are assumed to occur quickly, and

are thus omitted from the simulation.

While recruiting, the colony collects food at a rate proportional to the equilibrial number

of ants exploiting the resource, as predicted by the PDE dynamics. Let b be the resource

mass that an individual ant is capable of removing from the resource in one bite; the

colony-wide hourly collection rate is bwB nB
∗(r), where B∗(r) is the equilibrial number of

exploiting ants for a resource at distance r. The resource is exploited until it is depleted,

at which point the colony instantly transitions back into the searching state and searches

according to S∗N .

5.1.3 ARS simulation

To assess the effect of area-restricted search guided by pheromone trails, the simulation

above was modified to include the following: additional resources can be discovered by ants

in the S behavioral state while recruiting. During recruitment to a resource centered at xr,

a resource with resource region ΩB(x) is found at rate v

∫∫
ΩB(x)

S∗R(y,xr) dy, where S∗R(y,xr)

denotes the number density of searching ants during recruitment to a resource at position

xr . When the currently exploited resource is consumed, the colony is allowed to instantly

transition to a resource that has been discovered during exploitation if that resource has
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not disappeared. If multiple resources have been discovered during exploitation and are

still present after the focal resource is depleted, that which was found first is recruited

to. If no resources are discovered during exploitation, or remain present when the colony

finishes exploiting a resource, the colony switches back to the searching state and searches

according to S∗N (x). As in the Non-ARS model, if multiple equilibria exist for a given

resource distance, that with the highest level of resource exploitation is chosen.

5.1.4 PDE steady states and searching distributions

The simulation model requires much numerical solving for equilibria of the PDE system

presented in Chapter 3. Several computational shortcuts were taken to make the simulation

feasible. Steady states were solved for each set of parameter values over a finite set of

distances prior to simulation and stored in a lookup directory. Resources in the PDE

searching distributions were always located on the positive x-axis; distances used ranged

from 0.2 m to 20 m at 0.4 m intervals. Numerical solving of the PDE for each of these

distances was performed similarly to Chapter 3’s method, with a grid discretization of

0.2m× 0.2m, which was also the area chosen for the nest and resource regions.

When a recruitment event occurred, the found resource distance is rounded to that value

nearest the discretized distances for which equilibria were found, and used to upload the

appropriate steady-state searching distribution and number of exploiting ants from saved

text-files. Finally, the searching distribution is rotated to account for the angle of the

resource relative the nest.

5.1.5 Parameter values

All parameters are listed in Table 5.1. Nonmovement parameter values describing the

behavior of ants are heavily based on T. caespitum, with derivations and sources described

in Chapter 4. Resource descriptors are generally more difficult to estimate. Rather than

attempt to link specific diets to parameters, a range of parameter values are simulated

over to understand what trail fidelity allows ants to capitalize on resources that differ

qualitatively in level of autocorrelation (σr), and renewal and disappearance rates (ρ and

µ, respectively). The distance from the resource-hotspot centers and the nest is denoted rc,

and set to either 2 or 5 m.

Trail fidelity was varied by varying bm, the maximal bias per steplength in searching
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ants in the presence of pheromone. bm relates to the von Mises distribution concentration

parameter by the relationship κm = bmρS , where ρS = 0.62m is the average 10-second step

length of ants in the S class. Mathematical details of bm and κm are found in Chapter 3;

for a given amount of pheromone, increasing bm increases the proportion of an individual’s

step that is in the direction of the resource resulting in a more directed random walk. In

the PDE model, increasing bm increases the advection component of the Fokker-Planck

equation.

5.1.6 Simulations

The resource hotspot center is positioned 2 or 5 m away from the colony to assess the

ability of a colony to capitalize on a resource hotspot near and far from the colony. The

ARS and non-ARS versions of the simulation are compared across habitats to understand

the benefit of the pheromone-induced ARS. 50 simulations were run with a timestep of

τ = 0.01 days for 200 days of simulation time to ensure that the collection rates equilibrated

for each set of parameter values. Collection rates were calculated for the 50 runs and used

to assess collection abilities of colonies with different behavioral and resource parameters.

5.1.7 Data analysis

ARS and non-ARS collection rates were compared using the Wilcoxon test on the 50

realizations of collection rate for each parameter set. The Wilcoxon test allows comparisons

of the average magnitude of two sets of numbers; as a nonparametric test, it makes no

assumptions on the distributions from which the numbers are drawn. This test is used as

an indicator of whether the ARS model collection rates are larger than non ARS collection

rates.

5.2 Results

Boxplots of the collection rates with rc = 2 obtained from 50 simulations are depicted

in Figure 5.1 for 500-ant colonies, and a resource hotspot with σr = 5; white and gray

boxplots denote ARS and non-ARS simulation results, respectively. At these close resource

hotspot distances, both ARS and non-ARS models predict an increase in collection rate

with increasing trail fidelity, and exhibit little difference between the two search strategies.

Collection rates reach an asymptote relatively quickly; a trail fidelity of bm = 20 achieves
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approximately the same collection rate as bm = 50. Reducing σr from 5 to 1 resulted in

similar trends (Figure 5.2).

Significant differences in collection rates occurred across a wide range of trail fidelities

when µ and ρ are large, and σr = 1 for both rc = 2 m and rc = 5 m (Figures 5.2 and

5.3). At close distances (rc = 2 m), the difference between ARS and non-ARS simulations

was small; large differences were observed when the resource hotspot is far from the colony

(rc = 5 m), and ρ is large (Figure 5.3).

For certain small bm ≤ 20 values, the ARS model colonies tended to find a series of

resources, ever farther from the nest, resulting in very small collection rates when bm was

small. This resulted in these colonies spending much time collecting from far resources at

a slow rate. Unexpectedly, the non-ARS colonies realized a higher collection rate, as they

only found resources close to the nest that could be collected at a faster rate. This scenario

only occurred when the resource hotspot was close, and bm small, and is evident in Figures

5.2 and 5.3.

The ARS strategy collection rates increase monotonically with bm when rc = 2, but

exhibit a local optimum when rc = 5. In the latter case, a colony achieves a higher collection

rate when its workers have a lower trail fidelity, with the optimum near bm = 20 (km = 1.2).

At larger colony sizes, the optimal bm is attained at lower trail fidelities (Figure 5.4).

Generally, at far resource hotspot distances the ARS strategy benefited the colony most

when resources appearance rates were high (ρ = 5); at low rates of appearance and high

rates of disappearance, no clear optimal strategy exists.

5.3 Discussion

Autocorrelated resource distributions, or “resource hotspots”, have been known to influ-

ence the evolution of ant colonies, most notably through colony structure [21]. For example,

Camponotus gigas ants use a polydomous colony structure to set up new nest sites in areas

under bird nests to capitalize on regular bird droppings, as well as near trees with large

trophobiont populations to capitalize on autocorrelated honeydew sources [57]. Here, the

ability of a colony of ants to capitalize on an autocorrelated resource distribution through

modified trail fidelity is investigated.

This chapter uses a spatially explicit simulation of a colony foraging on various resource
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hotspot scenarios to understand how modifying trail fidelity of individual ants modifies the

ability of a colony to capitalize on an autocorrelated resource distribution. The simulation

describes a colony that transitions between a searching and a recruiting state during which

a resource is exploited. The degree of exploitation of the focal resource and the distribution

of searching ants in the searching and recruiting state are derived as steady states of the

mechanistic, spatially explicit PDE model built in Chapter 3.

When the resource hotspot is close to the colony, resource-discovery during recruitment

does not greatly increase the collection rate of the colony (Figures 5.1 and 5.2). At these

distances, a higher trail fidelity results in a greater collection rate by resulting in a faster rate

of exploitation on discovered resources, and the colony-wide ARS is relatively unimportant.

In contrast, a lower trail fidelity results in a substantially higher collection rate when the

resource hotspot is autocorrelated and far from the nest; in this case, the colony benefits

by directing its searching effort around a resource being recruited to, even at the cost of

exploiting the focal resource (Figure 5.3 and 5.5). The benefit of colony-wide ARS increases

with colony size (Figure 5.5). For autocorrelated resource distributions, the model predicts

that a lower optimal trail fidelity for autocorrelated resource distributions occurs in larger

colonies (Figure 5.4).

Deneubourg et al. (1983) use the low trail fidelity of the pavement ant T. caespitum to

argue that this species has evolved to capitalize on autocorrelated resource distributions.

The results obtained in this work suggest otherwise; T. caepsitum’s measured trail fidelity

(bm ≈ 50) indicate that this species does not receive a large advantage in its collection rate

from harvesting autocorrelated resources, and instead is more suited to environments that

require rapid exploitation and are close to the nest. The model suggests that ant species

that use resources that are distributed approximately normally with standard deviation 1

m will have substantially lower trail fidelities than T. caespitum (Figure 5.5).

The simulation model could be improved upon in several ways. Important future

directions will include incorporating the bistable nature of the recruitment process (outlined

in Appendix C), and simulating the average collection rate of a colony in environments where

the hotspot falls at a random location; preliminary work shows simulations with the resource

hotspot placed at random locations in the habitat result in high variance in collection rates,

making interpretation of the results difficult. Another important addition will come from
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allowing the colony to exploit multiple resources simultaneously, however this may require

substantial changes in simulation framework, or reverting back to the agent-based model

(ABM) upon which the dynamics of the PDE are based.

The ability of a colony to change its behavioral state through positive feedbacks can

come at a cost of flexibility in the colony response. In a classic experiment, Beckers et al.

(1990) showed that pheromonal recruitment in Lasius niger allows a colony to allocate its

foraging effort to choose a 1M sucrose solution over a 0.1M sucrose solution when presented

with the choices simultaneously; however, when recruitment to the 0.1M solution has begun,

the colony is unable to switch recruitment to a 1M resource introduced later [7]. The colony

becomes “stuck” recruiting to the lower quality resource, and is unable to track changes to

its environment.

By interpreting an ant colony as a dynamical system, mathematical models have been

used to understand how natural selection may have tuned the recruitment process at the

individual level to combat inflexibility in tracking environmental changes. One source of

flexibility is in the pheromone dynamics used in recruitment; Tabone et al. (2010) use a

system of ODEs to understand how pheromone properties, such as evaporation rate, could

be tuned by natural selection. The model predicts that a high evaporation rate increases

collection rates in environments in which resources are ephemeral. High evaporation rates

allow the colony to quickly “turn off” the recruitment process after resources disappear or

are depleted [66].

This work seeks to understand how “noise” in the recruitment dynamics, provided by

low trail fidelity of individuals, adds flexibility to the recruitment process by allowing

simultaneous ARS during exploitation. Social insects that rely on positive feedbacks for

collective action can benefit from noise made by individuals through increased flexibility in

colony-wide response. An example similar to that investigated here exists in honey bees

(Apis mellifera): the so called “tuned error hypothesis”, where individuals intentionally

introduce errors when recruiting via the waggle dance to nearby flower patches; these errors

serve to spread foraging effort to the general vicinity of the patch rather than sending all

individuals to the same flower, resulting in self-competition and diminishing returns [69,76].

It seems likely that similar mechanisms could have evolved in ants, especially those species

with large colonies that may suffer from diminishing returns at a specific resource. Carefully
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documenting movement parameters of individuals, as done in the honey bee studies, is

required to rigorously document similar traits of collective ant systems.
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Figure 5.1: Boxplots of collection rates from 50 simulations of each parameter set with
rc = 2, A0 = 100, σr = 5, and n = 500. Gray and white boxplots denote results from
search-recruit model non-ARS and ARS simulations, respectively; asterisks below denote
collection rates with significant differences between with and without ARS at the p = 0.01
level.



82

µ = 0.1 µ = 1

ρ = 0.5
●

●

●

●

●

●

●

●

●

●

●

X

X X X
X

X

X

X
X X X

X

C
ol

le
ct

io
n 

R
at

e

20 40 60 80

1
2

3
4

5
6

●

●

●

●

X

X

X

X X

X

X

X X X
X

X

20 40 60 80

2
3

4
5

6

ρ = 5

●

●
●

●

●

●

●

●

●

●

* * *

X

X

X
X X X

X

X

X
X X X

bm

C
ol

le
ct

io
n 

R
at

e

20 40 60 80

0
10

20
30

40
50

●

●

●

●

●
●

●

●●●

* * * * * *

X

X

X
X X X

X

X

X
X X X

bm

20 40 60 80

0
10

20
30

40
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Figure 5.3: Boxplots of collection rates from 50 simulations of each parameter set
Parameters as in Figure 5.1, but with σr = 1, and rc = 5 m.
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Figure 5.5: Boxplots of collection rates from 50 simulations of each parameter set with
rc = 5, A0 = 100, and n = 2000. Gray and white boxplots denote results from search-recruit
model non-ARS and ARS simulations, respectively; asterisks below denote collection rates
with significant differences between with and without ARS at the p = 0.01 level.
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Table 5.1: Parameters of the Search-Recruit model. Ant behavioral parameters are shown
in time units of hours for clarity, and converted to units of days in the simulation.

Par’s Description Value(s) Used Units

rc Distance to resource hotspot {2, 5} m

ρ Rate of resource appearance {0.5, 5} 1
day

µ Rate of resource disappearance {0.1, 1} 1
day

σr Standard deviation of resource PDF {1, 2, 3, 5} m

b Grams ingested per ant per resource visit {0.04} g

A0 Total number of feeding sites per resource {100} #

n Number of ants {500, 2000} #

wN Rate N-ants leave the nest 0.11 1
hr

wE Rate E-ants leave the nest 36 1
hr

qS Rate S-ants quit searching 2 1
hr

wB Rate B-ants take a bite 12 1
hr

wQ Rate Q-ants quit the bait 1 1
hr

ξ Recruitment rate 0.02 1
hr·Ant

δ Pheromone decay rate 10 marks
hr

` Pheromone marking rate 800 marks
hr · Ant

v S → Q rate in ΩB 13 1
hr

α0 Baseline finding rate of feeding sites 30 1
hr·site



APPENDIX A

NUMERICAL CALCULATIONS IN

CHAPTER 2

Evaluation of the analytical expressions requires calculating χ∗(x, y), the longterm equi-

librial distribution of finding a resource at (x, y). Recall χ∗(x, y) satisfies

χ∗(x, y) =

∞∫
−∞

∞∫
−∞

χ∗(x̂, ŷ)P (x̂, ŷ, x, y) dx̂ dŷ (A.1)

Numerically estimating this function in turn requires estimation of

P (x̂, ŷ, x, y) =

∞∫
0

f(x̂, ŷ, x, y)rB(x, y)

δ(δ + f(x̂, ŷ, x, y))

(
δ + f(x̂, ŷ, x, y)e−(δ+f(x̂,ŷ,x,y))t

)
e−R(t,x̂,ŷ)dt (A.2)

One way of approximating P (x̂, ŷ, x, y) is to discretize space; let patch j be the square with

center (xj , yj) and area (4y)2. We will refer to the previously exploited patch as i, with

location (x̂i, ŷi).

Define the matrix P̂ with elements

P̂i,j = P (x̂i, ŷi, xj , yj) (4y)2 (A.3)

The jth column of P̂ is a probability distribution of moving to patch j conditional on being

at patch i. Of course, we assume the appropriate discretizations and rescalings of the

probability distributions f and B as well. Equation A.1 can be approximated as

χ̂∗j =
N∑
i=1

P̂i,j χ̂
∗
i (A.4)

where N is the number of patches in the discretized environment, and χ̂∗ is a vector

approximation of χ∗ ( χ̂∗j ≈ χ∗(xj , yj)). This can be written more succinctly as

χ̂∗ = χ̂∗ · P̂ (A.5)

where (·) indicates matrix multiplication. P̂ is a transition matrix of a finite discrete time

Markov chain [2]. Since any transition from patch i must result in the forager moving
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somewhere, P̂ has the property
N∑
j=1

P̂i,j = 1. From Equation (A.5), we note that χ̂ is a left

eigenvector of P̂ with eigenvalue 1. Since P̂ is a stochastic matrix (rows sum to 1), such a

χ̂ is guaranteed to exist.

We can refine this method to take advantage of the radially symmetric resource distri-

bution and only track the annuli of the resource finds. Discretize space into N annuli with

average radial distance ρj from the origin, and radial width 4ρ. Since the model is radially

symmetric, we can always take the forager’s previous resource find in (ρ, θ) space to be at

(ρ̂m, 0). Define

Ppol(ρ̂, ρ, θ) = P (ρ̂ cos θ̂, ρ̂ sin θ̂, ρ cos θ, ρ sin θ)
= P (ρ̂, 0, ρ cos θ, ρ sin θ)

(A.6)

Now, define a matrix P̂ with elements P̂m,n describing the probability of transitioning from

annulus m to annulus n. We have

P̂m,n = 2ρn4ρ
π∫

0

Ppol(ρ̂m, ρn, θ) dθ (A.7)

Equation (A.5) again gives χ̂∗ as a function of annular distance. T (x̂, ŷ) can likewise

be simplified to depend on ρ only, allowing T̂ to be calculated via Equation (2.21) with

integration over ρ̂.



APPENDIX B

COMPUTATION AND DIFFUSION LIMIT

OF CHAPTER 3

Appendix B describes finite difference methods, steady-state solving, and the diffusion

limit assumptions found in Chapter 3.

B.1 Finite Difference Methods

The steady states were found using finite-difference methods (FDMs) in R, the statistical

language [46,60]. When applying FDMs to linear steady-state problems, the time derivatives

in the system are set to 0 while the right-hand side is approximated with finite difference

approximations of the spatial derivative terms. The result is a large, sparse, linear system

of equations. To illustrate the idea, consider a generalized version of the steady-state PDE

describing S ants from Equation (3.10) with no-flux boundary conditions on ∂ΩH .

−f(x, y) = −∇ · [∇ (DSS)− c(x, y)S)]− qS(x, y)S. (B.1)

The source term from the nest is generalized as f(x, y) and moved to the left-hand side.

Discretize the x-coordinate into Nx partitions with xi =
2i− 1

2
4x, i ∈ {1, 2, ..., Nx}, where

4x =
Lx
Nx

. Similarly, discretize the y-coordinate into Ny partitions with yj =
2j − 1

2
4y,

j ∈ {1, 2, ..., Ny}, and 4y =
Ly
Ny

. Let Si,j(t) be an approximation of the solution inside

the box centered at (xi, yj), with width and height 4x and 4y, respectively. Let c1
i+ 1

2
,j

=

c1(xi + 4x
2 , yj) denote the x-direction advection between nodes (i, j) and (i + 1, j), and

c2
i,j+ 1

2

= c2(xi, yj + 4y2 ). c1 and c2 are nicely represented as (Nx+1)×Ny and Nx×(Ny+1)

matrices respectively; however, the fractional subscripts will be kept.

Building the finite difference scheme requires estimating the flux across each edge of the

grid. Let J = 〈J1, J2〉 denote the flux vector: J1 = −DS
∂S
∂x + c1(x, y)S, J2 = −DS

∂S
∂y +

c2(x, y)S. Define F 1
i+ 1

2
,j

as the flux estimate on the edge connecting nodes (xi, yj) and

xi+1, yj , and similarly F 2
i,j+ 1

2

for the edge connecting the nodes at (xi, yj) and (xi, yj+1).
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The finite difference approximations of the fluxes are

F 1
i+ 1

2
,j

= DS
Si+1,j − Si,j
4x

+ c1
i+ 1

2
,j

(
Si,j(c

1
i+ 1

2
,j
≥ 0) + Si+1,j(c

1
i+ 1

2
,j
< 0)

)
(B.2a)

F 2
i,j+ 1

2

= DS
Si,j+1 − Si,j
4y

+ c2
i,j+ 1

2

(
Si,j(c

2
i,j+ 1

2

≥ 0) + Si,j+1(c2
i,j+ 1

2

< 0)
)

(B.2b)

Note the advection terms only use data upwind of the advection direction. Upwind advection

schemes generally enhance the stability of finite difference methods [46]. Though simple to

implement, this scheme has local truncation error of O(h), where h = max(4x,4y).

Next, we plug the flux estimates from Equations (B.2) into Equation (B.1), using finite

difference approximations of the divergence operator. Discretizing the left-hand side of

Equation (B.1) by defining fi,j = f(xi, yj) gives

−fi,j = −

F 1
i+ 1

2
,j
− F 1

i− 1
2
,j

4x
+
F 2
i,j+ 1

2

− F 2
i,j− 1

2

4y

− qSSi,j (B.3)

To incorporate the boundary conditions, we add “ghost points” to Si,j . As an example,

the left boundary of the habitat requires J · 〈−1, 0〉 = 0; in the approximation, this implies

F 1
1
2
,j

= 0 for each j. The ghost points S0,j satisfy this condition if

DS
S1,j − S0,j

4x
+ c1

1
2
,j

(
S0,j(c

1
1
2
,j
≥ 0) + S1,j(c

1
1
2
,j
< 0)

)
= 0,

which gives

S0,j =
(DSS1,j +4xc1

1
2
,j

(c1
1
2
,j
< 0)S1,j)

(DS −4xc1
1
2
,j

(c1
1
2
,j
≥ 0))

Having characterized the boundary condition, the approximation (B.3) can be solved for

each of the Si,j using a numerical solver.

B.2 Steady-State of the Null Searching Distribution

Linearity and conservation of the system (3.10) allow the steady-state to be found by

matching inflow and outflow between states and requiring the sum of the state probabilities

to be 1. We start by setting the derivatives in system (3.10) to 0. Since the system conserves

probability mass, the equations describing the dynamics are linearly dependent; we work
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with the S and T . Additionally, we define Ŝ = S∗/(wNN
∗) and T̂ = T ∗/(wNN

∗), with N∗

the unknown equilibrium of the N equation. The modified system can be written as

0 = DS∆Ŝ −∇
(
cSŜ

)
− qSŜ +

IN
AN

(B.4a)

0 = DT∆T̂ −∇
(
cT T̂

)
+ qS ÎN Ŝ (B.4b)

Finite difference methods from Section B.1 are used to solve for Ŝ, which in turn is used to

solve for T̂ . Because the original system was linear, the true steady-state solutions S∗, T ∗

are simply multiples of Ŝ and T̂ , respectively. The remaining work is to find what these

scaling factors are. Define

ŜT =

∫∫
ΩH

Ŝ dA c =
1

ŜT

∫∫
ΩN

Ŝ dA T̂ T =

∫∫
ΩH

T̂ dA

ĴT =
JT

wNN∗
δT = −

∮
∂ΩN

ĴT · ~nN ds

T̂ T
.

(B.5)

Recall JI = −DI∇I + cII for I ∈ {T, R}. The constant δT describes how flux from state T

to N depends on the total probability mass in the T state; because the T equation is linear,

δT remains unchanged if the input Ŝ is multiplied by a scalar. c describes the ratio of mass

in the nest region to total mass, and does not change with a scalar change in the Ŝ state

source term,
IN
AN

.

Next, we integrate Equations (3.10) with time derivatives set to 0 over ΩH and use the

divergence theorem, paired with the definitions in (B.5), to give

0 = −qSST + wNN
∗ (B.6a)

0 = −δTT T + qS(1− c)ST . (B.6b)

Here, ST and T T denotes the total probability mass in state S and T at equilibrium,

respectively. Equations (B.6) can be solved for ST and T T :

ST =
wNN

∗

qS
(B.7a)

T T =
(1− c)wNN∗

δT
(B.7b)

The sum requirement ST + T T +N∗ = 1 becomes wNN
∗
(

1

qS
+

(1− c)
δT

+
1

wN

)
= 1 Thus,
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ST =
1

qS

[
1

qS
+

(1− c)
δT

+
1

wN

]−1

(B.8a)

T T =
(1− c)
δT

[
1

qS
+

(1− c)
δT

+
1

wN

]−1

(B.8b)

N∗ =
1

wN

[
1

qS
+

(1− c)
δT

+
1

wN

]−1

(B.8c)

Finally, S∗, T ∗ are found by rescaling Ŝ and T̂ , giving

S∗ =
Ŝ∫∫

ΩH

Ŝ dA
ST

T ∗ =
T̂∫∫

ΩH

T̂ dA
T T

(B.9)

B.3 Steady States of the Recruitment Searching
Distribution

Finding the equilibrium of the recruitment dynamics is more difficult due to nonlinearity,

as well as the increased number of equations. If the advection term in the S dynamics were

constant, the equilibrium could be found by a procedure similar to that described in Section

B.2. A similar method as before is used to incorporate advection as a nonlinear function of

pheromone levels.

Suppose P T =

∫∫
ΩH

P ∗ dA is the total amount of pheromone present at equilibrium.

Define a function ss.cost that takes the total amount of pheromone present as input,

computes the amount of returning excited ants for that amount of pheromone present

at equilibrium, RT =

∫∫
ΩH

R∗ dA, and returns n
`

δ
RT − P T . Steady states of the system

correspond to roots of ss.cost. Once formed, all steady states can be found using a

root-solving procedure such as uniroot in the RootSolve package in R [64].

The function ss.cost works as follows: given P T

1. Initialize pheromone distribution, fix S-state advection terms

2. Solve scaled versions of the spatial equations

3. Solve system (3.17), return n
`

δ
RT − P T .
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1. Initialize pheromone distribution, fix S-state advection terms:

The total amount of pheromone is given as P T ; the equilibrium distribution satisfies

P ∗ = n
`

δ
R∗, but R∗ is unknown. It is known that R∗ is a scaled version of R̂, where

R̂ satisfies the equation

0 = DR∆R̂−∇
(
cRR̂

)
+
IB
AB

, (B.10)

with R̂ = 0 on ΩN , and no-flux boundaries on ∂ΩH . This linear PDE can be

numerically solved using the finite difference methods outlined in Section B.1. Set

PG =
R̂∫∫

ΩH

R̂ dA
P T . With P T pheromone present at equilibrium, PG is the pheromone

distribution. We fix the searching advection terms (assumed to be constant in time)

to cP := cP (PG).

2. Solve scaled versions of the spatial equations:

Solve a system analogous to (B.4) and compute terms analogous to equation group

(B.5). For the following to work, the T-state equation is broken up into two compo-

nents: T1 describes that part of T that has a source from state S; T2 describes the

part of T with source from state Q. Solve the scaled equations below for Ŝ, T̂1, T̂2 ,

and R̂ using finite difference methods.

0 = DS∆Ŝ −∇
(
cP Ŝ

)
− qSŜ +

IN
AN
− v IB

AB
Ŝ (B.11a)

0 = DT∆T̂1 −∇
(
cT T̂1

)
+ ÎN Ŝ (B.11b)

0 = DT∆T̂2 −∇
(
cT T̂2

)
+
IB
AB

(B.11c)

0 = DR∆R̂−∇
(
cRR̂

)
+
IB
AB

(B.11d)

These equations are solved with no-flux boundary conditions on ∂ΩH , and T̂1 = 0,

T̂2 = 0, R̂ = 0 on ΩN . The true steady-state distributions S, T1, T2, R are simply

scaled versions of Ŝ, T̂1, T̂2, R̂.

3. Solve system (3.17) for the steady-state, given P T . Return n
`

δ
RT − P T :

Using the previous solutions, define the following:
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ÎT =

∫∫
ΩH

Î dA, Î ∈ {Ŝ, T̂1, T̂2, R̂} c =
1

ŜT

∫∫
ΩN

Ŝ dA δS =
v

ŜT

∫∫
ΩB

Ŝ dA

Ĵ1
T = −DT∇T̂1 + cT T̂1 δ1

T = − 1

T̂ T1

∮
∂ΩN

Ĵ1
T · ~nN ds

Ĵ2
T = −DT∇T̂2 + cT T̂2 δ2

T = − 1

T̂ T2

∮
∂ΩN

Ĵ2
T · ~nN ds

ĴR = −DR∇R̂+ cRR̂ δR = − 1

R̂T

∮
∂ΩN

ĴR · ~nN ds

(B.12)

Now, we integrate the spatial equations of system (3.17) over ΩH and use the defini-

tions in (B.12) to derive the following system of algebraic equations (recall ()∗ denotes

equilibria of ODE states, and ()T denotes the equilibrial total probability mass in the

superscripted state):

0 = c qSS
T + δ1

TT
T
1 + δ2

TT
T
2 − wNN∗ − ξnE∗N∗ (B.13a)

0 = −δSST − qSST + wNN
∗ + ξnE∗N∗ + wEE

∗ (B.13b)

0 = −δ1
TT

T
1 + qS(1− c)ST (B.13c)

0 = −δ2
TT

T
2 + wQQ

∗ (B.13d)

0 = −δRRT + wBB
∗ (B.13e)

0 = δRR
T − wEE∗ (B.13f)

0 = δSS
T − α0(A0 − nB∗)Q∗ − wQS (B.13g)

0 = α0(A0 − nB∗)Q∗ − wBB∗ (B.13h)

When paired with the conservation equation, ST + T T +E∗ +RT +N∗ +Q∗ +B∗ =

1, these equations can be solved uniquely for the 7 unknowns. Even more, paired

with some algebra (omitted), this system can be reduced to a one-variable equation

which, solved numerically, gives the other 6 unknowns. We solve this system for the

7 unknowns, and return n
`

δ
RT − P T .

We apply a root-solving scheme to ss.cost to find the P T values that result in a steady-

state (roots of ss.cost). Once found, the P T value can be used to find all other states. To
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accomplish this, we use the P T value to solve for Ŝ, T̂ , and R̂, then solve for ST , T T , and

RT . Finally, the properly scaled equilibrium solutions are

S∗ =
Ŝ∫∫

ΩH

Ŝ dA
ST

T ∗ =
T̂∫∫

ΩH

T̂ dA
T T

R∗ =
R̂∫∫

ΩH

R̂ dA
RT

(B.14)

B.4 Continuum limit of a general space-jump random walk
in 2D

To understand how the colony’s trail fidelity influences the searching distribution, a

random walk description of movement and the resulting Focker-Planck equation from the

diffusion limit are developed. Next, the effect of pheromone is incorporated in the random

walk, and modifications to the Fokker-Planck equation are described. We begin with a

derivation of the probability distribution of an individual’s position in 2D space. Divide

space into small, nonoverlapping boxes of width 4x and height 4y, and define box

bi,j = {(x, y) : xi ≤ x < xi +4x & yj ≤ y < yj +4y}

with xi = i4x, yj = j4y. Define Ŝ(i, j, t) as the discrete probability density function of

the ant’s position at time t; the probability the ant is in box bi,j at time t is Ŝ(i, j, t)4x4y,

and
∞∑

i=−∞

∞∑
j=−∞

S(i, j, t)4x4y = 1 for all t.

Every τ units of time, the ant hops to a different box, or remains in its current box;

define K̂(i′, j′, i, j) as the discrete probability density of the individual moving from position

(i′, j′) to position (i, j). We require
∞∑

i=−∞

∞∑
j=−∞

K̂ (̂i, ĵ, i, j)4x4y = 1, since an individual

currently at position (̂i, ĵ) moves somewhere with probability 1.

To derive an equation for Ŝ(i, j, t), we sum all of the ways an ant can end up at position

(i, j) over a single timestep, τ :

Ŝ(i, j, t+ τ) =
∞∑

i=−∞

∞∑
j=−∞

Ŝ(i, j, t)K̂ (̂i, ĵ, i, j)4x4y (B.15)
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This is the discrete version of the so-called Master Equation of the random walk process.

Replace (i, j) and (i′, j′) with (xi, yj) and (x̂i, ŷj), respectively. Letting 4x, 4y → 0, xi

and yj become the continuous variables x and y.

Define S(t, x, y) = Ŝ(i, j, t), and replace the right-hand side of (B.15) with the integral

to obtain the continuous version of the Master equation,

S(t+ τ, x, y) =

∞∫
−∞

∞∫
−∞

S(t, x′, y′)K(x′, y′, x, y) dx′ dy′. (B.16)

For clarity, we redefine K(x′, y′, x, y) as K(x′, y′, a1, a2), where (x′, y′) is the starting po-

sition, and a1 = x − x′, a2 = y − y′ are the jump distances in the x and y direction,

respectively. Equation (B.16) becomes

S(t+ τ, x, y) =

∞∫
−∞

∞∫
−∞

S(t, x− a1, y − a2)K(x− a1, y − a2, a1, a2) da1 da2. (B.17)

Assuming that the starting and ending points of a jump are close together, Equation (B.17)

can be Taylor expanded around a1 = 0, a2 = 0 in the starting position argument. The

right-hand side becomes:

=

∫∫
ΩH

S(x− a1, y − a2, t)K(a1, a2, x, y) da1 da2

=

∫∫
ΩH

(
S − a1Sx − a2Sy +

a2
1

2
Sxx + a1a2Sxy +

a2
2

2
Syy +H.O.T.

)
·(

K − a1Kx − a2Ky +
a2

1

2
Kxx + a1a2Kxy +

a2
2

2
Kyy +H.O.T.

)
da1 da2.

(B.18)

with terms order 3 and higher (in a1, a2) denoted H.O.T (Higher Order Terms). Expanding

all terms, and taking a limit as τ → 0, the equation can be rearranged to yield

dS

∂t
= −∇ · (cS) +

∂2

∂x2
(dxxS) +

∂2

∂y2
(dyyS) +

∂2

∂x∂y
(dxyS) . (B.19)

where c = 〈c1, c2〉, and
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c1 = lim
τ→0

1

τ

∫∫
ΩH

a1K(a1, a2, x, y) da1 da2

c2 = lim
τ→0

1

τ

∫∫
ΩH

a2K(a1, a2, x, y) da1 da2

dxx = lim
τ→0

1

2τ

∫∫
ΩH

a2
1K(a1, a2, x, y) da1 da2

dxy = lim
τ→0

1

τ

∫∫
ΩH

a1a2K(a1, a2, x, y) da1 da2

dyy = lim
τ→0

1

2τ

∫∫
ΩH

a2
2K(a1, a2, x, y) da1 da2

(B.20)

are assumed to exist. This assumption requires the first and second moments ofK(a1, a2, x, y)

(with respect to a1 and a2) to approach 0 at order τ or faster as τ → 0; it is also assumed

that higher order moments go to 0 in the limit. Equation (B.19) is called the Fokker-Planck

equation, and describes the time evolution of the positional probability distribution when

τ is arbitrarily small [52].

B.5 Angular and steplength distributions

To continue the analysis, it is necessary to choose a specific form of the jump distribution

K. Switching the stepsize variables a1, a2 to polar coordinates, define K(ρ, θ, x, y) as the

probability of hopping length ρ in direction θ when at position (x, y). A convenient form is

K(ρ, θ, x, y) = 1
ρf(ρ)k(θ, θ̂), where f(ρ) describes the distribution of steplengths, and k(θ, θ̂)

describes a turning angle distribution symmetric around θ̂. Let f(ρ) =
1

ρ̂
exp

[
−1

ρ̂
ρ

]
, the

exponential distribution with mean steplength ρ̂.

The direction of each step is drawn from a von Mises distribution; this distribution is

popularly used to model random directions that exibit bias, can be fitted to data, and has

well-known properties [5, 29]. The von Mises distribution is defined as

k(θ, θ̂) =
eκ cos(θ−θ̂)

2πI0(κ)
.

k(θ, θ̂) is symmetric about its mode, θ̂, and has dispersion proportional to
1

κ
. As κ increases,

the distribution becomes more biased toward θ̂. I0(κ) is a modified Bessel function of order

0 that acts as a normalizing term, I0(κ) =
1

2π

π∫
−π

eκ cos(θ) dθ. More generally, the Bessel

function of order n, In(κ), is defined as
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In(κ) =
1

2π

π∫
−π

eκcosθcos(nθ) dθ (B.21)

[5].

B.6 Explicit advection and diffusion terms

The specific values of (B.20) are now calculated with the von Mises directional distri-

bution and exponential steplength distribution. To calculate c1, first rewrite the integral∫∫
ΩH

a1K(a1, a2, x, y) da1 da2 in polar coordinates. To simplify the discussion, define k0(θ) =

k(θ, 0) as the von Mises with mean 0; the von Mises with bias θ̂ can be written k0(θ − θ̂),

with k0 an even function of θ − θ̂.

∫∫
ΩH

a1K(a1, a2, x, y) da1 da2 =

∞∫
0

π∫
−π

ρ cos(θ)K(ρ, θ, x, y)ρ dθ dρ

=

∞∫
0

π∫
−π

ρ cos(θ)
1

ρ
f(ρ) k0(θ − θ̂) ρdθ dρ

=

∞∫
0

ρ f(ρ)dρ

π∫
−π

cos(θ − θ̂ + θ̂) k0(θ − θ̂) dθ

= ρ̂

π∫
−π

cos(θ − θ̂ + θ̂) k0(θ − θ̂) dθ

= ρ̂

π∫
−π

cos(θ − θ̂) cos(θ̂) k0(θ − θ̂)− sin(θ − θ̂) sin(θ̂) k0(θ − θ̂) dθ

= ρ̂

π∫
−π

cos(θ − θ̂) cos(θ̂) k0(θ − θ̂) dθ

= ρ̂ cos(θ̂)

π∫
−π

cos(θ − θ̂) k0(θ − θ̂) dθ

= ρ̂ cos(θ̂)
I1(κ)

I0(κ)
(B.22)

The above calculation uses the cosine property cos(α + β) = cos(α) cos(β) − sin(α) sin(β);

it also uses

π∫
−π

sin(θ − θ̂) sin(θ̂) k0(θ − θ̂) dθ = 0, since the integral of an odd function over

its period is 0. k0 is even, and sin(θ − θ̂) is odd, so the product is odd and integrates to 0.

Finally, the definition of the Bessel function of order 1, found in Equation (B.21), is used.
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Similarly,∫∫
ΩH

a2K(a1, a2, x, y) da1 da2 =

∞∫
0

π∫
−π

ρ sin(θ)K(ρ, θ, x, y)ρ dθ dρ

=

∞∫
0

π∫
−π

ρ sin(θ)
1

ρ
f(ρ) k(θ − θ̂) ρdθ dρ

=

∞∫
0

ρ f(ρ)dρ

π∫
−π

sin(θ − θ̂ + θ̂) k(θ − θ̂) dθ

= ρ̂

π∫
−π

sin(θ − θ̂ + θ̂) k(θ − θ̂) dθ

= ρ̂

π∫
−π

sin(θ − θ̂) cos(θ̂) k(θ − θ̂) + cos(θ − θ̂) sin(θ̂) k(θ − θ̂) dθ

= ρ̂

π∫
−π

cos(θ − θ̂) sin(θ̂) k(θ − θ̂) dθ

= ρ̂ sin(θ̂)

π∫
−π

cos(θ − θ̂) k(θ − θ̂) dθ

= ρ̂ sin(θ̂)
I1(κ)

I0(κ)
(B.23)

Thus c(x, y) = lim
τ→0

ρ̂

τ

I1(κ)

I0(κ)

〈
cos(θ̂), sin(θ̂)

〉
The diffusion coefficients can be analyzed in a similar manner.∫∫
ΩH

a2
1K(a1, a2, x, y) da1 da2 =

∞∫
0

π∫
−π

ρ2 cos2(θ)K(ρ, θ, x, y)ρ dθ dρ

=

∞∫
0

π∫
−π

ρ2 cos2(θ)
1

ρ
f(ρ) k(θ − θ̂) ρdθ dρ

=

∞∫
0

ρ2 f(ρ)dρ

π∫
−π

cos2(θ − θ̂ + θ̂) k(θ − θ̂) dθ

= 2ρ̂2

π∫
−π

1

2
(1 + cos(2(θ − θ̂ + θ̂)) k(θ − θ̂) dθ

= ρ̂2

1 +

π∫
−π

cos(2(θ − θ̂)) cos(2θ̂) k(θ − θ̂) dθ


= ρ̂2

1 +

π∫
−π

cos(2(θ − θ̂)) cos(2θ̂) k(θ − θ̂) dθ


= ρ̂2

(
1 +

I2(κ)

I0(κ)
cos(2θ̂)

)

(B.24)
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Here, the calculation

∞∫
0

ρ2 f(ρ)dρ = 2ρ̂2 was used. Similar calculations give

∫∫
ΩH

a1a2K(a1, a2, x, y) da1 da2 = 2ρ̂2 I2(κ)

I0(κ)
sin(2θ̂) cos(2θ̂)∫∫

ΩH

a2
2K(a1, a2, x, y) da1 da2 = ρ̂2

(
1− I2(κ)

I0(κ)
cos(2θ̂)

) (B.25)

These expressions can be further simplified by specifying a form of κ; set κ = bρ̂. This

assumes the bias in the turning angle distribution is small, and scales with average stepsize

as τ → 0; thus the bias observed over each timestep is small. Now, we approximate Bessel

functions I0(κ), I1(κ), and I2(κ) with

I0(κ) = 1 +
κ2

4
+H.O.T. (B.26)

I1(κ) =
κ

2
+H.O.T. (B.27)

I2(κ) =
κ2

8
+H.O.T. (B.28)

which can be obtained by a Taylor expansion of Equation (B.21) around κ = 0.

Putting it all together,

dxx = lim
τ→0

1

2τ

∫∫
ΩH

a2
1K(a1, a2, x, y) da1 da2

= lim
τ→0

1

2τ
ρ̂2

(
1 +

I2(κ)

I0(κ)
cos(2θ̂)

)

= lim
τ→0

1

2τ
ρ̂2

(
1 +

κ2

8
cos(2θ̂) +H.O.T.

)

= lim
τ→0

1

2τ
ρ̂2

(
1 +

b2ρ̂2

8
cos(2θ̂) +H.O.T.

)
(B.29)

Keeping the highest order term gives dxx = lim
τ→0

1

2τ
ρ̂2. Similar calculations give

dxx = D = dyy = lim
τ→0

ρ̂2

2τ

dxy = 0

(B.30)
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assuming this limit exists. To ensure that the PDE model can track the average advection

in the ABM, we must allow τ to approach 0 while keeping the magnitude of the advection,

lim
τ→0

ρ̂

τ

I1(κ)

I0(κ)
, constant. Thus, the advection is

c = lim
τ→0

I1(κ)

I0(κ)

ρ̂

τ

〈
cos(θ̂), sin(θ̂)

〉
(B.31)

With these forms, Equation (B.19) becomes

∂S

∂t
= ∆ (DS)−∇ (cS) (B.32)

Note that Equation (B.32) contains a diffusive term describing change in the pdf due to

random motion, as well as an advection term that describes deterministic motion due to

directional bias.



APPENDIX C

SIMULATION ADD-ON TO CHAPTER 5

This appendix outlines future additions to the colony area-restricted search simulation

built in Chapter 5.

C.1 ARS with transition probabilities

The ARS simulation with transition probabilities (shortened to ARS.TP from hereon)

is identical to the ARS simulation except that discovered resources have probabilities of

successful recruitment. In these simulations, the colony transitions to the recruiting state

with a distance-specific transition probability. The transition probabilities for various

resource distances are estimated from the agent-based model developed in Chapter 3. For

each resource distance r used in the PDE, 10 simulations are performed with the colony

dynamics initiated at the PDE equilibrium corresponding to no resource present, except

for the presence of 1 ant at the resource in the B behavioral class at a resource r m from

the nest. The ABM is run for 5 hours of simulation time, after which pheromone levels

are used to classify the colony as being in the recruiting state or not; simulations that end

with at least 100 units of pheromone present in the environment are classified as successful

recruitment. This value is somewhat arbitrary, however after 5 hours of simulation time

the amount of pheromone was typically either in the thousands or close to 0, 100 gives a

reasonable cut off for classifying a colony as recruiting.

To understand the influence of local searching ant density on the propensity of successful

recruitment, the ABM simulation described above was performed with 1, 5, 10, 50, or 100

returning unexcited ants in the colony (the T behavioral state) initiated in a 1×1 m square

centered around the resource (termed the “Sval” number).

Prior to the full ARS.TP simulation for a given parameter set, a logistic regression was

used to understand how Sval and resource distance influenced the ability of the colony to

recruit. The response variable used was the proportion of successful recruitment events for
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the 10 trials, weighted by the number of trials. Briefly, the logistic regression model assumes

a “success” in a binary response variable comes from a Bernoulli trial with probability p,

which in turn is a function of the explanatory variables [47]. In this model p is assumed a

linear function of Sval and resource distance r, described by

p =
exp(a0 + a1Sval + a2r)

1 + exp(a0 + a1Sval + a2r)
, (C.1)

where ai are determined via maximum likelihood techniques. This model is intended as an

estimate of the probability that a colony is able to recruit to a newly discovered resource,

given a particular number of searching ants in the vicinity. The logistic regression function

was found using the statistical package R with the “glm” function prior to a simulation.

Each time a resource is found during the simulation, the current searching distribution

is used to calculate the Sval number (the number of searching ants in a 1m2 box around the

resource), after which the “predict” function is used to retrieve the expected probability

p of successful recruitment for the given resource distance and Sval number. A random

number RAND is chosen uniformly between 0 and 1; the colony transitions to recruiting at

the resource if RAND < p, otherwise the simulation proceeds as if the resource were not

found.
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