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ABSTRACT

An increase in the demand for clean and sustainable energy storage with a high power

density, along with a long cyclic life time has made supercapacitors an emerging energy

storage device. However, one of the main challenges of today's world is to develop en-

ergy storage devices which are environmental friendly, cost effective, and which posses

an excellent storage capacity. Therefore, this thesis presents the experimental results of

utilizing nickel nanoparticle impregnated carbonized wood as a potential electrode material

for supercapacitor applications. The electrode was synthesized by carbonizing the nickel

nitrate impregnated wood at 900oC for an hour. The concentration of nickel nanoparticles

in the carbonized wood was varied by changing the concentration of nickel nitrate solution.

The surface morphology and the structure of the electrodes as prepared were studied

by using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission

Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Electrochemical

characterization such as Cyclic Voltammetry showed the presence of peaks indicating a psue-

docapacitive behaviour of the electrode. The Galvanostatic charge-discharge measurements

showed nonlinear charge-discharge curves with changes in the slope. From the electrochemi-

cal measurements, it is observed that the electrode material exhibited a specific capacitance

of 3616 F/g and a power density of 30 kW/kg along with an excellent capacitance retention

of greater than 80% after 6000 charge-discharge cycles. These results indicate that the nickel

nanoparticle impregnated carbonized wood could be one of the potential electrode materials

for supercapacitor applications.
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CHAPTER 1

INTRODUCTION

Owing to the fast development of the global economy there is a huge demand for the

consumption of energy. However, due to the limited availability of fossil fuels for future

consumption and increase in environmental pollution, there is a need for the development

of clean, sustainable, and renewable energy resources. These renewable resources generate

energy intermittently and hence we need storage devices which can store this energy gener-

ated (1-3). Some of the alternative energy storage devices which have gained most prominent

research are Li-ion batteries, fuel cells, and electrochemical capacitors.

Although there is much research emphasis on Li-ion batteries and fuel cells due to their

high energy density and low self-discharge rate, they lack in their poor power density and

high maintenance cost (4-6). Recently, other alternative devices, such as supercapacitors,

have gained much importance due to their high power capability, long cyclic life time and low

maintenance cost (7-10). Furthermore, supercapacitors are classified into electrical double-

layer capacitors (EDLCs), psuedocapacitors, and hybrid capacitors (11). EDLCs achieves

their capacitance by storing its energy in the form of charge at the electrode-electrolyte

interface, that is at the Helmholtz double layer, whereas the psuedocapacitor stores its

energy in the form of surface redox reactions of an electroactive material at a certain

definite potential (12). Due to the surface reaction being one of the main reasons for energy

storage in a psuedocapacitor, there is every need to control the surface morphology, pore size

distribution and specific surface area of the electroactive material. Recent research provides

an insight that the supercapacitors have an energy density of about 3-5 W.h/kg, which is an

order less than the commercialized lithium-ion batteries (13,14). Thus, a maximum energy

density with a high power density is a major topic of research in the supercapacitors.

In order to understand the advantages of supercapacitors over the current commercial-

ized energy storage devices, that is, capacitors, batteries, and fuel cells, each one of these

devices is explained in detail in this chapter. Furthermore, a brief comparison on energy and

power density, charge storage mechanism between these devices and the supercapacitors is



2

also discussed.

1.1 Capacitors

A capacitor is a passive electrical device which stores energy in the form of an electric

field generated between two parallel plates, called electrodes, due to the presence of an

opposite charges on them. The capacitor can release its energy very fast due to its high

power density, yet the energy stored is minimal.

A conventional capacitor contains two electrodes separated by a dielectric material, as

shown in Figure 1.1. In a neutral condition, that is, when no external voltage is applied

between the electrodes, there are an equal number of free electrons available on both the

electrodes. However, upon applying external voltage, an equal number of electrons are

removed from one electrode and deposited onto the other electrode. As a result, an electric

field is generated which allows the energy to be stored in the device. During the process

of generating an electric field, no electron passes through the dielectric or the insulating

material.

A typical parameter which characterizes the capacitor is capacitance. Capacitance is

defined as the ratio of the charge stored (Q) to the applied voltage (V) and is given by

C =
Q

V
(1.1)

For a capacitor containing two parallel plates with surface area A separated by a dielectric

material whose dielectric constant is ε and thickness d, then the capacitance is given by

C =
εA

d
(1.2)

Thus, the capacitance of a capacitor not only depends on the applied voltage but also

depends on the dielectric material. To obtain a high capacitance, the dielectric material

should possess a high dielectric constant and smaller thickness. According to the recent

reports (15-19), one of the potential electrode materials is carbon-related materials. These

include carbonized wood, saw dust, activated carbon, aerogels, carbon nanotubes, and

graphene. The porous structure and high specific surface area of the electrode material

are some of the important advantages of carbon materials which help in contributing a high

storage capability with a limited size.

The important characteristics which govern any energy storage device are power density

(P) and energy density (E). Generally, the energy and power densities are either given by

per unit mass or per unit volume. The energy density of a capacitor, that is, the amount of
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energy stored per unit mass, is given by,

E =
CV 2

2
(1.3)

The power density is the duration of time (dt) taken to discharge the capacitor and is given

by

P =
dE

dt
(1.4)

A typical capacitor usually has a high power density anywhere higher than 5000 W/kg

and a lower energy density between 0.01 W.h/kg to 0.1 W.h/kg (20). The capacitors also

have a high charge and discharge capabilities when compared to the batteries and fuel cells.

However, these devices do not have a capability to store large amounts of energy.

1.2 Batteries

The most common energy storage device that we find in an electronic device is the

battery. A typical battery usually contains two or more electrochemical cells which are

joined together. Each of these cells contains a positive and a negative electrode, called

a cathode and an anode, which are separated by an electrolyte as shown in Figure 1.2.

Generally, in batteries a redox reaction occurs between the electrodes, that is, the reduction

at the cathode and the oxidation at the anode generating DC electricity. In other words,

the chemical energy that is stored in the cells is converted into an electrical energy.

Batteries are divided into two types based on their ability to charge. There are recharge-

able batteries and disposable batteries. Most of the disposable batteries include zinc-carbon

and alkaline batteries which can irreversibly convert the chemical energy into electrical

energy. However, the rechargeable batteries such as the Lithium-ion, Nickel-Cadmium,

Sodium-ion, nickel metal hydride batteries can convert back to the original composition

on subsequent charging cycles. Therefore most of the disposable batteries have a lower

energy density when compared to the rechargeable batteries.

Most of the recent research is focused on the Li-ion batteries, which are the best

electrochemical capacitors available in the market (21). Li-ion batteries have an energy

density 10 W.h/kg - 100 W.h/kg and power densities of 100 W/kg - 1000 W/kg (20).

Additionally, the Li-ion batteries are moderate in weight and have no memory effect.

However, memory effect is observed in rechargeable batteries like nickel-cadmium and

nickel-metal hydride. Although the Li-ion batteries have a high specific energy, they lack

in their charging and discharging rates. Moreover, the Li-ion batteries have a low power

density when compared to the other energy storage devices.
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1.3 Fuel Cells

As the name suggests, fuel cells are the devices which convert chemical energy from a

fuel into electrical energy through a chemical reaction occurring between the hydrogen ions

and oxygen. The byproduct of the fuel cells is heat and water. Unlike the batteries, these

fuel cells cannot be recharged and can continuously work until fuel and oxidizing agent for

chemical reaction to occur is exhausted.

Most of the fuel cells do not require any intermediate combustion steps, such as ther-

momechanical methods. Additionally, these cells have a high energy conversion efficiency of

40%-60% (22,23). Owing to the above-mentioned advantages, fuel cell technology is one of

the clean, environmental friendly, economical, and reliable sources of energy storage devices.

When compared to all the available energy storage devices, fuel cells have a high energy

density, between 100 W.h/kg- 1000 W.h/kg. However, the power density of these devices is

minimal, restricting them in the use of high power applications (20).

Conventional fuel cells contain an anode, cathode, and electrolyte. The electrolyte helps

in the movement of the ions from one side of the cell to the other. The anode and cathode

contain a catalyst which helps the fuel to undergo the oxidation process (23). The working

of a fuel cell is illustrated in Figure 1.3. Depending on the type of the electrolyte the fuel

cells can be varied. The various types of electrolytes are aqueous alkaline solution, polymer

membrane, and ceramic oxide.

The most common fuel cell that is observed is the Hydrogen Proton Exchange membrane

(PEM) fuel cell. A PEM fuel cell usually contains hydrogen which is moved to the anode.

A catalyst is introduced such that it can oxidize the hydrogen into protons (Hydrogen

ions) and electrons. A PEM fuel cell is designed in such a way that all the electrons move

towards the anode and the protons towards the cathode. When an external load is applied,

the electrons travel towards the protons through the external circuit. Consequently, these

electrons combine with the protons in the presence of oxygen, generating DC electricity

with either heat or water as a byproduct.

1.4 Supercapacitors

Although, the batteries and the fuel cells have a high specific energy, their low power

density limits their usage in high-power applications. Hence, research on alternative devices

such as supercapacitors with high energy and power density is gaining more emphasis. Like

the capacitors, supercapacitors also have two electrodes separated by a dielectric material.

However, the only difference between the capacitor and the supercapacitor is that the surface

area of the supercapacitors is high and also the distance between the electrodes is smaller.
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As a result, the capacitance and the energy density obtained from Equation 1.2 and 1.3

substantially increase. Additionally, these devices maintain a low equivalent series resistance

(ESR), which helps in minimizing the power loss.

A conventional supercapacitor contains two electrodes immersed in an electrolyte sep-

arated by a dielectric membrane as shown in Figure 1.4. The dielectric membrane helps

the ions to pass through the electrolyte. When an external voltage is applied, charges

accumulate on the electrode. Due to the law of attraction of opposite charges, the charges

on the electrode start diffusing through the electrolyte into the pores of the electrode.

The electrodes are engineered in such a way that there is no recombination between the

ions. As a result, a double-layer is formed at each of the two electrodes. To achieve a high

energy and power density, the electrode material should be porous with a high surface area

and there should be a smaller distance between the electrodes. A more detailed discussion

about different types of supercapacitors and their energy storage mechanisms can be found

in Chapter 2.

1.5 Comparison of Energy Storage Devices

The performance of various energy storage devices can be studied by using a Ragone

Plot. A Ragone Plot is a chart which compares energy density and power density of the

devices represented on the X-axis and Y-axis, respectively, as shown in Figure 1.5 (20).

From Figure 1.5, it can be inferred that the capacitors have a high power density but

relatively low energy density when compared to the supercapacitors and batteries. In other

words, the capacitors can be charged and discharged quickly, yet the energy stored is very

minimal. On the other hand, batteries and fuel cells have a high energy density and low

power density when compared to supercapacitors. Furthermore, they take a longer time to

charge and discharge. Hence, to overcome the drawbacks, research on supercapacitors is

gaining in importance.

Supercapacitors have a relatively high power density and low energy density. Addition-

ally these devices have a high charge and discharge rates. Besides bridging the gap between

the capacitors and the batteries, the supercapacitors also have several advantages, such as

the charging phenomenon being reversible, that is, there is no physical or chemical change

occurring during the process, and a longer cyclic life, they can be charged and discharged for

at least 10,000 cycles. Moreover, the supercapacitors have less weight and less toxicity (12).

Owing to these advantages, supercapacitors can be promising candidates as an alternative

energy storage device.
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1.6 Research and Motivation

To overcome the disadvantages of supercapacitors, research on the development of new

electrolytes with a high operational voltage window, less thickness, and low permittivity

is gaining in importance. Furthermore, current research also emphasis on the development

of alternative electrode materials which are porous, possess high surface area and a low

cost of fabrication. One such electrode material which is of interest is carbon material.

Carbon materials have high conductivity, good electrochemical stability, high porosity, large

specific surface area and are of moderate costs. Carbon materials are prepared from various

precursors such as polymers, coal, biomass residue, and so forth (24).

In order to realize the goal of the research, we use the biomass-based material, that

is, wood, to reduce the cost of fabrication. Apart from the low cost, the wood structure

has a high porosity with large specific surface area (25-29). Additionally, to enhance the

performance of the supercapacitor, which is defined by its capacitance, energy density, and

power density, we utilize nickel nanoparticles as a precursor material which is impregnated

into the carbonized wood which is then used as an electrode in the supercapacitor cell.

In this thesis, a facile preparation of nickel nanoparticle impregnated carbonized wood

composite used as an electrode material for supercapacitor application is reported. Electro-

chemical characterization techniques such as Cyclic Voltammetry, Electrochemical Impedance

Spectroscopy and galvanostatic charge-discharge measurements are conducted. It was ob-

served that the nickel nanoparticle impregnated carbonized wood electrode achieved a

specific capacitance of about 90.4 F/g at 2 M concentration, with retention of 92% after

1000 cycles. Moreover, a power density of as high as 750 W/kg with a corresponding energy

density of 3.14 W.h/kg was obtained.

1.7 Organization of Thesis

The rest of the thesis is organized into the following chapters.

Chapter 2, Principles of Energy Storage in Supercapacitors, discusses different types of

supercapacitors and their underlying mechanisms followed by their advantages and disad-

vantages.

Chapter 3, Facile Preparation of Nickel/Carbon Based Composite as Electrodes for Su-

percapacitors, discusses the facile synthesis technique of nickel/carbon composite electrode.

This is followed by the material characterization results. The material characterization

techniques mainly involve X-ray diffraction, Scanning Electron Microscopy, Transmission

Electron Microscopy, and X-ray photoelectron spectroscopy.
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Chapter 4, Electrochemical Characterization of Nickel/Carbon-based Composite elec-

trodes, discusses the effect of varying nickel nanoparticles concentration on electrochemical

properties in carbonized wood. The electrochemical characterization methods include Cyclic

Voltammetry, Electrochemical Impedance Spectroscopy, and galvanostatic charge-discharge.

Furthermore, a comparison of the fabricated electrode with present day available energy

storage devices in terms of specific capacitance, energy density, and power density is also

discussed.

Chapter 5, Conclusion and Future Work, discusses a brief summary of the results based

on the experiments that were conducted followed by some suggestions for future works.
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Figure 1.1. Schematic diagram of an electrostatic capacitor. Capacitors store energy in
the form of electric field generated between two parallel plates.
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Figure 1.2. Schematic diagram of a Li-ion battery. During charging, lithium ions flow to
the negative electrode through the electrolyte and electrons flow from the external circuit.
During discharge the directions are reversed, generating useful power to be consumed by
the device (30).
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Figure 1.3. Schematic illustration of the working principle of a Fuel Cell. Oxygen and
hydrogen are the two fuel cells used in this case which produce water (and heat) as the
products. The hydrogen is fed to one of the electrode, where it is oxidized into H+ ions.
The oxygen is fed to the opposite electrode, where it is reduced to OH− ions through
reaction with water in the electrolyte. Both those ions meet in the electrolyte between the
two electrodes to form water. During this process, the electrons taken from the hydrogen
are taken into an external electric circuit before returning to the cathode to form the OH−

ions (23).
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Figure 1.4. Schematic diagram of a supercapacitor (31). During charging, when an external
voltage is applied, the double-layer created results in charge-storage.
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Figure 1.5. Ragone plot showing the energy and power density for various energy storage
devices (20).



CHAPTER 2

PRINCIPLES OF ENERGY STORAGE IN

SUPERCAPACITORS

Based on the type of charge-storage mechanism, electrochemical supercapacitors are

classified into electrochemical double-layer (EDL) capacitors, psuedocapacitors, and hybrid

capacitors, as shown in Figure 2.1. Each of these will be discussed further in this chapter

as follows.

2.1 Electrochemical Double-Layer Capacitors

An EDL capacitor utilizes the electrostatic energy stored in the Helmholtz double layer,

which is formed between the electrode and electrolyte. To understand the principle of energy

storage in an EDL capacitor, one needs to know the concept of the double layer formation,

which is utilized to visualize the ionic environment around the vicinity of the electrode

material/charged surface. Three different models are used to describe the concept of double

layer further. They are the Helmholtz model, the Gouy-Chapman model, and the Stern

model.

2.1.1 Helmholtz Model

The helmholtz double-layer model is the simplest model which describes the distribution

of opposite charges quasi-2-dimensionally occurring first at the interface of colloidal particles

(32), and is shown in Figure 2.2 (33). The helmholtz model is the simplest approximation of

the surface charges which are neutralized by the counter ions and are separated by distance

‘d’. As a result, there is an electrostatic ion interaction which is created between the surface

and the counter ions in the solution. The surface charge potential is linearly dissipated from

the surface to the counter ions satisfying the charge, as shown in Figure 2.2. The distance

d corresponds to the center of the counter ions, that is, their radius.

The main drawback of this model is that the ions on the solution side of the double

layer will not remain static in a compact array as in Figure 2.2 but are subjected to thermal
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fluctuations. Furthermore, this model does not take ion diffusion, adsorption onto the surface

and solvent/surface interactions into account (34,35).

2.1.2 Gouy-Chapman Double-Layer Model

The Gouy-Chapman model utilizes the thermal fluctuations factor, which is one of the

drawbacks of the Helmholtz model. In this model, Gouy suggested that the interfacial

potential is due to the charged ions on the surface which are fixed to the electrode, developing

a double-layer. These ions are further surrounded by an equal number of opposite ions which

diffuse through the electrolyte as illustrated in Figure 2.2 (33). The kinetic energy of the

diffused ions will affect the thickness of the double layer. However, the Gouy model has

its own limitations, such as the assumption of point charges, which is false and has led to

incorrect potential profile and local field near the electrode surface and, consequently, an

excessively large double-layer diffusive capacitance (36). Later, Gouy and Chapman together

defined the diffuse double layer model in which the diffused ions follow the Boltzmann

distribution and Poisson equation.

However, the Gouy-Chapman model has certain drawbacks. For one thing, it overes-

timates the double layer capacitance, leading to a decrease in the accuracy. Secondly, it

assumes that the ions are point charges, which is not true. Furthermore, it assumes there

are no physical limitations for the ions to approach towards the surface, which is not correct.

2.1.3 Stern Model

The Stern model modified the Gouy-Chapman diffusive double-layer model by overcom-

ing its drawbacks. According to the Stern model, the ions are no longer point charges but

instead they have a finite size. Furthermore, the ions are not fixed to the surface but at a

distance δ. The layers of the ions are placed at a distance from the surface known as the

stern layer and are surrounded by the counter ions. This is illustrated in Figure 2.2 (33).

The surface charge σs is balanced by the sum of the double-layer charge σsdl and stern

layer charge σs δ. The surface potential ψs depends on the electrolytic concentration and

the surface charge.

2.2 Psuedocapacitors

Unlike the EDL capacitors, the psuedocapacitors are complemented by psuedocapaci-

tance, which occurs mostly due to the faradic reactions like electrosorption, redox reaction

and intercalation processes. Psuedocapacitance mainly involves the passage of the charge

across the double layer, but the capacitance originates due to the faradic reactions. It
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arises only when the extent of reaction Q that is given in terms of charge storage is a

function of potential V. Furthermore, Q/V measures the capacitance of the psuedocapacitor.

Moreover, psuedocapacitance can also arise due to the Warburg impedance associated

with the diffusion-controlled process which varies with the AC modulation and is inversely

proportional to the square root of the frequency. The faradic reactions and the Warburg

impedance allow the psuedocapacitor to have a high energy density along with a good

specific capacitance.

2.3 Hybrid Capacitors

Hybrid capacitors utilize the advantages of EDL capacitors and mitigate the disadvan-

tages of the psuedocapacitors to improve their performance. Additionally, the hybrid capac-

itors use both faradic and nonfaradic charge storage mechanisms to store energy. The energy

density and power density of the hybrid capacitors are larger than the EDLCs and do not

disturb the cyclic stability and affordability of the hybrid capacitor. The hybrid capacitors

can be distinguished based on their electrode configuration, which can be either a composite

type, asymmetric type, or battery type. A composite type electrode material integrates the

carbon-based materials with metal oxides and conducting materials and incorporates both

physical and chemical changes during the charge storage mechanism. Asymmetric type

electrode materials integrate the EDLCs with the psuedocapacitors and utilize the faradic

and nonfaradic reactions as the charge storage mechanisms.This asymmetric type of hybrid

capacitor have a high energy density and power density when compared to the composite

type or a battery type of hybrid capacitor.
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Figure 2.1. Schematic illustration of classification of electrochemical supercapacitors.
Based on the charge-storage mechanism, supercapacitors are divided into electrochemical
double-layer capacitors, psuedocapacitors, and hybrid capacitors.
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Figure 2.2. Schematic diagram of models of the electrical double layer at a positively
charged surface: (a) the Helmholtz model, (b) the Gouy-Chapman model, and (c) the Stern
model (33).



CHAPTER 3

FACILE PREPARATION OF NICKEL-CARBON

BASED COMPOSITE AS ELECTRODES FOR

SUPERCAPACITORS

A few important requirements for an electrode material to be utilized for supercapacitor

applications are high surface area, large porosity, chemical stability, high electrical and

ionic conductivities, and biodegradability. One of the electrode materials satisfying these

requirements is carbonized wood. To improve the capacitance of carbonized wood electrodes,

psuedocapacitive materials such as nickel nanoparticles of varying concentration are added.

Herewith, a facile synthesis process for nickel nanoparticle impregnated carbonized wood is

discussed. Material characterization techniques such as scanning electron microscopy, X-ray

diffraction, transmission electron microscopy, and X-ray photo-electron spectroscopy are

also discussed.

3.1 Preparation of Nickel Nanoparticle Impregnated
Carbonized Wood Electrodes

Firstly the precursor material, beech wood, is initially cut into disc-shaped samples

and rinsed under running water to remove the sawdust. The washed wood pieces are then

boiled in 1 M ammonia solution at 90oC for 5 hours. This helps in removing the resins and

additional impurities present in the wood. The outer bark of the boiled wood samples is later

removed and the wood pieces are then transferred into a box furnace for dehydration process

occurring at a temperature of 120oC for 3 hours. The dehydrated wood samples are then

immersed in nickel nitrate hexahydrate solution for 4 hours at 90oC. The concentration of

nickel nitrate solution is varied from 0.5 M to 3 M and the samples are designated as Ni 0.5

M, Ni 1 M, Ni 2 M, Ni 3 M. The immersion of wood in nickel nitrate hexahydrate solution

helps in impregnating the nickel nitrate ions into the pores of the dehydrated wood sample.

The nickel nitrate impregnated wood samples are then transferred into a tube furnace for

carbonization at 900oC under N2 atmosphere for an hour. The carbonization process helps
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in formation of nickel nanoparticles by the reduction of nickel nitrate. Thus, the nickel

nanoparticle impregnated carbonized wood samples are used for testing. Figure 3.1 shows

the schematic diagram of the preparation of nickel nanoparticle impregnated carbonized

wood samples.

3.2 Materials Characterization

3.2.1 Determination of Nickel Content in Nickel Nanoparticles
Impregnated Samples

The nickel nanoparticle impregnated carbonized wood samples are initially cut into two

halves, of which one half is used in determining the amount of nickel and the other half

is used for further testing. The initial weight of one half of the sample is taken and is

denoted as ‘W1’. The sample is then transferred into a box furnace where all the samples

were heated to 900oC in air for 4 hours to convert all the carbon present in the sample into

carbon dioxide and nickel to nickel oxide. The weight of the sample after burning into nickel

oxide is weighed and denoted as ‘W2’. From the amount of nickel oxide that is formed we

calculate the weight of nickel present in the sample by using the molecular weight of nickel

and the molecular weight of nickel oxide. The amount of nickel content in the samples is

estimated by using Equation 3.1 and is tabulated in Table 3.1.

%Ni =
78.6×W2

W1
(3.1)

3.2.2 X-ray Diffraction

X-ray diffraction (XRD) is a quantitative and nondestructive technique used to charac-

terize the sample in terms of its composition and crystal structure.

A crystal lattice is a three-dimensional arrangement of atoms and ions in an ordered

and symmetrical system that are repeated at regular intervals. During the repetition, the

order and symmetry are kept constant. This symmetry is often separated by parallel planes

with distance ‘d’ , which varies with the type of material. This ‘d’spacing also changes with

respect to the specific crystalline planes. According to Bragg's law, which is the principle

of XRD, when an X-ray is incident onto this crystal lattice surface, an optical diffraction

occurs when a monochromatic X-ray beam constructively interferes with the lattice. By

changing the ‘d’ spacing, the Bragg's angle also changes as seen in equation 3.2. A typical

XRD pattern is obtained by varying the intensity with the angle ‘θ ’.

nλ = 2dsin(θ) (3.2)
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XRD studies of nickel nanoparticle impregnated carbonized wood samples were per-

formed using the Philips X'Pert PW3040 θ-2θ X-ray diffraction using Cu-K X-ray source.

The X-ray beam is energized at 45 KV and 40 mA. The incident optical angle is maintained

at 1o with 1 cm slit size, a (1/2)o antiscatter slit size and (1/4)o receiving slit. XRD scans

were collected from a scan rate of 0.05 s−1 with 2θ ranging from 10o to 90o. Intensity v/s

2θ XRD plots are collected and analyzed using X'Pert High Score Plus software.

Figure 3.2 shows the XRD plots of Ni 0.5 M, Ni 1 M, Ni 2 M, and Ni 3 M samples. As

observed from Figure 3.2, the characteristic peaks at 44o, 51o and 76o with the corresponding

lattices (111), (200), and (220), respectively, indicate the presence of pure cubic nickel

phase (JCPDS Reference Number 00-004-0850), whereas the characteristic peak at 26o

with the corresponding lattice (002) indicates the formation of pure hexagonal graphite

(JCPDS Reference Number 00-056-0159). No other phases apart from pure cubic nickel and

hexagonal graphite were formed after carbonization at 900oC for an hour.

3.2.3 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is used to study the surface morphology and phase

distribution in a sample. The working principle of SEM is illustrated in Figure 3.3 (37).

SEM uses a focused beam of electrons which interacts with the surface of the sample and as

a result produces X-rays, secondary electrons, back-scattered electrons, and auger electrons.

These are detected by the detectors which transmit the signal to the device to obtain an

image.

To study the surface morphology of the nickel nanoparticle impregnated carbonized

wood samples, a Hitachi 2003 SEM is used. Figure 3.4 indicates the SEM micrographs at

low magnification (a) and high magnification (b). Figure 3.4 (a) shows the interconnected

channels for all the samples, indicating the retention of the three-dimensional structure of

the wood even after the carbonization of the wood at 900oC. Furthermore, the SEM micro-

graphs at high magnification shown in Figure 3.4 (b) indicate that the nickel nanoparticles

are uniformly distributed in pores across and deep within the sample surface. As observed,

the nickel nanoparticles size steadily increases with the increase in the concentration of

nickel nitrate solution. The average nickel nanoparticles size for Ni 0.5 M, Ni 1 M, Ni 2 M,

and Ni 3 M obtained from the SEM images were found to be around 171 nm, 210 nm, 299

nm, and 347 nm, respectively.
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3.3 Transmission Electron Microscopy

Transmission electron microscopy (TEM) is utilized to study the surface topography,

morphology, and crystallographic arrangement of atoms along with their composition and

their relative amounts. The working principle of TEM is shown in Figure 3.5. TEM uses

a beam of electrons which is passed through the specimen. These electrons are accelerated

at high energy levels (few hundreds keV), which either scatter or back-scatter elastically

or inelastically. The interaction of the electron beam with the sample results in unscat-

tered electrons,elastic scattered electrons, and inelastic scattered electrons. Out of these

interactions, unscattered electrons are mainly used in imaging the specimen. This imaging

mode provides a high-magnification view of the micro- and nanostructures, resulting in

high-resolution imaging. Apart from the imaging, TEM is also used to study electron

diffraction, which helps to obtain accurate information about the local crystal structure.

The surface topography and morphology of the nickel nanoparticle impregnated car-

bonized wood samples is studied by using a TEM (JEOL JEM-2800) equipped with an

energy-dispersive spectrometer (EDX). Figure 3.6 shows the bright field TEM image at (a)

low magnification, and (b) high magnification. From the bright field TEM image, that is

shown in Figure 3.6 (a), the dark spots which are encircled show the presence of nickel

nanoparticles. Furthermore, the inset of Figure 3.6 (a) shows the selective area electron

diffraction (SAED) pattern of nickel nanoparticle impregnated carbonized wood. From the

SAED pattern, clearly the ring diffraction pattern shown can be indexed to (002) plane of

graphite in the synthesized electrode, indicating the high conductivity of nickel nanoparticle

impregnated carbonized wood. Moreover, Figure 3.6 (b) shows a high-resolution transmis-

sion electron microscopy (HRTEM) image of nickel nanoparticle impregnated carbonized

wood. The HRTEM image shows a well-resolved lattice fringe with an equal interplanar

distance of 0.18 nm that corresponds to the d-spacing of (200) plane of cubic phase nickel,

revealing a high crystallization feature of NiNPs. To maintain the clarity in the image,

the bottom inset of Figure 3.6 (b) demonstrates a simulation image of Inverse fast Fourier

transformation (IFFT) taken from the enclosure region represented in the HRTEM image.

The inset of Figure 3.6 shows a fast Fourier transformation (FFT) pattern collected from

the area of the lattice fringes. The FFT exhibits a zone axis of [011] for NiNPs. The lattice

planes of the FFT can be further indexed as (200), (11-1), and (-11-1), respectively, which

are consistent with the XRD results (shown in Figure 3.2).

Apart from the surface morphology and crystallographic studies, the distribution of

nickel nanoparticles in the carbonized wood has also been studied using EDS. Figure 3.7
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shows the EDX images of nickel nanoparticle impregnated carbonized wood. The images

shown in Figure 3.7 (a) and 3.7 (b) indicate the high-angle annular dark-field scanning

transmission electron microscopy (DF-STEM) and bright-field scanning transmission elec-

tron microscopy (BF-STEM), respectively. The DF-STEM and BF-STEM images reveal a

clear formation of nanoparticles in the electrode. Figure 3.7 (c) and (d) indicate the EDX

mapping to study the elemental distribution in nickel nanoparticle impregnated carbonized

wood electrodes. The EDX-STEM elemental mapping images shown in Figure 3.7 (c) and

3.7 (d) correspond to the K-edge signals of C, Ni collected over the electrode region. A

uniform distribution of carbon with small amounts of nickel nanoparticle is clearly evident,

which further demonstrates the presence of nickel nanoparticles. Figure 3.7 (e) shows the

line profile across the nickel nanoparticle w.r.t to oxygen, indicated by an arrow in Figure 3.7

(d). It is clearly observed that, when there are nickel nanoparticles in the wood, the amount

of oxygen surrounding it is very minimal, proving that the nanoparticles are nickel rather

than nickel oxide. To further validate this, X-ray photo-electron spectroscopy measurements

were performed.

3.4 X-ray Photo-electron Spectroscopy

X-ray photo-electron spectroscopy (XPS) is a surface-sensitive technique which is mainly

used to measure a wide range of properties such as the elemental composition of the surface,

empirical formula of pure materials, elements that contaminate the surface, chemical or

electronic state of each element in the sample, line profile to determine the uniformity

of composition across the sample surface, and depth profiling using ion beam etching to

determine the uniformity of composition beneath the surface.

The basic mechanism behind an XPS instrument is illustrated in Figure 3.8. Photons

with certain energy are mainly used to excite the electronic states of atoms. This occurs

when the photons hit the electrons in the sample, and electrons with necessary energy from

the atoms in the sample are ejected. These electrons are further filtered using a hemispherical

analyser (HSA) before the intensity is detected by the detector. As the core-level electrons

are quantized, the energy spectra exhibit peaks which correspond to different electronic

structures of atom. These electrons are then analyzed by the XPS detector. The kinetic

energy provides the required information to determine the elements present.

Figure 3.9 shows the high resolution XPS spectra of synthesized or uncharged sample,

charged sample, and charged samples with successive mechanical etching. From the binding

energies of Ni 2p peaks, the oxidation state of nickel can be found. It can be observed that
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the uncharged or as prepared sample exhibits a characteristic Ni 2p peak, which corresponds

to the presence of nickel in metallic state (Ni0) with its oxidation state as 0. However, the

binding energies for the charged samples shifts to a higher energy, indicating that the nickel

is oxidised to a higher ionic state, that is, 2+. Furthermore, when the charged samples was

mechanically etched by 0.1 mm, peaks corresponding to both the metallic phase as well

as the oxidized phase were observed. Moreover, when the sample was further mechanically

etched by 0.2 mm, a larger amount of nickel in metallic state rather than its oxidized state

was observed. For further analyses on the ionic state of nickel, the high-resolution XPS

scans were deconvoluted and resolved fitting has been performed.

Figure 3.10 shows the XPS resolved fitting peaks for (a) uncharged or as prepared

samples, (b) untreated charged sample, (c) charged sample with mechanical etching of 0.1

mm, and (d) charged sample with mechanical etching of 0.2 mm. From the resolved fitting

of high-resolution XPS spectrum and by using the binding energy (BE) of the Ni 2p3/2

and Ni 2p1/2 peaks, the oxidation state of nickel is assessed. It was observed that for the

uncharged sample shown in (a), the peak positions of Ni 2p3/2 and Ni 2p1/2 were found

to be at 852.6 eV and 869.9 eV, respectively, which corresponds to the metallic phase of

nickel (Ni0) in the electrode. Therefore, it is clearly evident that the uncharged electrode

contains Ni in Ni0 state. The corresponding satellite peaks of nickel shown in Figure 3.10

are represented by ‘S’. Contrary to the uncharged sample, the charged sample shown in (b)

exhibits a shift in the Ni 2p3/2 and Ni 2p1/2 peaks to a higher BE. The oxidation state

of Ni atoms assessed from the BE of Ni 2p3/2 ( 855.8 eV) and Ni 2p1/2 ( 873.2 eV) was

found to be 2+, corresponding to Ni(OH)2. Besides this, a small amount of NiO is also

present with its corresponding Ni 2p3/2 peak at 853.8 eV and Ni 2p1/2 peak at 871.3

eV). The presence of NiO could be mainly caused by dehydration of Ni(OH)2. Figure 3.10

(c) shows the XPS spectrum of the charged sample with a mechanical etching of 0.1mm.

It is observed that the mechanically etched sample exhibits Ni 2p3/2 and Ni 2p1/2 peaks

for multiple phases of nickel such as Ni0 (red), NiO (yellow), and Ni(OH)2 (blue), where

the majority phase belongs to Ni(OH)2. Furthermore, the center of gravity of these peaks

lies in between the peak positions of Ni0 and Ni(OH)2. This indicates that the electrolyte

can penetrate through 0.1 mm thickness of the sample and can participate in the charge

storage process. The charged electrode was further mechanically etched by 0.2 mm and it’s

corresponding XPS spectrum is shown in Figure 3.10 (d). As seen, the sample exhibits a

majority phase of Ni0 rather than Ni(OH)2. The center of gravity of Ni 2p3/2 and Ni 2p1/2

peaks are closer to Ni0.Therefore, by observing the positions of Ni 2p3/2 and Ni 2p1/2 peaks
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at different depths in the charged samples, respective ionic states of nickel were determined.

It is then estimated that about 0.2 mm of the outer surface of the electrode participates in

the charge-discharge measurements. The mass of this layer was used further for calculating

the specific capacitance of the material.
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Table 3.1. Amount of nickel in nickel nanoparticle impregnated carbonized wood samples.

Concentration of Nickel nitrate % of Ni

0.5 M 5.5 %

1 M 14.8 %

2 M 20.4 %

3 M 27.5 %
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Figure 3.1. Schematic diagram of the preparation of nickel nanoparticle impregnated
carbonized wood samples.
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Figure 3.2. XRD spectra of Nickel nanoparticle impregnated in carbonized wood.
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Figure 3.3. Schematic illustration of working principle of Scanning Electron Microscopy
(SEM) (37).
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Figure 3.4. SEM images at (a) low magnification, (b) high magnification for Ni 0.5 M, Ni
1 M, Ni 2 M, and Ni 3 M.
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Figure 3.5. Schematic illustration of the working principle of Transmission Electron
Microscopy (TEM) (37).
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Figure 3.6. TEM images at (a) low resolution, (b) high resolution for nickel nanoparticle
impregnated carbonized wood.
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Figure 3.7. TEM images at (a) bright field, (b) dark field, (c) distribution of carbon, (d)
distribution of nickel, (e) line profile of nickel and oxygen across the nickel nanoparticle for
nickel nanoparticle impregnated carbonized wood.



33

Figure 3.8. Schematic diagram showing the working principle of X-ray photoelectron
spectroscopy.
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Figure 3.9. High-resolution XPS scans for uncharged, charged and charged with successive
mechanical etching samples of nickel nanoparticle impregnated carbonized wood.
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Figure 3.10. Resolved fitting of XPS spectrum for (a) uncharged sample, (b) charged
sample, (c) charged sample with mechanical etching of 0.1 mm, (d) charged sample with
mechanical etching of 0.2 mm. The satellite peaks are indicated by S. Nickel metallic phase,
that is, Ni0 is indicated by red, nickel oxide (NiO) is indicated by yellow, and Ni(OH)2 is
indicated by blue.



CHAPTER 4

ELECTROCHEMICAL CHARACTERIZATION OF

NICKEL/CARBON-BASED COMPOSITE

ELECTRODES

To test the nickel nanoparticle impregnated carbonized wood electrode as a supercapac-

itor, a three-electrode electrochemical cell is utilized with nickel nanoparticle impregnated

carbonized wood electrode is used as the working electrode, platinum sheet as the counter

electrode, and Ag/AgCl as a reference electrode. A 5 M KOH solution is used as an

electrolyte. A Gamry Potentiostat reference 600TM is used for electrochemical testing. The

complete setup is shown in Figure 4.1.

4.1 Cyclic Voltammetry

The Cyclic Voltammetry (CV) technique is a potentiodynamic process in which a known

potential is applied to the working electrode and the current response is measured. The

applied potential is changed as a function of time. The rate of change of potential with time

is known as the scan rate and its units are given by V/s. Depending on the scan rate, the

time for which the experiment progresses could be estimated. In a typical CV experiment,

the potential is ramped up from the initial voltage to the voltage limit and is then later

scanned back.

During the forward scan as the voltage increases from a lower potential to the voltage

limit, the measured current response also increases. However after reaching the voltage limit

the scan reverses its direction. During this backward scan, the voltage decreases and the

current response changes, resulting in a CV plot. The total charge that is accumulated at

the electrode surface could be found by integrating the measured current with respect to

time. In other words, the integrated area of the CV curve would give the total volumetric

charge (38). With the help of the integrated area, one can estimate the capacitance of the

working electrode as shown in the following derivation.
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Consider the CV curve shown Figure 4.2 (a) at different scan rates varying from 1 mV/s

to 10 mV/s. Let us denote the area for 1 mV/s scan rate under the charge curve (0 V-0.5

V) as A1 and that of the area under the discharge curve (0.5 V - 0 V) as A2, k ( δVδt ) as the

scan rate where δV is the voltage window, and δt is the time. The capacitance obtained

from charging and discharging are considered to be equal. From Equation 1.1 we know that

C =
Q

V
(4.1)

C =
I × δV × δt

δV
(4.2)

C =
I × δV

δV
δt

(4.3)

C =
I × δV
k

(4.4)

C × k = I × V (4.5)

C × k × ∂V = I × V × ∂V (4.6)

0.5V (V 2)∫
0V (V 1)

C × k × ∂V =

0.5V (V 2)∫
0V (V 1)

I × V × ∂V = −A1 (4.7)

Therefore,

C × k × (V 2− V 1) = A1 (4.8)

C × k × (V 1− V 2) = A2 (4.9)

Subtracting equation 4.8 from 4.9 we get

2C × k × (V 1− V 2) = A1−A2 (4.10)

Therefore,

C =
A1−A2

2k(V 1− V 2)
(4.11)

Besides the capacitance, the shape of the CV curve of a supercapacitor is typically

used to study electrochemical properties of the electrode such as the redox reactions,

electron transfer kinetics, and optimising the potential window of the electrode. For instance,

a reversible reaction, if occurring in a working electrode, could be easily recognized by

observing the shape of a CV curve. In other words, reduction and oxidation reactions

occurring could be observed from the forward and backward scans, which is related to

the oxidation or reduction potentials. Furthermore, at these potentials, a hump or a peak in

the CV curve could be observed. A reduction reaction is usually observed by a decrease in
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the peak potential and is called a cathodic peak, whereas an oxidation reaction is observed

with an increase in the peak potential, which is typically called an anodic peak. The anodic

and cathodic peak correspond to the positive and negative currents, respectively.

Typically, a CV curve plays an important role in supercapacitors as it helps in under-

standing the difference between an ideal supercapacitor and a supercapacitor influenced

by a psuedocapacitance. A rectangular-shaped CV plot with no peaks corresponds to an

ideal capacitor commonly known as EDLCs, whereas a CV plot in wave form with peaks

indicates the influence of psuedocapacitance arising due to the redox or faradic reactions.

Commonly, three or more scans are used in studying the behavior of the sample. Although

the first scan of a CV shows the peaks, the full data or the analysis can be obtained from

the subsequent scans as the system takes time to stabilize to the surrounding environment.

Apart from knowing the redox reactions, it is highly important to understand the

shape of a CV curve. Two common effects are normally used in explaining the shape

(12,39). They are (a) Equilibrium effect given by Nernst equation, which describes that

the reduction/oxidation at the electrode surface does not occur until the initial potential at

the surface of the electrode reaches the reduction/oxidation potential; (b) Transport effect,

which describes the influence of diffusion of ions on the limitation of current determined

by rate of transport. This limitation in current could be explained by the potential across

the electrode surface, that is, the larger the potential at the electrode surface, the more the

depletion of the electrode near to the electrolyte.

A typical CV curve for a supercapacitor, for example, if we consider nickel nanoparticle

impregnated carbonized wood electrodes, is shown in Figure 4.2. If one could observe clearly

at every scan rate, the reduction current decreases with a decrease in the potential further,

that is, even after the reduction reaction has occured. This is because the electrolyte depletes

near to the electrode surface and starts to diffuse, thereby creating a diffusive layer as seen in

Chapter 2. Therefore, the current depends on the rate at which the ions from the electrolyte

can diffuse to the surface of the electrode. Furthermore, the diffusion kinetics could also help

in understanding the decrease in the current. According to the diffusion kinetics, when no

potential is applied to the electrode, the concentration is same across the electrode and given

by the bulk concentration. When the potential is ramped up/changed, the electrode surface

reaches the reduction potential at some point. As a result, as more and more reduction

occurs the depletion at the electrode surface increases, resulting in more diffusion of ions.

Therefore, the size of the diffusive layer increases. This increase in the diffusion can be

understood from Fick’s first law of diffusion which is given by



39

J =
∂C

∂t
= D

∂C

∂X
(4.12)

where ∂C
∂t is the rate of change in the concentration and ∂C

∂X is the change in concentration

with respect to the distance from the electrode surface. Therefore, as the distance of the

diffusive layer changes with time, the rate of change in the concentration changes, thereby

diminishing the current across the surface. Hence, once the reduction peak potential has

passed, the rate of diffusion of ions from the electrolyte to the electrode surface keeps going

slower and therefore there is a decrease in the current. However, this decrease in the current

never reaches zero in a CV curve. This is due to the nonfaradic currents which arise when

the movement of the charge and ions are indistinguishable. Furthermore, the nonfaradic

currents result in a charge accumulation at the electrode surface. The amount of charge

accumulation is proportional to the potential of the electrode which creates current at the

surface.

For a fixed potential window, CV curves are also affected by scan rates. As seen in Figure

4.2, at a lower scan rate, the magnitude of the current is smaller when compared to the

higher scan rates. This is because, at a lower scan rate, the diffusive layer can enlarge further

apart from the electrode (as the time taken to record a CV is longer), thereby resulting in

a smaller amount of flux ( ∂C
∂t ) being generated.

i = nFAJ (4.13)

Since we know the amount of current is proportional to the flux at the electrode according

to Equation 4.13, where ‘i’ is the current, ‘n’ is the number of electrons, ‘F’ is Faraday’s

constant, ‘A’ area of the electrode surface, ‘J’ is the flux at the electrode surface therefore at

a lower scan rate, the magnitude of the current response to the applied potential is smaller.

However, at a higher scan rates, the size of the diffusive layer is smaller, which increases

the magnitude of the current response.

Figure 4.2 (a-d) and 4.3 (a-d) illustrates the CV behavior of the nickel nanoparticle

impregnated carbonized wood electrode with varying concentrations of nickel content. Dur-

ing the CV experiment, the voltage range was set from 0 V - 0.5 V and the scan rates

used ranged from 1 mV/s to 50 mV/s. Figure 4.2 (a-d) represents the CV curve at low

scan rates (1 mV/s to 10 mV/s) and Figure 4.3 (a-d) represents the CV curves at high

scan rates (25 mV/s to 50 mV/s). We can observe from Figure 4.2 that all the curves

are not rectangular in shape, unlike that of pure carbonized wood shown in Figure 4.4,

but instead are in a wave form, which reveals the capacitive characteristics of the nickel
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nanoparticles impregnated carbonized wood electrode (40). Furthermore, a distinct pair of

redox peaks is observed during forward (anodic) and backward (cathodic) scans, indicating

the pseudocapacitive behaviour of the electrode arising due to the charging process and

discharging process.The charging process is when the nickel is oxidized to nickel hydroxide,

while the subsequent discharging process is when the nickel hydroxide is reduced back to

nickel. This charging and discharging process follows the following redox reaction (41-44):

Ni + 2OH− ↔ α−Ni(OH)2 + 2e−.

Interestingly, with the increase in the scan rate from 1 mV/s to 10 mV/s the shape

of the CV curve remains unchanged except for the increase in the anodic peak potential

and the decrease in the cathodic peak potential as observed in Figure 4.2. Additionally,

there is an increase in the separation distance between the anodic peak potential and the

cathodic peak potential as seen in Figure 4.5, indicating a good electrochemical reversibility.

Furthermore, the anodic peak current and the cathodic peak current values are proportional

to the square root of the scan rate as illustrated in Figure 4.6, indicating that the reaction

is reversible and is limited by the diffusion of the ions (45). It can be observed from Figure

4.2, that the area of the CV curve increases from Ni 0.5 M to Ni 2 M, implying that the

specific capacitance increases with the increase in the concentration of nickel. This may

be attributed to the presence of nickel nanoparticles, which increase the surface area and

further enhance the pseudocapacitance, resulting in the increase of overall capacitance of

the electrode. However, the area of the CV curve for Ni 3 M is less than the Ni 0.5 M,

Ni 1 M, and Ni 2 M, indicating that the specific capacitance decreases after the nickel

concentration is increased to above 2 M. This decrease in the specific capacitance can be

due to the decrease in the relative mass of the active materials (nickel nanoparticles) (45).

4.2 Electrochemical Impedance Spectroscopy

In order to utilize electrochemical supercapacitors as power devices, the electrode should

have a low resistance to achieve high capacitance value and to minimize the power losses.

The AC impedance technique, that is, Electrochemical Impedance Spectroscopy (EIS)

measurements, are employed to quantitatively determine the relative resistance values of

the electrode, electrolyte and their interface. EIS is used to study the dynamics of an elec-

trochemical process. It is mainly used to characterize the electrochemical process in terms

of electrical measurements. In an EIS technique, electrochemical impedance is measured by

applying a small amplitude of AC voltage and thereby measuring the current throughout

the cell. The frequency of the AC signal is changed throughout the measurements, thus
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giving out an impedance value at each of the frequencies. The range of impedance values is

plotted against frequency values and the output gives either a Bode plot or a Nyquist plot.

Bode Plot has the log frequency as X-axis with the absolute value of total impedance and

phase shift on the Y-axis. By using a bode plot one can know the impedance value at any

particular frequency. However, the Nyquist plot has a real part and an imaginary part of

impedance, which are plotted against each other as X-axis and Y-axis, respectively. Each

point on the Nyquist plot gives the impedance at one frequency (39).

EIS data are analysed by using an equivalent electrical circuit model where one tries

to find a model which matches to the impedance from the measured data. Some of the

typical circuit elements used in the model are the resistors, capacitors, and inductors. These

elements are to be used such that they have a basis in physical chemistry or electrochemistry.

For example, the resistor is used to characterize the solution’s resistance in the electrochem-

ical cell along with the resistance of electrode. Table 4.1 shows the common circuit elements

with their equation for their current v/s voltage and impedance. It can be seen from Table

4.1 that the resistor is independent of frequency, although the inductor and the capacitor

depend on the frequency. As the frequency increases, the impedance also varies. Using an

equivalent circuit model, one can know the electrolyte resistance, double-layer capacitance,

charge transfer resistance, and the diffusion coefficient. The elements used in the equivalent

circuit models with their corresponding impedance and admittance are shown in Table 4.2.

In the present study, we use a mixed control circuit model with kinetic and charge trans-

fer control in which the polarization in the electrochemical cell is due to the combination of

kinetic and diffusion processes. This can be modeled as the double layer capacitance (Cdl),

which is connected in parallel to the charge transfer resistance (Rct). Due to the diffusion

of ions playing a major role, a further element called the Warburg impedance W is added

in series to the Rct. The Rct arises mainly due to the difference in the conductivity at the

electrode and electrolyte. In addition to these elements, there is a combinational resistance

at the electrolyte interface which is given by Re. The impedance measurements are carried

out at a frequency range between 106 Hz and 0.1 Hz. Figure 4.7 (a), (b) show the Nyquist

plots of nickel nanoparticle impregnated carbonized wood electrodes and pure carbonized

wood with a potential amplitude of 0.1 V, respectively. A simple circuit model to evaluate

the Nyquist plot is shown in Figure 4.8.

In order to determine the Rct and the equivalent series resistance, the Nyquist plot

has been correlated to the mixed control circuit model. The complex impedance plot

(Nyquist plot) shows a depressed semicircle corresponding to a high-frequency region which
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is attributed to the charge transfer phenomenon in the system due to the Faradic reactions.

The diameter of the depressed semicircle arc gives the charge transfer resistance. From the

fitting, the Rct obtained for the nickel nanoparticle impregnated carbonized wood samples

showed similar consistency with the increase in the nickel concentration and was found to

be approximately equal to 0.13 Ohms. Furthermore, at the high-frequency region, the curve

first meets the X-axis and gives the equivalent series resistance of the electrode (ESR).

Figure 4.7 (b) shows the EIS plot of pure carbonized wood. It was found that the ESR of

the nickel nanoparticle impregnated carbonized wood samples (1.97 Ohms, 2.19 Ohms, 2.27

Ohms, and 2.37 Ohms for Ni 0.5 M,Ni 1 M,Ni 2 M, and Ni 3 M respectively) was less than

the pure carbonized wood (2.9 Ohms), implying that the presence of nickel nanoparticles

in the carbonized wood helps in improving the conductivity of the electrode. At a lower

frequency, the EIS plot is almost linear, which corresponds to the Warburg diffusion, W,

and is described as the diffusive resistance of the OH−1 ions within the pores of the nickel

nanoparticle impregnated carbonized wood electrode.

4.3 Galvanostatic Charge-Discharge

In order to understand the charging and discharging behaviour of the electrode, a

galvanostatic charge-discharge technique is employed. For a galvanostatic charge-discharge

method, a constant current is applied and the output voltage v/s time is plotted. In this

technique, the supercapacitor is charged from the initial voltage to a preset voltage. Once

it has reached the preset voltage, the supercapacitor discharges till it reaches the initial

voltage. The output data, that is, voltage v/s time is plotted for both the charge and

discharge. The difference in the voltage between the point where the charging ends and the

discharge starts gives the iR drop or the potential drop. The iR drop occurs due to a high

internal resistance or the equivalent series resistance. A high internal resistance can be due

to the high conductivity of the electrolyte and bad geometry of the electrode. The iR drop

can be reduced by varying the concentration of the electrolyte according to the different

electrochemical systems.

One of the characteristic terms used to define a supercapacitor is specific capacitance.

This can be calculated using the discharge time and is given by Equation 4.14, where ‘i’ is

the current, ‘m’ is the mass of the electrode material participating in charge-storage process

as determined by XPS, ‘dt’ is the discharge time, and ‘dv’ is the voltage window.

Cs =
i× dt
m× dV

(4.14)
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In the present study we conducted the galvanostatic charge-discharge experiments for

the nickel nanoparticle impregnated carbonized wood electrodes at various current densities

ranging from 8 A/g to 120 A/g with a potential voltage range of 0 V - 0.5 V. Figure 4.9

represents the Charge-discharge curves for nickel nanoparticle impregnated carbonized wood

samples with varying nickel concentration. Additionally, the charge-discharge measurements

were also performed for pure carbonized wood under identical conditions. Results are shown

in Figure 4.10. As seen from Figure 4.9 and 4.10, the discharge time decreases with the

increase in the current density. This is because, with the increase in the current density,

the input current increases and the time that is taken either to charge or to discharge the

supercapacitor is smaller, which thereby limits the number of accessible pores within the

electrode. In other words, as the current density increases, the charging and the discharging

are limited only to the outer layers of the porous electrode. It is also observed that the

charging and discharging curves are nonlinear, with changes in the slope being observed for

nickel nanoparticle impregnated carbonized wood. This change in the slope is due to the

reaction between the electrolyte ions and the nickel nanoparticle impregnated carbonized

wood electrode. The change in slope in the charge-discharge curves implies that the electrode

is consuming the charge through the anodic reaction and is later discharging by the cathodic

reaction, indicating that the charge transformation is reversible. Furthermore, the changes in

the slopes match with the peak potentials of the CV curve as seen in Figure 4.2. In addition

to the redox pairs of peaks, the nonlinear charge-discharge curve proves that the nickel

nanoparticle impregnated carbonized wood electrodes exhibit a psuedocapacitive behaviour.

The specific capacitance for all the nickel nanoparticle impregnated carbonized wood

samples for various nickel concentrations at different current densities is calculated using

Equation 4.14. Figure 4.11 represents the specific capacitance for all the nickel nanopar-

ticle impregnated carbonized wood electrodes at various current densities. As seen from

Figure 4.11, the specific capacitance increases with the increase in the concentration of

nickel nitrate content up to 2 M, beyond which the specific capacitance decreases. A

highest specific capacitance of about 3616 F/g was obtained for Ni 2 M sample. This is

higher than the amorphous Ni(OH)2 (1544 F/g), porous NiO film (188 F/g), graphene

sheets/NiO film (324 F/g), hierarchically porous graphene Ni(OH)2 (hGN) hybrid hydrogel

(600 F/g), Ni(OH)2/graphene/Ni foam (1600 F/g), Ni(OH)2/CNT/Nickel Foam (3300 F/g),

Ni(OH)2/Ni/graphene nanocomposite (2609 F/g) (47-54).

At 40 A/g of current density, a specific capacitance of 2884 F/g, 3037 F/g, 3328 F/g, and

1440 F/g were obtained for Ni 0.5 M, Ni 1 M, Ni 2 M, and Ni 3 M respectively. Additionally,
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it is observed that at all the current densities the specific capacitance of Ni 2 M are higher

than Ni 0.5 M and Ni 1 M. This is because as the amount of nickel concentration increases

the contribution of the psuedocapacitance due to the nickel on the overall capacitance

increases. Additionally, the nickel nanoparticles are uniformly distributed throughout the

surface, which leads to a higher specific surface area. Besides this, the nickel nanoparticles

impart surface polarity to the electrode and increase the capacitance due to the dipole

affinity of OH− ions towards the electrode (55). In contrast, the Ni 3 M sample showed

a lower specific capacitance than Ni 0.5 M, Ni 1 M, and Ni 2 M at all current densities,

as seen in Figure 4.11. This can be attributed to the presence of larger particle size of

nickel nanoparticles. Furthermore, the nickel nanoparticles are closer to each other when

compared to other samples. Therefore, during the charging-discharging process the nickel

nanoparticles aggregate together, thereby reducing the surface area and the accessibility of

pores towards the electrolyte.

However, for a supercapacitor to be used for fast charge-discharge applications, it should

show a high specific capacitance even at higher current density. In other words, the super-

capacitor should have a high rate capability. It was observed that the Ni 2 M sample

exhibited a specific capacitance of 2245 F/g even at 120 A/g current density, which proves

that the nickel nanoparticle impregnated carbonized wood samples can also undergo the

redox reaction at a higher current density as well.

In addition to this, galvanostatic charge-discharge experiments were employed to under-

stand the behaviour of charge discharge of a pure carbonized wood sample and is shown

in Figure 4.10. Specific capacitance is calculated using equation 4.14 and was found to be

136 F/g, which is less than the nickel nanoparticle impregnated carbonized wood samples.

This proves that by the addition of nickel nanoparticles into the wood, the conductivity

and the specific capacitance show a tremendous increase, which implies that the nickel

nanoparticle impregnated carbonized wood has a potential to be utilized as an electrode for

supercapacitors.

4.4 Energy Density and Power Density

As already mentioned in Chapter 1, the major drawback of a supercapacitor is its low

energy and power density. In this study, to improve the energy and power density of a

supercapacitor, we tested nickel nanoparticle impregnated carbonized wood as an electrode

for a supercapacitor. The energy density and power density at various current densities for

the nickel nanoparticle impregnated carbonized wood samples are calculated using Equation
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4.15 and 4.16, respectively, where ‘Cs’ is the specific capacitance which is obtained from the

charge-discharge curves, ‘V’ is the voltage window and ‘t’ is the discharge time in seconds

obtained from the charge-discharge data.

Energy Density (E) =
1× CV 2

2× 3.6
(4.15)

Power Density (P ) =
(3600× E)

t
(4.16)

Figure 4.12 represents the Ragone plot, that is. the log-log plot of Power density (W/kg)

v/s the energy density (Wh/kg) for nickel nanoparticle impregnated carbonized wood

samples at various current densities. From Figure 4.12 it can be comprehended that a

power density of as high as 30 kW/kg is obtained for Ni 2M at 120 A/gm current density.

Additionally, Ni 3 M, Ni 1 M, and Ni 0.5 M samples exhibited similar power density of

about 30 kW/Kg respectively.

Besides power density, supercapacitors are also characterized by their energy density.

An energy density of 125.6 Wh/kg is obtained for Ni 2M sample at 8 A/gm current

density, calculated from equation 4.15. This proves that the nickel nanoparticle impregnated

carbonized wood electrodes have a good energy density when compared to other composite

materials.

4.5 Cyclic Life Test

In order to utilize a supercapacitor for practical purposes, a cyclic life test is performed

wherein the galvanostatic charge-discharge experiments are repeated for a long term and at

a defined scan rate. The units of the scan rate used in this experiment are given by A/gm,

that is, current density. The capacitance retention between the first cycle to the known cycle

(for example 500th cycle) is thus calculated. In this study, the cyclic life test experiment is

conducted for nickel nanoparticle impregnated carbonized wood electrodes for 6000 cycles

at a scan rate of 40 A/gm over a voltage range of 0 V-0.5 V.

Figure 4.13 represents the cyclic life test of the nickel nanoparticle impregnated car-

bonized wood samples which are plotted between the specific capacitance retention and

cycle number. From Figure 4.13, it can be seen that Ni 3 M retains a capacitance of about

87% in the initial 500 cycles and decreases further thereafter. After 6000 cycles, Ni 3 M

sample finally retains about 62% of its initial capacitance. This poor stability of the Ni

3M can be due to large volume changes during the charge-discharge occurring due to the

insertion and removal of the electrolyte ions in the porous structure. Despite this, its specific

capacitance after 6000 cycles is still higher than that of pure carbonized wood.
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In contrast to Ni 3 M sample, Ni 2 M, Ni 1 M, and Ni 0.5 M samples undergo a slow

decay in their specific capacitance for their initial 500 cycles and continues to decay upto

6000 cycles. For example, Ni 2 M retains a specific capacitance of 98% after 500 cycles

and finally about 89% after 6000 cycles. Similarly, Ni 1 M retains a specific capacitance

of 97% after 500 cycles and later about 84% after 6000 cycles. Likewise, Ni 0.5 M retains

a specific capacitance of 94% after 500 cycles and 82% after 6000 cycles. In other words,

Ni 2 M, Ni 1 M, and Ni 0.5 M retain a specific capacitance of greater than 80% after

6000 cycles of repeated charge-discharge experiments. This excellent stability of capacitance

retention proves that the nickel nanoparticle impregnated carbonized wood electrodes have

an excellent potential as electrodes for supercapacitors.
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Table 4.1. Common electrical elements and their response.

Component Current vs voltage Impedance

Resistor E = iR Z = R

Inductor E = Ldi/dt Z = jωL

Capacitor I = CdE/dt Z = 1/jωC

Table 4.2. Circuit elements used in equivalent circuit model.

Equivalent element Admittance Impedance

R 1
R R

C jωC 1
jωC

L 1
jωL jωL

W (Infinite Warburg) Yo
√
jω 1

Yo
√
j

O (Finite Warburg) 1

Yo
√

(j coth(B
√
j))

tanh((B
√
j)

(Yo
√
j))

Q (CPE) Yo(j)
α 1

Yo(j)α
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Figure 4.1. Schematic diagram of three electrode electrochemical cell setup connected to
the Gamry Potentiostat. The working electrode is nickel impregnated carbonized wood,
counter electrode is Platinum sheet, and the reference electrode is Ag/AgCl.
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Figure 4.2. Cyclic Voltammetry plots of (a) Ni 0.5 M, (b) Ni 1 M, (c) Ni 2 M, and (d) Ni
3 M at scan rates varying from 1 mV/s to 10 mV/s.
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Figure 4.3. Cyclic Voltammetry plots of (a) Ni 0.5 M, (b) Ni 1 M, (c) Ni 2 M, and (d) Ni
3 M at scan rates varying from 25 mV/s to 50 mV/s.
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Figure 4.4. Cyclic Voltammetry plots of pure carbonized wood at varying scan rates.
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Figure 4.5. Peak separation v/s square root of scan rate for Ni 0.5 M, Ni 1 M, Ni 2 M,
and Ni 3 M.
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Figure 4.6. Peak current v/s square root of scan rate for Ni 0.5 M, Ni 1 M, Ni 2 M and
Ni 3 M indicating the process is diffusion controlled.
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Figure 4.7. (a) Nyquist Plots of Ni 0.5 M, Ni 1 M, Ni 2 M, and Ni 3 M, (b) pure carbonized
wood at frequency range from 106 Hz to 0.1 Hz with an applied AC voltage of 0.1 V.
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Figure 4.8. Schematic diagram of mixed control circuit used for evaluating Nyquist plots.
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Figure 4.9. Galvanostatic charge-discharge curves for (a) Ni 0.5 M, (b) Ni 1 M, (c) Ni 2
M, and (d) Ni 3 M at current densities ranging from 8 A/g to 120 A/g.
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Figure 4.10. Galvanostatic charge-discharge curves for pure carbonized wood at current
densities ranging from 8 A/g to 120 A/g.
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Figure 4.11. Relationship between current density and specific capacitance for Ni 0.5 M,
Ni 1 M, Ni 2 M, and Ni 3 M. Also includes specific capacitance of various electrodes at 40
A/g current density.



59

Figure 4.12. Ragone plot showing the energy density and power density at various current
densities for Ni 0.5 M, Ni 1 M, Ni 2 M, and Ni 3 M.
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Figure 4.13. Cyclic life test for Ni 0.5 M, Ni 1 M, Ni 2 M, and Ni 3 M conducted at 40
A/g current density.



CHAPTER 5

CONCLUSION AND FUTURE WORK

As discussed in Chapters 3 and 4, herewith a brief summary of the results is presented.

This chapter also provides an outlook for future work. The future work mainly discusses the

improvement of carbon structure by modifying the synthesis process and also the possible

potential psuedocapacitive materials for supercapacitor applications.

5.1 Summary

Nickel nanoparticles in varying concentrations are naturally impregnated into carbonized

wood, which is further used for practical applications, mainly as supercapacitors. When

compared to other metal oxides and metal composites, nickel nanoparticle impregnated

carbonized wood have several advantages, including a low cost of fabrication. In order to

utilize the nickel nanoparticle impregnated carbonized wood samples as electrode materials

for supercapacitors, electrochemical measurements such as Cyclic Voltammetry, Electro-

chemical Impedance Spectroscopy, and galvanostatic charge-discharge experiments were

performed. The Cyclic Voltammetry of the nickel nanoparticle impregnated carbonized

wood samples exhibited a pair of peaks which indicate the redox reaction occurring between

Ni to Ni+2. This shape of the CV curve with peaks indicates the presence of psuedocapacitive

behavior of nickel nanoparticle impregnated carbonized wood electrode. This is further sup-

ported by the nonlinear charge-discharge curves which are obtained from the galvanostatic

charge-discharge experiments. From the galvanostatic charge-discharge experiments, the

key characteristics of a supercapacitor, that is, specific capacitance, power density, and

energy density are calculated. It is observed that the specific capacitance increases with

the increase in the nickel concentration from 0.5 M to 2 M. However, after an increase in

the concentration of nickel from 2 M to 3 M the specific capacitance has decreased, thus

suggesting that the 2 M concentration is the optimal amount present in the carbonized

wood. A specific capacitance of as high as 3616 F/g at 8 A/g current density is obtained for

Ni 2 M, which is higher than amorphous Ni(OH)2 (1544 F/g), porous NiO film (188 F/g),
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graphene sheets/NiO film (324 F/g), hierarchically porous grapheneNi(OH)2 (hGN) hybrid

hydrogel (600 F/g), Ni(OH)2/graphene/Ni foam (1600 F/g), Ni(OH)2/CNT/Nickel Foam

(3300 F/g), Ni(OH)2/Ni/graphene nanocomposite (2609 F/g), and pure carbonized wood

(136 F/g). In addition to this, the Ni 2M sample exhibits a power density of 750 W/kg

and an energy density of 125.6 Wh/kg. Furthermore, in order to practically use the nickel

nanoparticle impregnated carbonized wood electrodes as a supercapacitor, cyclic life test is

performed. Ni 2 M showed outstanding capacitance retention of about 80% after 6000 cycles

of charge-discharge. These excellent results indicate that nickel nanoparticle impregnated

carbonized wood can be used for practical applications such as supercapacitors.

5.2 Future Work

Despite of the fact that this thesis has demonstrated the potential of nickel nanopar-

ticle impregnated carbonized wood as an electrode for supercapacitor applications, several

prospects for extending the scope of the thesis remain. This section presents some of the

future directions.

• Improving the form of carbon in the electrode matrix: As mentioned in Chapters

2 and 3, carbon acts as a supporting material in the electrode matrix. Furthermore, it

is highly conductive and can act as a source of electron-transfer catalyst. Moreover, a

high surface area of carbon increases the double-layer capacitance, thereby increasing

the overall capacitance of the material. Improving the carbon from graphitic phase to

carbon nanostructures such as carbon nanotubes could enhance the performance of the

supercapacitors. Carbon nanotubes provide an excellent combination of high porosity and

low resistance. Low electrode resistance reduces the power losses and a high porosity helps

in charge-transfer and diffusion of ions from the electrolyte. Therefore, a careful synthesis

process has to be designed to obtain carbon nanotubes from wood by optimizing the

activation and carbonization temperatures.

• Improving the energy density and power density by adding different psue-

docapacitive elements: Apart from naturally impregnating nickel nanoparticles into

carbonized wood as a source of psuedocapacitance, future studies on the influence of

co-impregnation of copper nanoparticles, manganese nanoparticles, and ruthenium ox-

ide nanoparticles to nickel nanoparticles has to be studied. Apart from the transition

metals, composites of Nickel-Nickel oxide (Ni-NiO) nanoparticles, Copper-Copper oxide

(Cu-CuO) nanoparticles, and Manganese-Manganese oxide (Mn-MnO2) nanoparticles
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impregnated in the carbonized wood could also be investigated as an electrode material

for supercapacitors.



APPENDIX A

ENERGY HARVESTING IN OXIDE-BASED

THERMOELECTRIC MATERIALS

Apart from energy storage, this thesis also aims to give a prospective idea about energy

generation using Thermoelectric materials which are bio-compatible and stable at high

temperatures. Thermoelectric materials (TE) can be utilized for dual roles. Firstly, they

can convert the waste heat into electricity based on the underlying Seebeck effect. Secondly,

heat can be transferred from one side of the device to the other under an external electric

field, based on the Peltier effect. In the former case, the TE materials have a potential

to be utilized in cold conditions to produce heat, whereas in the latter case they can be

utilized for refrigeration or for cooling. TE generators possess a vast scalability and are

capable of having a long life span of reliable operation. Most of the TE devices utilizing

the Seebeck effect and Peltier effect can be found in various applications such as transport

vehicles, microelectronics, wine coolers, space science and cooling, remote wireless sensors

such as networks, biomedical devices, wrist watches, radioactive thermal generators, and

many more (56-60).

The conversion efficiency of TE materials is given by a dimensionless quantity figure of

merit, which depends on the intrinsic properties of the material. The figure of merit ZT is

given by S2T/ρκ, where S, ρ, κ, and T are the Seebeck coefficient, electrical resistivity,

thermal conductivity, and absolute temperature, respectively. In order to use any TE

material for practical purposes, the figure of merit (ZT) should be at least greater than

one (ZT > 1). Although there are materials such as tellurium-based, antimony-based, and

germanium-based compounds whose figure of merit is greater than 1, they are limited in

their applications due to their chemical stability and toxicity (61). Furthermore, at high

temperatures these materials degrade/evaporate, limiting their application to low working

temperatures. Therefore, there is a need to have TE materials which are not limited to their

working temperature, chemically stable, nontoxic, and have a high figure of merit.

Keeping in mind these requirements, much research is focused on the development
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of metal oxides as TE materials for high temperatures due to their thermal robustness

and chemical stability, than heavy alloys. Furthermore, these oxide-based materials are

non-toxic, corrosion resistance which are greater and can be abundantly found, unlike the

tellurium- and antimony-based alloys, and possess facile synthesis techniques. Research

on oxide-based materials was initially overlooked due to its insulating-like behaviour, low

electrical conductivity, and low atomic mass relative to other TE materials. Moreover, they

have a high atomic vibration frequency and thermal conductivity. However, in order to

obtain a high figure of merit, the TE material should possess a high electrical conductivity

and low thermal conductivity. A low resistivity is needed to reduce the joule heating, and a

low thermal conductivity is required to maintain a high temperature gradient between the

hot and cold ends of the TE device so as to obtain a higher Seebeck voltage.

Research on oxide-based TE materials came to light when the first layered cobalt-

oxide-based ceramic Na2Co2O4 was reported by Teraski et al. who demonstrated that

the synthesized layered cobalt-oxide-based ceramic, that is, Na2Co2O4 exhibited a high

Seebeck coefficient of 100 µ/K with a low electrical resistivity of 200 µ.cm at 300 K (62).

However, sodium being hygroscopic in nature and volatile above 800oC limits its use in

practical applications. Therefore, much research was focused on the development of other

layered cobalt oxides (63-67). Although there was tremendous research on the development

of oxide-based ceramics, Ca3Co4O9 gained lots of prominence due to its high chemical and

thermal stability at high temperatures.

In 2003, Shikano et al. synthesized single crystals of Ca3Co4O9 whose figure of merit

was nearly 0.87 at 973 K (68). Nevertheless, due to small grain size, single crystals of

Ca3Co4O9 were limited to practical applications. Recent investigations have been focused

on the development of novel TE metal oxides by modifying the crystal structure in order

to control the electron and phonon transport separately, and thus enhancing the figure of

merit. One of the methods to control the electron and phonon transport separately is by

synthesizing polycrystalline materials that possess a complex crystal structure.

Ca3Co4O9 is composed of two layers of alternate stacking of a conductive CdI2-type

hexagonal CoO2 layer with 2-dimensional triangular lattice and a block layer composed of

insulating rock salt (RS) structure as shown in Figure A.1. A structural misfit exists along

the b-axis between the two sublattices as they have an identical a, c, and β but different b

parameters. The CdI2-type hexagonal CoO2 layer with 2-dimensional triangular lattices of

Co-ions is formed by edge sharing of CoO2 octahedra. The Co ions which are edge shared

in the CdI2 type hexagonal CoO2 layer dominate the carrier transport and determine the
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electronic properties of Ca3Co4O9. There are two types of Co ions, Co3+ and Co4+, present

in this sublattice. The hopping of majority charge carriers in the material, that is, holes

between Co3+ and Co4+ states along the lattice sites cause the electrical conductivity of

Ca3Co4O9. The RS structure contains only one type of Co ions (Co2+). These (Co2+) ions

are considered charge reservoirs which supply the holes to the CdI2 type hexagonal (Co2+)

layer. Furthermore, the sublattice reduces the mean free path and decreases the thermal

conductivity of the material, which results in a higher figure of merit.

A polycrystalline Ca3Co4O9 can be synthesized by various techniques, which include the

traditional solid state synthesis, sol-gel processing, spark plasma sintering, polymer solution

method, and so forth. Although a polycrystalline state is achieved by these methods, the

electrical resistivity obtained is higher. As a result, the figure of merit or the conversion

efficiency is low.

There are different ways in which one can improve the figure of merit utilizing the

polycrystalline samples. One way is to synthesize the polycrystalline material by ionic

substitution, improving the synthesis process, or by doping another material. The addition

of doping can result in decrease in the carrier scattering at the grain boundaries, and thereby

decreases the electrical resistivity. For instance, M. Pervel et al. investigated the effect of

doping rare earth elements such as Pr, Nd, Eu, Dy, and Yb in a Ca3Co4O9 system and

observed that substitution of trivalent ion for Ca2+ decreases the hole concentration and

thereby increases the Seebeck coefficient and electrical resistivity (69). Y. Wang et al. studied

the effect of substitution of univalent ions, that is, Ag+, in a Ca3Co4O9 system and showed

a decrease in the electrical resistivity and increase in Seebeck coefficient simultaneously

with an increase in the figure of merit. This enhancement is due to the improvement of

charge carrier concentration and change in carrier mobility (70). Apart from univalent and

trivalent substitutions, studies on divalent substitution for Ca2+ have also been investigated.

Recently, G. Constantinescu studied the effect of doping small amounts of Mg2+ for Ca2+

in a Ca3Co4O9 system. In his study, it was observed that the addition of small amounts

of Mg2+ decreases the RS layer size which results in an increase in the Seebeck coefficient.

Furthermore, the electrical resistivity decreased upon increasing the magnesium content due

to the variations in the charge carrier concentration. As a result, addition of Mg2+ resulted

in an increase in the power factor when compared to undoped Ca3Co4O9 (71).

Basing on the idea of doping, we have substituted heavy ion, that is, terbium in Tb3+

and Tb4+ states for Ca2+ in Ca3Co4O9 and studied its effect on microstructure, thermal

transport properties such as the Seebeck coefficient, electrical resistivity, thermal conduc-
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tivity, power factor, and figure of merit. These studies were performed using a home-made

setup. Samples (Ca3−xTbxCo4O9) of more than 50 in number were synthesized with doping

concentration (x) varying from 0 to 0.9 using the solid state synthesis technique. Subsequent

X-ray diffraction measurements performed on these samples showed a homogeneous phase of

Ca3Co4O9 with Tb3+ and Tb4+ doped successfully. Scanning electron microscopy and trans-

mission electron microscopy measurements were also performed to understand the surface

morphology of the synthesized samples. Amongst the synthesized samples, Ca2.5Tb0.5Co4O9

exhibited a highest Seebeck coefficient of 322.9 µV/K, electrical conductivity of 155.28

S/cm, along with a lower thermal conductivity of 1.24 W/m.K at 800 K. Furthermore, it

also exhibited a highest power factor of 1.62 mW/mK2, with a high figure of merit about

1.04 at 800 K. This is the highest figure of merit that is ever reported in layered oxide-based

TE materials since their discovery as shown in Figure A.2 and Figure A.3.

A.1 Publications submitted during MS study

1. Haritha Sree Yaddanapudi, Kun Tian, Shaing Teng and Ashutosh Tiwari, “Facile

preparation of nickel/carbonized wood nanocomposite as ultra-high rate capability elec-

trodes for environmentally friendly supercapacitors.” Submitted to Nature Scientific reports.

2. Haritha Sree Yaddanapudi, Kun Tian and Ashutosh Tiwari, “Synthesis and

characterization of nickel/carbon nanocomposite from wood as electrodes for environmental

friendly supercapacitors.” Materials Research Society (MRS) Fall 2016 - Abstract Accepted.

3. Ashutosh Tiwari, Shrikant Saini, Kun Tian, Haritha Sree Yaddanapudi. “Discov-

ery of a new high-performance Thermoelectric Material: Terbium Calcium Cobalt Oxide

(TCCO).” - U.S Patent pending.

4. Shrikant Saini, Haritha Sree Yaddanapudi, Kun Tian, Yinong Yin and Ashutosh

Tiwari. “Terbium ion doping in Ca3Co4O9: A step towards high-performance thermoelectric

materials.” - Submission in progress.

5. Haritha Sree Yaddanapudi, Nathan Hickerson, Shrikant Saini and Ashutosh Ti-

wari, “Fabrication of Transparent wood - A next generation building material” - Submission

in progress.
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Figure A.1. Crystal structure of Ca3Co4O9 using Vesta software.
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Figure A.2. Trend of ZT in Ca3Co4O9 system from 2000 to 2016.
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Figure A.3. ZT at 800 K for various heavy ion-doped Ca3Co4O9 polycrystalline samples
along with the present work.



APPENDIX B

TRANSPARENT WOOD, A NEXT GENERATION

BUILDING MATERIAL

An environmentally friendly material that is abundantly available is wood. Wood due to

its unique structure and natural growth process possesses excellent mechanical properties.

These include high strength, good durability, high moisture content, and high specific gravity

(72,73). Based on its structure, availability, and geographical differences wood is classified

into two types soft wood and hard wood. Soft wood has a high porosity due to its faster

growth. Soft wood mainly includes cedar, pine, spruce, and redwood. In contrast to soft

wood, hard wood has a higher density and is denser in structure. Moreover, the longitudinal

cells are shorter in length when compared to those in hard wood (74). However, both the

soft and hard woods possess similar hierarchical structure. In other words, the orientation

of the cells in the wood is similar.

One of the unique properties that wood possesses is its structural anisotropy. This is

mainly due to the alignment of the vertical channels across the cells present in the wood

which, causes it to pump ions and water for the photosynthesis process. Cells in the wood are

mainly composed of cellulose, which is a long chain of polysaccharide molecules composed of

at least 40%-50% glucose. It also comprises lower molecular weight polysaccharides chains

called hemicellulose. Lignin is the other major component that is present in the wood.

It accounts for about 25% of the wood structure. It mainly acts as a glue which helps in

bonding all the wood cells together. Furthermore, lignin provides high hardness and rigidity

to the wood (75). Cellulose, which is the major component in the wood, plays a vital role

in development of flexible electronics for energy storage and energy harvesting. Recent

investigations suggested that the cellulose extracted from wood can be used as a potential

material for supercapacitors (76-78). However, further studies on environmentally friendly

and benign processes for the extraction of cellulose from wood to fabricate electrodes for

supercapacitors is highly necessary.

Apart from energy storage devices, wood also plays a major role in the development
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of optoelectronic devices (79,80). However to make an optoelectronic device wood should

be transparent to all the colors. As mentioned earlier, the main components of wood are

cellulose, hemicellulose, and lignin. In contrast to cellulose and hemicellulose which are

colorless, lignin possess an extremely dark color. Therefore, this dark color leads to light

scattering over the visible range. One way to make the wood transparent is to bleach the

wood, which helps in removing the lignin and pulp. However, since all the color, across the

pores in the wood are not removed, polymer which can provide strength and transparency

is impregnated into the pores of the wood, which run vertically down. Several research

investigations have been conducted recently to fabricate transparent wood successfully

(81,82). However, the transparent wood obtained is not environmentally friendly.

Future outlook of this thesis would also focus on the development of environmentally

friendly transparent wood. In this thesis, we are proposing a unique method to synthesize

transparent wood.The first step of the synthesis is to delignify the wood. Delignification

is mainly done to remove the lignin present in the wood. This is performed at 120oC

using sodium chlorite and actetate buffer solution for about 12 hours until the wood turns

white in color. Later, the delignified wood is preserved in ethanol before performing any

other experiments. This delignified wood is later impregnated with environmentally friendly

polymers such as polymethyl methacrylate (PMMA), Polyvinylpyrrolidone (PVP), and so

forth, to retain the structure and strength of the wood thereby obtaining transparent wood

structure. However, further experiments are required to prove that the proposed method is

valid.
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