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ABSTRACT

Memory access irregularities are a major bottleneck for bandwidth limited problems on

Graphics Processing Unit (GPU) architectures. GPU memory systems are designed to allow

consecutive memory accesses to be coalesced into a single memory access. Noncontiguous

accesses within a parallel group of threads working in lock step may cause serialized memory

transfers. Irregular algorithms may have data-dependent control flow and memory access,

which requires runtime information to be evaluated. Compile time methods for evaluat-

ing parallelism, such as static dependence graphs, are not capable of evaluating irregular

algorithms. The goals of this dissertation are to study irregularities within the context of

unstructured mesh and sparse matrix problems, analyze the impact of vectorization widths

on irregularities, and present data-centric methods that improve control flow and memory

access irregularity within those contexts.

Reordering associative operations has often been exploited for performance gains in

parallel algorithms. This dissertation presents a method for associative reordering of stencil

computations over unstructured meshes that increases data reuse through caching. This

novel parallelization scheme offers considerable speedups over standard methods.

Vectorization widths can have significant impact on performance in vectorized computa-

tions. Although the hardware vector width is generally fixed, the logical vector width used

within a computation can range from one up to the width of the computation. Significant

performance differences can occur due to thread scheduling and resource limitations. This

dissertation analyzes the impact of vectorization widths on dense numerical computations

such as 3D dG postprocessing.

It is difficult to efficiently perform dynamic updates on traditional sparse matrix formats.

Explicitly controlling memory segmentation allows for in-place dynamic updates in sparse

matrices. Dynamically updating the matrix without rebuilding or sorting greatly improves

processing time and overall throughput. This dissertation presents a new sparse matrix

format, dynamic compressed sparse row (DCSR), which allows for dynamic streaming



updates to a sparse matrix. A new method for parallel sparse matrix-matrix multiplication

(SpMM) that uses dynamic updates is also presented.
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CHAPTER 1

INTRODUCTION

1.1 Challenges

General purpose GPU (GPGPU) programming has become a popular choice for solving

many computationally demanding problems in science and engineering [43]. GPUs are

a form of single instruction multiple data (SIMD) accelerators. SIMD accelerators are

many-core processors with both high memory bandwidth and peak floating point operations

per second (FLOPS). There has been a great push in terms of research on how to best use

these accelerator cards and how to optimize code for them [14, 60, 41]. Traditionally,

programming for GPUs has been a significant challenge due to the architecture specific

low-level optimizations required for high performance. GPUs outperform CPUs in terms of

FLOP per dollar and FLOP per transistor [64].

A major challenge to achieving high throughput on GPU architectures is minimizing

irregularities in control flow and memory access. SIMD accelerator cards achieve high

throughput through massive parallelism. However, this parallelism can be disrupted by

a number of factors. Groups of threads, known as vectors or warps, that operate syn-

chronously together will stall when one or more of them has a divergent instruction. Also,

the entire group must wait for loads/stores to complete, even if only one thread has made

a request or if only one thread has a cache miss while the rest have cache hits. This

programming paradigm is distinctly different from the multiple instruction multiple data

(MIMD) paradigm that multicore chips follow.

Irregularities within an algorithm can lower performance by as much as an order of mag-

nitude on SIMD architectures. Irregular algorithms typically operate over data structures

such as trees, graphs, unstructured meshes, and priority queues. Parallelizing irregular

algorithms is significantly more challenging, as is mapping them to SIMD architectures

such as the GPU. Modeling the performance of irregular programs is often difficult because

runtime behavior is dependent upon input data. GPUs are known to perform well on regular



2

computations, but achieving high performance on irregular algorithms is still an ongoing

area of research.

Much research has shown the efficacy of using GPU architectures to compute regular

algorithms. However, many commonly used algorithms are irregular in nature and prove

difficult to attain high performance. There are a number of key problem areas that are

of high importance to computational science and engineering for which the boundaries of

high performance computing (HPC) still need to be pushed. Some of these areas include

dense linear algebra, sparse linear algebra, spectral methods, n-body problems, structured

grids, unstructured grids, MapReduce, combinatorial logic, graph traversal, dynamic pro-

gramming, back-track/branch and bound, graphical models, and finite state simulations

[4]. A number of these problems are irregular or can be formulated in a way that involves

irregular computations. Sparse computations often exhibit irregularities, as in the case

of sparse matrix factorizations. Operations over unstructured meshes/grids are inherently

irregular. MapReduce, combinatorial logic, graph traversal, dynamic programming, and

finite state simulation often exhibit irregular computations as well.

1.2 Thesis Goals

This dissertation targets a number of goals related to control flow and memory access

irregularities on GPU architectures:

• Study and analyze irregularities within the context of unstructured mesh and sparse

matrix problems on GPU architectures.

• Analyze the impact of vectorization widths on control flow and memory access irreg-

ularities.

• Provide data-centric techniques for addressing irregularities with several unstructured

mesh and sparse matrix problems.

Both unstructured meshes and sparse matrices involve a level of indirection to access

data. This indirection often leads to higher levels of irregularity within control flow and

memory access. This dissertation explores two primary applications, namely that of stencil

computations over unstructured meshes and dynamic insertion within sparse matrices. Both
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of these problems involve high degrees of irregularity due to indirection of memory access

within the data structures.

1.2.1 Unstructured Meshes

A primary application studied in this work was dG postprocessing which involves com-

puting the convolution of a B-spline kernel and the underlying dG finite element method

(FEM) solution defined over a geometric mesh. When computing these convolutions over

unstructured meshes, there is a considerable amount of irregularity due to the need to

dynamically compute intersections based on the B-spline stencil/mesh overlap.

Associativity of operations can often be exploited for reordering operations to enhance

parallelization. Associative operations like addition and multiplication can be reordered,

and this forms the basis for core parallel algorithms like prefix-sum [28]. Improved data

reuse through associative reordering is particularly useful for stencil computations. Stencils

are a key computational pattern used in many numerical methods and algorithms. Stencil

computations sample information from a localized region. Through reordering and caching

of results, data reuse can improve performance.

DG postprocessing involves convolving a B-spline stencil with a grid of points is defined

over the mesh that correspond to the numerical quadrature points of the solution. The

geometry of this grid depends upon the mesh’s geometric structure. Structured meshes will

lead to regular grid patterns, while unstructured grids will lead to irregular grid patterns.

The regular access pattern used by structured grids generally leads to contiguous memory

accesses, good memory layout patterns, and high cache efficiency. Efficient computation

of stencil operations over structured meshes has been widely studied, and great gains have

been made by exploiting parallelism and data locality. Stencil computations performed over

unstructured grids is generally much harder than those performed over structure grids, and

they often exhibit noncontiguous memory access patterns and lower cache efficiency.

One of the biggest challenges in computing stencil operations over unstructured meshes is

efficiently sampling the underlying mesh in the mesh/stencil intersection. DG postprocess-

ing requires performing stencil operations that sample information from the neighborhood

of mesh elements within the intersection of the stencil and the mesh. In this case, the

geometric nature of the mesh has a significant impact on cache efficiency and data locality,
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especially for many-core architectures.

This dissertation presents an associative reordering transformation for evaluating stencil

computations over meshes. Computations are reordered by geometric element instead of

by quadrature point. This provides improved data reuse through caching of the polynomial

coefficients associated with the element being processed.

1.2.2 Tuning Vectorization Widths

An extension of the dG postprocessing work involved looking at the problem in 3D.

The inner integral computation is much denser in 3D than in the 2D case. A higher level

of data parallelism is required through fine grained parallelization of the inner integral to

achieve high performance. This dissertation explores the tuning of vectorization widths for

the dense integral computations involved in 3D dG postprocessing over tetrahedral meshes.

Vectorization is the process by which a scalar operation that operates over a pair of

operands is converted to operate over a vector of pairs of operands (a series of adjacent

values). Vectorized instructions operate over multiple pairs of data in parallel. Perfor-

mance is improved through this added level of parallelism and increased memory efficiency.

Vectorization is one of the primary design aspects used in SIMD architectures that allows

modern GPUs to achieve beyond teraflop level performance.

Vector instruction widths typically range from 2 to 64 (2, 4, 8, 16, 32, or 64 adjacent data

elements). Vectorization of an algorithm can lead to significant performance improvements

in some cases. Streaming SIMD extensions (SSE) is an example of a vector instruction set

designed for the x86 architecture that has seen wide adoption. Modern GPUs group cores

into work units (32 or 64 cores typically) that operate in lock step like a vector processor.

Although the vector width of the hardware is generally fixed, the logical vector width

used by the programmer within a computation can range from 1 up to the width of the

computation. This is done by decreasing the vector width and increasing the number of

concurrent vectors. For example, with a hardware vector width of 8, one could compute: 1

operation of width 8, 2 operations of width 4, 4 operations of width 2, or 8 operations of

width 1. Adjusting this logical vector width in conjunction with the number of concurrent

vectors can have significant impact on overall performance and throughput.

Achieving high performance with complex code bases that involve numerous architecture
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specific parameters remains a difficult task. Often, tedious manual optimizations are

required. This process is time consuming for the programmer, and manual tuning rarely

yields the optimal parameter configuration. Autotuning is a method by which optimal or

near optimal run-time configuration parameters are selected through an automated testing

process [65]. This technique has proven to be a valuable tool for improving performance

and increasing programmer efficiency.

This dissertation presents an analysis of the impact of vectorization widths applied

to 3D dG postprocessing over tetrahedral meshes. A generalized method for tuning the

logical vector width or “stride” width is presented. Both thread divergence within a logical

vector of threads and memory access patterns are affected by vectorization widths. This

application dependent tuning parameter has significant impact on the performance of dense

computations.

1.2.3 Sparse Matrices

Sparse matrix-vector multiplication (SpMV) is the workhorse operation of many numeri-

cal simulations, and has seen use in a wide variety of areas such as data mining [39] and graph

analytics [32]. Frequently in these algorithms, a majority of the total processing is spent on

SpMV operations. Iterative computations such as the power method and conjugate gradient

are commonly used in numerical simulations, and require successive SpMV operations [74].

The use of GPUs has become increasingly common in computing these operations as they

are, in principle, highly parallelizable. GPUs have both a high computational throughput

and a high memory bandwidth. Operations on sparse matrices are generally memory bound;

this makes the GPU a good target platform due to its higher memory bandwidth compared

to that of the CPU, however it is still difficult to attain high performance with sparse

matrices because of thread divergence and noncoalesced memory accesses.

Some applications require dynamic updates to the matrix; generally construed, updates

may include inserting or deleting entries. Fully compressed formats such as compressed

sparse row (CSR) cannot handle these operations without rebuilding the entire matrix.

Rebuilding the matrix is orders of magnitude more costly than performing an SpMV

operation. The ellpack (ELL) format allocates a fixed amount of space for each row,

allowing fast insertion of new entries and fast SpMV but limits each row to a predetermined
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number of entries and can be highly memory inefficient. The coordinate (COO) format

stores a list of entries and permits both efficient memory use and fast dynamic updates

but is unordered and slow to perform SpMV operations. The hybrid-ellpack (HYB) format

attempts a compromise between these by combining an ELL matrix with a COO matrix

for overflow; where rows may require examination of this overflow matrix, however, SpMV

efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit a power-law distribution

(when the number of nodes with a given number of edges scales as a power of the number

of edges). This results in a long tail distribution in which a few rows have a relatively

high number of entries while the rest have a relatively low number. There are important

real-world phenomena which exhibit a power-law distribution. Their corresponding ma-

trices can represent things such as adjacency graphs, web communication, and finite-state

simulations. Such a matrix is also the pathological case for memory efficiency in the ELL

format and requires significant use of the COO portion of a HYB matrix making neither

particularly well suited for dynamic sparse-graph applications.

This dissertation presents a new sparse matrix format, dynamic compressed sparse row

(DCSR), that allows for efficient dynamic updates, exhibits easy conversion with standard

CSR, and has fast SpMV. A method for conversion between CSR and DCSR is given

along with an efficient method for defragmentation of the format that does not require

sorting. Detailed benchmarks of SpMV and insertion operations across a suite of sparse-

graph benchmarks are provided.

Computing sparse matrix-matrix multiplication in parallel is a difficult task to perform

efficiently. Given an m× k matrix A and k×n matrix B, the goal is to compute the m×n

matrix C (AB = C). Unlike in the dense case, it is inefficient to multiply a row of A by a

column of B, since many of the entries will be zeros. A more efficient method is to compute

the set of partial products formed by multiplying each nonzero aij in A by each nonzero

bjk in row j of B. This method produces all of the needed results without wasted work

checking against zero values. The fill-in of the resulting C matrix depends on the sparsity

patterns of A and B and is unknown until computation is performed.

The traditional parallel algorithm for computing SpMM involves computing all of the

partial products, sorting them by row and column, and then performing a segmented
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reduction. The matrix is converted to COO format to perform these operations and

converted back to its original format afterward. The sort and reduction are performed in

global memory. The conversions to and from the COO format make this a costly operation

to perform.

This dissertation presents an improved SpMM algorithm that asynchronously computes

the partial products, sorts, and reduces the results on a per row basis. The results are

then dynamically inserted into the resulting C matrix in DCSR format. This provides

a considerable performance improvement for rows that can be computed with the shared

memory capacity of a streaming multiprocessor (SM).



CHAPTER 2

BACKGROUND

2.1 GPU Architectures

Latency-oriented devices have plateaued in performance due largely to power and ther-

mal constraints. The push towards increased performance, particularly exascale and beyond,

has led to the use of throughput-oriented “many-core” devices [89]. Examples of many-core

devices are GPUs and the accelerator cards such as the Intel Xeon Phi. GPUs are now

commonly employed as accelerator cards for general purpose (GPGPU) programming, and

many of the fastest super computers in the world employ SIMD accelerators [82]. Many-core

processors are often designed with the single instruction multiple data (SIMD) paradigm,

which allows engineers to reduce overhead in terms of power and area per core.

GPUs are massively parallel throughput-oriented devices. They provide high throughput

by hiding memory latency through context switching between thread workgroups. Modern

GPUs operate with a kernel/block/thread programming model. Kernels are user-defined

functions that execute across M blocks in parallel, with each block executing N threads in

parallel. Each block will be assigned to a physical streaming multiprocessor (SM). There

can be more blocks assigned to execute than physical SMs, since execution contexts will

be switched between blocks when a previous block finishes. Threads are grouped together

into execution units known as warps or wavefronts (typically 32 or 64 threads wide). These

warps execute in lock step, computing the same instruction using differing data operands. If

threads diverge, their execution will be serialized until they converge again. Quite possibly

the single most important factor in attaining high performance with SIMD architectures

is to achieve coalesced memory accesses. Loads and stores by threads within a vector can

be coalesced into as few as a single memory transaction. This coalescing occurs when all

memory references within a vector fall into a single cache line [61]

Each SM on the GPU has a limited amount of register space and shared memory/cache

for threads operating within a block. L1 cache and shared memory share the same memory
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space, and the ratio of L1 cache to shared memory can be configured at compile time.

Threads within a block can pass information through this shared memory space, but

threads between blocks must pass information through global memory. Global memory

is device memory shared between all SMs that can be accessed by any thread, albeit at a

much higher latency than cache/shared memory. Synchronization can be achieved between

threads within a logical block, but, in general, there is no way to synchronize threads

across blocks. The low-level architectural model of the GPU presents a challenge in writing

efficient programs. The Compute Unified Device Architecture (CUDA) programming model

[61, 62] and the Open Computing Language (OpenCL) [41] have made strides towards

lowering the barrier of programming GPUs. Significant work has been devoted to the goal

of achieving high performance from vectorized operations on streaming SIMD architectures

[37, 26, 47, 71].

Modern SIMD accelerator cards rely on a separate device memory pool that is located

on the card for increased memory bandwidth. This memory sepearation has led to data

transfer between the host and device to becoming the major bottleneck in heterogeneous

systems. Although recent work has experimented with combining CPUs and GPUs on the

same chip [25], the technology is not fully mature. Lower transistor overhead per core

allows for greater efficiency in terms of area/performance and energy/performance. This

core efficiency combined with higher memory bandwidth allows for much higher throughput

than traditional latency-oriented chips.

2.2 GPU Programming Model

A major research focus has been parallelizing nongraphics applications on GPUs, known

as GPGPU (general purpose GPU) computing [63]. Knowing the operational intensity

of an algorithm will help one effectively parallelize it. Operational intensity is often de-

fined by the FLOPS/byte ratio of an algorithm [95]. SIMD architectures achieve peak

performance when the number of floating point operations per second (FLOPS) is high,

and the number of read/write memory accesses is low, yielding a high FLOPS/byte ratio

[31]. The FLOPS/byte ratio has a significant impact on performance when algorithms

are parallelized on multicore/many-core architectures. The performance of algorithms on

many-core architectures is greatly improved when there is a high FLOPS/byte ratio and
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low branch divergence in the algorithm. Two factors that lower SIMD efficiency are thread

divergence in instructions and thread divergence in memory accesses, often termed control

flow irregularity and memory access irregularity, respectively [18]. Minimizing these factors

is key to achieving high performance on SIMD architectures.

The GPU is designed to provide parallelism through a heirachy of abstractions. Task

level parallelism (kernels), coarse-grained parallelism (blocks), and fine-grained parallelism

(threads). At each level there is potential to exploit parallelism. Mapping problems to

the GPU involves a problem decomposition into computable elements. The size of the

computable elements often determines a good mapping to the GPU. These elements are

then mapped to threads, vectors (groups of multiple threads working together), or blocks.

The thread-based execution model (Figure 2.1(a)) implements each GPU thread as an

execution unit for a single element computation. Because the number of threads equals

the number of elements, the thread-based execution model scales well with the number

of elements. However, as the resources per thread (e.g., number of registers, amount of

shared memory) are typically small on most current GPUs, this strategy is suitable only to

“tiny” problem sizes or with algorithms that are relatively memoryless (such as per thread

reduction).

The vector-based execution model (Figure 2.1(b)) uses a group of threads within a block

1st Element 2nd Element 3rd Element ... nth Element

1st Element 2nd Element 3rd Element ... nth Element

1 2 3 nThreads:

Vector 1
(0 ... k-1)

Vector 2
(k ... 2k-1)

1st Element 2nd Element 3rd Element ... nth Element

Vector 3
(2k ... 3k-1)

Vector n
((n-1)k ... nk-1)

Thread Execution (a)

Vector Execution (b)

Block Execution (c)

Vectors:
(Threads):

Blocks: 1 2 3 n

Figure 2.1: Parallel execution mapping for multielement processing using thread-based,
vector-based, and block-based execution models.
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as the execution unit. Each vector is composed of k threads. Multiple vectors (2 or more)

of threads exist within a block. The vector size is often chosen to be between 2 and the

wavefront size, to take advantage of implicit synchronization within a wavefront. Threads

within a wavefront work in lock step and do not require explicit synchronization. However,

if a vector size is chosen to be larger than the wavefront size, explicit synchronization will

be required. Since threads within a vector will be part of the same block, they can share

resources (i.e., shared memory). This strategy is suitable for small to medium size elements.

The block-based execution model (Figure 2.1(c)) employs each execution block as the

execution unit. In this case, the number of execution blocks equals the number of elements.

All threads of a single execution block work together to complete tasks for a single element.

Barriers are normally required to synchronize between a block’s threads, and a scratch

memory space (i.e., GPU shared memory) is used to collaborate results. The granularity of

the execution blocks controls the amount of resources available for each element’s compu-

tation. As the resources are allocated per block, this strategy can handle a wide range of

the inputs.

Figure 2.2 illustrates the process of mapping from the problem domain to the execution

domain. When a vector-based execution model is used with the vector size being equal

to the wavefront size (or SIMD-width), there is no synchronization required as all member

threads execute in lock step. This is the most reasonable solution for the case when the

element size is small to medium (i.e., able to fit within shared memory). When the execution

model is a computational grid, synchronization is required to collaborate results between

blocks.

2.2.1 Multielement data structures

Data structures are crucial for determining performance. Memory coalescing is one of the

most important factors in attaining high performance. This condition depends solely on the

access pattern of neighboring threads, encouraging neighbor threads to access continuous

data. For the thread-based execution model, this turns out to be the interleaving data

structure (see Figure 2.3(a)) where the first component of the data of the first element is

laid out in the memory next to the first component of the second element and so on. For the

block-based execution model, it becomes the concatenated data structure (Figure 2.3(b))
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Figure 2.2: Problem classification for algorithm mapping

that lays out the data structure of each element sequentially in memory.

The interleaving and concatenating data structures are well known as the Structure

of Arrays (SoA) and Array of Structures (AoS), respectively. SoA is generally preferred

for single element GPU algorithms, whereas the AoS format is typically used for other

mappings as it can handle a much wider data input range. Transpose operations can be

used to switch between AoS and SoA data formats (Figure 2.3).

To achieve the highest bandwidth efficiency, data padding is sometimes used to guarantee

the access of a thread/block starting at an aligned memory address. Data alignment can

be employed per element with the AoS and data alignment per array with the SoA (see

Figure 2.3). This strategy has proven to be simple yet effective and compact. This alignment

strategy increases the storage by approximately 10% in contrast to the alignment per data

dimension strategy, which can be very expensive with high-dimensional input data.

An additional benefit of data padding is that even though data might have odd size

numbers in terms of number of elements and/or element size, the transpose function always

achieves the highest memory bandwidth efficiency because execution blocks always access
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Figure 2.3: Common multielement data formats. Examples of (a) structure of arrays and
(b) array of structures.

aligned memory for both data loading and storing. Hence, the added overhead due to the

changing of data structures is minimized.

2.2.2 Block/Thread Configuration

Kernel configuration (number of threads, dimensions of thread blocks, number of blocks,

and dimensions of compute grid) determines the parallelism granularity and has significant

influence on performance, and a tuning strategy is often required to maximize perfor-

mance [90]. It is important to start with a good estimation as the configuration space

is large and displays nonlinear behavior. A good estimator must satisfy two conditions: it

scales well across platforms and it is adapted to the problem size. The estimator has to take

into account the hardware configuration of the running system (i.e., number of registers,

size of the shared memory) and the kernel information (i.e., number of threads, shared

memory usage and problem size). Even though high occupancy indicates good parallelism

efficiency, it does not necessarily directly correspond to high performance [90].

A common configuration approach is to start with the minimal block size of one wave-

front and increase in increments of a wavefront size each time until the occupancy require-

ment is met. This method is the reverse of the maximal block size strategy employed by
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CUDA Thrust, which starts the search with the maximum block size. This strategy prevents

idle threads from being generated which frees up more computational resources for working

threads.

2.2.3 Batched Operations

Batch processing is the act of grouping some number of like tasks and computing them

as a “batch” in parallel, which generally involves a large set of data whose elements can be

processed independently of each other. Batch processing eliminates much of the overhead

of iterative nonbatched operations. “Batch” processing is well suited to GPUs due to the

SIMD architecture, which allows for high parallelization of large streams of data. Basic

linear algebra subprograms (BLAS) are a common example of large-scale operations that

benefit significantly from batch processing. The HDG method specifically benefits from

batched BLAS Level 2 (matrix-vector multiplication) and BLAS Level 3 (matrix-matrix

multiplication) operations.

Finding efficient implementations for solving linear algebra problems is one of the most

active areas of research in GPU computing. The NVIDIA CUBLAS [62] and AMD APPML

[24] are well-known solutions for BLAS functions on GPUs. CUBLAS is specifically designed

for the NVIDA GPU architecture based on CUDA [61], and the AMD solution using

OpenCL [7] is a more general cross platform solution for both GPU and multiCPU architec-

tures. CUBLAS has constantly improved based on a successive number of research attempts

by Volkov [90], Dongarra [78, 1], and others. This research has led to a speed improvement

of one to two orders of magnitude for many functions from the first release version till

now. In recent releases, CUBLAS and other similar packages have been providing batch

processing support to improve processing efficiency on multielement processing tasks. The

support is, however, not complete as currently CUBLAS supports batch mode processing

only for BLAS Level 3, but not for functions within BLAS Level 1 and BLAS Level 2.

2.3 Analysis of Parallel Algorithms

The work by Pingali et al. provides a fundamental framework for the analysis of

parallel algorithms [67]. It classifies parallel algorithms by their data topology, location,

and ordering, of active data nodes, and the type of operations that are performed on the
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data. Figure 2.4 illustrates the structural analysis of algorithms using this methodology.

Structural analysis of algorithms classifies them based on three defining characteristics,

topology, location and ordering of active nodes, and the type of operator being applied to

the data.

• The topology is defined as the relational structure of the data. The relationship of the

problem data can be converted to a graph. A set or multiset is isomorphic to a graph

with no edges. An ordered set could be defined as a graph with edges defining the

ordering. Similarly matrices can be viewed as graphs. With this graph formulation,

the topology of the problem can be viewed in terms of its structure.

Structured: Topologies can be defined by a regular pattern. If the items are ordered,

they are isomorphic to a sequence or stream. Dense matrices are defined by their

width and height and have a rectangular pattern.

semistructured: Topologies, like trees, exhibit some structural invariants (like the

acyclic nature of trees), but do not follow a regular pattern.

Unstructured: Topologies, such as general graphs, have no defining patterns.

• Active nodes are classified by the order and location within the computation.

Ordering: The active nodes can be either ordered or unordered.

Location: Active nodes can be determined based on the topology of the data (topology-

driven) or based upon the values of the data (data-driven). An example of topology

Algorithms

Operator

Morph

Local Computation

Reader

Active
Nodes

Location
Topology-driven

Data-driven

Ordering
Unordered

Ordered

Topology
Structured

Semistructured

Unstructured

Figure 2.4: Structural analysis of algorithms.
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driven locality is BLAS operations, such as matrix-matrix multiplication. In this case,

the active nodes used in computing an output datum are explicitly defined based on

their position in the matrix. An example of data-driven locality is ray-tracing or

maxflow computations. In those cases, nodes become active based on the values of

previous data computations. Naturally, data-driven locality is more unpredictable in

its active node patterns since it is data dependent.

• Operators are classified based on how they modify the data.

Morph: A morph operator alters the topology of the data structure. It may also alter

the values of the nodes or edges as well, which allows for the insertion or deletion of

nodes within the graph.

Local: Operators that alter the data values of nodes but do not alter the topology are

considered local operators. An example is iterative operations that update the value

of the solution at each step and use that newly computed value in the next step.

Reader: An operator is a reader if it only reads the data structure without altering

topology or values. Reader operations are idempotent.

Certain characteristics of this structural analysis of algorithms lead to high irregularities.

Regular algorithms typically have a structured topology, and the active nodes are defined in

a topology-driven manner. Unstructured topologies lead to greater irregularities than in the

semistructured or structured cases. Data-driven locations for active nodes also commonly

lead to irregular control flow and memory access patterns. The operator being performed

has less impact on regularity than topology and location/ordering of active nodes, although

morph operators tend to have higher irregularity than that of local and reader operators.

This increased irregularity is because morph operators alter the topology of the data while

local computation operators alter only the data and reader operators do not modify either.

2.3.1 Regular Versus Irregular Algorithms

Compiler literature often references the terms “regular” and “irregular” when classifying

types of code. Regular algorithms have no data-dependent control flow or memory accesses.

Dense BLAS operations are an example of regular computation. The number and order of

operations have no data dependencies, and the size and dimensions of the resulting output
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are defined by the width and height of the operands. Burtcher et al. provide an overview

of an analysis of control flow and memory access irregularity for a variety of applications

on the GPU [18].

The behavior of irregular code cannot be statically predicted a priori. Irregular code

contains control flow and memory references that may be data-dependent. This degree to

which the amount of control flow and memory references out of the total are data-dependent

defines the degree of irregularity. The data-dependent nature of computations in irregular

algorithms makes it difficult to predict the number, order, and location of operations.

Irregular algorithms include a broad range of problems, such as n-body simulations [8], data

mining [85], Boolean satisfiability [17], social networks [36], system modeling [66], compilers

[2], meshing [20], and discrete-event simulation [54]. Graph applications, in particular, are

often irregular. Graph traversal is generally highly irregular due to the connectivity of the

graph and the fact that many operations are based on the values of the nodes and edges.

2.3.2 Metrics of Irregularity

Data locality plays an important role in performance of both the CPU and GPU. The

GPU, in particular, is affected by divergent branches within a SIMD vector and memory

stores/loads that are uncoalesced or cause bank conflicts within shared memory. The

following two metrics to define the level of irregularity in a program on a SIMD architecture

provided by [18].

• control-flow irregularity (CFI) =
divergent-branches

executed-instructions

• memory-access irregularity (MAI) =
replayed-instructions

issued-instructions

Control flow irregularity defines the degree to which vectorized threads diverge at branches.

It is calculated as the ratio of divergent branches to total number of executed instructions.

This value is typically low in most programs, since the number of branches is a small fraction

of the total instructions, and the number of divergent branches is a subset of the number of

branches. Memory access irregularity defines the amount of issues that are replayed out of

the total issued. This metric corresponds to the percent of noncoalesced memory accesses

that occur in the code. With fully coalesced memory accesses, the number of replayed

instructions will be zero (i.e., only one memory transaction will be issued per warp/vector
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for a given store/load). Each metric ranges between 0% and 100%. SIMD architectures can

achieve near peak performance when the CFI and MAI values are near 0%. Problems such

as these are considered to be “embarrassingly parallel.” Irregular applications are generally

data-dependent, and these metrics can have high variability depending on program input.

2.3.3 Data-Driven Approaches

• Worklist: Worklists are used in data-driven problems to track active elements. The

worklist is initialized with a starting set of graph elements. Each thread will extract

an element from the worklist and process it. From the algorithm specific processing, a

new set of graph elements will be produced. This new set of elements will be appended

to the current worklist. This step is often implemented using two buffer sets, an input

set and an output set. Elements are read in a processed from the input set, and the

new graph elements are written to the output buffer [59].

• Hierarchical Worklist: A common optimization on GPUs is to use hierarchical

worklists. Hierarchical worklists takes advantage of the memory hierarchy on the

GPU by using shared memory to store local worklists. Threads read from and write

to the local worklists. The local worklists can be partitioned across threads to allow

for lock-free updates. The use of on-chip shared memory generally provides significant

performance improvements.

• Work Chunking: Work chunking is used in combination with hierarchical worklists

to improve memory efficiency. Threads batch read and write operations between

the local worklists and global memory, which reduces overall memory bandwidth.

Updating a list in global memory requires atomic operations to ensure synchronization.

Batching updates allows a single atomic operation to update the global worklist for

one set of batch elements.

• Atomic-Free Worklist Update: Prefix-sum computations can be used to calculate

direct offsets into the worklist where results should be written. Each thread records

the number of elements it needs to write to the global worklist. A hierarchical scan

operation can be performed over these batch sizes in log n steps (where n is the number

of threads). This operation will produce a set of indices where ith index denotes the
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starting index where thread i can start writing its elements. A global barrier is re-

quired after all threads record their batch sizes, before the prefix sum operation can be

computed. This approach can provide significant performance improvement through

replacing fine-grained synchronization with atomics by coarse-grained synchronization

using barriers [58].

• Work Donating/Stealing: Load imbalance is a common problem when parallelizing

irregular algorithms. When the number of new work elements generated at each step is

data-dependent, it cannot be statically predicted. In this case, dynamic load balancing

is required. The two most common methods for load balancing are work stealing and

work donating. In work stealing, idle threads look for work to take from threads that

have excess amounts. In work donating, threads with excess amounts of work give

work to idle threads. Work donating has a better memory footprint on GPUs, so it

is generally favored.

• Variable Kernel Configuration: Worklist sizes often vary considerably during the

coarse of an irregular algorithm, which naturally leads to adapting kernel configura-

tions to match the amount of work. Smaller worklists can be assigned fewer threads

and increasing the amount of threads for larger worklists. Modern GPU architectures

support dynamic parallelism which allows kernels to instantiate other kernel calls.

This feature can be used to call kernels that are specifically configured to match

certain parameters, such as worklist size and memory footprint.

2.3.4 Topology-Driven Approaches

In topology-driven algorithms, the threads are parallelized across the nodes of the data

structure and not the data itself. In these algorithms, activities do not create new nodes. In

cases such as breadth first search (BFS) and single source shortest path (SSSP), information

can be freely updated without the need for atomic operations.

• Kernel Unrolling: Kernel unrolling is a method that combines multiple iterations

of an activity together. This unrolling reduces the per-iteration overhead and allows

for information to quickly propagate across the graph.
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• Exploiting Shared Memory: Storing data locally with shared memory can greatly

speed up computations on the GPU. The thread block size plays an important role in

the amount of available shared memory per thread. The more threads per block, the

less shared memory will be available to each thread.

• Optimized Memory Layout: Optimizing the layout of nodes within the data

structure can improve memory locality. This optimization is sometimes performed

by scanning over the nodes and ensuring that nodes that are logical neighbors within

the computation lie next to each other within memory. Other algorithm-specific data

reordering methods have also seen use [99].

2.3.5 Hybrid Approaches

• Temporal Hybrid: Temporal hybrid methods combine data-driven and topology-

driven approaches, using each at different stages of the computation. For example,

in BFS a data-driven approach will be more efficient when the active working set is

small, which will typically be the beginning and ending iterations. When the working

set of active nodes grows to a certain threshold (the middle iterations), it will become

more efficient to use a topological-driven approach, which avoids atomic updates.

• Spatial Hybrid: Spatial hybrid methods partition the nodes within the graph into

patches. Patches are assigned representative nodes. These nodes are inserted into a

worklist when there is work to be done for that patch. When a patch is processed, all

nodes within that patch will process any required work. The patches are managed in

a data-driven manner, and nodes within a patch are managed in a topological-driven

manner.

2.3.6 Software Solutions

There have been a number of proposed software solutions for reducing control flow

and memory access irregularities within SIMD programs [99]. Within parallel vectors of

threads, control flow and memory access patterns are defined by functions of thread and

block identifiers. By altering these functions, different mappings can be chosen, which will

potentially reduce irregularities. Two prominent methods for reducing irregularities are

data reordering and job swapping.
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Data reordering is a method in which the memory references are reordered to improve

memory coalescing, while maintaining the original mapping between threads and data val-

ues. This reordering can be done through the use of a redirection array A[tid]→ A′[P [tid]].

This optimization is sometimes advantageous, as it can be implemented to improve memory

accesses within a data structure, while preserving the original logic of the algorithm. Job

swapping is a method by which threads compute alternate tasks than in the original map-

ping. Job swapping can be accomplished through reference redirection A[tid] → A[P [tid]]

or through data relocation A[tid]→ A′[tid]. Data relocation permutes the values in memory

such that the mapping between threads and data values is not preserved. Optimizations

of this sort require altering the logic of the algorithm to account for the permutation in

the data. A combination of data reordering and job swapping can potentially reduce the

irregularities in control flow and memory access more than either one alone.

Other research has shown that control flow and memory access divergence can be reduced

by partitioning GPU kernels into sections designed to be executed by differing warps using

fine grain synchronization within a block [10]. This warp specialization allows for inter-

warp divergence where each warp can dynamically execute different code, while preserving

intrawarp coalescing. This method can be useful when kernels cannot be easily broken up

into separate components due having large numbers of temporary calculations that must

be stored between phases.

2.3.7 Hardware Solutions

Hardware solutions have also been proposed to help reduce control flow and memory

access irregularities. One such hardware mechanism, diverge on miss, allows threads within

a warp to execute out of synchronization when divergent memory accesses occur. Tarjan et

al. demonstrated diverge on miss through SIMD architecture simulation [87]. Prefetching

is a common technique for reducing memory access latency by queuing up memory fetches

before the data values are required rather than at instruction execution time. Recent

work has proposed hardware additions that dynamically track memory references and

automatically prefetch based on detected patterns [76].
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2.4 Discontinuous Galerkin Postprocessing

The discontinuous Galerkin (dG) method has quickly found utility in such diverse appli-

cations as computational solid mechanics, fluid mechanics, acoustics, and electromagnetics.

It allows for a dual path to convergence through both elemental h and polynomial p

refinement. Moreover, unlike classic continuous Galerkin FEM, which seeks approximations

that are piecewise continuous, the dG methodology merely requires weak constraints on

the fluxes between elements. This feature provides a flexibility that is difficult to match

with conventional continuous Galerkin methods. However, discontinuity between element

interfaces can be problematic during postprocessing, where there is often an implicit as-

sumption that the field upon which the postprocessing methodology is acting is smooth.

A class of postprocessing techniques was introduced in [22, 23], with an application to

uniform quadrilateral meshes, as a means of gaining increased accuracy from dG solutions

by performing convolution of a spline-based kernel against the dG field. As a natural

consequence of convolution, these filters also increased the smoothness of the output so-

lution. Building upon these concepts, smoothness-increasing accuracy-conserving (SIAC)

filters were proposed in [79, 92] as a means of introducing continuity at element interfaces

while maintaining the order of accuracy of the original input dG solution.

The postprocessor itself is simply the discontinuous Galerkin solution u convolved against

a linear combination of B-splines. That is, in one-dimension,

u?(x) =
1

h

∫ ∞
−∞

Kr+1,k+1

(
y − x
h

)
u(y)dy,

where u? is the postprocessed solution, h is the characteristic element length (elements are

line segments in 1D) and

Kr+1,k+1(x) =
r∑

γ=0

cr+1,k+1
γ ψ(k+1)(x− xγ),

is the convolution kernel, which is referred to as the convolution stencil. ψ(k+1) is the

B-spline of order k + 1 and cr+1,k+1
γ represent the stencil coefficients. The term r is the

upper bound on the polynomial degree that the B-splines are capable of reproducing through

convolution. The stencil width increases proportionately with r. xγ represent the positions

of the stencil nodes and are defined by xγ = − r
2 + γ, γ = 0, · · · , r, where r = 2k. This

pattern will form a line and a square lattice of regularly spaced stencil nodes in 1D and 2D,

respectively.
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The postprocessor takes as input an array of the polynomial modes used in the discon-

tinuous Galerkin method and produces the values of the postprocessed solution at a set of

specified grid points. These grid points are chosen to correspond with specific quadrature

points that can be used at the end of the simulation for error calculations. Postprocessing

of the entire domain is obtained by repeating the same procedure for all the grid points. In

two dimensions, the convolution stencil is the tensor product of 1D kernels. Therefore, the

postprocessed solution at (x, y) ∈ Ti, becomes

u?(x, y) =
1

h2

∫ ∞
−∞

∫ ∞
−∞

K

(
x1 − x
h

)
K

(
x2 − y
h

)
u(x1, x2)dx1dx2 (2.1)

where Ti is a triangular element, u is the approximate dG solution, and the 2D coordinate

system is denoted as (x1, x2).

To calculate the integral involved in the postprocessed solution in Equation (2.1) exactly,

the triangular elements that intersect the stencil support are decomposed into subelements

that respect the stencil nodes. The resulting integral is calculated as the summation of the

integrals over each subelement. Figure 2.5 depicts a possible decomposition of a triangular

element based on the stencil-mesh intersection.

As demonstrated in Figure 2.5(b), the triangular region is divided into subregions over

which there is no break in regularity. These subregions are then triangulated for ease of

implementation. The infinite integrals in Equation (2.1) may be transformed to finite local

sums over elements, using the compact support property of the stencil (Tj ∈ Supp{K}).

The extent of the stencil or Supp{K} is given by (3k + 1)h in each direction, where k is

the degree of the polynomial approximation. Each of the integrals over a triangle Tj then

becomes

(a) Triangular element (b) Integration regions

Figure 2.5: Demonstration of integration regions resulting from the stencil/mesh intersec-
tion. Dashed lines represent the breaks between stencil nodes. Solid red lines represent a
triangulation of the integration regions.



24∫ ∫
Tj

K

(
x1 − x
h

)
K

(
x2 − y
h

)
u(x1, x2)dx1dx2

=

N∑
n=0

∫ ∫
τn

K

(
x1 − x
h

)
K

(
x2 − y
h

)
u(x1, x2)dx1dx2 (2.2)

where N is the total number of triangular subregions formed in the triangular element Tj

as the result of stencil/mesh intersection, and τn is the nth triangular subregion of the

intersection. In the case that the stencil intersects a boundary of the domain, the stencil

either wraps around the domain for periodic solutions, or an asymmetric (one-sided) stencil

is used [72]. For further details on the discontinuous Galerkin method and postprocessing,

see [50, 51, 52, 23, 73].

The postprocessor in 3D has the following form:

u(x, y, z) = 1
H1H2H3

×
∫∞
−∞

∫∞
−∞

∫∞
−∞K(x1−xH1

)K(x2−yH2
)K(x3−zH3

)uh(x1, x2, x3)dx1dx2dx3 (2.3)

where uh is the approximate dG solution of the numerical simulation and Hi, where

i = 1, 2, 3 are the kernel scaling parameters in each direction. The convolution kernel

as presented in Equation (2.3) and the dG approximation uh are piecewise polynomials.

Therefore, to numerically evaluate the integral exactly to machine precision, the integration

domain must be subdivided into regions of sufficient continuity, where the integrand does

not have any break in regularity. In three dimensions, the footprint of the kernel is contained

in a cube that is further subdivided by the kernel knots into smaller cubes of H1×H2×H3

dimensions. A polyhedron clipping algorithm is applied to find the geometric intersection

between a tetrahedral mesh element and a cube element of the B-spline, as demonstrated

in [53].

To calculate the integral involved in the postprocessed solution in Equation (2.3) exactly,

similar to the 2D case, the tetrahedral elements covered by the stencil support are decom-

posed into subelements that respect the stencil nodes. The resulting integral is calculated

as the summation of the integrals over each subelement. Figure 2.6 depicts an example

decomposition of a tetrahedron element and a hexahedron based on the stencil-mesh inter-

section.

To evaluate the postprocessed solution at a point denoted by (x, y, z), the numerical

kernel is centered at that point, and the intersecting regions are subdivided and triangulated.

After discretizing Equation (2.3) becomes
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H1
H2

H3

(a) B-spline stencil support (b) Intersection between stencil
hexahedron and tetrahedron

Figure 2.6: An illustration of an intersection between a hexahedral numerical B-spline
kernel and a tetrahedral element.

u?(x, y, z) =
1

H1H2H3

∑
Tj∈Supp{K̂}Tj∫

K̄(x1)K̄(x2)K̄(x3)uh(x1, x2, x3)dx1dx2dx3 (2.4)

where K̄(xi) = K (xi−k)
Hi

, k = x, y, z is denoted for simplicity, and Supp{K} contains all the

tetrahedral elements Tj that intersect with the numerical kernel footprint. This integration

is performed for each triangulated subregion and summed together.



CHAPTER 3

DATA REUSE THROUGH ASSOCIATIVE

REORDERING

3.1 Background

The SIMD architecture of the GPU fits well with stencil computations due to the

inherent data-level parallelism. High performance of stencil computations on GPUs has

been demonstrated using techniques such as autotuning and automatic generation of code

[100]. Techniques such as data layout transformation and dynamic tiling at the thread level

have been demonstrated in [19]. Various frameworks have been developed for increased

data reuse with stencil operations [81, 9].

3.2 Algorithm

In previous work, stencil computations have often been defined as a method that updates

each point in a structured grid according to an expression that depends upon the values

of neighboring points in a fixed geometric pattern. For the case of discontinuous Galerkin

(dG) postprocessing, we use a more general definition of stencil computations, which is

the localized sampling area centered around a grid point that intersects with the mesh

geometry. We now define the key concepts used in the context of stencil computations

over unstructured meshes: computation grids, stencil operations, spatial data structures,

and buffered vs. in-place stencils. All of our tests were conducted over 2D unstructured

triangular meshes, and therefore we use the terms element and triangle interchangeably.

When evaluating stencil operations over a mesh, a set of evaluation points must be

derived in relation to the underlying geometry. This set of points over which the stencil

computations are evaluated is denoted as the computation grid. In the case of postpro-

cessing of dG solutions, the evaluation points are the quadrature points of the polynomial

interpolant defined over each element. Figure 3.1 illustrates an example of structured and

unstructured 2D triangular meshes along with the set of grid points derived from them.
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Figure 3.1: Structured and unstructured meshes and their respective structured and
unstructured grids.

In the case of structured meshes, the layout of the quadrature points will follow a regular

pattern. For unstructured meshes, the layout of the quadrature points will depend on

the size, shape, and orientation of the elements. Postprocessing of dG solutions requires

sampling the discontinuous piecewise functions that exist over the elements of the mesh.

We define stencil operations to be computations performed that update the value of a

grid point at which the stencil is centered, using information within the localized sampling

region. The computations depend upon function values of sampled points that lie within

the stencil. The stencil may differ for each grid point when computing stencil operations

over unstructured grids because the set of sample points within the stencil depends upon

the intersection between the stencil and the underlying geometry. The varying intersec-

tion spaces between grid points will lead to a nonregular sampling pattern that must be

calculated independently for each grid point.

As stencil operations rely on local neighborhood relationships between evaluation points,

it is a common operation to query all elements within some distance of a given point.

Therefore, an efficient method for accessing elements or points within some spatial region

is required. There exist a number of data structures used for spatially decomposing an
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unstructured grid or mesh in an efficient manner, such as k-d trees, uniform hash grids,

quad/oct trees, and bounding volume hierarchies [75]. Given that the stencils, in this case,

are square and grid points are roughly uniformly distributed, a uniform hash grid was the

most applicable choice [15].

We differentiate between stencil types based on how they operate over their solution

memory space. In-place stencils sample from the same memory locations where the solutions

are written, which is often the case with time-dependent iterative stencil computations.

In-place stencils must be tiled in some fashion to avoid race conditions. Buffered stencils

write the solution to a separate memory space from the space that is sampled to compute

the stencil. As such, buffered stencil operations can be processed independently of each

other without concern for race conditions. Postprocessing of dG solutions is a buffered

stencil operation.

Algorithm 1: SutherlandHodgman (SH) Algorithm

input : clipPolygon, subjectPolygon
output: intersectionPolygon

1 List outputList = subjectPolygon;
2 for Edge clipEdge in clipPolygon do
3 List inputList = outputList;
4 outputList.clear();
5 Point S = inputList.last;
6 for Point E in inputList do
7 if E inside clipEdge then
8 if S not inside clipEdge then
9 outputList.add(Intersection(S,E,clipEdge));

10 outputList.add(E);

11 else if S inside clipEdge then
12 outputList.add(Intersection(S,E,clipEdge));

13 S ← E;

14 intersectionPolygon ← outputList;

3.2.1 Stencil Evaluation

The most straightforward method for postprocessing is a per-point evaluation method

that iterates over the grid of points, and for each point finds all elements that intersect

with the stencil centered around that point. Those intersected regions are then integrated
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and the values summed to produce the value of postprocessed solution at that grid point.

We propose an alternate method that is a per-element evaluation method that iterates over

each element, and for every element finds all of the points whose stencil intersects with

that element. Each individual intersection is then integrated, which produces a number of

partial solutions that are scattered to multiple grid points. Figure 3.2 illustrates these two

methods. In per-point evaluation, integrations are all partial sums of the same grid point.

In per-element evaluation, every grid point whose stencil intersects with the given element

will have its value updated with a partial solution.

Postprocessing of dG solutions over unstructured meshes requires finding the intersec-

tions between the B-spline stencil and the mesh geometry. We use the Sutherland-Hodgman

algorithm [84] to find and triangulate these intersections. This clipping algorithm finds the

polygon that is the intersection between two given arbitrary convex polygons and divides

the intersection into triangular subregions. Figure 3.3 illustrates this triangulation process.

The convolution stencil used in the postprocessing algorithm is broken down into an array

of squares as depicted by the red dashed lines. Consequently, the problem of finding the

integration regions becomes the problem of finding the intersection areas between each

square of the stencil array and the triangular elements covered by the stencil support.

(a) Per-Point (b) Per-Element

Figure 3.2: Per-point versus per-element evaluation. Red points indicate grid points that
will updated by this evaluation. The bounds indicate the area covered by the stencil. In
the per-point case, the red dot indicates the point whose solution is being evaluated. In the
per-element case, the partial solutions are evaluated with respect to the green highlighted
element.
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Figure 3.3: A sample triangulation of an intersection region by the Sutherland-Hodgman
algorithm.

Figure 3.4 depicts a sample stencil/mesh overlap.

DG postprocessing consists of two main steps. The first is finding and triangulating the

stencil/mesh intersections, which will create a set of triangulated subregions. The second

is integrating those subregions according to Equation (2.2) and summing the results. The

resulting sum is the postprocessed value of the solution u∗ at that point.

3.2.2 Grid Construction

A spatial data structure is needed to efficiently search the elements of an unstructured

mesh in order to determine in which element a given point lies. We perform a uniform

subdivision of the mesh and each element/point is stored in a hash grid cell based on its

spatial coordinates. For per-point sampling, the hash grid stores the centroid location of

each element. On unstructured meshes, the centroid of a triangle may be located in a cell

while sections extend into neighboring cells. To ensure enclosure (i.e., no triangle spans

Figure 3.4: A sample stencil/mesh overlap. Dashed lines represent the 2D stencil as an
array of squares. The intersections of the dashed lines are stencil node locations. The
subfigure on the right illustrates the intersection of the green highlighted element and the
overlapping stencil square.
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more than two cells in any one dimension), a minimum size on the cells of the hash grid is

imposed. The minimum size used in our computation to guarantee enclosure is the length

of the longest edge among all triangles in the mesh. In the per-element case, the hash

grid stores the grid points instead of the triangular elements of the underlying mesh. The

decomposition in this case has no minimum size restriction on the cells of the grid.

When evaluating the intersection of a stencil and the triangular mesh, we first evaluate

the intersection of the stencil and the uniform hash grid. The intersected cells store indices

of the elements/points that must be tested for intersections with the given element/point

being evaluated. We choose the domain of the hash grid to be [0, 1] in both dimensions,

with per-point and per-element cell spacings cp and ce, respectively. We set cp and ce to be

some factor of s, which represents the longest side amongst all triangles in the mesh. For

our tests, we used cp = s and ce = s
2 . Construction of the uniform hash grid follows from

dividing the mesh into d 1
cp
e and d 1

ce
e cells in each dimension.

Given an element with vertices (A,B,C) and a grid point (x, y), we construct a bounding

box around the element with corners being defined as

minx = min (Ax, Bx, Cx) miny = min (Ay, By, Cy)

maxx = max (Ax, Bx, Cx) maxy = max (Ay, By, Cy).

The bounds are extended by half of the stencil width, which is defined to be w = s(3P +1),

where P is the polynomial order. The bounds of the per-element and per-point stencils

(e, p) are defined as

lefte = b
minx − w

2

ce
c leftp = b

x− w
2

cp
c − 1

righte = b
maxx + w

2

ce
c rightp = b

x+ w
2

cp
c+ 1

tope = b
maxy + w

2

ce
c topp = b

y + w
2

cp
c+ 1.

bottome = b
miny − w

2

ce
c bottomp = b

y − w
2

cp
c − 1 (3.1)

The hash grid is constructed in a similar manner for both methods, with the per-point hash

grid storing the triangle elements and the per-element hash grid storing the grid points.

The size of the intersection search space, in each dimension, for the per-point method

is the sum of the stencil width and the width of the cells surrounding the stencil, known



32

as the halo region [37]. The size of the intersection space for the per-element scheme is

the sum of the width of element bounding box and the stencil width. The resulting size of

the intersection search space has an upper bound of 2s + w for the per-point scheme, and

s + w for the per-element scheme. Figure 3.5 illustrates the difference in the intersection

search spaces between the two methods. Elements that lie within the halo cells around

the stencil but do not intersect the stencil are also tested, which results in additional

unnecessary stencil/triangle intersection tests in the per-point case. Data about the number

of intersection tests performed with the per-point and per-element hash grids are detailed

in Table 3.1.

A single point cannot span more than one cell, which allows for smaller cells that form

a tighter bound around the stencil, and additionally, the elimination of the halo region. We

found that setting the cell size equal to half the maximum triangle edge size produced good

results. This method makes a tradeoff by reducing uncoalesced reads from sampling the

unstructured mesh and increasing coalesced writes by splitting the solution in parts. Note

that not every triangle tested will intersect with the stencil around the grid point. Only

true positive intersections will be integrated.

Intersections from Halo Cells

Per-point Intersection Per-element Intersection

Element Bounding Box

Stencils

Figure 3.5: Per-point versus per-element mesh intersections on hash grid. The yellow
areas denote the stencil regions, the red area denotes the halo region, and the green area is
the element bounding box.
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Table 3.1: Number of intersection tests performed with the per-point and per-element
methods using linear polynomials.

Mesh # of Per-Point # of Per-Element
Size Intersection Tests Intersection Tests

4k 6647394 3525297
16k 26492809 14235618
64k 110778427 59277119
256k 455614318 243245703
1024k 1919070326 1017924543

Algorithm 2: Per-Point Post Processing

1 foreach Point p do
// Compute hash grid bounds

2 L,R,T,B ← PointHashGridBounds(p);
3 foreach Cell j within bounds L,R,T,B do
4 foreach Element e in Cell j do

// Compute and store per-element data

5 ED ← ElementData();
// Compute and triangulate stencil/element intersections

6 Regions ← SH(Stencil(p), e);
// Integrate triangulated regions

7 Solution[p] ← Solution[p] + Integrate(Regions, ED);

3.2.3 Per-Point Evaluation

To evaluate a stencil computation with the per-point method, a stencil is centered

around each grid point and the intersections between that stencil and the underlying mesh

geometry are found. When determining the mesh/stencil intersection, we first determine

the intersection between the hash grid and the stencil. A bounded region on the hash

grid is determined by centering the stencil at the grid point and expanding the borders

to the nearest cell boundary in each dimension, as denoted in Equation (3.1). Next, each

element within the bounded cells is tested for intersections. Intersected regions are then

triangulated with the Sutherland-Hodgman algorithm and integrated. The set of halo cells

around the bounded region must be included to ensure that all intersecting triangles are

tested. Algorithm 2 provides psuedocode for the per-point evaluation method. The element

data requires a minimum of (P+1)(P+2)
2 + 3 values to be read from memory per integration,

where P is the polynomial order.
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Algorithm 3: Per-Element Post Processing

1 foreach Element e do
// Compute hash grid bounds

2 L,R,T,B ← ElementHashGridBounds(e);
// Compute and store element data in Shared Memory

3 ED ← ElementData();
4 foreach Cell j within bounds L,R,T,B do
5 foreach Point p in Cell j do

// Compute and triangulate stencil/element intersections

6 Regions ← SH(Stencil(p), e);
// Integrate triangulated regions

7 PSolution[patch(e), p]← PSolution[patch(e), p] + Integrate(Regions, ED);

// Perform reduction on solution by patch

8 Solution ← Reduction(PSolution)

3.2.4 Per-Element Evaluation

The per-element evaluation scheme groups sample points by the underlying geometric

element in which they happen to fall. The per-element stencil bounds, denoted in Equation

(3.1), enclose an area that includes all grid points that have stencil intersections with the

bounding box of the triangle. From this bounded area, the set of grid points whose stencils

intersect the triangle is determined. Each grid point that falls within this region is tested for

a stencil/triangle intersection using the given triangle element. The evaluation points within

the triangle are then processed concurrently. The per-element scheme breaks up Equation

(2.2) into partial solutions. The partial solutions are grouped together by triangular element,

and each element will contribute partial solutions to every grid point whose stencil intersects

that triangle. We divide the mesh into patches, the details of which are described in the

next section, with the solution of each patch being accumulated into a separate memory

space. Algorithm 3 provides the psuedocode for the per-element evaluation method.

Data associated with the given element, such as the elemental coefficients and the bounds

of the triangle, can be stored and reused for all evaluations, which takes advantage of data

locality and leads to more coalesced memory accesses than in the per-point scheme. In the

per-element case, only the spatial offset of the grid point (two values in 2D) is required to

be read per integration, since the ( (P+1)(P+2)
2 + 3) values associated with the triangle are

reused for all integrations over that element.
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3.3 Implementation

The Sutherland-Hodgman algorithm presents a challenge in efficient postprocessing on

many-core architectures. The highly divergent nature of the intersection processing, caused

by branching logic, may lead to suboptimal performance on streaming SIMD architectures.

The polygon clipping that takes place within the Sutherland-Hodgman algorithm occurs at

irregularly-spaced intervals on an unstructured mesh. The GPU architecture relies on SIMD

parallelism to gain efficiency, and this irregularity causes divergence between threads that

are operating synchronously, which leads to noticeably poorer performance for unstructured

meshes vs. that of structured meshes, due to noncontiguous memory accesses and thread

divergence. Minimizing the total number of intersection tests is key to achieving high

performance with stencil computations over unstructured meshes on SIMD architectures.

In the per-point method, we assign a block to compute the solution for a given grid

point. On the GPU, we use a number of blocks equal to the SM count on the GPU (NSM ).

The blocks then iterate over the points in a strided fashion (i.e., Pi+k∗NB
, where Pi is the ith

point, NB is the number of concurrent blocks, and k is an incrementing integer). Within a

block, we assign threads to iterate over the element indices that lie within intersected cells of

the hash grid in a similar strided fashion. The stencil/element intersections are then tested

and integrated. There is no contention between stencils, as each stencil updates a discrete

grid point. In this case, it is trivial to achieve perfect load balancing between all processing

groups. In the per-element method, we assign a block to each patch. The threads within

the blocks iterate over the points stored within the intersected cells of the hash grid in a

strided manner. To maximize parallelism, we choose a number of blocks equal to the number

of SMs per card. For multi-GPU decomposition, we divide the mesh into NGPU × NSM

patches, where NGPU is the number of GPUs. In the multi-GPU implementation, we use

a two stage reduction. In the first stage, each GPU computes a reduction on the patches

that it processed, which is followed by a final reduction of the resulting solutions from the

second stage.

The per-element evaluation scheme requires that concurrent execution of stencil tiles

acting on the same memory space do not overlap. Overlapping stencils may introduce race

conditions where the value of a grid point is being updated by multiple stencils. To solve

this problem, we assign a separate scratch pad memory space to each concurrent stencil
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tile where the partial solutions are accumulated. After all the stencils have finished their

computations, all the partial solutions are summed to form the the final solution, which

requires additional memory space, but allows for maximum parallelism without the need

for pipe-lining of the stencils.

We implemented a spatially overlapped tiling scheme, introduced in [45], where each tile

uses a disjoint memory working set. Each logical block is assigned to process stencils in a

localized patch of the mesh. The partial solutions of each patch are stored in a separate

scratch pad memory space. This requires that grid points lying along the borders of patches

have multiple partial solutions. Grid points that fall within the intersection of stencils from

multiple patches will have a partial solution stored in each memory set of these patches.

Grid points that lie in the interior of a patch and only fall within stencils from that patch

will have a single solution in memory. Figure 3.6 illustrates an example patch division

and the partial solutions formed from the patches. The overlapped regions that lie within

the intersection of stencils from multiple patches are summed together to produce the final

result for those respective grid points, which leads to a relatively low amount of storage

overhead. The memory overhead, relative to the memory requirement for the total solution,

decreases as the mesh size increases.

Patch construction follows from simple recursive bisection of the mesh elements until

there are k patches of roughly equal size, with k being the number of concurrently executing

blocks. This method easily scales with the mesh size. As the domain size increases,

the number of concurrent stencils can be increased. Patch perimeter distance should be

minimized in order to minimize the overall memory overhead. Increasing the number of

Partial Solutions

Final Solution

+

+

+

Overlapping Regions

Figure 3.6: Example of mesh division into four patches.



37

tiles while decreasing the tile size has the effect of increasing overall memory overhead, but

allows for higher parallelism. The number of concurrent executing tiles has a maximum

upper bound equal to the number of geometric elements in the mesh. As the surface

area of a patch grows at a faster rate than the perimeter, the memory overhead tends to

be relatively low for large meshes, which also naturally extends to 3D with the memory

overhead determined by the surface area to volume ratios of the patches.

The baseline memory consumption is the minimum amount of memory required to store

the solution at all the evaluation grid points. The patch-based tiling method adds additional

memory overhead based on the number of grid points that fall within the intersection of

stencils from multiple patches. Each patch stores partial solutions for every grid point that

falls within the union of intersections spaces of the elements contained within the patch.

Only points near the boundaries of patches will require storing multiple partial solutions.

The ratio of boundary length to patch area decreases inversely proportional to mesh size for

a fixed number of patches. Figure 3.7 illustrates the scaling of memory overhead across the

range of test meshes. The perimeter of a patch grows linearly and the surface area grows

quadratically. The results demonstrate that relatively little overhead memory consumption

is required for larger meshes.

The final summation of the partial solutions requires only a linear reduction based

on the memory offset of each patch solution. In the reduction phase, we divide the grid

points based on the patch in which they fall. We then assign a block to each patch,

which performs the reduction on the partial solutions for those grid points. This process

eliminates write contention to the final solution space. The process contributes a minimal

amount of time to the overall process. We also explored a pipe-lined tiling method, but

this introduces additional synchronizations between pipeline stages. There is no additional

memory overhead introduced by pipe-lining, but there is reduction in overall performance.

3.4 Experimental Results

In this section we evaluate the performance of GPU implementations of the per-point

and per-element methods. In addition, we demonstrate the scalability of our approach on

1, 2, 4, and 8 GPUs. We ran our tests on a node with two Intel Xeon E5630 processors

(4 cores each) running at 2.53GHz, 128GB of memory, and eight NVIDIA Telsa M2090
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Figure 3.7: Memory overhead of per-element method using 16 patches with linear
polynomials.

GPUs using CUDA 5.0. We executed the tests across a series of 2D unstructured triangular

meshes created using Delaunay triangulation. We tested our implementations on two types

of meshes. The first was an unstructured mesh with roughly uniform sized triangles, shown

in Figure 3.8. The second type was an unstructured mesh with highly varying element sizes,

shown in Figure 3.9. We tested each of these mesh types across mesh sizes on the order of

4k, 16k, 64k, 256k, and 1024k triangles. We used periodic boundary conditions with linear,

quadratic, and cubic polynomials, which have 3, 6, and 10 coefficients, respectively, for

triangular elements. All tests were conducted with double precision floating point values.

The postprocessing is divided into two main components, the first finds the intersections

between the stencils and the underlying mesh geometry, and the second integrates those

subregions and accumulates the results. The intersection finding has linear complexity

with respect to the number of intersection tests performed, and the integral calculation

has a computational complexity on the order of O((P + 1)d), where P is the polynomial

order used in the postprocessing of the finite element solution and d is the dimension.

The higher computational complexity of integration calculation dominates the overall run-

time as the polynomial order increases, which is demonstrated by the smaller performance

increase between the the per-point and per-element evaluation scheme for quadratic and

cubic polynomials.
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Figure 3.8: Unstructured mesh with low variance.

Figure 3.9: Unstructured mesh with high variance.

3.4.1 Metrics

Figure 3.10 (a) provides FLOP metrics for the GPU over low-variance meshes. The

per-element method achieves a peak FLOP rating of 345 GFLOP/s for linear polynomials

on the 1024k mesh. For quadratic and cubic polynomials, the FLOP ratings are lower,

but the relative difference between the methods is larger. For quadratic polynomials, the

methods achieve a peak FLOP rating between 50 - 120 GFLOP/s, and for cubic polynomials

a peak rating of 30 - 60 GFLOP/s is seen. The computational complexity of the integral
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kernel grows quadratically with respect to the polynomial order. As polynomial order grows,

the integral kernel occupies a larger percent of the total run-time, and the ratio of time spent

computing intersections to time spent performing integrations decreases. In addition, the

integration kernel requires storage of a large number of intermediate values that grow on

the order of O((P + 1)2). These constraints lead to a lower FLOP performance at higher

polynomial orders.

Figure 3.10 (b) provides GPU flop ratings for high-variance meshes. The difference

in FLOP performance between the two methods is more noticeable on meshes with high

variance in element size, in part because the search area for the per-point method includes

a halo region that has a cell width equal to the largest element size. This difference in

search area has significantly more impact on performance than in the case of meshes with

low variance in element size.

The results in Figure 3.11 illustrate the relative performance of the per-point and per-

element method for low- and high-variance meshes. The timings of the per-point methods

have been normalized. The performance difference between the per-element and per-point

methods is greater on meshes with high variance in element sizes. The per-element method

achieves over a 2× speedup for the low-variance mesh with cubic polynomials, and over a

3× speedup for the high-variance mesh.

The results demonstrate a significant performance improvement of the per-element eval-

uation scheme over the per-point scheme for many-core architectures. Local data associated

with each element is accessed only once and reused for all evaluations within the element.

The heterogeneity of the unstructured mesh leads to irregular memory access patterns and

uncoalesced memory accesses. Fewer intersection tests combined with increased data reuse

contribute to increased performance. The results provide insight into the performance of

each evaluation method on many-core architectures. The streaming many-core architecture

of the GPU benefits greatly from reduced intersection tests and increased data reuse of

the local element information, in part due to the relatively low amount of cache per core.

We also implemented a single-threaded CPU version of the methods. We noticed that

implementations with low levels of concurrency see less benefit from data reuse. The

improvement of per-element evaluation over per-point evaluation is less significant, and

in a few cases even worse due to the increased overhead.
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variance (LV) and high-variance (HV) meshes.

3.4.2 Scaling

To demonstrate the scaling of the per-element method, we tested the per-element evalu-

ation method on 1, 2, 4, and 8 GPUs across the entire range of our test meshes. The results

demonstrate that the method has perfect linear scaling with respect to increased mesh size.

This scaling is to be expected for a problem with outer parallelism where there are no

inherent dependencies between grid points. Figure 3.12 illustrates the scaling of the GPU

per-element method across the range of test meshes for linear polynomials. Parallelization

across GPUs was achieved by subdividing the mesh into the NGPU × NSM patches and

evenly distributing them between the GPUs.
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CHAPTER 4

TUNING VECTORIZATION WIDTHS

4.1 Vectorization

Vectorization is the process by which a scalar operation that operates over a pair of

operands is converted to operate over a vector of pairs of operands (a series of adjacent

values). Vectorized instructions operate over multiple pairs of data in parallel. Perfor-

mance is improved through this added level of parallelism and increased memory efficiency.

Vectorization is one of the primary design aspects used in SIMD architectures that has

allowed modern GPUs to achieve beyond teraflop level performance.

Vector instruction widths typically range from 2 to 64 (2, 4, 8, 16, 32, or 64 adjacent data

elements). Vectorization of an algorithm can lead to significant performance improvements

in some cases. Streaming SIMD extensions (SSE) are an example of a vector instruction set

designed for the x86 architecture that has seen wide adoption. Modern GPUs group cores

into work units (32 or 64 cores typically) that operate in lock step like a vector processor.

Although the vector width of the hardware is generally fixed, the logical vector width

used by the programmer within a computation can range from 1 up to the width of the

computation, which is done by decreasing the vector width and increasing the number of

concurrent vectors. For example, with a hardware vector width of 8, one could compute 1

operation of width 8, 2 operations of width 4, 4 operations of width 2, or 8 operations of

width 1. Adjusting this logical vector width in conjunction with the number of concurrent

vectors can have a significant impact on overall performance and throughput.

Achieving high performance with complex code bases that involve numerous architecture

specific parameters remains a difficult task. Often, tedious manual optimizations are

required. This process is time consuming for the programmer, and manual tuning rarely

yields the optimal parameter configuration. Autotuning is a method by which optimal or

near optimal run-time configuration parameters are selected through an automated testing

process [65]. This technique has proven to be a valuable tool for improving performance
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and increasing programmer efficiency.

4.2 Autotuning

The goal of autotuning is often to optimize execution time, memory usage, or energy

consumption. It has been demonstrated that this goal can be achieved by exploiting domain-

specific knowledge [93, 57], or through tuning application-independent parameters [86].

Autotuning has proven to be a valuable technique for exploring the configuration search

space within applications on multi-core and many-core architectures. It can be used to

optimize parallel applications in an automated fashion, which lifts the burden from the

programmer of having to tediously test a large number of run-time configurations. On

GPUs, it has been noted that a number of application-independent parameters, such as

block size, number of blocks, and loop unrolling factors, can be tuned [88].

Empirical autotuning seeks to find the optimal runtime configuration by searching

through a combinatorial set of parameter configurations [98]. This automated process

recompiles/retests the code with different parameter configurations and compares perfor-

mance against a set of benchmarks. Some autotuning frameworks adjust runtime parameters

which allows the code to be retested without the need for recompilation [70]. However, this

process often requires an expensive combinatorial search process to exhaustively examine

the entire parameter domain, which is often prohibitively slow. Typically a domain informed

search space representation is required for good performance because no single set of

application independent parameters works well for all problems. A number of frameworks

have been developed which use heuristics to prune the search space and tune the program

based on a set of configurable parameters [3, 35].

Model-driven autotuning has been used in various applications to decrease the time for

exploring a large search space. Model driven approaches attempt to predict the performance

behavior of configurations. Often the model is fitted with a set of reference points that are

generated randomly via Monte Carlo sampling. One distinct advantage of the model-driven

approach is that good code can be produced from an accurate analytical model.

Often model-driven and empirical autotuning are combined. First, the search space is

reduced to a few promising areas based on the analytical model, and then those areas are

searched empirically to find the optimal configurations. These methods are often nonlinear,
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and there is no guarantee that the autotuning will find the global minimum as it may get

stuck within a local minimum.

Predictive autotuning goes even further than the model-driven approach and attempts

to train the analytical model through statistical and machine learning techniques. These

approaches have seen some success with nonlinear regression modeling techniques such as

regression trees [16]. Various other machine learning and statistical prediction techniques

have also been successfully applied [56, 80, 29, 38, 35].

4.3 Application

This work analyzes the impact of tuning vectorization widths with the application of

3D dG postprocessing over tetrahedral meshes. 3D dG postprocessing involves computing

a series of dense integral computations which are reduced to produce a final value for each

postprocessed point.

4.3.1 DG Postprocessing

From a computational perspective, postprocessing over tetrahedral meshes is a challeng-

ing task. Computing the postprocessed value at a single point (x, y, z) requires evaluating

the formula given in Equation (4.1).

u?(x, y, z) =
1

H1H2H3

∑
Tj∈Supp{K̂}Tj

∫
K̄(x1)K̄(x2)K̄(x3)uh(x1, x2, x3)dx1dx2dx3 (4.1)

Evaluation can be divided into two distinct steps:

1. Identifying the support of the numerical B-spline kernel, centered at (x, y, z), over the

dG mesh, followed by calculating the geometric intersection to obtain the integration

regions.

2. Numerically evaluating the integrals by means of quadrature rules.

In the case of structured tetrahedral meshes, it suffices to find the extent of the numerical

kernel on the basic hexahedral mesh that has a uniform structure. The footprint of the

numerical kernel over such a uniform mesh can be found in constant computational time.
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When dealing with unstructured meshes, the elements can be grouped within cells of a hash

grid. To find the integration regions, we use a modified version of the Sutherland-Hodgman

clipping algorithm. In this algorithm, we loop through the faces of one polyhedron and clip

it against the second polyhedron. The computational complexity of this algorithm is O(n),

where n = f1 × f2 and fi, i = 1, 2 indicates the number of faces in each polyhedron. For

structured tetrahedral meshes, the support of the numerical kernel spans 3k+ 1 hexahedral

elements in each direction, with k being the degree of the approximation. Each evaluation

point requires processing 6×(3k+1)3 tetrahedra for the configuration we chose in our tests.

As each tetrahedral element intersects with at most eight cubes of the numerical kernel, the

cost of finding all the intersection regions will therefore be 8× 6× 24(3k + 1)3 or O(k3).

To evaluate a stencil computation around a given point, a stencil is centered at that

point, and the intersections between that stencil and the underlying mesh geometry are

found. There are two general strategies for this evaluation [42]: per-point and per-element

evaluation. The main difference between these strategies is that the per-point method

iterates over points while computing stencil intersections with a list of elements, whereas

the per-element method iterates over elements while computing stencil intersections with a

list of points. First, the intersection between the hash grid and the stencil is determined.

A bounded region on the hash grid is determined by centering the stencil at the grid point

and expanding the borders to the nearest cell boundary in each dimension. Next, each

element/point within the bounded cells is tested for intersections. Intersected regions are

then tetrahedralized and integrated.

The algorithm performs a series of tetrahedron/plane clipping tests, with the intersection

of each test being divided into zero to three tetrahedrons, which are then stored in a list to

be tested against the subsequent planes. These tests are performed for the six planes that

coincide with the faces of the hexahedron. The result of this clipping algorithm will be a

list of zero or more tetrahedrons that are subregions of the mesh/stencil intersection. The

convolution stencil used in the postprocessing algorithm is broken down into a lattice of

cubes (a 2D illustration of this is depicted in Figure 4.1). This intersection finding in 3D is

much more computationally demanding than in the 2D case. In 2D, a triangle/quadrilateral

intersection can form at most five triangles, whereas in 3D, a tetrahedron/hexahedron

intersection can form up to 12 tetrahedrons. The 3D computation requires a significant



48

Figure 4.1: A sample stencil/mesh overlap depicted in 2D. Dashed lines represent the 2D
stencil as an array of squares. The region on the right illustrates the intersection of the
green highlighted element and the overlapping stencil square.

amount of additional branching logic and dynamically allocated memory, both of which

lower SIMD efficiency.

DG postprocessing consists of two main steps. Step 1 finds and tetrahedralizes the

stencil/mesh intersections. Step 2 integrates those tetrahedralized subregions according to

Equation (4.1) and sums the results. The resulting sum is the postprocessed value of the

solution u∗ at that point. In our tests, we used the per-element method [42]. This method

processes each mesh element individually and stores partial solutions for each point whose

stencil intersects with the given element. A reduction performed at the end sums the values

of the partial solutions.

4.3.2 Grid Construction

As in the 2D case, we use a uniform hash grid to organize the point/elements of the

mesh for easy searching. When evaluating the intersection of a stencil and a mesh, first

the intersection of the stencil and the uniform hash grid is evaluated. The intersected cells

store the indices of the elements/points that must be tested for intersections with the given

element/point being evaluated. We choose the domain of the hash grid to be [0, 1]3, with

per-point and per-element cell spacings cp and ce, respectively. In our tests, since we used

a tetrahedral decomposition from a structured grid of hexahedrons, we set cp and ce to be

the length of the hexahedral cells. Construction of the uniform hash grid then matches the

exact hexahedral cell formation of the original mesh.

The hash grid is constructed in a similar manner for both methods, with the per-point
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hash grid storing the tetrahedron elements and the per-element hash grid storing the grid

points. The size of the intersection search space, in each dimension, for the per-point

method is the sum of the stencil width and the width of the cells surrounding the stencil,

known as the halo region [37]. The size of the intersection space for the per-element scheme

is the sum of the width of element bounding box and the stencil width. The resulting size

of the intersection search space is larger for the per-point scheme than for the per-element

scheme.

The geometric intersection is computed through a simple convex polygon clipping algo-

rithm. Given a hexahedron and a tetrahedron, the algorithm tests each tetrahedron against

each face of the hexahedron using a plane intersection test. The part of the tetrahedron that

lies on the inside of a given plane, based on the face normal, is kept and tetrahedralized.

This intersection computation will generate a new set of tetrahedrons that are put into a

list and tested against the next face of the hexahedron. The final result will be a list of

tetrahedrons that lie within the intersection of the original tetrahedron and the hexahedron.

There are six possible intersection scenarios for a tetrahedron and a plane. The variability

in the intersection tests, combined with the fact that the number of tetrahedral regions

generated is data dependent and can range from 0 to 12, yields a highly branch-divergent

algorithm. The geometric intersection computation is executed a minimum of six times and

has a branch for each of the six intersection scenarios. Thread divergence on the GPU can

have a significant impact on performance. In the worst case, it can cause all the threads in

the warp to execute in a serialized fashion.

The integration computation is computed for each quadrature point within the tetra-

hedron. The number of quadrature points Nqp depends upon the degree of the polynomial

over the element, and is defined as

Q0 = d4p+ 3

2
e Q1 = 2p+ 1 Q2 = 2p+ 1

Nqp = Q0Q1Q2

where p is the polynomial order. Each subregion integration requires 16 values to be

transferred to the GPU: 1 for the point index, 3 for the (x, y, z) coordinates of the point,

and 12 for the coordinates of the four vertices of the tetrahedral subregion. A set of

quadrature points is mapped to the tetrahedron in order to integrate over the subregion.
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This integration requires evaluating the function at 36 quadrature points for p = 1 (linear

polynomials), and at 150 quadrature points for p = 2 (quadratic polynomials).

At the core of the postprocessing algorithm is an integration operation, illustrated by

Equation (4.1). This integration is computed via quadrature using Jacobi polynomials. A

series of vector dot products must be computed to evaluate uh(x1, x2, x3). The integration

operation involves successively evaluating Jacobi polynomials at quadrature points. These

values are stored temporarily, and then later a reduction is performed that accumulates into

the resulting integration value. The vector width parameter influences data-level parallelism

within the computation and the amount of shared memory required.

4.3.3 Loop Restructuring

Full vectorization requires larger memory footprints per operation, which increases the

likelihood of having larger gaps of unused memory in shared memory. Partially vectorized

operations allow for more operations with smaller memory footprints to be allocated to

the shared memory space, reducing the likelihood of large memory gaps. A nonvectorized

computation assigns each thread to a different operation and allows for perfect utilization

of shared memory. Such a method requires more per-instance memory overhead and also

decreases the opportunities for coalesced memory accesses, which is a significant source of

performance on SIMD architectures. Mapping threads with partial vectorization compared

to full vectorization is illustrated in Figure 4.2.

The vectorization can be varied by decreasing the vector width and increasing number

of concurrent vectors or vice versa. A partially vectorized computation has some number

of threads equal to the stride length (logical vector width) assigned to each operation. The

Threads

Operation A Operation BOperation A

Partially Vectorized

Time

Operation B Operation BOperation A

Threads
Fully Vectorized

Figure 4.2: Example of varying thread vectorization width.
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threads iterate over the vector by shifting their memory offsets by the stride length in each

iteration. A fully vectorized computation corresponds with a stride that is equal to the

vector width. In that case, a thread is assigned to each element in the vector for each

iteration.

Listing 4.1 provides simple pseudocode of how a computation could be nonvectorized,

partially vectorized, and fully vectorized. In this example, we use component-wise vector

addition Ai = Bi + Ci, where the arrays A, B, and C are each an array of structures.

Within a nonvectorized computation, each local operation has a single thread assigned to

it. All the data associated with that operation are accessed and stored locally by that

thread. Within a partially vectorized operation, the number of threads assigned is equal to

the stride length; a value greater than 1 and less than the total width of the computation.

1 Vectors A[WIDTH], B[WIDTH], C[WIDTH];
2 int vID; //vector ID
3 int vLane = threadID % THREADS PER VECTOR;
4 const int stride = THREADS PER VECTOR;
5 const int RPB = REGIONS PER BLOCK;
6 const int TPB = THREADS PER BLOCK;
7

8 //No Vectorization
9 vID = threadID;

10 for(vID; vID < NUM REGIONS; vID += TPB) {
11 int offset = vID∗WIDTH;
12 for( int i=0; i < WIDTH; i++) {
13 A[offset + i] = B[offset + i] + C[offset + i ];
14 }
15 }
16

17 //Partial Vectorization
18 vID = threadID / THREADS PER VECTOR;
19 for(vID; vID < NUM REGIONS; vID += RPB) {
20 int offset = vID∗WIDTH;
21 for( int i=vLane; i < WIDTH; i += stride) {
22 A[offset + i] = B[offset + i] + C[offset + i ];
23 }
24 }
25

26 //Full Vectorization
27 vID = 0;
28 for(vID; vID < NUM REGIONS; vID++) {
29 int offset = vID∗WIDTH;
30 A[offset + vLane] = B[offset + vLane] + C[offset + vLane];
31 }

Listing 4.1: Vectorization examples.
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These threads iterate over the vector until all elements have been computed. With full

vectorization, a thread is assigned to the operation for each element in the vector. In this

case, the ‘for’ loop is unnecessary and is omitted from the code.

Figure 4.3 illustrates the progress of four operations that have been parallelized with

four threads using no vectorization, partial vectorization, and full vectorization. In theory,

each of these mappings should be equivalent in terms of work and efficiency. However,

when these approaches are mapped to the GPU, there are significant differences in terms

of thread/shared memory occupancy and warp scheduling. These differences can have a

major impact on performance.

4.3.4 Tuning Parameters

Within a filtering operation, for a given polynomial and quadrature order, we adjusted

three autotuning parameters: vector width, regions per block, and block count. We used 2D
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Figure 4.3: Illustration of vectorization with none, partial, and full. Given four operations
(A, B, C, D) with four suboperations each and four threads (0, 1, 2, 3), the work can be
divided up as shown. Red squares indicate suboperations that will be completed in the next
iteration, and gray squares indicate previously completed suboperations.
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thread blocks where the x dimension was set to the vector width and the y dimension set

to the number of integration instances on which block will operate (regions per block). We

autotuned the methods using C++ templates combined with scripts that alter the template

values, recompile, and test the new configuration.

• Parameter 1 - Vector Width: The vector width is the number of threads as-

signed to a process in a particular region. We chose values for VECTOR WIDTH

ranging between 1 and the max vector width for each test. We favored numbers that

were multiples of 16 or 32, as they divide easily into warps of size 32 which Nvidia

GPUs use. VECTOR WIDTH1 represents the values used in the linear tests, and

VECTOR WIDTH2 represents the values used in the quadratic tests.

VECTOR WIDTH1 ∈ {1, 2, 4, 8, 12, 16, 18, 24, 32, 36}
VECTOR WIDTH2 ∈ {16, 32, 48, 64, 80, 96, 112, 128, 144, 150}

• Parameter 2 - Regions Per Block: One of the most important tuning parameters

in a GPU kernel is often the block size (number of threads per block). We calculate

this based on two independent parameters, the vector width and the region count. The

regions per block is the number of independent regions that a block will operate over

(i.e., the number of concurrent vectors). BLOCK SIZE is calculated by multiplying

VECTOR WIDTH and REGIONS PER BLOCK.

REGIONS PER BLOCK ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
BLOCK SIZE = VECTOR WIDTH× REGIONS PER BLOCK

• Parameter 3 - Block Count: Another important parameter is the number of blocks

launched per GPU kernel. The optimal number of blocks is often a multiple of the

number of SMs on the card. The GPU we used in our tests has 13 SMs, so we chose

multiples of 13 for BLOCK COUNT.

BLOCK COUNT ∈ {13, 26, 39, 52, 65, 78, 91, 104}

4.3.5 Implementation

In our implementation, we pair a CPU core with a GPU. The CPU iterates over each

element, using the per-element method, and computes the set of points whose stencil
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intersects that element. This set of subregions is then sent to the GPU while the CPU

continues with the next set of intersection tests. On the GPU, the thread blocks iterate

over the subregions in a strided fashion (i.e., Pi+k∗NB
, where Pi is the ith point, NB is

the number of concurrent blocks, and k is an incrementing integer). Within a block, Npq

threads are assigned to each subregion, with each thread computing the value at a specific

quadrature point. A reduction is performed over the values produced from each quadrature

point, which yields the integrated value over the subregion.

We use a mesh division algorithm that partitions the mesh into nonoverlapping patches [42].

A 3D uniform hash grid is created and each point/element is distributed into the appropriate

bins based on its spatial position. The grid is then divided into patches (eight in our

tests). A separate memory space is assigned to each patch where the partial solutions are

accumulated. A reduction is computed at the end to sum the values and produce the final

postprocessed solution for each point.

This tiling approach incurs additional memory overhead based on the number of grid

points that fall within the intersection of stencils from multiple patches. The ratio of

memory overhead to base memory consumption needed to store the solution is proportional

to the ratio of the patch surface area to the patch volume. Each patch stores partial

solutions for every grid point that falls within the union of intersections spaces of the

elements contained within the patch. Thus, only points near the boundaries of patches will

require storing multiple partial solutions.

The final summation of the partial solutions requires only a linear reduction based on

the memory offset of each patch solution. In the reduction phase, we divide the grid points

based upon which patch they lie in. We then assign a block to each patch that performs

the reduction on the partial solutions for those grid points. This patch division eliminates

write contention to the final solution space. The reduction contributes a minimal amount

of time to the overall process.

4.4 Experimental Results

In this section, we evaluate the performance of our method for dG postprocessing. We

ran our tests on a node with an Intel Xeon E5-2640 processor running at 2.5GHz, 128GB of

memory, and a NVIDIA Tesla K20c GPU using CUDA 5.0. We compiled our code with g++
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4.7.2 and nvcc 5.5. The dG postprocessing tests were executed on structured tetrahedral

meshes consisting of 103 hexahedrons, each being subdivided into six tetrahedrons. We

used periodic boundary conditions with linear and quadratic polynomials. All tests were

conducted with double precision floating point values.

Table 4.1 provides metrics for the GPU and CPU architectures used in our tests. The

Intel Xeon E5-2640 has 2.5MB of cache per core, wheras the Nvidia K20c has 0.85kB of

cache per core. This small amount of chache on the K20c is somewhat offset having roughly

5× higher memory bandwidth than the Intel Xeon. GPUs generally perform better with

algorithms that have high FLOPS/byte ratios due to their limited cache size and streaming

SIMD architecture.

In our autotuning method, we used three adjustable parameters, vector width, regions

per block, and block count. We set the x dimension of the thread blocks to the vector width

and the y dimension to the number of integration instances (regions per block) that a block

will compute. Figure 4.4 illustrates our autotuning results across varying vector widths and

regions per block. Each cell represents the best results for a given vector width and region

per block size across the range of block counts. Figure 4.5 provides all the runtime results

for the autotuning tests, ordered by vector width.

A full integration computation requires IW ∗ (QX +QY ∗QZ +QZ + 1) + 21 doubles

(8 bytes) of memory in cache/shared memory. For linear polynomials, IW = 36, QX =

3, QY = 2, QZ = 2, which yields 3048 bytes per integration operation. Quadratic poly-

nomials require significantly more memory with IW = 150, QX = 4, QY = 3, QZ = 3,

yielding 20568 bytes of cache/shared memory per integration. This computation consumes

a significant portion of the 48k shared memory per SM on the NVIDIA K20c. Up to two

Table 4.1: CPU/GPU comparison

Intel Nvidia
Xeon E5-2640 Tesla K20c

Number of Cores 6 2496 (13× 192)

Clock Speed 2.50 GHz 0.71 GHz

Cache 15 MB 2.06 MB

Cache Per Core 2.5 MB .85 kB

Peak FLOPS 120 GFLOPS 1.17 TFLOPS
(Double Precision)

Memory Bandwidth 42.6 GB/s 208 GB/s
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integration operations could be stored, leaving close to 8k shared memory still available.

Allowing for partial vectorization increases the cache utilization, which can offer significant

boosts in performance.

Since each quadrature point on the mesh can be processed independently, the complexity

of the postprocessing grows linearly with respect to the number of mesh elements. Using

linear polynomials on structured tetrahedral meshes, each quadrature point will have to

check for intersections with a 5 × 5 region of hexahedral elements around it. There are

approximately 750 possible intersections (with each intersection being subdivided into up to
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12 smaller tetrahedrons) per point, followed by the subsequent integration of those regions.

For even a small mesh (103 ∼ 6000 Tetrahedrons) the number of intersection/integrations

equates to ∼ 18× 106. This process will be even more computationally intense for meshes

with higher variance in element size.

Figure 4.6 provides the results for relative speed-ups of integration over linear and

quadratic polynomials with varying vector widths compared to a full vectorization baseline.

Each individual bar represents the minimum runtime of a set of results that were autotuned

for the given vector width. We used an exhaustive search method to find the optimal

configuration among our set of parameters. The results have been normalized with respect

to the time taken to integrate with full vectorization (black bar). Green bars indicate

results that are faster than full vectorization and red bars indicate results that are slower.

For linear polynomials, we found that vector widths of 8, 12, and 18 provide a speed-up of

19%, 20%, and 50%, respectively. For quadratic polynomials, we found that vector widths

of 8, 16, 32, and 80 provide a speed-up of 20%, 25%, 20%, and 12%, respectively.

On one end of the spectrum there are nonvectorized computations with one thread per

operation. Nonvectorized operations generally incur significant loop overhead and reduce

the likelihood of coalesced memory accesses. On the other end are fully vectorized computa-

tions, which often do not have the highest shared memory utilization. Partial vectorization

widths in the middle of the spectrum show significant performance improvements for linear

polynomials. Vectorization widths close to half of the total vector width demonstrate the
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Figure 4.6: Results based on varying vector widths. Values have been normalized with
respect to full vectorization (black bar). Green > 1.0, Red < 1.0, Black = 1.0.
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best performance with quadratic polynomials.

These autotuning results indicate that determining the optimal combination of param-

eters is nonobvious and best suited for an automated search of some sort. In the linear

polynomial integration, the vector width of 18 exhibits a 50% performance improvement

whereas a vector width of 16 incurs a 20% performance degradation. This pattern is also

witnessed in the quadratic integration results, where vector widths of 8, 16, 32, and 80 see

improvements, but 48 and 64 do not. Typically vector widths are chosen to be multiples

of 32 and 64 to conform with the size of work groups used on the GPUs. It is generally

not clear to the programmer which combination will yield the best result without extensive

testing.

Figure 4.7 provides the FLOPS measurements for the linear and quadratic tests. We

see significant gains in terms of FLOPS over full vectorization in some cases. Analysis

through use of the Nvidia CUDA visual profiler indicates these gains in performance are

due to better use of cache/shared memory. We also find that vector widths close to full

vectorization often incur significant performance degradation. This degradation is likely due

to the lack of any extra instances of integration operations fitting in memory while requiring

loop overhead and additional passes of the integration operation to span the whole vector.
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Figure 4.7: FLOPS measurements for linear and quadratic polynomials. (Vector width:
linear/quadratic)



CHAPTER 5

DYNAMIC COMPRESSED SPARSE ROW

5.1 Sparse Matrices

5.1.1 Sparse Matrix Formats

The coordinate (COO) format is the simplest sparse-matrix format. It represents a

matrix with three vectors holding the row indices, column indices, and values for all nonzero

entries in the matrix. The entries within a COO format must be sorted by row in order to

efficiently perform an SpMV operation. SpMV operations are conducted in parallel through

segmented reductions over the length of the arrays. Tracking which thread has processed

the final entry in a row requires explicit interthread communication.

The compressed sparse row/column (CSR/CSC) formats have arrays that fully store

two of the three sets, either the column indices or the row indices in addition to the values.

Either the rows or columns (in CSR or CSC, respectively) are compressed to store only the

offsets into the other two arrays. For CSR, entry i and i + 1 in the row offsets array will

store the starting and ending offsets for row i. CSR has been shown to be one of the best

formats in terms of memory usage and SpMV efficiency due to its fully compressed nature

and has become widely used [34]. CSR has a greater memory efficiency than COO, which is

a significant factor in speeding up SpMV operations due to decreased memory bandwidth

usage.

The ellpack (ELL) format uses two arrays, each of size m × k (where m is the number

of rows and k is a fixed width), to store the column indices and the values of the matrix

[30, 31]. These arrays are stored in column-major order to allow for efficient parallel access

across rows. This format is best suited for matrices that have a fixed number of entries

per row. Allocating enough memory in each row to store the entire matrix is prohibitively

expensive for ELL when a matrix contains even one long row.

The hybrid-ellpack (HYB) format offers a compromise by using a combination of ELL

and COO. It stores as many entries as possible in an ELL portion, and the overflow from
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rows with a number of entries greater than the fixed ELL width is stored in a COO portion.

ELL and HYB have become popular on SIMD architectures due to the ability of thread

warps to look through consecutive rows in an efficient parallel manner [12].

The diagonal format (DIA) is best suited for banded matrices. It is formed by two

arrays which store the nonzero data and the offsets from the main diagonal. The nonzero

values are stored in an m× k array where m is the number of rows in the matrix and k is

the maximum number of nonzeros out of any row in the matrix. The offsets are stored with

respect to the main diagonal, with positive offsets being to the right and negative offsets

being to the left. The SpMV parallelization of this format is similar to that of ELL with

one thread/vector being assigned to each row in the matrix. The values array is statically

sized, similar to ELL, which restricts its ability to handle insertions.

A number of other specialized sparse-matrix formats have been developed, including

jagged diagonal storage (JDS), block diagonal (BDIA), skyline storage (SKS), tiled COO

(TCOO), block ELL (BELL), and sliced-ELL (SELL) [55], all of which offer improved

performance for specific matrix types. Blocked variants of these and other formats work by

storing localized entries in blocks for better data locality and a reduction in index storage.

“Cocktail” frameworks that mix and match matrix formats to fit specific subsets of the

matrix have been developed, but they require significant preprocessing and are not easily

modified dynamically [83]. Garland et al. have provided detailed reviews of the most

common sparse matrix formats [30, 31, 91], as well as an analysis of their performance on

throughput-oriented many-core processors [13].

Block formats such as BRC [6] and BCCOO [96] have limited ability to add in additional

entries. BRC can add new entries only if those entries correspond to zeros within blocks

that have been stored. BCCOO can handle the addition of new entries, but it suffers from

many of the same problems as COO. Also, new insertions will not always follow a blocked

structure, so additional blocks may be sparse, which lowers memory efficiency.

Many sparse matrix formats are fully compressed and do not allow additional entries to

be added to the matrix dynamically. Adding additional entries to a CSR matrix requires

rebuilding the entire matrix, since there is no free space between entries. Of existing formats,

COO is the most amenable to dynamic updates because new entries can be placed at the

end of the data structure. However, updating a COO matrix in parallel requires atomic
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operations to keep track of currently available memory locations. The ELL/HYB formats

allow for some additional entries to be added in a limited fashion. ELL cannot add in

more entries per row than the given width of the matrix, and while the HYB format has

a COO matrix to handle overflow from the ELL portion, it cannot be efficiently updated

in parallel since atomic operations are required and the COO portion must maintain the

sorted property.

5.1.2 Sparse Matrix Algorithms on the GPU

A great deal of research has been devoted to improving the efficiency of SpMV, which has

been studied on both multicore and many-core architectures. Williams et al. demonstrated

the efficacy of using architecture-specific data structures to optimize performance [94, 46].

Since SpMV is a bandwidth-limited operation, research has also produced other methods,

such as automatic tuning, blocking, and tiling, to increase cache hit rates and decrease

bandwidth usage [97, 21, 69].

The two most common CSR SpMV algorithms are CSR-scalar and CSR-vector. CSR-

scalar assigns one thread per row and CSR-vector assigns a vector of threads to each

row. On SIMD architectures the vector size generally never exceeds a full warp (to avoid

explicit synchronization between threads). A vectorized approach allows for more efficient

coalesced memory accesses. A hybrid approach has been shown to be effective. This method

selectively picks between CSR-scalar and CSR-vector based on the row length [34]. Adaptive

algorithms that group rows together by length and assign separate kernels to each group

have also been explored [5].

Graph applications often use sparse binary adjacency matrices to represent graphs and

translate graph operations to linear algebraic operations [40]. Finding the transitive closure

of a graph can be done through repeated multiplication of its adjacency matrix. The

transitive closure of an adjacency matrix R calculates the union of successive powers (Ri)

of the matrix. The result is Ri having a nonzero between any pair of nodes connected by a

path of length i. Thus, the union (addition/binary-or) of all R, . . . Rn will have a nonzero

entry for every pair of nodes that are connected by a path of length ≤ n. This process of

unioning successive powers of R can be continued until a fixed point is reached. All nodes

that are connected by a path of any length will be marked in the matrix.



62

Bandwidth limited sparse matrix-matrix operations such as sparse matrix-matrix ad-

dition A + B = C and sparse matrix-matrix multiplication AB = C remain difficult to

compute efficiently. These operations require creating a new sparse matrix C whose entries

and sparsity will depend on the sparsity patterns of A and B, and often will have a differing

number of elements than either. Current implementations generally look globally at both

matrices and find the intersection patterns using temporary workspace memory, after which

the new matrix C can be generated [14, 41], which often involves format conversions that

consume additional time and memory.

5.2 Dynamic Compressed Sparse Row (DCSR)

Dynamic compressed sparse row (DCSR) uses a method of dynamic allocation to add

additional entries without rebuilding the matrix. DCSR uses a row offset array, representing

a dense array of ordered rows, and for each a fixed number of segment offsets. The column

indices and values are stored in arrays that are logically divided into these data segments

in the same way that CSR row offsets partition the column indices and values. Each such

segment is a contiguous portion of memory that stores entries within a row. Segments may

contain more space than entries to allow for future insertions. The contiguous layout of

entries within the set of segments for a given row is equivalent to the corresponding row in

CSR format.

Initializing the matrix can be done in one of two ways. Either a matrix can be loaded

from another format (e.g., COO or CSR) or the matrix can be initialized as blank. In the

latter case, each row is assigned an initial number of entries (an initial segment size) in

the column indices and values arrays. The row offset array is initialized with space for k

segment offset pairs, with either no allocated segments or a single allocated segment of size

µ per row. The latter case will consume the same amount of memory as an ELL matrix

with a row width of µ, except in row-major order instead of column-major order. To allow

for dynamic allocation, we maintain a larger memory buffer than needed and use simple

bump-pointer allocation to add new segments. This allocation pointer is set to the end of

the currently used space (rows×µ in the case of a new matrix). A maximum size of memory

buffer for the columns and values arrays is specified by the user. Figure 5.1 provides an

illustrative comparison of CSR, HYB, and DCSR formats.
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Figure 5.1: Comparison of CSR, DCSR, and HYB formats.

The format consists of four arrays for column indices, values, row offsets, and row sizes,

in addition to a memory allocation pointer. The row offsets array functions in a similar

manner to that of its CSR counterpart, except that both a beginning and ending offset are

stored and space exists for up to k such pairs per row. This table is encoded as a strided array

where the starting and ending offsets of segment k in row i are indexed by (i ∗ 2 + k ∗ pitch)

and (i ∗ 2 + k ∗ pitch + 1), respectively. The pitch may be defined as a value convenient

for cache performance such that pitch ≥ 2 ∗ rows. Each set of offsets for a given segment

lies within a different cache line, which serves to increase memory aligned accesses. The

number of memory segment offset pairs (the max k) is an adjustable parameter specified at

matrix construction. The column indices and values correspond 1:1, just as in CSR. Unlike

CSR, however, there may be more than one memory segment assigned to a given row, and
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the segments need not be contiguous. As the last segment for a row may not be full, the

actual row sizes are maintained so the used portion of each segment is known.

Explicitly storing row sizes allows for optimization techniques such as the adaptive bin-

ning strategy used in adaptive CSR (ACSR)[5]. This optimization implements customized

kernels to process bins of specified row-lengths. We make use of this optimization by binning

rows together based on row size before SpMV or SpMM operations. Each row is given a

bin label based on its size (1, 2-3, 4-8, 9-16, 17-32, . . . ). A permuted set of row indices

is created by sorting according to these bin labels. Bin-specific kernels are launched with

these permuted indices on separate streams, which allows each kernel to easily access the

rows that it needs to process without scanning over the matrix.

When inserting new elements within a row, the last allocated segment for that row is

located, and if space is available the new elements are inserted in a contiguous fashion just

after current entries. If that segment does not have enough room, a new segment will be

allocated with the appropriate size plus an additional amount α. The α value represents

additional “slack space” and allows for a greater number of entries to be inserted without

the creation of a new segment. If dynamic updates follow a power-law distribution, there

will be a higher probability of additional entries being inserted into longer rows. Although

we experimented with setting α to be a factor of the previous segment size, for our tests

we settled on a value of µ (average row size of matrix). When a new segment is allocated,

the memory allocation pointer is atomically increased by the size of the new segment. A

hard limit on these additions, before defragmentation is required, is fixed by the number

of segments k. The defragmentation operation always reduces the number of segments in

each row to one, which allows the format to scale to an arbitrary number of allocations.

Algorithm 4 provides pseudocode illustrating new segment allocation. This allocation

function can be parallelized across rows, as each vector of threads will execute this function

on a different row. Within a row, a vector of threads operate together to add new elements

into matrix A from an array of values B (B offsets, B cols, B vals). The segments could

be of variable length, so the total size is computed by looping over the segments and

summing the differences of the starting and ending offsets (A start, A end). The current

available memory is calculated by computing the difference of the final segment ending offset

and index of the last element (A end − A start). If there is enough room, the elements
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Algorithm 4: Allocate Segments

Input: sizes, offsets, Aj, Ax, B offsets, B cols, B vals
Output: sizes, offsets, Aj, Ax

1 row ← vid ; // vector ID

2 while row < n rows do
3 sid← 0 ; // segment index

4 rl← sizes[row] ; // row length

5 idx← 0 ; // thread row index

6 start← offsets[row ∗ 2] ; // starting segment offset

7 end← offsets[row ∗ 2 + 1] ; // ending segment offset

8 free mem← 0;
9 B start←B offsets[row ∗ 2];

10 B end←B offsets[row ∗ 2 + 1];
11 rlB ← B row end−B row start;
12 if rlA ≥ 0 then
13 while A idx < rlA do
14 idx← idx+ (A end−A start);
15 if idx < rlA then
16 sid← sid+ 1;
17 A start← offsets[sid∗pitch+row ∗ 2];
18 A end← offsets[sid∗pitch+row ∗ 2 + 1];

19 idx← A end+ rlA− idx;

20 else
21 idx← A start;

22 free mem← A end−A start;
23 if lane = 0 AND free mem < rlB AND rlB > 0 then

// allocate new space

24 size← rlB − free mem+ α;
25 addr ← atomicAdd(sizes[n rows], size);

// allocate new row segment

26 offsets[(sid+ 1)*pitch + row ∗ 2]← addr;
27 offsets[(sid+ 1)*pitch + row ∗ 2 + 1]← addr + size;

// Allocate new entries (Algorithm 2)

28 Insert Elements();
29 row ← row + num vectors;

are inserted into the remaining space; otherwise a new segment must be allocated. This

allocation is performed by atomically incrementing the memory offset pointer to allocate a

new segment of memory of size equal to new elements minus the remaining free space plus

an α value. The returned address addr is the beginning offset of the new segment of size

size. Afterward, the new elements are inserted via Algorithm 5.
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Algorithm 5: Insert Elements

Input: sizes, offsets, Aj, Ax, B cols, B vals
Output: sizes, Aj, Ax

1 B idx← B start+lane ; // add thread lane

2 while B idx < B end do
3 if idx ≥ A end then
4 pos← idx−A end;
5 sid← sid+ 1;
6 A start← offsets[sid∗pitch+row ∗ 2];
7 A end← offsets[sid∗pitch+row ∗ 2 + 1];
8 idx← A start+ pos;

9 Aj[idx]← B cols[B idx];
10 Ax[idx]← B vals[B idx];
11 B idx← B idx+ VECTOR SIZE;
12 idx← idx+ VECTOR SIZE;

13 if lane = 0 then
14 sizes[row]← sizes[row] + rlB;

When inserting new elements into the matrix, it is possible that duplicate nonzero entries

(i.e., two or more entries with the same row and column index) will be added. Duplicate

entries are handled in one of two ways. The first method is to simply let them accumulate,

which does not pose a problem for many operations. SpMV operations are tolerant of

duplicate entries due to the distributive property of the inner product and will yield the

same result to within floating point tolerance. For binary matrices, the row-vector inner

products will produce the same result irrespective of duplicate nonzeros. A second solution

is to perform a segmented reduction on the entries after sorting by row and column, which

combines all entries with matching row and column indices into a single entry. This full

reduction is generally not needed when performing only SpMV and addition operations.

Sparse matrix-matrix multiplication (SpMM) operations may cause significant fill-in, which

would require such a reduction to be performed. In our SpMV tests, we let the values

accumulate for all formats as they do not hinder the SpMV operations that are performed.

Algorithm 5 provides pseudocode for the insertion operation. A vector of threads will

operate together to add the elements into the segments. After a segment is full, the next

segment indices are retrieved from the offsets table whose starting and ending offsets are

A start and A end, respectively. Column indices and values are copied from B cols and

B vals to their respective locations in the A matrix. After this is complete, a single thread
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Algorithm 6: DCSR SpMV

Input: sizes, offsets, Aj, Ax, x, y
Output: y

1 tid← thread index ; // thread ID

2 lane← tid % V ec Size ; // lane ID

3 vid← tid / V ec Size ; // vector ID

4 for row ← vid to num rows, row += num vecs do
5 idx← 0 ; // thread row index

6 rl← sizes[row] ; // row length

7 sid← 0 ; // segment index

8 while idx < rl do
9 start← offsets[sid∗pitch + row ∗ 2];

10 end← offsets[sid∗pitch + row ∗ 2 + 1];
/* accumulate local sums */

11 for j ← start to end, j += V ec Size do
12 sum += Ax[j] * x[Aj[j]];

13 idx += (end - start);

14 y[row] = sum;

will update the row sizes array to reflect the new size.

An SpMV operation works as follows. The first pair of segment offsets is fetched. The

entries within the corresponding segment are multiplied by the appropriate values in x

according to the algorithm being used (CSR-scalar, CSR-vector, etc.). If the row size is

greater than the capacity of the current memory segment, the next pair of offsets is fetched.

If the size of the current segment plus the running sum of the previous segment sizes is

greater than or equal to the row size, this is the final segment of the row. In case the final

segment is not full, the location of the last entry can be determined by the difference of the

row size and the running sum. This process continues until the entire row has been read.

As the matrix accumulates more segments, SpMV performance decreases slightly. A

fixed number of segments also means this process cannot continue forever. Our solution to

both problems is to implement a defragmentation operation that compacts all the entries

within the column indices and values arrays, eliminating empty space. This defragmentation

step combines all the segments in a row into a single segment that compactly stores the entire

row. This operation may be invoked periodically, or more conservatively when a row has

reached its maximum capacity of segments. In practice we do the latter and set a flag when

any row reaches its maximum segment count. At this point we consider defragmentation to
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Algorithm 7: Defragment DCSR

Input: sizes, offsets, Aj, Ax
Output: offsets, Aj, Ax
/* prefix sum on row sizes */

1 exclusive scan(sizes, temp offsets);
2 new T cols(size(Aj)), new T vals(size(Ax));
3 CompactIndices(T cols, T vals, temp offsets, Aj, Ax, offsets, sizes);
/* shallow copy, old arrays deleted */

4 Aj = &T cols, Ax = &T vals;
5 SetRowOffsets(offsets, sizes, temp offsets);

be required. Algorithm 6 illustrates the SpMV operation, which is performed in a similar

fashion to CSR-vector, except that there is an outer loop over the segments.

Defragmentation performs the equivalent to a sort by row operation on the entries of

the matrix; we formulated a method that does not require an actual sort and is significantly

faster than doing so. Since we explicitly store row sizes, we perform a prefix-sum operation

on them to calculate the new row offsets in a compacted CSR form. The entries are then

shuffled from their current indices to their new indices in newly allocated column indices and

values buffers, after which we set a pointer in our data structure to these new arrays and free

the old buffers (shallow copy). By using the knowledge of the row sizes to compute resulting

offsets and indices, we eliminate the need to do any comparisons in this operation, which

greatly improves performance. The defragmentation process is described by Algorithm 7.

Figure 5.2 illustrates an example of inserting new elements into a DCSR matrix. Initially,

the matrix has four populated rows with the memory allocation pointer being 16. Row 0

can insert 1 additional entry in its current segment before a new segment would need to

be allocated. Rows 1 and 2 have enough room for two additional entries, but row 3 is full.

Figure 5.2 shows a set of new entries that are inserted into rows 0, 2, and 3. In this case,

a new segment of size 4 is allocated for row 0 and row 3. The additional segments need

not be consecutive nor in order of row since the exact offsets are stored for each segment.

Finally, the defragmentation operation computes new segment offsets from the row sizes.

The entries are shuffled to their new indices, which results in a single compacted segment

for each row.

As CSR is the most commonly used sparse matrix format, we designed DCSR to be com-

patible with CSR algorithms and to allow for easy conversion between the formats. Minimal
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Figure 5.2: Illustration of insertion and defragmentation operations with DCSR.

overhead is required to convert from CSR to DCSR and vice versa. When converting from

CSR to DCSR, the column indices and values arrays are copied directly. For the row offsets

array, the ith element is copied to indices i ∗ 2− 1 and i ∗ 2 for all elements except the first

and last one. A simple subtraction must be performed to calculate the row sizes from the

row offsets. Converting back is equally simple, assuming the matrix is first defragmented;

the column indices and values arrays are copied back, and the starting segment offset from

each row is copied into the row offsets array.
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5.3 Experimental Results

To benchmark SpMV, SpMM, update, and conversion performance, we used a node with

an Intel Xeon E5-2640 processor running at 2.50GHz, 128GB of memory, and a NVIDIA

Tesla K20c GPU. For additional scaling tests, we used an Intel Xeon E5630 processor

running at 2.53GHz, 128GB of memory, and 8 NVIDIA Tesla M2090 GPUs. We compiled

using g++ 4.7.2, CUDA 7.5, CUSP 0.5.1, and Thrust 1.8.1, comparing our method against

modern implementations in CUSP [14]. Table 5.1 provides a list of the matrices that we

used in our tests as well as their sizes, number of nonzeros, and row entry distributions. All

the matrices can be found in the University of Florida sparse-matrix database [27].

Memory consumption is a major concern for sparse matrix formats, as one of the primary

reasons for eliminating the storage of zeros is to reduce the memory footprint. The ELL

component of HYB is best suited to store rows with an equal number of entries. If there

is a large variance in row size, much of the ELL portion may end up storing zeros, which

is inefficient. We provide a comparison of memory consumption for HYB, DCSR (using 2,

3, and 4 segments), and CSR formats in Table 5.2. We compute the storage size of the

HYB format using an ELL width equal to the average number of nonzeros per row (µ) for

the given matrix. CSR has the smallest memory footprint since its row indices have been

Table 5.1: Matrices used in tests. NNZ: total number of nonzeros, µ: average row size, σ:
standard deviation of row sizes, Max: maximum row size.

Matrix Abbr. NNZ Rows \Cols µ \σ \Max

amazon-2008 AMA 5M 735K 7 \ 4 \ 10
cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985

flickr FLI 9M 820K 11 \ 87 \ 10K
hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689

in-2004 IN2 16M 1382K 12 \ 37 \ 7753
indochina-2004 IND 194M 7414K 26 \ 216 \ 6985

internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970
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Table 5.2: Comparison of memory consumption between HYB, CSR, and DCSR formats.
Size of HYB is listed in bytes (using ELL width of µ), and sizes for DCSR and CSR are
listed as a percent of the HYB size.

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487
HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

compressed to the number of rows in the matrix. We see that DCSR has a significantly

smaller memory footprint in almost all test cases. Test cases such as AMA and DBL have

lower memory consumption for HYB than for DCSR (with 3 and 4 segments), because these

matrices have a low row size variance. DCSR with 4 segments uses 20% less memory on

average than HYB.

Conversion times between formats are often a key factor when determining the efficacy

of a particular format. High conversion times can be a significant hindrance to efficient

performance. Architecture-specific formats may provide better performance, but unless the

rest of the code base uses that format, the conversion time must be accounted for. We

provide the overhead required to convert to and from CSR and COO matrices in Table 5.3.

The conversion times have been normalized against the time required to copy CSR→ CSR.

The conversion times to DCSR are only slightly higher compared to that of CSR. HYB

requires significant overhead as the entries must first be distributed throughout the ELL

portion and the remaining overflow entries distributed into the COO portion.
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Table 5.3: Comparison of relative conversion times. Conversions are normalized against
time to copy CSR→CSR.

From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96
HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

5.3.1 Matrix Updates

To measure the speed of dynamic updates, we ran two series of tests that involved

streaming updates and iterative updates. In the streaming updates test, the matrix was

incrementally built up by continuously inserting new entries. The elements are first buffered

into three arrays, representing the rows indices, column indices, and values. We initialize

the matrix sizes according to the average number of nonzeros for the given input. The

entries are then added in a streaming parallel fashion to the matrices.

Updating a HYB matrix first requires checking the ELL portion, and if the row in

question is full, inserting the new entry into the COO portion. Any updates to the COO

portion require atomic operations to ensure synchronous writes between multiple threads.

These atomic updates are prohibitive for fast parallel updates as all threads are contending

to insert entries onto the end of the COO matrix.

Updating a DCSR matrix requires finding the last occupied (current) segment within a

row. If that segment is not full, the new entry is added into it and the row size is increased.

When the current segment for a row fills up, a new segment is allocated dynamically. Since

atomic operations are required only for the allocation of new segments, and not for each
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individual element, synchronization overhead is kept low. By allowing for dynamically sized

slack space within a row, we dramatically reduce the number of atomic operations that are

required to allocate new entries. In this way, DCSR was designed to be updated in an

efficient parallel manner.

The number of segments, initial row width, and α value can be tuned for the problem to

give a reasonable limit on updates. In our tests, we used four segments and an α value of µ

(average row size of the matrix). When a row nears its limit, a defragmentation is required

in order to reduce that row to a single segment.

Figure 5.3 provides the results of our iterative and streaming matrix update tests. We

do not compare to CSR in the latter case, since it is not possible to dynamically add entries

without rebuilding the matrix. This operation only loads the matrix and does not perform

any insertion checks. DCSR saw an average speed-up of 4.8× over HYB with streaming

updates. In the case of IND, only DCSR was able to perform the operation within memory

capacity.

We also executed an iterative update test to compare the ability of the formats to

perform a combination of dynamic updates and SpMV operations. This test is analogous

to what would be done in a graph application (such as CFA) where the graph is updated

at periodic intervals. In the iterative updates tests, a series of iterations are performed

consisting of a matrix addition operation (A = A+B) followed by several SpMV operations

Ax = y. Part (a) of Figure 5.3 provides the results for our iterative updates. Within each

iteration, the matrix is updated with an additional 0.2% random nonzeros followed by 5

SpMV operations, which is repeated 50 times. This process yields a total increase of 10%

to the number of nonzeros. We compare the DCSR and HYB results to a normalized CSR

baseline. In the CSR case a new matrix must be created to update the original matrix,

which causes a significant amount of overhead (in terms of computation and memory). In

the cases of LJO and SOC, CSR was not able to complete within memory capacity, so we

normalized against HYB.

DCSR shows significant improvement over HYB on streaming updates in all test cases

(in some by as much as 8×). DCSR also outperforms HYB in all test cases on iterative

updates, and in some cases by as much as 2.5×. The Amazon-2008 matrix has a low

standard deviation, and the majority of its entries fit nicely into the ELL portion, which
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Figure 5.3: Relative speed comparisons. Top: Relative speed-up of DCSR compared
to HYB for iterative updates with SpMV operations. The speed-up is compared to a
normalized CSR baseline. Bottom: Relative speed-up of DCSR compared to HYB for
matrix updates.

greatly speeds up SpMV operations. However, even in this case DCSR slightly outperforms

HYB on iterative updates due to having lower overhead for defragmentation. In all other

cases, DCSR exhibits noticeable performance improvements over HYB and CSR.

5.3.2 SpMV Results

In the SpMV tests, we take the same set of matrices and perform SpMV operations

with randomly generated dense vectors. We performed each SpMV operation 100× times

and averaged the results. Figure 5.4 provides the results for these SpMV tests run using

both single- and double-precision floating-point arithmetic. We implemented the adaptive

binning optimization (ACSR) outlined in [5], which we labeled ADCSR. This optimization

requires relatively little overhead and provides noticeable speed improvements by using

specialized kernels on bins of rows with similar row sizes. In these tests, we compare

across several variants of our format, including DCSR, defragmented DCSR, ADCSR, and

defragmented ADCSR, in addition to standard implementations of HYB and CSR.

The fragmented DCSR times are 8% slower than the defragmented DCSR times on

average. When the DCSR format is defragmented, it sees SpMV times competitive with
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Figure 5.4: FLOP ratings of SpMV operations for CSR, DCSR, and HYB.

those of CSR (1% slower on average). With the adaptive binning optimization applied, we

see that ADCSR outperforms HYB in many cases. ADCSR performs 9% better on average

than HYB across our benchmarks.

5.3.3 Postprocessing Overhead

Postprocessing overhead is a concern when dealing with dynamic matrix updates. Dy-

namic segmentation allows for DCSR to be updated with new entries without requiring

the entries to be defragmented. SpMV operations can be performed on the DCSR format

regardless of the number and order of segments, in contrast to HYB matrices where a sort

is required anytime an entry is added that overflows into the COO portion. The SpMV

operation for HYB matrices assumes the COO entries are sorted by row (without this

property, the COO SpMV would be dramatically slower). Table 5.4 provides postprocessing

times for HYB and DCSR formats relative to a single SpMV operation. In the case of IND,

HYB was unable to sort and update due to insufficient memory (overhead represented as

∞).

The defragmentation operation gives us an opportunity to internally order rows by

row-size at no additional cost. Our defragmentation algorithm is similar to the row sorting
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Table 5.4: Overhead of DCSR defragmentation and HYB sorting is measured as the ratio
of one operation against a single CSR SpMV. Update time is measured as the ratio of 1000
updates to a single CSR SpMV.

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01
HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49

technique illustrated in [44], although we use a global sorting scope as opposed to a localized

one. Because we explicitly manage segments within the columns and values arrays by both

starting and ending index, the internal order of segments may be changed arbitrarily, and

this permutation remains invisible from the outside. To accomplish this optimization, we

permute row sizes according to the permuted row indices (which have already been binned

and sorted by row size). The permuted row sizes can then be used to create new offsets for

the monolithic segments produced by defragmentation. The column and value data can be

internally reordered by row size at no additional cost. This internal reordering provides a

noticeable SpMV performance improvement of 12%. This improvement is from an increased

cache-hit rate via better correlation between bin-specific kernels and the memory they

access.

The DCSR defragmentation incurs a lower overhead than HYB sort because entries can

be shuffled to their new index without a sort operation. A DCSR defragmentation step is

2× faster on average than the HYB sorting step. More importantly, this process is required

infrequently, whereas HYB sorting must be performed at every insertion, which means that

DCSR requires significantly lower total postprocessing overhead.
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5.3.4 Multi-GPU Implementation

DCSR can be effectively mapped to multiple GPUs. The matrix can be partitioned

across n devices by dividing rows between them (modulo n) after sorting by row size, which

provides a relatively even distribution of nonzeros between the devices. Figure 5.5 provides

scaling results for DCSR across two Tesla K20c GPUs and up to eight Tesla M2090 GPUs.

We see an average speed-up of 1.93× for the single precision and 1.97× across the set of test

matrices. The RAL matrix sees a smaller performance gain due to our distribution strategy

of dividing up the rows. The added parallelism is split across rows but, in this case, the

matrix has few rows and many columns. We see nearly linear scaling for most test cases.

For the matrices INT and ENR, we see reduced scaling due to small matrix sizes. In

these cases, the kernel launch times account for a significant portion of the total time due to

a relatively small workload. The total compute time can be approximately represented as

c+ x
n , where c is the kernel launch overhead and the workload x is divided among n devices

(assuming x can be fully parallelized). As the number of devices increases, the work per

device decreases while the kernel launch time remains constant. In our tests, we perform

100× iterations of each kernel, which leads to poor scaling performance on small matrices.
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Figure 5.5: Scaling results for SpMV with 1 and 2 K20 GPUs (upper) and 1, 2, 4, and 8
M2090 GPUs (lower).
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We performed additional tests where we move the iterations into the kernel itself and call

the kernel once, eliminating the additional kernel launch times. In this case, we see scaling

for the INT matrix of 1.94×, 3.55×, and 6.03× and for the ENR matrix we see scaling of

1.80×, 2.70×, and 3.76× for 2, 4, and 8 GPUs, respectively. These results indicate that the

poor performance was primarily due to the low amount of work done relative to the kernel

launch overhead.



CHAPTER 6

SPARSE MATRIX-MATRIX

MULTIPLICATION (SPMM)

6.1 Algorithm

It is a difficult task to efficiently compute C = AB for sparse matrices in parallel. The

sequential sparse matrix-matrix multiplication algorithm is not suitable for fine-grained

parallelization. Sequential algorithms are efficient, but they rely on a large amount of

(per thread) temporary storage. Specifically, to compute the sparse product C = AB, the

sequential methods use O(N) additional storage, where N is the number of columns in

C. The parallel approach to sparse matrix-matrix multiplication is formulated in terms of

highly scalable parallel primitives with no such limitations. As a result, a straightforward

parallelization of the sequential scheme requires O(n) storage per thread, which is not

possible when using tens of thousands of independent threads of execution. Although it

is possible to construct variations of the sequential method with lower per-thread storage

requirements, any method that operates on the granularity of matrix rows (i.e., distributing

matrix rows over threads), requires a nontrivial amount of per-thread state and suffers load

imbalances for certain input [11].

The standard algorithm for parallel SpMM that exposes fine-grained parallelism is:

1. Expansion of A ∗B into an intermediate coordinate format T .

2. Sorting of T by row and column indices to form T̂ .

3. Compression of T̂ by summing duplicate values for each matrix entry.

Example 1: [h] T and T̂ are given for C = AB, where

A =

1 0 3
2 2 0
0 7 9

, B =

4 3 7
0 5 0
2 0 8

, C =

10 3 31
8 16 14
18 35 72
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T =



0, 0, 4.0
0, 1, 3.0
0, 2, 7.0
0, 0, 6.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 2, 14.0
1, 1, 10.0
2, 1, 35.0
2, 0, 18.0
2, 2, 72.0



T̂ =



0, 0, 4.0
0, 0, 6.0
0, 1, 3.0
0, 2, 7.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 1, 10.0
1, 2, 14.0
2, 0, 18.0
2, 1, 35.0
2, 2, 72.0


All three stages of the algorithm expose fine-grained parallelism of which the GPU can

take advantage of. The algorithm can be formulated in terms of efficient data-parallel

computations — gather, scatter, scan, sort, etc. Like the sequential algorithm, this for-

mulation is work efficient. It computes the exact number of partial products required for

each nonzero without performing any additional operations with zero entries. It has the

same computational complexity as the sequential method O(nnz(T )). The complexity is

proportional to the size of the intermediate format T , and the work required at each stage

is linear with respect to T . This process results in a relatively even load balancing across

the GPU regardless of the sparsity patterns of the input matrices.

A limitation of this method is that the memory required to store the intermediate

format is potentially large. If A and B are both square, n × n matrices with exactly K

entries per row, then O(nK2) bytes of memory are needed to store T. Since the input

matrices are generally large themselves (O(nK) bytes), it is not always possible to store a

K-times larger intermediate result in memory. In the limit, if A and B are dense matrices

(stored in sparse format), then O(n3) storage is required. In such a case, the matrix-

matrix multiplication C = AB can be decomposed into several smaller operations that

are computed in a workspace of bounded size. The resulting slices are then concatenated

together to produce the final result. This technique introduces some overhead, but in

practice it is relatively small as the workspace can be sized appropriately to saturate the

device.

Our implementation of SpMM follows the same principles as the general algorithm,

but we assign specialized kernels to process rows grouped by size. This algorithm allows
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for a more efficient use of shared memory when performing the sort and reduction opera-

tions. DCSR allows for asynchronous dynamic memory allocations when storing the rows

products into C. This property of DCSR allows computation of the rows to be handled

asynchronously. In the standard algorithm, the result of each previous row is required to

know the offset when writing the final result into C. We precompute the number of partial

products per row i following:

ARSi∑
k=1

BRSj

where ARSi is the number of entries in row i of matrix A, and j is the column index of

element ai,j . We then assign specific kernels, based on this row size, to process rows of

length 1-32, 33-64, 65-128, 129-256, 257-512, 513-1024, 1025-2048, and 2049+.

The kernels process a row by computing the partial products, sorting them by column

index, and reducing them before storing them in the resulting C matrix. Since this is done

on a per row basis, the row is implicit and we need only store the column indices and values

for the sorting and reduction phases. For all kernels except the 2049+ kernel, the operations

are computed within shared memory on the GPU, which provides a significant performance

improvement over global memory. For the 2049+ kernel, we use dynamic parallelism to

assign a compute kernel to each row, which performs these operations using global memory.

SpMM was implemented using DCSR and its efficiency tested using algebraic multigrid.

This improved method is compared to a similar version that computes SpMM using CSR and

COO matrices. AMG can be formulated in terms of SpMM, SpMV, and primitive parallel

operations. Algorithm 8 illustrates the structure of the AMG preconditioner setup phase of

Algorithm 8: AMG Setup

Input: A, B
Output: A0,. . . ,AM , P0,. . . ,PM

1 A0 ← A, B0 ← B;
2 for k = 0, . . . ,M do
3 Ck ← strength(Ak);
4 Aggk ← aggregate(Ck);
5 Tk, Bk+1 ← tentative(Aggk, Bk);
6 Pk ← prolongator(Ak, Tk);
7 Rk ← P Tk ;
8 Ak+1 ← (RkAkPk);
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AMG given a sparse matrix A and a set of vectors B. In our tests, we used a constant vector,

which is a common default. The (RkAkPk) operation computes the Galerkin product of the

three matrices using SpMM by first computing A ∗ P = AP followed by R ∗AP = RAP .

6.2 Experimental Results

We compare the results for AMG on 2D and 3D Poisson problems with Dirichlet

boundary conditions. It is known that AMG performs well as a preconditioner on such

problems, which allows us to focus on the merits of the SpMM method rather than on

whether AMG is suited for the problem. Table 6.1 lists the set of matrices used in our

tests as well as the number of unknowns and nonzeros. These tests were all computed with

double precision.

Figure 6.1 illustrates the results of our AMG tests with both the individual SpMM times

and the overall AMG preconditioner times. Our method outperforms the baseline method

by upwards of 3× in some cases. The Galerkin product represents 30% – 50% of total time

required by the setup phase of the preconditioner. Results shown in [11] indicate that the

Galerkin product occupies 50% – 60% of the run time on similar matrices using a Nvidia

Tesla C2050 GPU, which seems to indicate that the underlying architecture plays a role in

the relative processing times across stages. In the case of matrix 3-7-a, the Galerkin product

occupies roughly half of the setup time, and our SpMM method is nearly 3× faster in that

case, resulting in a speed-up of 40%. There is no guarantee what the resulting fill will be

in the C matrix, but in practice the resulting fill is relatively sparse for multiplication with

Poisson matrices.

By taking advantage of asynchronous updates enabled by DCSR, we are able to employ

Table 6.1: List of matrices used for AMG tests.

Matrix Abbr. Unknowns Nonzeros

2D Poisson 5pt 2-5-a 262144 1310720
2D Poisson 9pt 2-9-a 262144 2359296
3D Poisson 7pt 3-7-a 262144 1810432
3D Poisson 27pt 3-27-a 262144 6859000
2D Poisson 5pt 2-5-b 1048576 5238784
2D Poisson 9pt 2-9-b 1048576 9424900
3D Poisson 7pt 3-7-b 2097152 14581760
3D Poisson 27pt 3-27-b 2097152 55742968
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Figure 6.1: Relative speed-up for SpMM and AMG using DCSR and CSR.

specialized kernels based on row lengths. These row length optimized kernels perform

the sort and reduction operations within shared memory, which is notably faster than

performing these operations within global memory. The efficient use of shared memory leads

to significant performance gains for the overall SpMM operation. The Galerkin product is

by far the largest single component of the setup phase, so improvements in this area will

lead to the greatest gains.

Our tests indicate that this new SpMM method is faster for row sizes that can fit within

shared memory. A 2× to 3× speed-up was observed on matrix multiplication operations

that do not exceed 2048 partial products per row. When the number of the partial products

in a row exceeds the shared memory limit, there is no way to efficiently sort and reduce the

elements without tiling and excessive memory shuffling. In that case, it is more efficient to

perform the standard SpMM computation for that row.



CHAPTER 7

FUTURE WORK

This work can be expanded upon in a number of ways. In addition, there are number

of interesting applications that could be explored in relation to this work.

7.1 Nonoverlapping Stencil Parallelization

The stencil parallelization presented in Chapter 3 could be expanded upon. The method

currently being employed uses temporary workspace arrays for each patch. The results from

each patch are scattered to their respective locations in memory. Afterward, the results are

scattered to the final solution space. This requires additional memory space based on the

number of mesh division patches. Although the final reduction step between the patch

memory spaces is relatively quick, it may be possible to avoid this step with a careful

parallelization scheme.

An alternate method of parallelization could be implemented which relies on parallelizing

according to nonoverlapping stencils. Figure 7.1 illustrates this process. This method could

be combined with the CUDA unified memory abstraction which allows the CPU and GPU

to access a shared pool of managed memory as opposed to accessing two separate memory

spaces. This allows multiple GPUs on the same node to asynchronously update the CPU

host memory without the need for specific GPU to CPU write calls. This would remove

the need for additional patch memory spaces and eliminate the final reduction step.

7.2 Expanded Tuning Parameters

The tuning methodology used in this work is relatively simple and could be expanded

upon. A number of other search space parameters could be explored such as kernel unrolling

and code variants. Furthermore, the search space employed is exhaustively searched for the

best configuration, and better heuristics and autotuning approaches could be employed to

refine the search space. Methods presented in generalized frameworks like OpenTuner [3]
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(a) Nonoverlapping stencils

(b) Stencil parallelization by patches

Figure 7.1: Illustration of patch parallelization using nonoverlapping stencils (grey patches
are currently active).

and Orio [35] could be adapted.

7.3 Applications for Dynamic Compressed Sparse Row

There are a number of applications that could benefit from dynamic updates. Performing

static control flow analysis for programs was a primary motivation for this work. A general

approach to static program analysis of higher-order languages has been developed [77, 49].

These algorithms use an approximate interpretation of their target code to yield an upper

bound on the propagation of data and control through a program across all possible actual

executions. A CFA involves a series of increasing operations on a graph (extending it with

nodes and edges), terminating when a fixed point is reached (a steady state where the

analysis is self-consistent).

Recent work has shown how to implement this kind of static analysis as linear-algebraic

operations on the sparse-matrix representation of a function [33, 68]. Other recent work

shows how to implement an inclusion-based points-to analysis of C on the GPU by applying

a set of semantic rules to the adjacency matrix of a sparse-graph [48]. These algorithms
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may be likened to finding the transitive closure of a graph encoded as an adjacency matrix.

The matrix is repeatedly extended with new entries derived from SpMV until a fixed point

is reached (no more edges need to be accumulated). These approaches to static analysis

on the GPU are distinct; however, both require high performance sparse-matrix operations

and dynamic insertion of new entries.

Graph problems are a primary problem type that may benefit from dynamic updates.

Computing the transitive closure of a graph could be formulated in a way that dynamically

updates a sparse matrix. This operation could also be performed through SpMM operations,

which have been demonstrated to benefit from dynamic updates.



CHAPTER 8

CONCLUSIONS

This dissertation targeted serveral goals relating to irregularities in control flow and

memory access. These goals are fufilled by the analysis and methods presented in this

dissertation. The primary applications analyzed dealt with unstructured meshes and sparse

matrices, both of which have high degrees of irregularity due to indirection within the data

structures.

This dissertation presents a method for improved data reuse through associative reorder-

ing of operations for stencil compuations over unstructured meshes. Two general strategies

are presented for evaluating stencil computations over unstructured meshes, per-point and

per-element. In addition, a scalable overlapped tiling method is presented, which allows for

concurrent execution of stencils.

Increased data-reuse and data locality have a significant impact on the performance of

stencil computations over unstructured meshes with high levels of concurrency. On the

GPU, the per-element method exhibits between 2× and 6× performance improvement over

the per-point counterpart. The per-element method demonstrates perfect linear scaling as

the number of computing cores increases. The overlapped tiling method allows for nearly

perfect linear scaling with minimal synchronization overhead. The per-element method

adds some memory overhead to the process, but significantly improves overall performance.

This dissertation presents results that demonstrate the impact that vector widths have

on performance for postprocessing of 3D discontinuous Galerkin solutions. This applica-

tion represents a dense numerical computation that benefits greatly from vectorization.

Loops are restructured based on a tunable vector width parameter. An exhaustive search

autotuning method is applied to test combinations of the vector width, regions per block

(with block size being determined by the regions per block and vector width), and block

count. By combining loop restructuring with autotuning, performance gains of up to



88

50% over a baseline using full vectorization were seen for postprocessing. Some level of

vectorization almost always yields improved performance over nonvectorized operations

on SIMD architectures. However, our results have demonstrated that full vectorization

generally does not provide optimal performance for dense numerical computations. The

optimal vector width is generally nonobvious and is best found with an automated method

since the search space is large.

Vectorization tends to be more beneficial for dense operations. Partial vectorization

can yield better cache/shared memory utilization while still maintaining a high number of

coalesced memory accesses and low loop overhead. This vectorization can significantly boost

performance for dense numerical computations. Autotuning has proven to be an effective

method for finding the optimal balance point between nonvectorized and fully vectorized

computations. This technique of adjusting vector widths is broadly applicable to many

domains, and it could be applied to other types of numerical computations.

Lastly, this dissertation presents a fast, flexible, and memory-efficient strategy for dy-

namic sparse-matrix allocation. A new sparse matrix format (DCSR) is illustrated, which

provides a robust method for allocating streaming updates while maintaining fast SpMV

times on a par with that of CSR. The format gracefully degrades in performance upon

dynamic extension, but does not require a sort to be performed after inserting new entries

(as opposed to COO-based formats like HYB).

Without defragmentation, SpMV times are only marginally slower than that of a fully

constructed CSR matrix, and after defragmentation they are roughly equal. With adaptive

binning applied, DCSR gives faster overall SpMV times as compared to the HYB format.

DCSR is significantly more efficient in terms of memory use as well. ELL must allocate

enough room in every row for the longest row in a matrix. HYB is a vast improvement,

by allowing long rows to overflow into its COO portion. However, DCSR exhibited lower

memory consumption on every benchmark when set to allow 2 segments per row, and still

used 20% less memory on average when allowing 4 segments per row.

A key advantage of DCSR in its design is compatibility with CSR-scalar, CSR-vector,

and other CSR algorithms. Only minor modifications are required to account for a difference

in the format of the row offsets array. CSR specific optimizations, such as adaptive binning,

can be easily applied to DCSR. Other optimizations, such as tiling and blocking, could also
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be used. This compatibility also means that minimal overhead is required to convert to

and from CSR. Numerous sparse-matrix formats have been developed that are specifically

tailored to GPU architectures. These formats offer improved performance, but require

converting from whatever previous format was being used. As CSR is the most commonly

used sparse-matrix format, and large amounts of software already incorporate it into their

code bases, it is often not worth the conversion cost to introduce another format. DCSR

reduces this barrier to use with a low cost of conversion.

This dissertation also presents an improved algorithm for parallel sparse matrix-matrix

multiplication. The standard method for parallel SpMM requires conversions to and from

the COO format as well as a large workspace in global memory. By utilizing the dynamic

updates with DCSR, the sort and reduction operations can be computed in shared memory

which is significantly faster than global memory. This also avoids the need for costly format

conversions of the matrix.
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