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ABSTRACT

The efficient transport of particles throughout a cell plays a fundamental role in several

cellular processes. Broadly speaking, intracellular transport can be divided into two cate-

gories: passive and active transport. Whereas passive transport generally occurs via dif-

fusive processes, active transport requires cellular energy through adenosine triphosphate

(ATP). Many active transport processes are driven by molecular motors such as kinesin

and dynein, which carry cargo and travel along the microtubules of a cell to deliver specific

material to specific locations. Breakdown of molecular motor delivery is correlated with

the onset of several diseases, such as Alzheimer’s and Parkinson’s.

We mathematically model two fundamental cellular processes. In the first part, we

introduce a possible biophysical mechanism by which cells attain uniformity in vesicle

density throughout their body. We do this by modeling bulk motor density dynamics

using partial differential equations derived from microscopic descriptions of individual

motor-cargo complex dynamics. We then consider the cases where delivery of cargo to

cellular targets is (i) irreversible and (ii) reversible. This problem is studied on the semi-

infinite interval, disk, and spherical domains. We also consider the case where exclusion

effects come into play. In all cases, we find that allowing for reversibility in cargo delivery

to cellular targets allows for more uniform vesicle distribution. In the second part, we

see how active transport by molecular motors allows for length control and sensing in

flagella and axons, respectively. For the flagellum, we model length control using a doubly

stochastic Poisson model. For axons, we model bulk motor dynamics by partial differential

equations, and show how spatial information may be encoded in the frequency of an

oscillating chemical signal being carried by dynein motors. Furthermore, we discuss how

frequency-encoded signals may be decoded by cells, and how these mechanisms break

down in the face of noise.
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CHAPTER 1

INTRODUCTION

One of the major challenges of modern biology is to understand molecular motor-based

intracellular transport and the biophysical processes that are facilitated by it. This in-

volves many different levels of description, from the biochemical reactions that dictate an

individual motor’s movement and vesicular uptake to bulk molecular motor movement

across entire cells for delivery of these vesicles to specific locations within the cell. From

a mathematical perspective, motor-based intracellular transport provides a rich area for

application of ordinary, delay, and partial differential equations, statistical physics, and the

theory of stochastic processes. The latter are particularly pertinent due to the interior of a

cell being a crowded, fluctuating, anisotropic environment [18, 95]. Interest in intracellular

transport processes has steadily grown in a diversity of academic fields over the years (see,

for example, [3, 11, 14–18, 21, 46, 56, 57, 59, 63, 65, 72, 76, 78, 81, 83, 87, 89, 102, 125, 127]).

In this dissertation, we introduce mathematical models that address two fundamental

biological questions that have been experimentally observed to be intertwined with motor-

based intracellular transport processes [3, 78, 102, 125]:

1. How are cells able to route motors so that they deliver specific cargo to particular

subcellular compartments in the face of molecular crowding and anisotropy? In cases

where vesicular density throughout a cell needs to be relatively uniform, how is this

homogeneity achieved?

2. How do cells that are relatively large (e.g., neurons) control and sense their own size

in the face of noisy intracellular environments?

We note that this work focuses on bulk motor travel along microtubules and not on the

biochemical reactions that modulate an individual motor’s movement and uptake of vesi-

cles.
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In order to put our mathematical models into context, we will provide a brief back-

ground of the biological processes and structures that form the basis for the phenomena we

model in the following. Later, we will describe the fundamental mathematical structures

underlying several of the equations we use for modeling bulk motor motion.

1.1 Microtubules, Molecular Motors, and Intracellular Transport
Broadly speaking, there are two basic mechanisms for intracellular transport: passive

diffusion within the cytosol or the surrounding plasma membrane of the cell and active

motor-driven transport along polymerized filaments such as microtubules and F-actin that

comprise the cytoskeleton [18]. Active transport is necessary for the movement of material

across relatively long distances, as a diffusion-based mechanism for such transport would

require a significantly longer time to reach a particular distance than a given cell allots [60].

This problem becomes particularly acute for large, highly branched cells such as neurons,

which range from a micron to a meter in length in humans. Hence, active transport is es-

sential for the efficient delivery of proteins and molecular products to their correct location

within a given cell, which is necessary for healthy cellular function and development [1].

Indeed, breakdown in intracellular active transport has been implicated in diseases such

as Alzheimer’s, Parkinson’s, and others [123].

There are two central molecular players in active intracellular transport: (i) the cy-

toskeleton and (ii) molecular motors.

1.1.1 Cytoskeleton

Most proteins are globular proteins, meaning they harvest and store free energy, trans-

form biological compounds into others, or decode genetic information. But many of the

most abundant proteins are fibrous proteins that are elongated and often insoluble; these

proteins determine the shape and other physical attributes of cells and organisms. Collec-

tively, these proteins that form a cell’s structural components are called the cytoskeleton. A

typical eukaryotic cell contains three types of cytoskeletal proteins that form fibers extend-

ing throughout the cell: microfilaments (with diameter of about 0.7 nm), intermediate fil-

aments (10 nm), and microtubules (24 nm). Although all these proteins provide structural

integrity for a cell, their microscopic configurations are markedly different, causing them
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to have distinct physical properties. Microfilaments, for example, are composed of actin

monomers whereas microtubules are composed of tubulin dimers. The term “intermediate

filaments” refers to an assortment of protein fibers that form a subset of the cytoskeleton

whose range lies between 0.7 and 24 nm. They are composed of a variety of proteins [95].

One important characteristic of microfilaments and microtubules that differentiates them

from intermediate filaments is their participation in the dynamic functions of a given cell

[43]. Both filaments exhibit polarity, meaning one end of the filament can be distinguished

from the other based on the orientation of the individual components building up the

filament. Actin monomers have one end with an ATP-binding cleft. The microfilament end

exposing these clefts is designated as the (-) end and other end as (+). The building blocks

of microtubules are tubulin dimers, with one monomer being α-tubulin and the other

β-tubulin. The end of the microtubule exposing α-tubulin is designated as the (+) end,

and the other is the (-) end. The (+) and (-) designations in each case refer to the tendency

of the filament to synthesize on the (+) end and dissociate at the (-) end, although both

synthesis and dissociation occur on both ends; see Figure 1.1 and Figure 1.2. Microtubules

and microfilaments are dynamic structures, meaning they are constantly growing and

dissociating, and when the rate of synthesis at the (+) end of a polarized filament is equal

to the rate of dissociation at the (-) end, the filament is said to be treadmilling. Hence, a

given cell can quickly alter rates of synthesis or dissociation in response to some external

stimulus to modify the length of a filament. In this manner, a cell may use these filaments

as a means for motility. Microfilaments are better for cell motility, as they are like thin rods

and malleable. Microtubules are hollow tube-like structures and therefore more resistant

to bending; they are better suited for maintaining structural integrity; see Figure 1.2. Their

high abundance, large surface area, and rigidity make them an ideal means of transport-

srotoMraluceloMdnasremyloP4861

left-half complex plane. Finally, DJ has a center at λ = − 1 and radius r, which also
lies the left-half complex plane provided that r ≤ 1.
Now suppose that actin monomers can bind or unbind at both ends with rates k±on

and k±off, as shown in Fig. 4.5. The binding rate is multiplied by a fixed background
monomer concentration a. (The spatial effects of a nonuniform monomer concen-
tration are considered by Edelstein-Keshet and Ermentrout [157]; see also Ex. 4.3.)
The difference between the two ends is due to the fact the ATP-actin quickly hy-
drolyzes to ATD-actin so that the tip consists of ATP-actin and the tail consists
of ATD-actin. Rather than writing down the master equation for the system, let us
consider the equations for the mean number of monomers n± added at each end.
Assuming that the filament is sufficiently long, we have

dn+

dt
= k+ona− k+off,

dn−
dt

= k−ona− k−off. (4.1.9)

It is clear that the ± end grows provided that a > a±
c , where a±

c = k−off/ k
−
on. If a+

c ≈
a−
c , then both ends shrink or grow simultaneously. On the other hand, if a+

c < a< a−
c

then the plus end grows at the same time the minus end shrinks. Finally, adding the
pair of Eq. (4.1.9) shows that

dn
dt

= kona− koff,

with n = n+ + n− , koff = k+off + k−off, and kon = k+on + k−on. Hence, if the monomer
concentration a = a0, where

a0 =
k+off + k−off
k+on+ k−on

�
koff
kon

,

_
+

Fig. 4.5: Model of F-actin undergoing polymerization at both ends

then the total filament length remains constant even thoughmonomers are constantly
moving along its length—treadmilling.

Figure 1.1. Figure depicting polymerization and dissociation at both ends of a polarized
filament. Adapted from [12].
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The three major components of the cytoskeleton are microtubules, microfilaments, and 
intermediate filaments. Each of these are polymers composed of repeating subunits in 
specific arrangements. With just a quick glance (fig. 1), it is very clear that the interme-
diate filaments will likely play a significantly different role from either microtubules 
or microfilaments. Because the IF’s are made of long fibrous subunits that coil around 
one another to form the filament, there is clearly a great deal of contact (which facili-
tates formation of hydrogen bonds, aka molecular velcro™) between subunits provid-
ing great tensile strength. It is very difficult to break these subunits apart, and thus the 
IF’s are primarily used for long-term or permanent load-bearing purposes. Looking at 
the other two components of the cytoskeleton, one can see that with the globular in-
stead of fibrous shape of the subunits, the maximum area of contact between subunits 
is greatly limited (think of the contact area when you push two basketballs together), 
making it easier to separate the subunits or break the microfilament or microtubule. 
The cell can use this characteristic to its advantage, by utilizing these kinds of cy-
toskeletal fibers in dynamic situations where formation or destruction of intermediate 
filaments would take far too long. We now address these three groups of cytoskeletal 
elements in more detail. 

Intermediate Filaments

“Intermediate filaments” is actually a generic name for a family of proteins (grouped 
into 6 classes based on sequence and biochemical structure) that serve similar func-
tions in protecting and shaping the cell or its components. Interestingly, they can even 
be found inside the nucleus. The nuclear lamins, which constitute class V intermediate 
filaments, form a strong protective mesh attached to the inside face of the nuclear 

= Microtubules

= Actin Filaments

= Intermediate Filaments

Figure 1.  Cytoskeletal element distribution in a prototypical eukaryotic cell.  The purple ball is the nucleus.

Most intermediate filaments fall between 50-100 kDa, including 
keratins (40-67 kDa), lamins (60-70 kDa), and neurofilaments (62-
110 kDa).  Nestin (class VI), found mostly in neurons, is an excep-
tion, at approximately 240 kDa.  
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found as large 13-stranded (each strand is called a protofilament) hollow tube struc-

tures. Also, the a and b tubulin used for building the microtubules not only alternate, 

but they are actually added in pairs.  Both the a-tubulin and b-tubulin must bind to GTP 

to associate, but once bound, the GTP bound to a-tubulin does not move. On the other 

hand, GTP bound in the b-tubulin may be hydrolyzed to GDP.  GDP-bound ab-dimers 

will not be added to a microtubule, so similar to the situation with ATP and g-actin, 

if the tubulin has GDP bound to it, it must first exchange it for a GTP before it can be 
polymerized.  Although the affinity of tubulin for GTP is higher than the affinity for 
GDP, this process is usually facilitated by a GEF, or guanine nucleotide exchange factor.  
As the signal transduction chapter will show in more detail, this type of nucleotide ex-

change is a common mechanism for activation of various biochemical pathways.

Again like actin, the tubulin itself has enzymatic activity, and over time, the GTPase 

activity hydrolyzes the GTP to GDP and phosphate.  This changes the attachment be-

tween b-tubulin of one dimer and the a-tubulin of the dimer it is stacked on because 

the shape of the subunit changes.  Even though it isn’t directly loosening its hold on the 
neighboring tubulin, the shape change causes increased stress as that part of the mi-

crotubule tries to push outward.  This is the basis of a property of microtubules known 

as dynamic instability.  If there is nothing to stabilize the microtubule, large portions of 

it will fall apart.  However, as long as new tubulin (which will have GTP bound) is be-

ing added at a high enough rate to keep a section of low-stress “stable”-conformation 
microtubule (called the GTP cap) on top of the older GDP-containing part, then it sta-

bilizes the overall microtubule.  When new tubulin addition slows down, and there is 

only a very small or nonexistent cap, then the microtubule undergoes a catastrophe 
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Figure 4.  Microtubules ex-

hibit dynamic instability. 

GTP-bound ab-tubulin dim-

ers are added onto the mi-

crotubule.  Once the GTP is 

hydrolyzed, the conforma-

tional shift strains the mi-

crotubule, which will tend 

to break apart unless new 

tubulin dimers are added to 

stabilize the structure.

Figure 1.2. Figure depicting structure of microtubules and example of orientation in cells.
Public domain figure downloaded from Wikipedia Commons.

ing material throughout a cell. They effectively act as a network of roads for the cell

[95]. Indeed, microtubules interact with molecular motors such as kinesin and dynein

to facilitate transport of vesicles across relatively large distances. Hence, microtubules

play an integral role in active intracellular transport. Throughout this dissertation, when

we describe a spatial domain upon which bulk motor dynamics are modeled, we are

effectively abstracting the space covered by microtubules and giving it a mathematical

formalism.

Microtubules in a given animal cell originate at an organelle near the cell’s nucleus

known as a centrosome, which contains the microtubule organizing center (MTOC). They

emanate from this organelle outward toward the cell membrane. Generally, they are ori-

ented so that their (+) ends are nearer the cell membrane. In highly polarized cells such

as neurons, microtubules are generally oriented so that their (+) ends are at the axonal

terminus. The collective set of microtubules form a dense, complex network, and may be

navigated by molecular motors such as kinesin and dynein to deliver vesicles to specific

intracellular locales; see Figure 1.3.

1.1.2 Kinesin and Dynein

Kinesin and dynein, proteins that navigate microtubule networks to transport vesicles

across cells, are examples of a wider class of proteins called molecular motors. They are

biological machines that facilitate any type of movement in living organisms [1, 95]. Ex-

amples include myosins, which aide in muscle contraction, topoisomerase, which reduces
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This photo shows the microtubules in a cell. The

MTOC (microtubule organising centre) can be

seen. (Scale bar, 20 µm). Another fluorescent

picture of microtubules, which contains dividing

cells.

kinesins).

Microtubules are also important in mitosis, and are

important constitutents of cilia.

Microtubules are made up of tubulin dimers as shown in the diagram (left). The

dimers contain one molecule of alpha-tubulin and one of beta-tubulin. Each

dimer is 8nm long.

This diagram shows how

the tubulin dimers

assembled into

protofilaments, are

assembled into the

microtubule.

The tubulin subunits are arranged in rows

called protofilaments. These are made up of

alternating a- and b-subunits, and the

protofilaments assemble into a tubular

structure - the microtubule. This tube is

25nm in diameter. The diagram (left) shows

a cross section of a microtubule, showing its

tubular structure.

Figure 1.3. Micrograph of nucleus, MTOC, and microtubule network. Public domain
figure downloaded from Wikipedia Commons.

supercoiling of DNA in cells, DNA/RNA polymerase, which reads DNA and creates a

second strand or transcribes RNA, and kinesin and dynein. There is a vast and rich litera-

ture on these proteins. We are specifically interested in incorporating kinesin and dynein

proteins in our mathematical models because of their integral role in active intracellular

transport.

Kinesin is a relatively large protein, with a molecular mass of 380 kD. It has two large

globular heads and coiled tail domain; see Figure 1.4. Each 10-nm-long head contains

a tubulin-binding site and a nucleotide-binding site. The tips of the coiled tails bind

to proteins in the membranes of a vesicle, which is a small structure inside of the cell
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sible for the motors to directly bind to all of them.  In fact, the motors bind to their 
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address markers (SNAREs) was discussed in the vesicular transport chapter.
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Figure 9.  A cargo vesicle (yellow) 
can be simultaneously bound by  
dynein (green) and kinesin (blue) 
via adapter proteins.  This top side 
also depicts the movement of the 
kinesin, in which binding of ATP 
causes one “foot” to release, and 
hydrolysis of ATP causes the mol-
ecule to swivel the other foot in 
front.
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Figure 8.  Kinesin (A) and Dynein (B) are 
motor proteins that move along micro-
tubules.  Generally, kinesins move to 
the (+) end while dyneins move to the 
(-) end.  Their motor function requires 
ATP hydrolysis.  ATP binding sites are 
marked in white.
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BFigure 10.  Selected Myosins.  (A) Type I myosin, pri-
marily for binding membranes to f-actin, including 
endocytic vesicles. (B) Type II myosin, binds f-actin 
on both ends to slide filaments against each other.  
(C) Type V myosin, used in vesicular transport.  (D) 
Type VI myosin, used in endocytosis.  (E) Type XI 
myosin, a fast myosin used in cytoplasmic stream-
ing in plant cells.
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Figure 1.4. Kinesin (top) and Dynein (bottom). Redrawn from [95].

consisting of fluid enclosed in a lipid bilayer. They can be thought of as packages filled

with contents to be shipped to a given locale. The vesicle and its contents become kinesin’s

cargo [95].

There are several proposed mechanisms for how kinesin moves along microtubules

[120, 124], but there is one that is widely accepted, which we describe in the following.

Kinesin moves along a microtubule utilizing a mechanism that involves coordination be-

tween its two large globular heads. One head will bind to a β-tubulin with its tubulin-

binding site and then adenosine triphosphate (ATP) will bind to the tubulin-bound head.

This biochemical binding induces a conformational change in the kinesin and thrusts the

unbound head forward; the process then repeats. Hence, kinesin literally walks along

microtubules to transport cargo [1, 95].

Dynein has a similar structure to kinesin, but is significantly larger, with a molecular

mass of approximately 1.5 MD. It is a dimer of dimers. Two identical heavy chains contain

a nucleotide-binding sites, and are responsible for harnessing free energy to change protein

conformation and propel the motor forward. Light chains on the opposite end of the

protein bind to the proteins in the membrane of a vesicle, and are responsible for keeping
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dynein attached to its cargo [64, 121]; see Figure 1.4. It is largely unclear what the mech-

anism for the cooperation between the heavy chains is to propel dynein forward, but it is

assumed to be similar to kinesin’s mechanism described above, with the underlying factor

being the bending energy associated with ATP-induced conformational change [119].

Kinesin tends to walk toward the (+) end of a microtubule whereas dynein walks

toward the (-) end [48]. In the context of generic cells, this means kinesin tends to carry

cargo toward the cell membrane and dynein tends to bring cargo toward the nucleus. In

axonal transport, kinesin tends to haul cargo in the anterograde direction; dynein moves

cargo in the retrograde direction. Both motors dynamically bind and unbind completely

from a given microtubule; it is relatively uncommon for a motor protein to stay put on

a single microtubule for an extended period of time. Furthermore, several dynein and

kinesin motors can bind to a single cargo element at the same time, and as these motors

pull in opposite directions, the result is a tug-of-war battle to move a cargo in a given

direction [63, 87]. It is therefore typical to observe a cargo element undergoing biased

bidirectional motion on a given microtubule.

Indeed, experimental observations of flourescently tagged cargo elements in nerve cells

of Drosophila and C. elegans reveal that cargo elements exhibit ballistic motion in either

the retrograde or anterograde directions interspersed with long time periods where cargo

elements are stationary; see Figure 1.5 [78, 125]. These experiments show that anterograde

and retrograde cargo velocities are on the order of 1 µm/sec. Hence, velocities in all our

models of motor transport are taken to be 1 µm/sec.

1.1.3 Neurons

Although the biology described above is true for general cells, we have taken care to

bring up neurons as a means of context. This is because several of the models we have

developed describe molecular motor dynamics and transport processes in neurons. All

problems associated with transport processes in cells are even more acute for neurons due

to their size and complex, branched structure. Hence, mathematical models of transport

processes in neurons lead to very interesting mathematics; they are especially emphasized

throughout this thesis, although others are addressed in Chapter 2 and Chapter 4.
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Figure 1.5. Kymograph of cargo in axon of C. elegans, showing cargo undergo bidirectional
motion. Bar graph shows velocity of cargo is on the order of 1 µm/sec. Adapted from [78].
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1.2 Piecewise Deterministic Markov Process
When considering the active transport of intracellular cargo over relatively long dis-

tances (i.e., axons), it is convenient to ignore the microscopic details of how a motor per-

forms a single step and to instead focus on the transitions between states of anterograde

and retrograde transport or outward and inward transport. This has motivated a class

of macroscopic models which capture the essence of cargo motility as described in [78],

wherein there are 3 states of a particle: (1) particle moves ballistically in anterograde

direction, (2) particle moves ballistically in retrograde direction, and (3) particle is sta-

tionary; see Figure 1.6. In each state, dynamics of the particle are deterministic, but

transitions between each state are governed by a Markov process. A system exhibiting

the aforementioned properties is called a piecewise deterministic Markov process or a

stochastic hybrid system.

Consider a particle moving according to the three-state model described above on a

one-dimensional (1D) track of length L. As mentioned before, this domain is interpreted

as representing a microtubule. Within the track, 0 < x < L, the particle is taken to be in one

of three states labeled by n = 0,±: stationary, moving to the right (anterograde; outward)

with speed v+, or moving to the left (retrograde; inward) with speed v−†. For simplicity,

assume v+ = v−, which is justified by the findings in [78]. Let X(t) and N(t) denote the

random position and state of the particle at time t and define P(x, n, t|y, m, 0)dx as the joint

probability that x < X(t) < x + dx and N(t) = n given that initially the particle was at

random position X(0) = y and in the state N(0) = m. Setting

pn(x, t) ≡∑
m

P(x, t, n|0, 0, m)σm, (1.1)

with initial condition pn(x, 0) = δ(x)σn, ∑m σm = 1, the evolution of the probability is

described by the following piecewise deterministic Markov process (PDMP) for t > 0:

∂p+
∂t

= −v
∂p+
∂x
− β+p+ + αp0, (1.2)

∂p−
∂t

= v
∂p−
∂x
− β−p− + αp0, (1.3)

∂p0

∂t
= β+p+ + β−p− − 2αp0. (1.4)

†Due to our emphasis on axonal transport, we will generally call the (+) direction anterograde and the (-)
direction retrograde.
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hypothesized that the combination ofinefficient capture at
presynaptic sites and the back-and-forth motion of motor-
cargo complexes between proximal and distal ends of the
axon facilitates a more uniform distribution of resources
[10]. In this Letter, we construct a biophysical model
of bidirectional vesicular transport in axons and establish
that the hypothesized mechanism can support a form of
synaptic democracy.
Let us begin by considering a simple three-state model of

a single motor-cargo complex moving on a semi-infinite
1D track and carrying a single synaptic vesicle precursor
(SVP), as shown in Fig. 1. The particle is taken to be in one
of three states labeled byn ¼ 0, : unbound from the track
and stationary or slowly diffusing (n ¼ 0), bound to the
track and moving to the right (anterograde) with speedvþ
(n ¼ þ ), or bound to the track and moving to the left
(retrograde) with speed−v− (n ¼ −). Transitions between
the three states are governed by a discrete Markov process.
Let pnðx; tÞ denote the probability that the particle is at
positionx, x � ð0; ∞ Þ, and in staten at timet given some
fixed initial condition. The evolution of the probability is
described by the following system of partial differential
equations[11,12]:

∂p
∂t

¼ � v
∂p
∂x

− βp þ αp0; ð1aÞ

∂p0

∂t
¼ D0

∂2p0

∂x2
þ βpþ þ βp− − 2αp0 − kχAðxÞp0: ð1bÞ

For the moment, we take the endx ¼ 0 to be reflecting so
that vþ pþ ð0; tÞ ¼v−p−ð0; tÞ. (In our population model,
we will assume a constant, nonzero flux atx ¼ 0.) Here,
α; β are the transition rates between the stationary and
mobile states, andD0 is the diffusivity in the unbound state
n ¼ 0. We are also assuming that there is a uniform,
continuous distribution of presynaptic targets along a
region A of the axon, and that the motor complex can
irreversibly deliver its SVP to a presynaptic target at a
uniform rateκ. Thus, χAðxÞdenotes an index function with

χAðxÞ ¼1 if x � A and χAðxÞ ¼0 if x�A. For future
reference, we note that, in the above model, we are really
keeping track of the SVP bound to the motor complex so
that the irreversible delivery of the SVP to a presynaptic
target is treated as an absorption event.
For intracellular transport, one finds that the transition

rates are fast compared tov =l, where l is a fundamental
microscopic length scale such as the size of a synaptic
target (l � 1 μm). One can then use a quasi-steady-state
(QSS) diffusion approximation to obtain the following
advection-diffusion equation for the total probability den-
sity pðx; tÞ ¼

P
npnðx; tÞ [11,12]:

∂p
∂t

¼ −V
∂p
∂x

þ D
∂2p
∂x2

− kχAðxÞp; ð2Þ

with mean velocityV ¼ ðvþ − v−Þρþ , effective diffusivity
D given by

D ¼ D0ρ0 þ
α

βð2α þ βÞ
½ðvþ − VÞ2 þ ðv− þ VÞ2 ;

and effective delivery ratek ¼ κρ0. Here ρ0 ¼ β=ð2α þ βÞ
andρ ¼ α=ð2α þ βÞare the stationary probabilities of the
discrete Markov process for the statesn ¼ 0 and n ,
respectively. The basic idea of the QSS reduction is to fix
units so that v ¼ Oð1Þ and α; β ¼ Oð1=�Þ with
0 < � � 1. In this regime, there are typically a large
number of transitions between different motor-complex
statesn while the positionx hardly changes at all. This
suggests that the system rapidly converges to the (quasi)
steady stateρn, which is then perturbed asx slowly evolves.
This motivates decomposing the probability densities as
pnðx; tÞ ¼pðx; tÞρn þ �wnðx; tÞ with

P
nwnðx; tÞ ¼0.

Substituting such a solution into Eqs.(1) and performing
an asymptotic expansion inwn then leads to Eq.(2) to
leading order in�. In particular, D − D 0ρ0 ¼ Oð�Þ.
Now, suppose that we have a population of motor

complexes injected at one end of the axon at a fixed rate
J 1, each of which carries a single SVP. As a further

microtubule
+_

motor
complex

+_
v

+_
v

β
α β

α

n = − 

n = 0

n = + 

FIG. 1 (color online). Three-state model of the bidirectional transport of a single motor-cargo complex. The particle switches between
an anterograde stateðn ¼ þÞ of speedvþ , a stationary or slowly diffusing state (n ¼ 0), and a retrograde stateðn ¼ −Þof speedv− . The
motor complex can only deliver a SVP to a presynaptic target in the staten ¼ 0.

PRL 114, 168101 (2015) P H Y S I C A L R E V I EW L E T T E R S week ending
24 APRIL 2015

168101-2

Figure 1.6. Illustration of three-state model. Adapted from [12].

The parameters α, β± are the transition rates between the stationary and motile states.

We supplement the above PDMP with appropriate boundary conditions at x = 0, L. For

example, a reflecting condition at x = 0 and absorbing condition at x = L means that

p−(0, t) = p+(0, t), p−(L, t) = 0. (1.5)

In the general case where v+ 6= v−, transport will be biased toward the right (left) if

v+/β+ > v−/β− (v+/β+ < v−/β−). We note that the above PDMP can be written

compactly in matrix-vector format:

∂p
∂t

= L(p) + Ap, (1.6)

with

p ≡



p+
p−
p0


 , A ≡



−β+ 0 α

0 −β− α
β+ β− −2α


 , L(f) ≡



−v ∂ f1

∂x
v ∂ f2

∂x
0


 . (1.7)

The three-state model is the microscopic description of individual motor-cargo dynamics

that underlies several of the partial differential equation (PDE) models we use in our

mathematical models. However, we take a moment here to point out that the three-state

model is a special case of a general class of motor transport models, in which there are

N distinct velocity states labeled n = 1, . . . , N with corresponding velocities vn. For the

sake of illustration, we will show how a PDMP model may be used to describe tug-of-war

dynamics described in the previous section.
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Consider a motor complex consisting of N+ anterograde motors and N− retrograde

motors. At a given time t, the internal state of the motor-cargo complex is completely

characterized by the ordered pair (n+, n−) of the numbers of anterograde and retrograde

motors that are bound to the microtubule and therefore actively pulling the cargo. The

velocity v(n+, n−) of a given state is given by [12, 18]

v(n+, n−) =
n+Fs+ − n−Fs−

n+Fs+/v f+ + n−Fs−/vb−
, (1.8)

where Fs± is the stall force for anterograde and retrograde motors, i.e., the magnitude of

force opposing a single motor’s movement that renders the single motor’s velocity 0, v f+

is the anterograde motor’s velocity in the absence of any opposing force and vb− is the

retrograde motor’s velocity in the anterograde direction when the opposing force exceeds

the individual motor’s stall force. Introduce the mapping (n+, n−) → n ≡ (N+ + 1)n− +

(n+ + 1) with 0 ≤ n ≤ N ≡ (N+ + 1)(N− + 1). The corresponding probability density

vector p satisfies equation (1.6) with the velocity in each state given by equation (1.8).

The components Anm, n, m = 1, . . . , N of the state transition matrix A are given by the

corresponding binding and unbinding rates of a given motor to a microtubule. Writing

n ≡ n(n+, n−) the nonzero off-diagonal terms are [18, 89]

Anm = π+(n+ − 1), m = n(n+ − 1, n−), (1.9a)

Anm = π−(n− − 1), m = n(n+, n− − 1), (1.9b)

Anm = γ+(n+ + 1), m = n(n+ + 1, n−), (1.9c)

Anm = γ−(n− + 1), m = n(n+, n− + 1), (1.9d)

with

π(n) ≡ (N − n)π0, γ(n, F) ≡ nγ0e
F

nFd , (1.10)

where Fd is the experimentally measured force scale on which unbinding occurs. The

diagonal terms are then Ann = −∑m 6=n Amn. We thus obtain a PDMP description of a

tug-of-war model of cargo transport along microtubules.

1.2.1 Adiabatic Approximation

In many applications, one finds that transitions between states are fast compared to

v/∆, where v = maxn |vn| and ∆ is the fundamental length scale of the corresponding



12

problem. In our case, ∆ could represent the typical length of an axon, which ranges

from 100-1000 microns. Performing the rescalings x → x/∆ and t → tv/∆ leads to the

nondimensionalized version of equation (1.6):

∂p
∂t

= L(p) + 1
ε

Ap, (1.11)

where 0 < ε � 1. In this parameter regime, there are several transitions between motile

states while the spatial position of the particle hardly changes at all. This suggests that

the system rapidly converges to a quasi-steady state pss which is perturbed as x slowly

changes. Performing this adiabatic approximation (also called the quasi-steady-state ap-

proximation) allows for easier analysis of the PDMP by recasting the full system as a single

Fokker–Planck equation (sometimes called a Smoluchowski equation).

The transition matrix A is assumed to be irreducible and conservative so that ψ ≡
(1, 1, . . . , 1)T is a left null vector of A. Let pss be an element of the right null space of A

such that ψTpss = 1. Let p ≡ ψTp and w ≡ p − Cpss so that ψTw = 0. Multiplying

equation (1.11) on the left by ψT gives

∂p
∂t

= ψTL(Cpss + w). (1.12)

On the other hand, substituting p = Cpss + w into equation (1.11) gives

∂p
∂t

pss +
∂w
∂t

=
1
ε

A(pss p) + L(pss p + w). (1.13)

Combining equations (1.12) and (1.13) yields

∂w
∂t

=
1
ε

A(pss p + w) + (In − pssψT)L(pss p + w), (1.14)

where In is the n× n identity. Introduce the asymptotic expansion

w = w0 + εw1 + ε2w2 + . . . . (1.15)

Substituting into equation (1.14) and collecting O(ε−1) terms yields Aw0 = 0. Since w

is in the orthogonal complement of the left nullspace of A, it follows that w0 = 0. Now

collecting O(1) terms gives

Aw1 = −(In − pssψT)L(pss p). (1.16)

Because ψT(In − pssψT) = 0, it follows that the right-hand side in the above equation is

orthogonal to the null space of AT. The Fredholm Alternative Theorem guarantees the
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existence of a solution for w1, though it may not be unique. We obtain uniqueness by

imposing ψTw1 = 0. Hence, w ∼ εw1. Substitution into equation (1.12) yields the Fokker–

Planck (FP) equation :
∂p
∂t

= − ∂

∂x
(Vp) + ε

∂

∂x

(
D

∂p
∂x

)
, (1.17)

where the drift term V and diffusion coefficient D are given by

V(x) = vTpss, D(x) = zTv, (1.18)

where v is the N-dimensional vector containing the velocity of each state and z an N-

dimensional vector whose nth component is the solution to

N

∑
m=1

Anmzm = [V(x)− vn]pss
n , (1.19)

with ψTz = 0. Equation (1.17) describes the time evolution of the probability density for

the position of a particle evolving according to the PDMP in equation (1.6). If there is

a sufficiently large number of particles whose probability densities evolve according to

equation (1.17), then we may interpret equation (1.17) as a partial differential equation

description of a bulk of motors moving in the domain. In the simple three-state model, we

obtain an advection–diffusion equation for motion of bulk motors, with

V =
v
Λ

( 1
β+
− 1

β−

)
, D =

ε

Λ

( (1−V)2

β2
+

+
(1 + V)2

β2
−

)
, Λ =

1
β+

+
1

β−
+

1
α

. (1.20)

Hence, an advection–diffusion equation is our canonical mathematical representation of

bulk motor dynamics. In this dissertation, we couple this equation with other processes to

describe vesicular delivery and cellular length sensing.

1.3 Chemical Master Equation
Throughout this dissertation, we will encounter situations where we have to model

chemical reactions of N independent, identical structures with each structure’s dynamics

described by a continuous-time Markov process. In the limit N → ∞, the fraction of

the population in a given state evolves according to a set of deterministic differential

equations (also called kinetic equations). For finite N, one can track the stochastic fraction

of structures in a given state using a chemical master equation. Let n = (n1, n2, . . . , nm)

denote the number of structures in each of m internal states with ∑m
j=1 nj = N. The
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probability that the population is in a state n at time t evolves according a master equation

of the form
dPn

dt
= ∑

n′
[Wnn′Pn′(t)−Wn′nPn(t)], (1.21)

with Wjk representing the reaction rate from the state j to state k. In general, equation (1.21)

is very difficult to analyze on its own. However, it is possible to carry out a perturbation

expansion of the master equation in terms of the system size 1/N and characterize the dy-

namics in terms of an equivalent Fokker–Planck equation or Langevin equation. Chemical

master equations can be numerically simulated using the Gillespie algorithm [35].

1.4 Structure of Dissertation
In Chapter 2 and Chapter 3, we investigate motor-based vesicular delivery. Motivated

by experimental observations in [78, 125], we mathematically investigate how allowing

for reversible delivery of cargo to a particular target allows for a uniform distribution of

vesicles. In Chapter 2, we investigate this in several geometries, including the semi-infinite

interval, Cayley tree, disk, and sphere. In Chapter 3, we look at how including hard-core

repulsion between individual motor-cargo complexes moving in bulk in our models im-

pacts this phenomenon. In all the aforementioned cases, we see that irreversible delivery

facilitates preferential vesicular delivery to targets proximal to the source of motors. Re-

versible delivery allows for uniformity in vesicular density provided motor velocities are

not significantly hindered.

In Chapter 4 and Chapter 5, we investigate how motor transport can be used for length

control and length sensing in flagella and axons. In Chapter 4, we develop a stochastic

version of a deterministic model for flagellar length control in [76], wherein the gradient

of RanGTP at the base of a flagellum modulates the binding rate of intraflaggelar transport

proteins (IFTs) at the base of the flagellum. We model the injection times of IFTs into

the flagellum as a Poisson process whose rate in turn depends on a stochastic birth-death

process describing the binding and unbinding of IFTs at the basal body. The result is a

doubly stochastic Poisson process (DSPP) which models IFT injection into the flagellum.

Furthermore, we invoke a Feynman–Kac formula to show that underlying the DSPP is a

chemical master equation.

In Chapter 5, we develop a mathematical version of a computational model for axonal



15

length sensing given in [102]. We show how axonal length is inversely related to the

frequency of the oscillation of a somatic chemical signal carried from an axon’s tip by

dynein motors. We further show how the inverse relationship breaks down in the face of

intracellular noise. We then describe a feed-forward network topology by which a cell may

decode this information, and show how the decoding mechanism also breaks down in the

face of noise.



CHAPTER 2

CELL GEOMETRY AND VESICULAR

DELIVERY

A recent modeling study [17] investigated the active transport and delivery of vesicles

across en passant synapses in the axons of neurons. Axons and dendrites both contain

protein-rich synaptic subcellular compartments that form synaptic contacts between neu-

rons. Some of the synaptic junctions occur at the terminals of axonal branches while others

occur along the body of the axon. The latter are referred to as en passant synapses. The gen-

eration of new synaptic contacts during synaptogenesis or modification of old synapses in

response to synaptic activity require localized protein delivery to a particular synaptic site

[17, 61]. The relatively long distance between the soma and the distal axonal or dendritic

synapses necessitates the use of active transport as a means of vesicular delivery. Hence,

microtubules and molecular motors such as kinesin and dynein play key roles in proper

synaptogenesis (see section 1.1).

One main issue explored in reference [17] was the neuron’s ability to evenly distribute

vesicles across its en passant synapses–so-called synaptic democracy . Considering the fact

that the source of motors that deliver cargo to these synapses is the soma of the neuron, one

would expect that synapses proximal to the soma would obtain a greater amount of cargo

compared to the distal axonal or dendritic synapses. However, the following experimental

observations in axons of C. elegans and Drosophila [78, 125] suggest otherwise: (i) motor-

driven cargo exhibits ballistic anterograde or retrograde motion interspersed with periods

of long pauses at presynaptic sites; (ii) the capture of vesicles by synapses during the

pauses is reversible, in that vesicular aggregation at a site could be inhibited by signaling

molecules resulting in dissociation from the target; (iii) the distribution of resources across

synapses is relatively uniform. In reference [17], the transport and delivery of vesicles to

synaptic targets was modeled using a one-dimensional (1D) advection–diffusion equation
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based on the observations of [78, 125]. It was shown that in the case of irreversible cargo

delivery, the steady-state vesicle density decays exponentially from the soma, whereas

the steady-state density is relatively uniform in the reversible case. This suggests that

reversibility in vesicular delivery plays a crucial role in achieving a “fair” distribution of

resources within a cell.

In this chapter, we significantly extend the 1D model of synaptic democracy in order to

take into account the effects of cell geometry on reversible vesicular transport. We begin by

briefly recounting the 1D results found in [17]; see section 2.1. Additionally, we investigate

the behavior of the steady-state density of vesicles when the velocity of cargo-carrying

motors is significantly different from free motors, which was not considered in reference

[17]. We then consider a natural extension of the 1D analysis, namely a branching network

(section 2.2). A tree is an appropriate domain to study synaptic democracy because it can

account for the branched structure that is characteristic of axons and dendrites [88]. We

show that in the irreversible case, branching increases the rate of decay of the steady-state

distribution of vesicles. On the other hand, the steady-state profiles in the reversible case

are similar to the 1D case. Moving away from highly polarized cells such as neurons, most

cells (including a neuron’s soma) have an approximately three-dimensional (3D) spherical

shape. There are also examples of cells being treated as two-dimensional (2D) disks,

particularly in the case of motile eukaryotic cells such as keratocytes [62, 80]. Therefore,

we consider models of reversible vesicular transport in the disk and the sphere. We take

the source of the motor-cargo complexes to be at the origin, and model the dynamics of the

motor densities by differential equations transformed into their polar (2D) and spherical

(3D) representations. The study of vesicular delivery in the disk and sphere domains is

important because delivery of cargo to localized subcellular compartments is of utmost

importance for several processes that occur in all cells. Such delivery is necessary, for

example, when there is a need for restructuring a cell’s cytoskeleton during cell growth,

motility (see section 1.1.1), mitosis, and polarization [51] or when cellular waste materials

are carried by autophagosomes to lysosomes for degradation [109]. In contrast to the 1D

model, we distinguish between two types of filament distributions: (i) the distribution of

microtubules emanating from the origin forms a continuum (section 2.3); (ii) the set of

microtubules emanating from the origin forms a discrete set (section 2.4). In case (i), we
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model the motion of motor densities using advection–diffusion equations. We find that

for irreversible delivery, the steady-state vesicle density decays according to a modified

Bessel function, whereas a uniform density can be obtained when delivery is reversible. In

case (ii), we derive PDEs for the motor density based on stochastic differential equations

(SDEs) for individual motor dynamics in the 2D and 3D domains following along the lines

of Lawley et al. [72]. Throughout the chapter, we ignore boundary effects away from

the source of motor-cargo complexes. In the case of exponentially decaying steady-state

densities, this is a reasonable approximation provided that the spatial rate of decay is

smaller than the size of the physical domain.

2.1 Semi-infinite Track
Before elucidating our model and results, we briefly present the 1D results found in

[17].

2.1.1 Irreversible Delivery

Consider a population of motor-cargo complexes or particles moving on a semi-infinite

track, each of which carries a single synaptic vesicle precursor (SVP) to be delivered to a

synaptic site. Assume that these particles are injected at the soma (x = 0) at a fixed rate

J1 and that the distribution of synaptic sites along the axon is uniform. That is, at any

given spatial point x, a particle can deliver its cargo to a synapse at a rate k. Neglecting

interactions between particles, the dynamics of the motor-cargo complexes can be captured

by the advection–diffusion equation [17]

∂u
∂t

= −v
∂u
∂x

+ D
∂2u
∂x2 − ku, x ∈ (0, ∞), (2.1)

where u(x, t) is the particle density along the microtubule track at position x at time t. Note

that equation (2.1) can be derived from more detailed biophysical models of motor trans-

port under the assumption that the rates at which motor-cargo complexes switch between

different motile states are relatively fast [17, 89]; see section 1.2. In particular, the mean

speed will depend on the relative times that the complex spends in different anterograde,

stationary, and possibly retrograde states, whereas the diffusivity D reflects the underlying

stochasticity of the motion. Equation (2.1) is supplemented by the boundary condition at

x = 0:
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J(u(0, t)) = J1, J(u) ≡ vu− D
∂u
∂x

. (2.2)

Let c(x, t) denote the concentration of delivered vesicles to the presynaptic sites at x at time

t with

∂c
∂t

= ku− λc, (2.3)

where λ denotes the degradation rate for vesicles. Note that in the irreversible delivery

case, including vesicular degradation is necessary to prevent blowup in the solutions for

c(x, t). This consideration is not necessary in the reversible delivery case. The steady-state

solution for c is given by

c =
k
λ

J1e−ξx

Dξ + v
, ξ ≡ −v +

√
v2 + 4Dk

2D
, (2.4)

which clearly indicates that c decays exponentially with respect to distance from the soma

with correlation length ξ−1. Taking the typical values D = 0.1µm s−1 for cytoplasmic

diffusion and v = 0.1− 1 µm s−1 for motor transport [48], and assuming that k� 1 sec−1,

we see that ξ
−1 ≈ (v/k) µm. Thus, in order to have correlation lengths comparable to

axonal lengths of several millimeters, we would require delivery rates of the order k ∼
10−5 sec−1, whereas measured rates tend to be of the order of a few per minute [17, 45, 74].

This simple calculation establishes that injecting motor-complexes from the somatic end

of the axon leads to an exponentially decaying distribution of synaptic resources along

the axon. We now show, following reference [17], that relaxing the irreversible delivery

condition in this model allows for a more uniform distribution of vesicles along the axon.

2.1.2 Reversible Delivery

In order to take into account the reversibility of vesicular delivery to synapses, one

must consider a generalization of the advection–diffusion model (2.1). To that end, let

u0(x, t) and u1(x, t) denote the density of motor-cargo complexes without and with an

attached SVP, respectively, and let k+ and k− denote the rates at which vesicles are de-

livered to synaptic sites and recovered by the motors, respectively. Each density evolves

according to an advection–diffusion equation combined with transition rates that represent

the delivery and recovery of SVPs:
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∂u0

∂t
= −v0

∂u0

∂x
+ D

∂2u0

∂x2 − γ0u0 + k+u1 − k−cu0, (2.5)

∂u1

∂t
= −v1

∂u1

∂x
+ D

∂2u1

∂x2 − γ1u1 − k+u1 + k−cu0, (2.6)

with x ∈ (0, ∞). Disparity in the velocities in each state reflects the effect cargo can have on

particle motility, whilst the degradation rates γ0,1 are included to account for the possibility

of particle degradation or recycling. Equations (2.5) and (2.6) are supplemented by the

boundary conditions

J(uj(0, t)) = Jj, j = 0, 1, (2.7)

where Jj is the constant rate at which particles with or without cargo are injected into the

axon from the soma. The dynamics for c(x, t) are now given by

∂c
∂t

= k+u1 − k−cu0. (2.8)

We need not explicitly include degradation in this case because, provided J0 > 0, c(x, t)

will be bounded. The steady-state distribution of vesicles is then

c =
k+u1

k−u0
. (2.9)

Substitution into the steady-state analogs of equations (2.5) and (2.6) yields

uj(x) =
Jje−ξ j x

Dξ j + vj
, ξ j =

−vj +
√

v2
j + 4Dγj

2D
, (2.10)

whence

c =
k+
k−

J1

J0

Dξ0 + v0

Dξ1 + v1
e−Γx, (2.11)

with Γ ≡ ξ1 − ξ0. It is evident that if Γ = 0, then c has a spatially uniform distribution.

Suppose that the diffusion and degradation rates of motors do not change when car-

rying cargo. Then Γ = 0 would imply that the velocities of the cargo-carrying motors

are equal to the velocities of the free motors. However, we would expect v1 < v0 due to

the added load of the cargo on the motor, and that this would lead to a loss of synaptic

democracy since Γ > 0. Indeed, values of v1 less than v0 lead to steady-state profiles of

vesicle density reminiscent of the exponential decay behavior of the irreversible delivery

case (see Figure 2.1), although the spatial rate of decay is mitigated by the presence of

reversible delivery. Hence, attaining synaptic democracy also depends on physical proper-

ties of the cargo being carried. Large cargo, for example, may not be uniformly distributed

throughout an axon whereas smaller cargo will.
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Figure 2.1. Figure depicting the loss of synaptic democracy as disparity in velocities
between free motors and cargo-carrying motors grows normalized so all curves fit in one
frame. Parameter values are D = 0.1µm2s−1, γ0,1 = 0.01s−1, k± = 0.01s−1, J0 = J1,
v0 = 0.1µms−1. Vesicle density is normalized so that c(0) = 1.

2.2 Cayley Tree
One limitation of the above model is that it does not capture the highly branched nature

of an axon. Therefore, we now investigate irreversible and reversible delivery of vesicles

to synapses on a tree. For simplicity, we consider an unbounded, regular tree Λ radiating

from a unique origin with branching number z and segment length L (a Cayley tree); see

Figure 2.2. We denote the origin, or the mother node, by α and the tree node opposite of

the mother node by β. Let S1 be the set of z nodes connected to β. Similarly, let S2 consist

of the z2 nodes that are connected to the vertices of the first generation and so on. The

nth generation thus consists of zn nodes. Since all nodes (and their associated branches)

of a given generation are equivalent for a regular tree, we can consider a single direct

path through the tree and label the branch linking the node in Si−1 to the node in Si by i,

i = 0, 1, 2, . . ., where S0, S−1 are identified with the nodes β and α, respectively.

Consider a population of motor-cargo complexes or particles moving on Λ, each of

which carries a single synaptic vesicle precursor (SVP) to be delivered to a synaptic site.

Motors are injected into the tree at a constant rate J1 at the mother node, α. Each branch

is of finite length L, and we denote the point on each branch closest to α as x = 0 and
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Figure 2.2. Cayley tree Λ with z = 2.

the point farthest away from α by x = L. The movement of the motors along a branch

preceding a node in Si can be modeled by an advection–diffusion equation

∂ui

∂t
= −v

∂ui

∂x
+ D

∂2ui

∂x2 , (2.12)

where ui(x, t) represents the motor density at position x at time t, D is the motor diffusion

coefficient, and v is the motor velocity. In the following, equation (2.12) will be coupled

with the boundary conditions

ui(L, t) = ui+1(0, t), i ≥ 0,

J0(0, t) = J1,

Ji(L, t) = zJi+1(0, t), i ≥ 1. (2.13)

The first boundary condition represents continuity of motor density at the nodes of the

tree. The second boundary condition represents the constant injection rate of motors at the

mother node, and the last boundary condition reflects Kirchoff’s law of conservation of

current. Here,

Ji(x, t) = vui − D
∂ui

∂x
. (2.14)

Note that for simplicity, we take the motor velocity and diffusivities to be the same in all

branches of the tree. A more detailed model would need to take into account a number
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of features. For example, exclusion effects could mean motor velocities are locally density

dependent, and diffusivities could change if the cross-sectional area of the axon decreases

along the tree. Let us now use this setup to investigate irreversible and reversible vesicular

delivery, respectively, to target synapses.

2.2.1 Irreversible Delivery

We modify equation (2.12) by including a degradation term to account for irreversible

delivery of vesicles. Let ci(x, t) denote the concentration of vesicles at position x at time t

on the i-th branch. The model for motor and vesicle dynamics is given by

∂ui

∂t
= −v

∂ui

∂x
+ D

∂2ui

∂x2 − kui, (2.15)

∂ci

∂t
= kui − λci, (2.16)

where λ is the vesicular degradation rate. At steady state, we have

− v
∂ui

∂x
+ D

∂2ui

∂x2 − kui = 0, (2.17)

c =
kui

λ
. (2.18)

The general solution to equation (2.17) is given by

ui(x) = Aieξ+x + Bieξ−x, ξ± ≡
v±
√

v2 + 4Dk
2D

, (2.19)

where Ai, Bi are constants of integration to be determined from boundary conditions. We

can determine one of the constants for u0 by imposing the boundary condition reflecting

the injection rate of motors. For the remaining constants, we employ the following method.

We assume the motor density at each node in Si is given by Φi+1. This ensures the solution

on the tree will be continuous at the nodes. We then impose the boundary condition

reflecting Kirchoff’s law to determine each value Φi. That is, assume

u0(0) = Φ0, (2.20)

u0(L) = u1(0) = Φ1, (2.21)

ui−1(L) = ui(0) = Φi, i ≥ 2, (2.22)

From equations (2.19) and (2.22), we have for i ≥ 1

ui(x) =
Φieξ−L −Φi+1

eξ−L − eξ+L eξ+x +
Φi+1 −Φieξ+L

eξ−L − eξ+L eξ−x. (2.23)
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Imposing the current conservation condition (2.13), we obtain the following linear ho-

mogenous recurrence relation:

z(ξ+ − ξ−)Φi+1 + (ξ+ − ξ−)e(ξ++ξ−)LΦi−1 (2.24)

+
(v(z− 1)(eξ−L − eξ+L)

D
+ ξ−(eξ−L + zeξ+L)− ξ+(eξ+L + zeξ−L)

)
Φi = 0.

Equation (2.24) has the solution Φi = νi with ν determined from the auxiliary equation

z(ξ+ − ξ−)ν2 + (ξ+ − ξ−)e(ξ++ξ−)L

+
(v(z− 1)(eξ−L − eξ+L)

D
+ ξ−(eξ−L + zeξ+L)− ξ+(eξ+L + zeξ−L)

)
ν = 0. (2.25)

We obtain two solutions ν± in solving the quadratic equation, with |ν+| > 1 and |ν−| < 1.

Hence,

Φi = c1νi
+ + c2νi

−. (2.26)

In the case of an unbounded tree, we set c1 = 0, otherwise |Φn| → ∞ as n → ∞. Hence,

we have Φi = cνi
−. Setting i = 0 gives c = Φ0. Hence,

Φi = Φ0νi
−. (2.27)

It remains to determine Φ0. First, imposing the boundary conditions u0(L) = Φ1 and

J0(0) = J1, the solution for u0(x) is given by

u0(x) =
J1eξ−L − (v− Dξ−)Φ1

[v− Dξ+]eξ−L − [v− Dξ+]eξ−L eξ+x

+
(v− Dξ+)Φ1 − J1eξ+L

[v− Dξ+]eξ−L − [v− Dξ−]eξ+L eξ−x. (2.28)

From equation (2.27), we obtain that Φ1 = Φ0ν−. On the other hand, by substituting x = 0

into equation (2.28), we obtain

Φ1 =
Φ0
(
[v− Dξ+]eξ−L − [v− Dξ−]eξ+L)− J1(eξ−L − eξ+L)

D(ξ− − ξ+)
. (2.29)

Equating the above two equations for Φ1 gives the explicit formula for Φ0,

Φ0 = −J1
eξ−L − eξ+L

Dν−(ξ− − ξ+)− ([v− Dξ+]eξ−L − [v− Dξ−]eξ+L)
. (2.30)

We can now use equation (2.27) to obtain Φi, ∀i ∈ Λ. Hence, we have the steady-state

distribution of vesicles in the Cayley tree in the irreversible delivery case.
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In Figure 2.3, we compare the decay of vesicle density in the irreversible case of the

Cayley tree to the semi-infinite track. We can see that toward the soma, the profiles are

in exact agreement, whereas as soon as we reach the first branching point of the tree,

the steady-state vesicle density suddenly drops, thereby aggravating the decay in the

case of the Cayley tree to be greater than in the semi-infinite track. This suggests that

if vesicular delivery were irreversible, biased delivery toward the soma would be greater

than predicted in reference [17].

2.2.2 Reversible Delivery

To allow for re-uptake of vesicles from target sites, we must include the dynamics

of cargo-carrying motors, ui
1(x, t) as well as free motors, ui

0(x, t), on each branch i and

add switching terms to the advection–diffusion equation (2.12). Let ci(x, t) represent the

density of vesicles at position x at time t on branch i, i ∈ Sn. Then the motor and vesicle

dynamics are given by

∂ui
0

∂t
= −v0

∂ui
0

∂x
+ D

∂2ui
0

∂x2 − γ0ui
0 + k+ui

1 − k−ciui
0, (2.31)

∂ui
1

∂t
= −v1

∂ui
1

∂x
+ D

∂2ui
1

∂x2 − γ1ui
1 − k+ui

1 + k−ciui
0, (2.32)

∂ci

∂t
= k+ui

1 − k−ciui
0. (2.33)

We couple equations (2.31) and (2.32) with the boundary conditions (2.13). Let J0,1 be

the injection rates at the origin for u0,1, respectively. At steady state, we have

D
∂2ui

0
∂x2 − v0

∂ui
0

∂x
− γ0ui

0 = 0, (2.34)

D
∂2ui

1
∂x2 − v1

∂ui
1

∂x
− γ1ui

1 = 0, (2.35)

ci =
k+ui

1

k−ui
0

. (2.36)

As equations (2.34) and (2.35) are decoupled, we may apply the method elaborated in

the irreversible delivery case to each equation separately and then obtain the full solution

on the Cayley Tree. For example, let

u0
0(0) = Φ0, u0

1(0) = Ψ0, (2.37)

u0
0(L) = u1

0(0) = Φ1, u0
1(L) = u1

1(0) = Ψ1, (2.38)

ui−1
0 (L) = ui

0(0) = Φi, ui−1
1 (L) = ui

1(0) = Ψi. (2.39)
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Figure 2.3. Plot comparing steady-state vesicle densities in the irreversible delivery case of
the semi-infinite track and the Cayley tree. Parameter values are L = 10µm, v = 0.1µms−1,
D = 0.1µm2s−1, z = 3, λ = k = 0.01s−1. Vesicle density is normalized so that c(0) = 1.

so that the solutions are continuous at all nodes of Λ. We then have for i ≥ 1

ui
0(x) =

Φieξ−L −Φi+1

eξ−L − eξ+L eξ+x +
Φi+1 −Φieξ+L

eξ−L − eξ+L eξ−x, (2.40)

ui
1(x) =

Ψieζ−L −Ψi+1

eζ−L − eζ+L eζ+x +
Ψi+1 −Ψieζ+L

eζ−L − eζ+L eζ−x, (2.41)

with

ξ± ≡
v0 ±

√
v2

0 + 4Dγ0

2D
, ζ± ≡

v1 ±
√

v2
1 + 4Dγ1

2D
. (2.42)

By imposing conservation of current at each node, we obtain second-order iterative equa-

tions for Φi and Ψi, which can be solved to give

Φi = νi
−Φ0, Ψi = µi

−Ψ0, (2.43)

where ν− is the smaller root of equation (2.25) and µ− is the smaller root of the correspond-

ing quadratic equation obtained by the replacement ξ± → ζ±. Finally, solving the equa-

tions for u0
0(x) and u0

1(x) and imposing the boundary conditions u0
0(L) = Φ1, u0

1(L) = Ψ1

yields

Φ0 = − J0

D
eξ−L − eξ+L

ν−(ξ− − ξ+)− (ξ−eξ−L − ξ+eξ+L)
, (2.44)
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and

Ψ0 = − J1

D
eζ−L − eζ+L

ν−(ζ− − ζ+)− (ζ−eζ−L − ζ+eζ+L)
. (2.45)

Thus, we obtain the steady-state vesicle distribution. Note that if γ0 = γ1, then ξ± = ζ±

when v0 = v1 and ui
1(x) = ui

0(x) for all x ∈ [0, L] and i ≥ 0. It follows that the vesicle

distribution is uniform.

In Figure 2.4, we show how uniformity in vesicle distribution is lost when v1 < v0 and

compare decays in the Cayley tree with z = 3, L = 1 to decays on the semi-infinite track.

We can see that the steady-state profiles are similar. Interestingly, the tree domain seems

to facilitate a higher density of vesicles farther along in the domain than the semi-infinite

track. We now investigate the impact of reversible vesicle delivery in higher-dimensional

domains.

2.3 Higher-dimensional Geometries
Although a 1D model is a reasonable first approximation of microtubule-based active

transport in the axons and dendrites of a highly polarized cell such as a neuron, in most

cells, intracellular transport takes place along 2D or 3D cytoskeletal networks of micro-

tubules. For a sufficiently dense network, one could imagine carrying out some form of

homogenization to obtain a continuum of microtubules. On the other hand, for a sparse

network, the discrete nature of microtubules has to be taken into account. Here we focus

on the continuum case; discrete microtubular networks will be considered in section 2.4.

For simplicity, we model a cell as a disk or a sphere and assume that the density of

microtubules is radially symmetric, that is, we ignore the curvature of microtubules.

We take the source of the motor-cargo complexes to be at the origin of the cell, and rep-

resent the dynamics of the motor densities by advection–diffusion equations transformed

into their polar (2D) and spherical (3D) representations. We will also assume that each

motor carries one cargo element and can deliver its cargo at any point within the given

domain. In other words, we assume that there is a continuum of target sites within the

cell.
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Figure 2.4. Plots showing loss of vesicular uniformity as v1 decreases in the case of a
Cayley tree (kinked curves) and a semi-infinite track (smooth dotted curves). Parameter
values are v0 = 0.1µs−1, D = 0.1µ2s−1, γ0,1 = 0.01s−1, k± = 0.01s−1, L = 10µm, z = 3,
J0 = J1. Vesicle density is normalized so that c(0) = 1.

2.3.1 The Disk

Let Ω2 ≡ R2 \ Bδ(0), where Bδ(0) is the disk of radius δ centered at the origin, with

0 < δ� 1. In polar coordinates,

Ω2 = {(r, θ)|r ≥ δ, 0 ≤ θ ≤ 2π}. (2.46)

We model the dynamics of the motor population by an advection–diffusion equation that

is a radially-symmetric 2D analog of the 1D model. As in the previous cases, we first

consider irreversible vesicle delivery and then reversible vesicle delivery.

Irreversible Delivery. Let u(r, t) and c(r, t) denote, respectively, the density of motors and

vesicles at a radial distance r from the origin at time t. The motor and vesicle densities are

taken to evolve according to the equations

∂u
∂t

= D
∂2u
∂r2 +

D− V
r

∂u
∂r
− ku, (2.47)

∂c
∂t

= ku− λc, (2.48)
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where D is the diffusion coefficient, v = V/r is a divergence-free motor velocity∗, and λ is

the degradation rate of vesicles. As in the 1D case, we model irreversible vesicle delivery

using an effective degradation term in equation (2.47). We pair equation (2.47) with the

boundary conditions

u(δ) = u0, lim
r→∞

u(r) = 0, (2.49)

where u0 > 0 denotes the density of motors on ∂Bδ(0). At steady state, we have the

equations

D
∂2u
∂r2 +

D− V
r

∂u
∂r
− ku = 0, (2.50)

c =
ku
λ

. (2.51)

The steady-state vesicle density profile is immediately given by a modified Bessel function

of the second kind:

c(r) =
ku0

λ

r
V

2D K V
2D

( r√
D/k

)

δ
V

2D K V
2D

( δ√
D/k

) . (2.52)

As in previous geometries, irreversible vesicular delivery results in a decaying steady-state

profile for vesicle density. In Figure 2.5, we compare the decay in the disk with the

decay on the semi-infinite track. We can see that towards the origin, the Bessel function

distributes vesicles more liberally than the exponential function but then rapidly decays

below the latter. We also show a plot of the corresponding decay in the case of a sphere

(see section 2.3.2), which is similar to the disk. Let us now look at the reversible vesicle

delivery case.

Reversible Delivery. To account for the possibility of re-uptake of vesicles by free motors, we

model the dynamics of both the free motor density, u0(r, t), and the cargo-carrying motor

density, u1(r, t). We thus have a pair of radially-symmetric advection–diffusion equations

coupled with switching terms that reflect vesicle delivery and uptake. Again, let c(r, t)

∗This is motivated by the idea that the density of microtubules decreases as r−1 in the 2D case (and
decreases as r−2 in the 3D case). When we consider a discrete distribution of microtubules, the effective
velocity will have a more complicated r-dependence
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Figure 2.5. Figure comparing irreversible vesicular profiles from equations (2.52) and
(2.4). Here x either represents 1D distance or a radial coordinate. Parameter values are
D = 0.1µ2s−1, V = 1µ2s−1, λ = k = 0.01s−1, δ = 0.1µm, and the flux J1 chosen
appropriately so as to match up to the left boundary data. Also shown is the corresponding
steady-state density for the sphere. Vesicle density is normalized so that c(0) = 1.

denote the vesicle density at a distance r from the origin at time t. The system of equations

is

∂u0

∂t
= D

∂2u0

∂r2 +
D
r

∂u0

∂r
− V0

r
∂u0

∂r
− γ0u0 − k+cu0 + k−u1, (2.53)

∂u1

∂t
= D

∂2u1

∂r2 +
D
r

∂u1

∂r
− V1

r
∂u1

∂r
− γ1u1 + k+cu0 − k−u1, (2.54)

∂c
∂t

= −k+cu0 + k−u1, (2.55)

where D is the motor diffusion coefficient, v0,1 = V0,1/r are divergence-free velocities of

the free and cargo-carrying motors, respectively, k± denote the rates of vesicle uptake and

delivery, respectively, and γ0,1 are motor degradation rates. We again point out that the

reversibility in vesicle delivery means that we do not need to include a degradation term

in equation (2.55). The corresponding system at steady state is

D
∂2u0

∂r2 +
D
r

∂u0

∂r
− V0

r
∂u0

∂r
− γ0u0 = 0, (2.56)

D
∂2u1

∂r2 +
D
r

∂u1

∂r
− V1

r
∂u1

∂r
− γ1u1 = 0, (2.57)

c =
k−u1

k+u0
, (2.58)
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The solution for ul(r, t), l = 0, 1, is

ul = u0
l

r
Vl
2D K Vl

2D

(√γl

D
r
)

δ
Vl
D K Vl

2D

(√γl

D
δ
) , (2.59)

where u0
l denotes the boundary data at the origin for ul . It immediately follows that

c =
k−
k+

u0
1

u0
0

( r
δ

) V1−V0
2D

K V0
2D

(√γ0

D
δ
)

K V1
2D

(√γ1

D
δ
)

K V1
2D

(√γ1

D
r
)

K V0
2D

(√γ0

D
r
) . (2.60)

Assume that motor degradation rates are equal, γ1 = γ0. It is clear that if V1 = V0,

then the vesicle distribution is uniform. If V1 < V0, then the spatial profile is a decaying

function of r; see Figure 2.6(a). The behavior here is consistent with what is seen along

the semi-infinite track, although in the latter case, the decay is exponential. As expected,

the rate of decay is mitigated by a reduction in the motor degradation rates as shown in

Figure 2.6(b).

2.3.2 The Sphere

Let Ω3 ≡ R3 \ Bδ(0), where Bδ(0) is the ball of radius δ centered at the origin, with

0 < δ� 1. In spherical coordinates, the domain is defined as

Ω3 = {(ρ, θ, φ)|ρ ≥ δ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}. (2.61)

As in the case of a disk, we consider a population of motors sourced at the origin switching

between diffusive and ballistic transport, depending on whether or not a given motor is

bound to a microtubule. The dynamics of the motor population is modeled by a radially-

symmetric 3D advection–diffusion equation analogous to the 1D model. Let u(ρ, t) denote

the density of motors located at a radial distance r from the origin at time t.

Irreversible Delivery. Let c(ρ, t) represent the density of vesicles at a distance of ρ from

the origin at time t. Then the dynamics of the motor and vesicle densities are given by

∂u
∂t

= D
∂2u
∂ρ2 +

(
2D
ρ
− V

ρ2

)
∂u
∂ρ
− ku, (2.62)

∂c
∂t

= ku− λc, (2.63)
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Figure 6: Figure showing loss of vesicular uniformity on the disk as V1 decreases. (a)
Plot of steady-state vesicle density for various V1 values and fixed motor degradation
rates γ0,1 = 0.01s−1. (b) Corresponding plots for various degradation rates and
V1 = 0.75µm2s−1. Other parameter values are V0 = 1µm2s−1, D = 0.1µm2s−1,
δ = 0.1µm, k± = 0.011s−1, γ0,1 = 0.10s−1, u0

0 = u0
1.

if V1 < V0, then the spatial profile is a decaying function of r, see Fig. 6(a). The
behavior here is consistent with what is seen along the semi-infinite track, although
in the latter case the decay is exponential. As expected the rate of decay is mitigated
by a reduction in the motor degradation rates as shown in Fig. 6(b).

4.2. The sphere

Let Ω3 ≡ R3 \ Bδ(0), where Bδ(0) is the ball of radius δ centered at the origin, with
0 < δ ≪ 1. In spherical coordinates, the domain is defined as

Ω3 = {(ρ, θ, φ)|ρ ≥ δ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}.
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Figure 2.6. Figure showing loss of vesicular uniformity as V1 decreases. (a) Plot of
steady-state vesicle density for various V1 values and fixed motor degradation rates
γ0,1 = 0.01s−1. (b) Corresponding plots for various degradation rates and V1 = 0.75µ2s−1.
Other parameter values are V0 = 1µm2s−1,D = 0.1µm2s−1, δ = 0.1µm, k± = 0.01s−1,
u0
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1.
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where D is the motor diffusion coefficient, V/ρ2 is a divergence-free motor velocity, and λ

is the vesicular degradation rate. As in the previous analysis, vesicular degradation must

be accounted for in the irreversible delivery case to ensure vesicle profiles do not blow

up. It is not necessary in the reversible case. We pair equation (2.62) with the boundary

conditions

u(δ) = u0, lim
ρ→∞

u(ρ) = 0, (2.64)

where u0 > 0 is the density of motors on ∂B. At steady state, we have the system

D
∂2u
∂ρ2 +

(
2D
ρ
− V

ρ2

)
∂u
∂ρ
− ku = 0, (2.65)

c =
ku
λ

. (2.66)

As the steady-state equations are difficult to solve analytically, we solve them numerically.

In Figure 2.5, we compare the decay of the steady-state vesicle density in 3D with the 1D

and 2D domains. We find that the 3D steady-state profile behaves similarly to the 2D case.

Reversible Delivery. In the reversible delivery case, we keep track of the free motor densities,

u0(ρ, t) and the cargo-carrying motor densities, u1(ρ, t). We model the motor dynamics

with advection diffusion equations coupled with switching terms to reflect delivery and

uptake of vesicles to and from target sites. Let c(ρ, t) denote the vesicle density at a distance

ρ from the origin at time t. The system capturing the dynamics is

∂u0

∂t
=

D
ρ2

∂

∂ρ

(
ρ2 ∂u0

∂ρ

)
− V0

ρ

∂u0

∂ρ
− γ0u0 − k+cu0 + k−u1, (2.67)

∂u1

∂t
=

D
ρ2

∂

∂ρ

(
ρ2 ∂u1

∂ρ

)
− V1

ρ

∂u1

∂ρ
− γ1u1 + k+cu0 − k−u1, (2.68)

∂c
∂t

= k−u1 − k+cu0, (2.69)

where the various parameters are as in previous examples.. At steady state, we have the

system,

D
∂2u0

∂ρ2 +

(
2D
ρ
− V0

ρ2

)
∂u0

∂ρ
− γ0u0 = 0, (2.70)

D
∂2u1

∂ρ2 +

(
2D
ρ
− V1

ρ2

)
∂u1

∂ρ
− γ1u1 = 0, (2.71)

c =
k−u1

k+u0
. (2.72)
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Again, we obtain the steady-state profiles numerically. Clearly, if V1 = V0, we have a

uniform distribution of vesicles. When V1 < V0, we again have similar behavior to the 2D

profiles; see Figure 2.7. An explicit comparison of the distributions in the 1D, 2D, and 3D

cases is shown in Figure 2.8.

2.4 Discrete Microtubule Distributions
The models in section 2.3 were phenomenologically based, under the assumption that

we could treat a cytoskeletal network as a continuum, and model the effective motor trans-

port as a radially-symmetric advection–diffusion equation. It is possible to extend the adi-

abatic analysis of section 1.2.1 in order to derive a higher-dimensional advection–diffusion

equation from a more realistic stochastic model of 2D or 3D motor transport, in which indi-

vidual motors switch between ballistic motion when bound to a microtubule and diffusive

motion when unbound [19]. In general, the resulting advection–diffusion equation will

be anisotropic, with an associated diffusion tensor that depends on the configuration of

microtubules. Here we will consider a different regime in which the cytoskeletal network

is sparse so that we have a discrete network. In order to simplify our analysis, we will

assume that the microtubules project radially from the center of the disk or sphere. We can

then derive an effective advection–diffusion equation for motor transport by following

recent analysis of virus trafficking in cells [69, 72].

2.4.1 The Disk

Consider a finite set of N identical, evenly spaced microtubules radiating from the

center of the disk [69, 72]. That is, Ω2 is partitioned into N equal slices, each of angular

width Υ ≡ 2π/N (see Figure 2.9), whose boundaries correspond to microtubules. Fol-

lowing Lawley et al. [72], we will derive an effective advection–diffusion equation for

motor transport by considering the dynamics of a single molecular motor moving within a

single slice U2 ≡ [δ, ∞)× [0, Υ] ⊂ Ω2 - restriction to a single slice is allowed because of the

symmetric partitioning and the fact that we are only interested in the radial distribution of

motors.

Therefore, consider a single motor-cargo complex originating on ∂Bδ and undergoing

Brownian motion in the interior of U2 until it reaches a microtubule, whence it binds
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Figure 7: Figure depicting loss of uniform vesicle distribution on the sphere when V1

decreases. (a) Steady state distributions of vesicles in 3D sphere for various V1 values
and fixed motor degradation rates γ0,1 = 0.01s−1. (b) Corresponding plots for various
degradation rates and V1 = 0.75µm3s−1. Other parameter values are as in Fig. 6.

D
∂2u1

∂ρ2
+

(
2D

ρ
− V1

ρ2

)
∂u1

∂ρ
− γ1u1 = 0

c =
k−u1

k+u0
.

Again, we obtain the steady state profiles numerically. Clearly, if V1 = V0, we have
a uniform distribution of vesicles. When V1 < V0, we again have similar behavior to
the 2D profiles, see Fig. 7. An explicit comparison of the distributions the 1D, 2D
and 3D cases is shown in Fig. 8.
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Figure 2.7. Figure depicting loss of uniform vesicle distribution on the sphere when V1
decreases. (a) Steady-state distributions of vesicles in 3D sphere for various V1 values
and fixed motor degradation rates γ0,1 = 0.01s−1. (b) Corresponding plots for various
degradation rates and V1 = 0.75µm3s−1. Other parameter values are as in Figure 2.6.
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Figure 8: Comparison of profiles in 1D (dotted), 2D (dashed), and 3D (solid) domains
for v1 = 0.075µms−1, V1 = 0.75µm2s−1 for the disk and V1 = 0.75µm3s−1 for the
sphere. Other parameter values are as in Figs. 1 and 6.

5. Discrete Microtubule Distributions

The models in section 4 were phenomenologically-based, under the assumption that
we could treat a cytoskeletal network as a continuum, and model the effective motor
transport as a radially symmetric advection-diffusion equation. It is possible to derive
a higher-dimensional advection-diffusion equation from a more realistic stochastic
model of 2D or 3D motor transport, in which individual motors switch between
ballistic motion when bound to a microtubule and diffusive motion when unbound
[3]. In general, the resulting advection-diffusion equation will be anisotropic, with an
associated diffusion tensor that depends on the configuration of microtubules. Here
we will consider a different regime in which the cytoskeletal network is sparse so that
we have a discrete network. In order to simplify our analysis, we will assume that
the microtubules project radially from the center of the disk or sphere. We can then
derive an effective advection-diffusion equation for motor transport by following recent
analysis of virus trafficking in cells [12, 18].

5.1. The disk

Consider a finite set of N identical, evenly spaced microtubules radiating from the
center of the disk [12, 18]. That is, Ω2 is partitioned into N equal slices, each of
angular width Υ ≡ 2π/N (see Fig. 9), whose boundaries correspond to microtubules.
Following Lawley et al. [18], we will derive an effective advection-diffusion equation
for motor transport by considering the dynamics of a single molecular motor moving
within a single slice U2 ≡ [δ, ∞) × [0, Υ] ⊂ Ω2 - restriction to a single slice is allowed
because of the symmetric partitioning and the fact that we are only interested in the
radial distribution of motors.

Therefore, consider a single motor-cargo complex originating on ∂Bδ and
undergoing Brownian motion in the interior of U2 until it reaches a microtubule,
whence it binds to the microtubule and moves ballistically away from the origin
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Figure 2.8. Comparison of profiles in 1D (dotted), 2D (dashed), and 3D (solid) domains
for v1 = 0.075µms−1, V1 = 0.75µm2s−1 for the disk and V1 = 0.75µm3s−1 for the sphere.
Other parameter values are as in Figure 2.1 and Figure 2.6

to the microtubule and moves ballistically away from the origin for some exponentially

distributed amount of time. At this point, the motor-cargo complex is reinserted into the

slice at the current radius for some randomly selected angle between 0 and Υ. If X(t)

represents the motor’s radial distance from the origin and θ(t) represents some angle

between [0, Υ], the motor’s motion is described by the following system of SDEs [69, 72]:

dX =

{
Vdt, θ = 0, Υ,
(D/X)dt +

√
2DdWX, θ ∈ (0, Υ),

dθ =

{
0, θ = 0, Υ,
(
√

2D/X)dWθ , θ ∈ (0, Υ),
(2.73)

where WX, Wθ are standard independent Wiener processes, V is the motor velocity, and

D is the motor diffusion coefficient. Note that one major difference from models of virus

trafficking is that we are interested in the outward transport of motors from a source at

the origin, whereas viruses enter the cell at some finite distance R from the cell center and

move inwards in order to find the cell nucleus. In reference [72], Lawley et al. use a coarse

graining method to derive a single effective SDE describing the overall radial motion of

a particle evolving according to equations (2.73). They assume there is a continuous-time

jump Markov process underlying the particle’s switching between diffusive and ballistic

dynamics, and that the dynamics of the Markov process are very fast relative to all other
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Figure 2.9. Partitioning of domain Ω2 for N = 5.

processes. Invoking an adiabatic approximation, they derive the following coarse-grained

effective SDE approximation to equations (2.73):

dX =
(D

X
T(X)

µ + T(X)
+ V

µ

µ + T(X)

)
dt +

√
2D

T(X)

µ + T(X)
dW, (2.74)

where W(t) is a standard Wiener process, µ is the mean for the exponential distribution

dictating the amount of time a particle spends in the ballistic phase, and T(X) is the mean

first passage time (MFPT) for a particle in the cytoplasm to reach a microtubule,

T(X) =
Υ2X2

12D
. (2.75)

Let p(r, t) represent the probability that a particle evolving according to equation (2.74) is

at a distance r from the origin at time t. The corresponding Fokker–Planck equation is

∂p
∂t

= − ∂

∂r

([D
r

T(r)
µ + T(r)

+ V
µ

µ + T(r)

]
p
)
+

∂2

∂r2

(
D

T(r)
µ + T(r)

p
)

. (2.76)

Now suppose that there are N independent motors evolving according to the SDE (2.74).

Let u(r, t) denote the density of motors at time t located a radial distance of r from the

origin. We have the following relationship between p(r, t) and u(r, t):

p(r, t) =
2π

N ru(r, t), (2.77)

where

N = 2π
∫ ∞

δ
ru(r, t)dr. (2.78)
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We are assuming that u decays sufficiently fast at infinity. Substituting equation (2.77) into

(2.76) yields the following PDE for motor density dynamics:

∂u
∂t

= −1
r

∂

∂r

([
D

T(r)
µ + T(r)

+ Vr
µ

µ + T(r)

]
u
)
+

1
r

∂2

∂r2

(
D

T(r)
µ + T(r)

ru
)

. (2.79)

Using equation (2.79) as a starting point, we now investigate reversible vesicle delivery for

the discrete microtubule set case.

Consider the dynamics of free motors with density u0(r, t) and cargo-carrying motors

with density u1(r, t). Each evolves according to an equation of the form (2.79), coupled

with switching terms that reflect vesicle delivery and uptake. Again, let c(r, t) denote the

vesicle density at a distance r from the origin at time t. The system of equations is then

∂u0

∂t
= −1

r
∂

∂r

([
D

T(r)
µ + T(r)

+ V0r
µ

µ + T(r)

]
u0

)
+

1
r

∂2

∂r2

(
D

T(r)
µ + T(r)

ru0

)

− k+cu0 + k−u1, (2.80)
∂u1

∂t
= −1

r
∂

∂r

([
D

T(r)
µ + T(r)

+ V1r
µ

µ + T(r)

]
u1

)
+

1
r

∂2

∂r2

(
D

T(r)
µ + T(r)

ru1

)

+ k+cu0 − k−u1, (2.81)
∂c
∂t

= k−u1 − k+cu0, (2.82)

with D, V0,1, k± defined as in previous cases. One important difference is that we no longer

include motor degradation terms, since these would lead to a breakdown of the analysis

of Lawley et al. [72]. Again we find that a uniform steady-state distribution of vesicles

occurs when V0 = V1, but there is a loss in uniformity when V1 < V0. This is illustrated in

Figure 2.10(a) where we show numerical plots of the steady-state solutions.

2.4.2 The Sphere

Let Ω3 be defined as in section 2.3.2, but now we let the set of microtubules emanating

from the origin be discrete rather than a continuum; see Figure 2.11. Hence, we have a

natural partition for Ω3 = ω1 ∪ ω2. We define ω1 in the following way. Let N be the

number of microtubules emanating out from the small sphere of radius δ enveloping the

origin. These can be modeled as infinite cylinders each of radius ε. Let ci for i = 1...N

denote a randomly selected fixed position on the δ-sphere. Then each microtubuleMi is

defined as follows:

Mi ≡
{

x ∈ Ω3

∣∣∣||x− ρci|| ≤ ε, ρ ∈ [δ, ∞)
}

. (2.83)
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Figure 10: Figure showing the loss of vesicle uniformity for V1 < V0 = 1 and discrete
distribution of microtubules. (a) The disk with N = 12 microtubules. (b) The sphere
with N = 1000 microtubules. Other parameter values are D = 0.1µm2s−1, δ = 0.1µm,
k± = 0.01s−1, u0

0 = u0
1.

number of microtubules emanating out from the small sphere of radius δ enveloping the
origin. These can be modeled as infinite cylinders each of radius ε. Let ci for i = 1...N
denote a randomly selected fixed position on the δ-sphere. Then each microtubule Mi

is defined as follows:

Mi ≡
{
x ∈ Ω3

∣∣∣||x − ρci|| ≤ ε, ρ ∈ [δ, ∞)
}

.

We take ω1 = ∪N
i=1Mi and ω2 = Ω3 \ ω1. To model the dynamics of motor-cargo

complexes in this domain, we must derive PDEs from the SDEs describing the motion
of a single particle in this domain. We assume a single particle’s motion is characterized
by standard Brownian motion in ω2 until it reaches a microtubule, when it undergoes
ballistic motion with fixed velocity V away from the origin for some exponentially
distributed time. The particle is then released at a random position in Ω3 with radius
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Figure 2.10. Figure showing the loss of vesicle uniformity for V1 < V0 = 1 and discrete
distribution of microtubules. (a) The disk with N = 12 microtubules. (b) The sphere
with N = 1000 microtubules. Other parameter values are D = 0.1µm2s−1, δ = 0.1µm,
k± = 0.01s−1, u0

0 = u0
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equal to how far it reached with ballistic motion. Lawley et al provide the following
SDE as a coarse-grain approximation to a particle moving through Ω3 as described
above:

dX =
(2D

X

T (X)

µ + T (X)
+ V

µ

µ + T (X)

)
dt +

√
2D

T (X)

µ + T (X)
dW, (5.8)

where X(t) is the distance of a particle from the origin, D is the diffusion coefficient,
V is the particle velocity, W (t) is a Wiener process, µ is the mean for the exponential
density for the amount of time a particle spends on a microtubule, and T (X) is
the MFPT for a particle beginning at position X to reach a microtubule. Coombs,
Straube, and Ward provide the following asymptotic approximation for T (X) in the
small ε limit:

T (X) =
X2

D

[
− 2

N
ln

( ε

X

)
+ ln 4 − 1 − 4

N2
Ψ

]

with

Ψ =

N∑

k=1

N∑

j=k+1

ln ||ck − cj ||

δ

Figure 11: Sketch of Ω3 showing N = 6 microtubules radiating from center.

Let p(ρ, t) represent the probability that a particle is at position ρ at time t. The
Fokker-Planck equation associated with equation (5.8) is

∂p

∂t
= − ∂

∂ρ

[(2D

ρ

T (ρ)

µ + T (ρ)
+ V

µ

µ + T (ρ)

)
p
]

+ D
∂2

∂ρ2

( T (ρ)

µ + T (ρ)
p
)

(5.9)

Now suppose that there are NS independent motors evolving according to equation
(5.8). If u(ρ, t) denotes motor density at a distance ρ from the origin at time t, we
have the following relation between p(ρ, t) and u(ρ, t)

p(ρ, t) =
4π

NS
ρ2u(ρ, t) (5.10)

where

NS = 4π

∫ ∞

δ

ρ2u(ρ, t)dρ
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Figure 2.11. Sketch of Ω3 with N = 6.

We take ω1 = ∪N
i=1Mi and ω2 = Ω3 \ ω1. To model the dynamics of motor-cargo com-

plexes in this domain, we must derive PDEs from the SDEs describing the motion of a

single particle in this domain. We assume a single particle’s motion is characterized by

standard Brownian motion in ω2 until it reaches a microtubule, when it undergoes ballistic

motion with fixed velocity V away from the origin for some exponentially distributed time.

The particle is then released at a random position in Ω3 with radius equal to how far it

reached with ballistic motion. Lawley et al. provide the following SDE as a coarse-grain

approximation to a particle moving through Ω3 as described above:

dX =
(2D

X
T(X)

µ + T(X)
+ V

µ

µ + T(X)

)
dt +

√
2D

T(X)

µ + T(X)
dW, (2.84)

where X(t) is the distance of a particle from the origin, D is the diffusion coefficient, V is

the particle velocity, W(t) is a Wiener process, µ is the mean for the exponential density for

the amount of time a particle spends on a microtubule, and T(X) is the MFPT for a particle

beginning at position X to reach a microtubule. Coombs, Straube, and Ward provide the

following asymptotic approximation for T(X) in the small ε limit:

T(X) =
X2

D

[
− 2

N
ln
( ε

X

)
+ ln 4− 1− 4

N2 Ψ
]
, (2.85)

with

Ψ =
N

∑
k=1

N

∑
j=k+1

ln ||ck − cj||. (2.86)
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Let p(ρ, t) represent the probability that a particle is at position ρ at time t. The Fokker

–Planck equation associated with equation (2.84) is

∂p
∂t

= − ∂

∂ρ

[(2D
ρ

T(ρ)
µ + T(ρ)

+ V
µ

µ + T(ρ)

)
p
]
+ D

∂2

∂ρ2

( T(ρ)
µ + T(ρ)

p
)

. (2.87)

Now suppose that there areNS independent motors evolving according to equation (2.84).

If u(ρ, t) denotes motor density at a distance ρ from the origin at time t, we have the

following relation between p(ρ, t) and u(ρ, t)

p(ρ, t) =
4π

NS
ρ2u(ρ, t), (2.88)

where

NS = 4π
∫ ∞

δ
ρ2u(ρ, t)dρ. (2.89)

Substituting equation (2.88) into (2.87) gives

∂u
∂t

= − 1
ρ2

∂

∂ρ

[(
2Dρ

T(ρ)
µ + T(ρ)

+ Vρ2 µ

µ + T(ρ)

)
u
]
+

D
ρ2

∂2

∂ρ2

( T(ρ)
µ + T(ρ)

ρ2u
)

. (2.90)

Equation (2.90) is the PDE describing the dynamics of motor density in Ω3. We now use it

as the governing PDE to investigate reversible vesicular delivery in a sphere.

Consider the dynamics of free motors with density u0(r, t) and cargo-carrying motors

with density u1(r, t). Each evolves according to an equation of the form (2.79), coupled

with switching terms that reflect vesicle delivery and uptake. Again, let c(r, t) denote the

vesicle density at a distance r from the origin at time t. The system of equations is then

∂u0

∂t
= − 1

ρ2
∂

∂ρ

[(
2Dρ

T(ρ)
µ + T(ρ)

+ V0ρ2 µ

µ + T(ρ)

)
u0

]
+

D
ρ2

∂2

∂ρ2

( T(ρ)
µ + T(ρ)

ρ2u0

)

− k−cu0 + k+u1, (2.91)
∂u1

∂t
= − 1

ρ2
∂

∂ρ

[(
2Dρ

T(ρ)
µ + T(ρ)

+ V1ρ2 µ

µ + T(ρ)

)
u1

]
+

D
ρ2

∂2

∂ρ2

( T(ρ)
µ + T(ρ)

ρ2u1

)

+ k−cu0 − k+u1, (2.92)
∂c
∂t

= k+u1 − k−cu0. (2.93)

Again we find that a uniform steady-state distribution of vesicles occurs when V0 = V1,

but there is a loss in uniformity when V1 < V0. This is illustrated in Figure 2.10(b) where

we show numerical plots of the steady-state solutions.
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2.5 Discussion
In this chapter, we investigated a possible biophysical mechanism for facilitating a

more uniform distribution of vesicles to targets dispersed throughout cells of various

geometries. In particular, we generalized the results found in [17] by examining the impact

of allowing for reversibility in vesicular delivery to target sites on a Cayley tree, a disk, and

a sphere. On the disk and sphere, we considered both a continuous distribution of micro-

tubules and a discrete set. In the latter case, we derived an effective advection–diffusion

equation for motor transport based on SDEs for single motor motion, following along sim-

ilar lines to reference [72]. In all cases, we found that uniformity in the steady-state vesicle

distribution is attainable if vesicle delivery is reversible, and the velocity of cargo-carrying

motors is not significantly less than that of free motors. We also characterized the loss of

uniformity when there was a mismatch between the velocities of free and cargo-bound

motors.

There are a number of possible extensions of this work (beyond taking into account

exclusion effects as detailed in Chapter 3). For example, we assumed each motor carried

only one cargo element. It would be interesting to relax this condition and allow each

motor to carry a collection of cargo elements that can be delivered to target sites. This

problem was previously investigated for a 1D track using aggregation theory and a mod-

ified version of the Becker–Doring equations in [13]. A related problem is developing

a more detailed model of bidirectional motor transport. This is particularly important

in determining how the effective speed of a motor-cargo complex depends on the cargo

load, for in order to a achieve a more uniform distribution of resources using the proposed

mechanism, it is necessary that the speed be weakly dependent on cargo load. In the case

of large vesicles, this would require that transport involves cooperation between multiple

molecular motors, rather than a single motor. There is considerable debate in the literature

regarding the most likely mechanism for cooperative bidirectional transport [42, 68, 87]:

(a) an asymmetric tug-of war model involving the joint action of multiple kinesin and

dynein motors pulling in opposite directions; (b) a symmetric tug-of-war model where

all the motors are of the same type, but they are distributed on microtubules of opposite

polarity; (c) a hopping model, in which the whole motor-cargo complex hops between

microtubules of opposite polarity; (d) some form of coordination complex that controls
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the switching between different motor species. Yet another related issue is developing a

more detailed model of the exchange of vesicular cargo between motors and targets. In

this chapter, we simply took the exchange to be given by first-order kinetics, and assumed

that there was a uniform distribution of targets throughout the cell. The latter is likely to

be a particularly crude approximation in the case of higher-dimensional cell geometries.

For example, in the case of discrete microtubular networks, one might expect targets to be

located within some local neighborhood of the microtubules.

A natural extension of the analysis on a tree would be to take successive generations

of the tree to have different properties, reflecting the fact that in axons (and dendrites)

the branches tend to taper off (become thinner). Another interesting problem is how

one would extend the analysis of Lawley et al. [72] to more general configurations of

microtubules. One of the essential steps in their analysis is the adiabatic approximation

that during the time between binding and unbinding to a microtubule, the relative change

in radial position is small. This has several implications for our own analysis. First,

the adiabatic approximation breaks down at sufficiently large radii, as can be seen from

the formula for the MFPT in equation (2.75), that is, T(X) ∼ X2. Thus, a more careful

analysis would need to restrict the dynamics to a bounded domain and take the number

of microtubules to be sufficiently large. The adiabatic requirement also meant that we had

to neglect the degradation of motor-cargo complexes. Again, it would be interesting to

extend the analysis of reference [72] to allow for the possibility that motors disappear so

that one has to determine a conditional MFPT.



CHAPTER 3

VESICLE DELIVERY WITH EXCLUSION

In Chapter 2, we investigated the impact reversibility in vesicular delivery to target

sites had on vesicular distribution throughout a cell’s body. In particular, we showed that

allowing for reversibility in vesicular delivery to target sites allows for uniform vesicular

distribution provided the cargo-carrying motor’s velocity is not significantly hampered by

the load of the cargo. However, one inherent assumption in all the models discussed in

Chapter 2 was that there was no interaction between individual motor-cargo complexes.

In particular, one inherent assumption was that two motor-cargo complexes could occupy

the same location at the same time.

In this chapter, we generalize the results of reference [17] by considering the effects of

exclusion between particles on the steady-state distribution of synaptic vesicles. As in [17],

we compare the effects of reversible and irreversible vesicular delivery on this distribution.

We treat the axon as a one-dimensional lattice and model the motion of vesicle-bound

particles with ordinary differential equations for the expected occupation number at each

lattice site. We also assume that each lattice site has a corresponding synapse to which the

particle occupying the site can deliver its cargo. In the irreversible case, we use a mean

field approximation to recast the original model as a nonlinear partial differential equation

reminiscent of the hydrodynamic equations that appear in models of totally asymmetric

exclusion processes (TASEP). We find that exclusion effects exacerbate the preferential

delivery to proximal synapses when compared to the results of no exclusion obtained in

reference [17]. For the reversible delivery case, we allow particles to randomly switch

between a motile and stationary state. In contrast to the irreversible case, we also keep

track of the motion of particles that are not carrying any vesicles. Hence, the resulting

exclusion process has four internal states. The mean field approximation again allows

for TASEP-like hydrodynamic equations which, under an adiabatic approximation, can be
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solved exactly. We find that reversibility in cargo delivery allows for a more homogeneous

distribution of vesicles, provided that the presence of a vesicle bound to a motor-cargo

complex does not significantly change its speed (hopping rate).

TASEP models have been studied extensively by the nonequilibrium statistical physics

[6, 8, 22, 28–30, 85, 91, 100, 101] and probability communities [9, 52, 107], and numerous of

its applications have been explored. In particular, one can completely describe the time

evolution of a system undergoing a TASEP in terms of a chemical master equation and

write down differential equations for the expectation of the occupation number for each

site in the lattice domain. From these descriptions, mean field approximations and con-

tinuum limits can be taken to recast the stochastic dynamics of the TASEP as a nonlinear

partial differential equation, which can then be analyzed to obtain information about the

steady-state properties [8, 18, 22]. Phase diagrams can then be constructed to describe

steady-state behavior in distinct parameter regimes. It is natural to ask: how close to

the true dynamics of the TASEP are the dynamics of the approximations? Remarkably, the

TASEP is a stochastic process that can be solved exactly using a matrix-product ansatz.

Comparison of solutions of the approximate problem to the solutions of the true problem

shows good agreement. Hence, it is a convenient framework for analyzing several physical

problems. For example, the TASEP is a good representation of traffic flow [4, 31, 128]

and the growth of random polymers [2]; partial differential equations have thus been

derived that describe these processes. Conversely, we now understand the existence of

the chemical master equation underlying several physical problems with local density-

dependent velocities [105]. The TASEP is growing in prominence in the theoretical biology

community as well [22] and therefore has a natural place in its application to our work.

The structure of the chapter is as follows. In section 3.1, we introduce our single-state

model of irreversible vesicular transport with exclusion, and show how it maps on to a

TASEP. We then turn to the four-state model of reversible vesicular transport with ex-

clusion (section 3.2). Finally, in section 3.3, we briefly relate our model to other models

that investigate driven exclusion processes, where internal states are assigned to particles

occupying each lattice site, for example [100, 101]. However, it should be noted that in

contrast to these other studies, we are not concerned with constructing phase diagrams

as a function of model parameters such as the inward and outward fluxes. Rather, we
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are interested in the particular question of how exclusion effects alter the steady-state

distribution of synaptic vesicles.

3.1 Irreversible Vesicular Transport with Exclusion
Consider a motor-cargo complex hopping unidirectionally along a one-dimensional

track; see Figure 3.1. We represent the track as a lattice of N sites, labeled i = 1, . . . , N, with

lattice spacing ε = L/N, where L is the length of the track. For simplicity, we assume that

each particle can only carry a single cluster of vesicles, and that we ignore partial delivery

of a cluster, that is, it is “all-or-none.” In the following, we represent a vesicular cluster

by a single vesicle. Each site is either vacant or occupied by a vesicle-bound particle, and

the particle can hop to the right if and only if the adjacent site is vacant (hard exclusion).

At each site, a particle can irreversibly deliver its vesicle(s) to a synaptic target at a rate

K and the corresponding site becomes vacant. In other words, we assume that a motor-

cargo complex without vesicles does not obstruct the movement of other particles. (This

simplification will be removed in our full model; see section 3.2). We specify the state of the

site i in terms of the occupation number ni ∈ {0, 1}with ni = 1 if the i-th site is occupied by

a vesicle-bound motor-cargo complex and zero otherwise. The hopping rate of a particle

is taken to be h. We assume that particles are injected on the left-hand boundary at a rate

α, and exit the right-hand boundary at a rate β with 0 < α, β < h. Finally, we assume that

each lattice site i 6= 1, N has an associated synaptic target with ci vesicles (taken to be large

so that ci is treated as a continuous variable).

Within the context of intracellular motor transport, one typically interprets the particle

as a single molecular motor and the track as a single microtubular filament, with the

fundamental length-scale (lattice spacing) given by a single step of a motor, which is

around 10 nm [22]. Here, however, we are interested in the transport of motor-cargo

complexes along axons, and the delivery of vesicular cargo to synaptic targets. This means

that we are looking at processes occurring on significantly longer length-scales. First, we

take a single particle to be a macromolecular complex consisting of multiple motors bound

to a cargo. Such a complex could have a size of around 0.1− 1µm, which is comparable

to the size of a synaptic target. Therefore, for concreteness, we take the lattice spacing to

be ε = 1µm. Second, the 1D track is now identified with an axon of length L that could
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Figure 3.1. Dynamical rules for irreversible vesicular transport: hopping, irreversible
exchange of vesicles with synaptic targets, and entry/exit rates.

extend for several mm. (For simplicity, we assume that the transfer of motors from one MT

to the next along an axon is smooth.) It is important to note that one major simplification

of our discrete hopping model is that we are replacing a single continuous run of the

motor-cargo complex by a single hop over a distance of ε. We are also assuming that the

particle stops at regularly spaced synaptic sites. A more complex, hetereogeneous model

would distinguish between the size of the complex, the spacing of synaptic targets, and

the fundamental lattice spacing.

We are interested in determining macroscopic properties of the above exclusion pro-

cess, in particular, the steady-state density profiles (average occupancies of each lattice site)

and the distribution of synaptic vesicles. The density of motor-cargo complexes is denoted

by 〈ni〉. Here the angular brackets denote the average with respect to all histories of the

stochastic dynamics, which can be interpreted as an ensemble average over a large set of

trials starting from the same initial conditions. Away from the boundaries, the dynamics

is described by the following system of equations for 1 < i < N:

d〈ni〉
dt

= 〈ni−1(1− ni)〉 − 〈ni(1− ni+1)〉 − K〈ni〉. (3.1)

At the boundaries, we have

d〈n1〉
dt

= −〈n1(1− n2)〉+ α〈1− n1〉, (3.2)

d〈nN〉
dt

= 〈nN−1(1− nN)〉 − β〈nN〉. (3.3)

Note that we have fixed the unit of time so that the hopping rate h = 1. The number

of vesicles at the i-th synaptic target is taken to evolve according to the simple first-order
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kinetic scheme
dci

dt
= K〈ni〉 − γci, (3.4)

where γ is a vesicular degradation rate. (As highlighted in section 2.1.1, if we were to

neglect degradation of synaptic vesicles, then we would have to impose a maximum ca-

pacity of synaptic targets, otherwise ci could become unbounded. This is not an issue

for reversible vesicular transport.) Note that if K = 0 (no delivery of vesicles to synaptic

targets), then equation (3.1) reduces to the standard totally asymmetric exclusion process

(TASEP) [8, 28–30, 66]. On the other hand, if K > 0, then it is equivalent to a limiting case

of TASEP with langmuir kinetics [32, 91], in which the motor binding rate is zero

We will analyze the above model by using the hydrodynamic approach of Parmeggiani

et al. [32, 91]. As is well known, equation (3.1) constitutes a nontrivial many-body problem,

since in order to calculate the time evolution of 〈ni〉, it is necessary to know the two-point

correlations 〈ni−1ni〉. The latter obey dynamical equations involving three–point and four-

point correlations. Thus, there is an infinite hierarchy of equations of motion. However,

progress can be made by using a mean-field approximation and a continuum limit in order

to derive a partial differential equation (PDE) for the densities. The mean–field approxi-

mation consists of replacing two-point correlations by products of single–site averages:

〈ninj〉 = 〈ni〉〈nj〉. (3.5)

Next we set x = kε and ρ(x, t) = 〈nk(t)〉. The continuum limit is then defined according to

N → ∞ and ε → 0 such that the length of the track L = Nε is fixed. (We fix length scales

by setting L = 1.) Taylor expanding ρ(x± ε, t) in powers of ε,

ρ(x± ε, t) = ρ(x)± ε∂xρ(x, t) +
1
2

ε2∂xxρ(x, t) + O(ε3), (3.6)

then gives to leading order in ε the following nonlinear PDE:

∂ρ

∂t
= −ε

∂J(x, t)
∂x

− Kρ(x, t), (3.7)

where

J(x, t) = ρ(x, t)(1− ρ(x, t))− ε

2
∂ρ(x, t)

∂x
, (3.8)

and the boundary conditions are

J(0, t) = α(1− ρ(0, t)), J(1, t) = βρ(1, t). (3.9)



49

Finally, the continuum limit of equation (3.4) is

∂c(x, t)
∂t

= Kρ(x, t)− γc(x, t). (3.10)

3.1.1 Steady-state Analysis

We wish to calculate the steady-state distribution of synaptic vesicles, which is given

by

c(x) =
Kρ(x)

γ
, (3.11)

with ρ(x) the solution of the steady-state equation

(1− 2ρ)∂xρ− ε

2
∂xxρ = −Kρ

ε
. (3.12)

Following Parmeggiani et al. [91], we drop the O(ε) diffusion term and write the first-order

ordinary differential equation (ODE) in the form

∂x[2ρ(x)− ln ρ(x)] =
K
ε

. (3.13)

The resulting boundary value problem is overdetermined as one still has to satisfy the

boundary conditions at x = 0, 1:

ρ(0) = α, ρ(1)(1− ρ(1)) = βρ(1). (3.14)

Note that the second boundary condition is satisfied if ρ(1) = 1 − β or ρ(1) = 0. The

standard procedure is to separately solve the ODE in the two domains [0, x) and (x, 1], im-

posing the left and right boundary conditions, respectively. The two solutions are matched

in an O(ε) neighborhood of some point x0 using a boundary layer. (Within the boundary

layer, the density changes rapidly and one can no longer ignore the diffusion term.) This

matching also determines the location of x0. In our particular system, the physically

relevant solutions decay (faster than) exponentially from the left-hand boundary x = 0

with some correlation length ξ (see below). Since ξ � L, it follows that we can effectively

treat the domain as semi-infinite with ρ(x) → 0 as x → ∞. In particular, the solution is

independent of β.
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Integrating equation (3.13) in the two domains yields the left-end (l) and right-end (r)

solutions

ρ(x)e−2ρ(x) = Yl,r(x), (3.15)

with

Yl(x) = ρ(0)e−Kx/ε−2ρ(0), Yr(x) = ρ(1)e−K(x−1)/ε−2ρ(1). (3.16)

As noted in reference [91], equation (3.15) has an explicit solution expressed in terms of the

so-called Lambert W function, 2ρ(x) = −W(−Y(x)) with Y(x) = 2Yl,r(x). The Lambert

W function [24] is a multivalued function with two real branches as shown in Figure 3.2.

Since ρ(x) ∈ [0, 1], it follows that

ρ(x) =





−1
2

W0(−Y(x)), ρ ∈ [0, 0.5],

−1
2

W−1(−Y(x)), ρ ∈ [0.5, 1].

(3.17)

In contrast to reference [91], we do not assume that the degradation rate K is O(ε) since this

would yield unrealistically slow delivery rates (see below). This means that the left-end

function Yl(x) decays over a length-scale ξ (in physical units) such that ξ ∼ hL/(KN).

If we take the effective length of the axon to be 10 mm, the lattice spacing to be 1 µm,

and the hopping rate to be 0.1− 1s−1 (based on speeds of motor-cargo complexes [48]),

then ξ ∼ K−1µm with K measured in s−1. Thus, in order to have correlation lengths

comparable to axonal lengths of several mm, we would require delivery rates on the order

of k ∼ 10−4 − 10−5 s−1, whereas measured rates tend to be of the order of a few inverse

minutes [45, 74]. Therefore, in contrast to [91], ξ � L. Hence, Yl(x) ≈ 0 when ξ � x < L.

Similarly, the right-end function Yr(x) grows exponentially over a distance ξ from x = 1. It

is clear that the only physically relevant solution when α < 1/2 is ρ(x) = −W0(−2Yl(x))/2

with ρ(0) = α and ρ(1) = 0. (Since W0(−Y) is a monotonically decreasing function of

|Y| with W0(−Y) → 0 as Y → 0, it follows that the density ρ(x) also decays over the

length-scale within the bulk of the domain.) If α > 1/2, then the left-end solution ρ(x) =

−W1(−2Yl(x))/2 cannot match the right-hand boundary condition, since W−1(−2Yl) →
∞ as Yl → 0. Hence, there exists a boundary layer on the left-hand side that matches

ρ(0) = α > 1/2 with a bulk solution of the form ρ(x) = −W0(−2Ŷl(x))/2. Here Ŷl(x) =

Ae−Kx/ε, with the constant A determined by matching the solutions in the boundary layer.
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Figure 3.2. The real branches W0,−1(Y) of the Lambert W function.

The main conclusion of the above analysis is that when the delivery of vesicles to

synaptic targets is irreversible, with motor-cargo complexes injected at the left-hand side,

there is an exponential-like decrease in the distribution of synaptic vesicles along the axon

as previously observed in a model without exclusion [17], except that the decay is faster

with exclusion. This indicates that exclusion effects exacerbate the preferential delivery of

cargo to proximal synapses; see Figure 3.3. A heuristic explanation is that particles move

more slowly as they are blocked by exclusion, and will thus be closer to the entrance when

they deliver their vesicle.

3.2 Reversible Vesicular Transport with Exclusion
We now turn to our full model that combines reversible cargo delivery, exclusion effects

and different motile states. As with the simpler advection–diffusion model given by equa-

tions (2.5), we now have to keep track of motors with and without vesicular cargo. As with

the previous exclusion model (section 3.1), we assume that each particle can only carry a

single cluster of vesicles, and that exchange of vesicles is “all-or-none.” We also assume

that each particle can switch between two states, a motile state (+) and a stationary state

(0). When in the stationary state, the particle can reversibly exchange a vesicle with a

synaptic target. Again we represent the 1D track as a lattice of N sites, labeled i = 1, . . . , N,

with lattice spacing ε = L/N, where L is the length of the track. Each site is either vacant
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Figure 3.3. Comparison of the steady-state solution to equation (3.12) and the decaying
exponential seen in reference [17]. Parameter values are β = 0.9, ε = 0.01, and α = 0.4.

or occupied by a particle in the motile or stationary state and with or without a vesicle.

A motile particle can hop to the right if and only if the adjacent site is vacant (free of

any particles). In order to keep track of whether or not a vesicle is bound to a particle,

we specify the state of the site i in terms of the occupation numbers n+,0
i ∈ {0, 1} and

m+,0
i ∈ {0, 1}. Here n+,0

i = 1 if the i-th site is occupied by a particle in state (+, 0) that is

carrying a vesicle, whereas m+,0
i = 1 is the corresponding case when the particle is without

a vesicle. The vacancy occupation number χi is then determined by the conservation law

χi + n+
i + n0

i + m+
i + m0

i = 1. (3.18)

The hopping rate of a particle is taken to be h if it is carrying a vesicle and by h if it is not.

It remains to specify the transition rates between the different internal particle states. First,

a particle can switch between the motile and stationary states with rates κ± so that

(n+
i = 1, n0

i = 0)
κ−−⇀↽−
κ+

(n+
i = 0, n0

i = 1), (3.19)

and

(m+
i = 1, m0

i = 0)
κ−−⇀↽−
κ+

(m+
i = 0, m0

i = 1). (3.20)
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For simplicity, we take the transition rates to be the same whether or not a vesicle is

bound to the particle. Second, a vesicle can be reversibly exchanged with a synaptic target

according to the rates K± so that

(n0
i = 0, m0

i = 1)
K−ci−−⇀↽−−

K+

(n0
i = 1, m0

i = 0). (3.21)

We assume that the number of vesicles ci at the i-th synaptic target is sufficiently large so

that it is never depleted. Finally, particles with (without) a bound vesicle are injected on

the left-hand boundary at a rate αn (αm), and exit the right-hand boundary at a rate β. The

various processes are illustrated in Figure 3.4.

Following along analogous lines to section 3.1, we represent the average with respect

to all histories of the stochastic dynamics by angular brackets, and denote the density of

particles with (without) a bound vesicle and in the motile state (+) or stationary state (0)

by 〈n+,0
i (a)〉 (〈m+,0

i (a)〉). Away from the boundaries, the dynamics is described by the

following system of equations:

d〈n+
i 〉

dt
= h〈n+

i−1(1− n+
i − n0

i −m+
i −m0

i )〉

− h〈n+
i (1− n+

i+1 − n0
i+1 −m+

i+1 −m0
i+1)〉+ κ+〈n0

i 〉 − κ−〈n+
i 〉, (3.22)

d〈n0
i 〉

dt
= −κ+〈n0

i 〉+ κ−〈n+
i 〉+ K+ci〈m0

i 〉 − K−〈n0
i 〉, (3.23)

and

d〈m+
i 〉

dt
= h〈m+

i−1(1− n+
i − n0

i −m+
i −m0

i )〉

− h〈m+
i (1− n+

i+1 − n0
i+1 −m+

i+1 −m0
i+1)〉+ κ+〈m0

i 〉 − κ−〈m+
i 〉, (3.24)

d〈m0
i 〉

dt
= −κ+〈m0

i 〉+ κ−〈m+
i 〉 − K+ci〈m0

i 〉+ K−〈n0
i 〉. (3.25)

At the boundaries, equations (3.22) and (3.24) become

d〈n+
1 〉

dt
= −h〈n+

1 (1− n+
2 − n0

2 −m+
2 −m0

2)〉+ αn〈1− n+
1 − n0

1 −m+
1 −m0

1〉, (3.26)

d〈n+
N〉

dt
= h〈n+

N−1(1− n+
N − n0

N −m+
N −m0

N)〉 − β〈n+
N〉, (3.27)

d〈m+
1 〉

dt
= −h〈m+

1 (1− n+
2 − n0

2 −m+
2 −m0

2)〉+ αm〈1− n+
1 − n0

1 −m+
1 −m0

1〉, (3.28)

d〈m+
N〉

dt
= h〈m+

N−1(1− n+
N − n0

N −m+
N −m0

N)〉 − β〈m+
N〉. (3.29)
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Figure 3.4. Dynamical rules for reversible vesicular transport: hopping, switching between
motile and stationary particle states, reversible exchange of vesicles with synaptic targets,
and entry/exit rates.

Finally, given these densities, the number of vesicles at the i-th synaptic target is taken

to evolve according to the simple first-order kinetic scheme

dci

dt
= K−〈n0

i 〉 − K+ci〈m0
i 〉. (3.30)

3.2.1 Mean-field and Continuum Limit

Equations (3.22)–(3.29) constitute a nontrivial many-body problem, since in order to

calculate the time evolution of 〈n+
i 〉, it is necessary to know the two-point correlations

〈n+
i−1ψi〉, where ψi ∈ {n+,0

i , m+,0
i } and similarly for 〈m+

i 〉. The latter obey dynamical

equations involving three–point and four-point correlations. Thus, there is an infinite

hierarchy of equations of motion. However, progress can be made by using a mean-field

approximation and a continuum limit in order to derive a partial differential equation

(PDE) for the densities [32, 91]. The mean–field approximation consists of replacing two-

point correlations by products of single–site averages:

〈n+
i ψj〉 = 〈n+

i 〉〈ψj〉, 〈m+
i ψj〉 = 〈m+

i 〉〈ψj〉. (3.31)

Next we set x = kε, ρ+,0(x, t) = 〈n+,0
k (t)〉 and σ+,0(x, t) = 〈m+,0

k (t)〉. The continuum

limit is then defined according to N → ∞ and ε → 0 such that the length of the track

L = Nε is fixed. (We fix length scales by setting L = 1). Taylor expanding ρ+,0(x ± ε, t)

and σ+,0(x± ε, t) in powers of ε,

ρ0(x± ε, t) = ρ0(x)± ε∂xρ0(x, t) +
1
2

ε2∂xxρ0(x, t) + O(ε3), (3.32)
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etc., then gives to leading order in ε the following system of PDEs:

∂ρ+
∂t

= −ε
∂Jρ+(x, t)

∂x
+ κ+ρ0 − κ−ρ+, (3.33)

∂ρ0

∂t
= −κ+ρ0 + κ−ρ+ + K+cσ0 − K−ρ0, (3.34)

and

∂σ+
∂t

= −ε
∂Jσ+(x, t)

∂x
+ κ+σ0 − κ−σ+, (3.35)

∂σ0

∂t
= −κ+σ0 + κ−σ+ − K+cσ0 + K−ρ0. (3.36)

The currents are

Jρ+ = hLρ+, Jσ+ = hLσ+, (3.37)

where for any function F,

LF = (1− ρ− σ)F− ε

2
[(1− ρ− σ)∂xF− F∂x(1− ρ− σ)] , (3.38)

for ρ = ρ0 + ρ+ and σ = σ0 + σ+. From equations (3.26)–(3.29), we have the corresponding

boundary conditions

Jρ+(0, t) = αn(1− ρ(0, t)− σ(0, t)), Jσ+(0, t) = αm(1− ρ(0, t)− σ(0, t)), (3.39)

and

Jρ+(1, t) = βρ+(1, t), Jσ+(1, t) = βσ+(1, t). (3.40)

Finally, the continuum limit of equation (3.30) is

∂c(x, t)
∂t

= K−ρ0(x, t)− K+c(x, t)σ0(x, t). (3.41)

3.2.2 Fast Switching Limit

We now make the additional simplification that the rates κ± of switching between the

stationary and motile states are much faster than the hopping rate and K±. This is made
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explicit by performing the rescalings κ± → κ±/δ, where δ is a second small parameter. We

can then carry out an adiabatic reduction of equations (3.33) and (3.34) by setting

ρ+(x, t) =
κ+
κ

ρ(x, t) + δw+(x, t), ρ0(x, t) =
κ−
κ

ρ(x, t) + δw0(x, t), (3.42)

and

σ+(x, t) =
κ+
κ

σ(x, t) + δw+(x, t), σ0(x, t) =
κ−
κ

σ(x, t) + δw0(x, t), (3.43)

with κ = κ+ + κ−, w0 + w+ = 0, and w0 + w+ = 0. Substituting these expansions into

equations (3.33)– (3.36) gives

κ+
κ

∂ρ

∂t
+ δ

∂w+

∂t
= −ε

κ+
κ

∂Jρ(x, t)
∂x

− εδ
∂Jw+(x, t)

∂x
+ κ+w0 − κ−w+, (3.44)

κ−
κ

∂ρ

∂t
+ δ

∂w0

∂t
= −κ+w0 + κ−w+

+
κ−
κ

(K+cσ− K−ρ) + δ (K+cw0 − K−w0) , (3.45)

and

κ+
κ

∂σ

∂t
+ δ

∂w+

∂t
= −ε

κ+
κ

∂Jσ(x, t)
∂x

− εδ
∂Jw+(x, t)

∂x
+ κ+w0 − κ−w+, (3.46)

κ−
κ

∂σ

∂t
+ δ

∂w0

∂t
= −κ+w0 + κ−w+

− κ−
κ

(K+cσ− K−ρ)− δ (K+cw0 − K−w0) . (3.47)

Here Jρ = hLρ, Jσ = hLσ etc. Adding equations (3.44) and (3.45) yields

∂ρ

∂t
= −ε

κ+
κ

∂Jρ(x, t)
∂x

− εδ
∂Jw+(x, t)

∂x
+

κ−
κ

(K+cσ− K−ρ) + δ (K+cw0 − K−w0) , (3.48)

whereas adding equations (3.46) and (3.47) gives, on dropping O(εδ) terms,

∂σ

∂t
= −ε

κ+
κ

∂Jσ(x, t)
∂x

− εδ
∂Jw+(x, t)

∂x
− κ−

κ
(K+cσ− K−ρ)− δ (K+cw0 − K−w0) . (3.49)

Next we substitute for ∂ρ/∂t in equation (3.44) using equation (3.48), substitute for

∂σ/∂t in equation (3.46) using equation (3.49), and introduce the double asymptotic ex-

pansions

w0 = w0,0 + ∑
i,j,i+j>0

δiεjw0,ij, w0 = w0,0 + ∑
i,j,i+j>0

δiεjw0,ij, (3.50)
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with w+ = −w0, w+ = −w0. The lowest order coefficients are

w0,0 =
κ−
κ2

κ+
κ

(K+cσ− K−ρ) , (3.51)

and

w0,0 = −κ−
κ2

κ+
κ

(K+cσ− K−ρ) . (3.52)

Hence, equations (3.48) and (3.49) have the leading order form

∂ρ

∂t
= −ε

κ+
κ

∂Jρ(x, t)
∂x

+ K̂+cσ− K̂−ρ, (3.53)

and

∂σ

∂t
= −ε

κ+
κ

∂Jσ(x, t)
∂x

− K̂+cσ + K̂−ρ, (3.54)

with

K̂− =
κ−
κ

K−
[
1 + δ(K− + cK+)

κ−κ+
κ2

]
, (3.55)

K̂+ =
κ−
κ

K+

[
1 + δ(K− + cK+)

κ−κ+
κ2

]
. (3.56)

Finally, equation (3.41) becomes

∂c(x, t)
∂t

= K̂−ρ(x, t)− K̂+c(x, t)σ(x, t). (3.57)

We note that if h = h, then adding equations (3.53) and (3.54) yields a hydrodynamic

equation for the total density of particles φ(x, t) = ρ(x, t) + σ(x, t) identical in form to the

totally asymmetric exclusion process (after rescaling):

∂φ(x, τ)

∂τ
= −ε

∂J(x, τ)

∂x
, (3.58)

with

J(x, τ) = Jρ(x, τ) + Jσ(x, τ) = φ(x, τ)(1− φ(x, τ))− ε

2
∂φ(x, τ)

∂x
, (3.59)

and boundary conditions

J(0, t) = α(1− φ(0, t)), J(1, t) = βφ(1, t), (3.60)

The rescalings are

τ = ε
κ+
κ

t, α =
κ

κ+
(αm + αn), h = h = 1. (3.61)
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3.2.3 Steady-state Analysis

We now establish that a uniform, steady-state distribution of synaptic vesicles occurs

when h = h = 1. The steady-state equations are

c(x) =
K̂−ρ(x)
K̂+σ(x)

, (3.62)

(1− φ)ρ− ε

2
[(1− φ)∂xρ + ρ∂xφ] = Jρ, (3.63)

(1− φ)σ− ε

2
[(1− φ)∂xσ + σ∂xφ] = Jσ. (3.64)

Here Jρ and Jσ are constant nonequilibrium currents for the ρ and σ particles. Adding

equations (3.2.3b,c) yields the steady-state version of the TASEP equation (3.58):

φ(1− φ)− ε

2
dφ

dx
= J , (3.65)

with J = Jρ + Jσ. From the boundary conditions (3.39) and (3.40), it follows that

Jρ =
καn

κ+α
J , Jσ =

καm

κ+α
J , (3.66)

and, hence, equations (3.2.3b,c) have the solution

ρ(x) =
καn

κ+α
φ(x), σ(x) =

καm

κ+α
φ(x). (3.67)

Finally, substituting this solution into equation (3.2.3a) yields the constant vesicular distri-

bution

c(x) = c0 =
K̂−αn

K̂+αm
. (3.68)

Since both densities σ(x) and ρ(x) are proportional to the steady-state solution of the

standard TASEP, it is worthwhile briefly recapping the well-known properties of the latter

[8, 66]. This will be useful when comparing the corresponding profiles when h 6= h. Setting

q = φ − 1/2, the steady-state current equation (3.65) takes the form (after absorbing the

factor of 2 into ε)

ε
dq
dx

= v2 − q2, v2 =
1
4
− J0. (3.69)

It follows that for v2 > 0

ε
∫ dq

(v− q)(v + q)
= x− x0, (3.70)

where x0 is an integration constant. Using partial fractions, we find that

v + q
v− q

= e2v(x−x0)/ε, (3.71)
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which on rearranging yields the density profile

φ(x) =
1
2
+ v tanh(v(x− x0)/ε), (3.72)

with v ≥ 0. On the other hand, if v2 < 0, then we have

ε
∫ dq
|v2|+ q2 = x− x0. (3.73)

Under the change of variables q = cotan(u), we can evaluate the integral and find that

φ(x) = 0.5 + |v|cotan(|v|(x− x0)/ε). (3.74)

The two unknown parameters J0, x0 can be determined in terms of α, β by imposing the

boundary conditions at x = 0, L. As is well known, three distinct phases can be identified

[8, 66] (see Figure 3.5(d)):

1. A low-density phase in which the bulk density is smaller than 1/2, x0 ≈ 1 and v2 > 0.

Since ε � 1, we see from equation (3.72) that φ(x) ≈ 0.5 − v for all x < x0. In

particular, at the left-hand boundary α(0.5 + v) = J0, which can be rewritten as v =

J0/α− 0.5. Squaring both sides and using the definition of v gives, to lowest order in

ε,

φ(0) = α, J0 = α(1− α), α < 1/2. (3.75)

The other boundary condition becomes

β =
J0

0.5 + v tanh(v(L− x0)/ε)
>

J0

0.5 + v
= α. (3.76)

In order to satisfy this boundary condition, there is an ε-wide boundary layer at

x = L with L− x0 = O(ε).

2. A high-density phase in which the bulk density is larger than 1/2 and x0 ≈ 0. Hence,

φ(x) ≈ 0.5 + v in the bulk of the domain and at the right-hand boundary we have

β(0.5 + v) = J0. Following along similar lines to the low-density case, we deduce

that

φ(L) = 1− β, J0 = β(1− β), β < 1/2, (3.77)

and β < α. There is now a boundary layer around x = 0 in order to match the rate α.

The two phases coexist along the line α = β < 1/2.
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Figure 3.5. Steady-state solutions of total density φ in the different phases with ε = 0.01
and L = 1. (a) Plot of φ in the HD phase for α = 0.9 and β = 0.3. (b) Plot of φ in
the LD phase for α = 0.1 and β = 0.6. (c) Plot of φ in the MC phase for α = β = 0.7.
(d) Mean-field phase diagram for the TASEP showing the regions of α, β parameter space
where the low-density (LD), high-density (HD) and maximal-current (MC) phases exist.

3. A maximal current phase. In the region α > 1/2, β > 1/2, we require J0 > 1/4 so

that v2 < 0. It turns out that the current takes the form J0 = 0.25 + O(ε2/L2), that

is, it is very close to the maximal value of function φ(1− φ). This follows from the

observation that the solution (3.74) will blow up unless 0 < |v|(x− x0)/ε < π for all

x ∈ [0, L]. This implies that x0 = −O(ε) and |v| < πε/L. Under these conditions,

equation (3.74) ensures that φ(x) ≈ 0.5 in the bulk of the domain. The precise values

of v and x0 are then adjusted so that the boundary conditions at x = 0, L are satisfied:

φ(0) = 1− 1/(4α) > 0.5 and φ(L) = 1/(4β) < 0.5. Also note that away from the

left-hand boundary, we have cotan(|v|(x− x0)/ε) ≈ ε/(|v|x) so that

φ(x) ∼ 0.5 + ε/x. (3.78)

In deriving equations (3.53) and (3.54), we first adopted the mean-field approximation

used to study TASEP models with single internal states [32, 91], and then carried out an
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Figure 3.6. Effect of slowing down the switching rates between motile and immotile states
on concentration profiles when TASEP limit is in a maximum current phase. Plots of (a) ρ,
(b) σ (c) total motor density φ, and (d) and synaptic vesicle density c for various switching
rates κ− = κ+. Other parameter values are αn = αm = 0.8, β = 0.8, K± = 0.5, h = h = 1,
and N = 100.

adiabatic approximation in the fast switching limit. If these approximations are valid, then

we expect numerical simulations of the full stochastic model to generate a total motor

density profile φ that converges to the classical TASEP density in the limit κ± → ∞ for

h = h. This is indeed found to be the case as illustrated in Figure 3.6(c). We can see

that the profile of φ for fast switching in the maximal current parameter regime resembles

the profile for the classic TASEP model. However, as the switching slows down, the

profile deviates from the TASEP curve. Nevertheless, this does not have a significant

effect on the distribution of synaptic vesicles, since c is still approximately uniform; see

Figure 3.6. Interestingly, it has been shown in references [92] and [93] that standard mean

field theory can break down for a model in which particles switch between motile and

stationary states, due to statistical correlations between motile and stationary occupation
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numbers. Numerically , we find that this does not present a problem for our particular

model when the system operates in a regime where the switching rates κ± between the

motile and immotile states of the motors are fast compared to the hopping rate h and rates

of exchange of vesicles between motors and synapses K±.

Note that Figure 3.6 and subsequent numerically generated figures are generated using

a continuous-time Monte Carlo algorithm based on the Gillespie algorithm [35] and the

dynamical rules elucidated in Figure 3.4. Individual particles carrying cargo that are

bound to a microtubule can move to the adjacent site at a rate h provided the adjacent

site is unoccupied. Particles not carrying cargo but bound to a microtubule can move to

the adjacent site provided it is empty at a rate h. Individual particles may bind and unbind

from a microtubule at the rates κ± and particles unbound from microtubules may deliver

vesicles at a rate K− or recover them at a rate K+. We collect statistics from the system once

it has reached steady state. To ensure it has reached steady state, we neglect the first 108

steps and collect statistics on the subsequent 108 steps.

3.2.4 Disparity in Hopping Rates

In the case where h 6= h, adding together equations (3.53) and (3.54) yields

∂φ

∂t
= −ε

[∂Jρ

∂x
+

∂Jσ

∂x

]
, (3.79)

which cannot be easily analyzed. Nevertheless, the time evolution of the system can

be understood by performing Monte Carlo simulations of the full stochastic model as

summarized above. We find that the value of H ≡ h− h alters the nature of the distribution

of vesicles along the axon. This is illustrated in Figure 3.7, Figure 3.8, and Figure 3.9, which

correspond respectively to the LD, HD, and MC phases for φ in the limit h = h = 1. In each

figure, we plot the density profiles of ρ, σ, φ, and c for various hopping rates h < h = 1.

It can be seen that in each case, as h decreases (H increases), the distribution c of synaptic

vesicles along the axon develops an exponential-like decay with respect to x. This reflects

the fact that the ratio ρ(x)/σ(x) is no longer x-independent. When h = h, the synaptic

vesicle concentration is uniform, c(x) = 1. We conclude that achieving synaptic democracy

is also dependent on the motility of the motor-cargo complexes relative to the motility of

the particles without vesicles. In all the stochastic simulations, we take h, the hopping rate

of vesicle-bound particles, to be at most h, the hopping rate of particles without vesicles,
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Figure 3.7. Effect of disparity in hopping rates on concentration profiles when TASEP
limit is in a low-density phase. Plots of (a) ρ, (b) σ (c) total motor density φ, and (d) and
synaptic vesicle density c for various hopping rates h ≤ h = 1. Other parameter values are
αm = αn = 0.4, β = 0.7, K± = 0.5, κ± = 10, and N = 100.

which corresponds to the intuition that the former would naturally move slower than the

latter due to the added load. Hence, there is a correlation between the value of h and the

specific type of cargo being delivered. If, for example, the cargo of a motor is too large,

then we expect h � h, and the distribution of the given cargo along the axon may not

be uniform. On the other hand, if the cargo is relatively small, then h ≈ h and synaptic

democracy can be achieved. Analogous results were found in reference [17] for the simpler

model without exclusion.

3.3 Relationship with Other Exclusion Process Models
Equations (3.53) and (3.54) closely resemble the hydrodynamic equations that arise

in modeling processes that account for exclusion effects as well as internal states. For

example, Reichenbach et al. [100, 101] allow for particles in each lattice site to exist in one
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Figure 3.8. Effect of disparity in hopping rates on concentration profiles when TASEP
limit is in a high-density phase. Plots of (a) ρ, (b) σ (c) total motor density φ, and (d) and
synaptic vesicle density c for various hopping rates h ≤ h = 1. Other parameter values are
αm = αn = 0.9, β = 0.1, K± = 0.5,κ± = 10, and N = 100.

of two internal “spin” states; see Figure 3.10. Particles with opposite spins can occupy the

same lattice point and can move to the next lattice site at a prescribed rate provided the

adjacent site is not already occupied by another particle of the same spin state. Hence, each

particle respects the Pauli exclusion principle. Another common interpretation for these

internal states is that of a car traveling on one lane of a two-lane highway. In this context,

each lattice site corresponds to a segment of the highway, and thus can be occupied by

two cars so long as they are not on the same lane. In either of the interpretations, particles

are allowed to switch states provided they are alone in occupying a given site. Note that

the effects of exclusion on collective vesicle transport has also been analyzed by Muhuri

and Pagonabarraga. They consider the case of bidirectional transport in which particles

can reverse direction and reversibly bind to the filament [86]. However, the authors do not

separately model vesicles and molecular motors.
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Figure 3.9. Effect of disparity in hopping rates on concentration profiles when TASEP limit
is in a maximum current phase. Plots of (a) ρ, (b) σ (c) total motor density φ, and (d) and
synaptic vesicle density c for various hopping rates h ≤ h = 1. Other parameter values are
αm = αn = 0.9, β = 0.7, K± = 0.5, κ± = 10, and N = 100.

In our work, we provide a new biophysical example of internal states within the context

of exclusion processes. The full model without the application of the adiabatic approxima-

tion consists of particles in one of four internal states: (i) a motile particle bound to the

track and carrying a vesicle, (ii) a motile particle bound to the track without a vesicle, (iii)

a stationary particle unbound from the track but carrying a vesicle, and (iv) a stationary

particle unbound from the track without a vesicle. One important difference between the

spin and traffic models and ours lies in the definitions of the currents in each model. In

spite of the existence of two internal states in the two-lane traffic traffic and spin models,

the currents are nevertheless the same as seen in standard TASEP models. That is, if ρi(x, t)

is the density of a particle in the i-th internal state, its current is given by, for example,

an expression of the form ρi(1− ρi). This arises from the fact that double occupation of

a single lattice site is allowed provided each particle exists in a different internal state.
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Figure 3.10. Dynamical rules for an exclusion model with two internal spin states [100,
101]. Particles in up (down) states enter with rates α↑ (α↓), move unidirectionally to the
right with hopping rate h, flip spin state at a rate κ, and leave the system at rates β↑ (β↓).
Pauli’s exclusion principle holds at every lattice site.

In our model, currents take a more restrictive form, since a motor can only hop to the

adjacent site if it is completely unoccupied. Hence, the currents in our model have the

form shown in equation (3.38). Differences in the currents persist when we use an adiabatic

approximation to reduce the full model to a model with two internal states (particles with

or without a vesicle).

3.4 Discussion
In this chapter, we investigated the biophysical machinery involved in maintaining

synaptic democracy in axons. In particular, we generalized the results found in reference

[17] by examining the effects of exclusion on the distribution of synaptic vesicles along an

axon. For both the irreversible and reversible delivery cases, we modeled the dynamics

of motor-cargo complexes in terms of the equations of motion for the average occupation

numbers at each site on a 1D lattice. By invoking the mean field approximation, we de-

rived a system of hydrodynamic equations which were used to determine the steady-state

distributions of both motor-cargo complexes and synaptic vesicles. In the irreversible case,

we found that exclusion exacerbates the preferential delivery of vesicles to synaptic sites

near the soma. In the reversible case, we performed an adiabatic approximation on the

system of hydrodynamic equations by assuming that switching between internal states

is fast compared to ballistic dynamics. We found that the steady-state distribution of

vesicles is now approximately uniform, provided that the speed of a particle is only weakly

dependent on whether or not it is carrying a vesicle.

There are a number of possible extensions of our work on exclusion processes and
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active transport. One assumption we made was that each motor-cargo complex only

carried one SVP. It would be interesting to see what happens if we relax this condition and

allow each complex to carry a finite number of SVPs. Some work has been done in this

area using aggregation theory and a modified version of the well-known Becker-Doring

equations [13], but exclusion effects were not taken into account. Another important

generalization would be to investigate what happens when we allow for bidirectional

motor transport (see discussion in section 2.6). Yet another extension of our work would

be to explore the effects of heterogeneity where, for example, the distribution and size of

synaptic targets are not uniform. Finally, we hope to investigate the impact of exclusion

effects on other biological processes that involve axonal transport. Examples include the

models of motor-based length control presented in Chapters 4 and 5, which do not take

into account exclusion effects.



CHAPTER 4

FLAGELLAR LENGTH CONTROL

A fundamental question in cell biology is how the sizes of subcellular stuctures are

determined in order to scale with the size of the cell and with physiological requirements.

It appears that self-organizing processes together with physical constraints play a major

role in controlling organelle size [97]. At least three distinct control mechanisms have been

identified [83].

I. Molecular rulers. In the case of linear structures such as filaments, size control can be

achieved by a molecular ruler protein, whose length is equal to the desired length of

the growing structure. One classical example is the length of the λ-phage tail, which is

determined by the size of the gene H product (gpH) [58]. During assembly of the tail, gpH

is attached to the growing end in a folded state, and protects the growing end from the

terminator gene product U (gpU). As the tail elongates, gpH stretches such that when it is

fully extended, further growth exposes the tail to the action of gpU; see Figure 4.1.

II. Quantal synthesis. Size could be controlled by synthesizing exactly enough material to

build a structure of the appropriate size - a process known as quantal synthesis. For ex-

ample, precursor protein levels are known to affect the length of flagella in the unicellular

green alga Chlamydomonas reinhardtii [73], and the length of sea urchin cilia is correlated

with the concentration of the protein tektin [113]. One prediction of the quantal synthesis

model is that doubling the number of flagella should halve their length. However, studies

of Chlamydomonas mutants indicate a much weaker dependence of length on the number

of flagella, suggesting that there is an additional length-controlling mechanism involving

dynamic balance [81]; see below.

III. Dynamic balance. Dynamic structures are constantly turning over so that in order for

them to maintain a fixed size, there must be a balance between the rates of assembly

and disassembly. If these rates depend on the size in an appropriate way, then there
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Figure 4.1. Schematic of a molecular ruler. Redrawn from [12].

will be a unique balance point that stabilizes the size of the organelle. For example,

eukaryotic flagellar microtubules undergo continuous assembly and disassembly at their

tips, in which a constant rate of disassembly is balanced by a length-dependent rate of

assembly due to a fixed number of molecular motors transporting from the cell body,

leading to a fixed flagellar length [81, 82, 108]. An analogous dynamic balance mechanism

is thought to control the length of actin-based structures, such as the stereocilia of the

inner ear [96, 103]. Here actin filaments constantly treadmill back towards the cell body,

with disassembly at the base balanced by assembly at the tip. The latter depends on

the diffusion of actin monomers to the tip, which results in a length-dependent rate of

assembly. It has also been suggested that a diffusion-induced length dependence of the

assembly rate plays a role in the control of the hook length in bacterial flagella [59]. A

different balance mechanism appears to control the length of microtubules in yeast, where

kinesin motors move processively to the microtubule tips where they catalyze disassembly.

Longer microtubules recruit more kinesin motors from the cytoplasm, which results in a

length-dependent rate of disassembly. When this is combined with a length-independent

rate of assembly, a unique steady-state microtubule length is obtained [39, 47, 53, 99, 100,

122]. A related mechanism involves the modulation of microtubular dynamic instabilities,

that is, the catastrophe frequency [50, 114].

One class of organism where such a dynamic mechanism may occur is eukaryotic flag-

ella [76, 77, 81, 82, 108, 126]. These are microtubule–based structures that extend to about

10 µm from the cell and are surrounded by an extension of the plasma membrane. They

are at least an order of magnitude longer than bacterial flagella. Flagellar length control is

a particularly convenient system for studying organelle size regulation, since a flagellum
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can be treated as a one–dimensional structure whose size is characterized by a single length

variable. The length of a eukaryotic flagellum is important for proper cell motility, and a

number of human diseases appear to be correlated with abnormal length flagella.

Radioactive pulse–labeling has been used to measure protein turnover in eukaryotic

flagella. Such measurements have established that turnover of tubulin occurs at the +

end of flagellar microtubules, and that the assembly (rather than disassembly) part of the

turnover is mediated by intraflagellar transport (IFT). This is a motor-assisted motility

within flagella in which large protein complexes move from one end of the flagellum to

the other [108]. Particles of various size travel to the flagellar tip (anterograde transport) at

around 1.5 µm/s, and smaller particles return from the tip (retrograde transport) at around

2.5 µm/s after dropping off their cargo of assembly proteins at the + end. A schematic

diagram of IFT transport is shown in Figure 4.2.

One suggested mechanism for flagellar length control is based on the idea that a fixed

number of IFT particles is present inside the flagellum [81, 82]. As the flagellum grows in

length, each IFT particle has to travel a longer distance to deliver tubulin at the tip of the

flagellum, resulting in a balance between assembly and disassembly at a critical flagellar

length. More specifically, if a fixed number of transport complexes N move at a fixed

mean speed v, then the rate of transport and assembly should decrease inversely with

the flagellar length L. On the other hand, measurements of the rate of flagellar shrinkage

when IFT is blocked indicate that the rate of disassembly is length–independent. This has

motivated the following simple deterministic model for length control [82]:

IFT particle

microtubule

+_

v+

v-

V

L(t)

cargo

insertion

degradation

Figure 4.2. Schematic diagram of intraflagellar transport (IFT), in which IFT particles travel
with speed v± to the ± end of a flagellum. When an IFT particle reaches the + end, it
releases its cargo of protein precursors that contribute to the assembly of the flagellum.
Disassembly occurs independently of IFT transport at a speed V.
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dL
dt

=
avN
2L
−V, (4.1)

where a is the size of the precursor protein transported by each IFT particle and V is

the speed of disassembly. Equation (4.1) has a unique stable equilibrium given by L∗ =

avN/2V. Using the experimentally-based values N = 10, v = 2 µm/s, L∗ = 10 µm

and V = 0.01 µm/s, the effective precursor protein size is estimated to be a ≈ 10 nm (a

stochastic version of a model for intraflagellar transport has also been developed using the

theory of continuous time random walks [11]).

However, recent photobleaching studies have shown that the influx of IFT particles

into the flagellum is regulated [76]. Trains of IFTs enter the flagellum through the flagellar

pore, a membrane-spanning structure at the base of the flagellum that may be homologous

to a nuclear pore. (The latter regulates the exchange of macromolecules between a cell’s

cytoplasm and the nucleus.) There is also a microtubule-organizing center known as

the basal body, which anchors the flagellar microtubules at the plasma membrane and

integrates them with the cytoplasmic microtubules. IFT proteins dock around the basal

body and assemble into trains prior to entering the flagellum [27]. It appears that the rate

at which IFTs enter the flagellum depends on the amount of docked IFTs in the basal body,

with faster growing flagella having more localized IFTs [77, 126]. This suggests that there

is some length-dependent mechanism for regulating the accumulation of IFT particles at

the basal body (and possibly the loading of cargo to docked IFTs [126]). Ludington et al.

[76] considered several different mathematical models of IFT regulation, based on the idea

that cell signaling within the flagellum results in a length-dependent binding rate of IFTs

within the basal body, and compared the models with experimental photobleaching data

on the variation of IFT numbers as a function of length.

In this chapter, we develop a stochastic model of flagellar length control that incor-

porates IFT regulation along the lines of Ludington et al. [76]. In particular, we will

assume that the binding rate of IFTs is length-dependent and that the rate of flagellar

growth is much slower than any other dynamical process (adiabatic approximation). We

then take into account two distinct sources of stochasticity. The first is given by fluc-

tuations in the number of bound IFTs within the basal body due to the random nature

of binding-unbinding chemical reactions. According to the law of large numbers, these
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fluctuations will vary as 1/
√

M where M is the total number of binding sites. Fluctuations

in the number of bound IFTs will then result in fluctuations in the rate at which IFT

particles are injected into the flagellum. However, a second source of noise arises even

when such fluctuations are neglected (M → ∞). That is, even for constant injection

rates, we expect intrinsic fluctuations in the injection times. Assuming for simplicity, that

the injection times are exponentially distributed, the process of IFT injection for constant

rates can be modeled as a Poisson process. It immediately follows that if fluctuations in

the number of bound IFTs are also taken into account, then the resulting model of IFT

length control is given by a doubly stochastic Poisson process (DSPP). DSPPs were first

introduced by Cox [25] as a generalization of an inhomogeneous Poisson process, in which

the time-dependent transition rate depends on a second, independent stochastic process.

The general theory of DSPPs was subsequently developed by Grandell [41]. Example

applications include photon and electron detection [104], occurrences of credit events in

finance [71], and neural coding [7, 67, 110]. We use the theory of DSPPs to analyze our

stochastic model of flagellar length control, and determine how fluctuations in the IFT flux

and flagellar number vary with length.

The organization of the chapter is as follows. In section 4.1 we introduce our model

of flagellar length control and the two major stochastic components, namely, IFT particle

binding/unbinding within the basal body and the Poisson-like injection of IFTs into the

flagellum. We also present one of the examples of IFT binding regulation considered by

Ludington et al. [76]. However, the subsequent analysis is not restricted to any specific

regulatory mechanism. In section 4.2, we analyze the statistics of IFTs within the flagellum

as a function of flagellar length under the assumption that the number of binding sites is

large. The case of a small number of binding sites is considered in section 4.3.

4.1 Stochastic Model of Flagellar Length Control
We begin by briefly describing the deterministic model of flagellar length control intro-

duced in reference [76]; see Figure 4.3. Consider a one-dimensional flagellum of length L

with the basal body at x = 0 and the tip at x = L. Suppose that there are M binding sites

for IFT particles in the basal body, and the concentration of IFTs within the cytoplasm is B.

Denote the binding and unbinding rates by k+ and k−, respectively. Assuming that M
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k+

k-

IFT particle basal binding site

basal body

!agellum

Figure 4.3. Schematic diagram of the basic model. IFT particles (filled circles) can undergo
binding/unbinding reactions with M sites (filled rectangles) in the basal body at rates k±.
The number of bound IFTs determines the rate at which IFTs are injected into the flagellum.
Once in the flagellum, IFTs are actively transported to the tip, where they deliver their
cargo and are then transported back to the basal body along the lines shown in Figure 4.2.
Some signaling mechanism within the flagellum (not shown) results in the binding rate
k+ being dependent on the flagellar length L, resulting in a length-dependent IFT flux
regulation.

is sufficiently large, the kinetic equation for the number m(t) of bound IFTs at time t is

dm
dt

= k+B[M−m(t)]− k−m(t), (4.2)

which has the steady-state solution

m∗ = MX∗, X∗ =
k+B

k+B + k−
. (4.3)

Now suppose that there is some signaling mechanism within the flagellum such that the

binding rate is a decreasing function of length L, and set k+ = k+C0(L). We will give

one example of such a signaling mechanism in section 4.2.3; see also reference [76]. Under

the adiabatic approximation that the growth-rate of the flagellum is much slower than the

various kinetic processes, we can still treat M∗ as a constant with

m∗ = m∗(L) ≡ k+C0(L)B
k+C0(L)B + k−

M. (4.4)

The rate of injection of IFTs into the flagellum is then taken to be λ0 = ηm∗(L), which

means that the influx is a monotonically decreasing function of L. The critical flagellar

length is then determined by the balance between the influx and the length-independent
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rate of disassembly, along analogous lines to equation (4.1). The number of binding sites M

ranges from 10− 1000, whereas fits with experimental data suggest that k+B/k− ∼ 10µm

[76].

4.1.1 IFT Injection as a Poisson Process

The first level of stochasticity occurs if we take the injection times of the IFT particles

to be exponentially distributed with rate λ0 = ηm∗. The number N(t) of particles injected

into flagellum over the interval [0, t] is then given by a Poisson process . That is, setting

Pn(t) = P(N(t) = n|N(0) = 0), we have

dPn

dt
= λ0[Pn−1(t)− Pn(t)], (4.5)

which has the solution

Pn(t) =
(λ0t)n

n!
e−λ0t, (4.6)

It immediately follows that

〈N(t)〉 = λ0t, var[N(t)] = λ0t. (4.7)

Suppose that each injected particle remains in the flagellum a time T = 2L/v + τ before

being removed, where v is the arithmetic mean of the anterograde and retrograde speeds

of each IFT particle, and τ is the time spent at the tip. We will take τ = 1s and v = 2µm/s.

It follows that the number of particles in the flagellum at time t, t > T is

F(t) = N(t)− N(t− T). (4.8)

In particular,

〈F(t)〉 = λ0(t− (t− T)) = λ0T = η
k+C0(L)BM

k+C0(L)B + k−
(2L/v + τ). (4.9)

This yields an expression for how the total IFT protein in the flagellum varies with length

L, which can then be compared to photobleaching data along the lines of reference [76].
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We can also estimate the variance in the number of IFT particles according to the

following:

var[F(t)] = 〈N(t)2 + N(t− T)2 − 2N(t)N(t− T)〉 − λ2
0T2

= var[N(t)] + var[N(t− T)]− λ2
0T2 + λ2

0t2 + λ2
0(t− T)2

− 2〈N(t)N(t− T)〉

= λ0(2t− T) + 2λ2
0t(t− T)− 2[λ2

0(t− T)t + λ0(t− T)] = λ0T. (4.10)

We have used the fact that for a Poisson process with rate λ0, the autocorrelation function

is

〈N(t)N(t− T)〉 = 〈[N(t)− N(t− T)]N(t− T)〉+ 〈N(t− T)2〉

= 〈[N(t)− N(t− T)]〉〈N(t− T)〉+ var[N(t− T)] + 〈N(t− T)〉2

= λ2
0(t− T)t + λ0(t− T). (4.11)

4.1.2 Stochastic Model of IFT Docking at the Basal Body

The above analysis ignores fluctuations of m(t) and the fact that when a particle is

injected, it leaves a vacant binding site. For the moment, let us ignore the latter effect by

assuming that the number of bound sites is much greater than one. (The case of M = O(1)

will be considered in section 4.3.) The binding of IFTs is then independent of the Poisson

process (but not vice versa). Let Q(m, t) denote the probability that m out of M binding

sites are bound by IFTs at time t. The corresponding master equation is

dQ(m, t)
dt

= k+B(M−m + 1)Q(m− 1, t) + k−(m + 1)Q(m + 1, t)

− [k+B(M−m) + k−m]Q(m, t), (4.12)

with Q(−1, t) = Q(N + 1, t) ≡ 0. This can be rewritten in the form of the birth-death

master equation

d
dt

Q(m, t) = ω+(m− 1)Q(m− 1, t) + ω−(m + 1)Q(m + 1, t) (4.13)

− [ω+(m) + ω−(m)]Q(m, t).

with transition rates

ω+(m) = (M−m)k+B, ω−(m) = mk−. (4.14)
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A standard calculation yields the steady-state solution Qs(m) of the master equation (4.13)

[12, 34]. First, note that it satisfies J(m) = J(m + 1) with

J(m) = ω−(m)Qs(m)−ω+(m− 1)Qs(m− 1). (4.15)

Using the fact that m is a nonnegative integer, that is, Qs(m) = 0 for m < 0, it follows that

J(m) = 0 for all m. Hence, by iteration,

Qs(m) = Qs(0)
m

∏
k=1

ω+(k− 1)
ω−(k)

, (4.16)

with

Qs(0) =

(
1 +

M

∑
m=1

m

∏
k=1

ω+(k− 1)
ω−(k)

)−1

. (4.17)

In the particular case of the transition rates (4.14), we have

Qs(m) = Qs(0)
[

k+B
k−

]m M!
m!(M−m)!

. (4.18)

After calculating Qs(0), we obtain the binomial distribution

Qs(m) =
(k+B)mkM−m

−
(k+B + k−)M

M!
m!(M−m)!

= (X∗)m(1− X∗)M−m M!
m!(M−m)!

, (4.19)

where X∗ is given by equation (4.3). Using standard formulae for the moments of the

binomial distribution, we find that, at steady state, the mean number of bound IFTs at the

basal body is

〈m〉 = MX∗ = m∗, (4.20)

where m∗ is the fixed point solution of the kinetic equation (4.4). Similarly, the steady-state

variance is

Var[m] = MX∗(1− X∗), (4.21)

with
√

Var[m]/〈m〉 ∼ 1/
√

M. Hence, in the large-M limit, we can simply treat the number

of bound IFTs as a constant m∗ (for fixed L). The injection of IFTs is then given by a

homogeneous Poisson process with rate λ0 = ηm∗. However, if the total number of

binding sites takes intermediate values, M ∼ 100− 1000 [76], we should really treat m(t)

as a stochastic variable evolving according to the birth-death master equation (4.12) and

set λ = ηm(t). It follows that the process of IFT injection into the flagellum is described by

a so-called doubly stochastic Poisson process (DSPP); see section 4.2.1.
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In order to facilitate later calculations, we will carry out a system-size expansion of the

master equation (4.12) for intermediate values of M [12, 34]. First, introduce the rescaled

variable x = m/M and corresponding transition rates MΩ±(x) = ω±(Mx). Equation

(4.12) can then be rewritten in the form

dΠ(x, t)
dt

= M[Ω+(x− 1/M)Π(x− 1/M, t) + Ω−(x + 1/M)Π(x + 1/M, t)

− (Ω+(x) + Ω−(x))Π(x, t)], (4.22)

where Π(x, t) = Q(Mx, t). Treating x as a continuous variable and Taylor expanding terms

on the right–hand side to second order in M−1 leads to the Fokker–Planck (FP) equation

∂P(x, t)
∂t

= − ∂

∂x
[A(x)P(x, t)] +

1
2M

M

∑
k=1

∂2

∂x2 [B(x)P(x, t)] , (4.23)

with

A(x) = Ω+(x)−Ω−(x) = (1− x)k+B− k−x, (4.24)

B(x) = Ω+(x) + Ω−(x) = (1− x)k+B + k−x. (4.25)

The solution to the FP equation (4.23) determines the probability density function for

a corresponding Ito stochastic process X(t), which evolves according to the stochastic

differential equation (SDE)

dX = A(X)dt +

√
B(X)

M
dW(t). (4.26)

Here W(t) denotes an independent Wiener process such that

〈W(t)〉 = 0, 〈W(t)W(s)〉 = min(t, s). (4.27)

We now make the approximation λ(t) = ηMX(t). (Certain care must be taken, however,

since there is a nonzero probability that X(t) becomes negative. We will assume that this

does not cause problems for sufficiently large M.)

4.1.3 RanGTP Model of IFT Flux Regulation

The one remaining component of the model is the specification of the length-dependent

function C0(L) of the IFT binding rate k+. Ludington et al. [76] considered several different

signaling mechanisms for generating this length dependence. For the sake of illustration,
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we will consider one of the models that fit particularly well with photobleaching data. It is

a diffusion-based model of RanGTP concentration gradient formation. RanGTP is a small

enzyme that is known to play an important role in regulating nuclear transport through

the nuclear pore complex, and it is hypothesized that RanGTP plays an analogous role

in regulating IFT particle influx. In particular, a decrease in RanGTP concentration at the

basal body as cell length increases leads to a reduction in IFT particle influx.

Suppose that RanGTP is produced at a rate σ at the tip (x = L), resulting in a concentra-

tion gradient; see Figure 4.4. Assume that cytoplasmic RanGTP concentration is negligible

and κ is the flow rate through the pore at x = 0. Then the RanGTP concentration per unit

volume C(x, t) evolves as

∂C
∂t

= D
∂2C
∂x2 − γC, x ∈ [0, L], (4.28)

where γ is a degradation rate. The boundary conditions are

D
∂C
∂x

= κC, x = 0; D
∂C
∂x

= σ, x = L. (4.29)

Integrating equation (4.28) with respect to x and using the boundary conditions gives

dR
dt

= σ− κC(0, t)− γR, (4.30)

where R(t) is the total number of RanGTP molecules per unit area,

R(t) =
∫ L

0
C(x, t)dx. (4.31)

If we assume that diffusion is fast so that the characteristic length
√

D/γ� L, then C(x, t)

is approximately uniform and we can take C(0, t) ≈ R(t)/L. Therefore,

dR
dt

= σ− κ
R
L
− γR. (4.32)

Equation (4.32) has the steady-state solution

R =
σL

γL + κ
, (4.33)

so that the concentration at the basal pore is

C0 = C0(L) =
σ

γL + κ
. (4.34)

Typical values of the parameters are [76]

σ ∼ 5− 20/s, κ ∼ 5− 25µm/s, γ ∼ 10− 400/s. (4.35)

Unless stated otherwise, we will take γ/σ = 4 and κ/σ = 1µm.



79

σRanGTP

k+

k-

basal body
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κ

Figure 4.4. Schematic diagram of RanGTP concentration gradient model of IFT flux
regulation. A source of RanGTP at the tip of the flagellum sets up a concentration gradient
along the flagellum resulting in a length-dependent concentration of RanGTP in the basal
body. This in turn regulates the binding rate of IFTs to sites in the basal body.

4.2 Analysis of Model Using the Theory of Doubly Stochastic
Poisson Processes

In this section, we use the theory of DSPPs to analyze our model of flagellar length

control.

4.2.1 Doubly Stochastic Poisson Process

Combining the two sources of noise outlined in sections 4.1.1 and 4.1.2, the homoge-

neous Poisson process given by equation (4.5) becomes a DSPP. That is, {N(t), t ≥ 0} is a

counting process with positive intensity λ(X(t)) = ηMX(t), which depends on a second

independent stochastic process {X(t), t ≥ 0} with X(t) the fraction of bound IFTs in the

basal body. The latter evolves according to the SDE (4.26). For a given realization of the

continuous stochastic process up to time t, {X(s), 0 ≤ s < t}, the conditional probability

density Pn(t) ≡ E [P[N(t) = n|{X(s), 0 ≤ s < t}]] satisfies the master equation

dPn

dt
= λ(X(t))[Pn−1(t)− Pn(t)], (4.36)

which has the solution

Pn(t) =
(Λ(t))n

n!
e−Λ(t), (4.37)

with

Λ(t) =
∫ t

0
λ(X(t′))dt′. (4.38)

We now observe that the rate function Λ(t) is itself stochastic with respect to different

realizations {X(s), 0 ≤ s < t}. Therefore, in order to determine the probability Pn(t) that
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the number of events in [0, t) satisfies N(t) = n, it is necessary to average with respect to

these different realizations. That is,

Pn(t) = EX [P[N(t) = n|{X(s), 0 ≤ s < t}]

= EX

[
1
n!

(∫ t

0
λ(X(s))ds

)n

exp
(
−
∫ t

0
λ(X(s))ds

)]
, (4.39)

where EX denotes expectations with respect to the stochastic process X. Introducing the

characteristic function

GΛ(t)(z) = EX

[
eizΛ(t)

]
, (4.40)

it immediately follows that Pn(t) is related to the nth derivative of GΛ(t)(z):

Pn(t) =
(−i)n

n!
G(n)

Λ (i). (4.41)

Furthermore, we can express the characteristic function for N(t) in terms of GΛ(t):

GN(t)(z) ≡ E
[
eizN(t)

]
= ∑

n≥0
eiznPn(t) = ∑

n≥0
EX

[
1
n!

(
eizΛ(t)

)n
e−Λ(t)

]

= EX

[
∑
n≥0

(
1
n!

(
eizΛ(t)

)n
)

e−Λ(t)

]
= EX

[
eeizΛ(t)e−Λ(t)

]

= GΛ(t)(i− ieiz). (4.42)

It immediately follows that

E[N(t)] ≡ −i
dGN(t)(z)

dz

∣∣∣∣∣
z=0

= −i
dGΛ(t)(i− ieiz)

dz

∣∣∣∣∣
z=0

= EX[Λ(t)]. (4.43)

In order to determine more general statistics of the DSPP such as the covariance, we

need to determine the joint characteristic function of a finite set of variables {N(t1), . . . , N(tm)}.
This can be achieved using the notion of a characteristic functional [10]. The latter is

defined according to

ΦN [v] ≡ E

[
exp

(
i
∫ T

0
v(σ)dN(σ)

)]
, (4.44)

for fixed T, where v is a real-valued function and the integral is a counting integral, that is,

∫ T

0
v(σ)dN(σ) =

N(T)

∑
i=1

v(ωi), (4.45)

with ωi denoting the occurrence times of the DSPP. Expectation is taken with respect to

both stochastic processes N(t), X(t). In order to evaluate the characteristic functional,
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we first condition on a particular realization {x(t), 0 ≤ t ≤ T} of the stochastic process

X(t) over the time interval [0, T]. We write the corresponding conditioned characteristic

functional as

ΦN [v|x] ∼ E

{
exp

(
i

M

∑
k=1

v(σk)∆N(σk)

)}
. (4.46)

Following along analogous lines to the analysis of path-integrals [12], we have discretized

time into M intervals of size ∆σ, and expectation is taken with respect to the inhomoge-

neous Poisson process with intensity λ(t) = λ(X(t)). (We are assuming that the limit

M→ ∞, ∆σ→ 0 with M∆σ = T is well-defined.) It follows that

ΦN [v|x] ∼
M

∏
k=1

[(1− λ(σk)∆σ) + λ(σk)∆σ exp (v(σk))]

∼
M

∏
k=1

exp
([

eiv(σk) − 1
]

λ(σk)∆σ
)
∼ exp

(
M

∑
k=1

[
eiv(σk) − 1

]
λ(σk)∆σ

)
. (4.47)

If we now retake the continuum limit , we see that

ΦN [v|x] = exp
(∫ T

0

[
eiv(σ) − 1

]
λ(σ)dσ

)
. (4.48)

Finally, taking expectation with respect to the stochastic process X(t) yields the result

ΦN [v] = EX

{
exp

(∫ T

0

[
eiv(σ) − 1

]
λ(σ)dσ

)}
. (4.49)

Now take v(σ) to be the following piecewise function [10]:

v(σ) =





∑m
i=1 αi, 0 ≤ σ < t1,

∑m
i=2 αi, t1 ≤ σ < t2,

...
...

αm, tm−1 ≤ σ < tm,
0, tm ≤ σ < T,

(4.50)

where 0 < t1 < t2 < · · · < tm < T. From equation (4.44), the corresponding characteristic

functional is

ΦN [v] = E {exp[i(α1 + · · ·+ αm)N(t1) + i(α2 + · · ·+ αm)(N(t2)− N(t1))

+ · · ·+ iαm(N(tm)− N(tm−1))]}

= E {exp[i(α1N(t1) + · · ·+ αmN(tm))]} = GN(t1),...,N(tm)(α1, . . . , αm), (4.51)
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where GN(t1),...,N(tm) is the joint characteristic function of (N(t1), . . . , N(tm)). On the other

hand, from equation (4.49), we have

ΦN [v] = EX

{
exp

[(
ei(α1+···+αm) − 1

) ∫ t1

0
λ(σ)dσ + · · ·+

(
eiαm − 1

) ∫ tm

tm−1

λ(σ)dσ

]}

= EX

{
exp

[(
ei(α1+···+αm) − ei(α2+···+αm)

)
Λ(t1) + · · ·+

(
eiαm − 1

)
Λ(tm)

]}

= GΛ(t1),...,Λ(tm)

(
−iei(α1+···+αm) + iei(α2+···+αm), . . . , i− ieiαm

)
, (4.52)

where GΛ(t1),...,Λ(tm) is the joint characteristic function of (Λ(t1), . . . , Λ(tm))

For the sake of illustration, consider the case m = 2 and the covariance function

RN(t1, t2) = E[N(t1)N(t2)]−E[N(t1)]E[N(t2)]

= −
∂2GN(t1),N(t2)(α1, α2)

∂α1∂α2

∣∣∣∣∣
α1=α2=0

−EX[Λ(t1)]EX[Λ(t2)]

= −
∂2GΛ(t1),Λ(t2)(−iei(α1+α2) + ieiα2 , i− ieiα2)

∂α1∂α2

∣∣∣∣∣
α1=α2=0

−EX[Λ(t1)]EX[Λ(t2)]

= EX[Λ(t1)Λ(t2)] + EX[Λ(t1)]−EX[Λ(t1)]EX[Λ(t2)]

= RΛ(t1, t2) + EX[Λ(t1)]. (4.53)

Expressing Λ(t) in terms of the intensity finally gives

RN(t1, t2) =
∫ t1

0

∫ t2

0
Rλ(τ, τ′)dτdτ′ +

∫ t1

0
EX[λ(τ)]dτ, t1 < t2, (4.54)

where

Rλ(τ, τ′) = EX[λ(τ)λ(τ
′)]−EX[λ(τ)]EX[λ(τ

′)]. (4.55)

4.2.2 Calculation of Mean and Variance of IFT Numbers within Flagellum

The above analysis shows that determining the first-order and second-order statistics of

the number N(t) of injected IFT particles requires calculating the corresponding statistics

of the stochastic intensity λ(X(t)) = ηMX(t), where X(t) is the fraction of bound binding

sites in the basal body. Thus, calculating the mean and covariance of the intensity reduces

to determining these quantities for the solution of the SDE (4.26). Performing the Ito

integral shows that

X(t) = X∗
[
1− e−Γt

]
+ X0e−Γt +

√
Γ
M

∫ t

0
e−Γ(t−t′)

√
X∗ + ΘX(t′)dW(t′), (4.56)
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for a fixed initial condition X(0) = X0 with X∗ given by equation (4.3) and

Γ = k+B + k−, Θ =
k− − k+B
k− + k+B

. (4.57)

It follows that

〈X(t)〉 = X∗
[
1− e−Γt

]
+ X0e−Γt, (4.58)

and so

E[N(t)] = ηM
∫ t

0
〈X(τ)〉dτ = ηM

(
X∗t +

X0 − X∗

Γ

[
1− e−Γt

])
, (4.59)

For t1 < t2, we also have

RX(t1, t2) ≡ 〈[X(t1)− 〈X(t1)〉][X(t2)− 〈X(t2)〉]〉

=
Γ
M

∫ t1

0
e−Γ(t1−s)

∫ t2

0
e−Γ(t2−s′)

〈√
[X∗ + ΘX(s)][X∗ + ΘX(s′)]dW(s)dW(s′)

〉

=
Γ
M

∫ t1

0
e−Γ(t1+t2−2s)[X∗ + Θ〈X(s)〉]ds

=
Γ
M

e−Γ(t1+t2)

(
X∗(1 + Θ)

∫ t1

0
e2Γsds + Θ[X0 − X∗]

∫ t1

0
eΓsds

)

=
X∗(1 + Θ)

2M

(
e−Γ[t2−t1] − e−Γ[t1+t2]

)
+

Θ[X0 − X∗]
M

(
e−Γt2 − e−Γ[t1+t2]

)
. (4.60)

The case t1 > t2 is taken into account by exchanging t1, t2. Hence, setting Rλ = (ηM)2RX

in equation (4.54) gives

RN(t1, t2) =
Mη2X∗(1 + Θ)

2

∫ t1

0

∫ t2

0
(e−Γ|τ′−τ| − e−Γ[τ+τ′])dτdτ′

+ Mη2Θ[X0 − X∗]
∫ t1

0

∫ t2

0
(e−Γ max{τ,τ′} − e−Γ[τ+τ′])dτdτ′ + E[N(t1)]

= Mη2
[

X∗(1 + Θ)

2
A(t1, t2) + Θ[X0 − X∗]B(t1, t2)

]
+ E[N(t1)], (4.61)

where

A(t1, t2) =
2t1

Γ
− 2

Γ2

[
1− e−Γt1

]
+

1
Γ2

[
1− e−Γ(t2−t1) − e−Γt1 + e−Γt2

]

− 1
Γ2

[
1− e−Γt1

] [
1− e−Γt2

]
, (4.62)

and

B(t1, t2) =
2
Γ2

[
1− e−Γt1

]
− t1

Γ

[
e−Γt1 + e−Γt2

]
− 1

Γ2

[
1− e−Γt1

] [
1− e−Γt2

]
. (4.63)

In particular, setting t1 = t2 = t yields the variance

Var[N(t)] = Mη2
[

X∗

2
A(t) + X∗

2
Θ[A(t)− 2B(t)] + ΘX0B(t)

]
+ E[N(t)], (4.64)
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with

A(t) = 2t
Γ
− 2

Γ2

[
1− e−Γt

]
− 1

Γ2

[
1− e−Γt

]2
(4.65)

and

B(t) = 2
Γ2

[
1− e−Γt

]
− 2t

Γ
e−Γt − 1

Γ2

[
1− e−Γt

]2
. (4.66)

Note that A(t) > 2B(t) > 0 for all t > 0 and

Var[N(t)] > E[N(t)]. (4.67)

The latter is a basic property of DSPPs, namely, that the variance is greater than a Poisson

process with intensity given by the mean of the stochastic intensity - a feature known as

over-dispersion. Ignoring transient statistics, we conclude that for large t,

E[N(t)] ∼ λ0t, λ0 = ηMX∗, (4.68)

and

Var[N(t)] ∼ λ1t, λ1 = λ0 + η2MX∗
1 + Θ

Γ
. (4.69)

Using a similar analysis to section 4.1.1, it follows that

E[F(t)] ∼ λ0T, Var[F(t)] ∼ λ1T. (4.70)

4.2.3 Numerical Results

We simulate the DSPP using a thinning algorithm [75] as follows. Consider a nonho-

mogeneous Poisson process on the time interval [0, T] with rate function λ(t), and assume

there exists a constant λ∗ such that λ∗ ≥ λ(t) on [0, T]. To simulate the nonhomogeneous

Poisson process, first consider the homogeneous Poisson process with rate λ∗. We now

generate a sequence of times T1, T2, ..., Tm, for m ∈ N with 0 < T1 < T2 < ... < Tm ≤ T,

with Ti, i = 1, ..., m corresponding to the time of the ith injection of IFTs docked at the basal

body into the flagellum. To obtain the sequence of injection times for the nonhomogeneous

Poisson process with rate λ(t), we accept each Ti generated from the homogeneous Poisson

process with probability λ(Ti)/λ∗. The resulting sequence of injection times corresponds

to the nonhomogeneous Poisson process with rate function λ(t). For a rigorous proof of

this, see [75]. For our particular model, we employ the thinning algorithm by utilizing the

following procedure:
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1. Generate a stochastic trajectory X(t) according to equation (4.26) on the interval

[0, T].

2. Compute λ(X(t)) = ηMX(t) and let λ∗ = max(λ(X(t))).

3. Generate a sequence of times T1, T2, ..., Tm with 0 < T1 < T2 < ... < Tm ≤ T from an

exponential distribution with parameter λ∗.

4. For each Ti, i = 1, .., m, generate a random number Ui distributed uniformly on the

interval [0, 1].

5. If λ(X(Ti))
λ∗ ≥ Ui accept Ti as a firing time generated by the nonhomogeneous Poisson

process with rate λ(X(t)). Otherwise, do not include Ti as a firing time generated by

the nonhomogeneous Poisson process.

In Figure 4.5 we show histograms for the number of IFTs injected into the flagellum on

the time interval [0, T] generated from the numerical procedure elucidated above for cases

where M = 200 and M = 20. Both of these stochastic processes depict over-dispersion. We

can see that the histogram in the small M case is considerably noisier than the histogram

in the large M case, which is relatively smooth. This dichotomy in the histograms depicts

the beginning of the breakdown of the system-size expansion in the small M regime. In

Figure 4.6, we show plots of 〈N(T)〉 and the coefficient of variation,
√

Var[N(T)]/〈N(T)〉,
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Figure 4.5. Histogram depicting N(T) for L = 10µm over 1000 trials. (a) M = 20. Here,
〈N(T)〉 = 43.477 and Var[N(5)] = 50.599. (b) M = 200. Here, 〈N(T)〉 = 433.284 and
Var[N(T)] = 435.989. Both histograms depict over-dispersion. Other parameter values
are B = 100, σ = κ = 5, η = 1, γ = 20, k− = 1, τ = 1, v = 2, k+ = 1.
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Figure 4.6. Simulation of the DSPP with using equation (4.26) averaged over 100 trials. (a)
Plot of 〈N(T)〉. Simulations with error bars shown in blue. Analytical curve shown in red.
(b) Plot of coefficient of variation versus ciliary length. Blue points are simulation results.
Analytical curve shown in red. Other parameter values are η = 1, σ = κ = 5, γ = 20,
B = 100, M = 200, k− = 10,k+ = 1, τ = 1, v = 2.

versus ciliary length, with stochastic trajectories generated by the aforementioned numer-

ical procedure, and compare them to the analytical results given in equations (4.59) and

(4.64) (In particular, to compute the coefficient of variation, we take the square root of

equation (4.64) and divide by equation (4.59).) The numerical results are in very good

agreement with the analytical curves.

4.3 Modified Stochastic Model for Small M
Our formulation of flagellar length control as a DSPP relied on the assumption that the

number M of binding sites within the basal body is sufficiently large so that the binding

process is independent of the Poisson process (but not vice versa). On the other hand,

when M = O(1), we have to consider the joint stochastic process that simultaneously

keeps track of the number of bound IFTs N(t) and the number M(t) particles injected

into the flagellum. The master equation for Pm,n(t) = P(M(t) = m, N(t) = n|M(0) =

m0, N(t) = 0) is

dPm,n

dt
= k+B(M−m + 1)Pm−1,n(t) + k−(m + 1)Pm+1,n(t) (4.71)

− [k+B(M−m) + k−m]Pm,n(t) + η(m + 1)Pm+1,n−1(t)− ηmPm,n(t).

The mean number of particles injected in the interval [0, t] is
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〈N(t)〉 =
M

∑
m=0

∑
n≥0

nPm,n(t), (4.72)

and the mean number of particles within the flagellum at time t is

〈F(t)〉 = 〈N(t)〉 − 〈N(t− T)〉. (4.73)

Unfortunately, is not possible to obtain exact analytical solutions to the full master equa-

tion, so we will investigate the effects of small M using computer simulations. However,

before presenting our numerical results, it is important to understand how the master

equation (4.71) is related to the DSPP master equation (4.36) for large M. The first step is to

carry out a partial system-size expansion of equation (4.71) with respect to the number of

bound IFTs m along similar lines to section 4.2.2. Setting Pn(x, t) = Pm,n(t) with m = Mx,

we obtain the differential Chapman–Kolmogorov (CK) equation

∂Pn(x, t)
∂t

= − ∂

∂x
[A(x)Pn(x, t)] +

1
2M

∂2

∂x2 [B(x)Pn(x, t)]

+ λ(x)Pn−1(x, t)− λ(x)Pn(x), (4.74)

with λ(x) = ηMx. The next step is to show that

Pn(x, t) = E[Pn(t)1X(t)=x], (4.75)

where Pn(t) is the solution to the stochastic master equation (4.36) and the expected value

is taken with respect to the Brownian process X(s), 0 ≤ s < t. We will establish this using

the theory of Brownian functionals.

4.3.1 Feynman–Kac Formula and Reduction to a DSPP

Let X(t) ∈ R represent Brownian motion, such as the solution to the SDE (4.26). A

Brownian functional over a fixed time interval [0, t] is formally defined as a random variable

Λ given by

Λ =
∫ t

0
U(X(τ))dτ, (4.76)

where U(x) is some prescribed function or distribution such that Λ has positive support.

In our case, we take U(X(t)) = λ(X(t)) = ηMX(t) and identify Λ(t) with the rate function

of the DSPP. Since X(t), t ≥ 0 is a Wiener process, it follows that each realization of a

Brownian path will typically yield a different value of Λ, which means that Λ will be
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distributed according to some probability density P(Λ, x, t|x0, 0) for X(0) = x0 and X(t) =

x. The statistical properties of a Brownian functional can be analyzed using path integrals,

and lead to the well-known Feynman–Kac formula [54]. For a general review of Brownian

functionals and their applications, see reference [79]. Here we briefly indicate the steps in

the derivation of the Feynman–Kac formula. Motivated by the analysis of DSPPs in section

4.2.1, introduce the characteristic functional

G(z, x, t|x0, 0) =
∫ ∞

0
e(iz−1)ΛP(Λ, x, t|x0, 0)dΛ. (4.77)

Using the classical path-integral representation of Brownian motion, we have

G(z, x, t|x0, 0) =
∫ ∞

0
e(iz−1)Λ

[∫ x(t)=x

x(0)=x0

δ

(
Λ−

∫ t

0
λ(x(τ))dτ

)
P[x]D[x]

]
dΛ

=

[∫ x(t)=x

x(0)=x0

exp
(
(iz− 1)

∫ t

0
λ(x(τ))dτ

)
P[x]D[x]

]

= E

[
exp

(
(iz− 1)

∫ t

0
λ(x(τ))dτ

)]x(t)=x

x(0)=x0

. (4.78)

Now note that

G(z, x, t + ∆t|x0, 0) = E

[
exp

(
(iz− 1)

∫ t+∆t

0
λ(x(τ))dτ

)]x(t+∆t)=x

x(0)=x0

(4.79)

≈
∫

p(∆W)E

[
exp

(
(iz− 1)

∫ t

0
λ(x(τ))dτ

)]x(t)=x−∆x

x(0)=x0

(4.80)

× exp ((iz− 1)λ(x)∆t) d∆W. (4.81)

We have split the time interval [0, t + ∆t] into two parts [0, t] and [t, t + ∆t] and introduced

the intermediate state x(t) = x− ∆x with; see equation (4.26),

∆x = A(x− ∆x)∆t +

√
B(x− ∆x)

M
∆W(t). (4.82)

It follows that

G(z, x, t + ∆t|x0, 0) = e(iz−1)λ(x)∆t
∫

p(∆W)G(s, x− ∆x, t|x0, 0)d∆W (4.83)

= e(iz−1)λ(x)∆t
(

G(z, x, t|x0, 0) +
∂

∂x
〈∆x〉G(z, x, t|x0, 0) (4.84)

+
∂2

∂x2 〈∆x2〉G(z, x, t|x0, 0) + . . .
)

. (4.85)

Using the fact that for the SDE (4.26)

lim
∆t→0

〈∆x〉
∆t

= A(x), lim
∆t→0

〈(∆x)2〉
∆t

= B(x), (4.86)
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we obtain, in the limit ∆t→ 0, the desired Feynman–Kac formula in the form of a modified

Fokker–Planck equation:

∂G
∂t

= −∂A(x)G
∂x

+
∂2B(x)G

∂x2 + (iz− 1)λ(x)G. (4.87)

Note that G satisfies the initial condition

G(x, t0|x0, t0) = δ(x− x0). (4.88)

The final step in connecting the master equation (4.36) with the CK equation (4.74) is to

note that

E[Pn(t)1X(t)=x] =
1
n!

(
−i

∂

∂z

)n

G(z, x, t|x0, 0)
∣∣∣∣
z=0
≡ Gn(x, t). (4.89)

Therefore, differentiating equation (4.87) with respect to z yields

∂Gn

∂t
= −∂A(x)Gn

∂x
+

∂2B(x)Gn

∂x2 − λ(x)Gn + λ(x)Hn, (4.90)

where

Hn(x, t) =
1
n!

(
−i

∂

∂z

)n

{izG(z, x, t|x0, 0)}
∣∣∣∣
z=0

. (4.91)

It is straightforward to establish that Hn(x) = Gn−1(x) and thus, equation (4.90) is equiv-

alent to equation (4.74) on identifying Pn(x, t) with Gn(x, t).

4.3.2 Numerical Results

For numerical simulation of the system in the small M regime, we use a continuous-

time Monte Carlo algorithm based on the Gillespie algorithm [35]. Plots for 〈N(T)〉 and

the coefficient of variation versus ciliary length are shown in Figure 4.7. In the large M

regime (Figure 4.7a and Figure 4.7b), we find that the stochastic curve generated from

the chemical master equation (4.74) is in good agreement with the analytical results from

equations (4.59) and (4.64). This is numerical evidence for the equivalency of the chemical

master equation and the DSPP in the large M limit. Figure 4.7c and Figure 4.7d depict

the mean and coefficient of variation of injected IFTs versus ciliary length in the small

M regime. As noted previously, the system-size expansion breaks down in this regime,

whereas the chemical master equation (4.74) holds for all M values. This is indicated by

the difference between the results of the stochastic simulations and the analytical curves

in Figure 4.7c and Figure 4.7d.
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Figure 4.7. Simulation results of equation (4.74) averaged over 200 trials. Figures (a) and
(b) have M = 200. Figures (c) and (d) have M = 5. Other parameter values are the same
as Figure 4.6.

4.4 Discussion
In this chapter, we presented a description of flagellar length control based on a Doubly

Stochastic Poisson Process (DSPP) wherein we assumed the injection times of IFT into a

flagellum from the basal body are given by a nonhomogeneous Poisson process whose rate

is based on the number of IFTs bound at the basal body. The number of IFTs bound to the

basal body in turn evolves according to a stochastic birth death process, hence rendering

the Poisson rate of injection times of IFT into the flagellum stochastic. In the case where the

number of binding sites on the basal body is sufficiently large, we invoked the system-size

expansion to derive a Langevin equation describing the time evolution of the density of

occupied binding sites. We showed how the statistics of the number of IFTs injected into

the flagellum are related to the density of occupied sites on the basal body in the large M

limit using a characteristic functional argument. In particular, we showed how the solution

of the DSPP exhibits over-dispersion. We then relaxed the condition that the number of
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binding sites is large and described the full stochastic process using a chemical master

equation. We then invoked the Feynman–Kac formula to describe how the chemical master

equation reduces to the DSPP. In particular, we have shown that the underlying dynamics

of our DSPP are completely described by a chemical master equation.

We also point out that our doubly stochastic description of IFT injection into the flagel-

lum supports the existence of a unique equilibrium flagellar length, in agreement with the

model in [82]. We show this in Figure 4.8, where we plot 〈N(T)〉/L versus ciliary length.

We find the curve monotonically decreases, indicating that for any constant ζ ≡ 2V/av

(with the parameters defined in the introduction to this chapter), there is a unique length

L∗ such that 〈N(T)〉/L∗ = ζ.

There are a number of possible extensions of our work. In this model, we have assumed

the motion of the IFTs along the flagellum is ballistic, whereas in reality, the motion is more

random. We can model this by describing the motion of the IFTs by an advection–diffusion

equation, for example, along the lines of Chapter 2. It would also be interesting to see the

impact of allowing for the τ parameter, which reflects the amount of time spent at the tip

of the flagellum by the IFT, to be a random variable. Generalizing more, another aspect to

study would be to consider the cases where the number of particles available to bind to a
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Figure 4.8. Plot showing relationship between average number of IFTs in flagellum and
ciliary length, and the existence of a unique stationary flagellum length for some constant
ζ. Parameter values are the same as Figure 4.6.
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basal body (in our model this is represented by B) is finite and is divided between two or

more competing flagella [36, 94] .



CHAPTER 5

AXONAL LENGTH SENSING

The problem of length control highlighted early in Chapter 4 is particularly acute for

the axons of neurons, which exhibit the most significant size differences of any cell type,

ranging from several microns to a meter in humans. It is likely that different growth mech-

anisms operate at different stages of development [37]. For example, the initial growth of

an axon is determined by preprogrammed transcription factor levels (quantal synthesis)

[70], whereas the interstitial growth rates of axons that have connected to their targets is

driven by stretching of the organism [112]. A major question is whether or not there is an

intrinsic length sensor that can coordinate between transcriptional and metabolic process

controlled by the nucleus and the differential growth and maintenance of axonal length.

In vitro experimental studies of axonal growth in a variety of neuronal types support the

existence of intrinsic length sensors [38, 55, 90, 106], but the underlying mechanisms are

still largely unknown. Given the lengths involved, it is unlikely that a diffusion-based

mechanism or a molecular ruler such as a microtubule can be involved.

Recently, Rishal et al. [3, 102] have proposed a bidirectional motor transport mech-

anism for cellular-length sensing in axons, which would form the front-end of a length

control mechanism that is distinct from [I]-[III] listed above. A schematic illustration of

the motor-based model is shown in Figure 5.1. An anterograde signal is transported by

kinesin motors from the cell body to the tip of the growing axon, where it activates the

dynein-mediated transport of a retrograde signal back to the cell body. The retrograde

signal then represses the anterograde signal via negative feedback, resulting in an oscillat-

ing retrograde signal whose frequency decreases with axon length. If axonal growth rates

are correlated with this frequency, then spatial information regarding the length of the

axon can be communicated to the cell body, where the frequency-dependent activation of

transcription factors [21] could regulate axonal growth. One major prediction of the model
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anterograde signal

retrograde signal

growth
cone

Figure 5.1. Schematic diagram of bidirectional motor-transport mechanism for axonal
length sensing hypothesized by Rishal et al. [102]. A kinesin-based anterograde signal
activates a dynein-based retrograde signal that itself represses the anterograde signal via
negative feedback. The frequency of the resulting oscillatory retrograde signal decreases
with axonal growth.

based upon computer simulations is that reducing either anterograde or retrograde signals

(by the partial knockdown of kinesin or dynein motor activity) should increase axonal

length. This prediction has been confirmed experimentally in peripheral sensory neurons

[102]. Note that a previous model of Kam et al. [55] is inconsistent with the experimental

data. The earlier model assumes that the unidirectional transport of a retrograde signal

by dynein motors maintains axonal growth until the signal at the cell body becomes too

weak due to a constant rate of signal loss en route. In this case, the partial knockdown

of motor activity would lead to shorter axons. The experimental results therefore provide

circumstantial evidence for frequency-encoded axonal length. Such cellular behavior has

been shown to exist in the context of protein production in response to the gonadotropic

releasing hormone (GnRH), which pulses at various frequencies over time [65]. Distinct

frequencies have been observed to induce the production of disparate proteins. This phe-

nomenon was mathematically analyzed in reference [65]. The results suggest that cellular

decoding of frequency-encoded information is possible due to the difference in time scales

for gene activity and protein lifetime. Even more interestingly, it has been shown that

cells are able to keep protein levels with less variability in response to a pulsatile signal as
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opposed to a constant signal [117].

In this chapter, we develop a mathematical model of the biophysical mechanism pro-

posed by Rishal et al. [102], in order to carry out a more systematic investigation of the

dynamical process generating oscillations, and how the oscillation frequency depends on

various biophysical parameters. We first consider a simple delay-differential equation

with negative feedback that models the chemical signals at the somatic and distal ends

of the axon (see section 5.1.1). The molecular motors are not modeled explicitly; rather

their active transport is assumed to introduce a discrete delay that varies linearly with

axonal length. We show how oscillations arise at a critical axonal length via a Hopf bifurca-

tion, and obtain a length-dependent frequency consistent with the previous computational

model (see section 5.1.2). We then construct a system of advection–diffusion equations that

couple the chemical signaling with the active transport of kinesin and dynein motors (see

section 5.1.3). Each advection–diffusion equation is an effective mean field equation for

the transport of a population of motors of a given type, which randomly switch between a

motile state (bound to a microtubule) and a diffusive state (unbound to a microtubule) (see

section 1.1). In section 5.2, we use Green’s functions to show how the advection–diffusion

model is structurally similar to the delayed-feedback model. Now, however, the discrete

delay is replaced by a distribution of delays. In section 5.3, we use numerical simulations

to confirm that the PDE model supports a similar length-dependent frequency to the de-

layed feedback model. We also show how knockdown of either motor type increases the

frequency, thus leading to longer axons as found experimentally. One prediction of our

model is that the critical axonal length at which oscillations first occur increases with the

diffusivity D, but the frequency of oscillations beyond criticality is relatively insensitive to

D. Although the diffusion term partially captures the stochastic nature of motor transport,

there are additional levels of stochasticity that are not captured by the mean-field model.

By carrying out numerical simulations of (i) the computational model of Rishal et al.

[102] and (ii) a stochastic version of our advection–diffusion model, we show that there

are fluctuations in the frequency of the oscillatory signal whose coefficient of variation

(standard deviation/mean) increases monotonically with length. This suggests that the

proposed mechanism for axonal length sensing could break down for long axons.

In sections 5.4 and 5.5, we explore the decoding of the oscillatory chemical signal. First
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we imagine feeding the oscillating retrograde signal from this model into a feed-forward

serial gene network. We find that the mean protein output from such a gene network is

a monotonically decreasing function of axonal length, thus providing a faithful represen-

tation of axonal length. If the protein output were thresholded, then this could provide a

mechanism for axonal length control. We then investigate the impact of intrinsic noise due

to finite copy numbers within the gene network on the relationship between mean protein

output and axonal length, and obtain some error estimates for the critical axonal length.

5.1 Model Formulation
We now elucidate our mathematical model of the biophysical mechanism proposed by

Rishal et al. [102].

5.1.1 Delayed Feedback Model

Consider an axon of length L with x = 0 corresponding to the proximal end (adjacent

to the cell body or soma) and x = L corresponding to the distal end (axonal tip). In

this section, we will ignore the dynamics of L by exploiting the fact that axonal growth

occurs much more slowly than the time-scales of motor transport. Under this adiabatic

approximation , we can treat L as fixed and investigate the occurrence of oscillations in

chemical signaling for fixed length. This will then be used to determine how the frequency

of oscillations varies as a function of length. Let uE(t) denote the anterograde chemical

signal at x = L and time t, which is transported by kinesin motors from the proximal end

at x = 0. Similarly, let uI(t) denote the retrograde signal at x = 0 at time t, which is

transported by dynein motors from the distal end x = L. For the moment, we will assume

the simplest possible model of active transport, in which both types of motor travel at a

constant speed v along the axon (via binding to polarized microtubules). This means that

for given length L, there is delay τ = L/v between the production of a signal at one end

and its arrival at the opposite end. This motivates the following delayed feedback model

(see Figure 5.2):

duE

dt
= I0 − γuE −WI f (uI(t− τ)), (5.1a)

duI

dt
= −γuI + WE f (uE(t− τ)), (5.1b)
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Figure 5.2. Schematic diagram of feedback model. See text for details.

with γ a decay rate. For simplicity, we take the decay rate to be the same for both chemical

signals. The weights WE and WI determine the strength of the positive and negative

feedback terms based on some form of Michaelis–Menten kinetics so that f is given by

the Hill function

f (u) =
un

Kn + un , (5.2)

for dissociation constant K and Hill coefficient n. We take n = 4 and fix the scale of the

weights WE, WI and the input I0 by setting K = 2. The constant input I0 determines the

rate at which kinesin packets are released at x = 0 in the absence of negative feedback

(WI = 0). In order to match up with the results of Rishal et al. [102], we take γ−1 = 100

sec. Since kinesin and dynein motor velocities v are on the order of 1 µm/sec, it follows

that τγ = 1 corresponds to an axonal length of 100 µm. In the following, we fix the units

of time by setting γ = 1.

5.1.2 Linear Stability Analysis

In order to relate our model to the length-sensing mechanism hypothesized by Rishal

et al. [102], we look for a periodic solution of the coupled system given by equation (5.1)

and determine how the effective frequency ω of the solution (if it exists) depends on the

delay τ and thus on the axonal length L. First, setting time derivatives to zero in equation

(5.1) yields the steady-state solutions u∗E and u∗I :

u∗E = I0 −WI f (u∗I ), u∗I = WE f (u∗E). (5.3)

Linearizing equation (5.1) about the steady state yields the linear system
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ẏE = −yE − αIyI(t− τ), (5.4a)

ẏI = −yI + αEyE(t− τ), (5.4b)

where, for P = E, I, yP(t) ≡ uP(t)− u∗P, ẏP ≡ dyP/dt, and αP ≡ WP f ′(u∗P). This has the

solution yP(t) = eλtYP with λ determined from the eigenvalue equation

(λ + 1)eλtYE = −αIYIeλ(t−τ), (5.5a)

(λ + 1)eλtYI = αEYEeλ(t−τ). (5.5b)

Following a standard analysis of delay differential equations, we determine necessary

conditions for the emergence of a time-periodic solution via a Hopf bifurcation by setting

λ = iω and YP = UP + iVP in equations (5.5a) and (5.5b). Equating real and imaginary

parts in the resulting system yields a matrix equation A(UE, VE, UI , VI)
> = 0 with

A =




1 −ω αI cos (ωτ) αI sin (ωτ)
ω 1 −αI sin (ωτ) αI cos (ωτ)

−αE cos (ωτ) −αE sin (ωτ) 1 −ω
αE sin (ωτ) −αE cos (ωτ) ω 1


 . (5.6)

In order for (UE, VE, UI , VI)
T to be nontrivial, we require the matrix A to have a zero

determinant. It turns out that this holds if UI = VE = 0 and VI = ±√αE/αIUE. We

thus obtain the following conditions for a Hopf bifurcation:

ω = cot (ωτ),
√

αEαI sin (ωτ) = 1, (5.7)

Clearly these conditions cannot be satisfied in the absence of a delay (τ = 0). Indeed,

setting τ = 0 in equations (5.5a) and (5.5b) shows that there exists a pair of eigenvalues

given by λ± = −1±√−αIαE. Since the real part of λ± is always negative, it follows that

the steady state (u∗E, u∗I ) is stable, and periodic solutions cannot exist in the absence of a

delay. On the other hand, if
√

αEαI > 1, then a pair of complex conjugate eigenvalues

crosses the imaginary axis at a critical positive delay τc, which depends on
√

αEαI ; see

Figure 5.3a. Although this is not sufficient to guarantee the emergence of a stable periodic

solution via a supercritical Hopf bifurcation for τ > τc, the existence of stable oscillations

beyond the Hopf bifurcation point can be verified numerically as illustrated in Figure 5.4.

Moreover, the frequency of the oscillation decreases monotonically with τ such that there

is an approximately five-fold decrease in frequency when axonal length reaches ∼1000µm

(see Figure 5.3b). This is in agreement with the computational model of Rishal et al. [102].
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Figure 5.3. Plots verifying the existence of the relationship between axonal length and
oscillation frequency. (a) Plot of critical delay τc as a function of the effective coupling
parameter

√
αEαI . Both are in units of 100 sec. (b) Frequency of periodic solutions plotted

against axonal delay. Parameter values as in Figure 5.4.

The Hopf Bifurcation condition given by equation (5.7) can only be satisfied if
√

αEαI >

1. Since αP ≡ WP f ′(u∗P), it follows that the strengths WP of the chemical signals carried

by kinesin and dynein, respectively, must be sufficiently strong and/or the Hill function

must be sufficiently steep. The latter suggests that oscillations are facilitated if the interac-

tions between the chemical signals and the opposing molecular motors are cooperative in

nature, as determined by the value of the Hill coefficient n in equation (5.2). In conclusion,

our simple mathematical model makes explicit the crucial role of negative feedback in

the proposed frequency encoding mechanism for axonal length sensing, and provides an

analytical framework for studying such a mechanism. However, as it stands, the model

is too phenomenological. In particular, it does not explicitly take into account the motion

of the molecular motors. In order to incorporate the latter, we now consider a spatially

extended version of our model that takes the form of an advection–diffusion equation.

5.1.3 Advection–Diffusion Model

Let c±(x, t) denote the density of kinesin (+) and dynein (−) motors at position x along

the track. A simple model of active motor transport is to assume the motor densities evolve

according to an advection–diffusion equation [12, 98, 111]:

∂c+
∂t

= −v
∂c+
∂x

+ D
∂c2

+

∂x2 , (5.8a)

∂c−
∂t

= v
∂c−
∂x

+ D
∂c2
−

∂x2 . (5.8b)
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Figure 5.4. Chemical signal oscillations in the delayed feedback model given by equation
(5.1) for various values of the delay (in units of 100 sec): (a) τ = 0.2; (b) τ = 0.29; (c)
τ = 0.75; (d) τ = 1.5. Other parameters values are n = 4, I0 = 6, WE = WI = 5.5 such that
τc ≈ 0.25.

These are supplemented by the following boundary conditions at the ends x = 0, L:

D∂xc+(L, t) = 0, D∂xc−(0, t) = 0, (5.9)

and

J+(0, t) = JE(t), J−(L, t) = JI(t), (5.10)

where we have introduced the fluxes

J±(x, t) = ±vc±(x, t)− D
∂c±
∂x

. (5.11)

The boundary conditions given by equation (5.9) impose the condition that the Fickian

contribution to the flux of motors exiting the axon is zero. We are also assuming that at the

end x = 0, kinesin motors are injected in the anterograde direction at a rate JE(t), whereas

at the end x = L, dynein motors are injected at a rate JI(t) in the retrograde direction. For
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simplicity, we take the mean speed and diffusivity of both motor species to be the same.

Although dynein motors tend to move more slowly than kinesin motors, they are of the

same order of magnitude. Moreover, we obtain similar results if the differences between

the motors are taken into account.

Suppose that each kinesin motor complex carries an amount κE of excitatory chemical

signaling molecules XE and each dynein motor carries an amount κI of inhibitory chemical

signaling molecules XI . When kinesin motors reach x = L, they release the molecules XE,

which then enhance the injection rate of mobile dynein motors, whereas when dynein

motors reach x = 0, they release the molecules XI , which then reduce the injection rate of

mobile kinesin motors. We thus take

JE(t) = v(IE − wI f [uI(t)]), (5.12a)

JI(t) = −vwE f [uE(t)], (5.12b)

where uE(t) is the concentration of XE at x = L, uI(t) is the concentration of XI at x =

0, and IE is the flux of kinesin motors injected at the proximal end. The latter evolve

according to the pair of equations

duE

dt
= −γuE + κEc+(L, t), (5.13a)

duI

dt
= −γuI + κIc−(0, t). (5.13b)

In the case of pure ballistic motor transport at a fixed speed v and D = 0, the above

model reduces to our delayed feedback model. First note that the solution to equations

(5.8) have the simple form

c+(x, t) = F+(t− x/v), c−(x, t) = F−(t + x/v), (5.14)

with the functions F± determined by the boundary conditions equation (5.10) - the bound-

ary conditions (5.9) are not needed for these quasilinear differential equations. Thus

F+(t) = IE − wI f [uI(t)], F−(t + L/v) = wE f ([uE(t)]. (5.15)

Substituting this into equations (5.13a) and (5.13b), we recover our previous model given

by equation (5.1) with I0 = κE IE, and wP = κPWP for P = E, I. The spatially extended

model can be analyzed along similar lines to the simpler model using Green’s functions

(see section 5.2).
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5.2 Analysis of PDE Model Using Green’s Functions
In the case where the diffusion coefficient is nonzero, the solution to equations (5.8a,b)

subject to the boundary conditions (5.9) and (5.10) is given by:

c+(x, t) =
∫ L

0
G+(ξ, 0; x, t)ψ+(ξ)dξ + v

∫ t

0
G+(0, σ; x, t)[IE − wI f (uI(σ))]dσ, (5.16)

and

c−(x, t) =
∫ L

0
G−(ξ, 0; x, t)ψ−(ξ)dξ + v

∫ t

0
G−(L, σ; x, t)wE f (uE(σ))dσ, (5.17)

where ψ± are the initial conditions for c± and G± are the Green functions for the respective

advection–diffusion operators (see Appendix):

G+(ξ, σ, x, t) =
∞

∑
n=1

e(−(Dλn+
v2
4D )(t−σ))e(−

v
2D (ξ−x)) (5.18a)

×(sin (
√

λnx) +
2D
√

λn

v
cos (

√
λnx))(sin (

√
λnξ)

+
2D
√

λn

v
cos (

√
λnξ)),

G−(ξ, σ, x, t) =
∞

∑
n=0

e−(Dηn+
v2
4D )(t−σ)e

v
2D (ξ−x) (5.18b)

×(sin (
√

λnx) +
2D
√

λn

v
cos (

√
λnx))(sin (

√
λnξ)

+
2D
√

λn

v
cos (

√
λnξ)),

where λn is an eigenvalue of the operator satisfying 4Dv
√

λn cot (
√

λnL) = 4D2λn − v2.

Substituting equations (5.16) and (5.17) into equations (5.13a) and (5.13b), respectively,

yields:

duE

dt
= −uE + vκE

( ∫ t

−∞
G+(0, σ; L, t)(IE − wI f [uI(σ)])dσ

)
, (5.19a)

duI

dt
= −uI + vκI

( ∫ t

−∞
G−(L, σ; 0, t)wE f [uE(σ)]dσ

)
. (5.19b)

We have taken the lower time limit to be t = −∞ in order to eliminate the transient terms.

Equations (5.19a) and (5.19b) have the steady-state solution

u∗E = vκEG+(L)(IE − wI f [u∗I ]), (5.20a)

u∗I = vκIG−(L)wE f [u∗E], (5.20b)
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with

G±(L) =
∫ ∞

−∞
G±(L, 0; 0, t)dt. (5.21)

Linearizing (5.19a) and (5.19b) about the steady states gives

ẏE = −yE − vαI

∫ t

−∞
G+(0, σ; L, t)yIdσ, (5.22a)

ẏI = −yI + vαE

∫ t

−∞
G−(L, σ; 0, t)yEdσ. (5.22b)

Introducing the causal Green’s functions G±(t) = G±(t)H(t), where H(t) is the Heaviside

function, we can take the upper time limit in the convolution integrals to be t = ∞. Fourier

transforming the resulting linearized system using the convolution theorem then yields

(iω + 1)YE = −vαI Ĝ+(ω)YI , (5.23a)

(iω + 1)YI = vαEĜ−(ω)YE, (5.23b)

where

Ĝ±(ω) =
∫ ∞

−∞
G±(t)e−iωtdt, YP(ω) =

∫ ∞

−∞
yP(t)e−iωtdt. (5.24)

Equations (5.23a,b) are identical in form to equations (5.5a) and (5.5b) for λ = iω under

the replacement e−iωτ → vĜ+(ω). Thus, we can derive conditions for the occurrence of a

Hopf bifurcation along similar lines to the delay differential equation model. That is, we

take ω to be real and set YP = UP + iVP for P = E, I:

(iω + 1)(UE + iVE) = −vαI(UI + iVI)Ĝ+(ω), (5.25a)

(iω + 1)(UI + iVI) = vαE(UE + iVE)Ĝ−(ω), (5.25b)

with

Ĝ+(ω) =
∞

∑
n=0

1

iω + Dλn +
v2

4D

e((Dλn+
v2
4D )σ)e(−

v
2D (ξ−x)) (5.26a)

×(sin (
√

λnx)
2D
√

λn

v
cos (

√
λnx))(sin (

√
λnξ)

+
2D
√

λn

v
cos (

√
λnξ)),

Ĝ+(ω) =
∞

∑
n=0

1

iω + Dλn +
v2

4D

e((Dλn+
v2
4D )σ)e

v
2D (ξ−x) (5.26b)

×(sin (
√

λnx) +
2D
√

λn

v
cos (

√
λnx))(sin (

√
λnξ)

+
2D
√

λn

v
cos (

√
λnξ)).
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We then equate real and imaginary parts and solve the resulting 4× 4 matrix equation for

the vector (UE, VE, UI , VI)
T.

5.3 Results
As shown in section 5.2, the advection–diffusion model is structurally similar to the

simple delayed feedback model, except that the discrete delay τ = L/v is replaced by

a distribution of delays given by a corresponding Green’s function that depends on the

axonal length L. This suggests that the advection–diffusion model will also exhibit os-

cillations beyond a critical length Lc, whose frequency decreases monotonically beyond

Lc. This is indeed found to be the case, as illustrated in Figure 5.5. In contrast to the

previous model, we can now also keep track of the density profile of the kinesin and

dynein motors during a single cycle of the chemical oscillations. The variation in the

density profiles at different points on the cycle is shown in Figure 5.6. Figure 5.6a shows a

growing distribution of kinesin motors due to injection at the proximal end and negligible

dynein. Subsequent excitation of the dynein motors by the chemical signal transported by

the kinesin motors results in a growing dynein distribution (Figure 5.6b). This leads to

inhibition of the kinesin motors (Figure 5.6c). The reduction in the kinesin motor density

causes the density of dynein motors to diminish throughout the axon, which then allows

the kinesin density to grow again (Figure 5.6d).

One immediate issue that arises is how the emergence of oscillations and the length-

dependent frequency depend on the diffusivity D. We find that for sufficiently long axons,

the frequency ω is approximately independent of D. On the other hand, the critical length

Lc for the emergence of oscillations does depend on D. This is illustrated in Figure 5.7,

which shows the variation in frequency as a function of length for different diffusivities.

In each case, the frequency is a monotonically decreasing function of L, consistent with the

delayed feedback model. Increasing the diffusion coefficient D also increases Lc so that it

can result in the disappearance of the oscillations, as shown in Figure 5.8.

5.3.1 Knockdown of Molecular Motor Activity

One of the key predictions of the mechanism proposed by Rishal et. al [102] is that

when the number of motors in a given axon are inhibited or knocked down, the axon’s
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Figure 5.5. Chemical signal oscillations in the advection–diffusion model equation (5.8) for
various axonal lengths: (a) L = 100 µm; (b) L = 500µm; (c) L = 1000µm; (d) L = 2000µm.
Other parameters values are I0 = 10, wE = wI = 9, γ = 1, κE = κI = 1, v = 1µm s−1,
D = 0.1µm2 s−1.

length should grow due to a resulting increase in the frequency of the retrograde signal.

We can model the partial knockdown of kinesin motors in an axon by decreasing the back-

ground rate of kinesin flux I0. Similarly, we can model dynein knockdown by decreasing

wE, the strength of the kinesin mediated excitation of dynein activity at the distal end. In

both cases, we find that the required axon length for the normalized frequency to decay to

a particular value is greater than when kinesin or dynein motors are knocked down to a

lesser extent; see Figure 5.9.

5.3.2 Effects of Noise

Modeling active motor transport in terms of an advection–diffusion equation is a mean-

field treatment of the underlying stochastic transport mechanism, in which motors ran-

domly switch between a motile state (bound to a microtubule) and a stationary or slowly

diffusing state (unbound to a microtubule). Although the advection–diffusion equation
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Figure 5.6. Spatial profiles for kinesin and dynein motors at different times during one
cycle of period T = 2π/ω after transients have disappeared: (a) t = 0; (b) t = T/4; (c)
t = T/2; (d) t = 3T/4. The initial condition for the kinesin motors is a hyperbolic secant
function, whereas the initial condition for the dynein motors is zero. Here L = 100µm and
other parameters are as in Figure 5.5.

partially captures the stochastic nature of motor transport at the population level, there are

additional sources of stochasticity not taken into account by the mean field model. First,

the stochastic transport of an individual molecular motor is more accurately described

by a differential Chapman–Kolmogorov (CK) equation, which determines the probability

density that the motor is at a particular location and in a particular internal state (mobile or

stationary) at a time t [12]. If the transition rates between the internal states are sufficiently

fast compared to the hopping rate of motors along the filament, then an adiabatic reduc-

tion can be carried out to reduce the CK equation to a Fokker–Planck (FP) equation [89].

Furthermore, if the number of motors is sufficiently large and they move independently

(i.e., no exclusion effects), then the concentration of motors can be represented by an

advection–diffusion equation, which is obtained by multiplying the FP equation by the

number of motors. It follows that additional stochastic effects arise in the case of a finite
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Figure 5.7. Variation in frequency as a function of length for different diffusivities in the
advection–diffusion model. Other parameters are the same as Figure 5.5. (a) Plot showing
that the frequency is insensitive to D except at small axonal lengths. (b) Plot showing that
the main affect of diffusivity is to modify the critical length at which a Hopf bifurcation
occurs. (A zero frequency indicates that the system is operating below the Hopf bifurcation
point so there are no oscillations.)

number of motors and slow transition rates. Yet another possible source of noise is the

random loss of chemical signals carried by the motors, or the failure of a motor to rebind

to the track; these would also lead to additional decay terms in the mean-field model.

The presence of various sources of noise suggests that the encoding of axonal length in

terms of the frequency of a retrograde chemical signal could break down for long axons

due to the accumulation of fluctuations. We will demonstrate this by presenting results of

simulations of (i) a slightly modified version of the computational model of Rishal et al.

[102] and (ii) a stochastic version of our advection–diffusion model. The former explicitly

takes into account finite-size effects by tracking the motion of individual motors. However,

rather than explicitly modeling the stochastic “stop-and-go” motion of molecular motors,

Rishal et al. [102] assume that each motor undergoes ballistic motion with a constant

velocity that is generated from an experimentally determined velocity distribution, one

for kinesin and the other for dynein. We implemented their computational model using

the same velocity distributions, but with a modified scheme for injecting motors at each

end. That is, rather than injecting motors as packets of fixed size, we injected individual

motors at an instantaneous rate given by JE(t) and JI(t), respectively; see equations (5.12a)

and (5.12b). The background flux of kinesin motors at x = 0, JE, was taken to be 100



108

(b)

Time[100sec]

Excitatory
Inhibitory

(a)
0 100 200 300 400 500

Ch
em

ica
l S

ign
als

0
10
20
30
40
50
60
70
80

Time[100sec]
0 100 200 300 400 500

Ch
em

ica
l S

ign
als

0
10
20
30
40
50
60
70
80

Figure 5.8. Chemical signals in the advection–diffusion model for (a) D = 0.1µm2 s−1 and
(b) D = 100µm2 s−1. Here, L = 500µm and other parameter values are as in Figure 5.5.

motors per minute, each motor was assumed to carry one unit of chemical signal, and

wE = wI = 9. The results of computer simulations are shown in Figure 5.10 averaged

over 100 trials (see below). The mean oscillation frequency decreases monotonically with

axonal length L, as in our advection–diffusion model, but the relative size of fluctuations

increases with L. This is established by plotting the coefficient of variation (CV), which is

the standard deviation over the mean, as a function of length. It can be seen that axons of

length L = 1000µm have a CV≈ 0.12, indicating nontrivial noise levels.

It is important to note that our advection–diffusion model is not a mean-field version of

the above computational model, but is based on a more realistic model of the stop-and-go

transport of molecular motors. (The random switching between motile and nonmotile

states would generate the velocity distributions used in the Rishal et al. model.) Inclusion

of finite-size effects is expected to generate some form of multiplicative noise terms in

the underlying advection–diffusion model. We hope to explore this issue in more detail

elsewhere. Here, we take a more brute-force approach by adding a constant white noise

term to the right-hand side of equations (5.8):

∂c+
∂t

= −v
∂c+
∂x

+ D
∂c2

+

∂x2 + µξ+(x, t), (5.27a)

∂c−
∂t

= v
∂c−
∂x

+ D
∂c2
−

∂x2 + µξ−(x, t), (5.27b)

with µ the noise strength, 〈ξ±(x, t)〉 = 0 and



109

Fr
eq

ue
nc

y[1
0-

4  
Hz

]

0
1
2
3
4
5
6
7

(a)

wE = 16

(b)0
0.5
1.0
1.5
2.0
2.5
3.0

δ = 1.5
δ = 1.0
δ = 0.5
δ = 0.1

Length[100μm] 
1086420

Length[100μm] 
1086420

wE = 8
wE = 4

Fr
eq

ue
nc

y[1
0-

4  
Hz

]

Figure 5.9. Variation in frequency as a function of length for (a) decreasing flux δ ≡ I0−wI
(representing knockdown of kinesin), and (b) decreasing excitatory coupling wE (repre-
senting knockdown of dynein). Other parameters are the same as Figure 5.5.

〈ξ±(x, t)ξ±(x′, t′)〉 = δ(t− t′)δ(x− x′), 〈ξ±(x, t)ξ∓(x′, t′)〉 = 0. (5.28)

The boundary conditions for this model are the same as in the deterministic advection

–diffusion model. It is important to note that the above stochastic advection–diffusion

model does not exactly conserve the number of molecular motors. However, conservation

is approximately satisfied, since
∫ L

0 ξ±(x, t)dx ≈ 0. The units of µ are 1/
√

Length× Time.

We find that the variance in the frequency of oscillations is approximately independent of

length - the variance for different values of the noise strength µ is plotted in Figure 5.11a.

Since the mean frequency is a monotonically decreasing function of length, it follows

that the relative size of frequency fluctuations increases with length. This is illustrated

in Figure 5.11b, where we plot the CV as a function of length for µ = 1. As in the

computational model, the size of fluctuations increases monotonically with axonal length.

Note that for µ = 1, the CV for L = 1000µm is about ten times larger than that ob-

tained in the computational model; see Figure 5.10b. The two different models yield

comparable-sized fluctuations for µ = 0.1. Irrespective of this, a major prediction of

both stochastic models is that the variance in the frequency of oscillations grows with

axonal length, indicating a significant degradation in the reliability of frequency-coding as

a length-sensing mechanism for very long axons.

Note that we use a heuristic method for measuring frequency fluctuations in Figure 5.10
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Figure 5.10. Effects of noise on frequency-encoding mechanism for axonal length sensing
in the computational model of Rishal et al. [102] with modified end conditions (see text
for details). (a) Average frequency versus axonal length. (b) Variance in frequency versus
axonal length. The plots were obtained by running the simulations over 100 trials.

and Figure 5.11. That is, we consider N trials for a fixed axonal length, and for each run,

we look at the power spectrum of the retrograde signal. The frequency is assumed to be

encoded by the peak of the power spectrum for ω > 0. The mean and variance of the

set of peak frequencies across the N trials are then calculated for each axonal length. One

limitation of this method is that identification of the peak of the spectrum is difficult at

large axonal lengths. Nevertheless, a high CV is consistent with a broad power spectrum,

as illustrated in Figure 5.12 in the case of the stochastic advection–diffusion equation.

For short axons (L = 100µm) the spectrum is characterized by a sharp peak around the

mean frequency of oscillations. On the other hand, the spectrum is much broader for

long axons (L = 1000µm) so that it is difficult to extract the mean frequency. Of course,

the length-scale at which noise becomes significant will depend on the value of the noise

strength µ. However, the general trend is clear: any stochasticity in the motion of the

molecular motors will lead to the accumulation of errors in the length-sensing mechanism

as the length of the axon increases.

5.3.3 Numerical Methods and Parameter Values

We simulated the advection diffusion model given by equation (5.8) using a Backward

Euler time discretization. We used an upwind scheme for the spatial discretization associ-

ated with the advection term and a central difference scheme for the spatial discretization
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in the stochastic advection–diffusion model. (a) Variance in oscillation frequency (de-
termined by the peak of the power spectrum) versus noise strength µ. (b) Variance in
frequency versus axonal length. The plots were obtained by solving the stochastic partial
differential equations over 1000 trials with µ = 1.

of the diffusion term. Let Un
j be the numerical approximation to the true solution of c+ in

equation (5.8) at the jth spatial lattice point and the nth time step, let Vn
j be the numerical

approximation to the true solution of c− in equation (5.8) at the jth spatial lattice point

and the nth time step, let k be the time step, and let h be the spatial step. Then the finite

difference scheme used was

Un+1
j −Un

j

k
= −v

Un+1
j −Un+1

j−1

h
+ D

Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2 , (5.29a)

Vn+1
j −Vn

j

k
= v

Vn+1
j+1 −Vn+1

j

h
+ D

Vn+1
j+1 − 2Vn+1

j + Vn+1
j−1

h2 , (5.29b)

where v and D are the motor velocities and diffusion coefficients, respectively. For equa-

tions (5.19a) and (5.19b), we used an explicit scheme. To account for the Neumann and

Robin boundary conditions, which are given by equations (5.9) and (5.10), respectively, we

used ghost points. That is, if there are N spatial lattice points with Nh = L, we introduced

points at the lattice point N + 1 and −1 to account for the boundary conditions:

Un
N+1 −Un

N−1

2h
= 0,

Vn
1 −Vn

−1

2h
= 0, (5.30)

vUn
0 − D

U1 −U−1

2h
= v(IE − wI f [uI(t)]), (5.31)

− vVn
N − D

Vn
N+1 −Vn

N−1

2h
= −vwE f [uE(t)]. (5.32)
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Figure 5.12. Power spectra of the retrograde chemical signal generated by the stochastic
advection–diffusion model of equation (5.27) for (a) L = 100µm and (b) L = 1000µm.
Other parameters are as in Figure 5.5.

We solve for the ghost lattice points in the schemes for the boundary conditions and

substitute them into equation (5.29).

The motor velocity v was chosen to be 1µm/sec based on generally known distri-

butions of velocities for kinesin and dynein motors. Other parameters were chosen for

suitable computation of equation (5.8). The one thing we made sure was to keep IE > wI

to allow for the continued propagation of the solutions to equation (5.8). This corresponds

to ensuring that the background flux of kinesin motors at the proximal end is sufficient to

overcome the suppressive effects of the retrograde signal from the dynein motors. Choos-

ing wI > IE causes an abrupt end to the solutions and is not realistic for our biological

mechanism to function. Unless otherwise noted, parameter values were taken as follows:

I0 = 10, wE = wI = 9, γE = γI = 1, κE = κI = 1, v = 1µm s−1, D = 0.1µm2 s−1,

L = 100µm, h = 0.1µm, k = 1sec.

5.4 Frequency Decoding by a Feedforward Gene Network
Suppose that the oscillating retrograde signal from the delayed feedback model equa-

tions (5.1) reaches the nucleus of a given neuron and causes the rapid activation of some

gene and subsequent production of some protein C

uI(t)
fast−→ Active Gene fast−→ C λ−→ ∅, (5.33)
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with λ decay rate. Note that this does not account for explicit kinesin and dynein dynam-

ics. This motivates the following model for the dynamics of protein C,

dc
dt

= h[uI(t)]− λc, (5.34)

where c denotes the concentration of protein C and h[u] is a monotonically increasing

function satisfying h→ h∗ ∈ (0, ∞) as u→ ∞. Define g(t) ≡ h[u(t)]. Then g is T-periodic,

where T is the period of uI(t). Following [65], we obtain the time-dependent solution for

c(t). Introduce the integrating factor eλt. Then,

d
dt
(eλtc(t)) = g(t)eλt,

⇒ c(t) = c(t0)e−λ(t−t0) +
∫ t

t0

g(s)e−λ(t−s)ds. (5.35)

We integrate over a period of uI(t) so that, for m ∈N,

c((m + 1)T) = c(mT)e−λT +
∫ (m+1)T

mT
g(s)e−λ((m+1)T−s)ds

= c(mT)e−λT + e−λT
∫ T

0
g(s)eλsds. (5.36)

Equation (5.36) gives a recursive finite difference equation for c at integer multiples of the

period of uI(t). For large m, we thus have

c(mT) =
e−λT

1− e−λT

∫ T

0
g(s)eλsds. (5.37)

Hence, c(t) converges to a T-periodic solution following any transient dynamics, as shown

in Figure 5.13. In order to characterize the protein output in terms of the frequency ω

of uI(t), we find the time average of c(t) post transience. This can be done by simply

integrating equation (5.34) over a period of uI(t):

c̄ =
1

λT

∫ T

0
g(s)ds ≡ ḡ

λ
. (5.38)

Equation (5.38) is an intuitive result. It says that the average protein output from the

feedforward serial network is equal to the ratio of the average protein activation rate to

the protein decay rate.

To make the relationship between c̄ and T more explicit, we perform the following.

Assume that in the posttransient time regime, the maximum value of uI(t) is given by

UM and that the minimum value is given by Um, and that the uI transitions from UM to
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P

Figure 5.13. Simulation of the feed forward serial network equation (5.34) in response to a
retrograde signal from equation (5.1). (a) Retrograde signal being fed into gene network,
τ = 5. (b) Convergence of the solutions of equation (5.34) to a T-periodic solution post
transience. h[u] is taken to be the same function as f [u] defined in equation (5.2) multiplied
by a factor of 1000, and we set λ = 0.01. Other parameter values are n = 4, I0 = 10,
WE = WI = 9.5 such that τc ≈ 1.5.

Um occur very quickly compared to other temporal dynamics. Further assume that h[u]

is a Hill function with a large Hill coefficient, so that h[UM] = A and that h[Um] ≈ 0. Let

η < T denote the amount of time for which uI(t) is at its maximum value in a given period,

η = κT for 0 < κ < 1. Then, ḡ ≈ Aη/T and

c̄ ≈ Aη

λT
. (5.39)

Note that the assumptions made regarding uI(t) are consistent with the behavior of the

retrograde signal for sufficiently long delays (see Figure 5.5).

Equation (5.39) suggests that if η is constant, then the mean protein output c̄ is depen-

dent on the frequency T−1 of the pulsatile retrograde signal uI(t), the protein decay rate

λ, and the rate of protein activation A. In particular, c̄ is inversely related to T, and more

specifically it is a monotonically decreasing function of T. In the context of the delayed

feedback model, this means that c̄ is a monotonically decreasing function of axonal length

L, as illustrated in Figure 5.14. Though the analytical representation of c̄ was obtained

by making assumptions that simplified the analysis of equation (5.34), it is nevertheless

a reasonable reflection of the true relationship between c̄ and L, which can be obtained

numerically; see Figure 5.14. Note that if UM is sufficiently large, then A ≈ h∗ due to the

saturating nature of h. What is more, changing the value of UM will not alter c̄ significantly
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Figure 5.14. Relationship of the mean protein output c̄ and axonal length L, obtained by
time averaging the solution to equation (5.34) for several values of τ. Function definitions
and parameter values are as in Figure 5.13. The existence of a threshold protein output c0
could provide a mechanism for determining a critical length L0.

unless it is reduced by a considerable amount. Thus, the mean protein output of the

system is relatively insensitive to the amplitude of the input signal and responds only

to the frequency of the input signal, making the feed forward serial network a plausible

means by which a neuron can decode the oscillating retrograde signal from the delayed

feedback model.

The monotonic relationship between c̄ and L suggests that the underlying intrinsic

axonal length sensor could be based on a threshold protein value. That is, suppose that

a given neuron is preprogrammed to grow until the mean protein output reaches some

threshold value, c0, see Figure 5.14. Based on the mean protein output, the neuron would

be able to sense its critical length L0 and stop growing, for example. Analogous thresh-

olding mechanisms have been investigated within the context of intracellular protein con-

centration gradients, which are used to determine spatial position within a cell so that,

for example, cell division occurs at the appropriate time and location [116, 118]. Sim-

ilarly, developmental morphogen gradients control patterns of gene expression so that

each stage of cell differentiation occurs at the correct spatial location within an embryo.

For biological effectiveness, these gradient-based mechanisms must be robust to intrinsic

and extrinsic cellular noise [49, 116]. The issue of robustness to noise carries over to the
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proposed axonal-length sensing mechanism, and can be analyzed along similar lines to

protein concentration gradients. Therefore, we now investigate the impact of intrinsic

noise in a gene network arising from finite copy numbers on the shape of the deterministic

c̄ versus L curve.

5.5 Effects of Intrinsic Noise on Axonal Length Sensing
In order to investigate the effects of intrinsic noise, we consider a slightly modified

version of the network analyzed in section 5.5. Suppose that a gene promoter has two

states: an inactive state Q and an active state Q∗. In the active state, the gene produces the

protein C at a rate of µ, and the protein subsequently decays at a rate λ. The promoter is

activated in response to the pulsatile retrograde signal uI(t) and deactivates at a constant

rate of β; see Figure 5.15:

Q
uI(t)−−⇀↽−−

β
Q∗

µ−→ C λ−→ ∅. (5.40)

Suppose there are N total gene promoters, each of which can exist in an active state or

an inactive state. If N is sufficiently large, then the effects of intrinsic noise are negligible

and one can represent the deterministic dynamics using kinetic equations. Let p(t) and

x(t) denote, respectively, the fraction of active genes and the concentration of proteins

(number of proteins per gene) at time t. Then

dp
dt

= s(t)(1− p)− βp,
dx
dt

= µp(t)− λx(t), (5.41)

where s(t) = uI(t) is the oscillatory retrograde signal coming from the delayed feedback

model. Assume without loss of generality that p(0) = 0, so that the solution takes the form

p(t) =
∫ t

0
s(z)exp

(
β(z− t) +

∫ z

t
s(ξ)dξ

)
dz. (5.42)

We would like to calculate the time-averaged level of active genes in the large-time

limit. In order to simplify our calculations, we proceed as in section 5.5 and take the

oscillatory signal to consist of square pulses of width η and period T. Setting t = MT,

positive integer M, we can break up the integral on the right-hand side of equation (5.42)

into a sum of integrals evaluated over a single period:

p(MT) =
M−1

∑
n=0

∫ (n+1)T

nT
s(z)exp

(
β(z−MT) +

∫ z

MT
s(ξ)dξ

)
dz (5.43)

=
1

β + 1

[
exp

(
(β + 1)η

)
− 1
](exp(−βMT −Mη)− 1

1− exp(βT + η)

)
, (5.44)
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Figure 5.15. A gene promoter driven by the oscillatory retrograde signal uI(t). Adapted
and redrawn from [117].

The second line comes from evaluating the various integrals and summing the resulting

geometric series. Taking the limit M→ ∞ shows that p(MT)→ Γ with

Γ ≡ 1
β + 1

[
1− exp

(
(β + 1)η

)] 1
1− exp(βT + η)

. (5.45)

For t ∈ [0, η], we have

dp0

dt
= 1− (1 + β)p0 ⇒ p0(t) =

1
1 + β

(
1− e−(β+1)t

)
+ Γe−(β+1)t, (5.46)

whereas for t ∈ (η, T],

dp1

dt
= −βp1 ⇒ p1(t) = p0(η)e−β(t−η). (5.47)

We have imposed continuity of the solution at t = η. Finally, p̄ is obtained by averaging

the resulting periodic function over [0, T].

p̄ =
1
T

[ ∫ η

0
p0dt +

∫ T

η
p1dt

]

=
1

β + 1

[ η

T
+

1
Tβ(β + 1)

1− eβ(T−η)

1− eβT+η
(eη(β+1) − 1)

]
, (5.48)

The formula for p̄ given above can be intuited in the following way. The fraction η/T

corresponds to the fraction of time that s(t) is “on”. The latter term in the bracketed sum is

a correction for the alterations in the time-scale of the gene promoter reaction to s(t). When

s(t) = 1, the time-scale of the gene promoter response is given by (β+ 1)−1, whereas when

s(t) = 0, the time-scale is given by β−1. Finally, the time-averaged protein output is

c̄ =
µ

λ
p̄. (5.49)

As in the simpler gene network of section 5.5, the time-averaged protein output is a mono-

tonically decreasing function of T.
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Now suppose that N is sufficiently small so that fluctuations due to low copy numbers

cannot be ignored. In order to calculate the size of fluctuations, we have to consider the

chemical master equation of the reaction scheme (5.40). Let n1 denote the total number

of activated genes and let n2 denote the number of proteins that are present. Let P ≡
P(n1, n2, t) denote the probability that at a given time t, there are n1 active genes and n2

proteins available. The master equation is then given by

dP
dt

=s(t)(N − n1 + 1)P(n1 − 1, n2, t) + β(n1 + 1)P(n1 + 1, n2, t)

+ µn1P(n1, n2 − 1, t) + λ(n2 + 1)P(n1, n2 + 1, t)

− (s(t)(N − n1) + βn1 + µn1 + λn2)P(n1, n2, t). (5.50)

The first two terms correspond to the activation or the deactivation of a gene that results in

having n1 active genes and n2 proteins. The second two terms correspond to the produc-

tion or the degradation of a protein that results in having n1 active genes and n2 proteins.

The last terms correspond to the ways that the system can leave the state of having n1

active genes and n2 proteins. It is difficult to solve the master equation explicitly, so we

carry out a system size expansion with respect to N. That is, set ni = Nxi and rewrite

equation (5.50) as

dP
dt

= N[s(t)(1− x1 +
1
N
)P(n1 − 1, n2, t) + β(x1 +

1
N
)P(n1 + 1, n2, t) (5.51)

+ λx1P(n1, n2 − 1, t) + γ(x2 +
1
N
)P(n1, n2 + 1, t) (5.52)

− (s(t)(1− x1) + βx1 + λx1 + γx2)P(n1, n2, t)]. (5.53)

The master equation is now just a sum of terms of the form f (n/N)P(n, t), where n ≡
(n1, n2) and f is the corresponding propensity function. Performing the change of vari-

ables f (n/N)P(n, t) = f (x)p(x, t), where x ≡ (x1, x2), and Taylor expanding in powers of

N−1 to second-order leads to the Fokker–Planck equation

dp
dt

= − ∂

∂x1

(
s(t)(1− x1)− βx1

)
− ∂

∂x2

(
(µx1 − λx2)p

)
(5.54)

+
1

2N

( ∂2

∂x2
1
(s(t)(1− x1) + βx1)p +

∂2

∂x2
2
(µx1 + λx2)

)
. (5.55)

In the case of a constant input s(t) = α, the deterministic kinetic equations (5.41) have

the unique fixed point solution

x∗1 =
α

α + β
, x2∗ =

µ

λ
x∗1 . (5.56)
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In this case, neglecting transients, the Fokker–Planck equation describes a stochastic pro-

cess characterized by Gaussian fluctuation about the fixed point (x∗1 , x∗2). It is then rela-

tively straightforward to calculate the stationary variance ∆c of the protein output, given

the mean 〈c〉 = x∗1 :

∆c =
1
γ

[ µ2αβ

(α + β + λ)(α + β)2 +
αµ

α + β

]
(5.57)

=
µ

λ

α

α + β

[
1 +

µβ

(α + β + λ)(α + β)

]
(5.58)

= 〈c〉
[
1 +

µβ

(α + β + λ)(α + β)

]
. (5.59)

The expression for the variance in the case of constant input consists of an intrinsic Poisso-

nian term due to random protein production and an extrinsic term due to fluctuations in

the gene promoters themselves. The calculation of the variance in the case of an oscillatory

input s(t) is considerably more involved, even when it takes the form of square pulses.

However, stochastic simulations show that the protein variance in response to an oscilla-

tory signal is less than the protein variance in response to a constant input, assuming that

time-averaged means are the same [117]. Let αeff be the effective constant input for which

the time-averaged and noise-averaged protein output 〈c̄〉 can be written as

〈c̄〉 = µ

λ

αeff

αeff + β
. (5.60)

It follows that for an oscillatory input

∆c̄ ≤ 〈c̄〉
[
1 +

µβ

(αeff + β + λ)(αeff + β)

]
, (5.61)

where

∆c̄(L) = 〈[c̄(L)− 〈c̄(L)〉]2〉. (5.62)

5.5.1 Errors in Axonal Length Sensing

The relationship between c̄ and L in the presence of intrinsic noise is shown in Fig-

ure 5.16. The general inverse relationship is still prevalent in this situation, but fluctuates

due to the stochasticity in the gene switching. By analogy with the effects of intrinsic noise

in protein concentration gradients [49], the presence of noise in the protein output leads to
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Figure 5.16. Results of simulation of the chemical master equation (5.50). (a) Plot of
mean protein output c̄ versus axonal length L. (b) Plot of uncertainty in axonal length
∆L versus threshold axonal lengths LT. (c) Relative error (∆L/LT) versus axonal length.
Parameter values used to generate retrograde signal uI(t) are the same as in Figure 5.13.
Other parameter values are β = 1, µ = .1, λ = 0.01, and N = 1000.

an uncertainty ∆L in the critical axonal length L at which the threshold is crossed. This is

illustrated schematically in Figure 5.17. The uncertainty ∆L can be estimated using

∆L|〈c̄′(L)〉| =
√

∆c̄(L), (5.63)

If we ignore the correction factor in equation (5.61) and approximate the stochastic process

by a Poisson process, then ∆c̄ ≈ c̄ and

∆L ∼
√
〈c̄(L)〉
|〈c̄′(L)〉| . (5.64)

As a further approximation, suppose that 〈c̄(L)〉 ∼ 1/T, where T is the period of oscilla-

tions produced by an axon of length L, so that |〈c̄′(L)〉| ∼ 1/(L′(T)T2) (using the fact that
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Figure 5.17. Results of simulation of the chemical master equation (5.50). (a) Plot of
mean protein output c̄ versus axonal length L. (b) Plot of uncertainty in axonal length
∆L versus threshold axonal lengths LT. (c) Relative error (∆L/LT) versus axonal length.
Parameter values used to generate retrograde signal uI(t) are the same as in Figure 5.13.
Other parameter values are β = 1, µ = .1, λ = 0.01, and N = 1000.

L increases monotonically with T). It follows that

∆L
L
∼ T3/2L′(T)

L(T)
, (5.65)

Assuming that the length increases at least linearly with T, we see that the relative error

grows with the oscillation period T and, hence, the axonal length L. Although this is

a crude estimate, we find that the same qualitative behavior is observed in numerical

simulations of the full stochastic model. This is shown in Figure 5.16c, where we plot

the relative error ∆L/LT versus axonal length. Our analysis suggests that the frequency-

encoded protein threshold mechanism could break down for long axons. An analogous

result was shown to hold in [56], where the robustness of the encoding of axonal length in

the frequency of a pulsatile signal was investigated. There we found that the encoding of

axonal length into frequency became less reliable at long axon lengths due to accumulation

of white noise signified by a high coefficient of variation in the frequency of the retrograde

signal. In this work, the retrograde signal is deterministic, and the error in protein output
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is accounted for strictly by the random variations in the activities of independent gene pro-

moters. Hence, the error in length sensing could be more devastating in real life situations,

since noise would impact both the encoding and the decoding processes. Thus, wherever

the sources of noise may be, their impact on this frequency-dependent mechanism is clear:

large neurons would have a more difficult time sensing their own length when compared

with smaller neurons.

5.6 Discussion
In this chapter, we developed a mathematical model for axonal length sensing based

on a biophysical mechanism recently proposed by Rishal et al. [102]. We showed that the

underlying dynamical mechanism involves delayed negative feedback due to the finite

propagation speeds of molecular motors. This can be incorporated into the kinetic equa-

tions for retrograde chemical signaling using a discrete delay τ = L/v or by convolving the

chemical signals with the Green’s function of an advection–diffusion equation for motor

transport. Both versions of the model support chemical oscillations that emerge via a

Hopf bifurcation, resulting in a frequency that is inversely related to the axonal length.

Furthermore, the advection–diffusion version of the model suggests that knockdown of

either kinesin or dynein motors results in a longer axon (see Figure 5.9). These results

are consistent with the experimental and computational studies carried out in [102]. The

advantage of our mathematical model is that it provides a compact dynamical framework

for understanding the origin of the oscillations and for exploring how the length-sensing

mechanism depends on various biophysical parameters.

One prediction of our model is that the effective diffusivity D of motor transport only

has a weak affect on the retrograde signal frequency’s dependence on axonal length. That

is, increasing D increases the critical length Lc for the onset of oscillations in the retrograde

signal, but once oscillations have formed, the frequency is approximately D-independent.

A second prediction is that fluctuations in the transport of molecular motors results in a re-

duction in the reliability of the frequency-encoding mechanism as the length increases (see

Figure 5.11). This could have significant implications for the viability of such a mechanism

within the context of axonal injury, where accurate information regarding the location of

the injury is needed in order to target regeneration at the correct location [55].
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We also showed that the mean protein output of a gene network responding to the

pulsatile retrograde signal varies inversely with axonal length. Specifically, we derived ap-

proximate analytical results which make explicit the inverse relationship, and introduced

the notion that frequency decoding could be done based on a protein threshold mecha-

nism. We then investigated the reliability of such a mechanism subject to intrinsic noise

stemming from finite copy numbers within a gene network by numerically simulating a

chemical master equation describing the random switching of genes and production of

protein. The results of these simulations suggest that the accuracy in the information the

neuron receives regarding axonal length declines as axonal length itself grows. This result

could have serious implications for the utility of this mechanism in the context of axonal

injury, where accurate information regarding the locality of an affliction is necessary for a

neuron to set a regenerative process in motion.

There are a number of possible extensions of our model of axonal length control. First,

it would be interesting to derive an effective stochastic advection–diffusion equation with

multiplicative noise, starting from a full stochastic model of stop-and-go motor transport.

Such a model would need to keep track of the total number of kinesin and dynein motors.

In our simplified model, we assumed that there was a sufficient supply of kinesin motors

at the proximal end and dynein motors at the distal end. The model was self-regulating

due to the feedback signals. Secondly, equation (5.39) indicates that mean protein output

is sensitive to the frequency of the incoming pulse signal, but that it also sensitive to the

fraction of time for which the incoming signal is at its peak value. Hence, the feed forward

serial network does not generate a frequency filter in the strictest sense. We would be

interested in seeing the result of feeding the retrograde signal into a network that allows for

more acute frequency sensitivity. Yet another extension of our work here would be to inject

kinesin motors into the axon based on a doubly stochastic Poisson process as in Chapter

4 for flagellar length control. This would incorporate another source of noise that would

impact the frequency-encoding of length information of axons. Furthermore, we have

represented an axon as a 1D domain when in reality axons are highly branched in structure.

Considering a tree-type domain for this process would be more appropriate. Finally, it

would be interesting to build off of our work in Chapter 3 and incorporate exclusion effects

in our axon-length sensing model.



CHAPTER 6

FUTURE DIRECTIONS

In this dissertation, the mathematical models used to describe complex biological pro-

cesses involved the invocation of particular approximations that facilitated mathematical

analysis. For example, as discussed in Chapter 1, we assume that cargo elements are

carried by a single motor whose dynamics may be described by a three-state model, and in

Chapter 2 we assume that the distribution of microtubules in two- and three-dimensional

cells is symmetric. The descriptive limitations of our models have therefore motivated

several problems to be worked on in the future.

6.1 Microscopic Descriptions of Motor Transport
In Chapter 1, we discussed a mathematical formulation of a tug-of-war mechanism

for bidirectional motion of cargo within a cell; see equations (1.8) and (1.9). To facilitate

mathematical analysis, we again have to invoke an adiabatic approximation on equation

(1.6) with the matrices and vectors formatted to reflect the tug-of-war mechanism. The

resulting Fokker–Planck equation’s drift and diffusion terms would be significantly more

complicated, but, provided that we model a large population of motor-cargo complexes

evolving according to this equation, we may use it as the dictating partial differential equa-

tion for bulk motor dynamics. We may then couple the FP equation with processes such

as vesicular transport and size homeostasis. The adiabatic reduction process in itself is

more complicated than that of the three-state model; solving equation (1.19), for example,

involves the use of the singular value decomposition (SVD) [18]. The drift and diffusive

terms are functions of various biophysical parameters of the tug-of-war model. These

include the stall force Fs, the detachment force Fd, the maximum forward and backward

velocities, v f , vb, and binding/unbinding rates. Hence, we may be able to determine on a

microscopic level the critical parameters underlying a cell’s ability to achieve uniformity

in vesicle distribution across its body.
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Furthermore, it is unclear whether motors participating in tug-of-war type dynamics

are disparate but located on the same microtubule or the same but situated on adjacent

microtubules of opposite polarity. This idea of navigating between several microtubules

nearby should also come into play when thinking about exclusion effects. In our work,

we have assumed that motors carrying cargo may not be passed by other motors due

to exclusion effects; however, it is entirely possible that motors may hop to an adjacent

microtubule and move past other motor-cargo complexes. Furthermore, as discussed in

Chapter 1, microtubules are large structures, and there is plenty of room for motors to

move past one another. Work in Chapter 3 was motivated by experimental observations of

molecular motor jamming [86]. Hence, future work should entail models that account for

networks of microtubules, potentially of differing polarity, along which motors can move.

This type of modeling would be relevant for our work on axonal length sensing as well.

Another central aspect of active transport that needs to be addressed is the individual

chemical reactions that underly kinesin and dynein dynamics. The work in this disserta-

tion largely ignores the microscopic reactions that involve the use of ATP to propel kinesin

and dynein motors forward. Furthermore, we have assumed that motor interaction with

vesicles is governed by first-order kinetics. Recent work has shown that these kinetics

may be driven by Michaelis–Menten-type interactions [23]; the equations in Chapter 2

and Chapter 3 are more complicated and may lead to more interesting mathematics in

looking at the steady-state distribution of vesicles. Accounting for these reactions and

modeling cargo dynamics with a tug-of-war mechanism may lead to more interesting

biophysical insights regarding the crucial underlying parameters that determine whether

or not uniformity in vesicle density may be achieved.

6.2 Motor Routing by Microtubule Network Modification
There is now growing evidence that the routing of molecular motors is achieved by

modifying the shape of networks of microtubules [127]. This is a new wrinkle in the

question of how cells route motors to delivery specific cargo to specific locales in a cell. This

involves production of protein involved in a signal pathway microtubule length, (-) end

spacing, and coverage. It would be interesting to look at the phenomenon of uniformity

in vesicle distribution from the perspective of microtubule networks and the cell’s nucleus



126

rather than from the perspective of motor-cargo interactions. The nature of the modeling

would seemingly have a multiscale flavor to it. To account for protein production, one

must study the state of the particular gene network producing the said protein. Then the

nature of the pathway involving the protein altering microtubule network structure must

be examined; furthermore, the mechanism of gene regulation via feedback must be con-

sidered. It would be interesting to see, from this perspective, what biophysical parameters

facilitate, for example, uniform vesicle distribution across a given cell’s interior.

6.3 Neuron Polarization
In section 4.4, we briefly mention that an extension of the work in Chapter 4 is to

consider cases where two flagella are competing for resources from some finite pool to

outgrow one another. A similar idea may be used to investigate the genesis of axons in

nascent neurons.

Neurons are highly polarized cells, typically having a single long, thin axon and sev-

eral short, thick dendrites. In a canonical neuron, the axon transmits information to the

neuron’s target and dendrites obtain and process information. The question of how this

polarization is achieved, however, has been the subject of intense examination over the

past 40 years. It is clear that neuron polarization occurs during early stages of cell differen-

tiation, before migration [20]. Neuron polarization appears to undergo a 5-step procedure

[26]. In stage 1 of polarization, neurons extend a motile lamellipodia around the cell

body. In stage 2, the lamellipodia clusters at particular, relatively symmetrical sites until

neurites form. These neurites are highly dynamic, growing and retracting in a stochastic

fashion until one of them undergoes a sudden and sustained growth; this singular neurite

develops into the axon. The formation of the axon characterizes stage 3. In stage 4, the

remaining neurites develop into dendrites. In stage 5, synaptic specializations and contacts

are established [20]. The fact that neuronal polarity is apparent by stage 3 suggests that

polarity is established in the stage-2-stage-3 transition. Researchers have been searching

for a molecular basis for the establishment of this polarity, and several theoretical models

for how these molecules establish polarity have been proposed (see, for example, [5, 33, 40,

44, 84, 115]).

In Ref. [115], a mathematical model for spontaneous neuronal symmetry breaking was
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developed based on experimentally observed dynamics of a molecule known as shootin-1

during the stage-2-stage-3 transition. Stage-2 neurons are relatively symmetric and one

characteristic of this phase is the stochastic accumulation and dissipation of shootin-1 at

the growth cones of each of the neurites, which all have approximately the same length.

Eventually a significant proportion of the shootin-1 in a neuron accumulates in one of the

neurite growth cones and causes an immediate outgrowth of that neurite; this becomes the

axon. The neuronal outgrowth is caused by the accumulation of shootin-1 in the growth

cone inducing a traction force. The traction force is opposed by a neurite length-dependent

tension.

Once one of the neurites has been selected to be the axon, it accumulates more and

more of the available shootin-1. Shootin-1 is transported from the cell body to the growth

cone in packed boluses via anterograde active transport; retrograde transport is achieved

by means of passive diffusion. Hence, lengthier neurites keep shootin-1 in their interior

longer than shorter ones. The result is a positive feedback loop: (i) accumulation of

shootin-1 induces neurite outgrowth and (ii) neurite outgrowth promotes shootin-1 to stay

in its interior longer. We can capture the “big picture” dynamics of the above-described

mechanism by considering the concentration of shootin-1 in the growth cone of a given

neurite and the length of that neurite. The dynamics of the shootin-1 concentration are

dC
dt

= −AD
VL

(C− C0) + w(t), (6.1)

where C(t) is the concentration of shootin-1 in the growth cone, C0 is the concentration

of shootin-1 in the cell body, A is the cross-sectional area of the neurite, D is the diffusion

coefficient, V is the volume of the growth cone, L is the length of the neurite, and w(t) is

a function describing the arrival of shootin-1 to the growth cone. It should reflect that the

arrival times are stochastic. An example is

w(t) = wavg ∑
j

g(t− tj), (6.2)

where wavg is the average concentration of shootin-1 in each bolus, tj is a stochastic arrival

time, and g(t) is a Gaussian function. The dynamics of the length are determined by the

traction force induced by shootin-1 accumulation and neurite length-dependent tension.

Hence,
dL
dt

= δkon M− δko f f exp
(
− (F(C)− T(L))

)
, (6.3)
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where M is the concentration of the material used to construct the neurite shaft (typically

tubulin), kon,o f f are the rates at which the units of the construction material bind and un-

bind from the neurite shaft, δ is the length of each of these units, F(C) is the traction force,

and T(L) is the tension. In Ref. [115], a model for neuron polarization were constructed

from equations similar to equations (6.1) and (6.3). Parameter values and equations for

the forces were obtained by fitting to actual experimental data. Numerical simulations

showed that their model was sufficient for neuron symmetry-breaking. Furthermore, their

model showed that such a mechanism was sufficient for axon regrowth after transection,

which is observed experimentally. Even more incredibly, their model showed cases where

neurons developed multiple axons, which is observed in some experiments as well.

It would be interesting to develop these types of models from the perspective of molec-

ular motors. For example, instead of including a source of shootin-1 with a function w(t)

as in equation (6.1), we could model anterograde motion of shootin-1 down a neurite

with an advection-diffusion equation and encode the shootin-1 concentration, C(t), into

the boundary conditions. Similarly, we could model retrograde motion with a diffusion

equation. We could then include additive noise in our model as we did in Chapter 5 for

our axonal length-sensing model or bring in ideas from Chapter 4 and allow the injection

times of shootin-1 into the neurite to be determined by a doubly stochastic Poisson process.

6.4 Closing Remarks
As all models are limited, ours fail to address the aforementioned aspects of important

processes intertwined with active intracellular transport. But we have helped open the

door to mathematical modeling of size homeostasis and vesicular delivery. The deep

insights of new research suggests that the full picture of how active transport works may

only be understood upon constructing a multiscale model of active transport and its regu-

lation. These prospects are very exciting.



APPENDIX

GREEN’S FUNCTION FOR ADVECTION

DIFFUSION EQUATION

In this appendix, we derive the explicit formulae (5.18a) and (5.18b) in Chapter 5 for

the Green’s functions G−(ξ, σ; x, t) of the advection–diffusion model. For concreteness,

we will focus on the Green’s function G+, since the derivation of G− is very similar. The

Green’s function G+ is defined according to the equation

−∂G+

∂σ
− v

∂G+

∂ξ
− D

∂2G+

∂ξ2 = δ(x− ξ)δ(t− σ),

where δ(x) is the Dirac-Delta function, supplemented by the boundary conditions

vG+(ξ, σ; x, t) + D
∂G+(ξ, σ; x, t)

∂ξ
= 0, ξ = 0, L (A.1)

Introduce the linear differential operator L acting on functions u = u(ξ, σ),

Lu ≡ ∂u
∂σ

+ v
∂u
∂ξ
− D

∂2u
∂ξ2 ,

and define the inner product

〈 f , g〉 ≡
∫ L

0

∫ ∞

0
f g dtdx.

We can then rewrite the equation for G in the more compact form

L†G+(ξ, σ; x, t) = δ(x− ξ)δ(t− σ), (A.2)

where L† is the adjoint operator

L†u ≡ −∂u
∂σ
− v

∂u
∂ξ
− D

∂2u
∂ξ2 .

Using integration by parts and the boundary conditions on G and the kinesin concentra-

tion c+, one can show that

〈G+, Lc+〉 = 〈c+, L†G+〉 −
∫ L

0
G+(ξ, 0; x, t)c+(ξ, 0)dξ

−
∫ ∞

0
G+(0, σ; x, t)v (IE − wI f [uI(σ)]) dσ,
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which reduces to equation (5.16), since 〈G+, Lc+〉 = 0, 〈c+, L†G+〉 = c+(x, t) and G+(0, σ; x, t) =

0 for σ > t (causality).

It remains to solve the adjoint problem given by equation (A.2). Introduce the change

of variables σ̄ = t− σ and set G+(ξ, σ; x, t) = G(ξ; x, σ̄). We then have

∂G
∂σ̄
− v

∂G
∂ξ
− D

∂2G
∂ξ2 = δ(ξ − x)δ(σ̄) (A.3)

with G(ξ; x, σ̄) = 0 for σ̄ < 0. Applying the Laplace transform to equation (A.3) with

G̃(ξ; x, s) =
∫ ∞

0
e−stG(ξ; x, t)dt,

we obtain

sG̃− vG̃′ − DG̃′′ = δ(ξ − x)

where ′ denotes differentiation with respect to ξ for fixed s, x. It is convenient to eliminate

the first derivative term by setting G̃(ξ; x, s) = g(ξ; x, s)φ(ξ) for an appropriately chosen

function φ. Substituting into the equation for G̃ gives

−Dφg′′ − (vφ + 2Dφ′)g′ + (sφ− vφ′ − Dφ′′)g = δ(ξ − x)

Hence, imposing φ′ = − v
2D φ⇒ φ = e(−

v
2D ξ), we see that g satisfies the self-adjoint (Sturm-

Liouiville) equation

g′′ +
(
− v2 + 4Ds

4D2

)
g = − 1

D
e(

v
2D x)δ(ξ − x) (A.4)

We can then solve this equation in terms of the eigenfunctions ζn and eigenvalues λn of

the second-order equation

ζ ′′n + λnζn = 0,

supplemented by the homogeneous boundary conditions

−v
2

ζn(0) + D
dζn

dξ
(0) = 0 (A.5)

v
2

ζn(L) + D
dζn

dξ
(L) = 0. (A.6)

The latter follow from the boundary condition for G+. Using the fact that the eigenfunc-

tions form a complete orthonormal set, we have the expansions

δ(ξ − x) =
∞

∑
n=1

ζn(x)ζn(ξ)
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and

g(ξ; x, s) =
∞

∑
n=1

an(x, s)ζn(ξ) (A.7)

Substituting these into (A.4), we can solve for an(x, s) to obtain

g(ξ; x, s) =
∞

∑
n=1

1

s + Dλn +
v2

4D

e(
v

2D x)ζn(x)ζn(ξ) (A.8)

Substituting g and φ back into the formula for G̃, inverting the Laplace transform, and

reverting back to original time coordinates, we finally obtain

G+(ξ, σ; x, t) =
∞

∑
n=1

e(−(Dλn+
v2
4D )(t−σ))e(−

v
2D (ξ−x))ζn(ξ)ζn(x) (A.9)

Using standard methods to solve boundary value problems, we find that

ζn = sin
√

λnx +
2D
√

λ

v
cos (

√
λnx),

where λn solves

4Dv
√

λn cot (
√

λnL) = 4D2λn − v2.

We thus obtain equation (5.18a).
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