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ABSTRACT 

 
Cancer is extremely challenging to treat as every patient responds differently to 

treatments, depending on the specific molecular aberrations and deregulated signaling 

pathways driving their tumors. To address this heterogeneity and improve patient 

outcomes, therapies targeting specific pathways have been developed. The use of 

computational pathway analysis tools and genomic data can help guide the use of 

targeted therapies by assessing which pathways are deregulated in patient 

subpopulations and individual tumors. However, most pathway analysis tools do not 

account for complex interactions inherent to signaling pathways, and are not capable of 

integrating different types of genomic data (multiomic data). To address these 

limitations, this dissertation focuses on developing user-friendly multiomic gene set 

analysis tools, and utilizing bioinformatics tools to measure pathway activation for 

multiple pathways simultaneously in cancer. 

 Chapter 2 first describes the need for genomics and pathway-based analyses in 

cancer using the commonly aberrant RAS pathway as an example. Chapter 3 utilizes 

pathway-based gene expression signatures and the pathway analysis toolkit ASSIGN to 

interrogate pathways from the growth factor receptor network (GFRN) in breast cancer. 

Two discrete phenotypes, which correlated with mechanisms of apoptosis and drug 

response, were characterized from GFRN activity. These phenotypes have the potential 

to pinpoint more effective breast cancer treatments. Chapter 4 describes the 

development of Gene Set Omic Analysis (GSOA), a novel gene set analysis tool which 

uses machine learning to identify pathway differences between two given biological
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conditions from multiomic data. GSOA demonstrated its capacity to identify pathways 

known to play a role in various cancers, and improves upon other methods because of 

its ability to decipher complex multigene and multiomic patterns. Chapter 5 describes 

GSOA-shiny, a novel web application for GSOA, which provides biologists with lack of 

bioinformatics experience access to multiomic gene set analysis from an easy-to-use 

interface. Overall, this dissertation presents novel breast cancer phenotypes with clinical 

implications, provides the research community with gene expression signatures for 

GFRN components, and presents an innovative method and web application for gene  

set analysis–all contributing to furthering the field of personalized oncology. 



This dissertation is dedicated to all the precious lives and loved ones we have lost too 

early to cancer.



…you just work day and night if the cause in your heart is justified.” - Jon Huntsman, Sr. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

The ultimate goal of oncology is to develop and select the most effective 

treatments for the right patient, at the right time, based on the molecular aberrations and 

oncogenic signaling pathways driving their specific tumors [1]. The emergence of high-

throughput sequencing technologies has revolutionized oncology, more effectively 

personalized medicine, and led to the accumulation of a large volume of genomic data 

[2]. This technology has allowed for the determination of genome sequences and the 

ability to capture the activity of thousands of molecular events simultaneously in order to 

better understand the behavior of tumors [3]. As a result, computational tools for 

pathway analysis have been developed to analyze genomic data from tumors, at the 

pathway level, to provide insight into biological systems and cellular processes, and 

make inferences about pathway activity [4]. This knowledge can be used to determine 

clinically relevant tumor subtypes, predict drug targets, and generate testable 

hypotheses  [5].  

Different pathway analysis approaches exist such as gene ontology methods, 

gene set enrichment analysis, network modeling, and gene expression signatures [6]; 

however, this dissertation focuses on two distinct approaches. One approach is the use 

of gene expression signatures (as surrogates of pathway activation) to probe tumors to 

predict response to targeted therapies. The other is gene set analysis, which aims to 

reduce genomic data from thousands of genes into smaller, more interpretable gene



 
 
 

 

2 

sets or pathways by utilizing numerous distinct types of genomic data [6]. This 

introductory chapter provides the background information required for understanding the 

motivations for dissecting genomic cancer data at the pathway level, and for 

understanding the data presented in Chapters 2-5. 

 

Cancer: An Overview 

Cancer is a group of over 200 life-threating genetic diseases that cause 

tremendous physical, mental, and financial burdens on patients, their families, and 

society as a whole [7]. In 2012 alone, an estimated 14 million new cases of cancer were 

diagnosed, and approximately 8.2 million cancer-related deaths occurred worldwide. 

Additionally, 39 percent of the world population will be diagnosed with cancer at some 

point in their lifetime [8]. Therefore, there is a strong need to find better cancer 

treatments in order to improve survival rates and support the large number of patients 

suffering from cancer.  

Cancer is caused by the accumulation of genetic aberrations that result in 

uncontrolled cellular growth [9]. Normal functioning cells can regulate growth, division, 

and death (apoptosis) in a tightly controlled manner [10]. In cancer, however, oncogenic 

signaling pathways become deregulated due to mutations in oncogenes or tumor 

suppressors [11]. Many genetic mutations have been discovered in cancer; however, 

mutations tend to converge on a handful of key pathways that regulate vital cellular 

processes such as cell growth, cell survival, and genome maintenance [12,13]. 

Deregulation of these pathways results in sustained proliferative signaling, resistance to 

death signals, and the development of cellular masses called tumors [14]. Benign tumors 

are considered nonmalignant and do not spread. Malignant tumors, conversely, have the 

ability to invade surrounding tissues, metastasize through the blood or lymph system 

(forming secondary tumors at distant sites), and interfere with normal bodily functions. 
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Metastatic cancer is difficult to treat and is the leading cause of death in cancer patients 

[15]. Survival rates have improved for some cancer types, such as breast, skin, and 

prostate; however, few improvements have been seen in harder to treat cancers, such 

as  brain, lung, liver, pancreas, and stomach, further highlighting the need to determine 

the molecular underpinning and more effective treatments [16].  

 

The Need for Personalized Oncology 

Cancer is extremely challenging to treat because every patient responds to 

therapies differently depending on the unique genomic aberrations and altered signaling 

pathways that drive their tumors [17]. Every type of cancer and patient tumor, regardless 

of classification, is unique at the genetic, pathological, prognostic, and therapeutic level 

[18]. For example, breast cancer, a solid tumor, is clinically different from leukemia, a 

blood cancer, and can also be categorized into distinct biological subtypes with different 

molecular features and drug response profiles [19]. Cancer cells within the same patient 

tumor can also be subtly or dramatically different [20]. Thus, intertumor and intratumor 

heterogeneity makes selecting optimal treatments challenging and contributes to 

therapeutic failures, drug resistance, and recurrence of disease [21, 22]. To combat 

these issues, oncology has moved towards more personalized medicine approaches 

[23]. 

Personalized medicine, precision medicine, or genomic medicine, are loosely 

used terms that describe medical approaches that utilize genetic or genomic profiles 

from individuals to guide medical decisions in regards to prevention, diagnosis, and 

treatment selection [24]. Identifying specific treatments for individual patients usually 

begins with researchers discovering particular genomic aberrations in patient subgroups, 

and then testing drugs that target those aberrations in cell lines and animal models. If 

successful, these treatments can be further tested in clinical trials of patients containing 
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those aberrations [2]. Although personalized medicine is becoming a realistic option for 

treating cancer, much work is required before it is considered standard of care.  

Currently, pathological tests such as lymph node (LN) status and histological 

grade can be used to help determine diagnoses and prognoses, and guide drug 

treatments [25–27]. However, due to lack of specificity, patients are often treated using a 

“trial and error process” until an effective treatment is found. Common anticancer 

treatments include tumor removal surgery, chemotherapy (which targets all dividing 

cells), radiation therapy, and more recently, targeted therapies [28]. Chemotherapy and 

radiation are harsh treatments, and physicians devote an enormous amount of time and 

energy treating their side effects [29]. Therefore, much attention has been focused on 

the use of less toxic targeted therapies [23].  

 

Targeted Therapies and Molecular Biomarkers 

Targeted therapies are a class of cancer drugs designed to inhibit specific 

molecular targets that contribute to tumor growth and progression [1]. Targeted 

therapies have contributed to personalized medicine and are an advancement over 

conventional cytotoxic chemotherapies, however they are still often used in combination 

[30–32]. Targeted therapies have a wide range of targets, including proteins involved in 

oncogenic pathways related to cellular growth, division, invasion, DNA damage, 

apoptosis, angiogenesis, and tumor metabolism [9,11]. Many targeted therapies are 

being used in the clinic, being testing in clinical trials, or are under development [33, 34]. 

However, successful use of targeted therapies is highly dependent on the discovery of 

accurate molecular biomarkers to classify patients into treatment subgroups [24]. 

Biomarkers can be measurements of chemical or molecular substances [35].   

Some of the earliest biomarkers for predicting response to targeted therapies 

were generally pathological-based tests, and examined the expression of specific 
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proteins using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) 

[36]. For example, the expression of the receptors estrogen (ER) or progesterone (PR) 

in breast cancer can be used to recommend hormone therapies, such as Tamoxifen (an 

estrogen receptor inhibitor) [37, 38]. In addition, expression of the receptor HER2 is a 

biomarker for response to the HER2 inhibitor, Herceptin [39, 40]. More recently, due to 

the rise in genomic sequencing technologies, genetic mutations have been used as 

biomarkers for targeted therapies [41].  

A successful example, and a model for other targeted therapies, is the small 

molecule kinase inhibitor Imatinib (Gleevec) in the treatment of chronic myeloid leukemia 

(CML) [32]. CML is driven by the fusion of BCR and ABL, which results in constitutive 

activation of the Abl kinase, and signaling to its downstream oncogenic pathways RAS 

and phosphatidylinositol 3-kinase (PI3K). Imatinib blocks the BCR–ABL kinase, slows 

down cell growth, and increases apoptosis [42]. Response to Imatinib directly correlates 

with the presence of the BCR-ABL gene fusion. Other examples highlighting genetic 

mutations as biomarkers include the use of the epidermal growth factor receptor (EGFR) 

inhibitor, Erlotinib, in lung cancer patients with point mutations in the kinase domain of 

EGFR, and the BRAF inhibitor, Vemurafenib, in melanoma patients harboring BRAF 

mutations [43 ,44].  Therefore, predicting response to targeted therapies relies upon the 

identification of specific genomic biomarkers and illustrates the importance of 

understanding the molecular mechanisms of individual tumors. 

 

Mutations Do Not Always Reflect Pathway Activation 

The use of genetic biomarkers has advanced the use of targeted therapies in 

cancer, but unfortunately, DNA mutations do not always correlate with drug response 

and fail to include the complexity inherent to cancer signaling pathways [45]. Targeted 

therapies are designed to target specific signaling pathways, and pathways can become 
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activated at various points. Therefore, it is often difficult to tell which, and if, a pathway 

has become activated by looking at single gene mutations [5]. If upstream pathway 

components are not affected by DNA mutations, it cannot be assumed that the pathway 

has not become activated by downstream components.  

For example, the RAS pathway, a commonly activated pathway in many different 

types of cancer such as pancreatic, lung, and colon, can become activated in numerous 

different ways [46]. These include mutations in the RAS gene itself, in upstream growth 

factor receptors such as EGFR or IGF1R, and in downstream pathway components such 

as BRAF or MEK [47, 48]. In addition to up- and downstream DNA mutations, pathways 

can become activated by other neighboring pathways. For example, RAS can become 

activated by the PI3K, PTEN, or MEKK1 pathways [49]. Therefore, looking only at 

mutations in the RAS gene alone would not always identify tumors with RAS activation 

(a detailed review article of the RAS pathway is described in Chapter 2). Therefore, 

there is a need to develop methods capable of identifying which pathways are activated 

in patient tumors in order to help guide the use of targeted therapies.  

 

Gene Expression Signatures to Guide Targeted Therapy Use 

A gene expression signature is a group of genes whose combined expression 

patterns are uniquely characteristic of a biological phenotype [50]. Gene expression 

signatures have been used in cancer for determining diagnoses, forecasting prognosis, 

and predicting response to treatments [51]. Gene expression signatures can also be 

used to identify pathway activation in tumors [52, 53]. Accounting for the expression of 

multiple genes in a pathway as an indicator of pathway activation is more appropriate 

than relying on single genes or proteins, as pathways can become activated by multiple 

components [54]. They also provide a more qualitative assessment of the pathway’s 

activation.  
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One method for creating pathway-based gene expression signatures is by 

experimentally perturbing a pathway of interest in a controlled manner in cells, extracting 

and sequencing the RNA, and generating signatures from the most significantly 

differentially expressed genes. Signatures can then be compared onto other samples to 

estimate pathway activity levels [45, 55–58]. For example, microarray gene expression 

signatures for five key oncogenic pathways (MYC, RAS, E2F3, SRC, and β-catenin), 

were generated by activating proteins in human mammary epithelial cells [57]. These 

signatures were projected into human and mouse cells and were able to successfully 

predict the mutational status of the tumors. The RAS and SRC signatures also predicted 

sensitivity to inhibitors of these pathways in cell lines. A signature for RAS was also 

used, in a different study, to identify EGFR and MEK co-inhibition as an effective 

treatment for RAS-active cell lines in non-small cell lung cancer [45]. These results 

demonstrate the benefits of using gene expression signatures to measure pathway 

activation. 

Although pathway-profiling approaches can help better understand pathway 

dysregulation in tumors for guiding the use of targeted therapies, they often fail to 

consider the interactions occurring between pathways, and assume heterogeneity 

between in vitro (cell lines) samples and in vivo samples (patients). Recently, a novel 

bioinformatics tool, Adaptive Signature Selection and InteGratioN (ASSIGN), was 

developed to address these issues [59]. ASSIGN takes a Bayesian factor analysis 

approach and is capable of measuring pathway activation for multiple pathways, and the 

interactions occurring between them. ASSIGN also adapts pathway signatures 

(generated in vitro) to match specific disease samples (in vivo). This tool was used in 

Chapter 3 to probe growth factor receptor network signaling in breast cancer, and has 

been innovative to the field of pathway analysis. 
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The “Multiomic” Genome 

In addition to genetic and gene expression data, large comprehensive studies, 

such as the Cancer Genome Atlas (TCGA), have generated massive volumes of high-

dimensional data exhibiting that cancer can become deregulated at many different 

“omic” levels [60]. Different omic data types can be used to generate biomarkers, 

including genomic (DNA sequence data and copy number changes), transcriptomic 

(mRNA expression), epigenome (methylation changes), metabolomics (metabolite 

levels), and proteomic (protein). These technologies may collectively be defined as 

“omics”, and when multiple strategies are used in combination, can be referred to as 

“multiomic” [61, 62]. Accounting for multiple types of molecular data concurrently can 

provide more biologically-relevant information than observing one data type in isolation 

[41,60,61,63].  

Nevertheless, there is a major challenge in understanding how data from multiple 

profiling technologies can be integrated together to make meaningful clinical decisions. 

Combining different data types from different platforms is computationally and 

quantitatively challenging, and requires techniques beyond the capability of most 

biologists [64]. Therefore, there is a strong need to develop better tools for analyzing 

multiomic data to a gain a comprehensive viewpoint of pathways deregulated in 

particular cancer populations, and to explore the use of targeted therapies [62, 65].   

 

Computational Gene Set Analysis Tools 

Gene set analysis (GSA) is a widely used computational method for analyzing 

large volumes of genomic data at the pathway level [4]. This method reduces the 

complexity of sorting through long gene lists by grouping genes into smaller gene sets or 

pathways with similar biochemical or cellular functions [6]. Statistical methods are then 

used to identify gene sets that differ between two biological conditions (which are 
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assigned by the researcher) [66]. The output of these methods is a list of pathways, that 

can then be used to guide further research to uncover mechanisms underlying biological 

phenomena, or to predict drug response. 

While over 50 different GSA methods exist, Gene Set Enrichment Analysis 

(GSEA), an approach presented by Subramanian et al. in 2005, continues to be the 

most popular and widely used method, likely due its easy-to-use web interface [66, 67]. 

Most tools differ in terms of the methods they use to compute gene set statistics and 

types of omic data they can handle [68]. GSEA is designed exclusively for gene 

expression data [69]; however, as tumors form multiomic landscapes, some methods 

have been expanded to include DNA methylation [70], ChIP-sequencing [71], and SNP 

data [72], but typically in isolation. Some methods have recently been developed that 

combine distinctive types of molecular data, but most of these methods are limited to a 

few data types, and are not capable of integrating data types into a single model. 

Therefore, generation of multiomic gene set analysis tools is needed for probing 

pathways to better understand pathway differences between patient subgroups in 

cancer.  

 

Gene Sets Analysis for Biologists 

Although gene set analysis methods help understand large datasets at the 

pathway level, their use is limited to a select population of biologists with bioinformatics 

experience. Stand-alone and web-based applications do exist, but they can be 

challenging to use without bioinformatics skills, creating hurdles for biologists [73]. 

Because biologists vastly outnumber bioinformaticians, there is a gap between the 

developers of computational and statistical methods and laboratory scientists. However, 

because no alternative exists for many of these resources, biologists are willing to spend 

large amounts of time on these tools to fulfill research needs. Biologists should be able 
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to apply the most advanced computational methods without having to learn the 

command line versions. In general, biologists prefer user-friendly software tools with 

graphical interfaces [74]. This is reflected in the citation impact of easy-to-use programs 

as compared to computational-extensive programs, with GSEA being a prime example 

[66]. Therefore, there is a strong need to lower the barriers and develop easy-to-use web 

applications for wide adoption of multiomic gene set analysis methods into the broader 

research community. 

 

Dissertation Overview 

To address the issues presented above, this dissertation focuses on utilizing and 

developing computational tools for analyzing omic data from tumors, at the pathway-

level, in order to predict response to targeted therapies. Chapter 2, a review article 

published in Seminars in Cell & Developmental Biology, describes the need for cancer 

genomics and gene expression signature-based approaches when probing the RAS 

pathway, one of cancer’s most frequently mutated networks. Chapter 3, a manuscript in 

revision with Genome Medicine, describes a signature approach using the pathway 

analysis toolkit (ASSIGN) to uncover two pathway-based growth factor receptor network 

phenotypes with treatment implications in breast cancer tumor data. Chapter 4, a 

manuscript published in Genome Medicine, takes a gene set analysis approach, and 

describes our novel computational tool, Gene Set Omic Analysis (GSOA), which 

performs gene set analysis using machine learning algorithms and multiple types of 

genomic data. Chapter 5 takes the GSOA algorithm described in Chapter 4, and 

introduces a novel easy-to-use web application, GSOA-Shiny, which allows biologists 

with no bioinformatics experience to run multiomic gene set analyses, making this type 

of analysis easily available to the broader research community. This dissertation is 

concluded by Chapter 6, which provides a summary of the work presented, describes 
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the implications and limitations of these findings, and suggests future directions. This 

dissertation contributes to the field of personalized cancer medicine by improving 

methods for analyzing genomic data at the pathway level and discovering novel 

phenotypes with clinical implications in breast cancer.  
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Abstract 

The growth factor receptor network (GFRN) plays a significant role in driving key 

oncogenic processes. However, assessment of global GFRN activity is challenging due 

to complex crosstalk among GFRN components, or pathways, and the inability to study 

complex signaling networks in patient tumors. Here, pathway-specific genomic 

signatures were used to interrogate GFRN activity in breast tumors and the consequent 

phenotypic impact of GRFN activity patterns. Novel pathway signatures were generated 

by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, 

KRAS (G12V), RAF1, BAD) in human primary mammary epithelial cells. The pathway 

analysis toolkit, Adaptive Signature Selection and InteGratioN (ASSIGN), was used to 

estimate pathway activity for GFRN components in 1119 breast tumors from the Cancer 

Genome Atlas (TCGA), and across 55 breast cancer cell lines from the Integrative 

Cancer Biology Program (ICBP43). These signatures were investigated for their 

relationship to pro- and anti-apoptotic protein expression and drug response in breast 

cancer cell lines. Application of these signatures to breast tumor gene expression data 

identified two novel discrete phenotypes characterized by concordant, aberrant 

activation of either the HER2, IGF1R, and AKT pathways (“the survival phenotype”) or 

the EGFR, KRAS (G12V), RAF1, and BAD pathways (“the growth phenotype”). These 

phenotypes described a significant amount of the variability in the total expression data 

across breast cancer tumors and characterized distinctive patterns in apoptosis evasion 

and drug response. The growth phenotype expressed lower levels of BIM and higher 

levels of MCL-1 proteins. Further, the growth phenotype was more sensitive to common 

chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the 

survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, 

but more resistant to chemotherapies. Gene expression profiling revealed a bifurcation 
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pattern in GFRN activity represented by two discrete phenotypes. These phenotypes 

correlate to unique mechanisms of apoptosis and drug response, and have the potential 

of pinpointing targetable aberration(s) for more effective breast cancer treatments. 

 

Background 

Breast cancer remains one of the leading causes of cancer-related death in 

women [1]. It is well established that growth factor receptors and their downstream 

signaling pathways contribute to breast cancer proliferation, survival, and metastasis [2, 

3]. Molecular aberrations can occur in various growth factor receptor network (GFRN) 

members, and have been described in breast cancer [4–6]. These findings have paved 

the way for GFRN targeted treatments which are currently approved for use, being 

evaluated in various stages of clinical development, and in clinical trials [7, 8]. Although 

these treatments do hold promise, relatively little data is available on the cooperativity 

and diversity of complicated GFRN signaling in actual breast tumors. Additionally, 

assessing GFRN activity in patient tumors is extremely challenging due to the lack of 

methods capable of measuring signaling events in tumors. Drug selection is often guided 

by expression of protein biomarkers, and drug resistance often develops due to 

compensation by interacting pathways within the GFRN [9, 10]. Therefore, there is a 

strong need to develop better methods for measuring and understanding GFRN 

signaling events in breast tumors in order to deliver the most effective treatment 

regimens and combat drug resistance [2, 9, 11]. 

Growth factor receptors, such as epidermal growth factor receptor 1 (EGFR), 

human epidermal growth factor receptor 2 (HER2), and insulin-like growth factor 1 

receptor (IGF1R), are key regulatory nodes of the GFRN and are often aberrantly 

activated across breast cancer subtypes [6,12,13]. Approximately 15-30% of breast 

cancer patients are diagnosed with HER2-positive breast cancer, which is characterized 
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by amplification of HER2 [12]. EGFR amplifications occur in 25% of all triple-negative 

breast cancer (TNBC) patients and are often associated with poor outcomes [6, 8, 14]. 

High IGF1R activity occurs in up to 50% of breast tumors, and is seen across all breast 

cancer subtypes [13]. These receptors can activate downstream oncogenic growth 

cascades such as the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 

kinase (MAPK) pathways, forming a complex, interconnected, and dynamic signaling 

network [2, 8]. Activation of PI3K by growth factor receptors triggers the 

PI3K/AKT/mammalian target of rapamycin (mTOR) pathway leading to cell proliferation, 

metabolic changes, and cell survival [15–17]. In the MAPK pathway, following growth 

factor receptor activation, RAS becomes activated followed by activation of RAF1, MEK, 

and ERK, leading to transcriptional changes that impact cellular proliferation, motility, 

and evasion of apoptosis [6, 8, 18, 19]. Both the PI3K and MAPK pathways contribute to 

tumor progression by disrupting the balance of pro- and anti-apoptotic proteins of the 

BCL-2 protein family in the mitochondrial (also known as intrinsic) pathway of apoptosis 

[20, 21]. Particular GFRN members can upregulate anti-apoptotic proteins such as BCL-

2, BCL-XL, and MCL-1, and downregulate pro-apoptotic proteins such as BAD, BAX, 

and BIM, all of which contribute to apoptosis evasion and resistance to cancer 

treatments in patients [22–29]. ERBB receptor tyrosine kinases, such as EGFR and 

HER2, have a large amount of overlap in the downstream pathways they activate, 

however, individual ERBB receptors have the capability to preferentially bind particular 

downstream signaling molecules [30, 31]. Furthermore, preclinical studies have shown 

that EGFR- and HER2-driven cancers show differential response to targeted therapies. 

EGFR mutant cancers are less responsive to single-agent PI3K/AKT inhibitors in 

comparison to HER2-amplified cancers, and require the inhibition of both the PI3K and 

MEK pathways [32]. This suggest that ERBB proteins can couple to distinct signaling 
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pathways and invoke nonredundant physiological effects which warrants for specificity 

for the different GFRN components. Therefore, an accurate assessment of global GFRN 

activity is pivotal for selecting targeted treatment strategies that consider the diversity of 

growth and cell survival mechanisms in breast cancer patients. 

Despite the advances in the cellular and molecular characterization of breast 

cancer, effective personalized breast cancer treatment remains elusive. 

Immunohistochemical and gene expression profiling-defined breast cancer molecular 

classification has advanced our understanding of breast cancer prognosis, treatment, 

and improved survival. Currently, breast cancers are stratified into different clinical 

subtypes in order to determine specific treatments, and several breast cancer subtyping 

approaches are currently available. For example, Fluorescence in situ hybridization 

(FISH) or immunohistochemistry (IHC) techniques are often used to determine clinical 

subtypes based on common receptor protein alterations such as estrogen (ER), 

progesterone (PR), and HER2 receptor amplification [7, 33]. Additionally, Ki-67 

(proliferation marker), CK 5/6 (cytokeratin marker), EGFR, androgen receptor (AR), and 

p53 (apoptosis marker) are used as biomarkers to further classify breast cancer using 

IHC methods. Although helpful, IHC methods are often subjected to bias due to tissue 

handling, fixation, antibody sources, and need for physical evaluation by pathologists 

[34, 35]. More recently, Perou and Sorlie et al. proposed five “intrinsic subtypes” that 

have shown utility in guiding therapy by leveraging gene expression data, differences in 

clinical outcomes, and responses to neoadjuvant chemotherapy [7, 14, 36–38]. Further, 

evaluation of gene expression has led to the proposition of several additional subtypes 

including claudin-low, molecular apocrine, and a novel luminal-like subtype [39–44]. 

While molecular subtypes continue to emerge, routine use of such subtypes in clinical 

settings is not sensitive and specific due to some critical limitations. For example, tumors 
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of the same clinical or intrinsic subtype can show differences in growth, survival, and 

response to therapies [45], and clinical and intrinsic subtypes are sometimes discrepant 

[46]. Approximately one third of HER2+ tumors are not classified as the HER2-enriched 

intrinsic subtype and up to 25% of clinically characterized ER+ tumors are not classified 

as the luminal intrinsic subtype [36]. While IHC methods are single protein based, 

intrinsic subtypes are fundamentally empirical and do not focus on distinct biological 

properties. Thus, both IHC and intrinsic subtypes fail to recapitulate the biological 

heterogeneity within each subtype [47]. Recent studies highlight the discordance 

between the IHC and intrinsic subtypes, which calls for additional work [47, 48]. To 

address these challenges, pathway-level subtyping may provide complementary 

information for determining therapeutic targets. For example, identification of specific 

aberrant pathways within the triple negative and basal-like subtypes may help to explain 

additional heterogeneity and better target these subtypes pharmacologically [49]. Here, 

breast cancer intertumor heterogeneity was explored in terms of GFRN activity for its 

well-known role in growth, evasion of apoptosis, and drug response. 

While biochemical measurement of pathway activity is challenging in human 

tumors due to limited tissue availability and instability of specific proteins, patterns of 

activity across multiple genes—or gene expression signatures—can be used as 

surrogates for pathway activation in tumors and to model biological phenotypes [50–54]. 

Pathway activation has been used to predict drug response to targeted therapies in cell 

lines [52, 54, 55], but to the best of our knowledge, this is the first study which measures 

activity of seven GFRN members concurrently at the pathway level in patient samples. In 

this study, 1119 breast tumors were profiled for GFRN activity across Cancer Genome 

Atlas (TCGA), and across 55 breast cancer cell lines from the Integrative Cancer Biology 

Program (ICBP43) [56, 57] (Figure 3.1). Pathway activity was estimated in samples 
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using novel GFRN gene expression signatures for the HER2, IGF1R, AKT, EGFR, 

KRAS (G12V mutation), RAF1, and BAD pathways. These GFRN signatures were 

generated by performing sequencing on RNA collected from primary human mammary 

epithelial cells (HMECs) overexpressing HER2, IGF1R, AKT1, EGFR, KRAS (G12V), 

RAF1, or BAD for 18-36 hours. These signatures capture early transcriptional events 

which occur shortly after oncogene activation, and represent the transcriptional profile of 

pathway activation, and not of a transformed cell. 

Using the pathway analysis toolkit, Adaptive Signature Selection, and 

InteGratioN (ASSIGN), the signatures were projected onto each breast cancer data set 

and uncovered two discrete patterns of GFRN activity [58]. One pattern was 

characterized by concurrent activation of the HER2, IGF1R, and AKT pathways, and 

another was characterized by concurrent activation of the EGFR, KRAS, RAF1, and 

BAD pathways. Typically, when one set of pathways was active, the other set was 

inactive, indicating that each sample tends to have a dominant GFRN phenotype. 

Pathways activation of HER2, IGF1R, and AKT was nicknamed the “survival phenotype” 

and activation of EGFR, KRAS, RAF1, and BAD as the “growth phenotype”. These 

names were chosen for simplicity and based on the known role of AKT signaling in 

cancer cell survival, and the known role of EGFR/RAS signaling in cellular growth [59, 

60]. Importantly, genomic pathway activity corresponded to apoptotic phenotypes. The 

growth phenotype showed upregulation of anti-apoptotic protein, MCL-1 and 

downregulation of pro-apoptotic protein, BIM, as a mechanism of escaping apoptosis. 

Additional subgroups were also identified within each phenotype, including HER2 high 

and HER2 low activity groups within the survival phenotype, and BAD high and BAD low 

activity groups within the growth phenotype. These discrete subgroups displayed 

differences in response to targeted therapies and chemotherapies. Therefore, these 
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phenotypes can serve as surrogates for GFRN activity that capture significant variability 

in the gene expression data, differentiate survival mechanisms, and correlate to drug 

response significantly. A major component of the heterogeneity found across tumor 

expression data was contributed by GFRN signaling and was independent of ER, PR, 

and HER2 status compared to intrinsic subtypes. Additionally, a unique aspect is that 

GFRN activity explained the data in a biologically meaningful way. For example, while 

intrinsic subtyping approaches are based on empirical patterns of gene expression and 

do not necessarily represent a biological process, the subgrouping approach represents 

aberrant activity in specific GFRN pathway signaling. Therefore, pathway-based 

phenotypes and subgroups have the potential to complement existing methods and 

identify biologically and clinically relevant patterns in tumors. Taken together, pathway 

signatures not only aid in assessing general pathway activity patterns in a biologically 

relevant way, but also show promise to select better treatment targets for breast cancer 

patients. 

 

Results 

Two dominant phenotypes in breast cancer patients and cell lines 

Gene expression signatures were developed and validated for the following 

GFRN pathways: AKT, BAD, EGFR, HER2, IGF1R, KRAS (G12V mutation), and RAF1. 

Signatures were generated by expressing these genes using recombinant adenoviruses 

in normal human mammary epithelial cells (HMECs). The control samples received 

green fluorescent protein (GFP) adenovirus. The overall goal of this approach was to 

capture the downstream transcriptional events specific for each expressed GFRN gene, 

or the gene expression signatures, and to use these signatures to estimate pathway 

activity in cell lines and patient samples. To determine if adenovirus infection led to 

pathway activation for each overexpressed gene, protein levels of gene products, and 
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their downstream targets were measured the using Western blots (Supplemental Figure 

3.1). Next, RNA-sequencing (RNA-seq) was performed on multiple replicates of HMECs 

overexpressing GFRN genes and GFP controls. This data was used to generate 

pathway-based gene expression signatures for each overexpressed gene using the 

previously published ASSIGN pathway profiling approach (Supplemental Figures 3.2A-

G) [58]. Briefly, ASSIGN prioritized genes that best discriminated GFP control samples 

from samples overexpressing GFRN genes to generate gene expression signatures. 

Next, ASSIGN was used to estimate the activation of each GFRN member (AKT, BAD, 

EGFR, HER2, IGF1R, KRAS (G12V), and RAF1) in 1119 breast cancer patient samples 

from TCGA and 55 samples from the ICBP panel of breast cancer cell lines. ASSIGN 

was used to measure highly correlated GFRN pathway activity more accurately in 

patient samples with signatures generated in HMECs since ASSIGN estimates 

correlated pathway activities robustly by adapting pathway signatures into specific 

disease context. Robustness of each pathway signature was validated with (1) leave one 

out cross validation (LOOCV), (2) relevant reverse phase protein array (RPPA) scores, 

(3) gene expression data for the overexpressed oncogenes, and (4) mutation data (See 

Methods, Supplemental Figure 3.3, and Supplemental Table 3.1). After validating the 

GFRN signatures, gene set enrichment analysis was performed to identify enriched 

signaling patterns within each signature (refer to “Gene set enrichment analysis on RNA-

Sequencing signatures” in Supplementary Results, Supplemental Tables 3.2-8). 

Finally, unsupervised hierarchical clustering of the pathway activity estimates for 

all GFRN signatures in both ICBP cell lines and TCGA patient data resulted in a 

dichotomous pattern (Figure 3.2A & 3.2B). The HER2, IGF1R and AKT pathways formed 

a cluster, as did the remaining BAD, EGFR, KRAS, and RAF1 pathways (Figures 3.2A & 

2B). There was some overlap between the two clusters, likely due to the known crosstalk 
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and compensation that occurs between the PI3K and MAPK pathways [61]. However, in 

general, when one set of pathways was high, the other set was low, which shows that 

samples expressed a dominant phenotype of GFRN activity. These results strongly 

suggest a pathway-level dichotomization of the GFRN, which is represented by two 

primary growth phenotypes: (1) activation of the HER2/IGF1R/AKT pathways or “survival 

phenotype” (2) activation of the BAD/EGFR/KRAS/RAF1 pathways or “growth 

phenotype.”  

After identifying the two main dichotomous growth phenotypes, these phenotypes 

were investigated for how they related to classic IHC-based subtypes, intrinsic subtypes, 

and additional heterogeneity present within each phenotype (Figure 3.2). To investigate 

if these phenotypes were independent of ER status, pathway activity estimates were 

clustered for ER+ and ER- samples separately for both ICBP and TCGA samples. The 

pathway activity bifurcation pattern, as represented by GFRN phenotypes, was 

consistent within ER+ and ER- samples, indicating GFRN phenotypes are partially 

independent of ER status (Supplemental Figure 3.4). The variability between histological 

and intrinsic subtypes can also been seen in the heatmap sidebars for TCGA and ICBP 

data (Figures 3.2A-D), and in boxplots of pathway activity estimates across clinical and 

intrinsic subtypes in TCGA (Supplemental Figures 3.5 & 3.6). Samples classified as the 

survival phenotype included samples from all histological and intrinsic subtypes 

(Supplemental Tables 3.9-10; Supplemental Figure 3.7). Of the 596 TCGA tumors from 

the survival phenotype, 84.74% were ER+, 72.99% were PR+, 18.12% were HER2+, 

and 26.51%, 17.79%, 6.88%, and 0.34% were of Luminal A, Luminal B, HER2-enriched, 

and Basal subtypes respectively. For the growth phenotype (n=523), even more 

heterogeneity in ER, PR, and HER2 status was observed (ER + 53.54%, ER - 37.67%; 

PR+ 46.85%, PR- 43.98%, HER2+ 10.33% , HER2 - 56.41%, Basal 17.78%, Her2 
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enriched 3.06%, Luminal A 13.96% and Luminal B 4.02% ). Hence, clinical and intrinsic 

subtypes varied in each phenotype cluster, and the GFRN phenotypes provide additional 

information which complements existing breast cancer clinical and intrinsic subtypes in 

both patient and cell line data [14, 37, 62 ,63]. 

HER2 activity differences were also observed within the survival phenotype, and 

differences in BAD activity within the growth phenotype. To further classify samples 

specifically on these differences, k-means clustering was performed on the AKT, BAD, 

EGFR, and HER2 pathway activity predictions in ICBP and TCGA. The four resulting 

clusters separated the survival phenotype into two subsets of samples that had either 

high or low HER2 activity, and the growth phenotype into two subsets of samples that 

had either high or low BAD activity. These patterns were observed in both the TCGA and 

ICBP datasets (Figures 3.2C & 3.2D). Again, subtype plot against these four subgroups 

as presented in the sidebars reveal there is additional heterogeneity within ER and PR 

status that is captured using GFRN subgroups. Of note, a survival analysis of the four 

subgroups in TCGA did not show significant differences in survival (λ2=5.5, p-

value=0.141, Supplemental Figure 3.8). This indicates that these subgroups may not 

relate to survival directly. Instead, these subgroups discriminate aberrant pathway 

activity that may help select patient subgroups likely to respond to specific drugs 

targeting those pathways. GFRN phenotypes complement ER status and current 

subtyping methods, but are more biologically focused than current intrinsic subtypes and 

are useful in addition to current IHC-based subtypes. 

GFRN phenotypes and subgroups contribute to variances found in  

TCGA breast cancer gene expression data 

In order to determine if the GFRN phenotypes and subgroups contributed to 

heterogeneity in the breast cancer data using an unbiased approach, an unsupervised 
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principal component analysis was performed on 1119 breast cancer RNA-sequencing 

samples from TCGA. Principal component analysis (PCA) is a dimension reduction 

method capable of identifying uncorrelated sources of variation within a dataset as 

principal components (PCs) [64, 65]. The first five PCs identified in this dataset 

represented the most significant amount of variability, explaining 34.3% of the total 

variance. The remaining components, each accounting for less than 4% of the total 

variation, were not investigated due to their minor contribution to total variance. Of note, 

PC 1 was significantly associated with average gene expression of the samples 

(Spearman’s correlations: -0.786, p-value <0.0001), potentially reflecting technical and 

nondisease-related sample variation (Supplemental Figure 3.9). However, PC 1 was 

included in analyses to demonstrate its performance. To explain variability as presented 

by PC values, currently used histological (ER, PR, and HER2) and intrinsic subtypes 

were compared to GFRN-based approaches. First, each classification approach was 

investigated for if it explained variability in each PC. When comparing PC values, 

significant differences were found between ER+ and ER- samples and PR+ and PR- 

samples for PCs 1 through 5, between HER2+ and HER2- samples for PCs 3, 4, and 5, 

across intrinsic subtypes for PCs 1 through 5 (ANOVA, p-value<0.0001), between 

growth and survival phenotypes for PCs 2 through 5, and across four GFRN subgroups 

for PCs 1 through 5 (ANOVA p-value<0.0001). These results indicated that significant 

variation underlying the TCGA breast cancer data may be contributed from multiple 

sources, including GFRN phenotypes, subgroups, histological and intrinsic subtypes.  

Second, a linear modeling approach was used to model the first five PCs with 

GFRN subgroups, intrinsic subtypes (PAM50), and histological (ER, PR, and HER2) 

subtypes. Variance explained by each model was compared in terms of R
2
 values. 355 

TCGA tumor samples, for which all of these variables were available, were included. ER 
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(R
2
 = 0.56) and PR (R

2
 = 0.407) status explained a significant proportion of PC2, but 

explained less than 10% of the total variability in the other PCs. HER2 status alone 

explained less than 4% of the variability for any of the PCs. Both GFRN subgroups and 

intrinsic subtypes explained additional variability in PCs 1-5. For all five PCs, adding the 

GFRN subgroups or intrinsic subtypes to clinical subtypes increased the R
2
 values of the 

model (p-value < 0.01 for all models tested, Supplemental Figure 3.10 ; Supplemental 

Table 3.11). Specifically, adding GFRN subtypes to a model of PCs explained an 

additional 10-35% (p-value<0.00001) of the variation when compared to a model of ER 

status alone, while PAM50 explained only 4-20% of the variation (Supplemental Table 

3.11).  

On a more granular level, GFRN subgroups explained an additional 13.5% (p-

value<0.00001) of the variability for PC2 which was not explained by ER status alone. 

For PC3, GFRN subtypes explained an additional 35% of the variation when compared 

to a model of ER status alone (ER R
2
: 0.052, ER + GFRN subtype R

2
: 0.398, p-value < 

0.00001), and intrinsic subtypes only explained an additional 20% of the variation 

compared to the same model of ER status alone (ER + intrinsic subtype R
2
: 0.254, p-

value < 0.00001). Overall, the models that contained GFRN subgroups explained a 

larger percentage of the variance of PC 1, PC 3, and PC 4, and models that contained 

intrinsic subgroups explained a larger percentage of the variance of PC 2 and PC 5 ( 

Supplemental Figure 3.10). These significant R
2
 and p-values confirm the 

nonredundancy of GFRN subgroups in relation to commonly used clinical features in 

breast cancer. Additionally, GFRN subgroups explain additional variance in models of 

PC 1, PC 3, and PC 4 than models containing intrinsic subgroups.  

Next, the variability contributed by GFRN subgroups was investigated in relation 

to biological signals, or pathway activity in this case. PC values for PCs 1 through 5 were 
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correlated with the GFRN pathway activation estimates from TCGA (Figure 3.3, 

Supplemental Table 3.12). Again, a striking bifurcated pattern was found in the 

correlations between pathway activity and PCs in this independent variability analysis. 

PC 2 was positively correlated with the EGFR, KRAS, RAF1, and BAD activation, and 

negatively correlated with HER2, IGF1R, and AKT activation. Therefore, PC 2 is 

demonstrating characters of the growth phenotype. PC 3 and PC 4 were positively 

correlated with the HER2, IGF1R, and AKT activation and negatively correlated with the 

EGFR, KRAS, RAF1, and BAD activation, thus representing growth phenotype 

characteristics (Figure 3.3). Both PC 1 and PC5 were negatively correlated with EGFR 

and RAF1 activation, but positively correlated with BAD activation. Since intrinsic 

subtypes are derived empirically without pointing to any specific biological phenomenon, 

a correlation to intrinsic subtypes could not be performed.     

In summary, these novel GFRN subgroups explained a significant amount of 

variability in TCGA RNA-sequencing data. The GFRN subgroups described variation 

beyond ER, PR, and HER2 status in all cases, and beyond intrinsic subtypes for 3 out of 

5 cases. These results suggest that variability in breast cancer data can be further 

explained in terms of the GFRN pathway activity. Therefore, GFRN subgroups can 

augment current breast cancer subtyping methods by encompassing additional 

heterogeneity not captured by traditional approaches. This pathway-based approach 

may further explain specific variation in terms of pathway activity which may point to 

identifying therapeutic targets. 

Breast cancer growth phenotypes bifurcate in expression of  

mitochondrial apoptotic proteins 

Next, differences between the survival and growth phenotypes were examined at 

the biological level, specifically in terms of mitochondrial mediated intrinsic apoptosis 
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mechanisms. Although cytotoxic anticancer agents induce cell death through various 

mechanisms, including intrinsic or extrinsic apoptosis, necrosis, autophagy, mitotic 

catastrophe, or senescence [66, 67], we focused on mitochondrial mediated intrinsic 

apoptosis mediated by BCL-2 family proteins for the following reasons. First, BCL-2 

family members, which regulate the commitment to mitochondrial apoptosis by balancing 

pro-apoptotic proteins such as BAD and BIM, and anti-apoptotic proteins such as BCL-2 

or MCL-1 [20], have been shown to contribute to the formation, progression and 

therapeutic response in breast and other cancers [21, 68]. Second, particular GFRN 

signaling pathways, such as those found in the survival and growth phenotypes, have 

the potential to induce apoptosis resistance by dysregulating BCL-2 family proteins, 

suggesting that targeting GFRN members may lead to increased apoptosis [23–29, 69–

71]. Third, several therapeutic strategies targeting anti-apoptotic BCL-2 family members 

are currently under investigation, therefore, understanding which BCL-2 proteins each 

phenotype is expressing may provide insight into additional treatment strategies for 

breast cancer [22, 72–74]. 

Here, Western blotting was used to investigate whether protein expression of 

particular BCL-2 family members differed in breast cancer cell lines classified as the 

survival or growth phenotypes (Figure 3.4). The pro-apoptotic protein BIM and anti-

apoptotic protein MCL-1 were probed across 10 breast cancer cell lines of the survival 

phenotype (8 ER+, 2 ER-), and 10 cell lines of the growth phenotype (10 ER-). Higher 

levels of MCL-1 were found in cell lines of the growth phenotype, and higher levels of 

BIM were found in in the survival phenotype (Figure 3.4B). To determine if differences in 

MCL-1 and BIM protein expression between the survival and growth phenotypes were 

due to other properties, such as ER status, a Western blot assay was performed using 

cell lines with additional heterogeneity in ER status. Although limited by the number of 
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ER+ cell lines of the growth phenotype, 12 cell lines belonging to the survival phenotype 

(5 novel ER+ cell lines, 3 ER+ repeats from previous assay, and 4 novel ER-) and 7 cell 

lines from the growth phenotype (1 novel ER+ cell line, 2 novel ER-, and 4 ER- repeats) 

were included. The protein expression of MCL-1 and BIM were not strictly dependent on 

the ER status (Supplemental Figure 3.11). 

To understand if similar results could be found in patient tumors, the expression 

of BCL-2 family member genes were examined, and MCL-1 gene expression was found 

to be higher in the growth phenotype of TCGA patient tumors (n=523) versus the 

survival phenotype (n=596, p < 0.0001) (Figure 3.4C). These results were consistent 

with previous studies showing that EGFR signaling can upregulate gene expression of 

MCL-1 [25, 69–71]. In addition to MCL-1 dysregulation, breast cancer cell lines of the 

growth phenotype expressed lower levels of the pro-apoptotic protein BIM (Figure 3.4D). 

In support of this assessment, lower levels of BIM (BCL2L11) gene expression were 

found in ICBP breast cancer cell lines (p = 0.0004) and TCGA tumors (p = 0.0002), and 

RPPA protein expression in TCGA tumors (p < 0.0001) (Figure 3.4D). These results 

concur with literature showing that EGFR signaling through ERK activation can lead to 

repression of BIM [27–29]. Also, the co-occurrence of high MCL-1 levels and low BIM 

levels in the growth phenotype are likely due to MCL-1’s known ability to bind and 

neutralize BIM, which leads to prevention of apoptosis death effector activation [21, 75]. 

In summary, these results show an interesting mitochondrial apoptotic pathway induction 

that is dependent on GFRN activity. Specifically, breast tumors classified as the growth 

phenotype may overexpress MCL-1 and inhibit BIM expression to achieve cell survival. 

These findings illustrate that breast cancer phenotypes, defined by activation of specific 

growth factor receptor pathways, express different apoptotic proteins and may resist 

apoptosis differently. 
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Growth factor receptor networks predict drug response in 

breast cancer 

Since there was a clear dichotomy in the GFRN signaling mechanisms between 

the survival and growth phenotypes, these phenotypes were investigated for their 

relation to drug response in breast cancer cell lines. Pathway activation estimates were 

correlated with drug response data for 90 drugs from the ICBP breast cancer cell line 

panel. Importantly, a consistent bifurcation pattern was observed for drug response in 

the cell line data that matched the observed pathway-level bifurcation. Specifically, 

cancer cells classified as expressing the survival phenotype were sensitive to therapies 

that target AKT, PI3K, HER2, and mTOR (Figure 3.5A). Additionally, these cell lines 

were more resistant to chemotherapies and targeted therapies that block EGFR and 

MEK. In contrast, cancer cells expressing the growth phenotype were sensitive to 

chemotherapeutics such as docetaxel, paclitaxel, and cisplatin. These cell lines were 

also sensitive to EGFR and MEK targeted therapies, but more resistant to AKT, PI3K, 

HER2, and mTOR inhibitors (Figure 3.5A).  

This dichotomy in drug response of the survival and growth phenotypes was 

further tested in an independent drug response assay. Eight drugs on a panel of 23 

breast cancer cell lines were tested and cell viability was tested upon drug treatment by 

measuring ATP levels. Drugs included were: obatoclax (BCL-2, BCL-XL, BCL-W, BAK 

inhibitor), UMI-77 (selective MCL-1 inhibitor), erlotinib (EGFR inhibitor), doxorubicin 

(topoisomerase II inhibitor), trametinib (MEK inhibitor), neratinib (pan-HER tyrosine 

kinase inhibitor), Sigma-Aldrich AKT1/2 inhibitor (dual AKT1/2 inhibitor), and bafilomycin 

(apoptosis inducer that inhibits PI3K/AKT signaling and autophagy inhibitor) at different 

doses. Again, a discrete pattern was observed between the survival and growth 

phenotypes that translated to a bifurcated drug response pattern (Figure 3.5B). 
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Responses to the chemotherapy (doxorubicin) and the EGFR pathway inhibitor 

(erlotinib) were high for the growth phenotype. In contrast, cancer cell lines classified as 

the survival phenotype responded well to drugs targeting components of the PI3K 

pathway, such as Sigma AKT1/2 inhibitor, neratinib, and bafilomycin. 

In addition to the bifurcation of GFRN and drug response, breast tumor cells of 

the growth phenotype showed a higher response to the specific MCL-1 inhibitor, UMI-77 

(Figure 3.5B). This is consistent with the findings that samples within the growth 

phenotype have higher MCL-1 expression than the survival phenotype. Response to 

obatoclax could not be clearly distinguished based on these phenotypes, likely due to its 

nonspecific binding to prosurvival proteins including BCL-2, BCL-XL and MCL-1 [76]. 

Overall, the GFRN phenotype-based drug response predictions were validated in this 

independent drug response assay. Additionally, drug sensitivity of emerging therapies 

such as UMI-77, neratinib, and bafilomycin showed differences between the two 

phenotypes, further highlighting the close relationship between GFRN signaling activity 

and response to therapies directed at pathways in this network. 

When GFRN phenotype subgroups were considered, several drugs in the ICBP 

drug response assay showed significantly different drug response profiles in the 

subgroups found in each GFRN phenotypic arm. For example, PI3K and mTOR inhibitor 

GSK1059615 and HER2/EGFR-targeting drug Lapatinib were more effective in cell lines 

within the survival phenotype showing higher HER2 activity (p = 0.009 and p < 

0.000001, respectively) (Figures 3.6A & 3.6B). Additionally, ICBP cell lines expressing 

the growth phenotype responded better to EGFR targeting drugs AG1478 and gefitinib in 

the EGFR/BAD low cluster when compared to the EGFR/BAD high cluster (p = 0.001 

and p = 0.001, respectively) (Figures 3.6C & 3.6D). 

To determine if this bifurcation pattern was independent of clinical and intrinsic 
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subtyping approaches, the correlations between pathway activation and drug response 

for ER+ and ER- and HER+ and HER- ICBP cell lines were clustered separately. Again, 

cell lines with high AKT/IGF1R/HER activity, i.e., survival phenotype, were more 

sensitive to HER2/AKT/PI3K targeted drugs even within ER- and HER- cell lines 

(Supplemental Figure 3.12). In ER+ and HER+ cell lines, many PI3K/AKT/HER2-

targeting drugs are more effective in the survival phenotype, as expected. However, 

there was additional drug response heterogeneity within ER+ samples, which is 

associated with variations in BAD and HER2 pathway activity. These subgroups are thus 

helpful to further classify samples for better drug response prediction. To assess drug 

response across ER, PR, and HER2 status, and intrinsic subtypes, it was found that out 

of 90 drugs studied in ICBP only 13 (14.4%), 12 (13.3%), and 19 (21.1%) showed 

significant differences in drug response based on ER, PR, and HER2 status 

respectively, but growth/survival phenotypes were significant for 27 (49%) 

(Supplemental Table 3.13). As further evidence, while HER2 positive status is a 

biomarker for effective HER2 targeted therapy, drug sensitivity does not solely depend 

on HER2 status. For example, while HER2 status performs much better in differentiating 

Lapatinib’s response than ER and PR status (p-value<0.0001 ), some HER2 negative 

cell lines such as HCC70 and 184A1 may respond to Lapatinib (Supplemental Figure 

3.13A-C). The subgroup analysis showed the survival/HER2 high subgroup to be more 

sensitive to Lapatinib than any other subgroup (Figure 3.6B). In contrast, intrinsic 

subgroup analysis showed, in general, that the Luminal subtype was more sensitive, but 

significant variability in Lapatinib sensitivity exists within the Luminal subtype 

(Supplemental Figure 3.13D). Other detailed examples describing comparisons between 

the GFRN phenotypes and other methods are included in Figure 3.6. In conclusion, the 

GFRN phenotypes provide additional information to current approaches; GFRN 
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phenotypes and subgroups could be used to further stratify samples and may help select 

more appropriate candidates for effective drug response. 

 

Discussion 

Targeted therapies directed against the key members of the growth factor 

receptor network (GFRN), such as EGFR, PI3K, AKT, and mTOR inhibitors, are 

currently in preclinical development, clinical trials, or approved for use in breast cancer 

[16]. However, predicting patients’ responses to therapies is challenging due to 

difficulties in measuring complex signaling events in tumors. Here, this issue was 

addressed by investigating global GFRN activity in breast cancer using these novel 

signatures. Two discrete patterns of GFRN pathway activity, or phenotypes, were found 

(Figure 3.7). The “survival phenotype” was characterized by the activation of the HER2, 

AKT, and IGF1R pathways, and the “growth phenotype” as the activation of the EGFR, 

KRAS, RAF1, and BAD pathways. Additional subgroups were also found within the 

survival and growth phenotypes including HER2 high and low activity groups within the 

survival phenotype, and BAD high and low activity groups within the growth phenotype. 

Although these discrete phenotypes were named the “survival” and “growth” phenotypes 

for simplicity, GFRN pathways comprising both groups can contribute to growth and 

survival. To the best of our knowledge, this is the first study to characterize GFRN 

activity using signature-based representations of activity across multiple pathways. 

These discrete subgroups displayed differences in response to targeted- and 

chemotherapies in breast cancer cell lines. For example, conventional chemotherapies 

such as docetaxel, paclitaxel, and doxorubicin were more effective for the growth 

phenotype than the survival phenotype. Sensitivity to PI3K, HER2, AKT, and mTOR 

inhibitors and resistance to conventional chemotherapies was also found in the survival 

phenotype. Among the subgroups, the survival phenotype/high HER2 subgroup was 



 
 
 

 

47 

hypersensitive to lapatinib, a HER2 and EGFR dual inhibitor. Similarly, the survival 

phenotype/high HER2 subgroup was more sensitive to GSK1059615, a PI3K/mTOR 

inhibitor than the survival phenotype/low HER2 subgroup. Cell lines of the growth 

phenotype responded better to EGFR and MEK inhibitors, and to conventional 

chemotherapies. The growth phenotype/low BAD subtype was more sensitive to both 

AG1478 and gefitinib (EGFR inhibitors) than the growth phenotype/high BAD subtype. 

Overall, the GFRN pathway-based phenotyping contributed to information related to 

drug response. 

Analysis of these novel phenotypes in breast cancer cell lines and tumors also 

revealed differences in intrinsic apoptosis. For example, breast cancer cell lines and 

tumors of the growth phenotype had higher levels of the anti-apoptotic protein MCL-1, 

and lower levels of the critical pro-apoptotic protein BIM. These results are consistent 

with the notion that the MAPK pathway can activate MCL-1 expression and that 

activation of ERK1/2 and the MAPK pathway can repress BIM [25, 27–29]. An 

independent drug assay also showed that the growth phenotypic cell lines responded 

better to an MCL-1 inhibitor (UMI-77). These results suggest that the patients with 

growth phenotypic expression may benefit from treatments that increase BIM, i.e., MCL-

1 inhibitors, in combination with chemotherapies, EGFR inhibitors, or other inhibitors of 

the MAPK pathway [77, 78]. Therefore, targeting GFRN members may be an effective 

therapeutic strategy for inhibiting GFRN pathways and increasing apoptosis [22]. These 

results highlight that mapping phenotypes, such as growth networks in breast tumors, 

can be exploited to guide the use of targeted therapies. This study was limited to how 

GFRN activity related to drug response and cellular intrinsic apoptosis, but it is 

understood that this is not the sole mechanism by which cancer cells die, and other cell 

death mechanisms, such as necrosis, autophagy, mitotic catastrophe, and senescence 
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should also be considered. In addition, as the use of cell lines is limited, a larger-scale 

analysis of apoptotic pathways dysregulation in patient tumor cells of all subtypes will be 

informative in further detailing how these pathways signal in cancer. These phenotypes 

many correlate with other subtyping properties, and may also be confounded by 

properties of intrinsic subtyping.  

Importantly, these newly discovered breast cancer survival and growth 

phenotypes are biologically relevant and offer a direct method for probing and targeting 

the GFRN in breast tumors. In addition, these phenotypes complement widely used 

clinical and intrinsic subtypes, and stratification of cancers by these phenotypes leads to 

better enhanced drug response predictions than classifying cancers by clinical subtyping 

approaches. This is most likely because oncogenic pathway activation was measured 

more comprehensively than relying on single protein measurements. In addition, this 

approach considers crosstalk between members of the GFRN, and correlates with 

biological processes such as cell survival. This pathway-based approach for identifying 

phenotypes allows for exploration of additional heterogeneity occurring within the 

identified phenotypes, which can further improve the ability to stratify breast cancers by 

pathway activity, which then can be used to predict drug response. Although this method 

has added to current approaches for predicting drug response in breast cancer, most 

experiments were performed in breast cancer cell lines with particular classes of drugs; 

additional drug testing should be performed in breast cancer patient cells in order to 

confirm these phenotypes. 

In summary, a novel genomic pathway-based approach of characterizing the 

interactive GFRN activation in breast cancer was used to discover two discrete GFRN 

phenotypes with significant differences in cell survival mechanisms and drug response in 

breast cancer. These phenotypes captured the distinct bifurcation pattern seen in gene 
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expression, the GFRN pathway activity, mitochondrial apoptotic network protein 

expression, and drug response (Figure 3.7). While ER, PR, HER2 status, and more 

recently, intrinsic subtype are used to guide breast cancer treatment, these subtyping or 

classifying approaches may not describe signaling pathway dysregulation in tumor cells. 

Pathway activity data provides additional information about tumor cells that can be 

leveraged to predict drug response. Characterizing individual tumors into these 

phenotypes can help determine which patients will benefit from a treatment and select 

the appropriate subpopulations for clinical trials. Importantly, these seven pathways did 

not capture all the heterogeneity of the samples and inclusion of other pathways may 

have additional benefits. Although feasible, additional investigation is needed before 

these phenotypes can be used in clinical trials for patient selection, including the testing 

of these phenotypes in patient primary tumor cells.  

 

Conclusion 

A discriminating bifurcation pattern of key GFRN pathways was identified in 

breast tumors that expands beyond histological and clinical subtypes. These phenotypes 

correlated with unique apoptotic and drug response mechanisms. The ability to measure 

signaling events more accurately in patient tumors advances understandings of the 

biological basis of cancer. These results may lead to more effective and individualized 

treatment selection in patients with breast cancer. 

 

Methods 

Overexpression of genes of interest in human mammary epithelial cells 

In order to create gene expression signatures representative of pathway 

activation, GFRN oncogenes were overexpressed in primary human mammary epithelial 

cells (HMECs). HMECs from a noncancerous breast reduction surgery performed at the 
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University of Utah were isolated and cultured according to previously published protocols 

[79]. Cells were grown in serum-free mammary epithelial basal medium (MEBM) plus the 

addition of a “bullet kit” (Lonza) and supplemented with 5 mg/ml transferrin and 10-5 M 

isoproterenol at 5% CO2. Cells were brought to quiescence by growth in low serum 

conditions (0.25% MEBM + “bullet kit”, no EGF) for 36 hours. Cells were infected with 

recombinant adenovirus (at 500 MOI) expressing either human oncogenes AKT1, 

IGF1R, BAD, HER2, KRAS (G12V), RAF1, or GFP control. Cells were incubated with 

virus for 18 hours except for KRAS (G12V), which was incubated for 36 hours. The 

adenoviral expression systems invokes transient gene expression changes which allow 

us to capture the early transcriptional events of each oncogene, as opposed to the 

transcriptional profile of a transformed cell. Recombinant adenoviruses were amplified 

and concentrations were determined using previously published protocols [80]. All 

viruses were obtained from Vector Biolabs, except RAF1 (Cell Biolabs) and EGFR (gift 

from Duke University). 

Western blot analysis for expression of growth factor proteins  

in HMECs and apoptotic proteins in breast cancer cell lines 

Protein from HMECs was extracted from the following breast cancer cell lines: 

HCC3153, HCC1395, ZR75B, HCC1569, HCC2218, SKBR3, LY2, SUM52PE, ZR7530, 

MDAMB361, AU565, BT474, BT483, CAMA1, HCC1419, HCC1428, MCF7, 

MDAMB175, T47D, ZR751, HCC1954, JIMT1, BT549, HCC1143, HCC1806, HCC1937, 

HCC38, HCC70, HS578T, and MDAMB213. To collect protein, cells were washed with 

PBS, scraped on ice into PBS, pelleted by centrifugation, lysed in lysis buffer for 15 

minutes (50 mM Tris (pH 8.0), 140 mM NaCl, 5 mM EDTA, 1% TritionX-100, 0.1% SDS, 

protease cocktail (Sigma), phosphatase inhibitors cocktails 2 and 3 (Sigma), and 

centrifuged at 13,000 x g for 15 minutes. Protein quantitation of lysates was determined 
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using a BCA assay (Pierce). Electrophoresis was performed on a 8-12% Tris-HCl 

polyacrylamide gel (BioRad) for HMEC western blots, and 18% Criterion TGX 

Tris/Glycine gels (BioRad) for apoptotic proteins. Proteins were then transferred to a 

PVDF membrane using the iBlot® 2 Dry Blotting System (Thermo Fisher Scientific). 

Membranes were blocked for 1 hour with SuperBlock™ (Thermo Fisher Scientific) and 

probed with the following primary antibodies: AKT (#9272), pAKT (#13038), BAD 

(#9292), EGFR (#4267), pEGFR (#2234), HER2 (#2165), pHER2 (#2244), IGF1R 

(#3027), pIGF1R (#3021), KRAS (sc-30), pMEK (#9154), p-cRAF (#9427), GAPDH 

(#5174), and β-tubulin (#2146). Of note, pAKT ran higher than expected due to AKT 

myristoylation. Breast cancer cell line lysates were probed with the following: MCL-1 

(#5453), BIM (#2933), and B-actin (#3700). All antibodies were obtained from Cell 

Signaling Technology, besides KRAS, which was obtained from Santa Cruz. 

Dose response assay 

Cell lines were plated at 2000 cells per well in 384 well plates for 24 hours at 

37°C. All cell lines were obtained from American Type Culture Collection (ATCC). Drugs 

were diluted to six doses in media containing 5% FBS (Gibco/Life technologies) and 1% 

anti–anti (Gibco/Life technologies). Erlotinib, trametinib, UMI-77, obatoclax, doxorubicin, 

and neratinib were purchased from Selleckchem and Bafilomycin and AKT1/2 inhibitor 

were from Sigma-Aldrich. Drugs were dissolved in 100% DMSO and stored at −80°C. 

Cell viability and growth were measured using CellTiter-Glo (Promega) 72 hours after 

treatment. All treatment doses were performed in four replicates. The Drug Discovery 

Core Facility, a part of the Health Sciences Cores at the University of Utah, performed 

the dose response assay. EC50s (concentration of each drug that provides half of the 

maximum response) were determined, and converted the EC50s to drug sensitivity 

values defined as the negative log of the EC50s (-logEC50). EC50 values were 
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calculated from dose response data by plotting in GraphPad Prism 4 and using the 

equation Y = 1/(1 + 10ˆ((logEC50 − X) �HillSlope)) with a variable slope (Ymin = 0 and 

Ymax = 1). 

RNA preparation and RNA sequencing 

After transfection with adenovirus and Western blot validation, cells were 

pelleted, washed in PBS, and stored in RNAlater (Ambion). Cells were then DNase 

treated, and RNA was extracted using the RNeasy kit (Qiagen). RNA replicates were 

generated for each overexpressed gene: 6 each for AKT, BAD, IGF1R, and RAF1; 5 for 

HER2; and 12 for GFP control (Gene Expression Omnibus (GEO) accession 

GSE83083). Additionally, 9 replicates of each of KRAS and GFP control were generated 

(GEO accession GSE83083). The EGFR signature and its corresponding GFP control 

were previously generated with 6 replicates of each (GEO accession GSE59765). RNA 

concentration was determined with a Nanodrop (ND-1000). cDNA libraries were 

prepared from extracted RNA using the Illumina Stranded TruSeq protocol (Illumina). 

cDNA libraries were sequenced at Oregon Health and Sciences University using the 

Illumina HiSeq 2000 sequencing platform with six samples per lane. Single-end reads of 

101 base pairs were generated. 

Gene expression data processing, normalization, and datasets 

 The Rsubread R package (Version 1.14.2) was used to align and summarize 

RNA-seq reads to the UCSC hg19 reference genome and annotations [81, 82]. All RNA-

seq data in this study, including HMEC overexpression data (GSE83083, GSE59765), 

TCGA breast cancer data (GSE62944), and ICBP breast cancer RNA-Seq dataset 

(GSE48213), were processed and normalized using a pipeline that can be found at 

(https://github.com/srp33/TCGA_RNASeq_Clinical) [60, 83]. 



 
 
 

 

53 

Generation of gene expression signatures 

Adaptive Signature Selection and InteGratioN (ASSIGN; Version 1.9.1), a semi-

supervised pathway profiling toolkit, was used to generate gene expression signatures. 

A formal definition of the ASSIGN model and software implementation was previously 

described [58]. RNA-Seq data from HMECs overexpressing GFP control were compared 

to HMECs overexpressing AKT1, IGF1R, BAD, HER2, KRAS (G12V), RAF1, and EGFR. 

ASSIGN uses a Bayesian variable approach to select genes with the highest weights 

and signal strengths, indicating differential expression. These genes represent 

oncogenic signatures. 

Gene set enrichment analysis on RNA-Sequencing signatures 

The R package, Gene Set Variation Analysis for microarray and RNA-seq data 

(GSVA; Version 1.22.0), a nonparametric, unsupervised method for estimating variation 

of gene set enrichments in gene expression data, was used to perform this gene set 

enrichment analysis [84]. GSVA was downloaded from Bioconductor (3.4). RNA-

Sequencing data from HMECs overexpressing GFP (control), AKT1, IGF1R, BAD, 

HER2, KRAS(G12V), RAF1, and EGFR was used as input for the GSVA algorithm. The 

following gene sets were used and downloaded from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/downloads.jsp) [85]; 1320 gene sets from the C2: 

canonical pathways collection (c2.cp.v5.2.symbols.gmt) and 50 gene sets from the 

hallmarks collection (h.all.v5.2.symbols.gmt). The following GSVA parameters were 

used: minimum gene set size = 10, maximum gene set size = 500, verbose = TRUE, 

rnaseq=TRUE, and method = “ssgsea”. GSVA returns a matrix containing enrichment 

scores for each sample and gene. The R package limma (version 3.30.2) [86], was used 

to perform a differential expression analysis between each overexpressed gene samples 

and its respective GFP control samples. 
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Batch adjustment and estimation of pathway activity in ICBP and 

 TCGA BRCA patient samples 

HMEC oncogenic signatures (training data) were applied to 55 ICBP breast 

cancer cells and 1119 TCGA breast cancer patient gene expression datasets (test data) 

to estimate pathway activation status. To avoid confounding batch effects within and 

between the training and test data, the data was adjusted for batch effects. First, in order 

to visualize batch effects in the data a principal component analysis (PCA) was 

performed on the training (HMEC overexpression RNA-seq) data. The training data was 

sequenced separately in three batches, and significant batch effects were observed. 

Batch effects were adjusted using the “ComBat” function from the R package sva 

(version 3.21.1) [83, 87]. ComBat was run using the reference-batch option, which 

adjusts the data to match an indicated batch. The sequencing batch containing AKT1, 

IGF1R, BAD, HER2, and RAF1 was selected as the reference batch. A model-matrix 

indicating which pathway was associated with each training replicate was also included. 

After the first batch adjustment, PCA was performed on the adjusted training data and 

the test data (ICBP breast cancer cell lines or TCGA breast tumors). Significant batch 

effects were identified between the training and test data and performed a second round 

of ComBat adjustment, using the training data as the reference batch. After the second 

batch adjustment, PCA was performed to confirm the resolution of the batch effect. 

Additionally, background baseline gene expression differences were adjusted between 

oncogenic signatures and test samples (ICBP cell lines and TCGA patient data) using 

ASSIGN’s adaptive background parameter. The variation in magnitude and direction of 

signature-relevant gene expression between oncogenic signatures training samples and 

test samples was adjusted using ASSIGN’s adaptive signature parameter. The model 

specification options for all analyses are listed in Supplemental Table 3.14. Default 
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ASSIGN settings were used for all other parameters. 

Optimization of single-pathway estimates in ICBP cell line and TCGA  

BRCA patient data 

 To determine the optimum number of genes for each oncogenic signature, 

signatures with gene list lengths from 25 to 500 genes, in 25 gene increments, were 

generated using ASSIGN’s single pathway settings. By default, ASSIGN chooses gene 

lists that contain an equal number of genes that have increased or decreased 

expression with pathway activation. ASSIGN also allows a specific gene to be anchored 

in the signature, making sure that gene is always included in the signature, even if it is 

not chosen during gene selection or if it is removed from the signature after Monte Carlo 

simulation. Anchor genes were chosen based on the oncogene overexpressed in each 

signature. Pathway predictions generated by ASSIGN are represented as values from 

zero to one. Values of zero represent no pathway activity, and values of one represent 

high pathway activity. For all the signatures that passed internal leave-one-out-cross-

validation, pathway estimates were included for further validation in proteomics, 

mutation, and gene expression. To determine optimal signature gene list lengths and 

evaluate the robustness of the generated signatures, pathway activation estimates from 

ICBP and TCGA were correlated with proteins that reflect downstream pathway 

activation from corresponding ICBP and TCGA RPPA data as a measurement of protein 

quantity [88, 89]. Significant correlations were found between pathway activation 

estimates for all GFRN signatures and appropriate downstream pathway proteins [13, 

90–92] (Supplemental Table 3.1). Mutation-based analysis was performed using t-tests 

between patient groups based on mutation status in oncogenic proteins. For example, 

TCGA mutation data was analyzed and higher HER2 pathway activation estimates were 

found in HER2-positive tumors (Supplemental Figure 3.3C), and higher AKT activation 
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and lower BAD activation estimates in patients with PI3KCA mutations (Supplemental 

Figures 3.3A & 3.3B). In gene expression data, higher pathway activity for AKT, EGFR, 

IGF1R, and RAF1 in TCGA samples classified as “high” expressing using percentiles 

from the TCGA RNA-seq dataset for their respective genes AKT1, EGFR, IGF1R, and 

RAF1 were found (Supplemental Figures 3.3D-G). Samples with 90th percentile or 

higher expression were considered “high” 10th percentile or lower were considered 

”low”, and 10th to 90th percentile were considered “intermediate” expressing samples for 

AKT1, EGFR and RAF1. For IGF1R validation, samples with 80th percentile or higher 

IGF1R expression were considered “high”, 20 percentile or lower was considered “low”, 

and 20 to 80 percentile expression were considered “intermediate” expressing samples. 

Finally, a pairwise Spearman correlation values and calculated p-values between 

pathway predictions and corresponding TCGA reverse phase protein array (RPPA) data, 

were used to determine which gene numbers gave the best correlations. The HER2 and 

AKT signatures performed better with fewer genes. Therefore, 5-, 10-, 15-, and 20-gene 

signatures for HER2 and AKT were generated. Significant correlations were seen 

between pathway estimates and RPPA protein scores. For example, AKT pathway 

activation estimates were significantly correlated with AKT, PDK1, and phosphorylated-

PDK1 protein levels in both ICBP and TCGA (p-values <0.0001) samples. Due to the 

lack of proteins available to validate the BAD signature, negative correlations between 

BAD pathway estimates and AKT protein based on the knowledge that activation of AKT 

leads to BAD inhibition were used [23]. The optimized gene list was the list that gave the 

best average correlation in the expected direction for the RPPA data correlated with 

each pathway in the TCGA data and was significant both in ICBP and TCGA data, with 

an ICBP correlation of at least 0.3 and a maximum gene list length of 300 genes.  
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Software implementation of pathway activity prediction with  

generated signatures 

The signatures presented here have been included in the latest version of the 

ASSIGN package (v1.11.3) so that pathway activity prediction can be easily performed 

on other datasets. Because the gene list length can affect the results of ASSIGN 

analysis, the signatures can be used in their original form, or the gene list lengths can be 

optimized based on maximizing correlations between ASSIGN activity predictions and a 

set of variables, such as RPPA data. 

Determination of growth factor phenotypes in ICBP and TCGA 

Cell lines from ICBP, patient tumors from TCGA, and breast cancer cell lines for 

in vitro experiments were classified as either the survival or growth phenotype by 

calculating the mean of scaled pathway activation values for HER, IGF1R, and AKT for 

the survival phenotype, and the mean of scaled pathway activation values for BAD, 

EGFR, KRAS, and RAF1 for the growth phenotype. Each sample was classified as 

either survival or growth phenotype based on which phenotype had the highest mean. 

Identification of additional drug response heterogeneity within  

growth factor phenotypes 

In order to classify samples into subgroups that corresponded with high and low 

HER2 activity within the survival phenotype and high and low BAD activity within the 

growth phenotype, k-means clustering (“kmeans” R function) was performed on the 

scaled pathway activity data for AKT, HER2, BAD, and EGFR pathways (with four 

means and 100 random starts). After classifying samples, t-tests were performed using 

the R function “t.test” on known HER2/AKT/PI3k/mTOR-targeting drugs and 

EGFR/MEK-targeting drugs from the drug response assay described above between the 
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cell lines identified as AKT/HER2 high and AKT/HER2 low, and between the cell lines 

identified as EGFR/BAD high and EGFR/BAD low. P-values were corrected using an 

FDR correction and identified drugs that showed a significantly different drug response 

between the growth factor subgroups. When determining how growth phenotypes ER, 

PR and HER2 status performed in assessing drug responses, mean drug response 

across all available cell lines as the cut-off were used. Cell line drug sensitivity value 

above this cutoff was considered as “sensitive” and otherwise “resistant”.  

Statistical analyses 

  The “prcomp” function from the stats R package was used to compute the 

principal components in TCGA breast cancer patient RNA-seq data. The Spearman 

rank-based pairwise correlation method was used for all principal-component-based 

correlations, pathway predictions, and protein correlations. The “cor.test” function from 

the stats R package was used to calculate p-values for each correlation [93–95]. 

Student’s t-tests were used to find differences in principal component values based on 

IHC-based subtypes, mutation status within GFRN subtypes and intrinsic subtypes, 

pathway activity, drug sensitivity differences, and gene expression. The “heatmap.2” 

function from the ggplots R package and the “Heatmap” function from the 

ComplexHeatmap R package were used for generating pathway activity and pathway 

activity-drug response correlation heatmaps [96, 97]. The “lm” function from the stats R 

package was used to model PC values in TCGA using clinical subtypes, intrinsic 

subtypes, and GFRN subgroups to determine R2 values. Models were compared using 

the “anova” function from the stats package to determine the significance of adding 

additional features to the models. All analyses were conducted in R and the code is 

available at https://github.com/mumtahena/GFRN_signatures [98].  
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Availability of data and materials 

 

The datasets supporting the conclusions of this article and instructions for how to 

download it are available in the Github repository titled “GRFN_signatures” found at 

https://github.com/mumtahena/GFRN_signatures. Gene expression signatures can be 

found at GSE83083 and GSE59765. 
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Figure 3.1: High-level overview for probing growth factor receptor networks in breast 

cancer. (A) Overexpression of growth factor receptor network (GFRN) genes in HMECs: 

AKT, BAD, EGFR, HER2, IGF1R, RAF1, and KRAS (G12V). (B) Generation of RNA-

sequencing data from HMECs overexpressing GFRN genes and signature generation 

using ASSIGN. (C) Determination of GFRN pathways activation across TCGA breast 

tumors and ICBP breast cancer cell lines and identification of novel phenotypes based 

on GFRN activity. (D) Linking novel phenotypes to survival and drug response 

mechanisms in biochemical and drug response assay. 
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Figure 3.2: Analysis of pathway activity and intrinsic subtypes in (A) 1119 TCGA breast 

cancer samples and (B) 55 ICBP breast cancer cell lines. HER2, IGF1R, AKT and BAD, 

EGFR, KRAS (G12V), and RAF1 pathway activities reveal two distinct clusters that were 

negatively associated. GFRN characterization reveals a dichotomy in TCGA breast 

cancer patients, high BAD/EGFR/KRAS/RAF1 (growth phenotype) (column color label 

shown in aquamarine) and high HER2/IGF1R/AKT (survival phenotype) (column color 

label shown in coral). Subtypes determined by immunohistochemistry and intrinsic 

subtyping are shown on the right side row color labels. K-means clustering of TCGA 

samples (C) identifies subsets of samples within the survival phenotype that have high 

HER2 activation and low HER2 activation, and subsets of samples within the growth 

phenotype that have high BAD activation and low BAD activation (shown in the left side 
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row color labels). These clusters are also seen in ICBP (D).  

 

Figure 3.3: Principal component analysis across TCGA breast tumors. Correlation 

heatmap between principal component values from principle components 1 through 5 

and ASSIGN GFRN pathway estimates from TCGA breast cancer RNA-seq data. Red 

colors represent a positive correlation and blue colors represent a negative correlation. 
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Figure 3.4: Survival and growth phenotypes differ in cell survival mechanisms. (A) The 

heatmap represents scaled activation values across 20 breast cancer cell lines used in 

this analysis for each GFRN pathway. (B) Western blot analysis for MCL-1, BIM, and B-

actin control across 20 breast cancer cell lines of either the survival phenotype or growth 

phenotype. Boxplots between samples classified as the survival phenotype or growth 

phenotype for (C) MCL-1 gene expression (log2 (Transcript per million)) in the TCGA 

data, (D) BIM gene expression (log2 (Transcript per million)) in TCGA and ICBP data, 

and protein expression (RPPA score) in TCGA data. Student t-tests were performed to 

determine significance. 
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Figure 3.5: Growth factor receptor network phenotypes reflect dichotomous drug 

response in breast cancer cell lines. Colors correspond to scaled Spearman correlations 

between specific pathway activation estimates generated with ASSIGN and drug 

sensitivity (-logGI50) across (A) 55 breast cancer cell lines from the ICBP panel (B) 23 

breast cancer cell lines in an independent drug assay. Red represents positive 

correlation and blue represents negative correlation. Pathways cluster across the x-axis 

as (coral color) AKT growth phenotype and (green) EGFR growth phenotype. Drug 

classes are represented along the y-axis as pink (HER2/AKT/PI3K/mTOR targeted-

therapies), yellow (chemotherapies/BCL-2 targeting therapies), and blue (EGFR/MEK 

targeted-therapies).  
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Figure 3.6: Differential drug response identified in GFRN phenotype heterogeneity. 

Boxplots of –log (EC50) drug response data from four drugs in the drug assay that show 

a differential drug response within growth factor phenotypes. (A) GSK1059615, a PI3K 

and mTOR inhibitor, caused an increase in response in samples within the survival 

phenotype classified as having high HER2 activity. (B) Lapatinib, a HER2 inhibitor, 

stimulated a stronger response in samples within the survival phenotype with high HER2 

activity. (C) AG1478 and (D) Gefitinib, EGFR inhibitors, caused an increased response 

in samples within the growth phenotype classified as having low BAD activity. 
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Figure 3.7: Summary of the survival and growth phenotypes in breast cancer. The 

survival phenotype is characterized by high HER2, IGF1R, and AKT pathway activation, 

high expression of pro-apoptotic BIM, low expression of anti-apoptotic MCL-1, and 

response to HER2, AKT, PI3K, and mTOR inhibitors. The growth phenotype is 

characterized by high EGFR, KRAS, and RAF1 activation, high expression of MCL-1, 

low expression of BIM, and response to EGFR/MEK targeted therapies and 

chemotherapies. 
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Supplemental Results, Figures, and Tables 

Supplemental results: Gene set enrichment analysis on  

RNA-Sequencing signatures 

We performed gene set enrichment analysis, using the Gene Set Variation 

Analysis for microarray and RNA-seq data (GSVA) method, to better understand the 

biological significance and discover enriched gene sets between our RNA-sequencing 

signatures: AKT, BAD, EGFR, HER2, IGF1R, KRAS, and RAF1 and GFP controls. We 

analyzed 1370 gene sets from the C2: canonical pathways collection from the Molecular 
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Signatures Database (See Methods section in manuscript). Gene sets representing cell 

cycle pathways were found to be enriched across all signatures, however, each 

signature also showed enrichment for expected and unique gene sets. For example, the 

HER2 signature was primarily enriched for immune system and cellular adhesion 

pathways (Supplemental Table 3.6). The IGF1R signature was dominated by metabolic 

pathways (Supplemental Table 3.7). The AKT signature was enriched for immune, 

apoptotic, and metabolic pathways (Supplemental Table 3.8). The BAD signature was 

enriched for immune system and cell cycle pathways (Supplemental Table 3.9). EGFR 

was dominated by DNA replication and cell cycle pathways (Supplemental Table 3.10). 

KRAS and RAF were highly enriched for MAPK pathways (Supplemental Tables 3.11- 

12), but RAF also showed enrichment for TGFB and immune system pathways 

(Supplemental Tables 3.11-12). These results highlight the variety of biological pathway 

differences which can be found by overexpressing GFRN components, further illustrating 

the need for GFRN pathway activation signatures.  
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Supplemental Figures 

 

Supplemental Figure 3.1: Validation of protein overexpression for each GFRN signature. 

Protein lysates from human primary mammary epithelial cells (HMECs) overexpressing 

GFRN genes were compared to GFP control protein lysates using Western blotting. (A) 

HMECs overexpressing AKT1 compared to GFP (GAPDH loading control) (B) HMECs 

overexpressing BAD, compared to GFP (β-tubulin loading control) (C) HMECs 

overexpressing EGFR and pEGFR compared to GFP (GAPDH loading control) (D) 

HMECs overexpressing HER2 and pHER2 compared to GFP (GAPDH and β-tubulin 

loading controls) (E) HMECs overexpressing IGF1R and pIGF1R (GAPDH and β-tubulin 

loading controls) (F) HMECs overexpressing pMEK compared to GFP (β-tubulin and 

GAPDH loading controls) (G) HMECs overexpressing RAF1 compared to GFP controls 

(β-tubulin loading controls). 
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Supplemental Figure 3.2: Gene expression signatures for key GFRN pathways 

generated by ASSIGN. (A) AKT 20 gene signature, (B) BAD 250 gene signature, (C) 

EGFR 50 gene signature, (D) HER2 10 gene signature, (E) IGF1R 100 gene signature, 

(F) KRAS (G12V) 200 gene signature, and (G) RAF1 350 gene signature. The horizontal 

black bar indicates green fluorescent protein (GFP) overexpressing control samples, and 

the red bar indicates the overexpressed genes of interest (i.e., AKT1, BAD, EGFR, 
ERBB2 (HER2), IGF1R, KRAS (G12V), and RAF1, respectively) signature samples.  
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Supplemental Figure 3.3: Additional GFRN gene expression signature validations in 

TCGA breast cancer data. Pathway activity estimate boxplots between the (A) AKT 

pathway and (B) BAD pathway between PI3KCA mutated and PI3KCA wild-type TCGA 

breast cancer samples (n=787). Any mutation in PI3KCA was considered pathogenic in 

this mutation analysis. (C) HER2 pathway activation estimates between HER+ and HER- 

patient TCGA samples (n=708). Pathway activation estimates for (D) IGF1R, (E) AKT, 

(F) EGFR, and (G) RAF1 between “high“,“intermediate“, and “low“ expressing samples 

in 1119 BRCA TCGA samples. Samples with 90 percentile or higher expression were 

considered “high”, 10 percentile or lower were considered “low”, and 10 to 90 percentile 

were considered “intermediate“ expressing samples for AKT1, EGFR and RAF1. For 

IGF1R validation, samples with 80 percentile or higher IGF1R expression were 

considered “high“, 20 percentile or lower was considered “low“, and 20 to 80 percentile 

expression were considered “intermediate“ expressing samples. 
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Supplemental Figure 3.4:  Pathway activity estimates between ER+ and ER- samples in 

breast cancer cell lines and patient data. (A) 19 ER- breast cancer cell lines from ICBP, 

(B) 32 ER+ breast cancer cell lines from ICBP. (C) 230 ER- breast cancer patient 

samples from TCGA, and (D) 785 ER+ breast cancer patient samples from TCGA. The 

growth phenotype is represented in aquamarine above the heat map, and the survival 

phenotype in coral. Subtypes determined by immunohistochemistry (ER, PR, and 

HER2), intrinsic subtyping, and PAM50, are label in the right side of the heatmap.  

(D)(C)
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Supplemental Figure 3.5: Pathway activation estimates across clinical subtypes (IHC-

based, N=1012) in TCGA breast cancer data for (A) the AKT pathway (B) the BAD 

pathway (C) the HER2 pathway (D) the IGF1R pathway (E) the EGFR pathway (F) the 

RAF1 pathway (G) the KRAS pathway. 
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Supplemental Figure 3.6: Pathway activation estimates across intrinsic subtypes 

(PAM50 based, N=510) in TCGA breast cancer data for (A) the AKT pathway (B) the 

BAD pathway (C) the EGFR pathway (D) the HER2 pathway (E) the IGF1R pathway (F) 

the KRAS pathway (G) the RAF1 pathway estimates. 
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Supplemental Figure 3.7: Graphical representation of the IHC and intrinsic subtype 

status distribution for ICBP cell line and TCGA breast tumors. Each sample is 

represented along the X-axis and corresponding phenotype, ER, PR, HER2 and intrinsic 

subtype status is represented along the Y-axis. Supplemental Table 3.9 and 3.10 

provides breakdown of each category, for ICBP and TCGA. 
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Supplemental Figure 3.8: Survival analysis of the four subgroups in TCGA BRCA 

samples (N=1119). Kaplan-Meier survival analysis for the four identified subgroups using 

the Peto and Peto modification of Gehan-Wilcoxon test did not show significant 

differences across the subgroups (λ
2
=5.5, p=0.141).  
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Supplemental Figure 3.9: Correlation between mean gene expression values for all 

samples and the principal component values for each sample for principal component 1 

based from breast cancer (BRCA) TCGA RNA-sequencing samples (Spearman’s 

correlations: -0.786, p-value <0.0001). 
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Supplemental Figure 3.10: Comparison of R
2
 values (proportion of variance) explained 

by each model for principle components (PCs) 1 through 5 from TCGA RNA-sequencing 

breast cancer data. For each PC, model variables include GFRN subtypes, intrinsic 

subtypes (PAM50), clinical subtypes (ER, ER, and HER2 status) and their combinations.   
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Supplemental Figure 3.11: Independent western blot assay for MCL-1 and BIM proteins 

between breast cancer cell lines from the survival and growth phenotypes. Lysates from 

12 cell lines from the survival phenotype (8 ER+ and 4 ER-) and 7 cell lines from the 

growth phenotype (1 ER+ and 6 ER-) were probed for anti- and pro-apoptotic proteins, 

MCL-1 and BIM, and compared to β-actin (loading control). 
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Supplemental Figure 3.12: Correlations between pathway activation estimates and drug 

response values between ER+ and ER- and between HER+ and HER2- samples in 

breast cancer cell lines. Colors correspond to scaled Spearman correlations between 

specific pathway activation estimates generated with ASSIGN and drug sensitivity (-

logGI50) across (A) 18 ER+ breast cancer cell lines, (B) 32 ER- breast cancer cell lines 

from the ICBP panel, (C) 18 HER2+ breast cancer cell lines, and (D) 32 HER2- breast 

cancer cell lines from the ICBP panel. Red represents positive correlation and blue 

represents negative correlation. Pathways cluster across the x-axis as (coral color) 

survival phenotype and (green) growth phenotype. Drug classes are represented along 

the y-axis as pink (HER2/AKT/PI3K/mTOR targeted-therapies), yellow 

(chemotherapies/BCL-2 targeting therapies), and blue (EGFR/MEK targeted-therapies).  
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Supplemental Figure 3.13: Comparison of Lapatinib sensitivity based on (A) ER status, 

(B) PR status, (C) HER2 status, (D) Intrinsic Subtypes in ICBP breast cancer cell lines. 

Drug sensitivity is measured in -logEC50.  
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Supplemental Tables 

 

Supplemental Table 3.1: Spearman correlations between pathway activation estimates 

and proteomics data for optimum signature selection in ICBP cell line and TCGA 

proteomics data. 

 

Pathway Optimized 

Number 

of Genes 

Protein ICBP TCGA 

Correlation p-value Correlation p-value 

AKT 20 

Akt 0.576 2.03E-04 0.192 1.54E-07 

PDK1 0.574 2.14E-04 0.239 5.93E-11 

PDK1_pS241 0.535 6.50E-04 0.337 5.84E-21 

BAD 250 

Akt -0.456 4.33E-03 -0.150 4.43E-05 

PDK1 -0.605 8.14E-05 -0.313 4.37E-18 

PDK1_pS241 -0.518 1.02E-03 -0.232 2.23E-10 

EGFR 50 

EGFR 0.470 0.050 0.357 2.09E-23 

EGFR_pY1068 0.397 0.028 0.129 4.50E-04 

EGFR_pY1173   0.155 2.44E-05 

HER2 10 
HER2 0.923 0.00E+00 0.376 1.61E-05 

HER2_pY1248 0.953 0.00E+00 0.356 1.37E-04 

IGF1R 100 

IRS1   0.324 2.37E-19 

IGF1R 0.086 0.608   

PDK1 0.569 2.45E-04 0.371 2.68E-25 

PDK1_pS241 0.509 1.26E-03 0.403 5.33E-30 

KRAS 

(G12V) 
200 

EGFR 0.423 8.57E-03 0.493 4.05E-46 

EGFR_pY1068 0.296 7.17E-02 0.089 1.60E-02 

EGFR_pY1173   0.090 1.47E-02 

MEK1   0.116 1.69E-03 

RAF 350 

MEK1 0.285 0.084 0.245 1.72E-11 

PKC.alpha 0.467 3.46E-03 0.396 6.36E-29 

PKC.alpha_pS657 0.462 3.83E-03 0.415 0.00E+00 
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Supplemental Table 3.2: Top 50 gene sets predicted by GSVA between GFP (control) 

and HER2 overexpressing RNA-sequencing data in HMECs. Distinguishing pathways 

are color coded. 

 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION <0.0001 <0.0001 

REACTOME_IL_7_SIGNALING <0.0001 <0.0001 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES <0.0001 <0.0001 

BIOCARTA_CBL_PATHWAY <0.0001 <0.0001 

BIOCARTA_COMP_PATHWAY <0.0001 <0.0001 

PID_VEGFR1_PATHWAY <0.0001 <0.0001 

ST_G_ALPHA_S_PATHWAY <0.0001 <0.0001 

BIOCARTA_EPONFKB_PATHWAY <0.0001 <0.0001 

REACTOME_CELL_EXTRACELLULAR_MATRIX_INTERACTIONS <0.0001 <0.0001 

BIOCARTA_RB_PATHWAY <0.0001 0.0001 

BIOCARTA_IL22BP_PATHWAY <0.0001 0.0001 

BIOCARTA_IL10_PATHWAY <0.0001 0.0001 

BIOCARTA_P53HYPOXIA_PATHWAY <0.0001 0.0001 

KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION <0.0001 0.0001 

REACTOME_REGULATION_OF_IFNA_SIGNALING <0.0001 0.0002 

KEGG_OOCYTE_MEIOSIS <0.0001 0.0003 

REACTOME_RECYCLING_PATHWAY_OF_L1 <0.0001 0.0003 

BIOCARTA_SPRY_PATHWAY <0.0001 0.0003 

KEGG_FOCAL_ADHESION <0.0001 0.0003 

BIOCARTA_IL7_PATHWAY <0.0001 0.0003 

PID_REELINPATHWAY <0.0001 0.0003 

KEGG_GAP_JUNCTION <0.0001 0.0004 

PID_ILK_PATHWAY <0.0001 0.0005 

REACTOME_SEMAPHORIN_INTERACTIONS <0.0001 0.0005 

PID_NECTIN_PATHWAY <0.0001 0.0006 

REACTOME_SIGNALING_BY_RHO_GTPASES <0.0001 0.0006 

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS <0.0001 0.0006 

PID_INTEGRIN_A9B1_PATHWAY <0.0001 0.0007 

REACTOME_KINESINS <0.0001 0.0007 

KEGG_SELENOAMINO_ACID_METABOLISM <0.0001 0.0007 

PID_INTEGRIN_A4B1_PATHWAY <0.0001 0.0008 

REACTOME_PLATELET_HOMEOSTASIS <0.0001 0.0008 

REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING <0.0001 0.0008 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND… <0.0001 0.0008 

REACTOME_G0_AND_EARLY_G1 <0.0001 0.0008 

BIOCARTA_CELLCYCLE_PATHWAY <0.0001 0.0008 

PID_AURORA_A_PATHWAY <0.0001 0.0008 

PID_S1P_S1P1_PATHWAY <0.0001 0.0009 

HALLMARK_GLYCOLYSIS <0.0001 0.0009 

HALLMARK_INTERFERON_GAMMA_RESPONSE <0.0001 0.0009 

REACTOME_P75NTR_RECRUITS_SIGNALLING_COMPLEXES <0.0001 0.0009 

PID_ERBB_NETWORK_PATHWAY <0.0001 0.0009 

KEGG_CALCIUM_SIGNALING_PATHWAY <0.0001 0.0009 

REACTOME_SIGNALING_BY_FGFR1_FUSION_MUTANTS <0.0001 0.0009 

BIOCARTA_NO1_PATHWAY <0.0001 0.0009 

REACTOME_METABOLISM_OF_POLYAMINES <0.0001 0.0010 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM <0.0001 0.0010 

REACTOME_BOTULINUM_NEUROTOXICITY <0.0001 0.0010 

REACTOME_REGULATION_OF_COMPLEMENT_CASCADE <0.0001 0.0010 
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Supplemental Table 3.3: Top 50 gene sets predicted by GSVA between GFP (control) 

and IGF1R overexpressing RNA-sequencing data in HMECs. Distinguishing pathways 

are color coded. 
 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

REACTOME_AMINO_ACID_SYNTHESIS_AND_INTERCONVERSION… <0.0001 <0.0001 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM <0.0001 <0.0001 

REACTOME_DIABETES_PATHWAYS <0.0001 <0.0001 

PID_ATF2_PATHWAY <0.0001 <0.0001 

REACTOME_UNFOLDED_PROTEIN_RESPONSE <0.0001 <0.0001 

REACTOME_IL_6_SIGNALING <0.0001 <0.0001 

REACTOME_ACTIVATION_OF_CHAPERONE_GENES_BY_XBP1S <0.0001 <0.0001 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE <0.0001 <0.0001 

REACTOME_ACTIVATION_OF_GENES_BY_ATF4 <0.0001 <0.0001 

PID_IL23PATHWAY <0.0001 <0.0001 

REACTOME_PERK_REGULATED_GENE_EXPRESSION <0.0001 <0.0001 

REACTOME_SYNTHESIS_OF_SUBSTRATES_IN_N_GLYCAN… <0.0001 <0.0001 

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM <0.0001 <0.0001 

REACTOME_ACTIVATION_OF_CHAPERONES_BY_ATF6_ALPHA <0.0001 <0.0001 

HALLMARK_CHOLESTEROL_HOMEOSTASIS <0.0001 <0.0001 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION <0.0001 <0.0001 

HALLMARK_MTORC1_SIGNALING <0.0001 <0.0001 

KEGG_NITROGEN_METABOLISM <0.0001 <0.0001 

BIOCARTA_CYTOKINE_PATHWAY <0.0001 <0.0001 

BIOCARTA_GRANULOCYTES_PATHWAY <0.0001 <0.0001 

REACTOME_SYNTHESIS_SECRETION_AND_INACTIVATION_OF… <0.0001 <0.0001 

ST_STAT3_PATHWAY <0.0001 <0.0001 

KEGG_PROTEIN_EXPORT <0.0001 <0.0001 

KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM <0.0001 <0.0001 

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM <0.0001 <0.0001 

REACTOME_GLUCONEOGENESIS <0.0001 <0.0001 

REACTOME_BASIGIN_INTERACTIONS <0.0001 <0.0001 

PID_REG_GR_PATHWAY <0.0001 <0.0001 

BIOCARTA_ERYTH_PATHWAY <0.0001 <0.0001 

BIOCARTA_IL10_PATHWAY <0.0001 <0.0001 

REACTOME_BIOSYNTHESIS_OF_THE_N_GLYCAN_PRECURSOR.. <0.0001 <0.0001 

PID_AP1_PATHWAY <0.0001 <0.0001 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY <0.0001 <0.0001 

PID_NECTIN_PATHWAY <0.0001 <0.0001 

PID_P38ALPHABETADOWNSTREAMPATHWAY <0.0001 <0.0001 

BIOCARTA_TEL_PATHWAY <0.0001 <0.0001 

BIOCARTA_LAIR_PATHWAY <0.0001 <0.0001 

BIOCARTA_IGF1MTOR_PATHWAY <0.0001 <0.0001 

REACTOME_CIRCADIAN_CLOCK <0.0001 <0.0001 

REACTOME_BMAL1_CLOCK_NPAS2_ACTIVATES_CIRCADIAN… <0.0001 <0.0001 

BIOCARTA_IL6_PATHWAY <0.0001 <0.0001 

REACTOME_INCRETIN_SYNTHESIS_SECRETION_AND_INACT… <0.0001 <0.0001 

REACTOME_PLATELET_ADHESION_TO_EXPOSED_COLLAGEN <0.0001 <0.0001 

BIOCARTA_LYM_PATHWAY <0.0001 <0.0001 

HALLMARK_GLYCOLYSIS <0.0001 <0.0001 

PID_CDC42_REG_PATHWAY <0.0001 <0.0001 

BIOCARTA_TALL1_PATHWAY <0.0001 <0.0001 

REACTOME_ASSOCIATION_OF_LICENSING_FACTORS … <0.0001 <0.0001 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION <0.0001 <0.0001 
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Supplemental Table 3.4: Top 50 gene sets predicted by GSVA between GFP (control) 

and AKT1 overexpressing RNA-sequencing data in HMECs. Expected pathways are in 

red. 
 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES <0.0001 <0.0001 

REACTOME_REVERSIBLE_HYDRATION_OF_CARBON_DIOXIDE <0.0001 <0.0001 

BIOCARTA_RB_PATHWAY <0.0001 <0.0001 

KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM <0.0001 <0.0001 

REACTOME_GLYCOLYSIS <0.0001 <0.0001 

REACTOME_SIGNALING_BY_BMP <0.0001 <0.0001 

REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TRANSCRIP… <0.0001 <0.0001 

REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3_SM… <0.0001 <0.0001 

PID_SYNDECAN_2_PATHWAY <0.0001 <0.0001 

PID_NECTIN_PATHWAY <0.0001 <0.0001 

REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EXPRES… <0.0001 <0.0001 

REACTOME_SIGNAL_ATTENUATION <0.0001 <0.0001 

REACTOME_GLUCOSE_METABOLISM <0.0001 <0.0001 

PID_RHOA_PATHWAY <0.0001 <0.0001 

BIOCARTA_P53_PATHWAY <0.0001 <0.0001 

PID_P53DOWNSTREAMPATHWAY <0.0001 <0.0001 

REACTOME_FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES … <0.0001 0.0001 

REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCHONDRIAL … <0.0001 0.0001 

REACTOME_PECAM1_INTERACTIONS <0.0001 0.0001 

HALLMARK_WNT_BETA_CATENIN_SIGNALING <0.0001 0.0001 

KEGG_PENTOSE_PHOSPHATE_PATHWAY <0.0001 0.0001 

BIOCARTA_CBL_PATHWAY <0.0001 0.0002 

BIOCARTA_AMI_PATHWAY <0.0001 0.0002 

HALLMARK_TNFA_SIGNALING_VIA_NFKB <0.0001 0.0002 

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS <0.0001 0.0003 

REACTOME_CELL_EXTRACELLULAR_MATRIX_INTERACTIONS <0.0001 0.0003 

REACTOME_BILE_SALT_AND_ORGANIC_ANION_SLC_TRANSPORT… <0.0001 0.0003 

REACTOME_ZINC_TRANSPORTERS <0.0001 0.0003 

BIOCARTA_NTHI_PATHWAY <0.0001 0.0004 

PID_REG_GR_PATHWAY <0.0001 0.0004 

KEGG_HOMOLOGOUS_RECOMBINATION <0.0001 0.0004 

PID_HIF1_TFPATHWAY <0.0001 0.0004 

REACTOME_GLUCONEOGENESIS <0.0001 0.0004 

BIOCARTA_DNAFRAGMENT_PATHWAY <0.0001 0.0004 

BIOCARTA_DC_PATHWAY <0.0001 0.0004 

BIOCARTA_ECM_PATHWAY <0.0001 0.0004 

REACTOME_RNA_POL_III_TRANSCRIPTION <0.0001 0.0004 

REACTOME_DOWNREGULATION_OF_ERBB2_ERBB3_SIGNALING <0.0001 0.0004 

REACTOME_P75NTR_RECRUITS_SIGNALLING_COMPLEXES <0.0001 0.0004 

BIOCARTA_GRANULOCYTES_PATHWAY <0.0001 0.0005 

BIOCARTA_ARAP_PATHWAY <0.0001 0.0005 

REACTOME_FACTORS_INVOLVED_IN_MEGAKARYOCYTE_DEVELOP… <0.0001 0.0005 

REACTOME_REGULATION_OF_RHEB_GTPASE_ACTIVITY_BY_AMPK <0.0001 0.0005 

HALLMARK_IL6_JAK_STAT3_SIGNALING <0.0001 0.0005 

PID_TOLL_ENDOGENOUS_PATHWAY <0.0001 0.0006 

REACTOME_HS_GAG_BIOSYNTHESIS <0.0001 0.0006 

REACTOME_RECYCLING_PATHWAY_OF_L1 <0.0001 0.0006 

PID_FAK_PATHWAY <0.0001 0.0006 

BIOCARTA_ARENRF2_PATHWAY <0.0001 0.0007 
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Supplemental Table 3.5: Top 50 gene sets predicted by GSVA between GFP (control) 

and BAD overexpressing RNA-sequencing data in HMECs Expected pathways are in 

red. 

 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES <0.0001 <0.0001 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION <0.0001 <0.0001 

BIOCARTA_INFLAM_PATHWAY <0.0001 <0.0001 

BIOCARTA_NTHI_PATHWAY <0.0001 <0.0001 

PID_FRA_PATHWAY <0.0001 <0.0001 

PID_SYNDECAN_2_PATHWAY <0.0001 <0.0001 

PID_ATF2_PATHWAY <0.0001 <0.0001 

BIOCARTA_P53HYPOXIA_PATHWAY <0.0001 <0.0001 

BIOCARTA_TID_PATHWAY <0.0001 <0.0001 

PID_SYNDECAN_3_PATHWAY <0.0001 <0.0001 

BIOCARTA_PPARA_PATHWAY <0.0001 <0.0001 

HALLMARK_TNFA_SIGNALING_VIA_NFKB <0.0001 <0.0001 

PID_REG_GR_PATHWAY <0.0001 <0.0001 

BIOCARTA_IL7_PATHWAY <0.0001 <0.0001 

BIOCARTA_FREE_PATHWAY <0.0001 <0.0001 

BIOCARTA_IL10_PATHWAY <0.0001 <0.0001 

PID_AP1_PATHWAY <0.0001 <0.0001 

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS <0.0001 <0.0001 

BIOCARTA_STEM_PATHWAY <0.0001 <0.0001 

BIOCARTA_IL17_PATHWAY <0.0001 <0.0001 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION <0.0001 <0.0001 

PID_RHOA_PATHWAY <0.0001 <0.0001 

PID_IL8CXCR1_PATHWAY <0.0001 <0.0001 

BIOCARTA_ARENRF2_PATHWAY <0.0001 <0.0001 

BIOCARTA_GRANULOCYTES_PATHWAY <0.0001 <0.0001 

PID_NFAT_TFPATHWAY <0.0001 <0.0001 

BIOCARTA_CYTOKINE_PATHWAY <0.0001 <0.0001 

BIOCARTA_ERYTH_PATHWAY <0.0001 <0.0001 

BILD_HRAS_ONCOGENIC_SIGNATURE <0.0001 <0.0001 

PID_IL23PATHWAY <0.0001 <0.0001 

REACTOME_RNA_POL_III_CHAIN_ELONGATION <0.0001 <0.0001 

KEGG_RNA_POLYMERASE <0.0001 <0.0001 

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER… <0.0001 <0.0001 

REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYP

E_3 <0.0001 <0.0001 

BIOCARTA_IL22BP_PATHWAY <0.0001 <0.0001 

BIOCARTA_ETS_PATHWAY <0.0001 <0.0001 

BIOCARTA_CHEMICAL_PATHWAY <0.0001 <0.0001 

REACTOME_RNA_POL_III_TRANSCRIPTION_TERMINATION <0.0001 <0.0001 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY <0.0001 <0.0001 

KEGG_PRION_DISEASES <0.0001 <0.0001 

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS <0.0001 <0.0001 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY <0.0001 <0.0001 

PID_TAP63PATHWAY <0.0001 <0.0001 

PID_P53DOWNSTREAMPATHWAY <0.0001 <0.0001 

REACTOME_IL_6_SIGNALING <0.0001 <0.0001 

HALLMARK_IL6_JAK_STAT3_SIGNALING <0.0001 <0.0001 

KEGG_ENDOCYTOSIS <0.0001 <0.0001 

PID_FGF_PATHWAY <0.0001 <0.0001 

KEGG_PYRIMIDINE_METABOLISM <0.0001 <0.0001 
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Supplemental Table 3.6. Top 50 gene sets predicted by GSVA between GFP (control) 

and EGFR overexpressing RNA-sequencing data in HMECs. Expected pathways are in 

red. 
 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value 

adj.P.V

al 

REACTOME_UNWINDING_OF_DNA <0.0001 <0.0001 

REACTOME_DNA_STRAND_ELONGATION <0.0001 <0.0001 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX <0.0001 <0.0001 

REACTOME_CYCLIN_A_B1_ASSOCIATED_EVENTS_DURING_G2_M_TRA

NS… <0.0001 <0.0001 

KEGG_DNA_REPLICATION <0.0001 <0.0001 

PID_FANCONI_PATHWAY <0.0001 <0.0001 

REACTOME_G1_S_SPECIFIC_TRANSCRIPTION <0.0001 <0.0001 

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION.. <0.0001 <0.0001 

REACTOME_G2_M_CHECKPOINTS <0.0001 <0.0001 

HALLMARK_E2F_TARGETS <0.0001 <0.0001 

PID_FOXM1PATHWAY <0.0001 <0.0001 

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION <0.0001 <0.0001 

PID_ATR_PATHWAY <0.0001 <0.0001 

BIOCARTA_MCM_PATHWAY <0.0001 <0.0001 

REACTOME_MITOTIC_PROMETAPHASE <0.0001 <0.0001 

REACTOME_DNA_REPLICATION <0.0001 <0.0001 

KEGG_CELL_CYCLE <0.0001 <0.0001 

HALLMARK_G2M_CHECKPOINT <0.0001 <0.0001 

REACTOME_G0_AND_EARLY_G1 <0.0001 <0.0001 

REACTOME_POL_SWITCHING <0.0001 <0.0001 

REACTOME_MITOTIC_M_M_G1_PHASES <0.0001 <0.0001 

REACTOME_REPAIR_SYNTHESIS_FOR_GAP_FILLING_BY_DNA_POL_… <0.0001 <0.0001 

REACTOME_LAGGING_STRAND_SYNTHESIS <0.0001 <0.0001 

REACTOME_CELL_CYCLE_MITOTIC <0.0001 <0.0001 

REACTOME_EXTENSION_OF_TELOMERES <0.0001 <0.0001 

KEGG_MISMATCH_REPAIR <0.0001 <0.0001 

REACTOME_SYNTHESIS_OF_DNA <0.0001 <0.0001 

REACTOME_INHIBITION_OF_REPLICATION_INITIATION_OF_DAMAGED_

DNA.. <0.0001 <0.0001 

BIOCARTA_MCM_PATHWAY <0.0001 <0.0001 

REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC_ORIGIN_COMPLEX <0.0001 <0.0001 

PID_AURORA_B_PATHWAY <0.0001 <0.0001 

BIOCARTA_CELLCYCLE_PATHWAY <0.0001 <0.0001 

PID_PLK1_PATHWAY <0.0001 <0.0001 

REACTOME_S_PHASE <0.0001 <0.0001 

REACTOME_CELL_CYCLE <0.0001 <0.0001 

REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLICA… <0.0001 <0.0001 

PID_E2F_PATHWAY <0.0001 <0.0001 

REACTOME_MITOTIC_G1_G1_S_PHASES <0.0001 <0.0001 

REACTOME_M_G1_TRANSITION <0.0001 <0.0001 

REACTOME_KINESINS <0.0001 <0.0001 

REACTOME_G1_S_TRANSITION <0.0001 <0.0001 

REACTOME_CHROMOSOME_MAINTENANCE <0.0001 <0.0001 

REACTOME_E2F_ENABLED_INHIBITION_OF_PRE_REPLICATION_CO… <0.0001 <0.0001 

KEGG_HOMOLOGOUS_RECOMBINATION <0.0001 <0.0001 

SA_REG_CASCADE_OF_CYCLIN_EXPR <0.0001 <0.0001 

PID_BARD1PATHWAY <0.0001 <0.0001 

REACTOME_ASSOCIATION_OF_LICENSING_FACTORS_WITH_THE_P… <0.0001 <0.0001 

PID_ERBB_NETWORK_PATHWAY <0.0001 <0.0001 
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Supplemental Table 3.7. Top 50 gene sets predicted by GSVA between GFP (control) 

and KRAS(G12V) overexpressing RNA-sequencing data in HMECs. Expected pathways 

are in bold. 

 

 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

REACTOME_RAF_MAP_KINASE_CASCADE <0.0001 <0.0001 

PID_TCRRASPATHWAY <0.0001 <0.0001 

REACTOME_SHC1_EVENTS_IN_EGFR_SIGNALING <0.0001 <0.0001 

REACTOME_SHC_MEDIATED_SIGNALLING <0.0001 <0.0001 

REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING <0.0001 <0.0001 

REACTOME_SHC1_EVENTS_IN_ERBB4_SIGNALING <0.0001 <0.0001 

REACTOME_SHC_RELATED_EVENTS <0.0001 <0.0001 

BIOCARTA_P53HYPOXIA_PATHWAY <0.0001 <0.0001 

REACTOME_P38MAPK_EVENTS <0.0001 <0.0001 

REACTOME_SOS_MEDIATED_SIGNALLING <0.0001 <0.0001 

PID_RAS_PATHWAY <0.0001 <0.0001 

BILD_HRAS_ONCOGENIC_SIGNATURE <0.0001 <0.0001 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION <0.0001 <0.0001 

REACTOME_IL_7_SIGNALING <0.0001 <0.0001 

PID_ERBB_NETWORK_PATHWAY <0.0001 <0.0001 

REACTOME_SIGNALLING_TO_P38_VIA_RIT_AND_RIN <0.0001 <0.0001 

BIOCARTA_IL7_PATHWAY <0.0001 <0.0001 

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION <0.0001 <0.0001 

BIOCARTA_TID_PATHWAY <0.0001 <0.0001 

PID_MAPKTRKPATHWAY <0.0001 <0.0001 

PID_CD8TCRDOWNSTREAMPATHWAY <0.0001 <0.0001 

HALLMARK_ANGIOGENESIS <0.0001 <0.0001 

REACTOME_ARMS_MEDIATED_ACTIVATION <0.0001 <0.0001 

BIOCARTA_SPRY_PATHWAY <0.0001 <0.0001 

REACTOME_TIE2_SIGNALING <0.0001 <0.0001 

BIOCARTA_PPARA_PATHWAY <0.0001 <0.0001 

HALLMARK_KRAS_SIGNALING_UP <0.0001 <0.0001 

REACTOME_NUCLEOTIDE_LIKE_PURINERGIC_RECEPTORS <0.0001 <0.0001 

HALLMARK_APICAL_SURFACE <0.0001 <0.0001 

KEGG_ENDOCYTOSIS <0.0001 <0.0001 

KEGG_SPLICEOSOME <0.0001 <0.0001 

REACTOME_SIGNALING_BY_CONSTITUTIVELY_ACTIVE_EGFR <0.0001 <0.0001 

REACTOME_HYALURONAN_METABOLISM <0.0001 <0.0001 

PID_ER_NONGENOMIC_PATHWAY <0.0001 <0.0001 

BIOCARTA_MAL_PATHWAY <0.0001 <0.0001 

REACTOME_SIGNALLING_TO_RAS <0.0001 <0.0001 

HALLMARK_IL2_STAT5_SIGNALING <0.0001 <0.0001 

BIOCARTA_TEL_PATHWAY <0.0001 <0.0001 

REACTOME_TRIGLYCERIDE_BIOSYNTHESIS <0.0001 <0.0001 

PID_P38ALPHABETAPATHWAY <0.0001 <0.0001 

REACTOME_SHC_MEDIATED_CASCADE <0.0001 <0.0001 

BIOCARTA_EPONFKB_PATHWAY <0.0001 <0.0001 

BIOCARTA_FIBRINOLYSIS_PATHWAY <0.0001 <0.0001 

ST_JNK_MAPK_PATHWAY <0.0001 <0.0001 

REACTOME_PROLONGED_ERK_ACTIVATION_EVENTS <0.0001 <0.0001 

REACTOME_GASTRIN_CREB_SIGNALLING_PATHWAY_VIA_PKC_A

ND_MAPK <0.0001 <0.0001 

PID_ERBB2ERBB3PATHWAY <0.0001 <0.0001 

BIOCARTA_LONGEVITY_PATHWAY <0.0001 <0.0001 
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Supplemental Table 3.8. Top 50 gene sets predicted by GSVA between GFP (control) 

and RAF1 overexpressing RNA-sequencing data in HMECs. Expected pathways are in 

red. 

 

Hallmark + canonical (C2) gene sets (Molecular Signatures Database) P.Value adj.P.Val 

BIOCARTA_SPRY_PATHWAY <0.0001 <0.0001 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION <0.0001 <0.0001 

HALLMARK_KRAS_SIGNALING_UP <0.0001 <0.0001 

PID_REELINPATHWAY <0.0001 <0.0001 

BIOCARTA_CBL_PATHWAY <0.0001 <0.0001 

REACTOME_REVERSIBLE_HYDRATION_OF_CARBON_DIO… <0.0001 <0.0001 

BIOCARTA_FIBRINOLYSIS_PATHWAY <0.0001 <0.0001 

PID_VEGFR1_PATHWAY <0.0001 <0.0001 

PID_INTEGRIN_A9B1_PATHWAY <0.0001 <0.0001 

BIOCARTA_SPPA_PATHWAY <0.0001 <0.0001 

BIOCARTA_IL10_PATHWAY <0.0001 <0.0001 

PID_BMPPATHWAY <0.0001 <0.0001 

SIG_IL4RECEPTOR_IN_B_LYPHOCYTES <0.0001 <0.0001 

BIOCARTA_P53HYPOXIA_PATHWAY <0.0001 <0.0001 

PID_ERBB1_INTERNALIZATION_PATHWAY <0.0001 <0.0001 

HALLMARK_TGF_BETA_SIGNALING <0.0001 <0.0001 

PID_IGF1_PATHWAY <0.0001 <0.0001 

SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES <0.0001 <0.0001 

BIOCARTA_AKAP13_PATHWAY <0.0001 <0.0001 

PID_TGFBRPATHWAY <0.0001 <0.0001 

PID_FGF_PATHWAY <0.0001 <0.0001 

REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TR. <0.0001 <0.0001 

HALLMARK_IL2_STAT5_SIGNALING <0.0001 <0.0001 

BIOCARTA_IL22BP_PATHWAY <0.0001 <0.0001 

KEGG_SPLICEOSOME <0.0001 <0.0001 

SIG_BCR_SIGNALING_PATHWAY <0.0001 <0.0001 

REACTOME_SIGNAL_TRANSDUCTION_BY_L1 <0.0001 <0.0001 

KEGG_ASCORBATE_AND_ALDARATE_METABOLISM <0.0001 <0.0001 

REACTOME_RECYCLING_PATHWAY_OF_L1 <0.0001 <0.0001 

REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COM… <0.0001 <0.0001 

REACTOME_DOWNREGULATION_OF_TGF_BETA_RECEPTOR <0.0001 <0.0001 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY <0.0001 <0.0001 

KEGG_JAK_STAT_SIGNALING_PATHWAY <0.0001 <0.0001 

REACTOME_SIGNALING_BY_BMP <0.0001 <0.0001 

REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SM.. <0.0001 <0.0001 

REACTOME_RORA_ACTIVATES_CIRCADIAN_EXPRESSION <0.0001 <0.0001 

PID_EPHRINBREVPATHWAY <0.0001 <0.0001 

REACTOME_IL_7_SIGNALING <0.0001 <0.0001 

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION <0.0001 <0.0001 

REACTOME_G_ALPHA1213_SIGNALLING_EVENTS <0.0001 <0.0001 

PID_P38_MK2PATHWAY <0.0001 <0.0001 

REACTOME_GAP_JUNCTION_TRAFFICKING <0.0001 <0.0001 

KEGG_FATTY_ACID_METABOLISM <0.0001 <0.0001 

KEGG_PRION_DISEASES <0.0001 <0.0001 

REACTOME_TGF_BETA_RECEPTOR_SIGNALING_ACTIVAT… <0.0001 <0.0001 

PID_ARF6_PATHWAY <0.0001 <0.0001 

BIOCARTA_ECM_PATHWAY <0.0001 <0.0001 

BILD_HRAS_ONCOGENIC_SIGNATURE <0.0001 <0.0001 

PID_CDC42_REG_PATHWAY <0.0001 <0.0001 
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Supplemental Table 3.9: Clinical and intrinsic subtype variation within the growth and 

survival phenotypes in ICBP breast cancer cell lines. 

Subtypes 

Num. in 

survival 

phenotype 

(N=29) 

Percentage 

of total 

survival 

phenotype 

samples 

Num. in 

growth 

phenotype 

(N=26) 

Percentage of 

total growth 

phenotype 

samples 

ER Positive 17 58.62% 1 3.84% 

ER Negative 10 34.48% 22 84.62% 

PR Positive 7 24.14% 0 0% 

PR Negative 20 68.96% 21 80.76% 

HER2 Positive 15 51.72% 2 7.69% 

HER2 Negative 14 48.28% 19 73.07% 

Basal 1 3.45% 9 34.62% 

Claudin-low 
0 0% 5 19.23% 

HER2-Basal 1 3.45% 6 23.08% 

HER2-Luminal 14 48.28% 0 0% 

Luminal 11 37.93% 0 0% 
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Supplemental Table 3.10: Clinical and intrinsic subtype variation within the growth and 

survival phenotypes in TCGA tumor data. 

 

Subtypes Num. in 

survival 

phenotype 

(N=596) 

Percentage of 

total survival 

phenotype 

samples 

Num. in 

growth 

phenotype 

(N=523) 

Percentage of 

total growth 

phenotype 

samples 

ER Positive 505 84.73% 280 53.54% 

ER Negative 33 5.54% 197 37.67% 

PR Positive 435 72.99% 245 46.85% 

PR Negative 102 17.11% 230 43.98% 

HER2 

Positive 

108 18.12% 54 10.33% 

HER2 

Negative 

251 42.11% 295 56.41% 

Basal 2 0.34% 93 17.78% 

HER2 41 6.88% 16 3.06% 

LumA 158 26.51% 73 13.96% 

LumB 106 17.79% 21 4.02% 

Normal 2 0.34% 5 0.96% 
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Supplemental Table 3.11: Comparing GFRN subtypes, intrinsic subtypes (PAM50), and 

clinical subtypes (ER, ER, and HER2 status) in terms of contribution to principle 

components 1 through 5 from TCGA RNA-sequencing breast cancer data. Contributed 

variability from linear models are represented as R
2
 values (0-1).  

PC ER (R
2
) 

ER + GFRN 

subgroups (R
2
) ER + PAM50 (R

2
) 

1 0.087 0.188 0.131 

2 0.561 0.696 0.747 

3 0.052 0.398 0.254 

4 0.029 0.279 0.078 

5 0.038 0.175 0.216 

    

PC PR  

PR + GFRN 

subgroups PR + PAM50 

1 0.060 0.156 0.124 

2 0.407 0.647 0.736 

3 0.059 0.393 0.253 

4 0.004 0.282 0.083 

5 0.027 0.173 0.216 

    

PC HER2 

HER2 + GFRN 

subgroups HER2 + PAM50 

1 0.011 0.129 0.125 

2 0.000 0.509 0.725 

3 0.033 0.393 0.257 

4 0.021 0.279 0.082 

5 0.023 0.207 0.224 

    

PC ER/PR/HER2 

ER/PR/HER2 + 

GFRN subgroups 

ER/PR/HER2 + 

PAM50 

1 0.098 0.191 0.133 

2 0.598 0.726 0.751 

3 0.091 0.404 0.263 

4 0.054 0.282 0.089 

5 0.068 0.213 0.224 

     

PC 

GFRN 

subgroups PAM50 

GFRN subgroups 

+ PAM50 

ER/PR/HER2 + PAM50 +GFRN 

subgroups 

1 0.124427 0.1229359 0.2100966 0.220723 

2 0.4922497 0.7243437 0.7920581 0.8151674 

3 0.3845233 0.2489111 0.4695138 0.4784226 

4 0.2788131 0.0777884 0.2880172 0.2936144 

5 0.1725182 0.2159571 0.2904661 0.3047475 
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 Supplemental Table 3.12: Spearman correlations between principal component values 

for principal components 1-5 from TCGA BRCA gene expression data and pathway 

activation estimates for each oncogenic signature in TCGA BRCA gene expression data 

(*  p-value<0.0001). 

 

    PC 1 PC 2 PC 3 PC 4 PC 5 

AKT 0.047 -0.572* 0.402* 0.474* 0.084 

HER2 -0.076 -0.334* 0.366* 0.347* -0.094 

IGF1R -0.284* -0.824* 0.249* 0.358* 0.044 

EGFR -0.255* 0.439* -0.538* -0.596* -0.266* 

RAF1 -0.357* 0.639* -0.434* -0.636* -0.347* 

KRAS  0.108 0.762* -0.399* -0.443* -0.065 

BAD 0.401* 0.452* 0.524* -0.139* 0.364* 
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Supplemental Table 3.13: List of cancer drugs and corresponding p-values, where 

GFRN phenotypes, ER, PR, or HER2 status could significantly (p-value<0.05) 

distinguish drug response in ICBP cell lines. 

 

GFRN 

phenotype 

drugs 

P.val

ue 

ER based 

drugs P.value 

PR based 

drugs P.value 

HER2 

based 

drugs 

P.valu

e 

AKT1/2 

Inhibitor 

<0.00

01 AG1478 0.014 

AKT1/2 

Inhibitor 0.028 AG1478 0.001 

AZD6244 0.007 

AKT1/2 

Inhibitor 0.034 Triciribine 0.001 BEZ235 0.024 

CGC.11047 0.006 Bortezomib 0.041 AS.252424 0.029 

BIBW29

92 0.000 

Erlotinib 0.012 CGC.11047 0.027 AZD6244 0.000 CPT.11 0.040 

Etoposide 0.034 Erlotinib 0.001 GSK1070916 0.047 

Everoli

mus 0.020 

Everolimus 0.001 GSK461364 0.004 GSK1120212 0.000 

GSK183

8705 0.015 

Fascaplysin 0.004 GSK2119563 0.049 GSK461364 0.001 

GSK211

9563 0.029 

GSK1070916 0.035 MG.132 0.017 ICRF.193 0.000 

GSK212

6458 0.004 

GSK1120212 0.003 PF.4691502 0.041 PF.3814735 0.023 

GSK105

9615 0.021 

GSK1059868 0.018 Vorinostat 0.022 Pemetrexed 0.000 

GSK650

394 0.038 

GSK461364 0.016 Bosutinib 0.018 VX.680 0.020 

Lapatini

b 0.000 

GSK2119563 0.022 Tamoxifen 0.044 ZM447439 0.010 

Geldana

mycin 0.021 

GSK2126458 0.008 Trichostatin.A 0.048 

  

Gefitinib 0.003 

GSK2141795 0.009 

    

NU6102 0.000 

GSK650394 0.029 

    

Olomou

cine.II 0.031 

Lapatinib 0.036 

    

PF.2341

066 0.005 

IKK.16 0.003 

    

PF.3814

735 0.007 

LBH589 0.005 

    

Temsiro

limus 0.039 

MG.132 0.008 

    

VX.680 0.019 

NU6102 0.028 

      
PF.4691502 0.000 

      Rapamycin 0.001 

      Vorinostat 0.001 

      Bosutinib 0.003 

      Sunitinib.Mala

te 0.015 

      
Temsirolimus 0.032 

      Trichostatin.A 0.000 
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Supplemental Table 3.14: ASSIGN parameters used for all analyses. The default 

values were used for all other parameters. 

 

Parameter Value 

adaptive_B TRUE 

adaptive_S TRUE 

mixture_beta FALSE 

S_zeroPrior FALSE 

sigma_sZero 0.05 

sigma_sNonZero 0.5 

iter 100,000 

burn_in 50,000 
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INFERRING PATHWAY DYSREGULATION IN CANCERS 

 FROM MULTIPLE TYPES OF OMIC DATA 

 
Chapter 4 is a manuscript reprinted from the journal Genome Medicine, volume 7(61), 
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Abstract 

  Gene set analysis (GSA), a powerful technique for interpreting high-throughput 

genomic data, helps uncover differences between biological phenotypes at the gene-set 

level. However, most GSA methods support transcriptomic data but lack support for 

multiomic data integration. This limits our potential to obtain comprehensive views of 

complex molecular systems best explained by multiple “omic” data types, such as 

cancer. Also, many GSA methods require bioinformatic experience. Therefore, we have 

created a user-friendly web application, GSOA-Shiny, which enables users to perform 

multiomic GSA analyses using our previously developed Gene Set Omic Analysis 

(GSOA) method. GSOA-Shiny uses machine learning to account for complex 

interactions across multiple molecular variations, supporting DNA, RNA, protein, and 

epigenetic data and combinations thereof. GSOA-Shiny provides extensive 

documentation, an intuitive, HTML-based report, and a novel “hallmark” analysis. These 

features make multiomic GSA analysis more accessible for biologists, including those 

without programing expertise.  

 

Availability  

 GSOA-Shiny can be accessed from https://gsoa-app.org/ from any web browser. 

It is developed exclusively in the R programing-language and can be downloaded from 

GitHub and launched locally on operating systems that support R, including Windows, 

Mac OS, and Linux. GSOA-Shiny is free and open source under a GPL-3 open-source 

license. 

 

Introduction 

Cellular events are tightly regulated at the genome, transcriptome, epigenome, 

and protein levels [1]. Therefore, accounting for multiple types of molecular data can 
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provide more biologically relevant information than observing one data type in isolation, 

especially for complex molecular diseases, such as cancer [2]. High-throughput 

technologies exist for profiling many molecule types, including single-nucleotide variants 

(SNV), copy-number variants (CNV), messenger RNA (mRNA), microRNA (miRNA), 

epigenetic variations, and protein expression levels [3]. Large comprehensive studies, 

such as The Cancer Genome Atlas (TCGA), have generated massive volumes of high-

dimensional data [4]; however, combining different data types is computationally and 

quantitatively challenging, and requires techniques beyond the capability of most 

biologists [5].  

One method which has revolutionized the interpretation of molecular data is gene 

set analysis (GSA), which uses varying statistical methods to identify enriched gene sets 

that share biochemical or cellular functions and that differ between biological phenotypes 

[6]. Results from these methods may be used to guide uncovering mechanisms 

underlying biological phenomena GSA methods, originally designed for transcriptomic 

data [7], have been expanded to DNA methylation [8], ChIP-sequencing [9], and SNP 

data [10], albeit typically in isolation. Integrative multiomic methods have recently been 

developed that combine specific combinations of molecular data, including SNPs and 

gene expression levels [11]; miRNA and gene expression levels [12]; and proteomics, 

metabolomics, SNP, and gene expression data [13]. However, these methods tend to 

rely on basic test statistics and ignore gene interactions. In addition, most methods aim 

to identify gene sets that are either up- or down-regulated as a whole [14]. Standalone 

and web-based applications do exist, but they can be challenging to use without 

bioinformatic skills, creating hurdles for biologists [15]. Therefore, more user-friendly web 

applications are required for wide adoption of multiomic GSA methods among the 

broader community.  
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Here, we present GSOA-Shiny, an easy-to-use, R-shiny-based web application 

for the analysis of multiomic data. GSOA-Shiny is an improved version of our previously 

published package, Gene Set Omic Analysis (GSOA), which uses machine learning 

algorithms to integrate multiomic data and account for complex dependencies among 

genes [16]. When patterns are identified consistently for a given gene set, that gene set 

is hypothesized to play a role in the condition of interest. GSOA-Shiny can handle any 

type of molecular data that can be mapped to available gene-set databases, including 

microarray, RNA-Sequencing, SNV, CNV, protein, and epigenetic data. The GSOA-

Shiny web interface reduces barriers for biologists without bioinformatic experience. It 

includes extensive documentation, an intuitive HTML report, and a novel “hallmark” 

analysis, which summarizes 50 key biological gene sets [17]. This analysis was 

motivated by the large number of gene sets available in the Molecular Signatures 

Database, and the common problem of having too many results, and acts as a base for 

deeper exploration of additional gene sets. 

 

Implementation 

The GSOA-shiny workflow begins by navigating to the GSOA-Shiny webpage 

and uploading the following required data files: (1) data file(s) containing molecular 

measurements, (2) a class file describing which phenotype each sample belongs to, and 

(3) a gene set file where gene symbols or IDs match those in the omic data file(s). Gene 

sets can either be downloaded from the Molecular Signatures Database [18] or 

generated by a user. GSOA-Shiny will mean-center the data and scale to unit variance, 

but we recommend normalizing data using methodologies appropriate for each omic-

profiling technology prior to uploading. Default parameters should be applicable in many 

cases, but the following parameters are customizable: (1) percent of genes to be filtered 

based on low expression and variance, (2) machine learning algorithm (see Methods), 
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(3) number of cross-validation iterations (more iterations will result in more robust 

results), and (4) the inclusion of a “hallmark” analysis. An in-depth description of each 

data file and parameter can be found under “Instructions for Use” on the GSOA-Shiny 

web interface.  

Once files are uploaded and “Run” is selected, the files will be validated and 

processed. Upon completion, an HTML-based R markdown report will be delivered via 

e-mail. This report includes a list of significant gene sets, a bar chart with the top 20 

ranked gene sets, and a fully searchable and sortable list of all gene sets with 

corresponding AUC, P-value and FDR values. If the “hallmark” analysis parameter was 

chosen, these results will be present on a separate tab titled “hallmark report”. Run times 

vary depending on the number of samples and different types of omic data present. If 

errors occur, an e-mail will be sent with troubleshooting options. We have included 

multiple examples of GSOA-Shiny analyses under the “Examples” tab on the webpage.  

 

Methods 

GSOA-Shiny is a rewrite of its Python-based predecessor, GSOA [16]. GSOA-

Shiny was rewritten almost entirely in R code [19], and is dependent on many R 

packages, including mlr, for machine learning [20], doParallel and foreach, for parallel 

processing [21], GSEABase for handling gene sets [22], rmarkdown, for creating 

customized reports [23], and mailR for sending results [24]. The web interface was 

created using the web application framework, R-Shiny, and was further customized 

using HTML, CSS and JavaScript [25]. GSOA-Shiny is hosted on the web server GSOA-

Shiny, which requires a modern web browser and internet connection. GSOA-Shiny can 

also be run locally by installing GSOA-Shiny from source code, and is platform 

independent. After users upload files to the GSOA website, the data formats are 

validated and the files are deposited on a Google server, where R is installed and the 
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analysis takes place. GSOA-Shiny can employ either the Support Vector Machines 

(SVM) [26] or Random Forest [27] classification algorithms. When multiple types of omic 

data are present, the classification algorithm builds a single model that integrates data 

from all omic types, and only considers samples that contain data for all data types. This 

data is then filtered to include only the genes that belong to the gene sets uploaded by 

the user. To begin, the classification algorithms uses k-fold cross validation to predict the 

class of each sample, using only data associated with a specific gene set. This process 

is repeated for n iterations. For each iteration, an area under the receiver operating 

characteristic curve (AUC) value indicates classification accuracy. A high AUC score 

(maximum of 1.0) indicates accurate predictions; 0.5 indicates predictions that are no 

better than random expectation. A p-value is calculated for each gene set as the fraction 

of AUC values from an empirical null distribution that exceed the actual AUC value. For 

multiple-test correction, False Discovery Rate (FDR) values are calculated based on the 

p-values using the BH method. When the analysis is complete, the results are then fed 

through an R script, which generates the final R markdown report, and the results are 

sent to the user via e-mail. We recommend at least 1000 cross-validation iterations to 

prevent FDR values from becoming skewed. 

 

Conclusion 

With the increasing number of publicly available, high-dimensional data sets, 

there is a pressing need for easy-to-use gene set analysis methods capable of handling 

multiomic datasets. GSOA-Shiny meets this demand and is novel because it provides 

advanced methods for integrating multiomic data, accounts for complex dependencies 

within and across data types, provides an easy-to-use, well-documented web interface, 

and an intuitive report. The GSOA-Shiny web interface lowers computational burdens for 

scientists, and increases research reproducibility, which is often compromised by 
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differing operating systems and software versions. GSOA-Shiny is useful for a broad 

spectrum of biological research applications, including identifying dysregulated pathways 

in cancer and other complex diseases. 
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CHAPTER 6 

 
 

DISCUSSION 

 
 

Summary of Findings 

The work presented in this dissertation focuses on analyzing genomic data at the 

pathway level in order to gain a better understanding of tumor behavior and guide the 

use of targeted cancer therapies in cancer. In Chapter 3, the activity of pathways from 

the growth factor receptor network (GFRN) were probed in TCGA breast tumors and cell 

lines using gene expression signatures generated by overexpressing genes from GFRN 

pathways in human primary mammary epithelial cells (HER2, IGF1R, AKT1, EGFR, 

KRAS (G12V), RAF1, BAD). Using the pathway analysis toolkit ASSIGN, two discrete 

GFRN phenotypes were found — one being “survival phenotype”, represented by 

aberrant activation of the HER2, IGF1R, and AKT pathways, and the other being the 

“growth phenotype” represented by aberrant activation of the EGFR, KRAS, RAF1, and 

BAD pathways. These phenotypes described variability in the TCGA gene expression 

data and characterized distinctive patterns in apoptosis evasion and drug response. The 

survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, 

but more resistant to chemotherapies.  Alternatively, the growth phenotype expressed 

lower levels of BIM and higher levels of MCL-1 proteins, and were more sensitive to 

common chemotherapies and targeted therapies directed at EGFR and MEK.  These 

phenotypes have the potential to pinpoint targetable aberrations for more effective 

breast cancer treatments. 

Chapter 4 described a novel multiomic gene set analysis bioinformatic tool,
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Gene Set Omic Analysis (GSOA), which identifies multigene pattern differences between 

biological groups. This tool serves as a method to extract biologically relevant patterns 

from large, heterogeneous, multiomic datasets in support of subsequent, hypothesis-

driven experimental studies. GSOA is capable of analyzing any type of omic data, 

including (but not limited to) microarray data, RNA-sequencing data, single-nucleotide 

variant data (SNV), DNA copy-number variation data (CNV), and epigenetic data. 

Machine learning algorithms employed by GSOA account for complex interactions 

among genes, and when patterns are identified consistently for a given gene set, that 

gene set or pathway is hypothesized to play a role in the condition of interest. GSOA 

was validated using simulated data, gene-expression microarray data, RNA-sequencing 

data, CNV data, somatic SNV data, and combinations of these data types. Using GSOA 

in TCGA data, we identified gene sets that showed differences between HER2-positive 

and HER2-negative breast tumors, and between individuals with and without somatic 

mutations in RAS subfamily genes. We also compared uterine serous carcinomas (USC) 

against uterine endometrioid carcinomas (UEC) and identified pathways that may play a 

role in USC treatment, including the MYC pathway. Further analysis of gene expression 

levels and somatic mutations in an independent dataset suggested that key proteins in 

the MYC pathway are upregulated in USC tumors.  

Chapter 5 presented GSOA-Shiny, an easy-to-use, R-shiny-based web 

application for performing gene set analysis on multiomic data. GSOA-Shiny is an 

improved version of our previously published python package GSOA, which required 

bioinformatics experience [1]. The novel GSOA-Shiny web interface makes running 

GSOA straightforward and includes extensive documentation, an intuitive HTML report, 

and a novel “hallmark” analysis, which summarizes 50 key biological gene sets [2]. 

GSOA-Shiny reduces barriers for biologists without bioinformatic experience. 
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Genomic Resources Are Essential to Oncology 

Identifying the underlying genetic causes of cancer was limited in past 

generations due to technical constraints [3]. However, the emergence of next-generation 

sequencing (NGS) technologies has revolutionized the way we study cancer. We are 

now in a better position than ever to provide patients with highly personalized treatment 

options specific to their malignancies [4, 5]. Data from large-scale single- and 

multiplatform studies such as the Cancer Genome Atlas (TCGA) [6], the International 

Cancer Genome Consortium (ICGC) [7], the Integrative Cancer Biology Program 

(ICBP43) [8], the Cancer Molecular Analysis Project (CMAP) [9], and the Gene 

Expression Omnibus [10] have significantly improved our understanding of cancer. 

These projects have driven an increase in translational research, improved clinical care 

with novel diagnostic, prognostic, and classification systems, and have helped to guide 

physicians in decision-making regarding the consideration of targeted therapies in 

patients with specific molecular alterations [4, 5, 11–13]. The research presented in this 

dissertation would not be possible without these valuable genomic resources.  

The novel GFRN phenotypes discovered in Chapter 3 were discovered by 

analyzing TCGA tumors and ICBP cell line data. The GSOA software, presented in 

Chapter 4, was tested and optimized using TCGA data, and data from GEO was used to 

validate MYC dysregulation in uterine serous carcinoma. Furthermore, large pathway 

databases such as the Molecular Signatures Database [14], Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [15], REACTOME [16], and the Pathway Interaction 

Database [17] have also been extremely important for gene set enrichment analysis 

methods. Gene sets from these databases are essential to running our pathway analysis 

tool, GSOA-shiny. Therefore, large-scale genomic projects and databases are the 

backbone of genomic advancements, and should continue to be developed.  It would be 
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especially beneficial to patients if standard-of-care included depositing genomic data 

from patient tumors into a large database where tumors could be matched against each 

other to better predict response to therapies and better understand rare cancers where 

the genetic causes are still unknown.  

 

Implications 

The work presented in this dissertation contributes to the field of personalized 

medicine, furthering pathway analysis methods, and also aids in bridging the gap 

between molecular biologists and computational biologists. In Chapter 3, we used novel 

pathway-based signatures to characterize the GFRN in breast cancer in an interactive 

way and discovered two discrete GFRN phenotypes with significant differences in cell 

survival mechanisms and drug response in breast cancer. The implications of this study 

are large. First, they contribute to current breast cancer subtyping approaches by adding 

additional biological relevance, as they represent aberrant signaling patterns. Second, 

characterizing individual tumors into these phenotypes may help determine which 

patients will benefit from the targeted treatments identified in cell line experiments. 

However, additional examination is needed before these phenotypes can be used in 

clinical trials for patient selection, including the testing of these phenotypes in patient 

primary tumor cells. Third, newly generated RNA-sequencing signatures for AKT, BAD, 

HER2, EGFR, IGF1R, RAF, and KRAS (G12V) have been validated in cancer cell lines 

and breast cancer patients and have been made publicly available on GEO. These 

signatures can be used by other researchers to probe GFRN signaling in additional 

cancers or other diseases affected by these pathways. Additionally, the pipeline and 

code used for this analysis are fully available at 

https://github.com/mumtahena/GFRN_signatures, and may provide a model for 

researchers interested in probing other pathways using the pathway toolkit, ASSIGN.   
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The development of GSOA has contributed to the field of gene set analysis in the 

following ways. GSOA can handle almost any type of genomic data which is of 

importance, as combining multiple types of genomic data can lead to discoveries that 

would not happen using one data type in isolation. While some multiomic methods do 

exist, most do not support the use of any omic data, and none have the capability to 

merge multiomic data into a single classifier. There are no other methods, to the best of 

our knowledge, that use machine learning algorithms and multiomic data concurrently for 

gene set analysis. The benefits of using machine learning over traditional statistical 

approaches include the ability to identify multigene patterns and account for up- and 

down-regulated genes. In addition, GSOA can be applied to other data types beyond 

cancer, and can aid in discovering pathways that may underlie other diseases. 

Additionally, the finding of MYC pathway dysregulation in uterine serous carcinoma has 

clinical implications, and provides motivation for more in-depth biological examination 

into this mechanism. 

Lastly, the development of GSOA-Shiny makes a significant contribution to the 

research community. Biologists need bioinformatics skills to run currently available gene 

set analysis tools, or need to take valuable time to learn basic bioinformatics skills to use 

them. This is not realistic for many molecular biologists. This easy-to-use interface has 

the potential to make multiomic gene set analysis more common in the research 

community. In addition, the R shiny framework for building GSOA-Shiny can be used as 

a model for other bioinformaticians who would like to develop their own web applications 

on cloud servers. The code for this is in a full-automated “docker” container, which can 

be downloaded freely.  
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Limitations and Future Work 

In the GFRN work presented in Chapter 3, we only included signatures for AKT, 

BAD, HER2, EGFR, IGF1R, RAF, KRAS (G12V). However, there are numerous other 

pathways that fed into the GFRN; therefore, to obtain a more complete picture, it would 

be important for future studies to include other pathway nodes such as PI3K, ERK, 

RALA, JNK, MEK, and MEKK1. This analysis was also limited to correlating these 

phenotypes with intrinsic apoptosis and drug response. It would be interesting to probe 

cell lines for other cancer phenotypes such as EMT, autophagy, angiogenesis, and 

immunology. Also, these analyses were conducted in TCGA data and breast cancer cell 

lines; however, it would be important to test these drug response models in patient cells.  

To address this, we are currently developing an assay for which we can test these 

phenotypes in patient cells. This assay will measure the gene expression values for all 

the genes from the GFRN signatures using NanoString
TM

 technology. We will first 

determine whether patient cells classified into these phenotypes correlate with 

treatments in a large panel of patient cells. If phenotypes can be used to predict drug 

response in patient cells, we can begin a clinical trial where breast cancer patients are 

grouped into the growth and survival phenotypes and disease outcomes and drug 

response can be compared between the two groups. If phenotypes correlate with drug 

response in patients, this assay can be used in the clinic to guide the use of targeted 

therapies. For example, if a patient is not responding to standard chemotherapies, an 

oncologist can order the GFRN phenotype assay, and if a patient falls under the growth 

phenotype, the physician can explore the use of EGFR inhibitors or try another form of 

chemotherapy. If a patient is classified as the survival phenotype, they can be 

considered for HER2 or AKT based therapies or clinical-trails. It would also be 

noteworthy to see if these phenotypes are specific to breast cancer, or can be found in 



 
 
 

 

147 

other cancer types.  

In relation to GSOA and GSOA-Shiny, we have observed situations where the 

FDR values can become unreliable when p-value distributions become skewed. We plan 

to modify the way we calculate our p-values to resolve this issue. Also, the current 

version of GSOA-Shiny only supports the analysis of two biological conditions at one 

time, for example, cancer vs. normal samples. We plan to expand GSOA-Shiny to 

support the analysis of multiple different conditions concurrently. Another limitation is 

that GSOA-Shiny does not provide data on whether a given pathway is up- or 

downregulated, rather it assumes that a pathway is dysregulated, as some genes within 

the pathway may be upregulated while others are downregulated.  Additionally, GSOA-

Shiny run times can be long (up to a few hours) if large multiomic data sets are used.  

Lastly, in the future, it would be of benefit to create a web application for 

ASSIGN, the tool we used in Chapter 3 to estimate pathway activation, and combine it 

with GSOA-Shiny, and have these tools available on one website dedicated to pathway 

analysis. With this, a user could run both methods, and obtain a high-level view of the 

pathways being affected with GSOA-Shiny, and also have a more qualitative 

assessment of which pathways are being activated with ASSIGN. In addition, we plan to 

include all the genes from the GFRN network signatures on the GSOA-Shiny webpage 

so users can also run these signatures with gene set enrichment analysis.  

   

Conclusion 

Overall, this dissertation work identifies two discrete pathway-based growth 

factor receptor network phenotypes in breast cancer that correlate with drug response to 

targeted therapies, and presents a novel multiomic gene set enrichment analysis tool, 

Gene Set Omic Analysis (GSOA) and its novel web application, GSOA-Shiny, for 

identifying pathway dysregulation in cancer. This dissertation contributes to the field of 
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personalized oncology, and improves upon methods for the analysis of cancer at the 

pathway level. These findings and methods may help in the future to guide the use of 

targeted therapies in cancer and improve outcomes and survival for patients suffering 

from cancer.  
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