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ABSTRACT 

Despite the progress that has been made since the inception of the finite element 

method, the field of biomechanics has generally relied on software tools that were not 

specifically designed to target this particular area of application. Software designed 

specifically for the field of computational biomechanics does not appear to exist. To 

overcome this limitation, FEBio was developed, an acronym for “Finite Elements for 

Biomechanics”, which provided an open-source framework for developing finite element 

software that is tailored to the specific needs of the biomechanics and biophysics 

communities. The proposed work added an extendible framework to FEBio that greatly 

facilitates the implementation of novel features and provides an ideal platform for 

exploring novel computational approaches. This framework supports plugins, which 

simplify the process of adding new features even more since plugins can be developed 

independently from the main source code. Using this new framework, this work extended 

FEBio in two important areas of interest in biomechanics. First, as tetrahedral elements 

continue to be the preferred modeling primitive for representing complex geometries, 

several tetrahedral formulations were investigated in terms of their robustness and accuracy 

for solving problems in computational biomechanics. The focus was on the performance 

of quadratic tetrahedral formulations in large deformation contact analyses, as this is an 

important area of application in biomechanics. Second, the application of prestrain to 

computational models has been recognized as an important component in simulations of 

biological tissues in order to accurately predict the mechanical response. As this remains 



iv 

challenging to do in existing software packages, a general computational framework for 

applying prestrain was incorporated in the FEBio software. The work demonstrated via 

several examples how plugins greatly simplify the development of novel features. In 

addition, it showed that the quadratic tetrahedral formulations studied in this work are 

viable alternatives for contact analyses. Finally, it demonstrated the newly developed 

prestrain plugin and showed how it can be used in various applications of prestrain. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

1.1.1 Finite elements in biomechanics 

The finite element (FE) method is one of the most powerful numerical methods for 

solving the differential equations of physics. It has been used in many fields of engineering 

and physics, including solid mechanics, fluid mechanics, electromagnetism, heat transfer, 

and many more. The FE method has been used in the field of biomechanics as early as the 

1970s (e.g. (Belytschko et al.; Davids and Mani; Doyle and Dobrin; Farah, Craig and 

Sikarskie; Janz and Grimm; Matthews and West)). Since that time, computational 

modeling in biomechanics and biophysics has become a standard methodology, both for 

understanding experimental outcomes, and as an investigative approach in its own right, 

and has facilitated advancements in nearly aspect of the field. Applications range from 

molecular dynamics, cell motility and mechanics, cardiovascular mechanics, 

musculoskeletal biomechanics, and tissue engineering. Advancements in high-

performance computing hardware, as well as imaging techniques and geometry 

reconstruction, have facilitated high-resolution modeling of patient-specific geometries 

(e.g. (Anderson, Peters, et al.; Portnoy et al.; Schmid-Schonbein and Diller; Speelman et 

al.; Spilker et al.; Crawford, Rosenberg and Keaveny)). Furthermore, the development of 

sophisticated constitutive models (e.g. mixture theory (Li and Herzog; Li and Herzog)) has 
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produced more realistic representations of biological materials. 

Despite these advancements in finite element technologies, the field of computational 

biomechanics remains one of the most challenging areas of applications: Geometries are 

often complex and can undergo very large deformations (e.g. muscle deformation around 

shoulder and knee joints (Ellis, Drury, et al.; Weiss et al.)) and sometimes consist of thin 

structures (e.g. articular cartilage (Anderson, Ellis, et al.), fascia, and blood vessel walls 

(Weisbecker et al.)). The response of biological tissue is often nonlinear, anisotropic (due 

to the presence of aligned fiber families (Weiss, Maker and Govindjee)), composited (e.g. 

multiple fiber families embedded in a matrix (Hollingsworth and Wagner)), and time-

dependent (i.e. viscoelastic (Lujan, Underwood, et al.) or poroelastic). The characterization 

of the response of biological tissue may require the solution of coupled physical systems 

(e.g. fluid motion, changing solute, and solute concentrations due to dynamical processes 

(Ateshian et al.)). Also the modeling of rigid bodies and their coupling to deformable 

structures is important to model the connection of tissues (e.g. tendons, ligaments) to stiff 

structures (e.g. bone). In the area of articular joint mechanics (an area of particular interest 

in this work), the geometries may come in contact and the contacting surfaces can slide 

across each other over relatively large distances (Henak et al.). Biological tissues often 

show evidence of residual strains (Chuong and Fung; Gardiner, Weiss and Rosenber) and 

the inclusion of these strains is important for the accurate modeling of the mechanical 

response (Rausch and Kuhl). Finally, as the field of biomechanics is a rapidly evolving 

field, it is highly desirable that a computing platform can be extended easily to include 

novel constitutive laws or solution algorithms. All of these challenges make the 

development of finite element software that targets computational biomechanics difficult. 
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The lack of FE software that is tailored to the needs of the field has hampered research 

progress, dissemination of research, and sharing of models and results. Commercial 

packages that are most commonly used by the biomechanics community, such as Abaqus 

(Dassault Systèmes) and Ansys (Ansys, Inc.), are not specifically geared towards 

biological applications. The closed nature of commercial codes makes them difficult to 

verify (Anderson, Ellis and Weiss; Henninger et al.) or to compare results across different 

codes since the implementation details are often unavailable. Commercial codes do not 

always offer mechanisms for adding new features easily. This makes it challenging for 

researchers to implement and test new computational methods or constitutive models.  

The limitations of commercial codes have forced many researchers to develop 

custom FE packages for solving problems in the biomechanics domain. One of the earliest 

examples of a finite element code developed for applications in biomechanics was by 

Simon, Wu, et al., who developed a custom code for modeling intervertebral disc segments 

based on porous media theories. FE implementations of biphasic theory for cartilage were 

presented by Spilker and co-workers, for small strains (Spilker and Suh) and finite 

deformation of the solid matrix (Suh, Spilker and Holmes), using penalty methods to 

enforce incompressibility. They considered various refinements to their approach (Donzelli 

et al.), including hybrid, mixed-penalty, and velocity-pressure formulations (Almeida and 

Spilker; Vermilyea and Spilker) as well as tissue anisotropy (Spilker, Donzelli and Mow) 

and explicit modeling of interstitial fluid viscosity (Chan, Donzelli and Spilker). u-p 

(displacement-pressure) formulations of the biphasic mixture theory were presented by 

Oomens, van Campen and Grootenboer and Wayne, Woo and Kwan, and a biphasic 

formulation accommodating solid matrix viscoelasticity was developed by Ehlers and 
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Markert. Custom-written FE codes for modeling deformation, electrokinetics, transport, 

and swelling of charged hydrated tissues were developed by Laible et al.; Simon, Liable, 

et al., Levenston, Frank and Grodzinsky, Sun et al., and Frijns et al.. Although these 

custom-written codes implemented more advanced modeling and solution algorithms than 

were available in commercial packages, few of these codes were actually made available 

in the public domain. This made verification and reproducibility of results challenging or 

impossible. Many of these codes were also not sufficiently general, but were instead 

designed for solving very specific problems and did not support all features that are 

necessary for analyses in computational biomechanics and biophysics. In addition, to the 

best of our knowledge, at the time development of FEBio started (c. 2005), none of these 

custom-written codes offered extended documentation, support, or mechanisms for 

continued development. 

1.1.2 FEBio 

Due to the many limitations of commercial and custom-written FE packages, there 

existed a genuine need for a new FE tool: a tool that would be designed by and for the 

biomechanics community. FEBio was developed to fill this need. In order to accomplish 

its goals, it would be designed around three pillars. First, it would specifically target the 

biomechanics community by implementing features that are highly relevant in the field, 

such as, accurate constitutive relations for mechanical, transport, and electrokinetic 

properties of tissues and cells; the ability to easily model anisotropy and inhomogeneity; 

and the ability to prescribe boundary conditions and loading scenarios that would allow 

researchers to model the complex interactions between biological structures. Second, the 

source code would be made freely available so that researchers can implement new 
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algorithms (e.g. new constitutive models). This would greatly reduce the need for new 

custom-written codes as researchers can leverage the FEBio code to implement new 

algorithms. Third, emphasis would be placed on thorough documentation, support, and 

outreach to the community. It was hoped that this would make it much easier than before 

for researchers to develop new ideas and share them with others. 

The first version of FEBio was released in 2007 and its initial focus was on the 

development of highly needed functionality that targets applications in joint contact 

mechanics. This included, among other things, solution algorithms for solving the 

nonlinear equations of continuum mechanics, constitutive models valid for large 

deformation, explicit representation of rigid body kinematics, and sliding and tied contact 

formulations. An initial implementation of a coupled displacement-pressure solution 

algorithm for biphasic models was provided as well. The FEBio code was developed in 

C++. Although many finite element codes, both commercial as well as open-source (e.g. 

Abaqus, Nike3D, Feap, Code Aster) use the FORTRAN language, an object-oriented 

approach to programming is widely accepted as a superior programming model compared 

to procedural programming (Cary et al.). C++ was chosen since it is an object-oriented 

programming language and it has been shown that it performs comparable to the 

FORTRAN language (Veldhuizen and Jernigan). Also, the possibility of  developing 

efficient finite element codes based on object-oriented programming strategies has been 

demonstrated (Patzak and Bittnar; Zimmerman et al.). In addition, by relying extensively 

on existing design patterns (Gamma et al.; Heng and Mackie) many challenges in 

designing a complex software library could be overcome easily. 

After several years of development, the code had grown in many ways that greatly 
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expanded its applicability. Features were added to model multiple solvents that can interact 

with the solid matrix. Contact formulations that can handle fluid flow across the contact 

interface were implemented. Even a heat transfer solver was developed. However, the 

implementation of these advanced features proved difficult and required a substantial 

development effort, which highlighted some of the flaws of the initial design. Additionally, 

dissemination of new additions by users was still difficult. New releases of FEBio may be 

incompatible with the user’s changes, either preventing the user from upgrading or forcing 

him or her to merge the new features to the new version. Also, the implementation of these 

new features, even minute changes, also required the recompilation of the entire FEBio 

source code tree.  

Around 2010, roughly at the start of this work, the decision was made to redesign 

the code entirely and create a framework that was more flexible and that allowed users to 

add new features with minimal impact to the code structure. A major component of this 

new framework was a plugin mechanism that would allow users to develop new features 

independently from the main source code development. Since plugins do not require the 

compilation of the entire FEBio source code, they greatly simplify development of new 

features and facilitate the dissemination of these new additions. 

1.1.3 Tetrahedral formulations for contact mechanics 

Advances in imaging and computational methods make it possible to create and 

analyze detailed subject-specific surface models of biomechanical structures from high- 

resolution image data (e.g. MRI, CT). Volumetric meshes can then be constructed from 

these surfaces using an appropriate tessellation algorithm. Meshing algorithms that 

generate linear tetrahedral (TET4) meshes are often preferred due to the fact that it is 
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relatively straightforward to perform automatic meshing, local and adaptive refinement 

(Delaunay; Hubsch et al.; Johnson and MacLeod; Prakash and Ethier; Donzelli et al.), and 

automatic tetrahedral meshing techniques are extremely robust and fast (Delaunay; Lo; Lo; 

Lohner; Shephard and Georges; Wrazidlo et al.). However, when used in large deformation 

solid mechanics, linear tetrahedral elements are overly stiff and can “lock” in problems 

where nearly incompressible materials and/or acute bending are encountered (Hughes; 

Zienkiewicz and Taylor). In addition, since the displacement derivatives of the shape 

functions are constant, TET4 elements can only represent a constant strain state. This 

necessitates a very fine discretization, often requiring long solution times to obtain even 

marginally converged results. Because of these issues, other element formulations have 

been explored. Trilinear hexahedral elements (HEX8) have seen wide use for discretizing 

articular cartilage in joint contact analyses. Although these elements also have a tendency 

to lock in a standard displacement formulation, several techniques are available for 

improving the performance of these elements, such as reduced integration and multifield 

approaches (Simo and Taylor). On the other hand, creating hexahedral meshes for complex 

geometries can be very challenging and time consuming. Although algorithms for 

automatic hex mesh generation, such as plastering (Blacker and Meyers) and whisker 

weaving (Tautges, Blacker and Mitchell), have been reported, the approaches are not 

always robust and for this reason have not been widely used. This motivates the search for 

alternative tetrahedral formulations that are accurate and can take advantage of automatic 

meshing algorithms. 

Initially, we set out to explore methods based on nodal averaging of the deformation 

gradient. Originally proposed by Bonet, Marriott and Hassan and Dohrmann et al. in the 
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context of small displacement theory, this element was extended to large deformations, 

such as in Gee et al. and Puso and Solberg. The original formulation was shown to be 

unstable. This was later resolved by adding the virtual work that corresponds to the 

classical linear tetrahedral formulation to the total virtual work, multiplied by a user-

controlled scaling factor (Puso and Solberg). Although this may stabilize the formulation, 

this also reintroduces locking unless the second term uses a different “softer” constitutive 

model as was done in Puso and Solberg. This can be avoided by applying the stabilization 

only to the isochoric part of the stress (Gee et al.). However, despite these improvements 

to nodally integrated tetrahedrons, we found that these elements do not perform well in 

contact analyses (Maas et al.). This motivated us to look for other tetrahedral formulations. 

Quadratic tetrahedral element formulations appeared to be promising alternatives to linear 

tetrahedral formulations. These higher-order formulations maintain the advantages of 

tetrahedral mesh generation but suffer less from the numerical issues that plague the TET4 

element. In addition, the numerical techniques that have proven successful for HEX8 

elements can also be applied to higher-order tetrahedral formulations. They also offer an 

advantage over HEX8 elements because they can represent curved boundaries more 

accurately since their edges and faces can deform. We will look specifically at 10-node 

(TET10) and 15-node (TET15) quadratic tetrahedral element formulations. Although 10-

node tetrahedral elements have been investigated as alternatives to HEX8 elements in 

general 3D FE analysis (e.g., (Cifuentes and Kalbag; Tadepalli, Erdemir and Cavanagh; 

Weingarten)), few studies have looked at their performance in contact (Bunbar et al.; Hao 

et al.; Tadepalli, Erdemir and Cavanagh; Wan, Hoa and Wen; Yang and Spilker) and none 

of these studies investigated their application for simulation of articular contact analyses. 
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To our knowledge, the 15-node tetrahedron has never been used in computational 

biomechanics and it has seen very limited use in nonlinear computational solid mechanics 

at all (Danielson), although it has been used in the fluid mechanics community (Bertrand, 

Gadbois and Tanguy). 

Stress recovery is an important aspect of modeling problems in solid mechanics. It 

is well known that the strains and stresses predicted by the finite element method, using a 

standard displacement-based approach, are discontinuous across the element boundaries 

and thus are a poor approximation of the correct solution. A posteriori stress recovery 

methods attempt to obtain a more accurate prediction of the stresses based on the finite 

element results. Accurate recovery of stresses is not only important for visualization and 

analyses, but also for other applications such as error indicators in adaptive mesh 

refinement strategies. Various methods have been proposed in the literature for stress 

recovery. See the review articles (Ainsworth and Oden; Grätsch and Bathe) and the 

references therein. One of the most widely used methods is the Super-convergent Patch 

Recovery method (SPR) (Zienkiewicz and Zhu). This method relies on the existence of so-

called super-convergent sampling points inside a finite element where the error in the stress 

converges faster than that of the standard finite element approximation. By fitting a 

polynomial to these sampling points, a more accurate solution for the stresses can be 

computed. In this work, the SPR method will be used to recover the stresses for the higher 

order tetrahedral formulations considered here. 

1.1.4 Prestrain in biological tissues 

Experimental observations show that connective tissues such as ligaments, tendons, 

and skeletal muscle retract when excised from the body. This is seen as an indication of in 
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situ strain, i.e. strain that exists in vivo in the absence of loading and is relieved when the 

tissue is removed from the body. In situ strains for ligaments in diarthrodial joints are in 

the range of 3-10% (Gardiner, Weiss and Rosenber; Woo et al.) and it has been shown that 

they contribute to the stability of joints (Ellis, Lujan, et al.; Lujan, Dalton, et al.). Residual 

strain (i.e. strain that exists in the tissue after it is excised from the body) is also observed 

in many tissues such as arteries (Chuong and Fung), mitral leaflets (Rausch and Kuhl), and 

myocardium (Guccione, McCulloch and Waldman; Omens and Fung; Wang et al.). Both 

in situ strains and residual strains can contribute significantly to the mechanical response 

of the system. Therefore, their inclusion is often necessary in computational models of 

biological tissues to obtain reasonable predictions of tissue mechanics. We will use the 

term “prestrain” as a collective term for both in situ strains and residual strains and denote 

prestress as the stress that is induced by this prestrain. 

Several computational methods to include prestrains in the context of finite element 

(FE) modeling have been presented in the literature (Alastrue et al.; Balzani, Schroder and 

Gross; Dhaher, Kwon and Barry; Holzapfel and Ogden; Pierce et al.; Rausch and Kuhl). 

Most of these methods assume that a global stress-free state exists and is computable. From 

this stress-free state, the unloaded, prestressed state is recovered by one of several methods. 

In one approach, the deformation of the global stress-free configuration to the prestressed 

configuration is assumed (Rausch and Kuhl). Another approach makes use of the analytical 

solution from a geometrically simplified problem (Holzapfel and Ogden; Pierce et al.). A 

third approach solves a forward finite element problem that recovers the unloaded, 

prestressed state by applying judicially chosen boundary conditions (Balzani, Schroder and 

Gross).  Although these methods have been useful in studying the effects of prestrains and 
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prestresses in computational methods, they have several limitations. Most of those methods 

assume that a global stress-free state exists. This assumption appears to be motivated 

mostly by the limitations of existing FE packages. Prestrain can often only be applied by 

translating the model to a sequence of forward analyses where a judicial choice of boundary 

conditions emulates the effect of residual strains. This obviously limits the application of 

residual strains in general and in fact, the existence of a globally stress-free state has been 

contested. Indeed, if the residual stress field forms from growth and remodeling of the 

tissue, there is no reason to assume that a globally stress-free configuration exists. Consider 

for instance the case of arteries, where the opening angle experiment is believed to relieve 

all the residual stresses (Fung and Liu) using a single radial cut. However, it was later 

shown that a single cut does not relieve all the residual stresses (Greenwald et al.; 

Vossoughi, Hedzaji and Borris) and multiple cuts are necessary to relieve the residual 

stresses. Other researchers have implemented the effects of residual strains directly into the 

constitutive models, but in this case, the constitutive assumptions are hardcoded in the 

implementation and the application to other constitutive models is not straight-forward. 

The most general method known to date for incorporating prestrain is the “General 

Prestressing Algorithm” (GPA) (Weisbecker, Pierce and Holzapfel). Although the method 

was presented in a different context, it can also be used to apply prestrain to a 

computational model (Pierce et al.). This method does not necessarily require a stress-free 

reference.  

As noted before, the lack of a tailored environment for solving computational 

biomechanical problems has forced many researchers to implement the algorithms for 

applying prestrains into custom-developed codes; a practice that has hampered 



12 
 

 

dissemination and complicated reproducibility of findings. Since FEBio’s goal is to 

provide such a tailored environment, this work will expand FEBio’s framework such that 

methods for incorporating prestrain can be implemented easily. The framework will focus 

on methods that do not require a stress-free reference configuration and will be general 

enough so that it can be applied to a wide range of constitutive models. As an example of 

an application of the framework, methods will be explored that apply a given prestrain field 

to a model, a question of particular importance when the prestrain data are obtained from 

experimental data. Inaccuracies in the experimental prestrain data may render the applied 

prestrain field incompatible with the reference geometry. This will result in an additional, 

nonphysical distortion of the geometry that may affect the accuracy of the outcome. For 

such applications, the ability to quantify this distortion, and if possible, to correct the 

distortion may be critical for obtaining meaningful results. 

1.2 Research Goals 

The overall objectives of this research were to redesign the FEBio code structure in 

a way that would allow users to add new features in an easy and convenient way. Then, 

using this improved structure, two common, yet important aspects of simulating biological 

structures would be addressed: using reliable tetrahedral element formulations for solving 

large deformation contact problems; and applying prestrain to models of biological tissues. 

1.2.1 Aim 1 

Aim 1 is to implement a general framework for extending FEBio that allows new 

features to be added without the need to make any changes to the source code. This 

framework will also provide the ability to create plugins, which allows users to add new 
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functionality independently from FEBio’s development.  

1.2.2 Aim 2  

Aim 2 is to determine effective tetrahedral element formulations for joint contact 

mechanics. Specifically, the robustness in terms of convergence behavior in nonlinear 

solution strategies of several quadratic tetrahedral formulations and several integration 

strategies will be explored. Stresses will be recovered using a Super-convergent Patch 

Recovery method and the accuracy of these stresses, especially the predicted contact 

stresses, will be compared for the various formulations. 

1.2.3 Aim 3 

Aim 3 is to develop a novel computational framework for including residual strains 

based on methodology that does not assume the existence or computability of a globally 

stress-free reference configuration. The approach will be applicable to a wide range of 

constitutive models and prestrain applications. 

1.3 Summary of Chapters 

In Chapter 2, the theoretical framework is presented on which FEBio is based. The 

governing equations of nonlinear mechanics are reviewed. Details on the specific 

constitutive models, contact formulations, and rigid body algorithms are presented as well. 

This chapter also discusses some of the implementation aspects and explains how FEBio 

interacts with third-party linear solvers. This chapter also presents an extensive list of 

verification problems that show that FEBio not only can reproduce accurate results, but 

also that it is competitive in terms of performance, compared to other FE codes used in the 

field.  
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The discussion of the implementation aspects behind FEBio continues in Chapter 

3. The focus here is on the modifications to the original design that greatly simplify the 

implementation of new features. This chapter also presents the plugin framework that 

allows users to make additions to the code, without the need to modify or build the FEBio 

source code directly. The chapter ends with several examples of plugins that illustrate the 

versatility of the new framework.  

The next three chapters tackle some of the challenges in modeling joint contact 

mechanics. In Chapter 4, quadratic tetrahedral formulations are explored as alternatives to 

the “gold-standard” linear hexahedral elements. Two particular quadratic tetrahedrons are 

compared to linear tetrahedral and linear hexahedral elements. Several integration rules are 

investigated for their accuracy. This chapter also discusses stress-recovery of results 

obtained with quadratic tetrahedral elements. In Chapter 5, additional simulations are 

presented that further strengthen the observations made in the previous chapter. Chapter 6 

presents a computational framework for modeling prestrain in FE models. Several 

applications are discussed, including enforcing fiber stretch onto a model, how to obtain a 

prestressed state when the prestressed configuration is known, and how to use the 

framework to solve certain types of inverse FE problems.  

Chapter 7 presents an overall summary of the work and discusses the significance 

of this work. It also outlines some future directions that have yet to be explored. Finally, 

Chapter 8 presents an overview of additional projects that were led by the author that have 

contributed in a significant way to the development of the FEBio software project. 
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CHAPTER 21 

FEBIO: FINITE ELEMENTS FOR BIOMECHANICS 

2.1 Abstract 

In the field of computational biomechanics, investigators have primarily used 

commercial software that is neither geared toward biological applications nor sufficiently 

flexible to follow the latest developments in the field. This lack of a tailored software 

environment has hampered research progress, as well as dissemination of models and 

results. To address these issues, we developed the FEBio software suite 

(http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) 

framework, designed specifically for analysis in computational solid biomechanics. This 

paper provides an overview of the theoretical basis of FEBio and its main features. FEBio 

offers modeling scenarios, constitutive models, and boundary conditions, which are 

relevant to numerous applications in biomechanics. The open-source FEBio software is 

written in C++, with particular attention to scalar and parallel performance on modern 

computer architectures. Software verification is a large part of the development and 

maintenance of FEBio, and to demonstrate the general approach, the description and results 

of several problems from the FEBio Verification Suite are presented and compared to 

analytical solutions or results from other established and verified FE codes. An additional 

                                                 

1Reprinted from Journal of Biomechanical Engineering, Volume 134, Issue 1, Maas SA, Ellis BJ, Ateshian 
GA, Weiss JA, “FEBio: Finite Elements for Biomechanics”, 2012, with permission from ASME. 
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simulation is described that illustrates the application of FEBio to a research problem in 

biomechanics. Together with the pre- and postprocessing software PreView and Postview, 

FEBio provides a tailored solution for research and development in computational 

biomechanics. 

2.2 Introduction 

Accurate, quantitative simulations of the biomechanics of living systems and their 

surrounding environment have the potential to facilitate advancements in nearly every 

aspect of medicine and biology. For instance, computational models can yield estimates of 

stress and strain data over the entire continuum of interest, which is especially 

advantageous for locations where it may be difficult or impossible to obtain experimental 

measurements. Computational modeling in biomechanics has already become a standard 

methodology, both for interpreting the biomechanical and biophysical basis of 

experimental results and as an investigative approach in its own right when experimental 

investigation is difficult or impossible. Applications span all fields of the biomedical 

sciences, including areas as diverse as molecular dynamics, cell motility and mechanics, 

cardiovascular mechanics, musculoskeletal biomechanics and tissue engineering. 

Advancements in imaging techniques and geometry reconstruction have opened the door 

to patient-specific modeling [1-6], which could revolutionize the way clinicians diagnose 

and treat certain pathologies. Continuing improvements in speed and availability of high 

performance computing hardware have allowed use of finely discretized geometries (e.g. 

high resolution representations of vertebral bodies [7]) and sophisticated constitutive 

models (e.g. mixture theory [8,9]), with the hope that these added complexities will 

produce more realistic representations of biological materials. 
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The finite element (FE) method is by far the most common numerical discretization 

and solution technique that has been used in computational biosolid mechanics. The FE 

method provides a systematic approach for assembling the response of a complex system 

from individual contributions of elements, and thus it is ideal for the complex geometries 

often encountered in biomechanical systems. It also provides a consistent way to address 

material inhomogeneities and differences in constitutive models between disjoint or 

continuous parts of a model. The solution procedure involves the consideration of overall 

energy minimization and/or other fundamental physical balance laws to determine 

unknown field variables over the domain. The FE method has been applied to problems in 

biomechanics as early as the 1970s (see, e.g., Refs. [10-15]). The application of finite 

element analysis in biomechanics research and design has increased exponentially over the 

last 30 years as commercial software availability has improved and researchers obtained 

better access to appropriate computing platforms. Applications have spanned from the 

molecular to cellular, tissue, and organ levels. 

However, the lack of a FE software environment that is tailored to the needs of the 

field has hampered research progress, dissemination of research, and sharing of models 

and results. Investigators have primarily used commercial software, but these packages are 

not specifically geared toward biological applications, are difficult to verify [16,17], 

preclude the easy addition and sharing of new features such as constitutive models, and are 

not sufficiently general to encompass the broad framework needed in biomechanics. To 

address these issues, we developed FEBio (an acronym for “Finite Elements for 

Biomechanics”), a nonlinear implicit finite element framework designed specifically for 

analysis in computational solid biomechanics [18]. 
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Arguably, the most important aspect of developing a new FE code is proper 

verification. The American Society of Mechanical Engineer’s ‘Guide for Verification and 

Validation in Computational Solid Mechanics’ [19] defines verification as: 

The process of determining that a computational model accurately 
represents the underlying mathematical model and its solution.  In essence, 
verification is the process of gathering evidence to establish that the computational 
implementation of the mathematical model and its associated solution are correct. 

 
In the case of computational solid biomechanics, the mathematical model is based on the 

governing equations of continuum mechanics (in particular the conservation of linear 

momentum), the associated boundary conditions, initial conditions, and constitutive 

equations. Development of a numerical method of analysis based on the mathematical 

model requires numerical discretization, solution algorithms, and convergence criteria 

[19,20]. To verify the numerical methods and computational implementation of the 

mathematical model in FEBio, it must be demonstrated that it gives the correct solution to 

a set of benchmark problems that consists of either analytical solutions or results from 

established FE codes. 

Our long term goal is to develop a freely available, extensible finite element 

modeling framework for solid mechanics, fluid mechanics, solute transport, and 

electrokinetics in biological cells, tissues, and organs, based around the FEBio framework. 

To date, no such tools are available for general use in the public domain. The specific 

objectives of this paper are to introduce the theoretical framework of FEBio and to present 

results for a suite of verification problems that simultaneously illustrates some of its 

capabilities. 
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2.3 Overview 

FEBio offers modeling scenarios, constitutive models and boundary conditions that 

are relevant to numerous applications in biomechanics. FEBio supports both quasi-static 

and dynamic analyses. In a quasi-static analysis, the equilibrium response of the system is 

sought and inertial terms are ignored. An incremental iterative solution is obtained by 

discretizing applied loads and other boundary condition in quasi-time. For deformable 

porous media, a coupled solid-fluid problem is solved. In a dynamic analysis, the inertial 

terms are included to calculate the time-dependent response of the system. FEBio uses an 

implicit time integration scheme for both types of analyses. 

Many different constitutive models are available to represent biological materials 

and synthetic biomaterials. Many of the materials are based on the framework of 

hyperelasticity. Both isotropic and anisotropic constitutive models are available. FEBio 

also contains a rigid body constitutive model.  This model can be used to represent 

materials or structures whose deformation is negligible compared to that of other materials 

in the overall model. 

FEBio supports a wide range of boundary conditions to model biological 

interactions. These include prescribed displacements, nodal forces, surface tractions, 

pressure forces, and body forces (e.g. gravity). For dynamic problems, initial conditions 

are available for prescribing the initial values for velocity, acceleration and, in the case of 

biphasic analysis, fluid pressure and fluid flux. Deformable models can be connected to 

rigid bodies. This allows the user to model prescribed rotations and torques for rigid 

segments, thereby allowing the coupling of rigid body mechanics with deformable 

continuum mechanics. FEBio offers several ways to represent contact between rigid and/or 
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deformable materials. Using a sliding surface, the user can connect two surfaces that are 

allowed to separate and slide across each other but are not allowed to penetrate. If the 

contacting surfaces are poroelastic, the user can choose to allow fluid to flow through the 

contact interface in the presence of a fluid pressure gradient across the interface. The tied 

interface can be used to tie two possibly nonconforming surfaces together. 

FEBio is open source, and both the executables and source code may be 

downloaded free of charge (http://mrl.sci.utah.edu/software/febio). Each downloadable 

package contains the executable, verification and example problems, a user’s manual and 

a theory manual. Precompiled executables are available for the Windows 7, Windows XP, 

Linux 64 bit, Linux 32 bit, and Mac OSX platforms. FEBio can be an excellent starting 

point for researchers who wish to implement new technologies. Although adding new 

functionality to FEBio requires some C++ programming skills, the modular structure of 

the code greatly facilitates this process. The source code is commented clearly and HTML 

documentation exists as well. To facilitate support, bug tracking and feature requests, a 

public forum has been created (http://mrl.sci.utah.edu/forums). 

Two software packages that support the use of the FEBio software have also been 

created. PreView is a finite element preprocessor that offers a graphical user interface that 

facilitates the process of defining finite element models. The user can import geometry, 

assign material parameters, define boundary and contact conditions, and export the final 

model as a FEBio input file.  The results of a FEBio run can subsequently be analyzed and 

visualized in the finite element postprocessor PostView.  This environment offers tools to 

inspect and analyze the model results similar to those found in most commercial finite 

element software packages. Both PreView and PostView may be downloaded for free from 
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the same software website. 

2.4 Theory and Implementation 

The following section assumes knowledge of nonlinear continuum mechanics and 

finite element methods.  The FEBio Theory Manual [21] and the references below can be 

consulted for more detailed explanations of the presented theory. 

2.4.1 Weak form, linearization and finite element discretization 

Generally, a finite element formulation is established by a variational statement, 

which represents the weak form of a physical law. In mechanics, this can either be written 

as the minimization of an energy function or, alternatively, the virtual work equation can 

serve as the starting point [22]. The spatial form of the virtual work equation, representing 

the weak form of conservation of linear momentum for a deformable body, can be written: 

  : 0
v v v

W dv dv daδ δ δ δ
∂

= − ⋅ − ⋅ =∫ ∫ ∫σ d f v t v .   (2.1) 

Here, σ  is the 2nd order Cauchy stress tensor, δd  is the 2nd order virtual rate of deformation 

tensor, δ v  is a virtual velocity, and v  and v∂  represent the volume and surface in the 

deformed configuration, respectively. Equation (2.1) is a highly nonlinear function of the 

deformation, and an iterative method is necessary to solve for the deformation. In FEBio, 

this equation is solved using an incremental-iterative strategy based on Newton’s method, 

which requires the linearization of Eq. (2.1) [23]. 

The directional derivative of Eq. (2.1) is needed for the linearization. In an iterative 

procedure, the deformation φ  will be approximated by a trial solution kφ . Linearization 

of the virtual work equation around this trial state gives: 
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 ( ) ( ), , 0k kW D Wδ δ δ δ+ ⋅ =v v uφ φ ,    (2.2) 

where ( ),kD Wδ δ ⋅v uφ  is the directional derivative of the virtual work in the direction u. 

In the finite element method, the domain is divided into connected subunits called 

finite elements. The discretization process is established by interpolating the position X of 

a point within a finite element in terms of the coordinates aX  of the nodes a that define the 

finite element and the shape functions, Na: 

1

n

a a
a

N
=

= ∑X X ,      (2.3) 

where n is the number of nodes in a finite element.  Quantities such as spatial coordinates, 

displacement, velocity, and their virtual equivalents can be interpolated similarly. 

The discretization of Eq. (2.2) with Eq. (2.3) leads to the discrete form of the 

nonlinear finite element equations [24]: 

 T Tδ δ⋅ ⋅ = − ⋅v K u v R  .     (2.4) 

Here, K is the stiffness matrix, which is mostly defined by the constitutive model, u is the 

vector of nodal displacements, and R is the residual vector, which measures the difference 

between internal and external forces. Since the virtual velocities δ v  are arbitrary, they can 

be eliminated. An iterative solution scheme based on Newton’s method can be formulated 

as follows: 

 ( ) ( ) 1;k k k k+⋅ = − = +K x u R x x x u .    (2.5) 
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Here, ( )k kϕ=x X  and 1k+x  are the current nodal coordinates at iterations k and k+1, 

respectively. Ideally, Newton’s method achieves a quadratic convergence rate in the 

neighborhood of a solution. However, it also requires the formation and factorization of 

the stiffness matrix at every iteration, which is the most costly part of nonlinear finite 

element analysis from a computational standpoint. Quasi-Newton methods offer an 

attractive alternative. For these methods, the true stiffness matrix K is replaced by an 

approximation that is relatively easy to calculate. FEBio uses the BFGS method [23], which 

is one of the more effective quasi-Newton methods for computational solid mechanics. 

2.4.2 Element technology 

The 3D solid elements in FEBio are isoparametric elements, meaning that the 

element geometry and displacement fields on the element are interpolated with the same 

shape functions. Currently available elements include the linear hexahedron, pentahedron, 

and tetrahedron. It is well-known that these elements tend to “lock” for nearly and fully 

incompressible material response when using a displacement-only formulation. FEBio 

deals with this problem by using a three-field element formulation (the mean dilatation 

method) for the hexahedral and pentahedral elements. [25]. For tetrahedral elements, a 

nodally integrated tetrahedron provides enhanced performance for finite deformation and 

near-incompressibility compared to the standard constant strain tetrahedron [26]. 

Quadrilateral and triangular shell elements in FEBio use an extensible director 

formulation [27]. Six degrees of freedom are assigned to each shell node: three 

displacement degrees of freedom and three director degrees of freedom. A three-point 

Gaussian quadrature rule is used for integration through the thickness of the shell. 

FEBio also solves porous media problems using the mixture framework known as 



32 
 

 

the biphasic theory [28]. For such problems, a fluid phase exists along with the solid phase 

and therefore requires the solution of a separate fluid field problem. In FEBio, a  

formulation is used to solve the coupled solid-fluid problem for the unknown 

displacements and fluid pressures [29]. Like the displacements, the fluid pressures are 

defined at the nodes and the biphasic elements are integrated using the same quadrature 

rule as the structural elements. In the formulation, an additional equation is needed to 

satisfy the conservation of mass for the mixture. The weak formulation now requires the 

solution of a coupled displacement-pressure problem. 

 ( ), , : 0m
v v v

W p dv dv daδ φ δ δ δ δ
∂

= − ⋅ − ⋅ =∫ ∫ ∫v σ d f v t v ,   (2.6) 

and 

 .  (2.7) 

Equation (2.6) is recognized as the virtual work Equation (2.1). In Eq. (2.7),  

is a virtual fluid pressure and  is the flux of fluid relative to the solid, which can be 

calculated for instance by Darcy’s law p= − ∇w k  where  is the permeability tensor.  is 

the unit outward normal to . 

2.4.3 Constitutive models 

The material representations in FEBio span the range of elastic solids, viscoelastic 

solids, biphasic materials, biphasic-solid materials, and rigid bodies.  Many of the 

constitutive models are based on the concept of hyperelasticity.  Constitutive models with 

isotropic, transversely isotropic [30], and orthotropic material symmetries are available. 
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For most materials, uncoupled formulations are used so that these materials can be used 

effectively in nearly-incompressible analyses.  Detailed descriptions of all of the materials 

in FEBio can be found in the FEBio Theory Manual [21]. 

2.4.4 Contact 

Several contact algorithms are available in FEBio. To enforce the contact 

constraint, a contact work contribution is added to the virtual work statement in Eq. (2.1). 

The contact integral is of the following form: 

 ( ) ( ) ( ) ( ) ( ) ( )( )
( )1

1 1 2

c

cG w w d
Γ

 = − ⋅ − Γ ∫ t x x y x .     (2.8) 

Here, ( )it  is the contact reaction force on body i and ( )iw  are weight functions. One can 

also look at t as a Lagrange multiplier that enforces the contact constraint. This contact 

formulation is general enough to support both sliding interfaces, where the objects may 

slide across each other, and tied interfaces, where both objects are required to stick together 

at the contact interface. In the case of porous permeable media, a new contact algorithm 

between biphasic materials allows for tracking of fluid flow across the contact interface. In 

other words, fluid can flow from one side of the contact interface to the other when both 

contact surfaces are biphasic [31]. FEBio supports both a standard penalty-type 

enforcement of the contact constraint as well as the augmented Lagrange method, which 

calculates the Lagrange multipliers incrementally [32]. 

2.4.5 Rigid bodies 

Rigid bodies are supported as a separate material type. For groups of elements, 

faces, and/or nodes that are assigned the “rigid body” material type in FEBio, nodal degrees 



34 
 

 

of freedom are condensed down to six degrees of freedom. The result is a vast reduction in 

the number of the total degrees of freedom and leads to a very efficient implementation of 

the rigid body constraint [33]. Rigid bodies can also be connected by rigid joints. The rigid 

joint constraints are enforced using an augmented Lagrangian method. 

2.4.6 Linear solvers 

Since over 90% of the execution time of large problems in an implicitly integrated 

nonlinear FE code is spent in the linear solver (which is called repeatedly for the Newton 

or quasi-Newton solution method), the linear solver is typically the bottleneck for large 

computations. Consequently, an efficient and robust linear solver was needed. The linear 

solver must run on all supported platforms (Linux, Windows, Mac), take optimal advantage 

of the sparsity of the stiffness matrix, handle both symmetric and unsymmetric matrices 

(necessary for biphasic problems), and support parallel execution. For this reason, FEBio 

includes support for Pardiso [34,35], SuperLU [36], and WSMP [37]. These solvers take 

optimal advantage of the sparse stiffness matrix by storing only the nonzero matrix 

elements using the Harwell-Boeing matrix storage format. Further, they can handle 

nonsymmetric matrices and support parallel execution on multicore shared-memory 

architectures. 

2.4.7 Software implementation 

FEBio is written in C++. This programming language was chosen over FORTRAN 

– the more commonly used language in scientific computing – for two reasons. First, the 

performance penalties that once existed in object-oriented programming languages 

(compared to procedural languages such as FORTRAN) have been mostly overcome by 
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modern compilers [38]. Second, C++ encourages the use of a modular code structure that 

simplifies the development and maintenance of a sophisticated software program. This 

modular structure also offers advantages for users who wish to customize FEBio for their 

own needs. For instance, it provides a simple yet elegant way to add new materials without 

the need to modify any of the existing code. By simply providing a new constitutive 

relation, the new material is automatically recognized in the input format and supported in 

restart analyses, the parameter optimization module, as well as all other features of FEBio 

that support different materials. To simplify the addition of custom materials further, a 

custom math library was designed that facilitates the implementation of tensor and matrix 

operations. This library allows the user to implement the material model using 

programming statements that closely resemble the analytical mathematical expressions. To 

verify the material implementation, several diagnostic tools are available for the developer 

to check the consistency between the stress tensor and the fourth-order elasticity tensor. 

The software is commented extensively to clarify the data flow of the code. Online 

documentation of the source code is available as well. 

2.5 Verification Problems  

Results produced by FEBio were compared to analytical solutions or the solutions 

from two established and verified FE codes, ABAQUS (Version 6.7, Simulia, Providence, 

RI) and NIKE3D (Version 3.4.1, Methods Development Group, Lawrence Livermore 

National Laboratory, Livermore, CA [39]). The problem description and results are 

presented together for each verification problem. The FEBio Verification Suite consists of 

over 140 test problems, and those described below are representative. 
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2.5.1 Uniaxial tension-compression material tests 

The single-element uniaxial stress test is a standard verification test for material 

models. Since the deformation is homogeneous, the analytical solution can often be 

obtained in closed form. This allows for direct comparison of the FEBio results with the 

analytical solution. In this case study, results for the Mooney-Rivlin and Ogden 

hyperelastic constitutive models are presented. Both materials are often used to represent 

the matrix component of biological tissues. The Mooney-Rivlin constitutive model in 

FEBio has the following uncoupled strain-energy function: 

 ( ) ( ) ( )2
1 1 2 23 3 ln

2
MR KW C I C I J= − + − +  ,     (2.9) 

where 1C  and 2C are material parameters, K is the bulk modulus, 1I  and 2I  are the 1st and 

second deviatoric invariants of the right Cauchy-Green deformation tensor T=C F F , F is 

the deformation gradient, and ( )detJ = F  is the Jacobian of the deformation. The material 

parameters were chosen to be 1 6.8C =  MPa, 2 0C = , which approximates the material 

parameters of articular cartilage during fast loading [40]. The value of K was chosen 

sufficiently high to satisfy near-incompressibility ( 5~ 10K MPa). 

The Ogden constitutive model with uncoupled deviatoric and dilatational response 

has the following strain-energy function [41]: 

( ) ( ) ( )2
1 2 3 1 2 32

1
, , , 3 ln

2
i i i

N
m m mOG i

i i

c KW J J
m

λ λ λ λ λ λ
=

= + + − +∑    .   (2.10) 

Here, iλ  are the deviatoric principal stretches and ic  and im  are material coefficients.  
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Material incompressibility was enforced using the augmented Lagrangian method.  

Material coefficients were chosen to represent the bulk soft tissue properties of the heelpad 

(N = 1, 1c =  0.0329 MPa, 1m = 6.82) [42]. Again, the bulk modulus K was chosen 

sufficiently high to enforce near-incompressibility. Results from FEBio were compared to 

analytical solutions. Excellent agreement was achieved between the analytical solutions 

and the predicted responses from FEBio for both constitutive equations (Fig. 2.1). 

2.5.2 Confined compression creep 

The confined compression creep test is often used for material characterization of 

deformable porous media [28,43,44]. A cylindrical tissue sample is placed in a confining 

chamber with rigid impermeable bottom and side walls.  The top of the tissue is compressed 

with a free-draining rigid porous indenter.  If a constant applied load is used, a creep 

deformation is produced, increasing over time (Fig. 2.2). 
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Fig. 2.1: Simulation of uniaxial tension-compression material tests for the Mooney 
Rivlin (top) and Ogden (bottom) constitutive models.   There was excellent agreement 
between the analytical solutions and the predictions from FEBio for both constitutive 
equations. 
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A unit cube was created and the nodes were constrained so that only the top surface 

could move along the normal direction.  A pressure of 0.001 MPa was applied to the top 

surface.  The material was assumed to be biphasic.  The solid phase was modeled as a neo-

Hookean material with strain energy given by: 

 ( ) ( )2
1 3 ln ln

2 2
NHW I J Jµ λµ= − − + . (2.11) 

Here, µ  and λ  are the Lamé parameters, 1 trI = C  is the first invariant of the right 

Cauchy-Green deformation tensor. For this problem, the material parameters were chosen 

to be 1.43λ = MPa, 0.357µ = MPa and the permeability of the mixture was chosen to be  

10-3mm4/N.s. Results from FEBio were compared to the analytical solution in Mow et al. 

[28] for verification. The creep response predicted by FEBio was in excellent agreement 

Fig. 2.2: Confined compression creep testing of deformable porous media.  Top - 
loading and boundary conditions for the confined compression creep simulation.  
Bottom – creep displacement as a function of time, calculated from the analytical 
solution and predicted by FEBio, showing the excellent agreement between the two 
results. 
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with the analytical solution for the confined compression problem (Fig. 2.2). 

2.5.3 Unconfined compression stress relaxation 

In this test, a cylindrical tissue sample is exposed to a prescribed displacement in 

the axial direction while left free to expand radially. After loading the tissue, the 

displacement is held constant while the tissue under the displacement relaxes in the radial 

direction due to interstitial fluid flow through the material. For porous media, the outer 

radial boundary is free-draining (Fig. 2.3, arrows). 

A quarter-symmetry mesh was used to model the cylindrical tissue sample. The 

outer radius and height of the cylinder were 1 mm, while the axial compression was 0.01 

mm. The bottom of the tissue was constrained and quarter-symmetry boundary conditions 

were applied. The fluid pressure was constrained to zero at the outer radial surface, while 

the fluid pressure throughout the rest of the body was determined by solution of the 
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Fig. 2.3: Unconfined compression stress relaxation.  Top - quarter-symmetry model 
used for the simulation with the free fluid flow through the outer boundaries indicated 
with arrows.  Bottom - axial stress versus time calculated from the analytical solution 
and predicted by FEBio, showing the excellent agreement between the two results. 
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equilibrium equations for porous media. The solid phase was represented as a neo-Hookean 

material (Eq. (2.11), 0.186λ = MPa, 0.435µ = MPa) and the permeability of the mixture 

was chosen to be 3 410 mm / N s− ⋅ . 

The unconfined compression response can be modeled with the biphasic theory 

[28]. For the special case of a cylindrical geometry and assumptions regarding the direction 

of the fluid flow, Armstrong et al. [45] found a closed-form analytical solution for the 

average axial stress on the sample in response to a step loading function. The axial stress 

predicted by FEBio was nearly identical to the analytical solution provided by Armstrong 

et al. (Fig. 2.3). 

2.5.4 Strip biaxial stretching of an elastic sheet with a circular hole 

This example demonstrates the use and verifies the results of a hyperelastic material 

in plane stress under large deformation. A thin, initially square sheet containing a centrally 

located circular hole was subjected to strip biaxial stretch. The undeformed square sheet 

was 165×165×2 mm, with a centrally located internal hole of radius 6.35 mm (Fig. 2.4).  

The sheet was meshed with 32 hexahedral elements.  This example is identical to the 

problem in section 1.1.8 of the ABAQUS Benchmark Manual (Version 6.7). 

The sheet was stretched to a length of 1181 mm (615.76% strain), while the edges 

parallel to the displacement were restrained from contracting. The sheet was represented 

as a hyperelastic Mooney-Rivlin material with uncoupled deviatoric and volumetric 

behavior (Eq (2.9)). The material coefficients were 1 0.1863C =  MPa, 2 0.00979C =  MPa, 

and K = 100 MPa, as used by Oden [46] to match the experimental results for a rubber 

sheet first reported by Treloar [47]. The reaction force predicted by FEBio was compared 

to results from ABAQUS and NIKE3D as a function of percent elongation. 
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The total nodal reaction force predicted by FEBio was identical to the results 

produced by NIKE3D, but was slightly higher than predictions from ABAQUS (Fig. 2.4). 

The small difference is likely due to the slightly different implementation of the Mooney-

Rivlin material in ABAQUS. More specifically, ABAQUS uses a different function for the 

dilatational strain energy (that is, the last term in Eq. (2.9)) than FEBio and NIKE3D. 

 

Fig. 2.4: Strip biaxial stretching of an elastic sheet with a circular hole.  Top – Panel A, 
quarter-symmetry model used for this simulation.  Panel B, deformed configuration 
after applied strain.  Bottom - total nodal reaction force versus percent elongation for 
FEBio, NIKE3D, and ABAQUS.   FEBio and NIKE3D predicted identical results that 
were slightly different than ABAQUS due to the different algorithms used to enforce 
the material incompressibility. 
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2.5.5 Geometrically nonlinear analysis of a cantilever beam 

A 10 m long cantilever beam was subjected to a tip load in the transverse direction 

to produce over 8 m of lateral deflection (Fig. 2.5). The beam had a solid rectangular cross-

section (100 mm thick × 150 mm height) and three different mesh densities were used (100, 

200, and 400 elements along the length of the beam). One element was used through the 

thickness in all cases. One end of the beam was constrained using nodal constraints, while 

a vertical load of 269.35 N was applied at the opposite tip of the beam. The beam was 

represented as a hyperelastic St. Venant-Kirchhoff elastic material: 

 ( ) ( )21 tr :
2

SVW λ µ= +E E E ,     (2.12) 

Fig. 2.5: Geometrically nonlinear analysis of a cantilever beam.  Top – cantilever 
beam in the undeformed and deformed configurations showing the beam length and 
deflection.  Bottom – end displacement versus percentage of applied load for the 
analytical solution and FEBio simulations using 100, 200, and 400 elements along the 
length of the beam.  The beam deflection predicted by FEBio was nearly identical to 
the analytical solution when 400 elements were used to discretize the beam. 
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where λ  and µ  are the Lamé parameters (λ = 0, µ = 50 MPa) and E is the Green-Lagrange 

strain tensor. The use of the Green-Lagrange strain tensor in the formulation of the St. 

Venant-Kirchhoff constitutive equation makes it appropriate for the large rotations and 

small strains in this problem. The cantilever tip deflection predicted by FEBio was 

compared to the analytical solution for the large deflection of a cantilever beam [48]. 

The beam deflection predicted by FEBio was nearly identical to the analytical 

solution for the geometrically nonlinear analysis of a cantilever beam for a model with 400 

elements along the length of the beam (Fig. 2.5). Models with 100 and 200 elements 

produced a slightly stiffer response. 

2.5.6 Twisted ribbon test for shells 

This is one of a number of verification problems that are used to verify the shell 

element formulation in FEBio. A plate discretized with shell elements was twisted by 

constraining one end and applying equal but opposite forces to the corners of the non-

constrained end (Fig. 2.6). The problem description and analytical solution were originally 

presented by Batoz [49]. The plate dimensions were 1.00×2.00×0.05 mm and five models 

with mesh densities from 32 to 2048 elements were used for a convergence study. Nodes 

along one short edge were clamped using nodal constraints and the plate was twisted by 

applying equal but opposite forces of 1 N to the corners nodes of the opposite short edge. 

The St. Venant-Kirchhoff material was used (Eq. (2.12), λ = 2.5×107 MPa, µ = 2×106 MPa). 

The displacement of the corner node predicted by FEBio was compared to the analytical 

solution.The corner displacement predicted by FEBio was nearly identical to the analytical 

solution for the twisted ribbon test for shells when 2048 elements were used to mesh the 

plate (Fig. 2.6). To put this result in perspective, the corner displacement predicted by 
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FEBio was <2% different when half that many elements were used and ~30% different 

when only 32 elements were used. 

2.5.7 Upsetting of an elastic billet 

This problem is commonly used to test finite element approaches for enforcing 

near- and full-incompressibility, since the domain is highly constrained. A billet of material 

was compressed between two rigid flat surfaces (Fig. 2.7A). Since the material was only 

compressed to the point when the material bulging from the middle of the billet makes 

contact with the flat surfaces (Fig. 2.7B), this problem is a simplification of the contact 

Fig. 2.6: Twisted ribbon test for shells.  Top - model in the undeformed configuration 
with loading and boundary conditions indicated.  Bottom - displacement of the outside 
corner node versus number of elements used to discretize the model.  2048 elements 
were needed to exactly match the analytical solution, but there was <2% difference 
when only half that many elements were used to discretize the model. 
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Fig. 2.7: Upsetting of an elastic billet.  Top – Panel A, quarter-symmetry model in 
the initial configuration.  Panel B, billet deformed until there is contact between the 
inner material of the billet and the rigid planes.  Panel C, deformed billet with 
contact between the inner material and the rigid planes. Bottom – lateral 
displacement (bulge) versus percent compression for FEBio, NIKE3D, and 
ABAQUS.  There was excellent agreement in the predicted results from all three FE 
codes for both the contact and noncontact versions of this problem. 
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problem presented in the next example (Fig. 2.7C). 

A quarter-symmetry, plane strain model was produced (Fig. 2.7A).  The model 

dimensions were 1.0×1.0×0.1 mm, and a mesh of 10×10×1 elements produced converged 

results. Boundary and loading conditions were prescribed using nodal constraints and nodal 

loads, respectively. The billet was represented as an uncoupled Mooney-Rivlin material 

(Eq. (2.9), 1C =1 MPa, 2C =10 MPa, K=10,000 MPa). The augmented Lagrangian method 

was used to enforce incompressibility [32]. The displacement of the top right node of the 

mesh (representing the amount of lateral bulging) was plotted versus the percent 

compression and the results from FEBio were compared to results from ABAQUS and 

NIKE3D. The lateral displacement of the billet predicted by FEBio was nearly identical to 

the results produced by ABAQUS and NIKE3D (Fig. 2.7, right panel).  

To verify the contact algorithm implemented in FEBio, contact between the 

incompressible material of the billet and the rigid plane was added to the problem. The 

billet was compressed 60% of its original height, causing extensive contact between the 

rigid plane and the material originally in the middle of the billet. The boundary conditions 

for this problem were the same as the previous problem, but here the compression of the 

billet was caused by frictionless contact between the billet and rigid plane. This contact 

was enforced using an augmented-Lagrangian method. Again, the lateral displacement of 

the billet predicted by FEBio was nearly identical to the results produced by ABAQUS and 

NIKE3D. The results from the noncontact and contact problems lined up through the 

smaller range of compression (Fig. 2.7, right panel). 
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2.5.8 Crushing of a pipe 

This problem simulated the crushing of a long, straight pipe of cylindrical cross-

section between two flat, frictionless anvils. This benchmark problem includes large 

strains/rotations and contact between deformable and rigid materials. A quarter-symmetry, 

plane strain model of a 114.3 mm radius pipe with an 8.87 mm thickness was created for 

this problem (Fig. 2.8). The model was meshed with 24 elements along the arc, four 

elements through the thickness, and one element through the length. Nodal constraints were 

used for the plane-strain and quarter-symmetry boundary conditions, and the problem was 

driven by prescribing a 50 mm displacement to the rigid body. Contact between the anvil 

and pipe was enforced using the augmented Lagrangian method. The St. Venant-Kirchhoff 

material was used for this problem ( 107λ = GPa, 71.5µ = GPa). The rigid body reaction 

force predicted by FEBio was compared to the results from NIKE3D and ABAQUS as a 

Fig. 2.8: Crushing of a pipe.  Top, Left - quarter-symmetry model with rigid crushing 
planes and key dimensions shown.  Top, Right - pipe in the final crushed configuration.  
Bottom - rigid body reaction force versus percent applied displacement for the crushing 
planes. There was less than 3% difference in the peak forces predicted by the three FE 
codes. 
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function of anvil displacement. 

The results predicted by the three FE codes are shown in (Fig. 2.8), demonstrating 

good agreement among all three codes. Small observed differences were most likely due 

to the different algorithms to enforce contact. Still, at peak displacement there was less 

than 3% difference in the predicted forces. 

2.5.9 Cartilage layer compressed by a flat, rigid, impermeable surface 

A half-symmetry finite element frictionless contact analysis was performed 

between a spherical elastic layer anchored to a rigid impermeable substrate and a flat 

impermeable rigid surface (Fig. 2.9). The geometry was representative of the articular layer 

of an immature bovine humeral head, with a cartilage surface radius of 46.3 mm and a 

cartilage layer thickness of 0.8 mm.The converged mesh consisted of 20 tri-linear 

hexahedral elements through the thickness, 50 along the radial direction, and 14 along the 

circumferential direction. The top of the cartilage layer was constrained by defining the top 

layer of nodes as a rigid body with all 6 DOF constrained. The deformation at the center 

of the articular layer was set to 0.095 mm (~12% of the thickness) by displacing the bottom 

nodes using nodal prescribed displacements. The cartilage layer was represented by the 

Mooney-Rivlin constitutive model in Eq. (2.9) to approximate the short-time response of 

the tissue, again using 1 6.8C =  MPa and 2 0C = ,. The radial and circumferential stresses 

predicted by FEBio through the thickness of the middle of the cartilage layer were 

compared to the results from ABAQUS and NIKE3D.The predicted radial and 

circumferential stresses through the thickness of the middle of the cartilage layer were the 
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same for FEBio and NIKE3D, but the stresses predicted by ABAQUS were consistently 

slightly larger (Fig. 2.9).The small differences (<3%) are most likely due to differences in 

the algorithms used to enforce the contact constraint: FEBio and NIKE3D use an 

augmented Lagrangian method to enforce contact while ABAQUS uses a Lagrange 

multiplier method. 

Fig. 2.9: Cartilage layer compressed by a flat, rigid, impermeable surface.  Top - 
schematic of the model illustrating the boundary and loading conditions.  Middle - 
radial stress versus percent thickness through the middle of the cartilage layer 
predicted by FEBio, NIKE3D, and ABAQUS.  Bottom - circumferential stress 
versus percent thickness predicted by the three FE codes.  The stresses predicted by 
FEBio and NIKE3D were nearly identical and the stresses predicted by ABAQUS 
were less than 3% different than the other codes. 
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2.5.10 Validated model of the human inferior glenohumeral ligament 

This problem illustrates the use of FEBio for a current research topic in 

computational biomechanics. The objective of the research was to develop and validate a 

model of the inferior glenohumeral ligament using experimental data. The subject-specific 

model incorporated experimental measurements of the geometry of capsular regions, 

humerus, and scapula, the mechanical properties of capsular regions; and joint kinematics 

during a simulated clinical exam. Strain distributions were measured experimentally and 

used to validate the FE model predictions. A full description of the model and its validation 

were reported by Moore et al. [50]. This original publication made use of NIKE3D for the 

finite element analysis. At the time, only hypoelastic materials could be used with shell 

elements in NIKE3D to represent the capsule. We re-analyzed this model in FEBio, which 

has allowed the use of a variety of more appropriate and accurate constitutive models for 

the capsule material (Fig. 2.10) [51]. 

2.6 Discussion 

This paper presented FEBio, a new software tool for computational biomechanics. 

Some of the underlying theoretical aspects were discussed.  In particular, the two most 

important areas of application were mentioned, namely large deformation and contact of 

Fig. 2.10: Validated model of the human inferior glenohumeral ligament, analyzed 
with FEBio.  A) Initial position of the model, showing the fine discretization of the 
shoulder capsule with shell elements.  Panels B-D), first principal Green-Lagrange 
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solid and biphasic materials. FEBio provides analysis methods and constitutive models that 

are relevant for computational biomechanics and in this regard differs from many of the 

existing software tools that are currently in use for research. Whereas users must tailor their 

use of commercial applications around the limitations of the software, FEBio offers them 

a way to tailor the software to their specific needs. 

A set of test problems was presented to illustrate our approach to verification of the 

presented algorithms. The results demonstrated very good to excellent agreement with 

either analytical solutions and/or results obtained from other finite element software.  Small 

discrepancies were easily explained by differences in numerical algorithms between the 

different software packages. These results give researchers confidence that FEBio can 

provide accurate results for their computational research questions as well.  Of course, 

problem-specific verification, mesh convergence studies and validation are still necessary 

to assure that the predictions from FEBio (or any other FE code) are accurate for a specific 

problem [16,17]. 

The development of FEBio is ongoing. New element formulations, contact 

algorithms, and constitutive equations are being implemented and will become available 

in future versions. Continued emphasis will be placed on support and dissemination of 

FEBio in the form of documentation of the software and its example problems, online 

manuals, and on our online forum. We hope that this open-source finite element framework 

using modern software design principles will not only provide a new and useful tool for 

computational biomechanics, but also set a new standard for computational simulation 

software in this field. 
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CHAPTER 3 

A PLUGIN FRAMEWORK FOR EXTENDING THE 

SIMULATION CAPABILITIES OF FEBIO 

3.1 Abstract 

FEBio (Finite Elements for Biomechanics and Biophysics, www.febio.org) is a 

nonlinear finite element software suite that was developed for applications in the 

biomechanics and biophysics communities. FEBio employs mixture theory to account for 

the multiconstituent nature of biological materials, integrating the field equations for 

irreversible thermodynamics, nonlinear solid mechanics, fluid mechanics, mass transport 

with reactive species, and electrokinetics. This communication describes the development 

of a new “plugin” framework for FEBio. Plugins are dynamically linked libraries that allow 

users to add new features and to couple FEBio with other domain-specific software 

applications without modifying the source code directly. The governing equations and 

simulation capabilities of FEBio are reviewed. The implementation, structure, use and 

application of the plugin framework are detailed. Several example plugins are described in 

detail to illustrate how plugins enrich, extend, and leverage existing capabilities in FEBio, 

including applications to deformable image registration, prestrain in biological tissues, and 

coupling to an external software package that simulates angiogenesis using a discrete 

computational model. The plugin feature facilitates dissemination of new simulation 

methods, reproduction of published results, and coupling of FEBio with other domain-
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specific simulation approaches such as compartmental modeling, agent-based modeling, 

and rigid body dynamics. We anticipate that the new plugin framework will greatly expand 

the application and thus the impact of the FEBio software suite. 

3.2 Introduction 

The Finite Element (FE) method has been used in the field of biomechanics as early 

as the 1970s (e.g. (Belytschko et al.; Davids and Mani; Doyle and Dobrin; Farah, Craig 

and Sikarskie; Janz and Grimm; Matthews and West)). However, the lack of FE software 

that is tailored to the needs of the field has hampered research progress and dissemination 

of models and results. Commercial packages that are most commonly used by the 

biomechanics community, such as Abaqus (Dassault Systèmes) and Ansys (Ansys, Inc.), 

are not specifically geared towards biological applications and are difficult to verify due to 

their closed source nature (Anderson, Ellis and Weiss; Henninger et al.). The limitations of 

commercial codes have forced many researchers to develop custom FE packages for 

solving problems in the biomechanics domain, such as (Laible et al.; Oomens, van Campen 

and Grootenboer; Simon et al.; Donzelli et al.; Sun et al.; Wayne, Woo and Kwan) to name 

only a few. However, few of these codes were actually made available in the public domain, 

which made verification and reproducibility of results challenging or impossible. Many of 

these codes were also not sufficiently general, but instead designed for solving very 

specific problems and did not support all features that are necessary for analyses in 

computational biomechanics and biophysics.  

The FEBio project (Maas, Ellis, et al.), which was launched in 2007, was designed 

to overcome the lack of a general purpose finite element program for solving computational 

problems in biomechanics. It was geared towards the biomechanics and biophysics 
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communities by providing functionality that is highly relevant in the field, such as accurate 

constitutive relations for mechanical, transport, and electrokinetic properties of tissues and 

cells; the ability to easily model anisotropy and material inhomogeneity; and the ability to 

prescribe boundary conditions and loading scenarios that would allow researchers to model 

the complex interactions between biological structures. The FEBio code is distributed as 

binaries (www.febio.org) for immediate use. The source code is also made available so that 

researchers can implement novel features with minimal effort. This greatly reduces the 

need for researchers to develop custom finite element codes from scratch.  

The FEBio code was developed using the C++ programming language. Although 

many finite element codes, both commercial as well as open-source (e.g. Abaqus (Dassault 

Systèmes, Ansys (Ansys, Inc.) Nike3D (Lawrence Livermore National Lab), Feap 

(University of California, Berkeley), Code Aster (Électricité de France)) use the 

FORTRAN language, an object-oriented approach to programming is widely accepted as 

a superior programming model compared to procedural programming (Cary et al.). The 

C++ language was chosen since it is an object-oriented programming language and it has 

been shown that it performs comparable to FORTRAN (Veldhuizen et al.). Also, the 

possibility of developing efficient finite element codes based on object-oriented 

programming strategies has been demonstrated (Patzak and Bittnar; Zimmerman et al.). In 

addition, FEBio relies heavily on existing object-oriented design patterns (Gamma et al.; 

Reddy; Heng and Mackie) to resolve the many challenges in designing a complex finite 

element software library. In addition, the code is documented extensively: A Theory 

Manual details the theoretical foundations, a User’s Manual explains the process of setting 

up and running FEBio models, and a Developer’s Manual assists developers in 
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implementing new features. 

To further simplify the process of adding new features to FEBio, a plugin 

framework was developed that allows users to extend FEBio’s standard feature set with 

minimal effort. Although users can download and modify the source code directly, building 

the entire FEBio code can be challenging, especially due to its dependency on third-party 

libraries. Even more, disseminating custom modifications to the source code may be 

challenging since the changes may be incompatible with future releases of FEBio. Plugins, 

which are essentially dynamically linked libraries, overcome these problems since they are 

developed independently from FEBio and can be linked at run-time. A plugin allows a user 

to add new features without having to build FEBio and solves the dissemination issue since 

plugins can be distributed independently of FEBio.  

This communication presents FEBio’s plugin framework. In Section 3.3, FEBio’s 

modular framework is presented, as well as its kernel mechanism, which was central to the 

development of the plugin framework. In Section 3.4, several plugin examples are 

presented that illustrate the generality and versatility of the plugin framework, including a 

new material plugin that allows users to apply prestrain to their models, an implementation 

of the hyperelastic warping algorithm (Rabbitt et al.), a plugin that couples an agent-based 

modeling approach for simulating angiogenesis with FEBio. In Section 3.5, the advantages 

and disadvantages of the plugin framework are discussed and some suggestions for future 

improvements are provided as well. 
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3.3 Methods 

3.3.1 Modular framework 

FEBio is structured as a hierarchy of modules or libraries, each module collecting 

classes for solving a specific type of problem (Fig. 3.1). The FECore library is in many 

ways the “heart” of the code as it contains most of the base classes from which new features 

can be derived. It also contains the essential algorithms and data structures for solving FE 

problems. The FEBioMech library implements features related to solving nonlinear solid 

mechanics problems. The FEBioMix library builds upon the FEBioMech library by adding 

features that allow the solution of a coupled solid-fluid problems based on mixture theory. 

The NumCore library contains algorithms for solving linear systems of equations. Most of 

the classes in this library are proxy classes that serve as interfaces to external, third party 

libraries for solving linear systems of equations. The FEBioXML library reads the FEBio 

FECore NumCore 

FEBioMech 

FEBioMix 

FEBioHeat FEBioXML 

FEBioPlot 

FEBioLib 

FEBio 

I/O modules Physics modules 

Fig. 3.1. Hierarchy of FEBio modules. The FECore library contains the kernel that 
manages all features. NumCore is a library that interacts with third party linear solvers. 
The physics modules implement physics-specific features. The I/O modules deal with 
input and output. The FEBioLib initializes the kernel class. The FEBio executable 
provides a command-line front end to the FEBio library.  
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input file and constructs a FE model that can be solved with FEBio. The FEBioPlot library 

writes the solution to a binary database, called the FEBio plot file. 

The FECore module contains a special class, called the FECoreKernel. This kernel 

class contains a list of factory classes (Gamma et al.), which are used to instantiate the 

feature classes that implement specific functionality. A factory class is created and added 

to the kernel for each feature class. This process is termed feature registration and is done 

in the FEBioLib library. Each factory class also stores a class ID, which is a number that 

represents one of the predefined class categories (e.g. material, body load, plot field, etc.), 

and a string that identifies the feature class uniquely within its category. A particular feature 

class can now be instantiated by looking up the corresponding factory class using the class 

ID and string, and then requesting the factory class to create an instance of the feature class. 

One of the advantages of this approach is that it allows full automation of the I/O. The file 

FEBio parser, implemented in FEBioXML, is able to instantiate specific feature classes 

using only the information provided in the input file. Without this kernel mechanism, the 

FEBioXML library would have to be coupled to all the other libraries. It would also need 

to be modified each time a new feature is implemented. The kernel approach decouples the 

parser library from the other physics modules and automates the input. This is essential for 

the proper functioning of plugins since plugins cannot change the file parser code. 

Although not specifically related to plugins, it is worth mentioning that FEBio has 

a substantial library of tensor classes. It offers various classes for representing first (i.e. 

vectors) second, third, fourth, fifth, and sixth order tensors and common operations that 

can be made with tensors (e.g. addition, multiplication, contraction, etc.). To maximize 

efficiency, different tensor symmetries are implemented in different classes. For example, 
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the mat3ds class implements a second-order symmetric tensor, mat3da implements a skew-

symmetric tensor, and mat3dd implements a diagonal second-order tensor. This library 

greatly facilitates the implementation of complex tensor expressions (Fig. 3.2). 

3.3.2 Plugin mechanism 

A plugin implements a new feature by deriving from one of the base classes that 

are defined in one of the modules. These base classes usually define an interface that 

derived classes must implement. For example, a new hyper-elastic constitutive material is 

implemented by deriving from the FEElasticMaterial class and implementing the Stress 

and Tangent functions. The plugin must also register the new feature class with the kernel 

by providing a factory class for the new feature class and passing this factory class to the 

kernel. FEBio offers various macros that hide the code details, which simplifies the 

mat3ds FENeoHookean::Stress(FEMaterialPoint& mp) 
{ 
   FEElasticMaterialPoint& pt =  
                    *mp.ExtractData<FEElasticMaterialPoint>(); 
   double detF = pt.m_J; 
   double detFi = 1.0/detF; 
   double lndetF = log(detF); 
   // calculate left Cauchy-Green tensor 
   mat3ds b = pt.LeftCauchyGreen(); 
   // lame parameters 
   double lam = m_v*m_E/((1+m_v)*(1-2*m_v)); 
   double mu  = 0.5*m_E/(1+m_v); 
   // Identity 
   mat3dd I(1); 
   // calculate stress 
   mat3ds s = (b - I)*(mu*detFi) + I*(lam*lndetF*detFi); 
   return s; 
} 

Fig. 3.2. Stress evaluation for the neo-Hookean material. This figure illustrates the use 
of FEBio’s tensor class library which provides classes for representing tensors (mat3ds 
for symmetric second-order tensors, mat3dd for diagonal second-order tensors) and 
defines tensor operations. This library greatly simplifies the implementation of 
complicated tensor expressions. 
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registration process considerably. 

Plugins are compiled and built independently from the main FEBio source code. 

However, in order for any plugin mechanism to work, there must be a communication 

mechanism set up that allows FEBio and the plugin to pass information to each other. This 

mechanism consists of two parts. First, FEBio and the plugin must ensure that they use the 

same data structures. This was accomplished by creating a Software Development Kit 

(SDK) that contains all the common data structures. This SDK essentially contains all the 

header files and prebuilt libraries that are used by FEBio and that the plugin could need. 

Second, the plugin must implement predefined functions that FEBio will call at specific 

points during its execution. For example, the PluginInitialize function gives the plugin a 

chance to do initialization, the PluginGetFactory function is used for registering a new 

feature class with the FEBio kernel. See the FEBio’s developer documentation 

(www.febio.org) for more information about plugin development.  

The specific classes and member functions that must be implemented depend on 

the particular type of plugin that is developed, or more specific, on the particular base class 

that the new feature class is derived from. In the next sections, several plugins types are 

explained in more detail. See the FEBio’s developers manual for a more complete overview 

of the supported plugin types. 

3.3.3 Plugins classes 

3.3.3.1 Material plugin 

A material plugin implements a new constitutive model. Constitutive models are 

used to evaluate solution-dependent quantities, such as stress, permeability, diffusivity, etc. 

A new constitutive model can be added by deriving a new class from a specific material 
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base class. For instance, to implement a new constitutive model for elastic materials, a new 

class is derived from the FEElasticMaterial base class. The new class must implement the 

Stress (Cauchy stress) and Tangent (spatial elasticity tensor) functions. Implementation of 

the often complicated tensorial expressions for stress and elasticity tensors is greatly 

simplified using FEBio’s extensive tensor class libraries (Fig. 3.2).  

The prestrain plugin below shows an example of a material plugin. This plugin 

implements a general mechanism for applying prestrain to finite element models (Maas, 

Erdemir, et al.). The plugin implements a new material class that acts as a wrapper to an 

elastic material. Prestrain is modeled by defining a prestrain gradient tensor psF  that is 

multiplied with the deformation gradient F and results in a total elastic deformation 

gradient, 

 eff ps= ⋅F F F .  (3.1) 

The prestrain material class evaluates this total elastic deformation gradient and then passes 

it to the child material class to evaluate the stress and elasticity tensors. This mechanism 

allows users to apply prestrain to any of FEBio’s elastic material models. The plugin offers 

several mechanisms for generating the prestrain gradient and the applications range from 

enforcing an initial fiber stretch, to solving certain types of inverse FE models. 

 
3.3.3.2 Nonlinear constraint plugin 

Plugins can also implement nonlinear constraints that may constrain the solution of 

the problem. A nonlinear constraint can be used, for example, to maintain the distance 

between two nodes, to preserve the volume of an enclosed space, or to define a rigid joint 



66 
 

 

between two rigid bodies. For this type of plugin, the base class is the FENLConstraint 

class, which defines three virtual functions that must be overwritten by the derived class. 

Two of these functions are involved in the evaluation of the equivalent nodal force vector 

and the stiffness matrix. Since FEBio uses an augmented Lagrangian approach for 

enforcing nonlinear constraints (Simo and Laursen), the third function, called Augment, 

updates the approximate Lagrange multipliers that enforce the constraint.  

The FEWarp plugin below is an example of a nonlinear constraint plugin. 

Hyperelastic warping is an image registration method that is used to find the deformation, 

and resulting strains and stresses, in a finite element model by registering a template model 

to a target geometry (Rabbitt et al.). The image data is used directly to guide this 

registration process. An image energy functional is defined that measures the quality of the 

registration. 

 ( ) ( )( ) ( )( )2

2HW
V

W S T dVλϕ ϕ= −∫ X X   (3.2) 

Here, T is the template image, S is the target image, ϕ  is the deformation map that maps 

a point from the reference to the deformed configuration, and the integral is evaluated over 

the FE domain. The warping algorithm tries to find the deformation that minimizes this 

functional. The advantage of this approach is that the deformation can be obtained without 

the specific knowledge of the applied loads to the model. Since the method is based on 

continuum mechanics, the resulting deformation is guaranteed to be a plausible, realistic 

deformation. The method has been applied successfully to characterize the mechanics of 

tissues, such as ligaments (Phatak et al.) and the left ventricle (Veress et al.). In the example 

below, the method will be applied on a simplified model of the left ventricle. 
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3.3.3.3 Plot field plugin 

FEBio outputs the results of a simulation to a file that uses a self-describing, 

extendible format that allows users to customize its content to the specific needs of the 

analyses. The advantage of this approach is that the results can be stored in a compact file 

that only contains the data that is relevant for the analysis. FEBio offers a large set of output 

variables that users can choose from to customize the plot file. However, when adding a 

new feature, it is sometimes necessary to define new output variables that are not available 

from FEBio’s default list of output variables. This can be accomplished by creating a plot-

field plugin that defines the new output variables. The name assigned to the corresponding 

factory class is stored by FEBio to the output file so that postprocessors can identify the 

new data fields. Both the prestrain and the warping plugin examples below define new 

output variables. 

 
3.3.3.4 Task plugin 

A task plugin offers one of the most powerful abilities of the plugin framework. At 

the highest level, after parsing the input file, FEBio executes a single task. The default task 

is to solve the model defined by the FEBio input file, but other tasks can be executed as 

well. For instance, FEBio’s optimization module is implemented as a task that calls the 

default solver task repeatedly while minimizing an objective function. In essence, a task 

defines the outer loop that controls what FEBio actually does. This is analogous to using 

FEBio as a library and implementing a main function that controls the program’s execution. 

However, the task plugin approach has the advantage that all features of FEBio can be 

used, even those that otherwise would require linking to third-party libraries (e.g. linear 

solvers). 
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The AngioFE plugin (Edgar, Maas, et al.) shown below is an example of a task 

plugin that illustrates how FEBio can be linked to other libraries via the plugin framework. 

It uses a library (Edgar, Sibole, et al.) that simulates the growth, branching, and 

anastomosis of blood vessel sprouts in a collagen matrix. From experiments, it is known 

that the growing vessels deform the matrix in which they are embedded. In turn, it is 

believed that the deformation of the matrix directly affects the growth of the vessels. To 

couple the Angio library to FEBio, a task plugin was developed that allowed the two codes 

to interact. The task seeds the matrix with small vessel fragments using the Angio library 

and executes an initial growth step. The vessel fragments are grown using heuristics that 

control the growth speed, branching probability, and anastomosis. Then, the model is 

passed to FEBio which solves for the deformation of the matrix due to the growth of the 

vessel fragments. The interaction between the vessels and matrix is modeled as an elastic 

material that generates a contractile stress near the fragment tips. The new, deformed 

configuration is then passed back to the Angio library which then calculates the next 

growth step in the deformed model. The process continues until the vessels stop growing 

(Fig. 3.3). 

FEBio AngioFE 
(plugin) 

Angio 
(library) 

1. Grow vessels  2. Apply sprout forces 

3. Deformed matrix 4. Update vessel geometry 

Fig. 3.3. The Angio plugin couples the Angio code, a library that simulates the growth 
of blood vessels, with FEBio. A two-way coupling is achieved by applying forces at the 
end of vessel fragments that deform the matrix. The deformed geometry in turn affects 
the growth of the blood vessel fragments.  
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3.4 Results 

3.4.1 Prestrain plugin 

The prestrain plugin was used to compare the effective (von Mises) stress 

predictions of two dog-bone models representing ligament tissue (Fig. 3.4). The 

constitutive model was assumed to be transversely isotropic Mooney-Rivlin (Weiss, Maker 

and Govindjee) and the fibers ran along the long axis of the geometry. In one of the models, 

the prestrain plugin was used to apply an initial 10% fiber stretch. Due to symmetry, only 

half of the model was considered in the analysis. 

3.4.2 FEWarp 

The warping plugin was applied to a 3D model of a human left ventricle (Fig. 3.5). 

The FE model was created from segmenting the left ventricle from the template image data 

A B C 

Effective stress (MPa) 

Fig. 3.4. Prestrain analysis of dogbone sample, using a transversely isotropic material. 
The fibers run along the long axis of the geometry. A) Original geometry of half-
symmetry model. B) Effective (von-Mises) stress without prestrain. C) Effective (von-
Mises) stress with 10 percent fiber stretch applied to the fibers.  
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set. The target image data set was created by simulating the effect of inflation of the left 

ventricle under a constant pressure. The specific process how this was accomplished was 

detailed in Veress et al. and since the solution to the warping problem was known in this 

case, the approach can be used to verify the warping algorithm. The plugin was then used 

to obtain the deformation from template to target image data. This plugin also offers several 

new output variables, including the template and target image data, mapped onto the FE 

mesh, and the warping energy, which can be visualized to identify the initial registration 

error (Fig. 3.5, panel A). After successful registration, the strain can be plotted to inspect 

the deformation (Fig. 3.5, panel B). 

3.4.2 AngioFE 

The AngioFE plugin (Edgar, Maas, et al.) was used to simulate the growth of sprout 

vessels in a 3D rectangular matrix (Fig. 3.6). The mesh of the matrix was only anchored at 

some of the corners to simulate the deformation of a free-floating gel. The matrix was 

A. Warping energy B. Effective GL strain 

Fig. 3.5. 2D slice from a 3D warping analysis that tracks the deformation of the left 
ventricle. A) Warping energy, measuring the mismatch between the template and the 
target image. The black contour shows the outline of the target geometry. B) Effective 
Green Lagrange strain in the final, deformed state.  
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modeled using a visco-hyper-elastic material model. The initial fragments were seeded 

randomly in the volume of the matrix (Fig. 3.6, panel A). The collagen density, which in 

part drives the vessel growth, was lowered in a narrow band around the diagonal of the 

mesh compared to the rest of the model. As a result, the vessel fragments in this narrow 

band grew faster and branched more often, generating a denser network of vessels in this 

area of the mesh (Fig. 3.6, panel B). At the end of the simulation, the matrix shows 

significant deformation and the resulting strains are larger in the area where the vessel 

network is denser (Fig. 3.6, panel C). 

3.5 Discussion 

This communication presented a plugin framework for FEBio, which allows users 

to easily develop custom features with minimal effort and without the need to change the 

A 

B C 

Fig. 3.6. Simulation of angiogenesis. A) Initial geometry and vessel fragments. B) Vessel 
network at intermediate time step. Some initial deformation is noticeable. C) Final 
geometry and vessel network. The effective Green-Lagrange strain is overlaid to show 
the areas of largest deformation.  

0 

0.16 
Effective Green-Lagrange strain 
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FEBio source code directly. Using plugins, users can add new constitutive models, loads, 

nonlinear constraints, plot data fields, tasks, etc., and thus tailor FEBio to their specific 

research needs. Since user plugins are developed and maintained independently from the 

FEBio source code, it is easier to develop and share novel features. This also simplifies the 

reproducibility of results obtained using these plugins, since end-users only need to acquire 

the plugin and do not need to rebuild the entire FEBio source code. To facilitate the sharing 

of new user plugins even more, the FEBio project offers a webpage that hosts plugins 

(febio.org/plugins). Users can download FEBio plugins from this website and also submit 

their own plugins. All the plugin examples in this article are available from this website. 

Scripting is another common mechanism that many software packages support for 

custom extensions. Scripting is comparable to plugins in that it allows users to extend the 

basic feature set, but differs in some important aspects. First of all, a script does not need 

to be compiled and can be used across multiple platforms. This is a distinct advantage over 

plugins, which usually need to be built separately on each platform. However, scripts may 

suffer from a performance penalty because they need to be interpreted while the script is 

running. For time intensive processes, such as evaluation of a material’s stress and 

elasticity tensors, a plugin may offer noticeable performance benefits. Nevertheless, both 

plugins and scripts have their value, and for this reason, there are plans to add a scripting 

functionality to FEBio. 

It is worth mentioning that other, related software packages also offer some 

mechanisms for extending its core set of functionalities. For instance, Abaqus (Dassault 

Systèmes) and Ansys (Ansys, Inc.), both commercial finite element software that is 

commonly used in biomechanics, allow users to write so-called user subroutines. Using 
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these user subroutines, users can add new features, such as material subroutines, etc. 

Regarding the addition of new material models, a recent publication (Pierrat et al.) 

compared Abaqus’ approach to FEBio’s and concluded that FEBio’s approach is superior 

in several ways. In particular, the use of C++ and FEBio’s tensor class library was seen as 

a great advantage over Abaqus’s approach, which requires programming in FORTRAN. 

One advantage Abaqus’ approach has is that the dynamic libraries are built behind the 

scene. Abaqus calls a FORTRAN compiler that builds the library and then links it 

automatically to the executable. Aside from an initial setup, the user is not involved in the 

build process. A similar mechanism is planned for FEBio that will simplify writing plugins 

even more.  

As the examples in this article have illustrated, FEBio’s plugin mechanism offers a 

powerful way for adding new capabilities to FEBio. Using this framework, researchers 

have an almost unlimited tool at their disposal to tailor FEBio to their specific needs. 

Although the source code of FEBio will remain freely available to the research community, 

it is hoped that this new plugin framework will be embraced as the preferred approach for 

extending FEBio. 
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CHAPTER 41 

FINITE ELEMENT SIMULATION OF ARTICULAR 

CONTACT MECHANICS WITH QUADRATIC 

TETRAHEDRAL ELEMENTS 

4.1 Abstract 

Although it is easier to generate finite element discretizations with tetrahedral 

elements, trilinear hexahedral (HEX8) elements are nearly always used in simulations of 

articular contact mechanics.  This is due to numerical shortcomings of linear tetrahedral 

(TET4) elements, limited availability of quadratic tetrahedron elements in combination 

with effective contact algorithms, and the perceived increased computational expense of 

quadratic finite elements.  In this study we implemented both ten-node (TET10) and 

fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and 

compared their accuracy, robustness in terms of convergence behavior and computational 

cost for simulations relevant to articular contact mechanics. Suitable volume integration 

and surface integration rules were determined by comparing the results of several 

benchmark contact problems. The results demonstrated that the surface integration rule 

used to evaluate the contact integrals for quadratic elements affected both convergence 

                                                 

1Reprinted from Journal of Biomechanics, Vol. 49, Issue 5. Steve A. Maas, Benjamin J. Ellis, David S. 
Rawlins, Jeffrey A. Weiss, “Finite element simulation of articular contact mechanics with quadratic 
tetrahedral elements”, with permission from ELSEVIER. 
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behavior and accuracy of predicted stresses.  The computational expense and robustness of 

both quadratic tetrahedral formulations compared favorably to the HEX8 models.  Of note, 

the TET15 element demonstrated superior convergence behavior and lower computational 

cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees 

of freedom in the contact problems that we examined.  Finally, the excellent accuracy and 

relative efficiency of these quadratic tetrahedral elements was illustrated by comparing 

their predictions with those for a HEX8 mesh for simulation of articular contact in a fully 

validated model of the hip.  These results demonstrate that TET10 and TET15 elements 

provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. 

4.2 Introduction 

Advances in imaging and computational methods make it possible to create and 

analyze detailed subject-specific models of biomechanical structures from high resolution 

image data. In this paper we focus on subject-specific finite element (FE) analysis of 

articular joint contact mechanics.  Both generic and subject-specific models of articular 

contact have been developed and validated to gain insight into load transfer, cartilage 

mechanics and the etiology of osteoarthritis in the knee (Khoshgoftar et al.; Luczkiewicz 

et al.), hip (Harris et al.; Henak et al.) ankle (Anderson et al.; Kern and Anderson) and 

spine (Dreischarf et al.; Von Forell et al.), among other joints. Despite the progress that has 

been made in modeling subject-specific joint contact mechanics, many challenges still 

remain. The articular cartilage of most joints in the human body has complex geometry, 

undergoes large deformations, is subjected to large compressive loads, and is often thin 

compared to the surrounding anatomical support. These challenges make it difficult to 

obtain accurate, validated computational models of articular contact mechanics. 
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The element type used to discretize the articular geometry is one of the most 

important choices that affects accuracy and robustness in simulations of articular contact. 

Linear tetrahedral (TET4) elements are often used due to the ease and robustness of 

performing automatic meshing, and local and adaptive refinement with tetrahedral 

elements (Hubsch et al.; Johnson and MacLeod; Prakash and Ethier; Donzelli et al.) 

(Delaunay; Wrazidlo et al.; Lo; Lo; Lohner; Shephard and Georges; McErlain et al.). There 

are several examples in the recent literature that have used TET4 elements to discretize 

articular cartilage (Das Neves Borges et al.; Johnson et al.; McErlain et al.). However, the 

TET4 element has several well-known numerical issues. First, TET4 elements can only 

represent a constant strain state, which necessitates a very fine discretization, often 

requiring long solution times. Second, TET4 elements lock for nearly incompressible 

materials as well as under bending deformations (Hughes), which further reduces their 

accuracy.  Because of these issues, trilinear hexahedral elements (HEX8) have seen much 

wider use in joint contact analyses, despite the fact that creating hexahedral meshes for 

complex geometries can be challenging and time consuming.  Alternative formulations for 

TET4 elements have been designed to circumvent their problems (e.g., (Puso and Solberg; 

Gee et al.) based on nodal averaging of the deformation gradient). Although they reduce 

locking, they have other problems such us spurious deformation modes (Maas, Ellis, 

Rawlins, et al.), which make them inaccurate for contact analysis. 

Quadratic tetrahedral elements are an attractive alternative to TET4 elements.  They 

maintain the advantages of tetrahedral mesh generation and they can represent curved 

boundaries more accurately than HEX8 elements since their edges and faces can deform. 

Although quadratic tetrahedral elements have been investigated as alternatives to HEX8 
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elements (e.g., (Tadepalli, Erdemir and Cavanagh; Cifuentes and Kalbag; Weingarten)), 

none of these studies investigated their application for simulation of articular contact 

analyses.  The 10-node tetrahedron (TET10) has seen some limited use for contact 

mechanics (Tadepalli, Erdemir and Cavanagh; Yang and Spilker; Bunbar et al.; Wan, Hoa 

and Wen; Hao et al.). To our knowledge the 15-node tetrahedron (TET15) has never been 

used in computational biomechanics and it has seen very limited use in nonlinear 

computational solid mechanics at all (Danielson), although it has been used in the fluid 

mechanics community (Bertrand, Gadbois and Tanguy). 

The objectives of this study were to determine the efficacy in terms of accuracy of 

the recovered stresses, robustness in terms of the convergence behavior, and computational 

expense of the TET10 and TET15 elements compared to the HEX8 element in the context 

of articular contact mechanics. First, the effects of different integration rules on the stress 

predictions and computational cost were investigated and used to determine suitable 

integration rules for both the TET10 and TET15 elements. Then using these integration 

rules, the accuracy and computational cost of both elements were compared to the HEX8 

element for several benchmark contact problems. For one of these problems, we examined 

the results obtained using TET4 elements to contrast their performance with the quadratic 

elements. Finally, we compared predictions of contact stresses using HEX8, TET10, and 

TET15 elements for a validated model of hip contact mechanics (Henak et al.). 
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4.3 Methods 

4.3.1 Element formulation and numerical integration 

All element formulations in this research were implemented in the FEBio software 

suite (www.febio.org), which uses an implicit, Newton-based method to solve the 

nonlinear FE equations of solid mechanics (Maas, Ellis, Ateshian, et al.).  The TET10 

element has 10 nodes:  4 corner nodes and 6 nodes located at the midpoint of the edges 

(Fig. 4.1).  Due to the quadratic shape functions, the facets and edges of this element can 

distort and therefore the element behavior is “softer” than the TET4 element. The TET15 

element adds one more node at the center of each facet, and one in the center of the 

tetrahedron (Fig 4.1). Although the TET15 element has more nodes than the TET10, it is 

still a quadratic element since the highest order of complete polynomial that can be 

represented by the shape functions is second order. The TET15 element can represent some 

forms of quadratic strains, whereas the TET10 element can only represent linear strains. 

Fig. 4.1: Schematic of the node topology for two quadratic tetrahedral elements that 
were examined in this study. Left, 10-node quadratic tetrahedron (TET10). Right, 15-
node quadratic tetrahedron (TET15). Closed circles represent corner nodes, open circles 
represent edge nodes, triangles represent facet center nodes, and the square in the right 
image represents the center node of the TET15 element.  
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In a FE formulation, the discretized form of the equilibrium equations requires the 

use of appropriate numerical integration schemes. For second-order elements, the 

integration rule should have at least second-order accuracy, at least for linear analyses. The 

ideal integration rule is less clear for large deformation nonlinear analyses. For this reason, 

we implemented and compared several volumetric integration rules. We denote volume 

integration rules as V(n) where (n) indicates the number of integration points. Similarly, 

the notation S(n) is used to denote surface integration rules.  For the TET10 element, both 

4-point (V4) and 8-point (V8) Gauss integration rules were implemented (Abramowitz and 

Stegun). For the TET15 element, 11-point (V11) and 15-point (V15) Gauss integration 

rules were implemented (Keast).  All of these rules are at least second-order accurate (for 

linear analyses) and are symmetric, i.e. the integration points are distributed in a 

symmetrical spatial pattern. 

For contact enforcement, a surface integration rule is required to integrate the 

traction forces over the discrete surface, represented by facets of the finite elements. The 

facets of the TET10 element are 6-node quadratic triangles.  Two surface integration rules 

were implemented and compared: 3-point Gauss (S3), and 7-point Gauss (S7) (Fig. 4.2). 

For the TET15 element, a 7-node quadratic facet, and the same S3 and S7 integration rules 

were implemented. Again, these rules have at least second-order accuracy and are 

symmetric (Abramowitz and Stegun).   

The mean dilatation formulation was used for the HEX8 models (Simo and Taylor). 

This formulation is known to perform well for nearly-incompressible materials for which 

the standard displacement-based formulation, using full integration, has a tendency to lock. 

All analyses were performed using the quasi-Newton solver in FEBio (Maas, Rawlins, et 
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al.), which is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Matthies 

and Strang). This nonlinear solver begins with a full formation and factorization of the 

stiffness matrix and then proceeds with a user-defined number of BFGS updates, which 

involve computation of the right-hand-side (RHS) vector.  For two of the problems below, 

we report both the number of stiffness matrix reformations and RHS evaluations as metrics 

of nonlinear convergence and computational effort.  All contact analyses used the “sliding-

tension-compression” contact algorithm in FEBio (Maas, Rawlins, et al.). This algorithm 

implements a facet-on-facet, frictionless sliding contact where the contacting surfaces can 

separate but not penetrate (Laursen). The augmented Lagrangian method was used to 

enforce the contact constraint to a user-defined tolerance (Laursen and Maker). 

4.3.1 Stress recovery 

During the FE solution process, stresses are typically evaluated at the integration 

points. Since stresses are calculated using the shape function derivatives, they are usually 

discontinuous across element boundaries. For visualization and for further post-processing 

Fig. 4.2: Schematic of the surface integration rules that were implemented and tested 
for evaluation of the contact integrals for the quadratic triangle facets composing the 
surface of the tetrahedral elements. Left panel:  S3 integration rule.  Right panel:  S7 
integration rule.  Open circles represent nodes, filled circles represent integration points. 
Note that these integration rules are symmetric in spatial distribution. 
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analysis (e.g. a-posteriori stress error estimates (Zienkiewicz and Zhu)), a more accurate, 

continuous stress field is required. This is accomplished using a stress-recovery algorithm 

that projects the stresses from the integration points to the nodes.  For TET4 elements, a 

weighed nodal average of the surrounding element values is usually sufficient, but for 

quadratic elements this does not produce good results. We implemented and used the 

Superconvergent Patch Recovery (SPR) method to recover stresses for the quadratic 

elements (Zienkiewicz and Zhu). This method incorporates a least-squares approach to fit 

a polynomial to the integration point values of an element patch surrounding each node. 

The polynomial is then evaluated at the nodes to determine the nodal value. Another 

important reason for investigating different integration rules is to determine the minimal 

integration rule that recovers the stresses accurately. Since the SPR method uses least-

squares, each node must be surrounded by a minimal number of integration points to solve 

the least-squares system. This could pose problems at the boundary of the mesh and in thin 

structures.  For the TET10 element, we used a linear least-squares fit since there are often 

not enough integration points (especially for the V4 integration rule) to fit a complete 

quadratic polynomial. For the TET15 element, a complete quadratic polynomial was used. 

4.3.2 Plane strain contact 

Different combinations of surface and volume integration rules were investigated 

using a plane strain contact model (Fig. 4.3).  This model is representative of articular 

contact mechanics in that it models the contact between curved, thin, incongruent, 

deformable materials.  The model consisted of two parts. The top part had dimensions of 

1.5 mm (height) x 20 mm (length) x 1 mm (thickness). The bottom part had the same height 

and thickness but was curved downward with a radius of curvature of 58 mm. The bottom 
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of the curved layer was fixed while the top of the flat layer was displaced downward. Since 

FEBio is designed for 3D analysis, plane strain boundary conditions were created by 

preventing the nodes from displacing in the out-of-plane direction. The materials of both 

layers were represented by an uncoupled Mooney-Rivlin constitutive model with strain 

energy: 

 ( ) ( ) ( )2
1 1 2 2

13 3 ln
2MRW c I c I k J= − + − +  .  (4.1) 

Here, 1I  , 2I  are the first and second invariants of the deviatoric right Cauchy-

Green deformation tensor, and J is the determinant of the deformation gradient. This 

material formulation and the material coefficients below were chosen to represent articular 

and femoral articular cartilage and coincide with the properties of a validated hip joint 

model (discussed below). The material parameters were c1 = 2.98 MPa, c2 = 0 MPa, k = 

594 MPa, for the flat layer; and c1 = 1.86 MPa, c2 = 0 MPa, k = 371 MPa for the curved 

Fig. 4.3: Schematic of the plane strain contact problem. The bottom surface of the 
curved layer is held fixed, while the top layer undergoes a prescribed downward 
displacement. Dashed area shows the region illustrated in the contour plots in Fig. 4.5. 
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layer. To compare the integration rules, we examined isovalue fringe plots of the 3rd 

principal stress and searched for erroneous patterns in the isovalues. 

4.3.3 Compression and sliding of a rigid cylinder on a deformable block 

To assess the performance of the quadratic tetrahedral elements in contact problems 

with large amounts of sliding, a benchmark problem from the FEBio Verification Suite 

was used (co07.feb).  This is a revelant test problem since many joints (e.g. knee, shoulder, 

hip) undergo large amounts of sliding during articular contact. A rigid cylinder (outer 

radius = 1 mm) first indents a rectangular block (length = 5 mm, width = 1.9 mm, height = 

1 mm) and then slides across the surface of the block (Fig. 4.4).  The cylinder was modeled 

as a rigid body using quadratic 20-node hexahedral elements. Mid-side nodes of the 

elements were positioned so that the surface of the cylinder was smooth to avoid jumps in 

the contact stiffness due to discontinuities in the surface normal. Again, as before, the 

material formulation was chosen to represent articular cartilage. The rectangular block was 

represented using the Mooney-Rivlin model above (c1 = 2.98 MPa, c2 = 0 MPa, k = 594 

MPa) and was discretized with TET4, TET10 and TET15 elements. A model using HEX8 

elements was created and used as a reference. A mesh convergence study was conducted 

to allow fair assessment of the computational costs of the four element types.  Convergence 

was measured in terms of average reaction force on the rigid indenter over the entire 

horizontal displacement of the indenter. Fringe plots of the 3rd principal stress at the 

midpoint of the analysis were used to compare the predictions of the models. 
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4.3.4 Articular contact in the human hip 

To test the effectiveness of quadratic tetrahedral elements for production size 

articular contact problems involving complex geometry, the articular layers in a model of 

the hip from a previous validation study (Henak et al.) were discretized with tetrahedral 

elements. In this previous study, articular layers were discretized with HEX8 elements and 

after a mesh convergence study it was determined that six elements through the thickness 

produced converged results. The thickness varied across the articular surfaces and ranged 

from 0.2 mm to 3.7 mm on the femoral side and from 0.5 mm to 4.5 mm on the acetabular 

side. The HEX8 model was validated with experimental measurements of contact stress. 

Cartilage layers were modeled using a Mooney-Rivlin material (acetabular cartilage 

c1=2.98 MPa, c2=0 MPa, k=594 MPa, femoral cartilage c1=1.86 MPa, c2=0 MPa, k=371 

Fig. 4.4: Geometry and loading path of the rigid cylinder on the deformable box. First, 
the cylinder was displaced vertically. After reaching maximal vertical displacement, a 
horizontal displacement was applied while the vertical position was maintained. From 
top to bottom: schematic diagram, initial configuration, configuration at maximal 
vertical displacement, final configuration. 
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MPa). For this study, two additional models were created using TET10 and TET15 

elements. The mesh resolution was chosen such that the number of nodes (and thus the 

degrees of freedom) roughly matched the HEX8 model. For the tetrahedral models the 

number of elements through the thickness varied from one to four depending on the 

cartilage thickness. In the areas where contact was occurring there were about two to three 

elements through the thickness on average. Loading conditions were applied that simulated 

walking heel strike (Bergmann et al.). A prescribed load of 1650 N was applied to the 

femur while keeping the pelvis fixed. The 3rd principal stress, an indicator of contact stress, 

and contact area were compared. 

4.4 Results 

4.4.1 Plane strain contact 

The surface integration rule had a large effect on predictions of 3rd principal stress 

(Fig. 4.5). The S3 surface integration rule predicted overall larger variations in stress near 

the contact interface than the S7 rule (compare rows 2 and 3 in Fig. 4.5). We concluded 

that the S7 surface integration rule is the best choice of the two rules. In contrast, there was 

little effect of volume integration rule on predicted stresses (compare rows 3 and 4 in Fig. 

4.5).  Indeed, comparing for instance the combination S3/V4 with S3/V8 for the TET10 

element (Fig. 4.5, left column), the results are nearly indistinguishable. A noticeable 

exception is the combination S3/V11 and S3/V15 for the TET15 element where the stresses 

do show a significant difference. We found that the combination S3/V11 ran very poorly 

and we suspect that this combination is unstable and should be avoided. Although the other 

results show little variation for the different volume integration rules, we did observe 

improved convergence behavior for the higher-order volume integration rules. For this 
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reason the remaining simulations were done with the S7/V8 rule for the TET10 element 

and the S7/V15 for the TET15 element. 

4.4.2 Compression and sliding of a rigid cylinder on a deformable block 

Overall reaction force on the cylinder provided an integrated measure of mesh 

convergence (Fig. 4.6). The quadratic tetrahedral element formulations demonstrated 

excellent agreement above 10,000 nodes with the HEX8 results. With the exception of the 

coarsest meshes, all values are within one percent of each other (Table 4.1, far right 

column). This is in stark contrast with the TET4 results, which did not appear converged 

Fig. 4.5: Results for the plane strain contact problem.  The isovalue fringe plots show 
3rd principal stress for various combinations of surface and volume integration rules. 
Left column: results for TET10 element. Right column: results for the TET15 element.  
The first abbreviation in each label refers to the surface integration rule (S3, S7), while 
the second abbreviation refers to the volume integration rule (V4, V8, V11, V15). 
Overall, the S7 surface integration rule predicted more accurate stresses than the S3 rule. 
The volume integration rule did not have a significant effect on the predictions (with the 
combination S3/V11 a notable exception). 
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even at the finest resolution and predicted much larger reaction forces. 

Inspecting the reaction force as a function of horizontal displacement can give an 

indication of the sensitivity of the reaction force to the mesh distribution. At the lowest 

mesh resolution all formulations showed fluctuations in the reaction forces, however at the 

finest resolution the reaction force varied smoothly (Fig. 4.7). The difference between the 

minimum and maximum value was about 3% for each element formulation. 

Fig. 4.6: Average reaction force on the rigid indenter while the indenter slides 
horizontally across the block, maintaining maximal vertical displacement. Average 
reaction forces are shown as a function of the number of nodes for a TET4 mesh, a 
TET10 mesh, a TET15 mesh and a HEX8 mesh. The TET10 and TET15 meshes above 
approximately 10,000 nodes are within 1% of the HEX results. The TET4 results 
predicted overall larger reaction forces and are not converged even at the finest mesh 
resolution. 
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 The differences between the HEX8, TET10, and TET15 element formulations at a 

given displacement were even smaller and were less than 1%. Note again that the TET4 

model predicted signifcantly larger reaction forces than the other three formulations. 

Convergence behavior was comparable between the four element formulations. The 

number of stiffness matrix reformations and right-hand-side evaluations were similar. The 

runtimes for the HEX8 were similar, though consistently higher, than those for the TET4 

Table 4.1: Results of the mesh convergence study for the contact sliding problem showing 
the number of nodes and elements, the number of time steps to complete the analysis, the 
number of matrix reformations (Refs) and right-hand-side (RHS) evaluations, and runtime 
in seconds, the average reaction force during horizontal displacement of the indenter, 
estimated contact area and peak contact pressure at midpoint of horizontal displacement. 

HEX8 Nodes Elements Steps Refs. RHS  
Time 
(sec) 

 Force 
(kN) 

Contact 
Area 
(mm2) 

Peak 
Contact 
Stress (MPa) 

Mesh1 2366 1800 40 79 995 53 4.82 1.6 -4.3 
Mesh2 5208 4200 40 86 989 137 4.80 1.5 -4.7 
Mesh3 9471 8000 40 84 1039 305 4.77 1.4 -4.7 
Mesh4 17136 15000 40 84 1131 707 4.75 1.4 -4.8 
Mesh5 33306 30000 40 88 1136 1931 4.76 1.4 -4.8 
TET4          
Mesh1 2392 9524 40 109 1237 40 8.06 1.2 -6 
Mesh2 5237 23259 40 84 1075 91 6.79 1.2 -7 
Mesh3 9464 44049 40 82 1097 205 6.18 1.2 -6 
Mesh4 17158 85561 40 87 1150 533 5.71 1.2 -7 
Mesh5 33477 175945 41 98 1259 1785 5.38 1.2 -6 
TET10                 
Mesh1 2364 1128 40 93 1068 34 5.07 1.6 -4.7 
Mesh2 5243 2824 40 81 1049 88 4.89 1.6 -5.2 
Mesh3 9487 5521 40 82 1073 211 4.83 1.6 -5.0 
Mesh4 17162 10331 40 90 1150 545 4.80 1.5 -5.4 
Mesh5 33350 21049 42 99 1266 1748 4.78 1.5 -5.2 
TET15                 
Mesh1 2299 389 40 94 1155 27 5.35 1.7 -5.1 
Mesh2 5521 999 40 87 1068 77 4.94 1.7 -5.2 
Mesh3 9459 1815 40 83 1053 151 4.86 1.6 -5.2 
Mesh4 17033 3383 40 83 1058 332 4.82 1.5 -5.3 
Mesh5 33023 6694 40 84 1100 864 4.79 1.5 -5.2 
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and TET10 formulations. The TET15 models ran significantly faster. The predicted 3rd 

principal stress compared well between the quadratic tetrahedral and hexahedral models at 

the finest mesh resolutions (Fig. 4.8, right column). For the coarsest mesh resolutions, the 

TET15 and TET10 models were similar to the HEX8 results, though variations due to the 

irregularity of the mesh were noticeable (Fig. 4.8). The TET4 results were significantly 

higher and showed mesh dependent variations at all mesh resolutions. 

Fig. 4.7: Variation of the reaction force on the rigid indenter as a function of horizontal 
displacement for the finest mesh resolution of HEX8, TET4, TET10, and TET15 models. The 
variation is relatively small and smooth throughout the entire displacement and is reduced at 
the start and end by boundary effects. The HEX8, TET10, and TET15 predicted overall the 
same response, whereas the TET4 predicted much higher reaction forces due to the stiffer 
response that results from the spatially constant interpolation of strain. 
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4.4.3 Articular contact in the hip 

Based on the results of the previous two models, the S7 surface integration rule was 

used to evaluate the contact integrals for both tetrahedral elements in this model. The V8 

and V15 volume integration rules were used for the TET10 and TET15 elements, 

respectively. There was good qualitative agreement of the contact stress (measured by the 

3rd principal stress) between the three models (Fig. 4.9). Quantitative comparisons 

Fig. 4.8: 3rd principal stress fringe plots for two different mesh densities at the half-
way point of horizontal displacement. From left to right: coarsest mesh, finest mesh 
density. From top to bottom: HEX8, TET4, TET10, and TET15 mesh. Stress 
predictions were very similar for HEX8, TET10, and TET15 element formulations at 
the finest level (right column). The TET4 results were overall higher and did not 
appear to be smooth even at the finest level of refinement. 
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confirmed this observation.  For both the TET10 and TET15 models, the peak contact stress 

and the contact area on the acetabular cartilage compared well to the HEX8 results (Table 

4.2). 

In terms of performance, measured by the convergence statistics as well as overall 

runtime, all three models ran comparably, although the TET10 model did run slightly 

longer than both the HEX8 and TET15 models (Table 4.2). 

Fig. 4.9: A) Finite element model of the human hip, including the acetabulum, proximal 
femur and articular layers on the acetabulum and femoral head. Red square shows 
approximate area corresponding to contour plots. Blue line shows approximate location 
of inset, showing cross-section of model B-D) Fringe plots of 3rd principal stress for the 
acetabular cartilage discretized with B) HEX8 elements, C) TET10 elements, and D) 
TET15 elements. There was very good agreement between the 3rd principal stress and 
contact area predicted by the three models. 
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4.5 Discussion 

The results of this study demonstrate that quadratic tetrahedral elements are 

comparable both in computational cost and accuracy to the “gold standard” HEX8 elements 

for articular contact analysis. In some cases the TET15 models ran faster than the other 

models with comparable numbers of degrees of freedom, while in other cases they ran only 

slightly slower. It may seem surprising that these elements with more degrees of freedom 

are competitive in terms of computational cost, and in fact are faster than the TET4 model 

(e.g. the sliding contact example). Although the evaluation of the element quantities (i.e. 

element residual vector and stiffness matrix) is faster for low-order elements, the overall 

computational time may not follow the same pattern, as the examples clearly demonstrated. 

This can be explained by recognizing that many operations in the FE method (evaluation 

of global quantities, matrix assembly, etc.) are more proportional to the number of 

integration points than the number of degrees of freedom. This is especially true for contact 

problems, where the projection algorithm that determines the location of contact between 

surfaces can constitute a significant amount of the solution time. For a given number of 

Table 4.2: Result of the hip model study where the results of a validated HEX8 
model were compared with the predictions of a TET10 and TET15 model. The table 
lists the number of nodes and elements, peak contact stress, the contact area, the 
number of right-hand-side (RHS) evaluations, the number of stiffness reformations 
and the overall runtime (in minutes) for each of the three models. 

 Nodes Elements Peak Contact 

Stress (MPa) 

Contact 

Area (mm2) 

RHS 

Evals 

Reforms. Run Time 

(min) 

HEX8 144886 122148 -9.99 793 726 69 320 

TET10 138081 83698 -9.93 792 892 80 374 

TET15 139187 27905 -10.0 819 939 82 335 
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nodes, a TET15 model will always have fewer elements than a similar TET10 or HEX8 

and, although it uses more integration points than the TET10 or HEX8, the net sum often 

appears to be a reduction in the number of integration points. This may in part explain why 

the TET15 models ran faster in many cases. 

The results of the plane strain contact analyses were very sensitive to the surface 

integration rule, and the S7 integration rule produced good results for the quadratic 

tetrahedrons. A possible explanation for this can be found by realizing that the accuracy of 

(Gaussian) integration rules is usually related to the ability to integrate polynomials 

exactly. For contact problems with non-conforming and possibly distorted surfaces, 

polynomials may not fit the surface tractions well and thus higher order integration rules 

are necessary to integrate the contact tractions accurately. 

In contrast, the volume integration rule had little effect on the accuracy of the 

recovered stresses.  All volume integration rules that were investigated are sufficient to 

obtain accurate results in linear analysis and it appears that, for the problems considered, 

the integration rules were also sufficiently accurate for nonlinear contact analysis. We did 

observe that the S3 surface integration rule in combination with the V11 volume integration 

rule for TET15 elements produced poor convergence as well as inaccurate results. We 

suspect that this combination does not lead to a stable element formulation. Despite the 

relatively small effect of the volume integration rule on the stress predictions, it may be 

prudent to consider the higher-order rules. The SPR recovery method, as with any least-

squares method, requires a sufficient number of sample points to make the problem well-

posed. In the present context this amounts to having a sufficient number of integration 

points surrounding each node. This may be challenging near boundaries, especially for 
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articular contact problems, since the cartilage layers generally tend to be relatively thin. 

The result is that the V4 volume integration rule for TET10 prevents the use of a truly 

quadratic fit in the SPR recovery method.  Although in this study we used a linear fit for 

the TET10 element and thus the V4 rule could have sufficed, there may be situations where 

the V8 rule is necessary to achieve accurate results. For the same reasons, for the TET15 

elements, which contain additional monomials in their shape functions and thus require 

even more integration points that the TET10, it is prudent to consider the higher-order 

volume integration rule. 

In this study we used “traditional” facet-on-facet based contact formulations 

(Laursen). In recent years, it has been demonstrated that mortar-based contact formulations 

have several advantages over traditional contact formulations (Puso, Laursen and Solberg). 

In essence, they minimize the error introduced by the non-conforming interface in either 

the displacements or the contact tractions. Yet, traditional formulations are widely used in 

many open-source and commercial finite element packages and thus evaluation of 

quadratic tetrahedral elements with traditional contact formulations has significant 

practical merit. These traditional formulations are known to give satisfactory results and, 

when used with an augmented Lagrangian method offer a good compromise between 

computational cost and accuracy. In addition, we anticipate that even for mortar-contact 

formulations the use of quadratic tetrahedral formulations will offer a distinctive 

advantage, foremost due to their ability to represent arbitrarily curved surfaces more 

accurately than linear triangular elements. Thus, we expect that the findings in this study 

remain valid, regardless of the contact formulation, though further investigations are 

necessary to confirm this. 



97 
 

 

 In this study we only looked at the effects of frictionless contact. This is not seen 

as a strong limitation since friction is usually not considered in articular contact. That said, 

friction is a feature that is still under development in FEBio’s contact formulations. 

Similarly, the effect of fluid motion in the tissue is of considerable interest in articular 

contact and was not considered here. The incorporation of fluid motion requires a biphasic 

analysis and the performance of quadratic tetrahedral formulations in this context is an 

important area for future investigation. 

In the sliding contact case study we compared the quadratic tetrahedron results with 

linear tetrahedron results and demonstrated that, given the same number of nodes, the 

quadratic formulations, and especially the TET15 element, performed much better in all 

areas (i.e. accuracy, convergence, run-times) than the linear tetrahedron. In a way, this can 

be seen as yet another confirmation of the well-known mantra in finite element analysis 

that so-called p-refinement (i.e. increasing the polynomial order) is often a better 

refinement strategy than h-refinement (i.e. reducing the element size). Simply moving from 

a linear to a quadratic formulation resulted in vast improvements. In addition, the decreased 

run-times of higher-order tetrahedral formulations (for a given number of nodes), although 

perhaps surprising, is seen as an additional advantage of these quadratic tetrahedral 

formulations.  

In conclusion, quadratic tetrahedral formulations offer an excellent alternative to 

HEX8 elements for simulation of articular contact. The TET15 element in particular 

appears to be very well suited for articular contact analysis. 
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CHAPTER 5 

ADDITIONAL SIMULATIONS USING QUADRATIC 

TETRAHEDRAL ELEMENTS 

5.1 Introduction 

In the previous chapter, a study was presented that compared the performance and 

accuracy of the linear tetrahedral and two quadratic tetrahedral element formulations to a 

hexahedral element formulation in the context of large deformation contact analysis. The 

performance was measured in terms of overall runtime and convergence statistics. The 

accuracy was assessed by qualitative and quantitative comparison of the predicted contact 

stresses, which were recovered using the Superconvergent-Patch-Recovery (SPR) method. 

It was found that the quadratic tetrahedral formulations compared well, both in terms of 

performance and accuracy, and can be used as viable alternatives to the hexahedral 

formulation.  

In this chapter, some additional results are presented that further corroborate these 

findings. First, for the cylinder-on-box sliding contact problem, a closer look at the reaction 

forces and stress predictions explored if the discretization of the rigid indenter had a 

discernible effect on the results. This was accomplished by comparing the results of the 

last chapter with results obtained from an analysis where the rigid indenter was represented 

by an implicitly defined surface. Next, the effect of using a structured versus an 

unstructured mesh for the deformable box was investigated. In the previous chapter, the 
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hexahedral mesh for this problem was a structured mesh, whereas the tetrahedral meshes 

were unstructured. Even more, the mesh lines of the hexahedral meshes where aligned with 

the major axis of the cylindrical indenter. This may have given a significant advantage to 

the hexahedral mesh since the symmetry of the solution was recovered exactly for the 

hexahedral mesh, but not for the tetrahedral meshes that were used. Therefore some 

additional cases were explored where the tetrahedral meshes are structured and where the 

cylinder is not aligned with the mesh lines of the structured meshes. Lastly, an analysis of 

a Hertzian contact problem is presented. For large deformation contact problems, obtaining 

exact, analytical solutions is challenging. Therefore in the last chapter, the results were 

compared to the solution of a hexahedral model because this element is considered the de-

facto standard in this area and is assumed to give reliable answers for a sufficiently refined 

mesh. However, when the problem is restricted to small deformations and linear elasticity, 

the predicted solutions can be compared with an analytical solution. This may give 

additional confidence that the mesh converged solutions are indeed the correct solutions 

for the element formulations considered here. 

5.2 Methods 

5.2.1 Implicit rigid indenter 

In Chapter 4, a 20-node quadratic hexahedral mesh was used to represent the rigid 

indenter. The mesh resolution and the nodal coordinates of this mesh were chosen such 

that an approximately smooth surface was obtained. However, since the shape functions 

for the 20-node hex element are only quadratic, a perfectly smooth surface, where the shape 

function derivatives are continuous across element boundaries, cannot be obtained. 

Although mesh-refinement studies showed the effects on the results to be negligible, in this 
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chapter, an additional analysis is presented where the indenter was represented by an 

implicit cylindrical surface. A new feature in FEBio was implemented that allows users to 

define a contact interface where one of the contacting surfaces is an implicitly defined rigid 

surface. The gap function and surface normal, which are required by the contact algorithm, 

can now be evaluated analytically. For a given node, the closest point on the implicit 

surface was calculated and the surface normal was evaluated at this point. A comparison 

study between the results obtained using the meshed indenter from Chapter 4 and the 

implicitly defined indenter described above investigated the effect of using the implicitly 

defined surface.  

5.2.2 Structured meshing 

As before, for all the additional cases presented here, the meshes are constructed 

such that approximately the same number of nodes were used for a given mesh resolution. 

For the analyses where the results from Chapter 4 are compared to new results, the 

unstructured tetrahedral meshes and the structured hexahedral meshes were taken from 

Chapter 4. For the cases where a structured tetrahedral mesh was required first, a structured 

hexahedral mesh was generated. Then, the structured tetrahedral meshes were constructed 

by splitting the hexahedral elements into six tetrahedrons. Aside from matching the number 

of nodes, the structured tetrahedral meshes also tried to match the number of nodes on the 

contacting surface to those on their structured counterpart. This was done since for contact 

problems, the surface mesh resolution is an important consideration and this way, a more 

direct comparison can be made between the structured and unstructured results (Table 5.1). 

All the additional mesh studies presented here used the implicit rigid indenter instead of a 

meshed indenter.  
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5.2.3 Hertzian contact 

Analytical solutions for contact problems are available for some idealized 

geometries assuming infinitesimal strain conditions. Here, the case is considered where a 

rigid sphere of radius R indents a deformable half-space to depth d. The force on the rigid 

sphere to reach this depth is given by, 

 
( )

1/2 3/2
2

4
3 1

EF R d
v

=
−

.  (5.1) 

where E, v are the Young’s modulus, and Poisson’s ratio of the deformable half-space, 

respectively. The contact area is a circle with radius, 

 a Rd= .  (5.2) 

The peak contact pressure occurs at the center of this circle and is given by 

 0
3

2
Fp
Rdπ

= .  (5.3) 

To mimic the conditions of this idealized contact problem, a deformable cube of size w is 

Table 5.1: The different mesh resolutions used in the comparison of structured and 
unstructured meshes. Only unstructured tetrahedral meshes were used in this study. 

nodes surface 
nodes

nodes surface 
nodes

HEX8 N/A N/A 33306 1586
TET4 33477 3440 33670 3367
TET10 33350 3241 35035 3185
TET15 33023 2339 36227 2615

unstructured mesh structured mesh
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indented by a rigid sphere of radius R at the center of the top surface of the cube. Due to 

the symmetry in the problem, only a quarter of the cube is modeled. This implies that the 

recovered contact force is only a quarter of the force obtained with (5.1). The size w must 

be chosen sufficiently large compared to the contact radius a in order to avoid the influence 

of the boundaries. At the same time, the element size h must be sufficiently small so that 

the contact area can be resolved accurately. The radius of the sphere is set to R = 10. FEBio 

does not have a linear elastic model, but the “isotropic elastic”, an implementation of the 

St-Venant Kirchhoff material, is a good approximation for small deformations. The 

material parameters were chosen to be E = 1, and v =0. The indentation depth was set to 

0.01. The rigid sphere was represented by an implicit surface. Under these conditions, the 

exact reaction force and pressure can be calculated from equations (5.1) and (5.3), and 

yield F/4 = 0.001054 and p0 = 0.020132. The radius of contact can be evaluated using (5.2) 

and gives a = 0.316. 

A sensitivity analysis was first conducted in order to determine suitable values for 

w and h using a rectangular, structured hexahedral mesh. As it turns out, the value of w 

must be chosen relatively large to obtain a good approximation to the analytical solution, 

so here a conservative measure of 10% deviation of the exact answers was deemed 

converged. From this analysis, a value of w = 3 was chosen for subsequent analyses. Next, 

structured and unstructured tetrahedral meshes were constructed and compared to the 

results obtained from the hexahedral mesh. Again, as before, the number of nodes was 

chosen as a metric for comparison. It was also attempted to match the number of surface 

nodes when comparing structured and unstructured tetrahedral meshes. 
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5.3 Results 

5.3.1 Implicit rigid indenter 

The use of the implicitly defined cylindrical indenter did not appear to affect the 

contact stress predictions, compared to the meshed cylinder that was used in the cylinder-

on-box problem in Chapter 3 (Fig. 5.1). The contact stresses are both qualitatively and 

quantitatively in excellent agreement.  

The total reaction force on the rigid indenter was also not affected. As was noted in 

Chapter 3 at the finest mesh resolutions, this force was not very sensitive to the mesh used 

(although it was much higher for the TET4 mesh, compared to the other element 

formulations). However, a measure that may be more sensitive to the mesh is the tangential 

component of the reaction force. Due to the model setup, this measure should be relatively 

small compared to the total reaction force, although it will not be identically zero due to 

HEX8 

TET4 

TET10 

TET15 

0 

5 

Fig. 5.1: Comparison of contact stress predictions for the highest mesh resolution 
between (left) results obtained from using a meshed indenter and (right) results 
obtained with the implicit indenter. 
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edge effects. Comparing the results between the meshed approach and the implicit 

approach at the finest mesh resolutions reveals that the tangential force was relatively 

unaffected (Fig. 5.2). The exception was the HEX8 result which did appear to show a small, 

yet systematic, discrepancy. Also, the tangential reaction force appeared to fluctuate the 

most for the HEX8 element, indicating that it may be sensitive to the mesh resolution, even 

at the finest mesh resolution considered in this study. 

5.3.2 Structured tetrahedral meshes 

The predicted contact stresses for the structured quadratic tetrahedral meshes 

compared well to those of the unstructured meshes, both qualitatively and quantitavely 

(Fig. 5.3). The results for the structured meshes do appear to recover the symmetry in the 

solution better than the results for the unstructured meshes. This is most likely due to the 

fact that the contact area cannot be represented exactly using an unstructured mesh. Aside 
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Fig. 5.2: Comparison of the tangential (X) component of the reaction force between 
the meshed indenter approach and the implicit indenter approach.  
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from predicting a much higher contact stress, the linear tetrahedral mesh on the other hand 

failed to recover the symmetry in the solution near the outer edges of the mesh. It appears 

that the structured mesh strongly biases the result in these areas and is unable to recover an 

accurate solution.  

5.3.3 Unaligned indenter 

In the case where the indenter was angled with respect to the coordinate axes, the 

observations reported before remain valid. For both the structured and unstructured 

meshes, the quadratic results appear very similar to each other and to the hexahedral mesh 

result (Fig. 5.4). The linear tetrahedral mesh, on the other hand, predicted much higher 

contact stresses. Although the contact stresses did appear smoother for the structured linear 

tet mesh, it did have similar discrepancies near the edges as was observed in the previous 

analysis. As before, the contact stresses for the unstructured linear tet mesh are very 

irregular. This element formulation does not appear to be able to accurately capture the 

boundary of the contact area. 

TET4 

TET10 

TET15 

0 

5 

Fig. 5.3: Comparison of contact stresses between structured and unstructured meshes. 
(left) unstructured tetrahedral meshes, and (right) structured tetrahedral meshes.  
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5.3.4 Hertzian contact 

The sensitivity analysis revealed that at a value of w = 3 ( ~ 10xa), the reaction 

force and pressure fell within 10% of the exact solution. For h = 0.1, F/4 = 0.00116 and p0 

= 0.0201. Halving the value of h modified the solution only slightly. For h = 0.05, F/4 = 

0.00114 and p0 = 0.0204. The latter case was taken as the reference solution to which the 

tetrahedral results were compared. At this resolution, the hexahedral mesh contained 

226,981 nodes (3,721 surface nodes). 

Qualitatively, all element formulations appear to provide good results for the 

contact stresses at the highest mesh resolution (Fig. 5.5). In all cases, the circular contact 

area was clearly discernable. The quadratic tetrahedral meshes did appear to represent the 

boundary of the contact area more accurately than the hexahedral mesh. Overall, the 

structured Tet15 mesh appeared to give the smoothest results. Past a mesh resolution of 

0 

5 
HEX8 

TET4 

TET10 

TET15 

Fig. 5.4: Contact stresses for the unaligned indenter problem, where the cylindrical indenter 
makes a 30 degree angle with the vertical axis. The stresses are shown for a time point 
halfway of the horizontal displacement of the indenter. 
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about 50,000 nodes (corresponding to h = 0.08 for the hexahedral mesh), the predicted 

reaction force and peak contact pressure did not appear to change much, suggesting that 

the meshes are converged (Fig. 5.6). At the finest resolution (h = 0.05 for the hex mesh), 

the forces and peak contact pressure differed less than 1% and 4%, respectively, between 

the various element formulations.  

5.4 Discussion 

The additional analyses completed in this chapter further corroborate the findings 

of Chapter 4, namely that the quadratic tetrahedral elements perform quite well compared 

to the hexahedral element for large deformation contact problems and significantly better 

than the linear tetrahedral element. For the mesh converged solutions, the quadratic 

tetrahedral elements appear to give good predictions for contact stress and reaction force 

compared to the hexahedral mesh results.   

Inspecting Fig. 5.2, it appears to show that the tangential component of the reaction 

force is smoother for the TET10 element than for the TET15 element, despite the fact that 

the TET15 element has more nodes per element. This can be explained by noting that, 

although both meshes had approximately the same number of nodes, the TET10 had a finer 

Fig. 5.5: Contact stresses near the area of indentation for various element formulations. 
The approximate area shown is 0.5x0.5 (the total surface area is 3x3).  

TET10S TET15 TET10 TET15S HEX8 0.02 

0 
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surface mesh discretization than the TET15 mesh for a given number of nodes. Similarly, 

the HEX8 results appear to be the most sensitive to the mesh. Again this is most likely a 

result from the fact that the HEX8 had the coarsest mesh resolution for a given number of 

nodes. This result illustrates that the resolution of the contact surface may be an important 

factor to consider aside from the overall mesh resolution. This observation was the main 

motivation for trying to match the number of surface nodes between the structured and 

unstructured meshes, although the mesh topology did not always allow a close match.  

Similarly for the Hertzian contact analysis, the number of nodes was matched for 

the four different mesh resolutions considered. Also, the number of surface nodes was 

matched between the corresponding meshes for the structured and unstructured cases. 

However, the TET15 meshes still had a lower surface mesh resolution than the TET10 

meshes (Table 5.2). Despite this disadvantage, the TET15 results appeared to be 

comparable to the TET10 results. In fact, the qualitative comparison of the contact stress 

(Fig. 5.5) shows that the TET15 results appeared to be slightly better than the TET10 
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results. Even more, the overall runtime for the TET15 was considerably lower than the 

TET10 and HEX results for the same number of nodes (Table 5.2). These observations 

further strengthen the conclusion from Chapter 4 that the TET15 may be a better element 

to consider than the TET10 element for large deformation contact analysis. 

For the Hertzian contact analysis, it must also be noted that the resolution of the 

contact area was relatively small, even for the highest mesh resolution considered. This 

was a consequence of the fact that the overall size of the box had to be sufficiently large in 

order to avoid boundary effects that would have caused deviations from the analytical 

solution. A further refinement of the mesh in the contact area would most likely improve 

the results even more. In order to reduce the computational time, this problem would 

greatly benefit from an inhomogeneous mesh that is locally refined near the area of contact. 

In practice, this would be the preferred approach, although in these studies, homogenous 

meshes were considered to simplify the analyses.  

Table 5.2:  Mesh resolutions and results for the mesh convergence study of the 
Hertzian contact analysis problem. 

nodes elems surf nodes F/4 p0 runtime (sec)
TET10 - US mesh1 4347 2383 437 0.00121 0.021 1

mesh2 48670 32300 2153 0.00116 0.0207 35
mesh3 93025 63482 3285 0.00115 0.0209 114
mesh4 222166 155444 6197 0.00115 0.0209 670

TET10 - S mesh1 4851 3000 441 0.00122 0.0187 2
mesh2 50625 34848 2025 0.00116 0.0205 39
mesh3 94221 65856 3249 0.00115 0.0207 105
mesh4 219373 155952 5929 0.00115 0.021 480

TET15 - US mesh1 4407 845 279 0.00119 0.02 1
mesh2 49461 10334 1683 0.00116 0.0211 22
mesh3 97217 20893 2433 0.00115 0.0213 64
mesh4 217671 47693 4095 0.00115 0.0211 283

TET15 - S mesh1 4281 864 241 0.00127 0.0212 1
mesh2 49551 10752 1601 0.00117 0.0205 22
mesh3 98259 21600 2481 0.00116 0.0207 62
mesh4 218841 48672 4161 0.00115 0.0208 250



 

 

 

 
CHAPTER 61 

A GENERAL FRAMEWORK FOR APPLICATION OF 

PRESTRAIN TO COMPUTATIONAL MODELS OF 

BIOLOGICAL MATERIALS 

6.1 Abstract 

It is often important to include prestress in computational models of biological 

tissues. The prestress can represent residual stresses (i.e. stresses that exist after the tissue 

is excised from the body) or in situ stresses (i.e. stresses that exist in vivo, in the absence 

of loading). A prestressed reference configuration may also be needed when modeling the 

reference geometry of biological tissues in vivo. This research developed a general 

framework for representing prestress in finite element models of biological materials. It is 

assumed that the material is elastic, allowing the prestress to be represented via a prestrain. 

For prestrain fields that are not compatible with the reference geometry, the computational 

framework provides an iterative algorithm for updating the prestrain until equilibrium is 

satisfied. The iterative framework allows for enforcement of two different constraints:  

elimination of distortion in order to address the incompatibility issue, and enforcing a 

specified in situ fiber strain field while allowing for distortion. The framework was 

                                                 

1 Reprinted from Journal of the Mechanical Behavior of Biomedical Materials, Volume 61, Pages 
499-510, Maas SA, Erdermir A, Halloran JP, Weiss JA, “A General Framework for Application of Prestrain 
to Computational Models of Biological Materials”, with permission from ELSEVIER. 
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implemented as a plugin in FEBio (www.febio.org), making it easy maintain the software 

and to extend the framework if needed. Several examples illustrate the application and 

effectiveness of the approach, including the application of in situ strains to ligaments in the 

Open Knee model (simtk.org/home/openknee). A novel method for recovering the stress-

free configuration from the prestrain deformation gradient is also presented. This general 

purpose theoretical and computational framework for applying prestrain will allow analysts 

to overcome the challenges in modeling this important aspect of biological tissue 

mechanics. 

6.2. Introduction 

Experimental observations show that connective tissues such as ligaments, tendons 

and skeletal muscle retract when excised from the body. This retraction is due to in situ 

strain -strain that exists in vivo in the absence of loading in the reference configuration.  

The strain and associated stress is relieved when the tissue is removed from the body, 

yielding a relatively stress-free configuration. In situ strains for ligaments in diarthrodial 

joints are in the range of 3-10% (Gardiner, Weiss and Rosenber; Woo et al.) and it has been 

shown that they contribute to the stability of joints (Ellis et al.; Lujan, Dalton, et al.). 

Residual strain (i.e. strain that exists in the tissue after it is excised from the body) is 

observed in many tissues such as arteries (Chuong and Fung), mitral leaflets (Rausch and 

Kuhl) and myocardium (Wang et al.; Omens and Fung; Guccione, McCulloch and 

Waldman). Often, geometries of biologically tissues are acquired in vivo and consequently 

the reference configuration cannot be assumed stress-free. All these various forms of 

prestrain, i.e. strain that exists in the reference configuration of the body of interest, can 

contribute significantly to the mechanical response of the system. Inclusion is often 
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necessary in computational models of biological tissues to obtain reasonable predictions of 

tissue mechanics. 

One class of previously reported methods for accommodating prestrain in finite 

element modeling can be described as deforming a stress-free configuration to induce stress 

in a desired/known reference configuration. For example, in Balzani, Schroder and Gross 

this is accomplished by closing the geometry representing a radially cut artery, using a 

special type of spring element. In Rausch and Kuhl, a stress-free configuration of mitral 

leaflets is stretched to conform to the in vivo reference configuration. In this case, the 

deformation map from stress-free to prestressed reference configuration was assumed to 

be known. This class of methods requires a sequence of forward analyses and can be 

executed with any finite element analysis software. The drawback is that they rely on the 

existence and knowledge of a stress-free configuration. In practice however, obtaining a 

stress-free configuration can be challenging, and there is no guarantee that it exists. For 

instance, in the case of arteries, the opening angle experiment was once believed to relieve 

the residual stress (Fung and Liu). However, it was later shown that a single cut does not 

relieve all the residual stress (Vossoughi, Hedzaji and Borris; Greenwald et al.).  

In another class of methods, prestress is accounted for directly in the reference 

configuration without the requirement that a stress-free state exists or is known a priori. 

These methods are especially useful in the context of patient- and subject-specific 

modeling, since in these cases finite element models are often constructed based on image 

data acquired in the reference configuration. Usually the materials are assumed to be elastic 

and the prestress is then defined via a prestrain. The methods in this class primarily differ 

from each other in the definition of the prestrain. In Alastrue et al., the deformation gradient 
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is taken from an analytical solution for the bending of a cylinder. In Weiss et al. and 

Dhaher, Kwon and Barry it was obtained indirectly from experimental data. In Gee, Forster 

and Wall and later in Weisbecker, Pierce and Holzapfel and Grytz and Downs, the prestrain 

deformation gradient was obtained by solving an inverse finite element problem: given the 

in vivo reference configuration and the in vivo loads, find the deformation gradient that 

generates the stresses in the reference configuration required to balance the applied loads. 

This approach requires an iterative solution due to the nonlinearity of large deformation 

elasticity. The method by Bols et al. is also similar in that regard, except that it attempts to 

recover the stress-free configuration. In general, biological tissues can have residual 

stresses in addition to prestress, and the methods mentioned above can be used to 

accommodate all forms of prestrain in a single analysis. For instance in Pierce et al. the 

general prestressing algorithm by Weisbecker, Pierce and Holzapfel is used to account for 

both the residual stress and the prestress in the reference configuration of an artery. A 

shortcoming of the methods that start from a prestrain deformation gradient is that it cannot 

always be guaranteed that the induced prestress is in equilibrium with the given reference 

configuration. Thus, it must be verified that the applied prestrain results in equilibrated 

stresses. Ideally, a method to compensate for any incompatibility should be available. 

The objective of this study was to develop and implement a general purpose 

computational framework for modeling prestrain in finite element models of biological 

tissues. The framework uses a prestrain gradient approach that does not require the 

knowledge or computability of a stress-free reference configuration. The manuscript details 

the theoretical foundation as well as the computational aspects of the framework. We 

demonstrate that some of the previously reported methods for applying prestrain can be 
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recovered as special cases of the framework. We also describe a method for recovering 

prestrain from sparse experimental data, and a method for recovering the global stress-free 

state from its deformation gradient. Examples illustrate the application of the framework 

to several test problems, including the application of prestrain to a finite element model of 

the knee from the Open Knee project (Erdemir and Sibole; Erdemir; Erdemir). The 

framework was implemented in the freely available finite element software FEBio (Maas 

et al.) and can be used with any of the elastic constitutive models. 

6.3. Methods 

6.3.1 Theoretical background 

Consider a body in its prestressed reference configuration that is subjected to 

applied loading and subsequently deforms into a loaded configuration (Fig. 6.1). The 

deformation map ( )Xϕ , which maps the material coordinates X  to the corresponding 

Fig. 6.1: Schematic showing the prestressed reference configuration and the loaded, 
deformed configuration.  At each point in the reference configuration, it is assumed that 
a small (potentially infinitesimal) neighborhood can be found for which a local 
deformation map exists that takes the neighborhood to a stress-free state. 
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spatial coordinates ( )=x Xϕ , has a deformation gradient 0= ∇F ϕ . It is assumed that for 

each material point, a local stress-free virtual configuration can be found in the sense of 

(Johnson and Hoger). The gradient of the local mapping from the stress-free to the 

prestressed reference configuration is represented by  pF , which will be referred to as the 

prestrain gradient.  

The total elastic deformation gradient eF  is determined by the composited 

deformation gradient, 

 e p=F FF  . (6.1) 

 It is further assumed that the constitutive response of the material is hyperelastic. 

As shown by Johnson and Hoger, in this case the Cauchy stress σand spatial elasticity 

tensor c  can now be evaluated using eF : 

 ( ) ( ),e e= =σ F FF c T  , (6.2) 

where F  and T  denote the “natural” material response functions (i.e. the response 

functions obtained from deforming the material from a stress-free reference configuration). 

For a finite element software such as FEBio that evaluates these quantities in the spatial 

frame, accommodating prestrain via the prestrain gradient approach is relatively 

straightforward. 

In general, the inverse deformation gradient 1
p
−F  that renders the neighborhood of 

a point in the reference configuration stress-free can only be defined locally. Thus pF  
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cannot be obtained from the derivative of a mapping from a stress-free configuration to the 

prestressed configuration. This is a strong motivation for using the prestrain gradient 

approach in this work. Of course, if such a mapping is available, its gradient can be 

computed directly and then used to evaluate the material response via Eq. (6.2). 

Finally, the Cauchy stress in the prestressed configuration ( )p p=σ FF  must 

satisfy equilibrium in the absence of any subsequent deformation (i.e. =F 1 ) . This implies 

that, in the absence of body forces, pσ  must satisfy the equations representing conservation 

of linear and angular momentum in the interior of the prestressed domain: 

 
( )div ,

.
p

T
p p

=

=

σ 0

σ σ
  (6.3) 

In addition, the free boundaries must be traction free:   

 p ⋅ =σ n 0  . (6.4) 

Here, n  is the unit outward normal vector at the boundary. When the stress induced by the 

prestrain gradient satisfies Eqs. (6.3) and (6.4) the prestrain gradient is considered 

compatible with the reference geometry. 

6.3.2 The prestrain gradient approach 

The proposed framework starts from knowledge of an initial target for the prestrain 

gradient, an initial reference configuration, and the boundary conditions and loads that exist 

in this configuration. As noted above, this is the most convenient starting point when the 

prestrain gradient is known (e.g. from a forward FE analysis or from an analytical solution) 
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or can be obtained from experiment. At the same time, experimental measurement of the 

complete prestrain gradient can be difficult, so the full prestrain gradient may not always 

be available. For instance, when measuring ligament strain, often the fiber stretch is 

measured (Weiss et al.; Lujan, Lake, et al.; Lujan, Dalton, et al.; Gardiner, Weiss and 

Rosenber; Gardiner and Weiss; Ellis et al.; Dhaher, Kwon and Barry). In this case, 

additional modeling assumptions are necessary to fill in the missing information. Similarly, 

assumptions are often made about the form of the prestrain gradient when measuring strain 

in arteries (Balzani, Schroder and Gross; Balzani, Schroder and Gross; Holzapfel and 

Ogden; Labrosse et al.; Raghavan et al.) and the heart (Wang et al.; Omens, McCulloch 

and Criscione; Taber et al.; Taber and Chabert). The result of these assumptions is an 

approximate prestrain field that may not be compatible with the initial reference 

configuration. In a finite element analysis, the application of an incompatible prestrain field 

results in a distortion of the reference geometry which also alters the effectively applied 

prestrain gradient. It is usually not desirable to have both a distortion of the reference 

configuration and an effective prestrain gradient that differs from the applied prestrain 

gradient as this may complicate the interpretation of the results. Depending on the specific 

goal and the input data, the analyst may wish to eliminate distortion and thus needs to find 

an alternative prestrain gradient field that is compatible with the original reference 

configuration. Alternatively, the goal may be to enforce the given prestrain gradient field 

as closely as possible and in this case a new reference configuration needs to be found that 

is compatible with the applied prestrain gradient field.  

For both goals, the framework uses an iterative mechanism that updates the 

prestrain gradient field in order to accomplish the desired goal. In the following sections 
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the deformation gradient that corresponds to the distortion of the geometry is denoted by 

F. Our computational framework assumes that the user provides an initial target for the 

prestrain gradient, notated as ˆ
pF . Then the prestrain gradient pF that results in an effective 

prestrain gradient ,p effF  is: 

 ,p eff p=F FF ,  (6.5) 

such that ,p effF  is compatible with the possibly distorted reference configuration and is 

calculated using an iterative algorithm (Fig. 6.2). Users can provide either the full tensor 

ˆ
pF or provide a simplified functional form that calculates  from given data. In either 

case, is held constant during the iterative loop. A forward finite element analysis is then 

executed which results in a distortion of the mesh with deformation gradient kF . After the 

forward analysis, pF  is updated. Since the update depends on the desired goal, the user 

selects one of the by default provided update rules (or implements a new one). After pF  is 

updated, a new forward analysis is performed. This iterative procedure continues until pF

converges to a stable value. In our current implementation, the convergence criterion is  

 1k k
p p ε+ − <F F .   (6.6) 

After the algorithm converges, the initial reference geometry is replaced with the 

distorted geometry, p p←F FF . F , which measures the deformation of the final distortion, 

is reset to the identity tensor. Now pF  is compatible with the new reference geometry. This 

ˆ
pF

ˆ
pF
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step is necessary to ensure that any subsequent loading is applied to the compatible 

reference geometry and not the incompatible initial reference geometry.  

This approach offers a very flexible approach to applying a prestrain gradient field 

and, as illustrated below, can be used to implement different algorithms for applying 

prestrain in a finite element model. The main difference between these algorithms will lie 

in two aspects: how ˆ
pF  is constructed from given data and how pF  is updated. In Sections 

6.3.2.1 and 6.3.2.2, two particular update rules will be considered as examples that 

illustrate the possible applications of the proposed framework. In Section 6.2.2.3 a form 

Fig. 6.2: Flowchart of numerical algorithm, showing how the prestrain gradient is 
found iteratively by solving a series of forward FE problems. In the forward FE model, 
the prestrain gradient is held constant. After each forward analysis, the prestrain 
gradient is updated. 
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for written in terms of fiber stretches will be presented, and that form will be used in 

the examples in Section 6.4. 

6.3.2.1. Elimination of distortion 

In this application the goal is to eliminate the distortion induced by the 

incompatibility of the initial prestrain gradient. As explained in Section 6.2.1, the iterative 

algorithm alternates between a forward FE analysis (with pF  fixed) and an update to pF . 

At iteration k, the forward analysis induces a distortion of the reference geometry, 

characterized by a deformation gradient kF . This is approximately equivalent to distorting 

the initial reference configuration backwards via ( ) 1k −
F , such that the distorted geometry 

coincides with the given geometry. From this altered initial reference configuration, the 

effective prestrain gradient is given by ,
k k k
p eff p=F F F . The update rule then follows by 

requiring that the new prestrain gradient coincides with the effective prestrain gradient, i.e. 

1
,

k k
p p eff
+ =F F . From this, the update rule follows directly:  

 1k k k
p p
+ =F F F  . (6.7) 

A new forward analysis is then executed. The process is repeated until pF  converges. The 

result of this approach is a prestrain gradient field that is compatible with the original 

reference configuration, thus eliminating distortion.  

Note that the pF  in general will not be identical to ˆ
pF . This is the price that must 

be paid for a prestrain field that is compatible with the original reference configuration. An 

obvious question is then is it possible to find a reference configuration that allows initial 

ˆ
pF
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prestrain to be enforced exactly. This question motivates the next application. 

 

6.3.2.2. Enforcement of a prestrain gradient field 

Enforcing the initial prestrain gradient ˆ
pF  is equivalent to stating that a reference 

configuration is to be found in which the effective prestrain gradient is equal to the initial 

prestrain gradient, i.e. 

 ,
ˆ

p eff p=F F .  (6.8) 

 At iteration k of the algorithm, the mesh will distort with deformation gradient kF  

and the effective prestrain will be ,
k k k
p eff p=F F F . Keeping kF  fixed during the update phase, 

Eq. (6.8) can be enforced by choosing 1 1
,

ˆk k k
p eff p p
+ += =F F F F . Solving this equation for 1k

p
+F  

yields the following update rule: 

 ( ) 11 ˆk k
p p

−+ =F F F .  (6.9) 

In general, exact enforcement of a particular ˆ
pF  is an ill-posed problem. Small 

variations in ˆ
pF  can lead to large distortions of the mesh, or in the worst case, may prevent 

the algorithm from converging. This is expected as an arbitrary prestrain gradient cannot 

be enforced on an arbitrary reference geometry. Progress can be made by appropriate 

regularization.  For instance, instead of enforcing the full initial prestrain gradient, only 

part of the tensor is enforced. This compromise allows some distortion, but still enforces 

part of the initial prestrain gradient that is most important for reproducing e.g. experimental 
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measurements. In the examples below it is assumed that the local fiber stretch is known 

(e.g. from experimental data). Thus, an update rule that only enforces the given fiber 

stretches is derived next. 

The fiber stretch ˆ
pλ  induced by the initial prestrain gradient ˆ

pF  is given by 

 0
ˆ ˆˆp p pλ = ⋅a F a .  (6.10) 

Here, 0a  is the fiber vector in the stress-free configuration and is in general unknown. 

Since the fiber vector ˆ pa  in the initial reference configuration is usually known, we can 

solve for the initial fiber stretches using 1 1
0

ˆ ˆ ˆp p pλ− −= ⋅a F a . 

At iteration k the effective fiber stretch effλ  is determined by,  

 0
k k k k
eff pλ = ⋅a F F a .  (6.11) 

Again, keeping kF  fixed during the update phase, the initial fiber stretch can be enforced 

by setting 1 ˆk
e pλ λ+ = . Using this as well as 1 1 ˆk k

p p p
+ += ∆F F F , and eliminating the unknown 

quantity 0a using Eq. (6.10), Eq. (6.11) can be rewritten as follows. 

 1 ˆk k k
p p
+= ∆ ⋅a F F a   (6.12) 

Note that this also eliminates ˆ
pλ . Although we believe that Eq. (6.12) is the most general 

way to write an update rule that enforces a given fiber stretch, it is not sufficient to define 

the update rule uniquely and further assumptions must be made. In the remainder of this 
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section it is assumed that the update rule for 1k
p
+∆F  is such that the orientation of the fiber 

vectors in the initial reference configuration are unaltered. In other words,  

 1 1ˆ ˆk k
p p p pλ + += ∆ ⋅a F a .  (6.13) 

Secondly, since only materials that are (nearly-) incompressible will be considered in this 

manuscript it is required that ( )1det 1k
p
+∆ =F . A form of  1k

p
+∆F  that accomplishes all of this 

is given by 

 1 1 1 1
2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆk k k k

p p p pλ λ λ+ + + +∆ = ⊗ + ⊗ + ⊗F a a a a a a .  (6.14) 

Here, 2 3ˆ ˆ ˆ, ,pa a a  form a right-handed coordinate system and 1 1
2 3,k kλ λ+ +  are such that 

1 1 1
2 3 1k k k

pλ λ λ+ + + = . This does not determine 1 1
2 3,k kλ λ+ + uniquely, and a final assumption is 

necessary, namely that ( ) 1/21 1 1
2 3
k k k

pλ λ λ
−+ + += = . Next, by choosing ( ) 11k k

pλ λ
−+ =  where kλ  

is the fiber stretch induced by kF  (i.e. ˆk k k
pλ = ⋅a F a ). The resulting update rule (using 

1 1 ˆk k
p p p
+ += ∆F F F ) becomes 

 ( ) ( ) ( )1 1/21 ˆˆ ˆ ˆ ˆk k k
p p p p p pλ λ

−+  = ⊗ + − ⊗  
F a a I a a F .  (6.15) 

This can be written more concisely by constructing an orthogonal tensor Q  of which the 

columns are formed by the vectors 2 3ˆ ˆ ˆ, ,pa a a . In that case, Eq. (6.15) can be rewritten as 
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1

1 1/2

1/2

ˆk T
p p

λ
λ

λ

−

+

 
 =  
  

F Q Q F ,  (6.16) 

where the superscript k  on kλ  was dropped for clarity. It can easily be verified that this 

particular update rule satisfies Eq. (6.12) and thus effectively enforces the given fiber 

stretches. Note that in this case however, the distortion of the geometry is not eliminated, 

so the reference geometry is altered. This is necessary since the initial reference geometry 

was not compatible with the given fiber stretches and a new geometry was sought that is 

compatible.  

6.3.2.3. Defining prestrain in terms of fiber stretches 

Aside from providing an update rule for pF , the user must also provide an initial 

estimate of the prestrain gradient. Although a full 3x3 tensor can be provided, the 

framework allows the user to express  in terms of other quantities. This is useful in the 

case  is constructed from experimental data when knowledge of the full tensor may not 

be available. For example, consider the case where the fiber stretches ˆ
pλ along the material 

fibers were determined from experiment. The selection of the form for ( )ˆˆ
p pλF  follows the 

approach in Weiss et al.. It is assumed that the material is transversely isotropic and that 

the fibers carry most of the load, which implies that the stress in the material is determined 

predominantly from the fiber stretches ˆ
pλ . Furthermore, it is assumed that the material is 

incompressible and thus the deformation induced by must be isochoric (i.e. 

ˆ
pF

ˆ
pF

ˆ
pF
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( )ˆ ˆdet 1p pJ= =F ). These assumptions are not sufficient to determine uniquely (in fact, in 

general the prestrain gradient cannot be determined uniquely), but we argue that, if the 

stress of the material is determined mostly by ˆ
pλ  and ˆ

pJ , then any form of that results 

in the given fiber stretches ˆ
pλ  and whose determinant satisfies ˆ 1pJ = , results in the same 

prestress and is thus a valid prestrain gradient. Thus, given the fiber stretches ˆ
pλ  and the 

fiber vectors in the prestressed reference configuration ˆ pa , a form of ˆ
pF that satisfies these 

requirements is given by, 

 ( )1/2ˆ ˆˆ ˆ ˆ ˆ ˆp p p p p p pλ λ−= ⊗ + − ⊗F a a I a a .  (6.17) 

Using similar arguments as presented in Section 2.2.2, this can be rewritten more concisely 

using  

 1/2

1/2

ˆ

ˆˆ

ˆ

p

T
p p

p

λ

λ

λ

−

−

 
 

=  
 
  

F Q Q ,  (6.18) 

where Q  is an orthogonal tensor whose columns are formed from the vectors 2 3ˆ ˆ ˆ, ,pa a a that 

define a right-handed coordinate system.  

Combining this particular form of (Eq. (6.18)) and the update rule described in 

Section 2.2.1. (Eq. (6.16)) essentially recovers the method by Weiss et al. which has been 

used successfully used to enforce the experimental fiber stretches. This application of the 

framework is illustrated in the example of Section 6.3.4. 

ˆ
pF

ˆ
pF

ˆ
pF
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6.3.3 Compatibility and recovery of the displacement field 

As noted above, the prestrain gradient approach does not rely on the existence of a 

stress-free configuration. However, given a prestrain gradient field, we can test whether a 

corresponding stress-free configuration exists, and if it does, it can be recovered.  

If pF is in fact the gradient of a deformation map, then it must satisfy the following 

conditions: 

 det 0p >F  , (6.19) 

 p∇× =F 0  . (6.20) 

The first condition ensures that pF corresponds to a physically possible state, and it must 

be true even if pF is not the gradient of a deformation map. The second condition will only 

be true if pF  is the gradient of a deformation map. In other words, if ( )η=X y , then 

p η= ∇yF .   Thus, Eq. (6.20) can be used to determine if the prestrain gradient field is in 

fact the derivative of a deformation map.  

The following algorithm recovers the displacement field from pF for the case when 

it is the derivative of a deformation map. Assume the displacement field ( )u y  from the 

(unknown) stress-free configuration is written in terms of the shape functions in a finite 

element formulation: 

 ( ) ( )a a
a

N=∑u y y u . (6.21) 



131 
 

 

Here, aN  are the shape functions of node a and au  are the values of the nodal 

displacements. Inside an element e, the gradient of this displacement field at node b of 

element e is given by 

 ( ) ( )e e
b a a b

a
N∇ = ⊗∇∑y yu y u x . (6.22) 

Since the shape function derivatives are in general not continuous across element 

boundaries, Eq. (6.22) evaluated at the same node b, but from a different element will yield 

a different result. Thus, in the following the value of all elements that contain node b must 

be considered.  The set of all elements that connect to node b is referred to as the star of b 

and denoted by { }|bS e b e= ∈ . Then, the least-squares error at node b is defined as 

follows:  

 ( ) ( ) 21
2

b

e
b b b F

e S
E

∈

= ∇ −∑ u y G y .  (6.23) 

Here, the sum is taken over the star of node b and, F
  is the Fröbenius norm and 

p= −G F I . The total error is then defined by summing over all the nodes. Using Eq.(6.22), 

this can be written as follows: 

 ( ) ( )
21

2
b

e
a a b b

b e S a e F

E N
∈ ∈

= ⊗∇ −∑∑ ∑u y G y  . (6.24) 

By solving this least squares problem, a set of linear equations is recovered that can readily 

be solved for the nodal displacements au . See the Appendix for details. 
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6.3.4 Implementation aspects 

The framework described above was implemented in the FEBio finite element 

software (Maas et al.) as a plugin, which is an extension to FEBio that is developed and 

maintained independently from the main FEBio source code. The prestrain plugin defines 

a new material (called prestrain elastic) that is a wrapper around the FEBio elastic 

materials. The purpose of this material is twofold: to allow the user to define the initial 

guess for the prestrain gradient ˆ
pF , and to pass the total elastic deformation gradient eF  to 

the functions that calculate the stress and elasticity tensors. FEBio evaluates these tensors 

in the spatial frame directly using Eq. (6.2). Unlike other approaches that are based on an 

iterative method for obtaining the prestrain gradient, this approach does not require any 

change to the existing FEBio source code. In fact, the code that evaluates the constitutive 

response does not know if the model is being analyzed for a standard forward analysis or 

a prestrain analysis. Any of the available constitutive (hyperelastic) models in FEBio can 

be used without modification. This is in part made possible by the ability to define material 

data hierarchically in FEBio. New element data (in this case the prestrain gradients ˆ
pF  and 

pF ) can be defined without changing any existing data structures. 

The initial prestrain gradient ˆ
pF can be defined as constant over the entire domain, 

it can be defined for each element, or it can be defined via the fiber stretch. The prestrain 

plugin can also be expanded and users can create new ways to define the initial prestrain 

gradient (for instance, a mathematical expression representing the solution of an idealized 

geometry). The iterative update algorithm described in Section 2.2 is implemented as a 

nonlinear constraint and accomplishes its goal by using the augmentation mechanism in 
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FEBio. This mechanism allows constraints to evaluate and modify the state of the model 

at the end of each converged time step. If a constraint modifies the state of the model, then 

the time step is re-evaluated. This mechanism is often used in FEBio to determine Lagrange 

multipliers using the augmented Lagrangian method; in this case it is used to update the 

prestrain gradient. During the augmentation phase, the prestrain gradient is updated and 

the convergence is checked. If convergence is met, the augmentation loop finishes and the 

time step ends. The default implementation does not provide a specific update rule (the 

base class is an abstract class) and specific update rules are implemented by subclassing 

the base class. The two update rules discussed in Sections 6.2.2.1 and 6.2.2.2 are available 

as part of the plugin distribution and can be used as examples that show how to define new 

update rules. 

In general, applying prestrain using this plugin requires a two-step analysis. In the 

first step, the initial prestrain gradient is given and, if necessary, the update algorithm is 

applied to find a compatible prestrain gradient. Then, subsequent loading of the model is 

applied in the second step during which the prestrain gradient is held fixed. The prestrain 

plugin, associated documentation and example problems are available for download at the 

FEBio web page (www.febio.org/plugins). 

6.4 Results 

6.4.1 Verification analysis 

This example demonstrates that in the case of a compatible prestrain gradient, Eq. 

(6.2) indeed results in the correct Cauchy stress. This example uses a hexahedral mesh of 

a tensile test specimen with dogbone geometry. A transversely isotropic hyperelastic 

constitutive model was used (Weiss, Maker and Govindjee)  - material “coupled trans-iso 
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Mooney-Rivlin” in FEBio (Maas et al.). The strain energy is defined as: 

 ( ) ( ) ( ) ( )1 1 2 23 3 fW c I c I W U Jλ= − + − + +   (6.25) 

Here, 1I  and 2I  are the first and second invariants of the right Cauchy-Green tensor C  and J  

is the determinant of the deformation gradient. The fiber stretch λ  is given by 

2
0 0λ = ⋅ ⋅a C a . The strain energy function for the fibers, fW , is more easily expressed in 

terms of its derivative with respect to the fiber stretch, but grows exponentially as a function 

of the fiber stretch. See Weiss, Maker and Govindjee for more details. The term 

( ) ( )21
2 lnU J k J=  is the volumetric strain energy function and k is the bulk modulus. The 

material parameters were c1=1.44 MPa, c2=0 MPa, c3=0.57 MPa, c4=48, c5=467.1 MPa, 

k=1000 MPa and are representative for MCL ligament (Gardiner, Weiss and Rosenber). 

The fiber direction was aligned along the long axis of the model.  

First, a forward FE analysis was performed, which applied a 10% uniaxial stretch 

to the sample along the long axis.  This was followed by a shear of 10% in the short axis 

direction (Fig. 6.3, panel A).  Then, the nodal coordinates and the deformation gradients 

were extracted from the forward analysis at the end of the uniaxial stretch and taken as the 

starting geometry for the prestrain analysis. The deformation gradient of the forward model 

was used as the initial prestrain gradient of the prestrain analysis. The prestrain model then 

underwent the same 10% shear. Eq. (6.2) was used for evaluating the stress and spatial 

tangents in the prestrain analysis. The predicted stresses for the prestrain analysis were 

nearly identical to those from the forward analysis (Fig. 6.3, panel B). The maximum error 

in the effective stress was 4x10-5  MPa. As a point of reference, the maximum effective 
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stress for both models was 54 MPa. 

Similarly, the nodal coordinates and the fiber stretches were taken from the forward 

analysis at the end of the uniaxial stretch and used as the input of an in situ stretch model. 

The in situ stretch model then underwent the same 10% shear, using Eq. (6.18) to evaluate 

the initial prestrain gradient. Since only the fiber stretches were given, the iterative 

procedure described in Section 6.2.2.2 was used at the start of the analysis to find a 

compatible prestrain gradient. Again the effective stresses were compared to the results of 

the forward analysis (Fig. 6.3, panel C). Without the iterative update procedure, the in situ 

strain model resulted in a maximum error of 8 MPa and a maximum effective stress of 53 

MPa. The largest errors occurred near the top and bottom of the model geometry.  With the 

iterative procedure, the results improved slightly: the error in the effective stress reduced 

Fig. 6.3: Verification example of the prestrain gradient approach for the case where the 
prestrain gradient is kinematically compatible. (A) In the forward model, a uniaxial 
stretch is applied, followed by a shear. The plot shows the effective (von Mises) stress at 
the end of the analysis.  (B) Result for the prestrain analysis where the deformation 
gradient and nodal coordinates at the end of the uniaxial stretch were taken as the inputs. 
The prestrain analysis then underwent the same shear step.  (C) A similar analysis was 
performed but using only the fiber stretches instead of the entire deformation gradient 
from the forward analysis. Again the shear is applied and the effective stress is shown at 
the end of the shear step. 

A B C Effective  
Stress (MPa) 
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to 7.4 MPa and the maximum effective stress was 53.2MPa. 

6.4.2 Incompatible strain field 

This example demonstrates the outcome of applying a prestrain field that is 

incompatible with the reference configuration. The geometry, representing a medial 

collateral ligament (MCL) model, and the material properties were taken from published 

experimental data (Gardiner, Weiss and Rosenber). The MCL was discretized using 

hexahedral elements and the material was represented using the same transversely-

isotropic Mooney-Rivlin constitutive model in Section 3.1 (Eq. (6.25)). The material 

properties were c1=4.6 MPa, c2=0 MPa, c3=2.4 MPa, c4=30.6, c5=323.7 MPa, and k=1,000 

MPa. 

A heterogeneous in situ fiber stretch field was obtained by first applying a 

prescribed displacement of approximately 5% of total length to the undeformed MCL 

geometry. In order to simulate experimental uncertainty, the fiber stretch field was 

smoothed using six iterations of a Laplacian smoothing algorithm (Fig. 6.4, panel A). 

The deformed geometry and smoothed fiber stretches from this forward analysis 

were then used as the starting point of the prestrain analysis. In the prestrain analysis, the 

ends of the MCL were held fixed and no external loads were applied. Since the applied 

prestrain was incompatible with the prestressed reference geometry, the mesh distorts and 

the effective fiber stretches were altered. Visual inspection of the effective fiber stretch 

(Fig. 6.4, panel B) shows the qualitative difference compared to the applied fiber stretches. 

The error in the in situ stretch was measured by taking the absolute value of the difference: 

 ˆin situ error p effλ λ= − .  (6.26) 
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Here, the effective fiber stretch is defined via ˆ ˆeff p pλ = ⋅a FF a  , with F the deformation 

gradient of the distortion and ˆ pa  the fiber vectors in the initial reference configuration. The 

in situ error ranged over the entire mesh between 0 and 0.014. 

The distortion of the mesh was quantified by inspecting the effective Lagrange 

strain effE ,  

 
3 :
2effE = E E    (6.27) 

where ( ) ( )( )1DEV : tr
3

= = −E E E E I  and calculated from the deformation gradient of the 

mesh distortion. The observed distortion ranged between 0 and about 0.136. The largest 

errors occurred near the insertion sites. 

Fig. 6.4: Effects of applying in situ stretch to a reference geometry that is kinematically 
incompatible. (A) Reference geometry with target in situ fiber stretch.  (B) Deformed 
state and effective fiber stretch without updates. (C) Effective fiber stretch after 
eliminating distortion. (D) Effective fiber stretch after enforcing the target in situ 
stretch. 
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6.4.3 Elimination of distortion 

For this example the same geometry and in situ fiber stretch data were taken from 

Section 6.3.2. The application described in Section 6.2.2.1 was then applied in order to 

eliminate the distortion induced by the incompatibility of the prestrain field. As a 

consequence, the effectively applied prestrain will be different than the initial prestrain 

field. Qualitatively the effective fiber stretch is noticeably different from the applied fiber 

stretches (Fig. 6.4, panel C). The maximum in situ error, evaluated using Eq. (6.26), grew 

slightly to 0.016 compared to the example of Section 6.3.2. The maximum distortion error 

measured over the entire mesh was reduced to 1.24E-3 and was effectively eliminated. 

6.4.4 Enforcement of a prestrain deformation gradient field 

This example used the same MCL model as Section 6.3.2., but this time the initial 

heterogeneous in situ fiber stretches were enforced using the algorithm in Section 2.2.2. 

Visual comparison of the resulting effective fiber stretches shows qualitatively the 

excellent agreement with the applied fiber stretches (Fig. 6.4, panel D). The maximum 

error in the in situ, evaluated by Eq. (6.26), and measured over the entire mesh was reduced 

to 0.0039. However, the mesh distortion increased to 0.193. 

6.4.5 Recovering displacement map from deformation gradient 

Using the dogbone mesh from the verification example in Section 6.3.1., the final, 

deformed geometry and the final deformation gradient were used as the starting point for 

recovering the original, reference geometry. The deformation gradient from the forward 

analysis was inverted since the goal was to find the displacement map from the deformed 

to the reference geometry. Then, the least-squares method described in Section 2.3 was 
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applied to the deformed geometry and the displacement field was recovered.  The original 

reference geometry from the dogbone model was effectively recovered. The maximum 

displacement of the forward analysis was 1.415 mm and the maximum displacement of the 

inverse method was 1.405 mm with a maximum relative error of 0.007 (Fig. 6.5). The error 

is most likely caused by the post-processing step that mapped the deformation gradients 

from the integration points of the forward analysis to the nodal quantities needed by the 

inverse method. 

6.4.6 Open Knee Example 

In the final example, a given in situ fiber strain was applied on the ligaments of the 

Open Knee computational model of the knee joint (Erdemir and Sibole; Sibole et al.; 

Fig. 6.5: Example illustrating the method to recover the displacement map from the 
deformation gradient. (A) The reference geometry of the model used in the verification 
example. (B) The geometry recovered by taking the final, deformed geometry of the 
verification example and the deformation gradient field and then applying the inverse 
least-squares method described in the methods section. The fringe plot corresponds to 
the total displacement (in mm). 

A B Total 
Displacement 
(mm) 
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Erdemir). The Open Knee model contains the femur and tibia, both assumed rigid, femoral 

and tibial cartilage, the menisci, and the four major knee ligaments (MCL, ACL, PCL, and 

LCL). The geometry was meshed with hexahedral elements. Springs are used to connect 

the meniscal horns to the tibial plateau. The ligaments were modeled using a transversely 

isotropic material with an isotropic Mooney-Rivlin matrix. The fiber orientations were 

defined along the long-axis mesh lines. The menisci were modeled with a Fung orthotropic 

material and the cartilage layers were represented with a Mooney-Rivlin material. Detailed 

information regarding material coefficients and constitutive models can be found in the 

Open Knee User’s Guide (https://simtk.org/home/openknee).  All four cruciate ligaments 

were prestrained by applying in situ strain data taken from published experimental data 

(Dhaher, Kwon and Barry) and mapped onto the four ligaments. The loading scenario 

considered was valgus loading to a torque of 10 Nm. The resulting torque on the femur as 

a function of valgus rotation was compared between the prestrained model and the model 

without prestrain applied. Similarly, the averaged contact force on the lateral condyle and 

the effective fiber strains on the MCL were also compared. 

Application of prestrain to the knee model (Fig. 6.6), resulted in a much stiffer joint 

torque-rotation response under valgus loading than the model without prestrain. This can 

be seen by comparing the valgus torque as a function of valgus rotation (Fig. 6.6, panel B). 

Similarly, the average contact force over the lateral condyle grew more quickly in the 

prestrained model (Fig. 6.6, panel D). When compared at a specific angle of valgus rotation 

(red box in Fig. 6.6, panel B), the predicted fiber strains on the MCL (the primary 

restraining ligament to valgus rotation in the knee) much higher in the prestrained model 

(Fig. 6.6, panel C). 
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Fig. 6.6: Finite element analysis of the Open Knee model under 10 Nm of valgus torque.  
A) The Open Knee finite element model, including articular cartilage, menisci, and the 
four major knee ligaments. B) Valgus torque as a function of valgus rotation for both 
the prestrained model and the model without prestrain. The red box shows the two points 
where the fiber strains are compared in panel C.  C) Effective fiber stretch at ~3.1 
degrees valgus rotation. Left, without prestrain. Right, with prestrain. D) The contact 
reaction force across the lateral condyle.  Results demonstrate that the structural 
behavior of the joint and predicted ligament strains are dramatically different without 
prestrain field to the ligaments, and in particular the response is too soft under valgus 
torque without prestrain. 
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6.5. Discussion 

A general framework was developed to apply prestrain (and therefore prestress) to 

finite element models in the context of simulating the mechanics of biological structures. 

The method can solve prestrain problems in a “traditional” manner, where the prestrain 

deformation gradient field is known (e.g. from analytical solution or recovered from a 

forward analysis of a global stress-free configuration). In addition, in the case where the 

applied prestrain field is unknown or just an initial guess, the framework can be used to 

recover a prestrain gradient field that is compatible with the (possibly altered) reference 

geometry. Definition of the initial guess and the update rule for the prestrain field are 

controlled by the user and result in different applications of the framework. Two possible 

applications were illustrated for the case of applying in situ fiber stretches to a model of a  

MCL. In the first application, the distortion of the mesh was eliminated. In the second 

application, the distortion was retained and used to find an alternative reference 

configuration in which the given fiber stretches could be enforced exactly. These two 

applications demonstrate the great practical use of the proposed framework in applying 

prestrain.  

Although the framework was illustrated in the context of applying fiber stretches 

by choosing a particular functional form for the prestrain gradient, other forms (e.g. a 

prestrain field that is the analytical solution of a simplified geometry) can easily be used 

with the framework. Similarly, other update rules for the prestrain gradient can be 

implemented easily. However, the two particular update rules considered in Section 6.3.2 

reflect the two ends of the spectrum in terms of applying an incompatible prestrain field: 

either find an alternative prestrain field that eliminates the distortion or enforce the desired 
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prestrain field in an altered reference geometry. The choice of which path to take depends 

on the goals of the analyst. It can be influenced by the estimated error in the reference 

geometry compared to the estimated error in the prestrain field. For instance, if the 

geometry is carefully segmented from high-resolution image data, and thus represents a 

high-fidelity model of the geometry, it might be important to reduce the induced distortion 

and to retain the unaltered reference geometry. Alternatively, if the distortion of the 

reference geometry is small, it may be desirable to enforce the prestrain field without 

alteration. It might be tempting to ask for both, i.e. can a given prestrain field be enforced 

on the reference geometry? The answer is “no” in general, unless the applied prestrain field 

is compatible with the reference geometry in the first place. If the prestrain field is not 

compatible with the reference geometry, the discrepancies need to be compensated by 

adjusting either the prestrain field, or the reference geometry, or both as in the case where 

the prestrain gradient is not updated. The latter case could make interpretation of the results 

difficult. 

It is important to point out that, in general, enforcing a given prestrain field by 

finding an altered reference geometry (as discussed in Section 6.3.2.2) is an ill-posed 

inverse problem. The solution may not be unique or worse, may not exist. This poses 

challenges to applying experimentally obtained prestrain data to a finite element model. If 

the experimentally obtained prestrain data is too sparse, or the variance in the experimental 

data is too large, the enforcement of this prestrain may not be possible. On the other hand, 

the failure of the algorithm in Section 6.3.2.2 to converge indicates that the prestrain data 

is too inaccurate or incomplete and suggests that additional data (e.g. more accurate fiber 

stretches or measuring the inhomogeneity in the material parameters) is necessary in order 
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to apply the given prestain. 

The general framework recovers other methods for applying prestrain that have 

been proposed in the literature. For example, consider the problem of applying prestress to 

an in vivo model, where the goal is to determine the stresses when only the deformed 

geometry and the applied loads are known. Methods for solving these type of problems 

were presented by Gee, Forster and Wall and expanded on by Weisbecker, Pierce and 

Holzapfel and Grytz and Downs. These methods attempt to find the deformation gradient 

iteratively, without recovering the stress-free reference configuration. Our framework can 

similarly be used to solve this type of problem. In fact, the algorithm described in Section 

6.3.2.1 effectively recovers such a method if the initial guess for the prestrain field is taken 

to be the identity tensor. In that case, the recovered prestrain gradient is in fact the effective 

prestrain gradient that generates the in vivo prestress. 

A method was also presented for recovering the displacement field from a given 

deformation gradient, if the deformation gradient satisfies the kinematic compatibility 

conditions. This can also be seen as a type of inverse finite element method where the 

deformation gradient is known as well as the deformed configuration and the reference 

configuration is sought. This can be of interest in studies where a prestrain field is proposed 

based on an analytical formulation and the stress-free reference configuration is needed for 

use in a forward FE analysis (e.g. (Rausch and Kuhl)). 

To demonstrate the effect of prestrain on the mechanical response of a biological 

system, the framework was used on an Open Knee model where in situ fiber strains were 

applied to the four knee ligaments. As expected, application of prestrain to the knee 

ligaments resulted in a stiffer response for the torque-rotation curve, higher strains on the 
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MCL, and higher contact stresses on the articular cartilage in the lateral compartment under 

valgus loading. Thus, the in situ strains increased the stability of the knee joint. This further 

demonstrates that the inclusion of prestrain in computational models is often a necessary 

requirement to obtain reasonable predictions of subsequent loading conditions of interest. 

In summary, the framework presented in this manuscript provides a powerful tool 

to apply prestrain in large-deformation finite element analysis of biological structures.  It 

is especially useful when the reference configuration in which anatomy is acquired may 

not be a stress-free state and the stress-free state may not be computable. A significant 

advantage of the framework is the ease with which it can be customized to recover existing 

methodologies for applying prestrain, while still allowing new approaches for applying 

prestrain to be explored. 
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6.7 Appendix 

This appendix details how to obtain the linear system of equations to solve for the 

unknown nodal displacement values, given a compatible deformation gradient tensor F  and 

the deformed geometry. The goal is to find the displacement values that minimize the 

following least squares error E: 

 ( ) ( )
21

2
b

e
a a b b

b e S a e F

E N
∈ ∈

= ⊗∇ −∑∑ ∑u y G y  . (1.1) 

In order to minimize this expression, the derivative with respect to the unknown 

nodal deformations must be equated to zero: 

  ( ) ( ) ( )
,

e e
a a b b c b

b e b c a ec

dE N N
d ⊃ ∈

 = ⊗∇ − ∇ = 
 

∑ ∑ ∑u y G y y 0
u
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This can be rewritten as follows, 

 ( ) ( )( ) ( ) ( )
,

e e e
a a b c b b c b

b e b c a e
N N y N

⊃ ∈

 ∇ ⋅∇ − ∇ = 
 

∑ ∑ ∑u y y G y 0 .  (1.3) 

Bringing all the known quantities to the right-hand-side results in 

 ( ) ( )( ) ( ) ( )
,

e e e
a a b c b b c b

e c a b e e c b e
N N N

⊃ ∈ ⊃ ∈

∇ ⋅∇ = ∇∑ ∑ ∑∑u y y G y y  . (1.4) 

This is a linear system of equations, which can be solved for au .  In fact, these are 

three linear systems of equations with the same coefficient matrix:  
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Since the coefficient matrix is the same, the LU decomposition of A only needs to be 

computed once to solve for the au .  
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CHAPTER 7 

SUMMARY AND DISCUSSION 

7.1 Summary 

This work focused on the development of several modifications and improvements 

to FEBio, a finite element code that was designed specifically for solving problems in 

computational biomechanics and biophysics. The main goal of these improvements was to 

make FEBio a more extendible and versatile finite element software program in general, 

but more specifically to facilitate the modeling of problems in computational joint contact 

mechanics. The ability to accurately model and predict results in this area of research has 

important applications, ranging from improving our understanding of joint and tissue 

mechanics, to predicting the outcome of surgical operations.  

In this final chapter, a brief summary is presented of the three main pillars of this 

work, namely the development of FEBio’s modular structure and its plugin framework, the 

exploration of quadratic tetrahedral element formulations suitable for large deformation 

contact analyses, and the ability to include prestrain in models of biological tissues. Some 

directions for future work are discussed as well. 

7.1.1 FEBio development and impact 

Since its initial release in 2007, FEBio has grown exponentially, in part due to the 

work presented here but also due to contributions of others (Ateshian, Albro, et al.; 

Ateshian, Maas and Weiss; Ateshian, Maas and Weiss; Ateshian, Maas and Weiss; 



152 
 

 

Ateshian, Nims, et al.; Ateshian, Rajan, et al.; Ateshian and Ricken), and continues to grow 

to this day. At the time of writing, FEBio is composed of 12 libraries, collecting a total of 

1022 files and 1099 classes, and contains roughly 100,000 lines of code (not including 

comments) (Table 7.1). The FEBio user’s community counts at least 5,100 users and the 

software itself has been downloaded over 110,000 times since its initial release. Many of 

the FEBio users are students, some new to finite element modeling, but experienced 

academics and researchers are also part of its user base. FEBio has been used in a 

significant way in at least 216 peer reviewed journal articles, covering areas of soft tissue 

mechanics, tissue engineering, joint and muscle mechanics, damage modeling, 

cardiovascular mechanics, angiogenesis, modeling of vision and hearing, multiscale 

modeling, and many more (see http://febio.org/publications/journal-articles/ for a complete 

Table 7.1. Development effort metrics for the various components of the FEBio 
software. The last column shows a rough estimate of how much the author contributed 
to the individual libraries: *** = mostly developed by author, few contributions by 
others; ** = significant contributions by author, but also by others; * = minor 
contributions by author; no stars = no contributions by author. 

Library files classes lines of code Contributed by 
author

FEBio2 14 25 699 ***
FEBioFluid 45 63 3280
FEBioHeat 32 21 1619 ***
FEBioLib 18 6 1343 ***
FEBioMech 397 447 42607 **
FEBioMix 137 138 20621 *
FEBioOpt 16 14 1155 ***
FEBioPlot 11 17 1869 ***
FEBioTest 22 26 1832 ***
FEBioXML 49 36 7261 ***
FECore 245 287 21181 ***
NumCore 36 19 2131 ***

1022 1099 105598
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list). FEBio is also used as part of several courses that are being taught in institutes around 

the world, including University of Michigan, Boise State University, Technical University 

of Madrid, National University of Singapore, University of Strathclyde, Brigham Young 

University, Eindhoven Technical University, Tel Aviv University, McGill University, and 

more.  

These statistics show that FEBio has made a significant and lasting impact in the 

biomechanics community. Even more, FEBio has grown to be a competitive, and in some 

areas even superior, alternative to the traditional commercial packages that have been used 

predominantly in this field. Evidence of this can be found in several recent publications 

that have compared FEBio to Abaqus, by many considered the de facto standard in 

computational biomechanics. For instance, two independent studies (Galbusera et al.; 

Meng et al.) demonstrated that FEBio’s biphasic contact modeling compared favorably to 

Abaqus and both codes were found effective for these types of simulations. Another study 

(Pierrat et al.) implemented a novel constitutive model for transversely isotropic materials 

in both Abaqus (as a user subroutine) and FEBio (as a material plugin). It concluded that 

the results of both codes compared well, although FEBio performed better in terms of run-

time, and that the implementation efforts were considerably less in FEBio, mostly thanks 

to its extensive tensor class and operator library. Another example is the OpenKnee project 

(Erdemir; Erdemir), a collaborative effort between several institutes that aims, among other 

things, to make available free, open-access models of the human knee joint. Its decision to 

move away from providing its models as Abaqus input files and convert them to FEBio 

input files is further evidence that the community has embraced FEBio as a viable 

alternative. 
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7.1.2 Parallelization of FEBio 

In most implicit finite element solvers, including FEBio, a significant amount of 

time is spent in factoring the global stiffness matrix. In a serial implementation, the 

factorization can take up roughly 75%-95% of the total execution time. Therefore, FEBio 

has always made use of parallel linear solvers to speed up the factorization process. FEBio 

implements an abstract interface to the linear solver so that in principle, any linear solver 

library could be used in FEBio. A specific linear solver can be supported by implementing 

a proxy class derived from this abstract base class that maps the external library to FEBio’s 

framework. Proxy classes that interface to several existing linear solver packages are 

provided (e.g. SuperLU, Pardiso, MKL, WSMP) and others can be added easily. The 

framework supports both direct and iterative linear solvers. With the use of parallel linear 

solvers, a significant speedup can be obtained on multicore systems. Although the actual 

speedup depends strongly on the particular model under investigation, speedups up to a 

factor of 4 are not uncommon on shared memory systems with 8 core, a common 

architecture on modern desktop computers.  

With the use of parallel linear solvers more time is being spent in evaluating the 

stiffness matrices and right-hand-side vectors. For some complex constitutive models (e.g. 

EFD materials (Ateshian, Rajan, et al.), computational homogenization (Kouznetsova)), 

the amount of time evaluating these quantities can be relatively large. As a result, several 

parts of FEBio itself have been parallelized using OpenMP. This includes the evaluation 

of the global right-hand-side vector and the global stiffness matrix. These routines typically 

contain loops over the elements of the mesh, which can be parallelized easily since the 

corresponding element quantities can be evaluated independently. The only difficulty 
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arises during the assembly of the element quantities in the global structure. To avoid a data 

collision where several threads attempt to write to the same memory location, a critical 

section is placed inside the assembly operation where the global structure is accessed. With 

this simple, yet effective, parallelization strategy, a significant reduction of the runtime was 

achieved, especially for problems that make use of these complicated constitutive models 

mentioned earlier. 

7.1.3 Quadratic tetrahedral formulations 

This work investigated two quadratic tetrahedral element formulations, a 10-node 

quadratic, and a 15-node “serendipity” quadratic tetrahedron for modeling problems in 

joint contact mechanics. It explored the effects of several volume and surface integration 

rules on accuracy and computational cost for various contact problems that were 

representative of articular contact mechanics. The integration rules that were chosen were 

such that they integrate polynomials of at least second degree exactly for undistorted 

tetrahedra. (In Chapter 4, we referred to this property somewhat incorrectly as the “order” 

of the integration rule. The order of an integration rule usually refers to how fast the error 

term decreases as the number of sampling points is increased.)  In fact, the V4 formulation 

integrates exactly polynomials of second degree, V8 third degree, V11 fourth degree, and 

V15 fifth degree (Keast). Similarly, for the surface integration rules, the S3 rule integrates 

second degree, and S7 integrates fifth degree polynomials exactly (Witherden and 

Vincent). In addition, these integration rules were all symmetric and, with the exception of 

the V11 rule, had all positive weights. Although most of the rules considered in this work 

appeared to be sufficient for obtaining accurate results, exploration of additional, more 

efficient integral rules may be of interest. Some more efficient rules were recently 
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presented (Witherden and Vincent). For instance, this paper reports a 14 point symmetric 

integration rule that integrates polynomials of fifth degree exactly, just like the V15 rule 

used in this work. However, it must be kept in mind that these rules are designed for 

integrating polynomials exactly. For large deformation contact problems, both the volume 

integrands and the contact surface integrands are nonlinear functions and therefore these 

rules may not integrate these functions exactly. This is another reason to continue exploring 

additional integration rules that add integration points or vary their location to obtain more 

accurate results.  

The super-convergent patch recovery method (Zienkiewicz and Zhu) was used for 

accurate recovery of the stresses. For the problems considered, the quadratic tetrahedral 

formulations appeared to be less susceptible to locking than linear tetrahedrons and 

converged at least as good as hexahedral elements. The results appeared more sensitive to 

the choice of surface integration rule. Overall, the higher order surface integration rules 

provided more accurate recovery of the contact stresses. The volume integration rule did 

not affect the results significantly, however it was found that the combination of the S3 

surface rule and the V11 volume rule converged poorly and resulted in inaccurate stresses. 

In fact, we found that this combination may sometimes lead to instabilities, such as 

negative Jacobians that prevent the solution from progressing, and may ultimately lead to 

failure to converge. Consequently, this combination should best be avoided. Despite the 

insensitivity of the volume integration rule, it might be necessary in some cases to consider 

the higher-order rules considered in this work to prevent ill conditioning of the least-square 

approach that is used to recover the stresses. In this work, the runtimes of models were 

compared based on the number of nodes. Other metrics could have been used (e.g. number 
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of elements), but this metric was chosen as it correlates strongly to the size of the linear 

system of equations that needs to be solved. Since factoring and solving this linear system 

of equations is for many problems the most time consuming part of the overall solution 

process, the number of nodes seemed a fair metric to evaluate overall runtime behavior. 

Given approximately the same number of nodes (and thus degrees of freedom or 

equations), it was found that the quadratic tetrahedral formulations appeared to run faster 

than the other element formulations. These results demonstrated that quadratic tetrahedral 

formulations are superior to the linear tetrahedral formulations and are viable alternatives 

to the “gold standard” three-field hexahedral elements in the context of joint contact 

mechanics. 

The advantages offered by quadratic tetrahedral formulations have spurred several 

new research projects that use FEBio to employ these elements in their models. In Klennert 

et al., the articular cartilage layers of a human hip joint were modeled with tetrahedral 

elements, a structure that is usually modeled with hexahedral elements. The purpose of this 

work is to study the effects of simulated chondral defects and labral delamination on 

cartilage mechanics. The use of tetrahedral elements greatly facilitated the meshing of the 

complex geometries, especially the local modifications that were required to simulate the 

chondral defects. In Phuntsok et al., quadratic tetrahedral elements are used to mesh the 

cervical spine, a structure that is geometrically very complex due to its many protrusions. 

As a final example, the Open Lumbar Spine (Finley, Brodke and Ellis) is a project that 

wishes to make available open-access, validated models of the human lumbar spine. 

Although initially this project used hexahedral elements for meshing the geometries, it is 

currently exploring whether quadratic tetrahedral elements offer a good alternative. 
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7.1.4 Modeling prestrain in biological tissues 

Many biological tissues show evidence of prestress and prestrain (Fung and Liu; 

Gardiner, Weiss and Rosenber; Omens and Fung), stress or strain that exists in the 

unloaded reference configuration. Although most researchers agree that modeling these 

prestresses is important for obtaining the accurate mechanical response, including them in 

finite element models has proven to be challenging. Researchers usually emulated prestrain 

via a judicious choice of boundary conditions available in closed-source commercial 

packages (Balzani, Schroder and Gross; Rausch and Kuhl). This approach is severely 

limited as it requires explicit knowledge of the stress-free reference configuration. Others 

developed or modified custom finite element codes in order to include prestrain directly 

(Alastrue et al.; Gee, Forster and Wall; Weisbecker, Pierce and Holzapfel). Although this 

approach is more versatile, modifications to custom in-house developed codes hamper 

dissemination and reproducibility of results. 

With the prestrain plugin that was presented in Chapter 6, FEBio users are now able 

to include prestrain in their computational models of biological tissues easily and in a 

variety of ways. The implemented method is based on a multiplicative decomposition of 

the total elastic deformation gradient (Gee, Forster and Wall). This tensor, which is 

evaluated as the product of the deformation gradient and the prestrain gradient tensor, is 

then used to evaluate the material response. This approach allows prestrain to be applied 

to any of the hyper-elastic constitutive models available in FEBio. The proposed 

framework is more general than previously published approaches, and in fact recovers 

several methods as special cases as was demonstrated in Chapter 6. Two particular 

applications were demonstrated, namely the enforcement of a user-defined fiber stretch 
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map onto a transversely isotropic model of ligament, and the elimination of mesh distortion 

of the reference configuration in the case of an incompatible prestrain gradient.  

As opposed to some other methods for prestressing the reference geometry (e.g. 

(Bols et al.)), the proposed method does not recover the stress-free reference configuration. 

Although in general such a stress-free configuration may not exist or may not be 

computable if it does exist, there may be situations in which the geometry of the stress-free 

configuration is desired. For this reason, a novel method was presented that can recover 

the reference configuration from the given deformed configuration and the deformation 

map. 

7.2 Future Work 

7.2.1 FEBio, a multiphysics solver 

The specific needs of the biomechanics and biophysics communities continue to be 

the main driving force behind FEBio’s development. Although the initial focus was on 

solid mechanics, with the implementation of biphasic, multiphasic (Ateshian, Maas and 

Weiss), electrokinetics, and chemical reactions (Ateshian, Nims, et al.), it has grown into 

a true multiphysics solver. Due to the importance of solving coupled-physics types of 

problems in computational biophysics, the further development of FEBio is centered on its 

multiphysics solution capabilities. In particular, the incorporation of a fluid mechanics 

solver as well as a fluid-solid-interaction (FSI) solver are two of the main focal points. 

There are several relevant applications in biomechanics and biophysics that would benefit 

from such capabilities, such as cardiovascular mechanics, cerebrospinal mechanics, vocal 

fold and upper airway mechanics, viscous flow over endothelial cells, canalicular and 

lacunar flow over osteocytes, diarthrodial joint lubrication, etc.  
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The implementation of these new solution algorithms is greatly facilitated by the 

improved modular framework developed in this work. However, to support coupled-

physics applications optimally, some modifications to FEBio’s structure are currently 

being explored that focus on the implementation of alternative solution strategies, such as 

staggered solution methods, continuation methods (Leger, Deteix and Fortin), multifield 

formulations, solution methods based on the Schur-complement, adaptive mesh refinement 

(Leger and Pepin), etc. In addition, these modifications will allow new solution strategies 

to be implemented in the plugin framework, which is currently not possible. This would 

further facilitate the exploration of novel solution strategies for coupled-physics problems 

with FEBio and greatly expand the applications of the plugin framework. In fact, the ability 

to implement solution strategies for solving coupled-physics problems as a plugin opens 

the door to the development of a programmable environment for FEBio. This will allow 

users to implement new finite element solvers, independently of FEBio, while at the same 

time taking full advantage of the services offered by FEBio, such as solving linear and non-

linear systems of equations, automation of the input file, customization of the output file, 

and more. 

7.2.2 Stress recovery for higher-order elements 

In this work, the superconvergent patch recovery (SPR) method (Zienkiewicz and 

Zhu) was used for the recovery of the stresses. This method was originally proposed as a 

mechanism for estimating the error in the finite element solution. A posteriori error 

estimation is an important aspect of finite element analysis. Not only does it provide a way 

of assessing the accuracy of the solution, but it also is an important ingredient for adaptive 

mesh refinement strategies.  
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The SPR method recovers the stresses at the nodes by fitting a polynomial to the 

sampling points inside the elements where the stresses are evaluated (e.g. integration 

points). The order of the polynomial that can be used to recover the stresses depends on 

the number of sampling points. In FEBio, the integration points are used as the sampling 

points for recovery, which makes the stress recovery sensitive to the integration rule. As 

noted above, for the TET10 element, we used a linear polynomial to avoid ill-conditioning 

of the SPR recovery using some of the lower-order integration rules that were implemented 

for this element. However, an easy way to overcome this limitation would be to enrich the 

sampling points by adding additional points aside from the integration points. These 

additional points would then only be used by the stress recovery process. That way, a 

quadratic polynomial could be used for the TET10 elements, just like was done for the 

TET15 elements.  

Since the inception of the SPR method, several researchers have proposed 

alternative recovery methods that in some cases are superior to the original Zienkiewicz-

Zhu SPR method. (See the review article by Grätsch and Bathe for an overview.) However, 

many of these methods are focused on recovery of the displacement gradients (e.g.(Zhang 

and Naga)). It is not straightforward how such methods could be adapted to recover the 

stresses, since it would require a posteriori evaluation of the constitutive routines, which 

may not be possible for history-dependent materials. 

There are some recently proposed methods that focus on stress recovery and that 

may offer some advantages over the SPR approach. The main problem with this method is 

that it relies on the existence of superconvergent points, i.e. points at which the stress is of 

higher order accuracy than anywhere else in the element domain. However, such points do 
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not always exist, e.g. in curved iso-parametric elements or elements with nonlinear material 

behavior (Hiller and Bathe). Therefore, methods that do not rely on the existence of 

superconvergent points may offer a distinct advantage for such elements. In Gu, Zong and 

Hung, which focuses on nonlinear analyses, the SPR method is modified and it was shown 

that this modified method obtains good results using the standard Gauss integration points. 

The method was illustrated on bilinear quadrilateral elements, but could easily be applied 

to higher-order tetrahedral elements. Another interesting method was proposed by Payen 

and Bathe and uses the equivalent nodal point forces (NPF) that are evaluated during the 

assembly of the residual vector. It was observed that these forces are of higher order 

accuracy than the stresses. The method then tries to find the nodal stresses that in a least-

square sense match the nodal point forces. Although the approach has only been applied to 

linear elements, it could easily be extended to higher-order elements. In Payen and Bathe 

a general, variational framework was proposed that in special cases recovers several other 

stress recovery methods, including the NPF method. Using this framework, a simple, yet 

effective, method is proposed for recovering stresses. Again, the method is only 

demonstrated on linear elements, but could be extended to higher-order elements. It would 

be of great interest to investigate whether these new stress recovery methods would be 

effective for nonlinear, large deformation analyses using higher-order tetrahedral elements. 

7.2.3 Higher-order elements in biphasic contact 

The quadratic tetrahedral element formulations have proven to be very successful 

in simulations of joint contact mechanics. The next step would be to investigate whether 

these element formulations offer distinct advantages in biphasic and multiphasic contact as 

well. These types of analysis are complicated by the requirement that the effective fluid 
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pressure and effective solute concentrations must be continuous across the contact interface 

(Ateshian, Maas and Weiss) . Until now, computational models of these types of analyses 

have predominantly used hexahedral elements. Linear tetrahedral formulations have not 

been proven very successful, in part, by the fact that biphasic materials act analogously to 

nearly-incompressible materials, especially during a rapid initial loading phase (Ateshian, 

Ellis and Weiss). Predictions of linear tetrahedral models would be very inaccurate during 

such a phase due to their tendency to lock. However, biphasic models often require a fine 

discretization near surfaces where fluid is allowed to leave in order to capture the rapidly 

changing pressure gradients. A uniformly refined mesh may slow the computations 

unnecessarily, so a discretization that is only refined near the surface is preferred. For 

complex geometries, such locally refined meshes are generally easier to create with 

tetrahedral meshes. Thus, the use of quadratic tetrahedral elements may offer some 

advantages over the hexahedral elements in this area of application of joint contact 

mechanics as well.  

Even more, biphasic contact analyses may also benefit from adaptive mesh 

refinement (AMR) strategies to further automate the mesh generation process. Such 

techniques, in combination with efficient continuation methods, have proven to be effective 

for large deformation elasticity problems (Leger and Pepin) and could be extended to 

biphasic and multiphasic analyses. In this case, the challenge would be to determine 

reliable heuristics to drive the mesh refinement process. In addition to the displacement 

gradients, one would need to consider accuracy metrics that include the effective pressure 

gradients and effective solute concentration gradients as well to drive the refinement phase. 

Accurate recovery for flux quantities can presumable be obtained with the super-
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convergent patch recovery method, which was already successfully applied for recovering 

accurate stresses. Although mesh refinement of hexahedral elements is feasible, in general, 

mesh refinement strategies assume tetrahedral meshes. This further motivates the 

exploration of higher-order tetrahedral formulations for biphasic contact analyses. 

7.2.4 Inverse FE 

One of the applications of the prestrain plugin presented in this work is the solution 

of certain types of inverse FE problems where the deformed configuration is given, as well 

as the loads that exist in this configuration. The goal is then to find the stresses that exist 

in the known deformed configuration. As was shown in Chapter 6, several methods exist 

for solving these kinds of problem and the prestrain plugin offers a convenient tool for 

doing so. In this case, the initial prestrain gradient tensor is defined as the identity tensor, 

and the constraint that eliminates the geometry distortion is applied when the loads are 

increased to the desired level. The result is a prestrain gradient tensor that represents the 

deformation gradient from the unknown reference configuration to the known deformed 

configuration, and that generates the stresses that balance the applied load. 

The prestrain approach outlined in Chapter 6 does not recover the original stress-

free reference configuration. Although, in general, it cannot be guaranteed that such a 

stress-free reference configuration exists or is computable, in many applications, such as 

the inverse problem outlined above, it does. In these cases, it may be useful if the stress-

free reference configuration could be recovered as well. A method was presented in 

Chapter 5 that recovers the stress-free configuration, given the deformed configuration and 

the deformation gradient. This method does requires the solution of an additional linear 

system of equations, but this is not seen as a significant computational overhead since the 
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solution of the prestrain problem usually will be computationally more expensive.  

However, there are some methods for solving inverse FE methods that do return 

the reference configuration as part of the solution. One such method of interest is the 

Backward Displacement Method (BDM) by Bols et al.. This method is appealing since it 

is relatively simple and treats the forward solver as a black box, so that it could work with 

any finite element solver. This makes the method an attractive candidate for a FEBio 

plugin. The method was implemented successfully as a plugin, but the initial results 

showed poor convergence for problems that contain large rotations. Although Bols 

provided a way to accelerate convergence, we are currently investigating an alternative 

way that promises much better results. The method is similar to the BDM, but differs in 

the step that updates the reference configuration in that it makes explicit use of the 

approximate deformation gradient. Initial results show that this new method can be applied 

to problems undergoing large rotations, an area of application where BDM typically fails 

(Fig. 7.1).  



166 
 

 

 

 

7.3 References 

Alastrue, V., et al. "Assessing the Use of the "Opening Angle Method" to Enforce Residual 
Stresses in Patient-Specific Arteries." Ann. Biomed. Eng. 35.10 (2007): 1821-37. 

 
Ateshian, G. A., et al. "Finite Element Implementation of Mechanochemical Phenomena 

in Neutral Deformable Porous Media under Finite Deformation." J. Biomech. Eng. 
133.8 (2011): 081005. 

 
Ateshian, G. A., B. J. Ellis, and J. A. Weiss. "Equivalence between Short-Time Biphasic 

and Incompressible Elastic Material Response." J. Biomech. Eng. 129.3 (2006): 
405-12. 

 
Ateshian, G. A., Steve A. Maas, and J. A. Weiss. "Finite Element Algorithm for 

Frictionless Contact of Porous Permeable Media under Finite Deformation and 
Sliding." J. Biomech. Eng. 132.6 (2010). 

 
---. "Multiphasic Finite Element Framework for Modeling Hydrated Mixtures with 

Multiple Neutral and Charged Solutes." J. Biomech. Eng. 135.11 (2013). 
 

Effective stress (MPa) 

A B 0 

125 

Fig. 7.1. Comparison of forward and inverse FE problem. A) Forward analysis. Pressure 
applied to top surface deforms a hyper-elastic beam. Color contours indicate effective 
(von Mises) stress. B) Inverse analysis. Starting from the deformed configuration and 
known pressure load, the stress as well as the original reference configuration is 
recovered.  



167 
 

 

---. "Solute Transport across a Contact Interface in Deformable Porous Media." J. Biomech. 
45.6 (2012): 1023-27. 

 
Ateshian, G. A., et al. "Computational Modeling of Chemical Reactions and Interstitial 

Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules." 
Biomech. Model. Mechanobiol 13.5 (2014): 1105-20. 

 
Ateshian, G. A., et al. "Modeling the Matrix of Articular Cartilage Using a Continuous 

Fiber Angular Distribution Predicts Many Observed Phenomena." J. Biomech. Eng. 
131.6 (2009): 061003. 

 
Ateshian, G. A., and T. Ricken. "Multigenerational Interstitial Growth of Biological 

Tissues." Biomech. Model. Mechanobiol 9.6 (2010): 689-702. 
 
Balzani, D., J. Schroder, and D. Gross. "Simulation of Discontinuous Damage 

Incorporating Residual Stresses in Circumferentially Overstretched Atherosclerotic 
Arteries." Acta Biomater. 2.6 (2006): 609-18. 

 
Bols, J., et al. "A Computational Method to Assess the in Vivo Stresses and Unloaded 

Configuration of Patient-Specific Blood Vessels." J. Comput. Appl. Math. 246 
(2013): 10-17. 

 
Erdemir, A. "Open Knee: A Pathway to Community Driven Modeling and Simulation in 

Joint Biomechanics." J. Med. Device 7.4 (2013): 0409101-409101. 
 
---. "Open Knee: Open Source Modeling and Simulation in Knee Biomechanics." J. Knee 

Surg.  (2015). 
 
Finley, S., D.S. Brodke, and B. J. Ellis. "Open Lumbar Spine: Free, Validated, Nonlinear 

Finite Element Models of the Human Lumbar Spine." Comput. Methods Biomech. 
Biomed. Engin. In Preparation (2016). 

 
Fung, Y.C., and S.Q. Liu. "Change of Residual Strains in Arteries Due to Hypertrophy 

Caused by Aortic Constriction." Circ. Res. 65 (1989): 1340-49. 
 
Galbusera, F., et al. "Comparison of Various Contact Algorithms for Poroelastic Tissues." 

Comput. Methods Biomech. Biomed. Engin. 17.12 (2014): 1323-34. 
 
Gardiner, J.C., J.A. Weiss, and T.D. Rosenber. "Strain in the Human Medial Collateral 

Ligament During Valgus Loading of the Knee." Clin. Orthop. Relat. Res.391 
(2001): 266-74. 

 
Gee, M.W., Ch. Forster, and W.A. Wall. "A Computational Strategy for Prestressing 

Patient-Specific Biomechanical Problems under Finite Deformation." Int. J. 
Numer. Method. Biomed. Eng. 26 (2010): 52-72. 

 



168 
 

 

Grätsch, Thomas, and Klaus-Jürgen Bathe. "A Posteriori Error Estimation Techniques in 
Practical Finite Element Analysis." Comput. Struct. 83.4–5 (2005): 235-65. 

 
Gu, H., Z. Zong, and K. C. Hung. "A Modified Superconvergent Patch Recovery Method 

and Its Application to Large Deformation Problems." Finite Elem. Anal. Des. 40.5–
6 (2004): 665-87. 

 
Hiller, Jean-François, and Klaus-Jürgen Bathe. "On Higher-Order-Accuracy Points in 

Isoparametric Finite Element Analysis and an Application to Error Assessment." 
Comput. Struct. 79.13 (2001): 1275-85. 

 
Keast, P. "Moderate-Degree Tetrahedral Quadrature Formulas." Comput. Methods Appl. 

Mech. Eng. 55.3 (1986): 339-48. 
 
Klennert, B.J., et al. "The Effects of Simulated Focal Chondral Defects and Labrum 

Delamination on Cartilage Mechanics in a Dysplastic Hip." J. Biomech. In 2nd 
Review (2016). 

 
Kouznetsova, V.G. "Computational Homogenization for the Multi-Scale Analysis of 

Multi-Phase Materials." Technische Universiteit Eindhoeven, 2002. Print. 
 
Leger, S., J. Deteix, and A. Fortin. "A Moore-Penrose Continuation Method Based on a 

Schur Complement Appraoch for Nonlinear Finite Element Bifurcation Problems." 
Comput. Struct. 152 (2015): 173-84. 

 
Leger, S., and A. Pepin. "An Updated Lagrangian Method with Error Estimation and 

Adaptive Remeshing for Very Large Deformation Elasticity Problems: The Three-
Dimensional Case." Comput. Methods Appl. Mech. Eng. 309 (2016): 1-18. 

 
Meng, Q., et al. "Comparison between Febio and Abaqus for Biphasic Contact Problems." 

Proc Inst Mech Eng H 227.9 (2013): 1009-19. 
 
Omens, J. H., and Y. C. Fung. "Residual Strain in Rat Left Ventricle." Circ. Res. 66.1 

(1990): 37-45. 
 
Payen, Daniel Jose, and Klaus-Jürgen Bathe. "Improved Stresses for the 4-Node 

Tetrahedral Element." Comput. Struct. 89.13–14 (2011): 1265-73. 
 
---. "A Stress Improvement Procedure." Comput. Struct. 112–113 (2012): 311-26. 
 
Phuntsok, Rinchen, et al. "The Occipitoatlantal Capsular Ligaments Are the Primary 

Stabilizers of the Pediatric Craniocervical Junction." Spine In Preparation (2016). 
 
Pierrat, Baptiste, et al. "Finite Element Implementation of a New Model of Slight 

Compressibility for Transversely Isotropic Materials." Comput. Method. Biomec. 
19.7 (2015): 1-14. 



169 
 

 

Rausch, M. K., and E. Kuhl. "On the Effect of Prestrain and Residual Stress in Thin 
Biological Membranes." J. Mech. Phys. Solids 61.9 (2013): 1955-69. 

 
Weisbecker, H., D. M. Pierce, and G. A. Holzapfel. "A Generalized Prestressing Algorithm 

for Finite Element Simulations of Preloaded Geometries with Application to the 
Aorta." Int. J. Numer. Methods Biomed. 30 (2014): 857-72. 

 
Witherden, F. D., and P. E. Vincent. "On the Identification of Symmetric Quadrature Rules 

for Finite Element Methods." Comput. Math. Appl. 69.10 (2015): 1232-41. 
 
Zhang, Zhimin, and Ahmed Naga. "A New Finite Element Gradient Recovery Method: 

Superconvergence Property." SIAM J. Sci. Comput. 26.4 (2005): 1192-213. 
 
Zienkiewicz, O.C., and J.Z. Zhu. "The Superconvergent Patch Recovery and a Posteriori 

Error Estimates. Part 1: The Recovery Technique." Intl. J. Num. Meth. Eng. 33 
(1992): 1331-634. 

 



 

 

 

CHAPTER 8 

APPLICATIONS OF FEBIO 

8.1 Introduction 

The focus of this dissertation work was the expansion of FEBio’s modeling 

capabilities in specific areas that are relevant for computational modeling of joint 

mechanics, although most of the results can be applied to other areas as well. Aside from 

the new developments discussed in the previous chapters, the author of this work has also 

contributed to numerous other projects related to FEBio’s development. This chapter 

briefly summarizes some of the most important projects. 

8.2 PostView and PreView 

FEBio is a command-line application. It takes an input file that describes the finite 

element model, then solves this model, and finally generates an output file that contains 

the results of the analysis. This approach was taken because the initial goal was to run 

FEBio on high-performance machines. This was greatly simplified by avoiding the 

development of a graphical user interface (GUI). As a result, users needed to prepare the 

input file and analyze the output file with other software. To facilitate this process, the 

author developed a graphical finite-element preprocessor PreView and a postprocessor 

PostView. These programs offer a GUI that uses OpenGL to generate 3D renderings of the 

model that the user can interact with directly. The preprocessor PreView offers tools for 

importing meshes from various file formats, generating tetrahedral meshes from surface 
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meshes, applying boundary conditions and materials, and defining the analysis parameters. 

It also generates the FEBio input file, which can then be passed to FEBio. Alternatively, 

since the input file is xml-formatted, additional changes to the file can be edited manually 

if necessary. FEBio can write the results of the analysis to a text file, but in general, the 

results are stored to a custom binary file format that was designed specifically for FEBio. 

This file, which is often referred to as the plot file, can be read by PostView. In PostView, 

the user can visualize the 3D model, add various types of plots (e.g. contour plots, vector 

plots, iso-surface plots, etc.) and perform different types of analyses (e.g. inspection of 

values at nodes, facets, and elements, perform statistics, evaluate surface and volume 

integration, etc.). The user can also filter the data and export it to various data formats for 

further processing in third party software. All the figures in this work that show finite 

element models were created with the PostView software. 

8.3 FEBio Material Library 

FEBio implements an impressive list of constitutive models suited for modeling 

biological tissues. At the time of writing (FEBio version 2.6), there are 183 materials, many 

of which were implemented by the author. An exhaustive list of the materials implemented 

by the author is outside the scope of this work, but a short overview follows.  

• neo-Hookean, Mooney-Rivlin, Ogden: These Ogden type isotropic hyper-elastic 
materials are often used to model biological tissues and are also used in FEBio as 
the basis for several anisotropic material models. 

• trans-iso Mooney-Rivlin: The transversely isotropic material model by Weiss, 
Maker and Govindjee is commonly used for modeling fibrous tissues that have a 
highly aligned fiber distribution. It has been used to model ligament, tendon, and 
muscle.  

• Muscle, tendon material: Another material model, which was based on a different 
set of invariants than is commonly used in hyper-elasticity and was developed by 
Blemker and Delp, can also be used for modeling muscle and tendon tissue.  
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• Veronda-Westmann: The material by Veronda and Westmann is a 
phenomenological material model developed for representing isotropic tissues and 
includes the exponential stiffening that is often observed in fibrous tissues in 
tension. A transversely isotropic version of this material was also implemented.  

• PRLig: The author also contributed to the development and implementation of a 
novel constitutive model for describing tissues with large Poisson’s ratios 
(Swedberg et al.).  

• Visco-elastic: A visco-elastic material model (Puso and Weiss) was also 
implemented to describe the time-dependent response of biological tissues. A 
strength of this formulation is that it can use any of the hyper-elastic material 
models available in FEBio to define the elastic material response.  

• Damage: The damage formulation by Simo was combined with the neo-Hookean, 
Mooney-Rivlin, and trans-iso Mooney Rivlin materials to provide capabilities for 
modeling damage to biological tissues.  
 

8.4 Material Parameter Optimization 

The material parameters used in computational constitutive models are often 

obtained by fitting model predictions to experimentally obtained results. To accomplish 

this with FEBio, the author developed a library (called FEBioOpt) that implements several 

optimization algorithms for estimating material parameters, including the well-known 

Levenberg-Marquardt method (using the open-source levmar library). Using FEBioOpt, 

users can define a force-displacement curve, usually obtained from experiment, and find 

the material parameters that minimize the distance, in a least squares sense, between the 

experimental curve and the curve predicted by FEBio.  

The optimization library has been used by numerous people, but one of the first 

projects that made extensive use of it was a project that characterized the material 

properties of the axillary pouch of the glenuhumeral capsule (Rainis et al.). In fact, this 

project served as the driving application that motivated the development of this library. 
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8.5 FEBio Contact 

The modeling of contact problems has always been very important in many of the 

applications for which FEBio has been used. For this reason, the author implemented 

several contact algorithms. These formulations are all based on the augmented Lagrangian 

approach (Laursen and Maker) and include several tied interfaces, and interfaces for 

frictionless sliding, sliding with friction, and periodic surface constraints.  

The contact modeling framework was later greatly expanded by Gerard Ateshian 

who added several original contact formulations, including modeling of contact between 

biphasic materials (Ateshian, Maas and Weiss), and modeling of solute transport across the 

contact interface (Ateshian, Maas and Weiss). The author contributed to this work by 

making the necessary modifications to the framework to accommodate these novel 

formulations, such as contact detection algorithms that can work with all the various 

element formulations supported by FEBio. The author also implemented support for these 

novel formulations in PreView.  

8.6 Computational Homogenization 

Recently, numerical methods have been proposed for including the detailed micro-

structure of the material directly in the computational model. Explicit representation of the 

microstructure into a single a finite element model is still outside the capabilities of modern 

computer hardware. Instead, researchers have proposed homogenization methods that in a 

sense average the response of the microstructure. This averaged response is then used to 

drive a macroscopic model. Several homogenization methods exist, but one approach of 

particular interest to the FEBio project is a nested finite element computational 

homogenization method (Kouznetsova). In this method, the microstructure, as well as the 
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macroscopic model are both represented by a finite element model. The macro-model is 

solved as usual, except during the evaluation of stresses and tangents. Instead of using a 

traditional constitutive model, the local deformation gradient is passed on to the micro-

model. Suitable boundary conditions are defined for the micro-model and then this micro-

model is solved as a standard finite element model. Finally, an averaged stress and tangent 

are evaluated and passed back to the macro-model.  

The author implemented a first-order homogenization approach in FEBio 

(Kouznetsova) which relies on classical continuum mechanics and separation of scales 

between the macro- and micro-model. The implementation uses FEBio for solving both the 

macro- and micro-model. The link between the two scales is accomplished via a specialized 

material model. Currently, the author is implementing a second-order homogenization 

method, which is based on gradient-elasticity theory (Kouznetsova, Geers and Brekelmans; 

Nguyen, Becker and Noels). As opposed to the first-order approach, which essentially 

assumes an infinitesimally small micro-model, this method can model the effects of size of 

the micro-model. This second-order method requires C1-continuity. To avoid the use of 

C1 continuous shape functions in FEBio, a discontinuous Galerkin approach is taken that 

approximates continuity of the shape functions in a weak sense (Nguyen, Becker and 

Noels). With these homogenization methods, users will be able to include the explicit 

microstructure into their models and create a more realistic representation of the tissues 

being modeled.  

8.7 Multiphasic Framework 

Due to the high water content of many biological tissues, the accurate modeling of 

the fluid response is very important for many applications. Therefore, a coupled fluid-
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solver, based on multiphasic theory, has been implemented in FEBio. The author 

developed, with assistance of Gerard Ateshian, the original “poro-elastic” formulation, 

which has now been superseded by a more general and more powerful multiphasic 

modeling framework (Ateshian, Maas and Weiss). This framework now includes the ability 

to model multiple solutes and chemical reactions (Ateshian et al.). The framework was 

predominantly developed by Gerard Ateshian, but the author contributed by making the 

necessary changes to the FEBio code to accommodate this novel framework. This included 

adding the ability to model an arbitrary number of degrees of freedom and improving the 

material framework for representing the complex material representation of multiphasic 

materials. The author also added, with assistance of Gerard Atheshian, support for 

multiphasic modeling in PreView. 
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