
REALISTIC TRAFFIC SHAPING IN

DUMMYNET LINK EMULATOR

by

Aisha Syed

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c� Aisha Syed 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Aisha Syed

has been approved by the following supervisory committee members:

Robert Ricci , Chair 05/02/2014

Date Approved

Sneha Kasera , Member 05/02/2014

Date Approved

Jacobus van der Merwe , Member 05/02/2014

Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Dummynet is a link emulator that can be used by itself, as well as integrated within

testbeds such as Emulab. Despite its popularity in the research community, Dummynet

still lacks the ability to precisely emulate certain real network e↵ects. In particular, it has

no support for packet reordering. Since reordering is a common and prevalent network phe-

nomenon just like packet loss or delay, it cannot be ignored when implementing emulators

if we want to provide realistic emulation.

It has been observed that networks su↵er from reordering caused by packet striping,

retransmissions, load balancing, multipath forwarding, etc. This has significant nega-

tive e↵ects on the performance of both Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). With the increase in prevalence of real-time streaming UDP

applications such as video conferencing and Internet Protocol Television (IPTV), it has

become important to focus on this problem which a↵ects the performance of all these

applications. Research into models and tools to diagnose and understand reordering requires

that a sophisticated metric be used to describe it.

So, in this thesis, I make two contributions: improving the realism of tra�c shaping

in Dummynet emulator by adding support for emulation of reordering, and an algorithm,

a max-flow solver, that generates reordered sequences to be used by Dummynet, from a

sophisticated reordering metric called Reorder Density (RD). My implementation enables

the user to specify the desired amount of reordering in a metric, such as RD (or even others),

and have Dummynet generate tra�c that is reordered according to the input metric’s value.

This is accomplished within Dummynet by the use of a newly implemented scheduler.

I conclude my thesis with an evaluation using real and software generated network

traces to show that the algorithm is scalable and the implementation works correctly. Also,

a datapath evaluation to show that my modifications to Dummynet do not result in any

unnecessary increase in emulation running time is included.

For my family and friends.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGEMENTS . viii

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement . 3
1.2 My Contributions . 3
1.3 Organization . 4

2. BACKGROUND AND RELATED WORK . 5

2.1 Reordering Metric . 5
2.1.1 Reorder Density (RD) . 6

2.2 Dummynet Architecture . 8

3. ALGORITHM AND IMPLEMENTATION . 11

3.1 RD Sequence Regeneration . 11
3.2 Integration into Dummynet . 17
3.3 Experimenter Workflow . 18

4. EVALUATION . 21

4.1 Evaluation Plan Followed . 21
4.2 Real Network Traces . 22
4.3 Software-Generated Network Traces . 23
4.4 Datapath Evaluation . 25

5. CONCLUSION . 28

REFERENCES . 29

LIST OF FIGURES

2.1 Binding between queues, scheduler and the corresponding pipe (which is made
up of the delay and bandwidth queues in current implementation; more can
be added) . 9

3.1 Pseudocode for sequence regeneration from given RD: ConstructGraph(). . . . 12

3.2 Pseudocode for sequence regeneration from given RD: SolveStep(). 13

3.3 Pseudocode for sequence regeneration from given RD: Solve(). 13

3.4 Graph generated by the RD sequence regeneration algorithm. The filled black
circles are drawn over vertices that were selected for the solution. 14

3.5 Experimenter workflow. 19

4.1 E↵ect of amount of reordering events on algorithm runtime. Number of
packets kept constant. Vertical red lines highlight position of data points
from real traces. 25

4.2 E↵ect of number of packets on algorithm runtime. Amount of reordering kept
constant. Vertical red lines highlight position of data points from real traces. 26

LIST OF TABLES

2.1 RD Generated for sequence (4 1 5 2 3 6); N = 6. Percentages also shown. . . . 8

2.2 RD generated from a packet trace (N = 997). 9

3.1 RD given for an unknown sequence. 11

3.2 Example RD (N = 4). 20

4.1 RDs for server in India (N = 136768, percentage of reordering = 0.11%,
sequence regeneration runtime = 0.126s). 23

4.2 RD for server in Cape Town (N = 138275, percentage of reordering = 0.03%,
sequence regeneration runtime = 0.057s). 23

4.3 RD for server in Pakistan (N = 136107, percentage of reordering = 0.51%,
sequence regeneration runtime = 122.730s). 24

4.4 Maximum interarrival time observed on original Dummynet and on MyDum-
mynet (Dummynet after my modifications). 27

4.5 RD used for datapath evaluation (N = 20). 27

4.6 The expected and the observed maximum interarrival time on MyDummynet
with reordering turned on. 27

ACKNOWLEDGEMENTS

First o↵, I would like to thank Robert Ricci for patiently guiding me for the past two

years. He has been an exceptionally helpful and knowledgeable advisor and the completion

of this thesis would not have been possible without him.

I am grateful to Sneha Kasera for his words of encouragement, and his advice to get into

research through independent studies during my very first semester, one of which finally

resulted in the form of this thesis. My thanks also go to Kobus Van Der Merwe for his

helpful advice about conducting proper research and for serving on my committee and

providing useful feedback.

I would also like to thank Suresh Venkatasubramanian for taking time out to answer

my questions and suggesting the application of max-flow to solve the sequence regeneration

problem discussed in this thesis.

Last but not the least, my thanks go to all my friends and family for their love, support,

and encouragement. And to my dearest friend, Bilal, for being the wonderful source of

happiness that he is.

CHAPTER 1

INTRODUCTION

Packet reordering is a network phenomenon that is just as common and prevalent within

the Internet as packet loss or delay [18] [15] [9]. It is caused by various factors such as packet

striping at layer 2 and 3, retransmissions due to loss, duplication, load balancing or priority

scheduling within routers, and route fluttering or multipath forwarding among many others

[20] [19].

Despite studies that show its prevalence, and the fact that it a↵ects both Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP) and can significantly degrade

application performance [16], reordering has somewhat been ignored by researchers and not

enough attention has been paid to understanding its nature. Bennett, et al. [9] found in

their famous study that reordering is not just a pathological behavior as researchers, such as

Paxon [18] had posited, much of it occurs as a natural result of increasing parallelism within

the Internet. Reordering can make it hard for TCP to grow its congestion window, cause it

to make incorrect estimations of round-trip times, result in unnecessary retransmissions, and

thus degrade application performance overall. A study [12] conducted to quantify the e↵ect

of reordering in a backbone link found that even a small amount of reordering coupled with

some packet loss can cause significant degradation in link utilization and thus application

throughput, especially for long-lived flows.

Reordering also has an adverse e↵ect on delay-based realtime UDP applications such as

video conferencing [20] [13]. It has become especially important to focus on this problem now

as streaming media, Voice over Internet Protocol (VoIP) and Internet Protocol Television

(IPTV) are becoming increasingly prevalent on the Internet.

As Piratla, et al. [15] argue, measuring and characterizing reordering and devising

models for understanding reordering can help us deal with it in scalable ways. For doing

all of this, researchers need a realistic platform for experimentation and testing. This is

provided by means of either simulation, emulation, or live network testing. These three are

all various ways to evaluate network and distributed systems research. While simulation and

2

live network testing occur at opposite extremes, emulation takes an intermediate approach.

It introduces the simulator into a live network, thus combining the benefits of simulation and

live network testing and providing researchers with a controllable, repeatable, transparent

environment like simulation, while not sacrificing the realism by having real applications as

tra�c generators. For this reason, the focus of this thesis is on support for reordering using

emulation.

Even if researchers are not performing experiments specifically related to the phe-

nomenon of reordering, due to the arguments presented earlier, ignoring reordering during

tra�c shaping in the emulator will result in experimental tra�c that is not representative

of real network tra�c. So, if we want to provide researchers with emulated tra�c that

is realistic then we surely need to include support for reordering in our emulators along

with the usual support for other important network characteristics such as packet loss or

delay. I chose Dummynet [10] network emulator for this implementation. It is popular in

the research community [1] due to its good feature set, low learning curve, wide availability

in various platforms, and the fact that a Dummynet-enabled bridge can be inserted in an

existing network without changing the configuration or disrupting any existing software

installations. Dummynet has also been integrated in testbeds such as Emulab [7] and

PlanetLab [6].

Once the choice of emulator has been made, I needed to decide what metric the emulator

is going to take as input. I believe a good metric to quantify reordering is important for

fine-grained emulation. Basic metrics that are limited in their usefulness, such as percentage

of reordering or n-reordering [3] have been used to describe packet reordering in networks.

Then a comprehensive and useful metric called Reorder Density (RD) [20] [5] was devised

somewhat recently to measure reordering. RD can help researchers evaluate their protocols

and implementations with respect to their impact on reordering. It can further help them

devise models for reordering and thus gain useful insights about the nature of reordering,

its causes and impacts, and amount of bu↵ers needed for recovery. This made me decide to

use RD as the default metric for emulation support in Dummynet.

There can be two kinds of algorithms for any given metric: a calculation algorithm

that given a packet sequence calculates the metric from it, and a sequence regeneration

algorithm that does the opposite of this and given the calculated metric, regenerates the

original or an equivalent (in the amount of reordering) packet sequence from it. What I

needed for the emulator was a sequence regeneration algorithm, since the researcher or user

3

of the emulator is going to give the emulator the amount of reordering expressed in RD

metric and the emulator then uses this input metric and generates a packet stream from

it. Unfortunately, an RD sequence regeneration algorithm does not exist as indicated by a

literature search and so devising such an algorithm is another contribution I make in this

thesis.

The fact that researchers will preferably want to use basic metrics, such as percentages

or n-reordering for doing course-grained or quick emulation, requires that our emulator be

able to support them too. This problem can be solved if Dummynet is made to take as input

a generic pattern of reordering and does tra�c shaping based on it. This pattern can be

generated o✏ine through RD or any other reordering metric. To enable this, I divided my

implementation into two components, one inside the Dummynet for supporting reordering,

and one outside that is packaged with Dummynet as a command line tool and basically

implements the RD sequence regeneration algorithm. This tool can then run o✏ine on

the client machine, it takes RD as a metric and generates a reordered packet pattern or

sequence of numbers. This can then be fed into Dummynet with appropriate configuration

options, which result in Dummynet triggering my reordering implementation within for

tra�c shaping.

So, to sum it up, my project aimed at introducing support for controlled and fine-

grained emulation of reordering in Dummynet and chose RD, due to its usefulness and

other important attributes, as the default metric to be packaged as command line tool

along with the Dummynet reordering implementation. Also, the implementation was made

flexible enough to take any kind of metric as input and be not just limited to RD so users

can skip the use of the provided tool and use any other metric they choose.

1.1 Thesis Statement

It is possible to make Dummynet emulate more realistic network conditions by making

it support emulation of reordering.

1.2 My Contributions

To restate, my contributions include the following.

• A sequence regeneration algorithm to generate a reordered packet sequence

from a given RD.

4

• Support for packet reordering in Dummynet using reordering metrics such

as RD.

1.3 Organization

The remainder of this thesis is structured as follows.

• Chapter 2 describes the background and related work and gives the reader

enough information about RD and Dummynet to help them understand

my implementation, which is described later.

• Chapter 3 then goes on to describe my contributions: the RD sequence

regeneration algorithm, its integration into Dummynet, and the entire

experimenter workflow.

• Chapter 4 provides an evaluation for my implementation using real and

software-generated network traces.

• Chapter 5 finally concludes this document by restating the thesis, how I

proved it to be true, and possibilities for future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

In this section, I introduce RD, the default metric I chose for the network phenomenon

I am trying to emulate, namely, reordering, and also provide a brief background of the

Dummynet architecture to help the reader understand how reordering support will be

incorporated. Specifically, Section 2.1 gives an introduction to the reordering metric RD, its

usefulness and various attributes, and its calculation algorithm. Section 2.2 then describes

the Dummynet architecture.

2.1 Reordering Metric

Percentage of reordered packets, n-reordering, and reordering extent, all standardized

by Internet Engineering Task Force (IETF) [4], are some basic metrics that have been

used to specify the amount of reordering in a packet stream. However, as Piratla and

Jayasumana [17] argue, RD is more sophisticated and comprehensive, and also possesses

attributes deemed to be important for a reordering metric [17] [9]. These include the

following.

• Capture reordering: The metric should be able to capture the amount

of reordering in a stream. While some metrics, such as n-reordering, are

lateness-based metrics in that they only consider late packets to be re-

ordered, others are earliness-based metrics and consider only early arriving

packets to be reordered. RD, on the other hand, provides a complete

picture by capturing information about both early and late packets.

• Orthogonality: It should be independent of, or have low sensitivity to other

network phenomena, such as loss and duplication. RD is not a↵ected by

duplicates and declares packets as lost if they do not arrive within a certain

threshold.

6

• Usefulness: In addition to just capturing the amount of reordering, a good

metric should be useful to the application or resource management schemes.

For example, RD can help in TCP flow control, provide estimates for bu↵er

size that would be required to recover from reordering, and can also help

in network diagnosis by hinting about the possible causes of reordering

as demonstrated by Piratla [11]. RD also has the very useful property

in that given the RDs for two individual subnets, the collective RD for

the end-to-end connection formed by cascading the two networks can be

predicted [14]. This is especially helpful for measuring the end-to-end RD

of a complex network. Finally, parameters, such as 90th percentile, median,

and average, can also be derived from RD, if needed.

• Low evaluation complexities: To allow for fast on-the-fly computation, the

metric should have low space and time complexities. RD has constant size

bu↵er requirements and the time complexity is O(N). Other metrics such

as n-reordering or reordering extent have spatial and time complexities of

O(N) and O(N2), respectively.

• Robustness: The metric should be robust against di↵erent errors and

network phenomena. These may include rogue packets, a packet with a very

large sequence number due to some error or sequence number wraparound,

burst of losses, etc. The use of a threshold allows RD to minimize the

e↵ect and recover quickly from many such errors or peculiarities. This is

unlike other metrics mentioned above which are often unable to counter

these events and result in having a disproportional e↵ect on the reordering

measurements.

2.1.1 Reorder Density (RD)

RD is a metric that captures the amount of reordering by measuring the displacements

of packets from their original positions [20] [5]. The following is an example of how RD is

calculated from a given sequence.

Let us say the sender sends the sequence of N = 6 packets:

Sequence sent: 1 2 3 4 5 6

7

The network causes reordering and the following is what gets received by the receiving

side:

Sequence received: 4 1 5 2 3 6

The receiver assigns a receive index (RI) to each of the packets it receives according

to the order of its arrival, such as packet 4 arrives first so it gets the RI = 1, packet 1

comes next so it gets RI = 2, and so on. Then, displacement D of the received packets is

calculated. The displacement of a packet is defined as the di↵erence between RI and the

received sequence number of the packet, i.e., the displacement of packet i is RI[i] - i. Thus,

a negative displacement indicates the earliness of a packet and a positive displacement the

lateness, while a displacement of zero indicates that the packet has arrived in order. Also

defined is a displacement threshold (DT) on the displacement of packets. It allows the RD

metric to classify a packet as lost or as a duplicate such that a packet is considered lost if it

does not arrive within a certain defined displacement threshold DT, and similarly, a packet

is considered duplicate and discarded if another packet with the same sequence number

has already been received within the DT window. The DT value is selected by the user

based on the TCP send/receive windows or the nature of the application and the network,

such as, for VoIP applications it can be selected based on the maximum time duration

the application waits for a packets arrival before considering it lost. Finally, displacement

frequency FD[k] is defined as the number of received packets having a displacement of k,

where k takes values from -DT to DT.

Expected sequence: 1 2 3 4 5 6

Received sequence: 4 1 5 2 3 6
Receive Index (RI): 1 2 3 4 5 6
Displacement (D): -3 1 -2 2 2 0

Now the reorder density RD of a sequence is defined as the distribution of the displace-

ment frequencies FD[k] normalized with respect to N’, where N’ is the length of the received

sequence after ignoring lost and duplicate packets. N’ is equal to the
DTP

k=�DT
FD[k] , (i.e.,

for k in [-DT, DT]). For the above received sequence, RD is calculated as shown in Table

2.1.

8

Table 2.1: RD Generated for sequence (4 1 5 2 3 6); N = 6. Percentages also shown.

k FD[k] RD[k] = FD[k] / N’ Percentages = RD[k] * 100
-3 1 0.1667 16.67%
-2 1 0.1667 16.67%
0 1 0.1667 16.67%
1 1 0.1667 16.67%
2 2 0.3333 33.33%

As described earlier, in an emulator, to provide reordering support, we need the ability

to regenerate the original packet sequence given its RD distribution by the user. The

algorithm for regeneration is my contribution and will be described in later sections.

Table 2.2 shows an RD I generated from part of a real TCP trace [2] which collected

145 hours of packet data on 6 web sites from the host lamar.colostate.edu, CO, USA.

2.2 Dummynet Architecture

Currently, Dummynet does not include built-in support for introducing reordering in

the tra�c. However, a trick can be used to introduce reordering in the packet stream

[11]. It involves configuring multiple pipes (pipes being Dummynet’s internal structures

that represent physical links) with di↵erent bandwidths or delays. Then the pipes are

given di↵erent probabilities and the incoming packets are sent through them based on

their probabilities. Thus, reordering is achieved by emulation of multipath. However,

this approach only provides course-grained and uncontrolled reordering and proves to be

insu�cient if we need repeatability and precision.

Dummynet processing pipeline emulates physical links using structures called pipes

which are themselves composed of individual delay and bandwidth queues. Packets are

enqueued when they enter Dummynet, processing occurs, then they are dequeued and sent

out in the network. To cause delay, the delay queue is used. At the time of dequeuing, it

is checked whether the user-specified delay time has been satisfied, if not, then Dummynet

waits until delay amount of time to perform the dequeue. Then, the bandwidth queue is

used that dequeues packets at the rate of the user-specified bandwidth. Similarly, more

functions such as loss and reordering can be added. Figure 2.1 shows the architecture of

Dummynet.

The modules for handling packet processing (such as, enqueue and dequeue operations

on packets) within Dummynet are called schedulers. Dummynet uses a timer and the

schedulers get invoked at every tick.

9

Table 2.2: RD generated from a packet trace (N = 997).

k FD[k] RD[k] = FD[k] / N’
-7 1 0.001
-4 7 0.007
-2 110 0.110
-1 10 0.010
0 790 0.792
1 12 0.012
2 12 0.012
3 16 0.016
4 26 0.026
5 6 0.006
6 4 0.004
7 2 0.002
9 1 0.001

!

Input&packets&!&

Finite&queue&
represen0ng&
router&buffer& Scheduler&

Pipe&represen0ng&a&
communica0ons&link,&
has&an&associated&delay&

and&bandwidth&

Output&packets&!&

Figure 2.1: Binding between queues, scheduler and the corresponding pipe (which is made
up of the delay and bandwidth queues in current implementation; more can be added)

10

Dummynet implements schedulers in a modular way so that if a di↵erent kind of

processing (such as support for reordering or a di↵erent loss model) is needed then a new

scheduler can be implemented with any required internal data structures, not just queues,

and the scheduler name registered with Dummynet. The user can then specify the scheduler

name that they want their packets to be processed by.

CHAPTER 3

ALGORITHM AND IMPLEMENTATION

This chapter describes my contributions. Specifically, Section 3.1 discusses the RD

sequence regeneration algorithm, Section 3.2 briefly explains the implementation in Dum-

mynet, and Section 3.3 describes the experimenter workflow.

3.1 RD Sequence Regeneration

For use in a network emulator, we need to be able to regenerate a sequence from a given

RD. In practice, the user might only provide percentages of displacements where there might

be rounding errors, that is, instead of something precise like Table 2.1, we may only get

Table 3.1 as input.

My implementation provides users with a helper script to first convert these percentages

to a suitable N’ and FD[k] that fit the given percentages, the script can let the user specify

an acceptable error threshold value and the minimum number of total packets (N) that

should be present in the solution. The output from the script is an RD similar to the one

shown in Table 2.1. The main sequence regeneration algorithm takes this RD as input and

generates a sequence of numbers that fit that RD. The pseudocode is shown in Figures 3.1,

3.2, and 3.3.

As seen in the pseudocode, first a main graph consisting of a super-source, a super-sink,

subsource(s), subsink(s), and bipartite graph(s) is constructed, this is modeled after max-

flow. The super-source is connected to the subsource(s), the subsource(s) connects to the

Table 3.1: RD given for an unknown sequence.

k Percentages = RD[k] * 100
-3 17%
-2 17%
0 17%
1 17%
2 32%

12

!
Input:!A!array!R!of!RDs,!such!that!R[i].displacement!and!R[i].count!are!the!displacement!and!number!of!packets!of!the!i'th!RD!
Output:!Array!of!packet!positions!with!reordering!applied,!and!array!of!bipartite!sub)graphs!used!in!the!next!step!
!!
function!ConstructGraph(R)!{!
!!!!K!=!R.length!!!!!!!!!!!!!!!#"total"number"of"displacements!
!!!!N!=!sum(R[i=1!to!k].count)!#"total"number"of"packets!
!!!!!
!!!!G!=!Empty!Graph!
!!!!bipartite!=!array!of!K!bipartite!graphs!of!length!N!each!
!!!!#"assume"no"connections"in"bipartite"graphs,"we'll"add"those"to"G"later!
!!!!!
!!!!Source!=!a!vertex!representing!the!super!source!
!!!!Sink!=!a!vertex!representing!the!super!sink!
!!
!!!!s!=!array!of!K!vertices,!acting!as!sub)source!
!!!!t!=!array!of!N!vertices,!acting!as!sub)sinks!
!!
!!!!#"connect"super"source"to"sub:sources,"one"for"each"bipartite"graph!
!!!!for!each!vertex!s[i]!in!s!
!!!!!!!!G.add_edge(Source,!s[i],!capacity=R[i].count)!
!!
!!!!#"connect"sub:source[i]"to"all"left"vertices"of"bipartite[i]!
!!!!for!i=1!to!K!
!!!!!!!!for!j=1!to!N!
!!!!!!!!!!!!G.add_edge(s[i],!bipartite[i].left_vertex[j],!capacity=1)!
!
!!!!#"connect"suitable"left"vertices"of"bipartites"to"suitable"right"vertices"of"bipartites!
!!!!#"for"each"bipartite"graph!
!!!!for!i=1!to!K!
!!!!!!!!displacement!=!R[i].displacement!
!!!!!!!!#"for"each"left"side"vertex!
!!!!!!!!for!j=1!to!N!
!!!!!!!!!!!!k!=!j!+!displacement!
!!!!!!!!!!!!if!k!>=!1!and!k!<=!N!
!!!!!!!!!!!!!!!!G.add_edge(bipartite[i].left_vertex[j],!bipartite[i].right_vertex[k],!capacity=1)!
!!
!!!!#"connect"all"right"vertices"of"all"bipartite"graphs"to"the"corresponding"sub:sink!
!!!!for!i=1!to!N!
!!!!!!!!for!j=1!to!K!
!!!!!!!!!!!!G.add_edge(bipartite[j].right_vertex[i],!t[i],!capacity=1)!
!!
!!!!#"connect"all"sub:sinks"to"super"sink!
!!!!for!each!vertex!t[i]!in!t!
!!!!!!!!G.add_edge(t[i],!Sink,!capacity=1)!
!!
!!!!return!G,!bipartite!
}!
!!

Figure 2 (a). Pseudocode for sequence regeneration from given RD

!
#"input"is"G"constructed"by"ConstructGraph()!
function!Solve(G)!
{!!
!!!!solution!=!array!of!size!N!
!!!!#"solution[1]=5"means"packet"at"position"1"should"get"the"packet"from"original"position"5!
!!
!!!!remaining_packets!=!array!of!size!K,!initialized!such!that!remaining_packets[i]=R[i].count!
!!!!#"we'll"use"this"to"keep"track"of"the"packets"we"are"done"with!
!!
!!!!if!SolveStep(solution,!1)!
!!!!!!!!return!solution!
!!!!else!
!!!!!!!!return!null!#"no"solution!!
}!
!

Figure 2 (b). Pseudocode for sequence regeneration from given RD

!
Figure 3 depicts how the graph generated by the algorithm for a four packet

sequence might look like. This graph is used by the solver to generate the output packet

sequence. Note that a point from one sub-source is connected to all the points in a single

set from one bipartite graph. Though it is not shown in the figure but the three remaining

sub-sources connect to the other three left-side sets from three remaining bipartite graphs

(graphs 3, 2, and 1) in a similar way.

Figure 3.1: Pseudocode for sequence regeneration from given RD: ConstructGraph().

left side of bipartite graph(s), the left side of the bipartite graph(s) connects to the right

side of the bipartite graphs, the right side of the bipartite graph(s) is then connected to

the subsink(s), and finally the subsink(s) connects to the super-sink. The capacities for

all of the edges is one except for those that connect the super-source to the subsources,

the capacities of these edges are equal to the number of packets. Figure 3.4 depicts how

this graph generated by the algorithm for an example input RD (also shown in the figure)

might look. Note that in the figure only one subsource is shown as being connected to the

corresponding right side of the bipartite graph (graph 4); the remaining three subsources

connect to the corresponding right side of the three remaining bipartite graphs (graphs 1,

2, 3) in exactly the same way, this was not shown to avoid cluttering the figure. While a

subsource connects to all the vertices in only its corresponding bipartite graph’s left side,

a subsink, in contrast, connects to only one corresponding vertex in each of the bipartite

graphs’ right side. Only one subsink is shown as connected in the figure, the other three

13

!
#"this"is"a"depth:first"search"of"the"problem"space!
function!SolveStep(solution,!step)!{!
!!!!#"we"reuse"some"variables"defined"in"other"functions"here!
!!!!if!step!>!N!
!!!!!!!!return!true!#"problem"solved!!
!!
!!!!#"for"each"step"we"loop"over"connected"vertices"of"the"current"step's"bipartite"graph!
!!!!for!i=1!to!K!#"each"bipartite"graph!
!!!!!!!!if!remaining_packets[i]!==!0!#"can"we"select"more"from"this"one?!
!!!!!!!!!!!!continue!
!!
!!!!!!!!vartex!=!bipartite[i].left_vertices[step]!
!!!!!!!!if!vertex.has_right_vertex!
!!!!!!!!!!!!right_vertex_index!=!vertex.right_vertex_index!
!!
!!!!!!!!!!!!#"we"skip"vertices"whose"target"is"already"part"of"the"solution"from"some"previous"step!
!!!!!!!!!!!!if!solution[right_vertex_index]!!=!null!
!!!!!!!!!!!!!!!!continue!
!!
!!!!!!!!!!!!solution[right_vertex_index]!=!vertex!
!!!!!!!!!!!!remaining_packets[step]))!#"decrement"for"this"vertex!
!!!!!!!!!!!!if!solve(solution,!step+1)!
!!!!!!!!!!!!!!!!return!true!#"solved!!
!!
!!!!!!!!!!!!#"this"vertex"didn't"work"out,"reset"values!
!!!!!!!!!!!!remaining_packets[step]++!
!!!!!!!!!!!!solution[right_vertex_index]!=!null!
!!
!!!!return!false!#"no"solution"found"in"this"call!
}!
!! !

Figure 2 (c). Pseudocode for sequence regeneration from given RD

In contrast, a sub-sink is connected to all four corresponding points in the the

right-side four sets from four different bipartite graphs (graphs 1, 2, 3, and 4), though

only one such set of connections is shown to avoid complicating the figure. Bipartite

graph 1 in the figure represents an RD[+1] = 1, graph 2 represents RD[+2] = 1, graph 3 is

for RD[-1] = 1, and graph 4 is for RD[-2] = 1.

Figure 3. Graph generated using pseudocode in Table 1

Figure 3.2: Pseudocode for sequence regeneration from given RD: SolveStep().

!
Input:!A!array!R!of!RDs,!such!that!R[i].displacement!and!R[i].count!are!the!displacement!and!number!of!packets!of!the!i'th!RD!
Output:!Array!of!packet!positions!with!reordering!applied,!and!array!of!bipartite!sub)graphs!used!in!the!next!step!
!!
function!ConstructGraph(R)!{!
!!!!K!=!R.length!!!!!!!!!!!!!!!#"total"number"of"displacements!
!!!!N!=!sum(R[i=1!to!k].count)!#"total"number"of"packets!
!!!!!
!!!!G!=!Empty!Graph!
!!!!bipartite!=!array!of!K!bipartite!graphs!of!length!N!each!
!!!!#"assume"no"connections"in"bipartite"graphs,"we'll"add"those"to"G"later!
!!!!!
!!!!Source!=!a!vertex!representing!the!super!source!
!!!!Sink!=!a!vertex!representing!the!super!sink!
!!
!!!!s!=!array!of!K!vertices,!acting!as!sub)source!
!!!!t!=!array!of!N!vertices,!acting!as!sub)sinks!
!!
!!!!#"connect"super"source"to"sub:sources,"one"for"each"bipartite"graph!
!!!!for!each!vertex!s[i]!in!s!
!!!!!!!!G.add_edge(Source,!s[i],!capacity=R[i].count)!
!!
!!!!#"connect"sub:source[i]"to"all"left"vertices"of"bipartite[i]!
!!!!for!i=1!to!K!
!!!!!!!!for!j=1!to!N!
!!!!!!!!!!!!G.add_edge(s[i],!bipartite[i].left_vertex[j],!capacity=1)!
!
!!!!#"connect"suitable"left"vertices"of"bipartites"to"suitable"right"vertices"of"bipartites!
!!!!#"for"each"bipartite"graph!
!!!!for!i=1!to!K!
!!!!!!!!displacement!=!R[i].displacement!
!!!!!!!!#"for"each"left"side"vertex!
!!!!!!!!for!j=1!to!N!
!!!!!!!!!!!!k!=!j!+!displacement!
!!!!!!!!!!!!if!k!>=!1!and!k!<=!N!
!!!!!!!!!!!!!!!!G.add_edge(bipartite[i].left_vertex[j],!bipartite[i].right_vertex[k],!capacity=1)!
!!
!!!!#"connect"all"right"vertices"of"all"bipartite"graphs"to"the"corresponding"sub:sink!
!!!!for!i=1!to!N!
!!!!!!!!for!j=1!to!K!
!!!!!!!!!!!!G.add_edge(bipartite[j].right_vertex[i],!t[i],!capacity=1)!
!!
!!!!#"connect"all"sub:sinks"to"super"sink!
!!!!for!each!vertex!t[i]!in!t!
!!!!!!!!G.add_edge(t[i],!Sink,!capacity=1)!
!!
!!!!return!G,!bipartite!
}!
!!

Figure 2 (a). Pseudocode for sequence regeneration from given RD

!
#"input"is"G"constructed"by"ConstructGraph()!
function!Solve(G)!
{!!
!!!!solution!=!array!of!size!N!
!!!!#"solution[1]=5"means"packet"at"position"1"should"get"the"packet"from"original"position"5!
!!
!!!!remaining_packets!=!array!of!size!K,!initialized!such!that!remaining_packets[i]=R[i].count!
!!!!#"we'll"use"this"to"keep"track"of"the"packets"we"are"done"with!
!!
!!!!if!SolveStep(solution,!1)!
!!!!!!!!return!solution!
!!!!else!
!!!!!!!!return!null!#"no"solution!!
}!
!

Figure 2 (b). Pseudocode for sequence regeneration from given RD

!
Figure 3 depicts how the graph generated by the algorithm for a four packet

sequence might look like. This graph is used by the solver to generate the output packet

sequence. Note that a point from one sub-source is connected to all the points in a single

set from one bipartite graph. Though it is not shown in the figure but the three remaining

sub-sources connect to the other three left-side sets from three remaining bipartite graphs

(graphs 3, 2, and 1) in a similar way.

Figure 3.3: Pseudocode for sequence regeneration from given RD: Solve().

remaining subsinks connect to the remaining vertices of all the bipartite graphs’ right sides

in exactly the same way.

Once this main graph to represent all possible permutations of displacements from the

input RD table has been constructed, I then use graph search, a greedy search with back-

tracking, to get to the output packet sequence that satisfies the given RD. This sophisticated

algorithm was needed because we have a constraint problem and the naive approach of just

randomly picking displacement values from the input RD and using them to generate the

output sequence would not work. The first iteration of my algorithm was a max-flow solver

(an implementation of the Fork-Fulkerson algorithm). However, the problem turned out to

have additional constraints not easily expressible in a simple max-flow graph. The graph

14

k" FD[k]"
1" 1"
2" 1"
)1" 1"
)2" 1"

"

super&
sink*

super&source*

Four*subsinks**
(based*on*value*of*N’)*

Four*subsources**
(one*for*each*k*value)*

Four*bipar9te*graphs*
(one*for*each*k*value)*

Input*RD*(N’*=*4)*

*1**2* *3**4*

Solu9on:*

1*

2* 1*

2*

3*3*

4* 4*

Figure 3.4: Graph generated by the RD sequence regeneration algorithm. The filled black
circles are drawn over vertices that were selected for the solution.

is two-layered (the left and right sides of the bipartite graphs), and while our graph can

ensure that only unique packets are selected on the right side, the left side has no such

constraint, so you can end up with a solution where two packets could be reordered to the

same position. While a constraint like this could theoretically be expressed in a graph, the

combinatorial complexity explosion makes it impractical. So the final solver was written

with max-flow as a model, but has this additional constraint and has been specialized for

this specific problem.

Our algorithm is reduced to a depth-first selection in the bipartite graphs with these

constraints:

• No two selected vertices may have the same source position (our new

constraint).

• No two selected vertices may have the same destination position (the sub-

sink capacity).

15

• Number of packets selected from a given bipartite graph must exactly

match the packets input for that RD (the subsource capacity).

The new constraint actually helps prune the search tree and can allow a large reduction

in the search space, leading to faster results for typical inputs. I have also inlined the sources

and sinks parts of the graph in the calculations in the code.

Going back to our example graph in the figure, some points to note for the graph

construction:

• The number of subsources created is determined by the number of k values

in the input RD (in other words, the number of lines in the input RD

table), which is 4 in this example, and so the number of subsources is also

4.

• The number of subsinks created is determined by the number of N’ (the

number of packets in the input RD). Since N’ is 4 in this example, the

number of subsinks is also 4.

• The number of bipartite graphs created is determined by the number of

k values in the input RD. Since the input RD in this example has 4 k

values, so the number of bipartite graphs is also 4. So, basically, graph 1

in the figure is representing k=1, graph 2 is representing k=2, graph 3 is

representing k=-1, and finally graph 4 is representing k=-2.

• The height of the left or right side of the bipartite graph is determined by

the value of N’. Since N’ for the example input RD is 4, so the height of

each side of the bipartite graph is also 4.

Since N’ is equal to 4, so the output solution array will also be of size equal to 4;

currently the array is empty and looks like this [, , ,]. Now, to get to the solution for this

example, I look at the left sides of the bipartite graphs and work in horizontal layers. So,

I look at the topmost layer of vertices then the second layer then the third and finally the

fourth horizontal layer of vertices in the left sides of the bipartite graphs. What I am really

looking for here are the connected vertices (connected means the vertex is connected using

an edge to the right side of the bipartite graphs). All of these connected ones are possible

solutions from which I have to choose the right ones, if later on it turns out the solution was

not the correct choice then I backtrack and choose another solution. Also, as mentioned

16

earlier, each bipartite graph represents a k value from the input RD, so I can only select

a vertex as a possible solution from a bipartite graph if it is a connected vertex and if the

corresponding FD[k] value for the bipartite graph which contains that connected vertex is

nonzero.

This is how I will do the selection for the given RD: I start with the first horizontal

layer of vertices (the top-most layer) of the left side of the bipartite graphs. I first look at

the orange graph (graph 4), I see that its vertex is not connected which means that this

vertex is not a solution so I move over to the red graph (graph 3), its vertex is also not

connected, I move over to the blue graph (graph 2), now its vertex is connected and the

corresponding FD[k] value for the blue graph, which FD[2] is also nonzero, so this means

that this vertex can be selected as a solution. The connection of this top vertex in the

left-side of the blue bipartite graph is to the third vertex in the right side of the bipartite

graph so this connection is telling me that packet number 1 should be placed in position

number 3 in the output sequence. So, I put packet 1 in position 3 in the output array. The

output array now looks like this [, , 1 ,]. Now, because I have used the blue graph once, I

decrement the FD[2] value since, as mentioned earlier, the blue graph represents k=2. So,

now FD[2] = 0, this value of zero will mean that I will no longer be able to select a vertex

from the blue graph even if the vertex is connected. This is a constraint in the algorithm.

Now, I move on to the second horizontal layer of vertices, in a similar way as used above

I select a connected vertex from the red graph (graph 3), decrement FD[-1], and update the

output array: [2 , , 1 ,].

Next, I move on to the third horizontal layer of vertices, and select the connected vertex

from the green graph (graph 1), decrement FD[1], and update output array as follows: [2

, , 1 , 3]

Finally, I move to the fourth and last layer of horizontal vertices, select the connected

vertex from the orange graph (graph 4), decrement FD[-2], and update the solution array:

[2 , 4 , 1 , 3].

As can be seen the final solution array contains a sequence of packet numbers that have

exactly the same RD as the input RD. Thus, the sequence regeneration algorithm correctly

worked.

To sum it up, in the algorithm, once the main graph is constructed and connected, I try

to find suitable flows from the super-source to the super-sink. This means that I take one

input packet (at the super-source), choose a displacement for it (using suitable connected

vertices from the left side to the right-side of bipartite graphs; this is a greedy search with

17

backtracking) which lets me find which position it should be placed in, in the final output

sequence.

The algorithm is a strict solver. It will find a solution if at all possible, and will fail if

it is not possible, it does not output approximate solutions. It uses various optimizations

to quickly get a result, but will exhaustively scan the problem space. However, this occurs

only when the reordering is extremely high, there are very little packets that are in order,

and the reorderings in the sequence are heavily overlapping. Reordering events in a packet

sequence can either occur independently or they can interact with each other, overlapping

with or embedding within other events [15]. The higher this amount of interaction, the more

complex it becomes for the sequence regeneration algorithm to search the right permutation

that would fit the input RD. This is rare in real tra�c and we expect to see only moderate

amounts of reordering. Also, as the algorithm is run o✏ine and the users have the option

of using it repeatedly to regenerate large sequences, the worst-case running time would not

occur in practice.

The space complexity of the problem is O(N*K). The time complexity of the problem

is fairly hard to pin down. The complexity varies wildly depending on the RD. While

you could treat this as a permutation problem (O(N!/(N-K)!)), or as a max-flow problem

(O(VE2), etc.), that does not take into account the complexity reduction our constraints

allow.

3.2 Integration into Dummynet

My RD sequence regeneration algorithm is made part of the userland, it generates output

files containing the reordered sequence which can then be input to my enhanced version of

Dummynet along with the other usual parameters, such as loss and delay. This also implies

that if the user wishes to use some other reordering metric such as n-reordering, or some

other custom metric then the output from that metric can also be input in place of RD, as

long as the output is in the form of a reordered packet sequence.

At the kernel side, I implemented and registered with Dummynet my new scheduler

with reordering functionality. So, if the user has specified the reordering scheduler as part

of the input, then instead of invoking the default scheduler to process incoming packets,

Dummynet instead uses this new scheduler that sends the incoming packets out in a

reordered fashion based on the reordered sequence that came as input to Dummynet. The

scheduler basically uses a bu↵er to hold onto incoming packets until as many packets as

are needed to accomplish the desired amount of reordering have arrived. So, for example,

18

if a packet is supposed to be reordered as 2 places late, I store it in the bu↵er and when

2 other packets have arrived that can go before it, I then send the stored packet out. The

highest number of packets that will be bu↵ered by the scheduler is limited by the highest

displacement value in the input RD. The highest displacement in a given RD is in turn

limited by the displacement threshold (DT) of the RD calculation algorithm, as mentioned

earlier. It is usually small, such as, somewhere between 5 to 25.

3.3 Experimenter Workflow

To show where the algorithm fits, the following list of steps shows what the workflow

looks like. The output from each step is used as input in the next.

1. Either take a packet trace and calculate its RD, or take an RD from the

literature.

2. Repeat the previous step zero or more times as desired to generate a set

containing one or more RDs.

3. Take the output set from step 2 and run the RD sequence regeneration

algorithm over each RD in the set.

4. Take the output sequence(s) from step 3 and input to Dummynet imple-

mentation along with any other required tra�c shaping parameters (such

as delay or loss values).

5. Run the Dummynet emulator to finally generate the experimental tra�c

shaped according to the parameters provided in the previous step.

The workflow is shown in Figure 3.5.

Note that, as the above workflow shows, the RD algorithms are run o✏ine and also

the number of packets used to generate RDs in step 1 is independent of the number of

packets in the experimental tra�c that Dummynet is made to generate in step 5. So, if

Dummynet is made to run experimental tra�c containing a million packets, the user only

needs to run the regeneration algorithm in step 3 once over, say, a 1000 packets and then

in step 4 Dummynet can use that 1000-packet output from step 3 repeatedly to generate

the million packets. The following example illustrates the workflow; the numbers used for

RD are unrealistic but have been chosen to illustrate the point. In a real experiment, an

RD would be expected to have been calculated over 500-1000 packets.

19

Reordering scheduler

Delay/bandwidth/loss
 emulation

Dummynet

 Destination

Source

Sequence Regen.
 Algorithm

Optional
config. file
for delay,
loss, etc

Reordering
config. file

Input file
containing
RD for
emulation Reordered packet stream

 2 1 3 4 6 5 7 8 …

Figure 3.5: Experimenter workflow.

Let us say we need to generate experimental tra�c in Dummynet containing a million

packets. A possible workflow is as follows.

1. We take a small packet trace containing 4 packets and calculate its RD.

The output is shown in Table 3.2.

2. We decide not to repeat step 1 and so our set of RDs contains only one

RD.

3. We run RD sequence regeneration algorithm over our set and the resulting

sequence is, resulting sequence is,resulting sequence is,resulting sequence

Regenerated sequence: 2 4 1 3

4. We take this regenerated sequence and input it to Dummynet.

5. We run the Dummynet emulator to generate experimental tra�c containing

a million packets that are reordered according to the regenerated sequence

from step 4. The regenerated sequence is basically a pattern that tells

Dummynet that for every set of 4 experimental tra�c packets (from the

total million it has to generate), take packet number 2 and put it in position

1; take packet number 4 and put it in position 2; take packet number 1 and

put in position 3; and finally, take packet number 3 and put it in position 4.

So, this is how an RD calculated over only 4 packets can be used repeatedly

by Dummynet to generate a million reordered packets.

This chapter provided the description of the algorithm and its implementation as well as

the experimenter workflow, the evaluation of the algorithm’s scalability, implementation’s

correctness and its e↵ect on emulation running time is described in the next chapter.

20

Table 3.2: Example RD (N = 4).

k FD[k] RD[k] = FD[k] / N’
-1 1 0.25
-2 1 0.25
1 1 0.25
2 1 0.25

CHAPTER 4

EVALUATION

In this chapter I describe the evaluation of my algorithm and implementation and

thus provide evidence to support the claim that I have proven my thesis true by having

Dummynet support emulation of reordering. In the first two evaluations, I show that my

algorithm is scalable and the implementation works correctly in regenerating a reordered

packet sequence from the user input RD that is equivalent to the real tra�c sequence over

which reordering was originally calculated by the user. Finally, a datapath evaluation is

done to show that my modifications to the original Dummynet do not cause any unnecessary

increase in the emulation running time.

The chapter is organized as follows. Section 4.1 briefly explains the general evaluation

plan I followed. Section 4.2 then describes my evaluation for correctness using real network

traces in which I, side-by-side, compare the RDs for real network traces and my regenerated

packet traces. In Section 4.3, I describe my second evaluation which further tests my

algorithm for scalability using controlled simulation. Finally, in Section 4.4, I report the

results from the datapath evaluation.

4.1 Evaluation Plan Followed
For showing correctness, the main evaluation plan I used was as follows:

1. Take real packet traces.

2. Calculate RD over them.

3. Feed those RDs into my implementation and generate packet sequences.

4. Calculate RD on the resulting packet sequences, and show how they com-

pare to the RDs from step 2. If they are equal or very close to the ones

calculated in Step 2, then my implementation is demonstrated to work

correctly.

For scalability evaluation, my plan was as follows:

22

1. Generate traces using software. The factors to be varied include number

of packets and amount of reordering. The properties of the traces that will

be kept constant will be at realistic values (realistic values were set based

on observations from real network traces).

2. Calculate RD over the traces and measure runtimes.

3. Plot the resulting runtimes to show the algorithm’s scalability.

For the datapath evaluation, my plan was to conduct two kinds of experiments. In the

first one:

1. Run tra�c through original as well as modified Dummynet with reordering

turned o↵ and note the maximum interarrival time observed for both.

2. Conduct a statistical test to determine if any significant di↵erence exists

between the times observed.

In the second experiment:

1. Run tra�c through modified Dummynet with reordering turned on, note

the maximum interarrival time observed. The expected time is equal to

H*M, where H is the highest displacement in the RD used as input for

reordering and M is the maximum interarrival time observed for modified

Dummynet when reordering was turned o↵ in the first experiment.

2. Conduct a statistical test to determine if any significant di↵erence exists

between the expected and observed times.

4.2 Real Network Traces

I ran the RD calculation algorithm for network traces consisting of long-lived connections

from a host in Colorado to multiple networks located in di↵erent continents and the results

were collected hour-by-hour [2]. I fed these into the RD regeneration algorithm to regenerate

the packet sequences. Then, the RD calculation algorithm was run over the regenerated

packet sequences and the output set of RDs were compared with the original set of RDs for

the traces. The regeneration algorithm had worked correctly in all cases as no di↵erence

was found among the two sets by the script that used di↵ for comparison. The output

RDs from three sets of measurements along with the corresponding RDs calculated over

the regenerated sequence are shown in Table 4.1, Table 4.2, and Table 4.3. Also mentioned

23

Table 4.1: RDs for server in India (N = 136768, percentage of reordering = 0.11%,
sequence regeneration runtime = 0.126s).

Original RD Regenerated Sequence RD
k FD[k] k FD[k]
-5 8 -5 8
-4 5 -4 5
-3 10 -3 10
-2 30 -2 30
-1 16 -1 16
0 136626 0 136626
1 32 1 32
2 16 2 16
3 9 3 9
4 5 4 5
5 11 5 11

Table 4.2: RD for server in Cape Town (N = 138275, percentage of reordering = 0.03%,
sequence regeneration runtime = 0.057s).

Original RD Regenerated Sequence RD
k FD[k] k FD[k]
-5 2 -5 2
-4 3 -4 3
-3 3 -3 3
-2 8 -2 8
-1 4 -1 4
0 138239 0 138239
1 4 1 4
2 5 2 5
3 3 3 3
4 2 4 2
5 4 5 4

is the time taken by the sequence regeneration algorithm. As seen from these three tables

both RDs completely match. Only the frequency counts FD[k] of the displacements k are

shown, RD[k] is omitted to save space.

4.3 Software-Generated Network Traces

The previous evaluation focused on showing correctness, this one focuses on scalability

which is not easy to show using real traces, thus, software-generated controlled ones are

required. For a moderate amount of reordering as is common in real networks, the evaluation

tests discussed in the previous section showed that the sequence regeneration algorithm

24

Table 4.3: RD for server in Pakistan (N = 136107, percentage of reordering = 0.51%,
sequence regeneration runtime = 122.730s).

Original RD Regenerated Sequence RD
k FD[k] k FD[k]
-5 4 -5 4
-4 37 -4 37
-3 29 -3 29
-2 61 -2 61
-1 343 -1 343
0 135410 0 135410
1 26 1 26
2 52 2 52
3 47 3 47
4 41 4 41
5 57 5 57

regenerates packet sequences within reasonable time. However, the running time becomes

high as the amount of reordering events and/or interaction between reordering events in

the sequence increases. So, in this section I want to show the e↵ect that increasing the

number of packets and amount of reordering will have on the run time of the algorithm.

I wrote a simple trace generator to test the limits of the algorithm. The generator used

the Fisher-Yates shu✏e algorithm [8] to randomly shu✏e the input array containing the

packet sequence. It allowed the user to specify the value of N (total number of packets to

generate in the sequence), the percentage of packets that needed to be left in-order, and

the maximum value of k (i.e., the maximum displacement a packet in the sequence could

be displaced by). In all experiments, based on observations from real network traces, I set

k = 5.

I conducted two sets of experiments. In the first set, I varied the amount of reordering

while keeping the number of packets, N, constant to 1000 packets, which is a reasonable

number to expect in a real workflow of common experiments. The output sequences from

the generator were then fed to my implementation and running times were calculated. The

results are shown in Figure 4.1.

In the second set of experiments, I varied N while keeping the amount of reordering

constant at an RD sampled from the real network traces whose results were shown in the

previous section. Again, the output sequences were used as input for sequence regeneration

algorithm and running times were observed. The results of this set are shown in Figure 4.2.

To show that the algorithm works really well for realistic inputs, I also included in

25

0.001$

0.01$

0.1$

1$

10$

100$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

R
un

tim
e

(s
ec

) o
n

lo
g

sc
al

e!

Percentage of reordering (%)!

Table4.1
Table4.2
Table4.3

Figure 4.1: E↵ect of amount of reordering events on algorithm runtime. Number of packets
kept constant. Vertical red lines highlight position of data points from real traces.

both graphs, as three data points (the three vertical lines in the graphs), results from the

real traces presented in the previous section in Tables 4.1, 4.2, and 4.3. Of course, it

is not unexpected to see experimenters trying out higher values of algorithm parameters

as compared to what we see in real traces, for example, to test their protocols for some

network that causes a relatively higher amount of packet reordering to occur. In such cases,

the algorithm would still work pretty well (also, remember that it runs o✏ine), as can

be seen from the upper bound of running times in the two graphs. For both graphs, the

runtimes are subsecond for the realistic cases, and always in the low tens of seconds.

4.4 Datapath Evaluation

This evaluation’s aim was to show if the modifications I did in the original Dummynet

in order to support reordering increased the running time of the emulation more than was

necessary. To show this, I ran an experiment 20 times which consisted of using ping with

the flood option turned on to send 500 packets through the original Dummynet as well as

the modified Dummynet (with reordering turned o↵) and noting the maximum interarrival

time observed in both cases. The number of runs for the experiment was determined using

a statistical test to get 95% confidence level, the result from the test was rounded o↵ to

the nearest tenth to get the value to be used as the number of runs. The max interarrival

times observed from all the runs of the experiment were averaged using mean and are

26

0"

2"

4"

6"

8"

10"

12"

14"

16"

0" 100" 200" 300" 400" 500"

R
un

tim
e

(s
ec

)!

Number of packets (N')!
Thousands)

Table"4.1"
Table"4.2"
Table"4.3"

Figure 4.2: E↵ect of number of packets on algorithm runtime. Amount of reordering kept
constant. Vertical red lines highlight position of data points from real traces.

reported in Table 4.4. The modified version of Dummynet is referred to as MyDummynet.

Statistical tests showed with 95% confidence level no significant di↵erence between the times

from the two configurations, and so it was concluded that if reordering is turned o↵ then

MyDummynet does not add any unnecessary processing in the datapath that would result

in an increase in the running time of the emulation.

I did another experiment with all configurations the same as earlier except that this time

reordering was turned on in MyDummynet. This was to see if any unnecessary increase in

running time was being caused by my modifications to the original Dummynet. A simple

RD was used for reordering, it is shown in Table 4.5. The largest displacement in the RD is

19. This means that the max interarrival time we expected to see when tra�c is run through

MyDummynet should be very close to (19*2.51), which is 47.69 msec. The value 2.51 is the

max interarrival time we observed when reordering was turned o↵ in MyDummynet, it is

reported in Table 4.4. So, the expected as well as the observed times for this experiment

with reordering turned on are reported in Table 4.6. Statistical tests showed no significant

di↵erence with 95% confidence, hence it was concluded that the datapath for MyDummynet

when reordering was turned on did not introduce any unnecessary processing that would

have increased the running time for the emulation more than was necessary for applying

the reordering.

27

Table 4.4: Maximum interarrival time observed on original Dummynet and on
MyDummynet (Dummynet after my modifications).

Configuration Max interarrival time (msec)
Original Dummynet 2.48

MyDummynet (Reordering o↵) 2.51

Table 4.5: RD used for datapath evaluation (N = 20).

k FD[k] RD[k] = FD[k] / N’
-19 1 0.05
0 18 0.90
19 1 0.05

Table 4.6: The expected and the observed maximum interarrival time on MyDummynet
with reordering turned on.

Configuration Max interarrival time (msec)
MyDummynet
(Reordering on)

Expected 47.69
Observed 48.07

CHAPTER 5

CONCLUSION

The focus of my thesis was increasing the realism of network emulation. I argued and

provided evidence that packet reordering is a prevalent network phenomenon that a↵ects

performance of both TCP and UDP applications and hence deserves attention, including

research into models and tools to diagnose and understand it, just as is given to other

phenomena, such as packet loss or delay. So, since it is a phenomenon that cannot be ignored

and emulation would not be realistic if the emulator did not also have support for reordering,

my thesis made this first contribution of implementing its support within Dummynet. The

second contribution was an o✏ine algorithm, a max-flow solver, for sequence regeneration

from a sophisticated reordering metric called RD. The output from this algorithm was then

used as input to my implementation within Dummynet. I used real and software-generated

traces to show that the algorithm is scalable and the implementation works correctly. I also

did a datapath evaluation to show that my modifications to Dummynet do not result in

any unnecessary increase in emulation running time.

Currently, my sequence regeneration algorithm expects the input RD to be properly

formed, with negative displacements balancing out positive ones completely. Thus, it is left

to the users to manually adjust the RD based on their knowledge about the network they

want to emulate. So, as future work, I plan to include support for this adjustment within

my implementation.

REFERENCES

[1] Dummynet references from Citeseer. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.57.2969, 2013.

[2] Packet reordering trace. http://www.cnrl.colostate.edu/Projects/PacketReordering/
Trace/packet reordering trace.htm, 2013.

[3] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser. Packet
reordering metrics. RFC 4737, 2006.

[4] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser. Packet
reordering metrics. IETF Internet-standard: RFC4737, 2006.

[5] A. P. Jayasumana, N. M. Piratla, T. Banka, A. A. Bare, R. Whitner. Improved packet
reordering metrics. RFC 5236, 2008.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M.
Bowman. PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev., 2003.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. Proc. OSDI Symposium, 2002.

[8] P. E. Black. Fisher-Yates shu✏e. Dictionary of Algorithms and Data Structures
[online], US National Institute of Standards and Technology, 2005.

[9] J. C. R. Bennett, C. Patridge, and N. Shectman. Packet reordering in not pathological
network behavior. IEEE/ACM Trans. Netw., 1999.

[10] J. Sommers, P. Barford, N. Du�eld, and A. Ron. Improving accuracy in end-to-end
packet loss measurement. ACM SIGCOMM Computer Communication Review, 2005.

[11] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM Comput. Commun. Rev.
40, 2010.

[12] M. Laor and L. Gendel. The e↵ect of packet reordering in a backbone link on
application throughput. IEEE Network, 2002.

[13] M. Lelarge. Packet reordering in networks with heavy-tailed delays. Mathematical
Methods of Operations Research, 2008.

[14] N. M. Piratla, A. P. Jayasumana and A. A. Bare. RD: A formal, comprehensive metric
for packet reordering. Proc. IFIP Networking Conference, 2005.

[15] N. M. Piratla, A. P. Jayasumana and T. Banka. On reorder density and its application
to characterization of packet reordering. Proc. 30th IEEE Local Computer Networks
(LCN) Conference, 2005.

30

[16] N. M. Piratla and A. P. Jayasumana. Reordering of packets due to multipath
forwarding – An analysis. Proc. IEEE International Conference on Communications,
2006.

[17] N. M. Piratla and A. P. Jayasumana. Metrics for packet reordering – A comparative
analysis. International Journal of Communication Systems, 2008.

[18] V. Paxson. End-to-end Internet packet dynamics. Proc. ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, 1997.

[19] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement and clas-
sification of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM Transactions
on Networking (ToN), 2007.

[20] T. Banka, A. A. Bare and A. P. Jayasumana. Metrics for degree of reordering in packet
sequences. Proc. 27th IEEE Conference on Local Computer Networks, 2002.

