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ABSTRACT

This dissertation consists of three independent essays on cyclical fluctuations of func-

tional income distribution and effective demand in the Post–Keynesian tradition.

The first essay investigates the longer run relationship between wage share and mea-

surements of economic activity. Our main tools are wavelet covariance and multiresolution

analysis. Results indicate that (1) Goodwin type cycles are observed even at longer run and

(2) when considering smooth trends for periodicities longer than 32 years, a long Goodwin

cycle seems to appear from the 1940s to mid–1990s that collapses afterwards.

The second and third essays are related in the sense that they empirically investigate

the possibility of strong internal dynamics in the business cycle model of effective demand

and income distribution.

Specifically, in the second essay, we study wage share and output gap in an univariate

setting. Each time series is examined through chaos theory. The main tools are the nonlin-

ear autoregressive neural network model, the dominant Lyapunov exponent, coefficient

of determination, and local Lyapunov exponent. Results indicate that output gap might

behave quasi–chaotically and wage share noisy–stable.

Finally, the third essay inquires into the possibility of limit cycle in the two–dimensional

model on wage share and output gap. For that, we use the multivariate nonlinear autore-

gressive neural network model. Our results indicate that limit cycle behavior describes

well their dynamics and, furthermore, the instability is located on the wage share isocline.

Chapters 1 through 3 open several questions that we hope further research will address.

In Chapter 1, we conjecture that globalization plays a crucial role in the stagnation of

the trends in the late 1990s. However, further research is required.

Chapter 2 concludes that instability is rooted in the goods market dynamics rather than

the distributive dynamics.

Results on Chapter 3 indicate that the demand regime is stable and wage share locally

unstable. This possibility remains largely unexplored both in the theoretical and empirical



literature, and it creates a contradiction with the results found in Chapter 2. Further

research is necessary on the robustness of the result, and possible mechanisms.
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CHAPTER 1

LONGER RUN DISTRIBUTIVE CYCLES: WAVELET

DECOMPOSITIONS FOR THE US, 1948–2011

c©[Barrales, J. & von Arnim, R., 2017]. The definitive, peer reviewed and edited version of

this article is published in Review of Keynesian Economics, Vol. 5 No. 2, Summer 2017,

pp. 196–217.

1.1 Abstract
This paper presents an analysis of the comovement of income–capital ratio, output gap

and employment rate vis–á–vis the functional distribution of income. We decompose time

series into wavelets of varying periodicity. Cycles at all periodicities in all three variables

vis–á–vis wage share show a counter–clockwise (“Goodwin”) pattern. The well–known

regular cycles appear at business cycle frequency. Furthermore, one roughly 30–year cycle

exists before 1980. Post–1980, no clear medium run cyclical picture emerges. This finding

is complemented by wavelet covariance analysis, which suggests that covariance of longer

period cycles is negative before 1980, but positive thereafter. Crucially, trajectories of

trends across the entire postwar period raise the possibility of one “long” 60–year Goodwin

cycle in all three variables vis–á–vis the wage share, which would suggest that sustained

growth after 2000 required much broader real wage increases relative to labor productivity.

We conduct non–parametric Granger tests, which indicate that systematic interaction at

all periodicities exist. We discuss our findings in relation to the debate on wage–led and

profit–led demand regimes.

1.2 Introduction
Ever since Rowthorn (1982), Dutt (1984), Taylor (1985, 1991), and Bhaduri and Marglin

(1990), post–Keynesians of all stripes have debated interactions between demand and

distribution under the labels of wage–led and profit–led demand. There are many different
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entry points into this debate. Four issues in particular stand out.

The first is whether one approaches the interaction between demand and distribution

as a (potentially locally unstable) cyclical process, or as a stable growth process (Barbosa-

Filho & Taylor, 2006; Skott & Zipperer, 2012; von Arnim & Barrales, 2015). A related

question is whether both variables are endogenous in either such specification, or not.

Based on our analysis, we argue that treatment of the wage share as exogenous in empirical

applications will lead to misspecification: results from non–parametric tests on Granger

causality suggest that systematic “bi–directional” interaction exists at all periodicities be-

tween measures of economic activity and the functional distribution of income.

The second concerns the long and the short of it. Suppose for the moment that a consen-

sus emerges in the literature that business cycles feature a profit–led and profit–squeeze

“Goodwin” pattern (Barbosa-Filho & Taylor, 2006; Proaño, Flaschel, Ernst, & Semmler,

2009). Then the key research question concerns the interaction between growth and distri-

bution in the longer run. Kiefer and Rada (2015) raise the possibility of long–run stagnation

through labor suppression in a globalized economy, though all countries’ business cycles

are of “Goodwin type.” Blecker (2016) discusses these and other findings from a theoret-

ical perspective, suggesting that indeed the consumption or wage–related constraints to

growth might be most relevant at longer time horizons. Our analysis here complements

existing research on the possible existence of a long Goodwin cycle (Flaschel, 2010; Tavani,

Flaschel, & Taylor, 2011), which raises questions about the mechanisms underlying stag-

nationary tendencies.

The third issue pertains to country coverage: should one analyze interaction of demand

and distribution in a “closed system” or an open economy? The former would aim at the

trade–off between consumption and investment, whereas the latter must take the trade

channel and the possibility of a fallacy of composition at the global level into account

(Blecker, 1989; Rezai, 2015; Sasaki & Fujita, 2015). While we focus here on the US, we

see this issue as related to the previous point: any country might boost demand and

employment through competitive devaluations. Analogously, a country might boost (in-

vestment) demand and employment in the short run through labor suppression. However,

ultimately, capacity expansion must be justified, and effective demand must be supported

by wages somewhere, and at some point in time.
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The fourth deals with the endogeneity (or lack thereof) of the rate of utilization (Niki-

foros, 2013, 2016; Skott, 2012). We will sidestep this question to some extent. It certainly

matters, but our primary interest here is to document the existence of longer–run dis-

tributive cycles. We do not provide discussion of or empirical evidence in favor of a

particular mechanism that attracts or repels firms to a steady state. It is however absolutely

paramount to recognize that all relevant time series have significant medium or even

long–term trends. Theory around Kaldor’s stylized facts is one thing, and taking account

of these longer trends another: business cycles are of Goodwin type (Mohun & Veneziani,

2008; Zipperer & Skott, 2011), but there is more to be said about the lower frequencies.

Thus, our intent is to document these lower frequencies. To do so, we present wavelet

decompositions of income–capital ratio, output gap, and employment rate as well as the

functional distribution of income for the US economy after World War II. The wavelet

methodology decomposes a time series into cyclical movements with differing periodici-

ties. It is not very widespread in economics. Gallegati and Semmler (2014) present various

applications, and Gallegati, Gallegati, Ramsey, and Semmler (2011) provide a relevant

discussion of Phillips curve dynamics. Bridji and Charpe (2015) employ similar methods

to empirically analyze long–run interactions of distribution and growth in US, UK, and

France. Their findings complement ours. The wavelet decompositions might thus shed

new light on a subset of the issues outlined above. Indeed, we find quite regular cyclical

comovement at all periodicities. Crucially, the vast majority of these cycles of the wavelet

decompositions conform to the pattern first suggested in Goodwin (1967).1

Our contribution is to provide new evidence on distributive cycles over longer time

horizons in the US economy, and relate this evidence to the debate on the nature of demand

regimes as well as the recent crisis and its aftermath. Key findings are: cycles at all

periodicities in all three variables vis–á–vis the wage share show a counter–clockwise

Goodwin pattern. The well–known regular cycles appear at business cycle frequency.

Furthermore, one roughly 30–year cycle exists before 1980. Post–1980, no clear medium

run cyclical picture emerges. This finding is complemented by wavelet covariance anal-

1Goodwin’s original and well–known contribution provided a parsimonious description of classical growth
and social conflict in employment–wage share space, with a constant income–capital ratio. The investigation
in this paper builds on more recent literature that concerns empirical work on such cycles.
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ysis, which suggests that covariance of longer period cycles is negative before 1980, but

positive thereafter.

The positive covariance post–1980 must be interpreted in light of the tremendous in-

crease in income (and wage) inequality over the last 35 years. Trajectories of trends across

the entire postwar period raise the possibility of one “long” 60–year Goodwin cycle in

all three variables vis–á–vis the wage share. That long cycle, however, appears to have

been interrupted in the late 1990s, as the institutions that could have supported a phase of

prosperity had been too thoroughly dismantled. If this interpretation is correct—and it is

obviously hard to make inferences based on one long cycle—the popular interpretation of

labor suppression and inequality as a cause of crisis and stagnation would hold water, but

would as well need to be seen within the context of a long run profit–led growth cycle.

Additionally, demand and distribution “Granger–cause” each other at all periodicities.

This result implies that the distribution of income cannot be considered an exogenous

variable that explains demand, as has been done in some empirical studies (Hein & Vogel,

2008; Onaran & Galanis, 2012).

Next, we discuss the raw data. In subsequent sections, we briefly describe the wavelet

methodology, provide wavelet decompositions and present the resulting cycles, and dis-

cuss.

1.3 Demand, employment, and distribution
Post–Keynesian research on growth and distribution usually considers the rate of uti-

lization to be the relevant measure of demand. The rate of utilization is the ratio of

observed output to “full capacity output,” that is, U ≡ Y/Y∗. The problem is, of course,

that the latter is unobservable. We do not know what “full capacity output” is, and even

if we knew what it just had been, it might by now have changed. Further, it is not clear

whether the ratio of actual to full capacity output is constant in the long run, as is whether

that ratio converges over any time horizon to a “desired” rate of utilization (Nikiforos,

2013).

One proxy for the rate of utilization—for example, in Barbosa-Filho and Taylor (2006)—

is the ratio of actual to Hodrick–Prescott (HP) trend output. The HP filtering method has

a couple of crucial and well–known disadvantages. First, near the sample end, as the
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filter runs out of observations, the trend tends to bend too much towards the latest cycle.

Second, the resulting series of the rate of utilization has no more medium–term trends.

This does not need to be problem, but it of course precludes analysis of the longer–term

interactions between demand and distribution: the focus must be on the short run. Thus,

here we employ two different measures. First, we use the income–capital ratio, u ≡ Y/K. It

is an obvious candidate, since this ratio and the rate of utilization are proportional, as long

as the full capacity output to capital ratio—σ ≡ Y∗/K—is constant. Then, u ≡ Uσ̄. In a

messy real world, that does of course need not be the case. Further, in the long run, the

ratio Y/K might be interpreted as “capital productivity,” and would then not be a measure

of demand. Coincidentally, of course, a constant long run u would imply steady growth.

We will sidestep such theoretical complications for the moment, as our primary interest is

to document that relevant longer–run movements in Y/K exist.

We construct the series as the ratio of corporate business (nominal) net value added

to corporate business (nominal) net fixed assets at replacement costs. Net value added

of corporate business is obtained from U.S. Bureau of Economic Analysis (BEA) National

Income and Product Accounts Tables (NIPA) table 1.14, and is available as a quarterly

series between 1948:I and 2014:IV.2 Using the 1947 year–end estimate as a starting point,

these observations are interpolated to generate a quarterly series. As a result, quarter–

to–quarter cyclicality is driven by the numerator. However, one might assume that the

relative smoothness of the denominator corresponds to the more gradual installment and

implementation of, say, a purchased machine. The top left panel of Figure 1.1 shows

the income–capital ratio and its trend against The National Bureau of Economic Research

(NBER) recession dates. (The dashed “trend” line represents cyclical movements with

period length greater than 27 = 128 quarters per cycle. See section 1.4 for further detail.)

As is already clear from this picture, the series exhibits cycles at different periodicities.

The “Great Society” project and escalation of the Vietnam War in the 1960s correspond

with a postwar high of the series, followed a distant second by the peak of the new

economy bubble. These peaks can be contrasted with the longer–run cyclical troughs of

2Net fixed assets of corporate business are available as an annual series of year–end estimates in BEA NIPA
table 6.1. Basu and Vasudevan (2013) use the ratio of the annual series as a measure of “capital productivity.”
See, for example, their Figure 17, p. 78 and related discussion.
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the Volcker–Reagan recession and the global crisis of 2008. The latter marks the postwar

low.

Second, we construct a proxy for demand as the ratio of Gross Domestic Product (GDP)

to the Congressional Budget Office’s (CBO) estimate of “potential output.” The CBO’s

series of potential output is estimated based on a neoclassical production function frame-

work. In so many words, the key assumption is to fit a measure of the total labor supply,

rather than those actually in employment, in a growth accounting framework. The method

generates a markedly different estimate of “full employment output” than, say, the HP

filter in the aftermath of the crisis of 2008—exactly because it does not put undue weight

onto recent observations of output.

We label this the output gap series. The CBO provides real potential GDP in chained

2009 dollars, so that we use the corresponding measure for real GDP in chained 2009

dollars (BEA NIPA table 1.1.6). Quarterly series are available between 1949:I and 2014:IV.

The top right panel of Figure 1.1 presents the ratio and its trend against shaded NBER

recessions. The evolution of the output gap is roughly similar to the income–capital ratio,

but its peaks and troughs are more evenly distributed: the late 1960’s stand less out, and

the troughs of (roughly) 1982 and 2008 are of comparable depths. Still, the longer–term

movement of these first two proxies for the rate of utilization is similar. The bottom right

panel shows, for the sake of comparison, the ratio of GDP to its HP trend, with a standard

smoothing parameter of 1600 for quarterly data. As can be seen, this proxy for the rate

of utilization vastly underestimates the most recent contraction, and suggests that the US

economy is well on its way of recovery. Especially the capital–income ratio and the output

gap series show quite different pictures.

Now let us move on to the employment rate, shown in the bottom left panel of Figure

1.1. Following Tavani et al. (2011) and Zipperer and Skott (2011), we measure the employ-

ment rate as the remainder to unemployment: e ≡ 1− ur, where the latter is the standard

BLS measure of the civilian unemployment rate. The unemployment rate abstracts from

the strong trends in the employment–population ratio of prime–age working adults, which

reflects the strong increase in the female participation rate. Nevertheless, this measure

exhibits the well–known medium term trends, and the cyclicality of shorter periods is

quite the same.
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Last but not least, let us consider the functional distribution of income. We focus here

on corporate labor costs as a share of corporate net value added. To begin, look at the top–

left panel of Figure 1.2. (The data underlying the figure stems from BEA NIPA table 1.14,

and are available at quarterly frequency between 1948:I and 2014:IV.) The picture shows

the ratio of compensation of employees to net value added, which is analogous to the

calculation of the profit share in Zipperer and Skott (2011). As can be seen in the top–left

panel, the series peaks around 2000, at the end of the “new economy” boom. Clearly,

the measure does not show the suppression of labor associated with the second era of

globalization (since 1980). It should therefore be emphasized that the shift of the postwar

peak of the wage share from roughly 1980 to 2000 is due to recent data revisions of the

BEA: the dot–dashed line show the data until 2013:I, the last revision where the peak of

1980 is still larger than 2000.3

To illustrate, consider the components of net value added, in the right panel of the

middle row of Figure 1.2. Compensation of employees contains wages and salaries and

supplements. The latter include employer contributions to pension funds, health insur-

ance, and social insurance. In 2003, supplements made up about 12 percent of NVA; of

these, about one–third were paid into public programs, and two–thirds into private funds.

Should these supplements be accounted for as part of the wage share? Due to the

relative constancy of the share of production taxes in NVA, the answer to this question

matters for the evolution of the wage share. The top–right panel shows wages and salaries

as a share of NVA. This measure has a strong downward trend through the entire postwar

period. Standard narratives—“profit–squeeze” during the Golden Age leading to social

conflict and inflation in the 1970s, and restoration of profitability through conservative

policy since roughly 1980—appear to depend to a very large degree on these supplements.4

One can conceive of arguments for either position. These flows are not part of take–

home pay, are not wages, and do not directly enter the income stream. They act, rather,

3Details on these revisions are available in the BEA’s NIPA tables, and from the authors upon request.

4Further, the dash–dotted line in the top right panel shows the BLS’ “headline” non–farm business labor
share, which adds wages and salaries to the portion of proprietor’s income that the statisticians believe to be
wage payments for self–employment. Crucially, for our purposes, only the second half of the Aughts appears
to differ. See Bridji and Charpe (2015) for further discussion of measures of the wage share that include
adjustments for self–employment.
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as redistributive stabilizers, either across the labor force or across generations. Moreover,

the distribution of benefits across the wage and salary structure is possibly skewed to the

top. On the other hand, it might be argued that supplements should be included in the

wage share, since these flows accrue to people who obtain an overwhelming majority of

their lifetime income in wages. Feldstein (2008) makes this case, arguing that “[b]ecause of

the rise in fringe benefits and other noncash payments, wages have not risen as rapidly as

total compensation. It is important therefore to [consider] total compensation rather than

[...] the narrower measure of just wages and salaries.” As we are considering the wage

share as an indication of real labor cost, this would seem reasonable. Moreover, the wage

share provides the funds to support consumption, and a high share of these benefits does

represent consumption expenditures. Indeed, one—quite classical—way to think of the

wage share is to consider it the portion of net product that sustains the labor force. In

other words, it is the portion of net product necessary to reproduce labor power. Health

and retirement benefits in a modern capitalist economy should be considered part of that.

Still, these measures of the wage share do not show the secular rise and fall of real

wages relative to labor productivity throughout postwar history. Rapidly rising wage

inequality has masked these developments—and the very top of the wage income dis-

tribution should not be considered necessary consumption. We therefore adjust the com-

pensation share of net value added to exclude the top 1% of the wage distribution (Piketty &

Saez, 2003).5 In the post–Keynesian literature, Tavani and Vasudevan (2014), for example,

motivate their theoretical exploration of worker–manager conflict with these data. Relat-

edly, Carvalho and Rezai (2016) show that the top quintile of the wage income distribution

already has a high savings rate of 40 percent. The very top of the wage distribution thus is a

lot more “like” capital income, and in what follows we focus on this adjusted wage share:

as can be seen, the peak of this series (middle left panel) is around 1980, and exhibits a

sustained rise and fall before and after that.

The selection of the appropriate wage share measure is most important for the trend

5To be perfectly precise, this adjusted wage share is (1− p) ∗ (C/NVA), where p is the top 1 percentile of
the wage income distribution, and C/NVA is the share of compensation, which includes supplements, relative
to corporate net value added (top–left of Figure 1.2). We obtain a quarterly value for p by interpolating the
annual series from Piketty and Saez (2003), Table B.2. Combining data from different sources in this fashion is
not unproblematic, but for the lack of alternatives, we use this shortcut.
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over the entire postwar period. However, the bottom row of Figure 1.2 illustrates that it

does as well matter for longer–run cycles. Of the three different 16–32 year cycles shown

in the bottom–right panel, only the (gray) adjusted wage share has a lower peak in 2000

than in 1980. For cycles with shorter periodicities, shown in the left panel, the question is

secondary.

In the following section we discuss the wavelet methodology in more detail.

1.4 Empirical methods
Our empirical methods are wavelet transform and multiresolution analysis (MRA), as

well as a non–parametric Granger causality test. In this section we describe them in turn.

1.4.1 Wavelet transform and multiresolution analysis

A complete discussion of wavelet methods for time series can be found, for instance,

in Percival and Walden (2000). First, it should be noted that economic processes unfold

at different time scales. The discrete wavelet transform (DWT) provides a natural way to

decompose a time series in a multiresolution fashion that allows analysis of the time series’

variance at these different time scales.

We employ the maximal–overlap DWT (MODWT). The MODWT for level J for a time

series X yields highly redundant and non–orthogonal column vectors W̃1, W̃2, . . . , W̃J and

ṼJ each of dimension N. The vector W̃j contains the so–called wavelet coefficients and

is associated with changes in X on a scale of λj∆t, with λj = 2j−1, while Ṽj are called

scaling coefficients and are associated with variations at scales λJ+1∆t. The wavelet and

scaling coefficients are associated with zero phase filters, which improves alignment with

the original series.

MODWT yields an energy decomposition

||X||2 =
J

∑
j=1
||W̃j||2 + ||ṼJ ||2, (1.1)

where ||.|| is the l2–norm, and an additive decomposition called multiresolution analysis

(MRA)

X =
J

∑
j=1

D̃j + S̃J , (1.2)
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where D̃j and S̃J are the j–th order detail and the J–th order smooth for X (see Percival &

Mofjeld, 1997, p. 3). Each wavelet and scaling coefficient are obtained by

W̃j,t ≡
Lj−1

∑
l=0

h̃j,lXt−l mod N and Ṽj,t ≡
Lj−1

∑
l=0

g̃j,lXt−l mod N (1.3)

with t = 0, . . . , N − 1. The coefficients {h̃j,t} and {g̃j,t} are called wavelet and scaling

filters with width Lj = (2j − 1)(L− 1) + 1. For instance, for the Haar wavelet the wavelet

coefficients are h̃1,0 = 0.5 and h̃1,1 = −0.5 and scaling coefficients g̃1,0 = 0.5 and g̃1,1 = 0.5.

In matrix notation, the transform from X to W̃j and from X to Ṽj can be expressed as

W̃j = W̃jX and Ṽj = ṼjX, (1.4)

where each row of the N × N matrix W̃j has a value of {h̃◦j,t} and Ṽj of {g̃◦j,t}, where filters

{h̃◦j,t} and {g̃◦j,t} are {h̃j,t} and {g̃j,t} periodized to length N, respectively. The MRA is

obtained, therefore, as

D̃j ≡ W̃T
j W̃j and S̃j ≡ ṼT

j Ṽj, (1.5)

so that we can write in analogy to equations (1.3)

D̃j,t =
N−1

∑
l=0

h̃◦j,lW̃j,t+l mod N and S̃j,t =
N−1

∑
l=0

g̃◦j,lṼj,t+l mod N . (1.6)

In our application, the main objective is to analyze variance and covariance at time

scales that describe the longer run. The Haar wavelet filter is appropriate in these cir-

cumstances. It does not provide the best approximation to the band–pass filter, since the

number of filter coefficients is much smaller. However for the same reason the number of

boundary coefficients is the smallest.

This small number of boundary coefficients, that is, those wavelet coefficients calcu-

lated using the boundary assumption, permits calculation of an unbiased estimator for

variance and covariance at longer scales, which is not possible with filters that require

more coefficients. The computation of the wavelet coefficients uses the boundary assump-

tion of circularity, which is well situated when the starting point is close to the last point

in the series. Since this is usually not the case, we made use of the reflexive boundary

condition, which attaches the reverse series at the end of the original one.6

6A detailed discussion of wavelet variance and covariance analysis and their confidence intervals can be
found in Percival (1995), Percival and Walden (2000), and Whitcher, Guttorp, and Percival (1999, 2000).
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Specifically, the unbiased estimator for wavelet variance with scale coefficient λj = 2j−1

is calculated as

ν̂2(λj) =
1
Nj

N−1

∑
t=Lj−1

W̃2
j,t (1.7)

where Nj = N − Lj + 1 is the number of non–boundary coefficients at the jth–level, with

Lj = (2j − 1)(L − 1) + 1 and L is the number of filter coefficients. For the Haar wavelet

filter, L = 2. Percival and Walden (2000, p. 312), show that under appropriate conditions

an approximate 100(1− α)% confidence interval for ν̂2(λj) is given by[
ηjν̂

2(λj)

Qηj(1− α/2)
,

ηjν̂
2(λj)

Qηj(α/2)

]
, (1.8)

where Qηj(α) is the α× 100% percentage point for the χ2 distribution with ηj equivalent

degrees of freedom. Further,

η̂j =
Njν̂

4(λj)

Âj
and

Âj =
ν̂4(λj)

2
+

Nj−1

∑
τ=1

(
sj,τ
)2

where sj,τ is the biased estimator of the autocovariance sequence (ACVS) and Aj the in-

tegral of the spectral density function for W̃j. The unbiased estimator of the wavelet

covariance for series X and Y is given by

γ̂XY(λj) =
1
Nj

N−1

∑
t=Lj−1

W̃j,t,XW̃j,t,Y. (1.9)

The method for constructing its confidence interval is described in detail in Whitcher et al.

(1999, 2000). The approximate 100(1− α)% confidence interval for γXY(λj) isγ̂XY(λj)−Φ−1(1− α/2)

√√√√ σ̃2
j,XY

Nj
, γ̂XY(λj) + Φ−1(1− α/2)

√√√√ σ̃2
j,XY

Nj

 (1.10)

where

σ̃2
j,XY ≡

ŝj,0,X ŝj,0,Y

2
+

Nj−1

∑
τ=1

ŝj,τ,X ŝj,0,Y +
1
2

Nj−1

∑
τ=−(Nj−1)

ŝ2
j,τ,XY with

ŝj,τ,X =
1
Nj

N−|τ|−1

∑
t=Lj−1

W̃j,t,XW̃j,t+|τ|,X and

ŝ2
j,τ,XY =

1
Nj

∑
t

W̃j,t,XW̃j,t+τ,Y
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and the summation is over t = Lj − 1, . . . , N − τ − 1 for τ ≥ 0 and over t = Lj − τ −

1, . . . , N − 1 for τ < 0.

1.4.2 Non–parametric Granger causality

In order to test for Granger causality, we use the non–parametric test proposed by Diks

and Panchenko (2006) (DP test) instead of Hiemstra and Jones (1994)’s modified Baeck

and Brock (1992) non–parametric test, which has been reported to over reject the null

hypothesis.

Granger causality test seeks to detect evidence against the null hypothesis that {Xt}

does not “Granger–cause” {Yt}. In terms of their probability density, the null hypothesis

can be written as follow:

Yt+1

∣∣∣(Xlx
t , Yly

t

)
∼ Yt+1

∣∣∣Yly
t (1.11)

where Xlx
t = (Xt−lx+1 + · · ·+ Xt) and Yly

t = (Yt−ly+1 + · · ·+ Yt), and “∼” denote equiv-

alence in distribution. Consider the (lx + ly + 1)–dimensional vector Wt = (Xlx
t , Yly

t , Zt)

with Zt = Yt+1. Dropping the time index for simplicity, the null hypothesis is a statement

about the equality of
fX,Y,Z(x, y, z)

fY(y)
=

fX,Y(x, y)
fY(y)

fY,Z(y, z)
fY(y)

(1.12)

The DP test statistics then can be written as

Tn(ε) =
(n− 1)

n(n− 2) ∑
i

(
f̂X,Y,Z (Xi, Yi, Zi) f̂Y (Yi)− f̂X,Y (Xi, Yi) f̂Y,Z (Yi, Zi)

)
(1.13)

with

f̂W (Wi) =
(2ε)−dW

n− 1 ∑
j,j 6=i

IW
ij and IW

ij = I(||Wi −Wj|| < ε)

with ||.|| the maximum norm. Diks and Panchenko (2006, Theorem 1 on p. 1656) provides

a proof of the asymptotic distribution of the estimator.

Typically, the test is executed as a two–stage procedure: first, one estimates a VAR

model which filters out the linear relationship. Second, one conducts the DP test on

the standardized residual error terms, where only the nonlinear behavior remains. The

main problem here is the dependence on this previous step which can either withdraw

too much nonlinear information or too little linear information—leaving the residuals

not informative enough. Moreover, Pitarakis (2006) shows, in the context of threshold
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autoregressive models, that usual lag length selection methods (BIC, AIC, etc) fail if the

true model is highly nonlinear. This would potentially distort the testing.

For that reason we build on the proposal of Li and Shukur (2011). They test for non-

linear Granger causality under a logistic smooth transition autoregressive (LSTAR) model,

using the test in Hiemstra and Jones (1994) over the J–order smooth, that is, S̃J . We use the

DP test over the standardized j-order details, that is, D̃j. Lastly, we set lx = ly = Lj, as well

as ε = 1.5, which is the recommended level given the number of observations.

1.5 Results and discussion
In this section, we present and discuss empirical results. Our analysis suggests that

the well–known profit–led/profit–squeeze business cycles are embedded in a long—60–

year—Goodwin pattern of all three activity measures against the functional distribution

of income. The long cycle, however, appears to have been disrupted in the late 1990s. A

sustained phase of prosperity with rising demand, employment, and real wages relative

to labor productivity should have occurred.

1.5.1 From short run to 30–year cycles

To get started, we provide an example of the multi–resolution analysis, namely the

reconstructed time series at four different time scales for output gap and wage share.

Figure 1.3 shows these four panels. From top left to bottom right, the panels present

business cycles with period length between 2–4 and 4–8 years as well as longer cycles

with period length from 8–16 and 16–32 years. For an example, consider the 8–16 year

cycles in the bottom–left panel. These cycles pick up the immediate postwar expansion,

the upswing in the 1960s, Reagan’s public deficit, the new economy boom, and the 1970s

and 2000s in the doldrums. What is already apparent in this picture is the sequence of

movements: demand increases from its trough while the wage share is decreasing. Only

once the demand expansion is well on its way does the wage share turn upward. This is,

of course, the “Goodwin” cycle, and we will return to it in just a moment.

The bottom right–panel of the figure shows the longest period length, lasting from 16

to 32 years. Here the wavelet decomposition shows cyclical swings that clearly extend

across several business cycles. The output gap series shows three long cycles: the postwar
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expansion, the Great Society expansion, and the Reagan–Clinton era of hyperglobalization.

The two sustained downturns cover the 1970s and the 2000s. The recovery since the crisis

of 2008 is substantially incomplete. The corresponding movements of the wage share are

less pronounced. At all period lengths, the wage share shows a cyclical trough—as in

the original series—in the mid–1960s, and cyclical highs near that. The 16–32 year series

collapses after 2000, and has not recovered.

Similar charts could be put together for output gap and employment rate vis–à–vis

the wage share. The focus here, however, is on the cyclical patterns, so that we present

the data as such. To begin, we illustrate the Goodwin pattern at business cycle frequency.

Figure 1.4 shows wavelet decompositions of output gap and wage share against each other

in an empirical phase diagram. (The data are the same as at the top–right of Figure 1.3.)

These cycles correspond to 4–8 year cycles. The top–left panel begins in 1949, and the

bottom–right ends in 2011. The direction of the cycles can be traced easily: the dot in

each panel marks the beginning. Two main observations stand out. First, these nine

panels correspond quite remarkably well with the NBER recession dates—which would

suggest ten recessions in the postwar era. Second, every single panel portrays a Goodwin

pattern, with the seemingly clockwise swerve in the early 1990s the exception. Careful

econometrics on this or similar data describing the business cycle fluctuations around a

trend will tend to pick up a profit–led and profit–squeeze mechanism. At this frequency,

the Goodwin pattern is fully apparent even in the latest cycle of the Aughts.

However, in what follows, the focus will be on cycles with longer frequency. Figure

1.5 shows phase trajectories of income–capital ratio (on the horizontal axis) and the wage

share, Figure 1.6 shows phase trajectories of output gap and wage share, and Figure 1.7

shows employment rate and wage share. Each of these show 8–16 year cycles in the

top row, and 16–32 year cycles in the bottom. The left– and right–hand panels show the

sub–samples pre and post 1980, as that roughly splits the sample in half—but additionally

marks the turning point from Golden Age and social conflict to hyperglobalization. The

8–16 year series show—roughly—five cycles for the US postwar period. That is half the

number of NBER cycles. However, the average period length is about 12 years—rendering

these fluctuations still broadly in sync with “longer” business cycle expansions and con-

tractions. Importantly, all cycles at this frequency show a Goodwin pattern, with the
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exception of the clockwise nook of the income–capital ratio in the late 1950s (see top–left

panel of Figure 1.5).

The two bottom panels in these three figures display 16–32 year cycles. As is apparent

across all three, the period before 1980 and after 1980 differ drastically. Income–capital

ratio, output gap, and employment rate show a complete counter–clockwise cycle from

the mid–1950s to 1980. The few years before that do not strike one as contradictory to

that pattern. Moreover, these pre–1980 30–year cycles are tilted, such that the economy is

situated mostly in areas where one variable increases and the other decreases. (We return

to that in a moment.) However, post–1980, the activity measures initially increase, though

without a sustained rise in the wage share, and in the year 2000 (income–capital ratio)

or 2001 (output gap and employment rate) collapse in lockstep with the distribution of

income.

To further investigate this pattern, we present an analysis of the covariance of the three

variables against the wage share. See Figure 1.8 for an overview, and section 1.4.1 for

details on the calculations. In each panel, the horizontal axis shows the time scale of the

wavelet decomposition, from shortest (0.5–1 year, time scale 1) to longest (16–32 years,

time scale 6). The vertical axis represents the covariance; the dashed lines are confidence

intervals. Let us dissect the top row for the income–capital ratio in detail. The leftmost

panel shows the entire sample period. The covariance decreases from time scale 1 to 4,

and then increases slightly. This, however, masks the sharp differences across periods.

The middle panel illustrates that the covariance decreases across time scales 1–6 before

1980—but after 1980, it decreases to scale 4 and then becomes positive. This pattern can

be observed in similar fashion for the output gap and employment rate. Thus, roughly

speaking, before 1980, all time scales show negative covariance, which corresponds at scale

6 to the tilted cycles discussed above. But post–1980, the covariance at that scale turns

positive, even if the business cycle covariance (recall Figure 1.4) remains negative.7

Such covariance analysis can not substitute for further empirical research on the mech-

anisms that drive the observed trajectories. However, the phase trajectories across business

7One possible interpretation of the negative covariance draws on the familiar phase diagram: the economy
is situated on average nearer the goods market equilibrium (the profit–led demand isocline) than the labor
market equilibrium (the profit–squeeze distributive isocline). While the goods market might be on average in
disequilibrium, it nevertheless adjusts faster than the labor market.
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cycles (Figure 1.4) and those across longer time horizons (Figures 1.5, 1.6, and 1.7) suggest

that at all frequencies, activity measures, and the functional distribution of income interact

systematically. To check whether these interactions are statistically significant, we conduct

tests on Granger causality; see section 1.4.2 for details. Table 1.1 summarizes results. Let

us focus here on time scales 3 through 6.

Statistically, the linkages between the pairs of variables are strongest—and always bi–

directional—at scale 3. The 4–8 year interaction is bi–directional and strong for output gap

and employment rate, but would suggest that the income–capital ratio does not Granger–

cause the wage share. Similarly, at the lowest frequencies, the wage share Granger–causes

income–capital ratio, output gap, and employment rate, but not always—and not always

as strongly—vice versa. However, across all three pairs, the evidence indicates that statis-

tically significant systematic interaction between the functional distribution of income and

measures of economic activity exists. Such evidence does not support a specific mecha-

nism, nor does it suggest relevant underlying ultimate causes that are potentially driving

longer run cycles. Skott (2017) discusses these issues, specifically that research should

focus on changes in exogenous factors, and try to delineate how shifts in these affect both

growth and distribution. The Granger exercise here does not speak to these questions, but

it highlights the possibility that regressions of the wage share on (components of) demand

are likely misspecified.

Moreover, the covariance analysis emphasizes that something might be rotten with the

demand regime: if the pre–1980 30–year cycle is representative of capitalist interaction

between growth and distribution, then the subsequent 30–years would have to be seen as

an aberration. In this sense, the positive covariance post–1980 is the manifestation of the

collapse of activity measures and wage share in tandem. Of course, the well–known trends

of financialization and globalization come to mind, and one might conjecture: demand

and employment could indeed be sustained through reorganization of global production

processes, and the related innovation and investment, but not forever.

1.5.2 A long wave: A 60–year Goodwin cycle?

To further illustrate, Figure 1.9 displays the longest possible cycle—the comovement of

the trend of income–capital ratio, output gap, and employment rate vis–á–vis the trend
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of wage share. The left panels display cycles with period length greater than 27 = 128

quarters, or 32 years.8 In the panels on the right, we define for the purpose of comparison

the trend as the components of the series with periodicity greater than 26 = 64 quarters, or

16 years. As a result, the right panels show slightly more cyclicality than the left panels.

The charts suggest that the postwar period might be marked by one long Goodwin

cycle in all three activity measures and the wage share between, roughly, the early 1950s

and the late 1990s. At the end of this period, economic activity and the wage share collapse

together. The turning points of these trajectories roughly sketch a possible interpretation of

postwar US developments: the Golden Age turns into a secular profit–squeeze in the mid–

1960s; at about 1980 (or 1982), the conservative reaction breaks the upward trend in the

wage share, and engineers capitalist revival, driven by increasing profitability. Now, what

does the south–west–ward collapse of wage share and activity in the late 1990s represent?

At least one possibility arises. For the sake of argument, suppose we knew with cer-

tainty that a “long” Goodwin cycle exists. Then the wage share should have begun to

rise in the late 1990s, triggering a phase of prosperity.9 During this phase of prosperity,

real wages relative to labor productivity should have been rising, demand relative to

capacity should have been increasing, the output gap should have been shrinking, and

the employment rate should have been rising. Crucially, such sustained increases in real

incomes (and related consumption) might have justified innovation, capacity expansion,

and global reorganization of production processes. Figure 1.10 provides a different look at

the relevant period. We overlay the smooth trend with 4–8 year business cycles. The visu-

alization raises the very possibility that the long cycle indeed could have been completed.

Instead, what happened was Clinton, and Bush, and hyperglobalization, and ultimately

Bear Stearns and Lehmann. In the frenzy over technology and finance, the real economy

was forgotten, and it broke.

What are the implications for the debates on demand regimes? For the sake of ar-

gument, again, suppose that there is a long Goodwin cycle. Growth across this cycle

8For the top left panel, these data are the same as the dashed trend lines in the top left panel of Figure 1.1
and the middle left panel of Figure 1.2.

9We borrow the phrase from Charpe and Proaño (2016), who discuss the possibility that either wage–led
or profit–led demand regimes could be embedded in a long Goodwin cycle; see their Figure 2.
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would be profit–led, and the distributive regime would show a profit–squeeze. Nevertheless,

growth and employment would at times—such as the late 1990s and 2000s—require higher

real wages. The growth cycle will not keep turning, if real wages do not “overshoot.”

Erturk (2016) suggests a possible mechanism: globalization rendered labor everywhere

weak, and capitalists unable to coordinate appropriate and broad real wage increases.

A similar and well–known narrative applies to business cycles Barbosa-Filho and Taylor

(2006). However, there is a crucial difference: over the length of the cycle, institutions can

be taken as exogenous. In the long run, institutions evolve. Indeed, the trajectories in

Figure 1.9 should probably be seen as driven by institutional changes, from the emergence

and strengthening of “New Deal” institutions post World War II to its dismantling in the

15 years after the Reagan–Volcker shock.

Lastly, investigations on steady growth potentially miss the point, somewhat. Growth

might be steady across several long Goodwin cycles—but across two or three business

cycles, the process of growth and conflict does not evolve in a vacuum. Rather, it should

possibly be evaluated in the context of a long cycle. It would follow that restoration of

profitability 1980 became paramount; as it would follow that capitalist elites should have

sought to engineer a long wage supported recovery, beginning 1995.

1.6 Conclusions
The literature has dissected demand regimes theoretically and empirically from a va-

riety of viewpoints. All available evidence strongly suggests that at business cycle fre-

quencies, measures of economic activity and functional distribution of income comove in

a Goodwin pattern. Such a pattern features profit–led demand and profit–squeeze distri-

bution. Most contradictory evidence relies on specifications that assume the distribution

of income to be exogenous, which is hard to defend.

Additionally, longer–run distributive cycles exist not only in employment rate and

functional distribution of income, but as well vis–á–vis income–capital ratio and output

gap. The US trajectories suggest the possibility of an “aborted” long Goodwin cycle:

instead of a phase of prosperity post–1995 with rising demand, employment, and real

wages, all of these measures collapse together.

A possible culprit is globalization. How could any single country allow sustained real
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wage increases? The pressures of international competition are immense. As such, the

collapse of the long growth cycle represents a failure of elites to recognize the relevant

linkages, and to maintain and support global institutions that can guide these processes in

more sustainable ways.



20

1.7 References

Baeck, E. G., & Brock, W. A. (1992). A general test for nonlinear granger causality: Bivariate
model. Working Paper, Iowa State University and University of Wisconsin, Madison,
WI.

Barbosa-Filho, N., & Taylor, L. (2006). Distributive and demand cycles in the US
economy – a structuralist Goodwin model. Metroeconomica, 57(3), 389–411.

Basu, D., & Vasudevan, R. (2013). Technology, distribution and the rate of profit in the
US economy: Understanding the current crisis. Cambridge Journal of Economics, 37(1),
57-89.

Bhaduri, A., & Marglin, S. (1990). Unemployment and the real wage – the economic–
basis for contesting political ideologies. Cambridge Journal of Economics, 14(4), 375-393.

Blecker, R. (1989). International competition, income–distribution and economic–
growth. Cambridge Journal of Economics, 13(3), 395-412.

Blecker, R. (2016). Wage–led versus profit–led demand regimes: The long and the short
of it. Review of Keynesian Economics, 4(4), 373-390.

Bridji, S., & Charpe, M. (2015). The impact of the labour share on growth: A time-frequency
analysis (Tech. Rep.). International Labour Organization.

Carvalho, L., & Rezai, A. (2016). Personal income inequality and aggregate demand.
Cambridge Journal of Economics, 40(2), 491-505.

Charpe, P., M.; Flaschel, & Proaño, C. (2016). The persistence of goodwin profit/wage squeeze
cycles in wage–led economies. Mimeo, Bielefeld University, Germany.

Diks, C., & Panchenko, V. (2006). A new statistic and practical guidelines for non-
parametric granger causality testing. Journal of Economic Dynamics & Control, 30(9-10),
1647-1669.

Dutt, A. (1984). Stagnation, income–distribution and monopoly power. Cambridge
Journal of Economics, 8(1), 25-40.

Erturk, K. (2016). Power hazard in market exchange: Can asymmetric power be harmful to
all? Mimeo, University of Utah, USA.

Feldstein, M. (2008). Did wages reflect growth in productivity? Journal of Policy
Modeling, 30(4), 591-594.

Flaschel, P. (2010). The classical growth cycle: Reformulation, simulation and some
facts. In P. Flaschel (Ed.), Topics in classical micro- and macroeconomics: Elements of a critique
of neoricardian theory (pp. 435–463). Berlin and Heidelberg: Springer.

Gallegati, M., Gallegati, M., Ramsey, J., & Semmler, W. (2011). The US wage phillips
curve across frequencies and over time. Oxford Bulletin of Economics and Statistics, 73(4),
489-508.

Gallegati, M., & Semmler, W. (2014). Wavelet applications in economics and finance. New
York: Springer.



21

Goodwin, R. (1967). A growth cycle. In C. Feinstein (Ed.), Socialism, capitalism and
economic growth (pp. 54–58). Cambridge, UK: Cambridge University Press.

Hein, E., & Vogel, L. (2008). Distribution and growth reconsidered: Empirical results
for six OECD countries. Cambridge Journal of Economics, 32(3), 479-511.

Hiemstra, C., & Jones, J. (1994). Testing for linear and nonlinear granger causality in
the stock price–volume relation. Journal of Finance, 49(5), 1639-1664.

Kiefer, D., & Rada, C. (2015). Profit maximising goes global: The race to the bottom.
Cambridge Journal of Economics, 39(5), 1333–1350.

Li, Y., & Shukur, G. (2011). Linear and nonlinear causality tests in an LSTAR model:
Wavelet decomposition in a nonlinear environment. Journal of Statistical Computation
and Simulation, 81(12), 1913-1925.

Mohun, S., & Veneziani, R. (2008). Goodwin cycles and the US economy, 1948-2004.
In P. Flaschel & M. Landesmann (Eds.), Mathematical economics and the dynamics of
capitalism: Goodwin’s legacy continued (pp. 107–130). London: Routledge.

Nikiforos, M. (2013). The (normal) rate of capacity utilization at the firm level. Metroe-
conomica, 64(3), 513-538.

Nikiforos, M. (2016). On the ’utilisation controversy’: A theoretical and empirical
discussion of the kaleckian model of growth and distribution. Cambridge Journal of
Economics, 40(2), 437-467.

Onaran, O., & Galanis, G. (2012). Is aggregate demand wage–led or profit–led? national and
global effects. (Tech. Rep.).

Percival, D. (1995). On estimation of the wavelet variance. Biometrika, 82(3), 619-631.

Percival, D., & Mofjeld, H. O. (1997). Analysis of subtidal coastal sea level fluctuations
using wavelets. Journal of the American Statistical Association, 92(439), 868-880.

Percival, D., & Walden, A. (2000). Wavelet methods for time series analysis. Cambridge ;
New York: Cambridge University Press.

Piketty, T., & Saez, E. (2003). Income inequality in the united states, 1913-1998.
Quarterly Journal of Economics, 118(1), 1-39.

Pitarakis, J. (2006). Model selection uncertainty and detection of threshold effects.
Studies in Nonlinear Dynamics and Econometrics, 10(1).

Proaño, C., Flaschel, P., Ernst, E., & Semmler, W. (2009). Disequilibrium macroeconomic
dynamics, income distribution and wage–price phillips curves: Evidence from the U.S.
and the Euro Area. In P. Flaschel (Ed.), The macrodynamics of capitalism: Elements for a
synthesis of Marx, Keynes and Schumpeter (Second revised and enlarged edition. ed., pp.
xiv, 399 pages). Berlin ; London: Springer.

Rezai, A. (2015). Demand and distribution in integrated economies. Cambridge Journal
of Economics, 39(5), 1399-1414.



22

Rowthorn, R. (1982). Demand, real wwges and economic growth. Studi Economici, 18,
3-53.

Sasaki, H., & Fujita, S. (2015). Demand and income distribution in a two–country kaleckian
model (Tech. Rep.).

Skott, P. (2012). Theoretical and empirical shortcomings of the kaleckian investment
function. Metroeconomica, 63(1), 109-138.

Skott, P. (2017). Weaknesses of ”wage–led growth”. Review of Keynesian Economics, 5(3),
336–359.

Skott, P., & Zipperer, B. (2012). An empirical evaluation of three post–keynesian
models. European Journal of Economics and Economic Policies: Intervention, 9, 277-308.

Tavani, D., Flaschel, P., & Taylor, L. (2011). Estimated non-linearities and multiple
equilibria in a model of distributive-demand cycles. International Review of Applied
Economics, 25(5), 519–538.

Tavani, D., & Vasudevan, R. (2014). Capitalists, workers, and managers: Wage inequal-
ity and effective demand. Structural Change and Economic Dynamics, 30, 120-131.

Taylor, L. (1985). A atagnationist model of economic–growth. Cambridge Journal of
Economics, 9(4), 383-403.

Taylor, L. (1991). Income distribution, inflation, and growth : Lectures on structuralist
macroeconomic theory. Cambridge, Mass.: MIT Press.

von Arnim, R., & Barrales, J. (2015). Demand-driven Goodwin cycles with kaldorian
and kaleckian features. Review of Keynesian Economics, 3(3), 351–373.

Whitcher, B., Guttorp, P., & Percival, D. (1999). Mathematical background for wavelet
estimators of cross–covariance and cross–correlation (Tech. Rep.). National Research Center
for Statistics and the Environment.

Whitcher, B., Guttorp, P., & Percival, D. (2000). Wavelet analysis of covariance with
application to atmospheric time series. Journal of Geophysical Research-Atmospheres,
105(D11), 14941-14962.

Zipperer, B., & Skott, P. (2011). Cyclical patterns of employment, utilization, and
profitability. Journal of Post Keynesian Economics, 34(1), 25-58.



23

Figure 1.1: Demand and employment. Income–capital ratio, output gap, employment
rate, and the ratio of real GDP to its Hodrick–Prescott trend. Shaded areas indicate NBER
recession dates. See section 1.3 for further details on the series.
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Figure 1.2: Wage share. Top row, left: compensation (wages and salaries plus supple-
ments) of employees as a share of corporate net value added (NVA). Right: wages and
salaries as a share of NVA. Middle row, left: “P99” is the wage share in the top left
panel, adjusted by Piketty and Saez’ share of the top 1 percent of wage income recipients.
Right: components of NVA as shares of NVA; from top to bottom before 1960: wages and
salaries, net operating surplus, taxes, supplements. Bottom row: wavelet decompositions
of the three different wage share measures at two different periodicities (black: compensa-
tion/NVA; dashed: wages and salaries/NVA; gray: “P99” adjusted compensation/NVA).
See section 1.3 for further discussion.
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Figure 1.3: Wavelet decomposition of output gap and wage share. The dotted line
represents the wage share (including supplements, minus top 1 percent), the solid line
the output gap. Shaded areas indicate NBER recession dates. See section 1.3 for further
details on the data, and the main text for details on the wavelet decomposition.
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Figure 1.4: Output gap and wage share, phase trajectories at business cycle frequency
(4–8 years). The panels show wavelet decompositions for output gap (horizontal axis) and
wage share (incl. supplements; minus top 1 percent). The dot indicates the starting point
in each panel. See section 1.3 for further details on the series, and section 1.5 for discussion.
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Figure 1.5: Income–capital ratio and wage share, phase trajectories. The panels show
wavelet decompositions for income–capital ratio (horizontal axis) and wage share (incl.
supplements; minus top 1 percent). The dot indicates the starting point in each panel.
Top row displays 8–16 year cycles, pre– and post–1980; bottom row 16–32 year cycles. See
section 1.3 for further details on the series, and section 1.5 for discussion.
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Figure 1.6: Output gap and wage share, phase trajectories. The panels show wavelet
decompositions for output gap (horizontal axis) and wage share (incl. supplements; minus
top 1 percent). The dot indicates the starting point in each panel. Top row displays 8–16
year cycles, pre– and post–1980; bottom row 16–32 year cycles. See section 1.3 for further
details on the series, and section 1.5 for discussion.
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Figure 1.7: Employment rate and wage share, phase trajectories. The panels show
wavelet decompositions for employment rate (horizontal axis) and wage share (incl. sup-
plements; minus top 1 percent). The dot indicates the starting point in each panel. Top row
displays 8–16 year cycles, pre– and post–1980; bottom row 16–32 year cycles. See section
1.3 for further details on the series, and section 1.5 for discussion.



30

Figure 1.8: Wavelet covariances. Top row: covariance of income–capital ratio and wage
share at time scales 1–6. Middle row: covariance of output gap and wage share at time
scales 1–6; bottom row: covariance of employment rate and wage share at time scales 1–6.
The left-most panels show covariances for the entire sample period, the middle panels for
the years before 1980, and the right panels for the period 1981–2014.
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Table 1.1: Nonlinear Granger causality test (ε = 1.5).

Income–capital Output gap Employment rate

lags T–test p–value T–test p–value T–test p–value

0.5–1 ψ⇒ ...
2

0.6021 0.2736 -0.8661 0.1932 1.2995∗ 0.0969
... ⇒ ψ 0.3177 0.3754 2.1741∗∗ 0.0149 1.8070∗∗ 0.0354

1–2 ψ⇒ ...
4

2.3254∗∗ 0.0100 2.4529∗∗∗ 0.0071 1.3612∗ 0.0867
... ⇒ ψ 1.6571∗∗ 0.0487 2.0118∗∗ 0.0221 2.5533∗∗∗ 0.0053

2–4 ψ⇒ ...
8

2.6893∗∗∗ 0.0036 2.9942∗∗∗ 0.0014 2.8329∗∗∗ 0.0023
... ⇒ ψ 2.0096∗∗ 0.0222 2.4037∗∗∗ 0.0081 2.0838∗∗ 0.0186

4–8 ψ⇒ ...
16

2.0473∗∗ 0.0203 2.4728∗∗∗ 0.0067 2.5002∗∗∗ 0.0062
... ⇒ ψ 1.1814 0.1187 1.9602∗∗ 0.0250 1.8897∗∗ 0.0294

8–16 ψ⇒ ...
32

2.3363∗∗∗ 0.0097 3.2873∗∗∗ 0.0005 3.3833∗∗∗ 0.0004
... ⇒ ψ 1.9216∗∗ 0.0273 1.1812 0.1188 1.1708 0.1208

16–32 ψ⇒ ...
64

1.3139∗ 0.0944 2.6752∗∗∗ 0.0037 1.8296∗∗ 0.0337
... ⇒ ψ 1.4191∗ 0.0779 1.3671∗ 0.0858 1.5716∗ 0.0580

*** p < 0.01, ** p < 0.05, * p < 0.1
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Figure 1.9: Income–capital ratio, output gap, and employment rate vis–à–vis the wage
share, trends 1948/49–2011. In all panels, the wage share (incl. supplement; minus top
1 percent) is on the vertical axis. Panels on the left are based on “smooth trends” with
periodicity greater than 128 quarters per cycle (or 32 years per cycle); panels on the right
include trends with 64 quarters per cycle. See section 1.3 for further details on the series,
and section 1.5 for discussion.



33

Figure 1.10: Output gap and employment rate vis–à–vis the wage share, trends and
cycles 1948/49–2011. In both panels, the wage share (incl. supplement; minus top 1
percent) is on the vertical axis. The dashed lines are smooth trends as in Figures 1.1 and
1.2 (32+ years per cycle); the solid line represents cycles with 4–8 year cycles. The solid
output gap–wage share cycles in the left panel are as well shown in Figure 1.4. See section
1.3 for further details on the series, and section 1.5 for discussion.



CHAPTER 2

ON THE SEARCH FOR ENDOGENOUS CYCLES: THE

CASE OF WAGE SHARE AND OUTPUT GAP

2.1 Abstract
This paper seeks to investigate the individual dynamics of two important variables

in the post–Keynesian literature that represent the functional income distribution and

economic activity, i.e., wage share and output gap. Our results suggest that output gap

behaves quasi chaotically, i.e., dominant Lyapunov exponent (LE) close to zero, and wage

share noisy stable, i.e., negative LE.

2.2 Introduction
Post–Keynesian macroeconomic theories of business cycles are rich in endogenous

mechanisms that lead to sustained oscillations. Seminal contributions are, for instance,

Kalecki (1937), Kaldor (1940), and Goodwin (1951, 1967). These papers, in general, depict

the economic system as having internal mechanisms that create cycles even in the absence

of external shocks. This contrasts with the mainstream Real Business Cycles (RBC) mod-

els (Kydland & Prescott, 1982), and its modern incarnation Dynamic Stochastic General

Equilibrium (DSGE) models (Christiano, Eichenbaum, & Evans, 2005; Smets & Wouters,

2007), which rely on the assumption that the capitalist economy is stable and economic

fluctuations arise from stochastic shocks1.

In search of endogenous mechanism, chaos theory seems appealing (e.g., Chen, 2010).

From a theoretical perspective, first, chaotic behavior can be defined as sensitivity to initial

conditions, implying that there is a limit on the predictability of future events, even in the

1Chen (2010, chapter 12) provides a history of the rise and success of the Frisch (1933) research agenda
on noise–driven damped oscillations. He also provides a discussion in how the first–differencing filter
method has been the main support of the exogenous cycle tradition, (e.g., Engle & Granger, 1987; Nelson
& Plosser, 1982). First–differenced data amplifies noise and whitened the data, hence producing the illusion
of equilibrium. Although to the naked eye the difference between a chaotic and noise driven time series cannot
be distinguished, their power spectra are completely different.
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absence of noise; second, the stretching and folding mechanisms, which are at the core

of chaos, imply strong internal dynamics that sustain the oscillations; and third, complex

phenomena might be described by simple rules or by low dimensional dynamics. From

an empirical standpoint, traditional regression and spectral techniques, although able to

study some features of the data and predict it, are not able to reveal its deterministic

underlying structure (Wolff, 1992).

An operational definition of chaos is systems that have bounded solutions and dominant

Lyapunov exponent (λ) larger than zero, i.e., two slightly different initial conditions depart

from each other exponentially. Usually, this definition applies to dynamical systems not

affected by noise, and therefore, some authors claim that there is a striking difference

between stochastic and deterministic systems (see, for example, Dennis, Desharnais, Cush-

ing, Henson, & Costantino, 2003). However, in real systems, endogenous feedback mech-

anisms and noise go hand in hand (Coulson, Rohani, & Pascual, 2004). Therefore, the

relevant question seems to be: Do endogenous feedback mechanisms contribute to the observed

irregularity, and if so, to what degree? Ellner and Turchin (2005) proposed a four–fold cate-

gory regarding the relationship between noise (R2) and the dominant Lyapunov exponent

(λ): noisy chaos, noisy stability, quasi–chaos, and noise–dominated situations.

Noisy chaos, λ > 0 and high R2, represents a system that amplifies the noise by its

internal feedback mechanisms. Noisy stability, λ < 0 and high R2, stands for a stable

system that damps the noise. Quasi chaos, λ ≈ 0 and high R2, is a system that moves

between stable and chaotic behavior. A noisy system can jump from stable to chaotic

regime smoothly. This is not true in the absence of noise. In these circumstances, the dis-

tribution of the so–called finite time or local Lyapunov exponent (LLE) becomes relevant

(see subsection 2.3.1 for more detail). Finally, noise dominated dynamics, where a low R2

makes that the dominant Lyapunov exponent plays no relevant role, because the internal

dynamics are irrelevant.

Following this classification, output gap is found to behave quasi–chaotically; mean-

while, wage share is noisy stable.

The remainder of the paper is structure as follows: section 2.3 describes the dominant

and local Lyapunov exponent, as well as the univariate Nonlinear Autoregressive Neural

Network (NARNN) model used to calculate them. In section 2.4, We use the above meth-
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ods to study wage share and output gap independently. Concluding remarks are in section

2.5.

2.3 Lyapunov exponents
One main feature of a chaotic system is that starting from slightly different conditions,

the evolution of the paths departs from each other exponentially. The quantity that mea-

sures that is the dominant Lyapunov exponent. The usual classification is a fixed point

if the exponents are negative, limit cycle if one exponent is zero, and the remaining are

negative, k–dimensional torus (quasi–periodic motion) if k exponents are zero and all the

remaining are negative and strange attractor if at least one is positive.

Specifically, consider the discrete differentiable dynamical system subject to noise2.

Xt+1 = M(Xt) + Et+1, (2.1)

where Xt, Et ∈ Rp for integers t and M is a Rp → Rp map. Et are iid with zero mean,

covariance Σ, and independent from X0.

Let J(X) be Jacobian matrix of M at X. The separation between two close initial values

X0 and X′0 after time n is given approximately by

Xn − X′n = Mn(X0)−Mn(X′0) ≈ Jn(X0)(X0 − X′0), (2.2)

By the chain rule of differentiation,

Jn(X0) = J(Xn−1)J(Xn−2) . . . J(X0). (2.3)

Let || • || denote the matrix norm, then the Lyapunov exponents are given by

λn = lim
n→∞

n−1 ln ||Jn(X0)||, (2.4)

There are two main methods to calculate Lyapunov exponents: direct and indirect (Ja-

cobian methods). The former compares the evolution of two similar initial points. This

method is almost forbidden for a typical economic time series because it requires a large

amount of observations and assumes that they are noiseless, or at least that they are subject

to the same noise. Using this method in small and noisy data sets could lead to wrong

conclusions (McCaffrey, Ellner, Gallant, & Nychka, 1992).

2The dynamical system (2.1) is called differentiable if the map M is differentiable.
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The indirect method, on the other hand, consists of fitting a nonparametric regression

to the data to calculate the Jacobian matrices and estimate the LE by the QR–factorization

described in Appendix B.4. One important difficulty lies here: the dimension of the at-

tractor is required, so we need all the interacting variables in the model. However, we are

never certain of which variable should be included to form the attractor. Fortunately, it is

possible to use time–delay coordinates, known as attractor reconstruction (Sauer, Yorke, &

Casdagli, 1991; Takens, 1981), that have the same properties as the original attractor. If the

true attractor lies on an p-dimensional space, then for almost every embedding lag τ and

large enough embedding dimension m, the attractor of the m-dimensional time series

Xt = {xt, xt−τ, xt−2τ, . . . , xt−(m−1)τ} (2.5)

is qualitatively similar to the unknown attractor of the p-dimensional system (Pascual &

Ellner, 2000). The embedding dimension (m) must be, at least, larger than p.

2.3.1 Local Lyapunov exponents

The dominant Lyapunov exponent can be considered as the long run average of di-

vergence between two close points affected by a small perturbation. Furthermore, by

Oseledets’ multiplicative ergodic theorem, it is independent from the initial conditions.

Hence, it studies the asymptotic behavior of the system. However, transient behavior,

which cannot be captured by asymptotic tools, might play a crucial role in the dynamics.

This turns out to be crucial when λ ≈ 0 because in principle, any dynamics might be

possible3. For that reason, we use the so–called finite time or local Lyapunov exponent

(LLE). LLE provides information on how a perturbation to a system’s orbits will exponen-

tially increase or decrease in finite time, therefore indicating the predictability of a system in

the short run (Bailey, 1996; Turchin & Ellner, 2000; Wolff, 1992; Ziehmann, Smith, & Kurths,

2000). LLE can be written as

λ(ω, X0) = ω−1 ln ||Jω(X0)||, (2.6)

and is calculated as well as LE using the QR–factorization (see Appendix B.4).

Equation (2.6) makes explicit the fact that, contrary to the dominant Lyapunov expo-

nent, LLE depends on the initial conditions (X0) and the time window (ω). Therefore,

3λ ≈ 0 might be regarded as λ between -0.1 and 0.1.
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its probability distribution depends on these two parameters (see Prasad & Ramaswamy,

1999). If ω is chosen too small, the distribution will keep changing shape, because it has

not reached its stationary distribution. If chosen to be too long, the distribution will be a

δ function at the dominant Lyapunov exponent. For the present study, we choose ω = 25

quarters.

2.3.2 NARNN: Estimating the Jacobian

In order to estimate the Jacobian matrix, J(Xt), we rewrite the model (2.1), with the

reconstructed attractor (see equation (2.5), with τ = 1), in its state space form,
xt

xt−1
xt−2

...
xt−m+1

 =


F(Xt−1)

xt−1
xt−2

...
xt−m+1

+


εt
0
0
...
0

 , (2.7)

with F an unknown function that has to be approximated. The Jacobian matrix is given by,

J(Xt) =


∆Fxt−1 ∆Fxt−2 . . . ∆Fxt−m+1 ∆Fxt−m

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (2.8)

where ∆Fxj is the partial derivative of F with respect to xj.

The estimation is carried out using the Nonlinear AutoRegressive Neural Network

(NARNN) model in Matlab’s Neural Network Toolbox by the Levenberg-Marquardt back-

propagation algorithm described in Appendix B.5. NARNN’s series–parallel method (or

open loop) approximates the map F(•) by a feedforward neural network with single out-

put and delayed outputs. Artificial Neural Networks (ANN) have the universal approxi-

mation property, i.e., they are able to approximate any function to any degree of accuracy

and its derivatives (Gallant & White, 1992; Hornik, Stinchcombe, & White, 1989). Fur-

thermore, using NARNN to calculate the Jacobian matrix makes explicit that the model

is believed to be subject to dynamical shocks. Therefore, there is interplay between the

interaction of the deterministic skeleton and how forcing shocks could impact the system.

This noise can play an important role defining changes in regime in the dynamics of a time

series (Ellner & Turchin, 2005). It can cause anything from a mild blur on the attractor to
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more serious effects (Kendall, 2001). For instance, if the dynamical system has multiple

equilibria, shocks might cause jumps among them.

An example of a NARNN architecture is in Figure 2.1 (see Beninca et al., 2008, sup-

plementary information). Generally, ANN have three layers: input, hidden, and output

layers. The input layer consists, in this case, of the lagged values of the time series (neu-

rons). Each neuron is then passed and combined in a hidden layer. Between the input

layer and the hidden layer, a linear transformation is performed, i.e.,

hiddenj =
m

∑
i=1

x(t− i)γij + µj, (2.9)

where x(t) are input neurons, {γ1j, γ2j, . . . , γmj} the connection strength, and µj the intrin-

sic activity level. The hidden layer executes a nonlinear transformation,

ϕ(hiddenj) = tanh(hiddenj), (2.10)

which is a sigmoid function. It is an activation function, and bounded by −1 and 1. All the

activation functions are collected in one linear transformation to calculate the output, with

the form

F(X) = β0 +
K

∑
j=1

β j ϕ
(
hiddenj

)
. (2.11)

The complexity of the model is chosen based on generalized cross–validation, GCV(α), i.e.,

GCV(α) =

(
RMSE
1− α k

T

)2

, (2.12)

where RMSE is the root mean square error, T is the number of data points, and k is the

number of parameters. We use GCV because it provides more flexibility than AIC and BIC.

For my specific sample size and number of parameters, BIC tends to underfit and AIC to

overfit; therefore, a good balance solution is to use GCV with α = 1.4. After choosing a

model based on GCV(1.4), the adequacy of the model is studied with the test developed

by Billings and Zhu (1995) that tests for the unpredictability of residuals from, in our case,

all linear and nonlinear combinations of past outputs and residuals. For our purposes, it

can be written as:

φε2,xε(τ) = λ0δ(τ) (2.13)
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where δ the delta function, λ0 =
√

∑T
t=1(ε(t)2 − ε(t)2)

/√
∑T

t=1(x(t)ε(t)− x(t)ε(t)) a

constant, x the average of x, and φxy the cross–correlation function between x and y, i.e.,

φxy(τ) =
∑N−τ

t=1 [x(t)− x] [y(t + τ)− y]√
∑N

t=1 [x(t)− x]2
√

∑N
t=1 [y(t)− y]2

. (2.14)

with confidence interval at 95% between ±1.96/
√

T.

2.4 Data analysis
For the functional distribution of income and wage share, we use the corporate la-

bor cost as a share of corporate net value added from BEA NIPA table 1.14, from 1948:I

to 2014:IV. A detailed discussion can be found in Chapter 1. The economic activity is

measure by output gap. Figure 2.2 upper panel shows, left, the log of wage share and,

right, the log of the real output and their respective trends. The bottom panel exhibits

the detrended wage share (ψ) and the output gap (u) both calculated as the percentage

deviation from their trend. The trend is computed using the Maximal–Overlap Discrete

Wavelet Transform (MODWT) for periods longer than 64 quarters per cycle (see Appendix

B.1 and Percival and Walden (2000) for more detail).

Trend is measured as periodicities longer than 64 quarters per cycle. Although this

definition seems unusual, it has been shown by Comin and Gertler (2006) and Pancrazi

(2015) that medium–run dynamics larger than 32 quarters per cycle, usually considered

as a trend, greatly influence business cycles fluctuations. The trend is then calculated

with the Maximal Overlap Discrete Wavelet Transform (MODWT). In a nutshell, MODWT

for level J for a time series X yields highly redundant and non–orthogonal column vec-

tors W̃1, W̃2, · · · , W̃J and ṼJ each of dimension T. Vectors W̃j are associated with an ap-

proximated bandpass filter with frequency [2−(j+1), 2−j] (or periodicities between [2j, 2j+1]

quarters per cycle), meanwhile ṼJ is associated with a lowpass filter with approximate

frequencies [0, 2−(J+1)] (or periodicities larger than 2J+1 quarters per cycles).

MODWT yields an energy decomposition

||X||2 =
J

∑
j=1
||W̃j||2 + ||ṼJ ||2, (2.15)

where || • || is the l2–norm, and an additive decomposition called MultiResolution Analy-

sis (MRA)
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X =
J

∑
j=1

D̃j + S̃J , (2.16)

where D̃j and S̃J are the j–th order detail and the J–th order smooth for X, respectively. The

transform from X to W̃j and from X to Ṽj can be expressed as

W̃j = W̃jX and Ṽj = ṼjX, (2.17)

where each row of the N × N matrix W̃j has a value of the periodized filter to length N

of {h̃j} and {g̃j}, which are called wavelet and scaling filters, respectively. The MRA is

obtained, therefore, as

D̃j ≡ W̃T
j W̃j and S̃j ≡ ṼT

j Ṽj, (2.18)

where S̃J is defined as the trend of X. We choose the Daubichies’ least asymmetric (LA)

wavelet filter LA(8) and J = 5.

A first indicator to assess the possibility of chaos in the data is given by the distribution

of their power spectrum because a broad band spectrum is a necessary, but not sufficient,

condition for chaos. For this task, we use the continuous wavelet transform (CWT). CWT

maps the time series from time to timescale domain, providing time–frequency localized

information. This allows the study of the evolution of the power spectrum and some

transient state information that otherwise would be lost using, for instance, Fourier anal-

ysis (for details see Appendix B.2). This is clear in Figure 2.3, which shows the wavelet

power spectrum (WPS) and the global wavelet power spectrum (GWPS). The GWPS is the

time average of the WPS (see Appendix B.2, equation (B.18)) which resembles the Fourier

spectral density. It clearly shows that both wage share and capacity utilization are describe

by a broad band power spectrum. On the other hand, WPS provides timescale localized

information of the distribution of the variance: warmer colors represent higher power, i.e.,

red the highest and blue the lowest. White lines show the highest level of power at each

time period, the so–called characteristic period.

2.4.1 Estimation results

The sample considered for the neural network estimation is 1956:I-2004:IV to avoid

both the 2008’s Great Recession and boundary effect from MODWT filtering. Each time

series is also normalize between -1 and 1 and divided 80% for training and 20% for vali-

dation. We start the discussion of the results with the wage share. Table 2.1 presents the
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neural network results. Residuals are not correlated with past outputs and past residuals

(Figure 2.4 left panel). The R2 is 88.70% and LE is -0.3607 with confidence interval -0.6010

and -0.1820 at 10%. Figure 2.5 presents the bootstrap distribution of λ (see Appendix

B.3 for details on bootstrapping). Therefore, the system seems noisy–stable. Figure 2.6

left panel displays the evolution of 25–step–ahead LLE, which reveals how wage share

becomes more predictable when reaching a peak, i.e., in any major peak, LLE becomes

more negative.

Regarding output gap, Table 2.1 summarizes the estimation results. Residuals are

white noise (Figure 2.4 right panel). The R2 is 93.93% and LE is -0.0657, with confidence

interval between -0.1250 and -0.0067 at 10% of significance. Based on these results, output

gap seems to behave quasi–chaotically: see Figure 2.5. In the short run, see Figure 2.6

right panel, the 25–step–ahead LLE shows that both major peaks and troughs are more

predictable.

Moreover, Appendix A presents the same analysis for two additional measurement of

economic activity, i.e., income–capital ratio and GDP to potential GDP calculated by the

Congressional Budget Office (CBO), both defined in detail in Chapter 1 and Appendix A.

Both measurements seem to follow a quasi–chaotic behavior since LE is close to zero.

2.5 Concluding remarks
In this paper, we study the empirical dynamical properties of a measurement of func-

tional income distribution and economic activity, i.e., wage share and output gap. My

specific objective is to obtain further insights regarding the possible nonlinear behavior

of these variables. For that reason, we use the NARNN model to estimate, by means

of Takens’ embedding theorem, the dominant and local Lyapunov exponent of the time

series. The results indicate that while wage share follows a noisy–stable dynamics, i.e.,

negative LE (less than -0.1), output gap follows a quasi-chaotic behavior. Furthermore, the

investigation of the LLE reveals that during peaks, wage share and output gap become

more predictable.
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Figure 2.1: Architecture of NARNN model: This figure describes how NARNN works.
It has three layers: input, hidden, and output. In this example, the input layer consists of
three inputs units, which are the lagged values of a time series, the hidden layer consists
of three hidden units, and the output layer consists of the predicted time series at period t.
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Figure 2.2: Wage share and output gap. Top panels: log of corporate labor cost as a share
of corporate NVA and log of real output and their trends. Trend is defined as fluctuation
with periodicities larger than 64 quarters per cycle. Bottom panel: detrended log wage
share (ψ) and output gap (u). Both defined as percentage deviation from their trend.
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Figure 2.3: Wavelet power spectrum and global wavelet power spectrum: The first
column displays the wavelet power spectrum for wage share and capacity utilization:
warmer colors represent larger power, i.e., red regions depict the largest and blue the
lowest. White lines display the largest power at each time, the so–called ‘characteristic
period.’ The cone of influence that represents regions affected by edge effect is represented
by a thick black line. The second column shows the global wavelet power spectrum
(GWPS) that is the time average power spectrum, which resembles the Fourier power
spectrum.
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Table 2.1: Estimation results

Wage Share Output Gap

Hidden units (j) Hidden units (j)
0 1 0 1

β j -0.0990 -0.8748 0.0792 1.6807

µj -0.1051 -0.0368

Lag (i) γji γji
1 -1.4619 0.7187
2 0.3283 -0.0493
3 – -0.1332
4 – 0.0488
5 – -0.0778
6 – 0.0677
7 – -0.0412
8 – -0.0755
9 – 0.1277
10 – 0.0256
11 – -0.0944

Root MSE 0.1820 0.1360
GCV(1.4) 0.0356 0.0231
R2 88.70% 93.93%
LE -0.3607 -0.0657
LE CI(α = 0.1) (-0.6010,-0.1820) (-0.1250 ,-0.0067)
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Figure 2.4: Analysis of residuals: These figures show the correlation analysis in equation
(2.13) for wage share (left panel) and output gap (right panel).
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(a) Wage share (b) Output gap

Figure 2.5: Dominant Lyapunov exponents bootstrap distribution: These figures illus-
trate the distribution of the dominant Lyaunov exponent, which is used to calculate the
confidence interval, at 10% of significance, in Table 2.1, respectively. See Appendix B.3 for
further details on bootstrapping.
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Figure 2.6: Local Lyapunov exponent (LLE): These figures present the local Lyapunov
exponent (LLE) (red lines) for ω = 25 quarters (see subsection 2.3.1 for further details).
Left panel for wage share and right panel output gap (dotted lines).



CHAPTER 3

ENDOGENOUS FLUCTUATIONS IN DEMAND AND

DISTRIBUTION: AN EMPIRICAL INVESTIGATION

3.1 Abstract
This paper empirically investigates the possibility of self–sustained oscillations at busi-

ness cycle frequency between aggregate demand and the functional income distribution.

Using wavelet decompositions, we identify cyclical variations of GDP and wage share

from their respective long–run trends in the US, 1956–2004. To allow for identification

of nonlinear dynamic interaction, we employ a black–box neural network approach called

Nonlinear AutoRegressive Neural Network (NARNN). The method is first tested on simulated

data with added random disturbances with and without nonlinearities in the output gap

and distributive isoclines; NARNN correctly identifies the underlying models. Results for

US data indicate the existence of a stable limit cycle with wage share leading output gap

in a cycle à la Goodwin (1967). Further, NARNN suggests that the local instability that

drives the limit cycle might be located in the own–feedback of the wage share. This is

in contrast to other investigations that have put forth hypotheses about either a locally

unstable accelerator in demand, or a nonlinearity in the cross–feedback from an activity

variable to the wage share.

3.2 Introduction
Limit cycle oscillations are not new and have been the focus of countless research

efforts. Seminal contributions include Kalecki (1937), Kaldor (1940), and Goodwin (1951,

1967). Generally, in these models, the capitalist system is depicted as one in which the

interaction among agents generates perpetual, self–sustaining oscillations. An important

implication is that booms and recessions are connected and are part of the attractor of the

dynamical system. Contrary to this view stands the research agenda started by Frisch
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(1933) on equilibrium models.1 According to this line of thought, the macroeconomy is

stable and fluctuations occur due to shocks disturbing the steady state. The disturbances

afterwards propagate through the economic system until it again settles down. Therefore,

booms and recession are disconnected and transient states. Modern mainstream models

such as Real Business Cycle (RBC) and Dynamic Stochastic General Equilibrium (DSGE)

models maintain Frisch’s spirit.2

Hand in hand with this research agenda, some time series econometric tools have

evolved in order to give it empirical meaning (see for instance Qin and Gilbert (2001)).

The crucial difference is whether the error term is interpreted as residuals (aberrations) or

shocks (stimuli). The former does not have an economic interpretation, and does not play a

relevant role in the analysis of the system. The latter, in contrast, is essential to understand

the sources of economic fluctuations. Important tools regarding these stimuli are Structural

VAR (SVAR) and Forecast Error Variance Decomposition (FEVD).

This paper investigates the possibility of self–sustained oscillations, or limit cycles, in

a post–Keynesian model of growth and distribution. This literature builds on Goodwin

(1967), but sees the growth cycle as driven by the forces of effective demand. Seminal con-

tributions include Barbosa-Filho and Taylor (2006) as well as Flaschel (2009, 2015). These

investigations describe the interaction between functional income distribution (wage share)

and effective demand (output gap) in a two–dimensional system of differential equations.

Barbosa-Filho and Taylor (2006) use a VAR model to estimate the model, and find that

the US economy follows a profit–led/profit–squeeze regime in demand and distribution,

respectively. This implies a damped Goodwin cycle, i.e. a counter–clockwise movement

in output gap and wage share.

In order to consider the empirical possibility of a limit cycle, nonlinear statistical mod-

els have to be used. In principle, this is not hard provided some prior knowledge about

nonlinearities is available. That, of course, is usually not the case. For that reason, we use a

model of the class of Recurrent Neural Networks (RNN) called Nonlinear AutoRegressive

1See P. Chen (2010, Chapter 12) for a detailed discussion in what he calls a mysterious success.

2Kydland and Prescott (1982) represents a starting point for RBC, and much cited DSGE papers (Christiano,
Eichenbaum, & Evans, 2005; Smets & Wouters, 2007). Exceptions exist, for instance, Beaudry, Galizia, and
Portier (2015, 2016a, 2016b).
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Neural Network (NARNN). A key feature of this approach is that it does not require

linearization.

Our results indicate that the interaction between wage share and output gap features

a stable limit cycle à la Goodwin. Furthermore, local instability arises from wage share

own–feedback.

The remainder of the paper is organized as follows: section 3.3 briefly describes the

structuralist model of effective demand and income distribution. Section 3.4 presents the

data, empirical methods and related tests. Section 3.5 reports simulation and estimation

results. The last section concludes.

3.3 A model in demand and distribution
The structuralist model for effective demand and income distribution has two state

variables: functional income distribution and level of economic activity. Usually, the

former is the wage share (ψ), defined as ψ = W/Pξ where W, P, and ξ are nominal

wage rate, price level, and labor productivity, respectively. The profit share follows as

π = 1− ψ. Activity might be defined as the rate of capacity utilization (or output gap)

U = Y/Y∗, which is often proxied by the observed output–captial ratio, u = Uσ where

Y, Y∗, σ = Y∗/K and K are real output, potential output, potential output to capital ratio,

and capital stock, respectively.

On the distributive side, the growth rate of the wage share can be written as

ψ̂ = Ŵ − P̂− ξ̂ = f W(u, ψ)− f P(u, ψ)− f ξ(u, ψ), (3.1)

with x̂ = ẋ/x and f j, j = {W, P, ξ} the corresponding behavioral functional forms. Equa-

tion (3.1) provides a fairly general functional form for the wage share dynamics. Different

articles focus on different parts of equation (3.1). For instance, Flaschel and Krolzig (2006),

Proaño, Flaschel, Ernst, and Semmler (2006), and Tavani, Flaschel, and Taylor (2011) study

the wage–price spiral by exploring the wage–Phillips Curve ( f W) and price–Phillips Curve

( f P). These models usually assume that the own feedback of wage share, i.e., ∂ψ̂/∂ψ, is

stable and ∂ψ̂/∂u is ambiguous. If positive (negative), the distributive regime is called

profit–squeeze or labor market-led real wage adjustment (forced savings or goods market-

led real wage adjustment).
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Further, the growth rate of labor productivity, ξ̂ = f ξ(u, ψ), might be endogenous,

raising the possibility of ambiguity on the sign of ∂ψ̂/∂ψ. See, for instance Taylor (2004,

Chapter 7). Let f ω = f W − f P, so that wage share own feedback becomes f ω
ψ − f ξ

ψ. Insta-

bility might arise if real wages respond positively to the wage share, or if labor productivity

responds negatively to the labor share.

The level of economic activity is assumed to be determined by effective demand. Here,

we define demand as the income–capital ratio, proxied as u = Uσ. (In the empirical

application, we obtain a proxy for U by detrending real GDP.) Its growth rate, assuming

constant σ, is given by

û = Ŷ− K̂ = gY(u, ψ)− gK(u, ψ), (3.2)

with gY and gK output growth and accumulation function (see as well Skott (1989)). As

above, gj
i stands for the partial derivative of gj with respect to i. It is assumed that gK

u > 0.

If gY
u < 0, the goods market adjustment is stable. Skott (1989), Flaschel (2009, 2015), and

von Arnim and Barrales (2015) investigate theoretically the possibility of a Goodwin–type

limit cycle driven by a nonlinear activity process, which would here imply gY
u − gK

u > 0.

Further, if gY
ψ − gK

ψ < 0, the regime is called profit–led, if gY
ψ − gK

ψ > 0, wage–led.

The dynamical system can be summarized as

û = gY(u, ψ)− gK(u, ψ)

ψ̂ = f W(u, ψ)− f P(u, ψ)− f ξ(u, ψ), (3.3)

with the Jacobian matrix at the steady state, J∗, given by

J∗(u, ψ) =

(
gY

u − gK
u gY

ψ − gK
ψ

f W
u − f P

u − f ξ
u f W

ψ − f P
ψ − f ξ

ψ

)
. (3.4)

The dynamical system in (3.3) can generate different dynamics depending on the assump-

tions imposed. Our prior builds on a profit–squeeze/profit–led regime, which the avail-

able evidence supports . For detailed discussions, see Barbosa-Filho and Taylor (2006),

Mohun and Veneziani (2008), Kiefer and Rada (2015), and Barrales and von Arnim (2017).

In the next section, we empirically investigate the reduced form sign of this system without

linearization.
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3.4 Data and estimation
This section describes the data employed in the estimation, the estimation procedure—

the multivariate NARNN—and related tests on model validity.

3.4.1 Data

The state variables in the system (3.3) are the output gap and wage share. Wage share

is computed as the corporate labor cost as a share of corporate net value added from BEA

NIPA table 1.14. It is available quarterly from 1948:I to 2014:IV. A detailed discussion can

be found in Barrales and von Arnim (2017). Capacity utilization is measured as the output

gap. Figure 3.1 top panels show the log of wage share and real output and their trends.

Figure 3.1 bottom panel presents output gap and detrended wage share measured as the

percentage deviation from their trends.

Trend is measured as periodicities longer than 64 quarters per cycle. In this, we fol-

low Comin and Gertler (2006) and Pancrazi (2015), who have shown that medium–run

dynamics longer than 32 quarters per cycle—usually considered as a trend—greatly influ-

ence business cycles fluctuations. The trend is then calculated with the Maximal Overlap

Discrete Wavelet Transform (MODWT) (see for instance, Percival and Walden (2000) and

Appendix B.1). In a nutshell, MODWT for level J for a time series X yields highly re-

dundant and non–orthogonal column vectors W̃1, W̃2, · · · , W̃J and ṼJ each of dimension

T. Vectors W̃j are associated with an approximated bandpass filter with frequencies be-

tween [2−(j+1), 2−j] (or periodicities between [2j, 2j+1] quarters per cycle); meanwhile ṼJ is

associated with a low–pass filter with approximate frequencies [0, 2−(J+1)] (or periodicities

larger than 2J+1 quarters per cycles).

MODWT yields an energy decomposition

||X||2 =
J

∑
j=1
||W̃j||2 + ||ṼJ ||2, (3.5)

where || • || is the l2–norm, and an additive decomposition called Multi–Resolution–Analysis

(MRA)

X =
J

∑
j=1

D̃j + S̃J , (3.6)

where D̃j and S̃J are the j–th order detail and the J–th order smooth for X, respectively. The

transform from X to W̃j and from X to Ṽj can be expressed as
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W̃j = W̃jX and Ṽj = ṼjX, (3.7)

where each row of the N × N matrix W̃j has a value of the periodized filter to length T of

{h̃j} and {g̃j}, which are called wavelet and scaling filters, respectively.

The MRA is obtained, therefore, as

D̃j ≡ W̃T
j W̃j and S̃j ≡ ṼT

j Ṽj, (3.8)

where S̃J is defined as the trend of X. We choose the Daubechies’ least asymmetric (LA)

wavelet filter LA(8) and J = 5.

Before the training process (estimation), we assess the possibility of limit cycles in both

variables through the examination of their spectral properties. Figure 3.2 presents the Con-

tinuous Wavelet Transform (CWT) power spectrum, which is a timescale localized spectral

density, and the Global Wavelet Power Spectrum (GWPS), which averages the spectrum

along time (see Appendix B.2 for further details, specifically the definition in equation

(B.18)). Taking in consideration that both variables are detrended, i.e., higher frequencies

are not removed, output gap and wage share are clearly band limited; therefore, a limit

cycle behavior seems likely.

3.4.2 Estimation

System identification can be defined as the process in which a mathematical model is

used in order to map experimental data by minimizing some performance index between

data and system output. Since the seminal work of Narendra and Parthasarathy (1990,

1992), Artificial Neural Network has been used successfully for nonlinear system identi-

fication. Noël and Kerschen (2017) provide a recent review of the state of the art. The

estimation is carried out equation by equation using Nonlinear AutoRegressive Neural

Network (NARNN) (see S. Chen, Billings, & Grant, 1990; Narendra & Parthasarathy, 1990),

which can be written as follows:

ŷ(t)︸︷︷︸
n×1

= β0︸︷︷︸
n×1

+
K

∑
j=1

β1j︸︷︷︸
n×1

g( γ0j︸︷︷︸
n×1

+ γj︸︷︷︸
n×npy

Y∗(t− 1)︸ ︷︷ ︸
npy×1

), (3.9)

where n stands for the number of endogenous variables, py number of lags, g(•) the

activation function which is chosen to be tanh(•), K number of hidden layers, β0 and γ0j
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biases, β1j and γj weights, ŷ(t) output neurons, Y∗(t− 1) inputs neurons, and y(t) targets.

Targets, outputs, and input neurons are arranged as

y(t) = [y1(t), y2(t), · · · , yn(t)]
T ,

ŷ(t) = [ŷ1(t), ŷ2(t), · · · , ŷn(t)]
T ,

Y∗(t− 1) =
[
y∗1(t− 1), · · · , y∗n(t− 1); y∗1(t− 2), · · · , y∗n(t− 2); · · · ; y∗1(t− py), · · · , y∗n(t− py)

]T

with T as matrix transpose.

There are two model configurations: series–parallel (or open loop), Y∗(t) = Y(t), and

parallel (or closed loop), Y∗(t) = Ŷ(t), models. We employ series–parallel for training and

parallel for simulation. The former has the advantage that a common feedforward neural

network can be used. Furthermore, K and py define the complexity of the model.

For training and in order to reduce the possibility of overfitting, Bayesian regulariza-

tion plus cross–validation are employed. In a nutshell, Bayesian regularization constrains

the growth of the size of the parameters instead of the number of parameters as with a

typical information criteria. The performance index to be minimized becomes:

F(ω) = βED + αEW , (3.10)

where ω ∈ Rm vector of network weights (weights and biases), EW sum of square network

weights, ED mean square error (MSE = T−1 ∑T
t=1 [ŷ(t)− y(t)]2), and α/β controls the

effective complexity of the network solution, i.e., the larger the ratio, the smoother the

network response (see Appendix B.6 for a detailed explanation).

A crucial step for system identification is cross–validation. The key issue is that the

residuals should be white noise after the appropriate model is selected. For linear models,

the goal is that residuals should be uncorrelated with past inputs, outputs, and residuals.

This is accomplished by estimating the residual autocorrelation and cross–correlation with

inputs. However, for nonlinear models, this is not enough: passing such tests, the residuals

may still contain nonlinear terms. The main concept in nonlinear model validation is that

residuals should be unpredictable from all linear and nonlinear combinations of past inputs,

outputs, and residuals; see Billings and Voon (1983). We therefore use the test introduced

by Billings and Zhu (1995) in a Multiple Input Multiple Output (MIMO) context. However,

since there are no exogenous inputs in this application, testing is reduced to:
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φηγ(τ) = λ0δ(τ), ∀τ (3.11)

where δ is the delta function, λ0 =
√

∑T
t=1 (η(t)− η̄)2

/√
∑T

t=1 (γ(t)− γ̄)2 is a constant,

and η and γ are defined as

η(t) = ε1(t)2 + ε2(t)2 + · · ·+ εn(t)2,

γ(t) = y1(t)ε1(t) + y2(t)ε2(t) + · · ·+ yn(t)εn(t), (3.12)

with εi(t) the residual term for period t and equation i. The 95% confidence bands are

approximately ±1.96/
√

T for T length of the data. φxy(•) is the cross–correlation function

between x and y, i.e.,

φxy(τ) =
∑N−τ

t=1 [x(t)− x̄] [y(t + τ)− ȳ]√
∑N

t=1 [x(t)− x̄]2
√

∑N
t=1 [y(t)− ȳ]2

. (3.13)

3.5 Empirical results
This section first illustrates the multivariate NARNN on the basis of two data sets,

generated on different assumptions about the underlying Goodwin–Kalecki model. We

then report results for the US detrended data previously discussed, and close with an

analysis of the resulting isoclines.

3.5.1 Simulations

Before the next subsection reports estimation results, we provide two controlled exper-

iments to assess the ability of NARNN to identify both dynamics and isoclines in simulated

models of effective demand and functional income distribution. We build here on work

presented in von Arnim and Barrales (2015).

Following that approach, the dynamics of the two–dimensional system in capacity

utilization and wage share can be written as

u̇ = α
(

hu tan−1(u− ū)− gu(u− ū) + µψ(ψ− ψ̄)
)

ψ̇ = β
(
au(u− ū) + aψ(ψ− ψ̄)

)
(3.14)

where hu, gu, au > 0 and aψ, µψ < 0. A supercritical Hopf bifurcation exist when hu passes

through h0
u = gu − (α/β)aψ.

Figures 3.3 and 3.4 show the Stable and Limit Cycle Goodwin–Kalecki models. Both

systems are simulated by using the Euler-Muruyama approximation scheme with time
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step δt = 0.01 and standard Brownian motion (see for instance, Malham and Wiese (2010)).

Then 300 observations are sampled with sampling rate 1/δt. Table 3.1 shows parameters

employed. The sign patterns of the Jacobian matrices are

Jstable(u, ψ) =

(
− −
+ −

)
and Jlimit cycle(u, ψ) =

(
± −
+ −

)
. (3.15)

NARNN is trained for both with normalized data between -1 and 1. Results on the dy-

namics and isoclines are presented in Figures 3.5 and 3.6, with py = 1 and K = 2. NARNN

correctly identifies the skeleton of the models, as well as their isoclines and associated signs

of the Jacobian matrix in equations (3.15).

3.5.2 NARNN results

The sample selected goes from 1956:I to 2004:IV and each time series is normalized

between -1 and 1 by

xn =
2(x− xmin)

(xmax − xmin)
− 1 (3.16)

where x, xn, xmin, xmax are the original, normalized, maximum, and minimum data, re-

spectively.

The first step is to choose the smallest model that passes the test in equation (3.11).

Figure (3.7) bottom panel shows K = 2 and py = 1 is enough to eliminate any sign of

either linear or nonlinear structure in the residuals.

With n = 2, y(t) = (ψ(t), u(t))T, ψ wage share, u output gap, Y(t) = (ψ(t− 1), u(t− 1))T,

and network weights and biases (see equation (3.9)):

β0 = (−0.0337, 0.0764)T , (3.17)

β11 = (−0.9190,−0.6101)T & β12 = (0.9706,−0.4577)T , (3.18)

γ01 = (−0.0820, 0.1022)T & γ02 = (−0.0860, 0.0208)T , (3.19)

γ1 =

(
−1.1172 0.0893

0.2880 0.8762

)
& γ2 =

(
−0.1045 −0.4656

1.0012 −0.2695

)
, (3.20)

where T stands for matrix transpose.

After training and cross–validation, the resulting NARNN model is simulated using

the parallel configuration. Figure 3.7 top panel presents the simulation results, which

clearly exhibit a limit cycle. Furthermore, wage share leads capacity utilization in a counter–

clockwise movement. This is the empirically relevant pattern; see Barbosa-Filho and Tay-

lor (2006), Mohun and Veneziani (2008), Kiefer and Rada (2015), and Barrales and von
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Arnim (2017). Figure 3.7 middle panel compares the GWPS of the original data and the

simulated model. The spectral densities of original and NARNN–generated data show

similarity.

3.5.3 What produces the limit cycles?

Our results in the last subsection suggest that output gap and wage share at business

cycle frequency in the US can generate a self–sustaining oscillation. What produces this

disequilibrium dynamics?

Provided that the network is small enough, this question can be addressed using the

estimated system (3.9). The differential equations implied in the neural network can be

written as

u̇(t) = −u(t) + βu
0 + ∑K

j=1 βu
1j tanh

(
γu

0j + γ
ψ
1jψ(t) + γu

1ju(t)
)

ψ̇(t) = −ψ(t) + β
ψ
0 + ∑K

j=1 β
ψ
1j tanh

(
γ

ψ
0j + γ

ψ
2jψ(t) + γu

2ju(t)
)

,
(3.21)

with Jacobian matrix

J (u, ψ) =

 ∑K
j=1 βu

1jγ
u
1j

(
∂ tanh (au

j )

∂au
j

)
− 1 ∑K

j=1 βu
1jγ

ψ
1j

(
∂ tanh (au

j )

∂au
j

)
∑K

j=1 β
ψ
1jγ

u
2j

(
∂ tanh (aψ

j )

∂aψ
j

)
∑K

j=1 β
ψ
1jγ

ψ
2j

(
∂ tanh (aψ

j )

∂aψ
j

)
− 1

 (3.22)

where
∂ tanh (aj)

∂aj ∈ [0, 1] and j = {u, ψ}. Using the parameters in equations (3.17)–(3.20),

the Jacobian has the following pattern

J∗ (u, ψ) =

(
− −
+ ±

)
. (3.23)

Our results suggest that limit cycles are produced because of local instability on the

wage share own–feedback. As discussed in section 3.3, this is possible if real wage growth

responds strongly and positively to the wage share, or labor productivity growth reacts

strongly and negatively to the wage share.

3.6 Concluding remarks
This paper provides new insights on the complex dynamics between effective demand

and functional income distribution. The dynamics are explored using the multivariate

Nonlinear AutoRegressive Neural Network (NARNN) model, which does not requiring

linearization. The small size of the estimated neural network allows the analytical explo-
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ration of its isoclines, which in turn suggests that the local instability is related to wage

share’s own–feedback.

Further research is needed to improve our understanding of the dynamics of the com-

ponents of the wage share.
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Figure 3.1: Wage share and output gap. Top panels: log of corporate labor cost as a share
of corporate NVA and log of real output and their trends. Trend is defined as fluctuation
with periodicities larger than 64 quarters per cycle. Bottom panel: detrended log wage
share (ψ) and output gap (u). Both defined as percentage deviation from their trend.
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Figure 3.2: Wavelet power spectrum and GWPS: First column, warmer colors represent
larger power, i.e., red regions depict the largest and blue the lowest. White lines display the
largest power at each period, the so–called ‘characteristic period’. Second column shows
the Global Wavelet Power Spectrum (GWPS) which averages the spectrum along time as
the Fourier transform (see equation (B.18))
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Table 3.1: Parameters: This table presents the parameters used for simulation of the Stable
Goodwin–Kalecki (Figure 3.3) and Limit Cycle Goodwin–Kalecki (Figure 3.4) models.

Parameter α β gu µψ au aψ ψ̄ ū h0
u hstable

u hlimit cycle
u

Value 1.2 0.27 0.55 -0.3 1.4 -0.2 100 100 0.4825 0.3 1.15
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Figure 3.3: Stable Goodwin–Kalecki: These graphs use parameters in Table 3.1 and hu =
0.3 < h0

u in the system (3.14). The simulation of the ordinary and stochastic differential
system of equations in (3.14) is performed by the Euler-Maruyama scheme with time step
δt = 0.01. Top panel presents the data employed in NARNN estimation with sampling
rate 1/δt. Bottom panel on the right shows the simulated “skeleton” of the model and, on
the left, its phase diagram with their respective isoclines.
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Figure 3.4: Limit cycle Goodwin–Kalecki: This graph uses parameters in Table 3.1 plus
hu = 1.15 > h0

u in the system (3.14). The simulation of the ordinary and stochastic
differential system of equations in (3.14) is performed by the Euler-Maruyama scheme
with time step δt = 0.01. Top panel presents the data employed in NARNN estimation
with sampling rate 1/δt. Bottom panel on the right shows the simulated “skeleton” of the
model and, on the left, its phase diagram with their respective isoclines.
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Figure 3.5: NARNN estimation results for stable Goodwin–Kalecki: This figure shows
the results from NARNN estimation with py = 1 and K = 2. Top panel displays the
parallel simulation, right, and their respective isoclines, left. Bottom panel shows the
residual test in equation (3.11).
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Figure 3.6: NARNN estimation results for limit cycle Goodwin–Kalecki: This figure
shows the results from NARNN estimation with py = 1 and K = 2. Top panel displays
the parallel simulation, right, and their respective isoclines, left. Bottom panel shows the
residual test in equation (3.11).
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Figure 3.7: Simulations and residual analysis: Top left panel: simulated wage share
(ψ) and output gap (u). Top right panel: the two–dimensional attractor in (u, ψ) and
its isoclines continuous line for wage share and dotted for output gap. Middle panel
from left to right: Global Wavelet Power Spectrum (GWPS) for the original data and
simulated model, for wage share and output gap. Bottom panel, cross–validation test by
cross–correlation in equation (3.11). Based on this test, the number of hidden layers and
lags are found to be four and nine, respectively.



APPENDIX A

ADDITIONAL ANALYSIS: INCOME–CAPITAL RATIO

AND POTENTIAL GDP

This appendix presents the estimation results for two additional measures for economic

activity used in Chapter 1. They are the income–capital ratio and the real GDP to CBO’s

potential GDP. Income–capital ratio, see Figure A.1 first column, is measured as the ratio

of corporate business (nominal) net value added to corporate business (nominal) net fixed

assets at replacement cost. Net value added of corporate business is obtained from BEA

NIPA table 1.14, and is available as a quarterly series between 1948:I and 2014:IV. Net fixed

assets of corporate business are available as an annual series of year–end estimates in BEA

NIPA table 6.1. Using the 1947 year–end estimate as a starting point, these observations

are interpolated to generate a quarterly series. The real GDP to CBO’s potential GDP, see

Figure A.1 second column, uses the CBO’s estimates of the potential GDP.

Figure A.1 presents the time series for the income–capital ratio (first column) and real

output to CBO’s potential output (second column). Their trend is defined as periods larger

than 64 quarters per cycle. For the estimation, both time series are normalized between -1

and 1. The NAR estimation results are in Table A.1. The resulting residual analysis and LE

bootstrap are in Figures A.2 and A.3, respectively.

Furthermore, Figure A.4 shows the behavior for the LLE with ω = 25. As with the

output gap, LLE tends to decrease during peaks and troughs.
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Figure A.1: Income–Capital ratio and GDP to CBO potential output: These figures
exhibit the income–capital ratio (first column) and GDP to CBO’s potential GDP (second
column). Top panels show the original time series with their trend and the bottom panels
the detrended time series used in the estimation.
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Figure A.2: Analysis of residuals: These figures show the correlation analysis in equation
(2.13) for income–capital ratio (left panel) and real GDP to CBO’s potential GDP (right
panel).
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Table A.1: Estimation results

Income–Capital Ratio GDP to CBO Potential Output

Hidden units (j) Hidden units (j)
0 1 0 1

β j 0.0939 1.3142 0.0741 -1.4562

µj -0.0624 0.0265

Lag (i) γji γji
1 1.0138 -0.7967
2 -0.1193 0.0444
3 -0.0668 0.1137
4 -0.1508 -0.0212
5 -0.0139 0.1067
6 0.1072 -0.0876
7 0.0050 0.0604
8 -0.2758 0.0938
9 0.2174 -0.1498
10 0.0642 -0.0113
11 0.0521 0.0133
12 -0.2686 0.0918
13 0.1693 –
14 -0.0756 –
15 0.0265 –

Root MSE 0.1020 0.1477
GCV(1.4) 0.0121 0.0246
R2 95.15% 92.86%
Dominant Lyapunov exponent -0.0547 -0.0409
CI(10%) (-0.0730,0.0167) (-0.1082,-0.0091)
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(a) Income–Capital ratio (b) GDP to CBO potential output

Figure A.3: Dominant Lyapunov exponents bootstrap distribution: These figures illus-
trate the distribution of the dominant Lyaunov exponent, which is used to calculate the
confidence interval, at 10% of significance, in Table A.1, respectively. See Appendix B.3 for
further details on bootstrapping.
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Figure A.4: Local Lyapunov exponent (LLE): These figures present the local Lyapunov
exponent (LLE) for ω = 25 quarters (see subsection 2.3.1 for further details). Left panel for
income–capital ratio and right panel real GDP to CBO’s potential GDP.



APPENDIX B

CHAPTERS 2 AND 3

B.1 Maximal overlap discrete wavelet transform (MODWT)
B.1.1 Discrete wavelet transform (DWT)

The description of the MODWT in this appendix follows Percival and Walden (2000)

and Percival and Mofjeld (1997). Before the description of MODWT, we will start describ-

ing the Discrete Wavelet Transform (DWT). The DWT of level J of the N dimensional time

series vector X is given by W = WX, where W is a N dimensional vector and W is a N×N

matrix, satisfying WTW = I. The first N − N/2J contains the wavelet coefficients and the

rest N/2J the scaling coefficients. Therefore, W can be partitioned as

W = [W T
1 W T

2 . . . W T
J V T

J ]

where T is the transpose, Wi are of dimensions N/2i, i = 1, . . . , J and VJ of the remaining

N/2J . Matrix W is built using the wavelet filter h1,0, . . . , h1,L1−1, where L1 is the width of

the first level wavelet filter, with the following properties:

L1−1

∑
l=0

h1,l = 0, (B.1)

L1−1

∑
l=0

h2
1,l = 1, (B.2)

L1−1

∑
l=0

h1,lh1,l+2n =
∞

∑
l=−∞

h1,lh1,l+2n = 0. (B.3)

The filter h1,n has a band–pass given by the interval of frequencies [1/4, 1/2]. To define the

wavelet filter hj,n for higher scales j, let

H1,k =
N−1

∑
n=0

h1,ne−i2πnk/N , k = 0, . . . , N − 1, (B.4)

be the Discrete Fourier Transform (DFT) of the wavelet filter padded with N − L1 ze-

ros. The analysis wavelet, h[1,·], and scaling, g[1,·], filters and synthesis wavelet, h̄[1,·],
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and scaling, ḡ[1,·], filters are interrelated by g1,j = (−1)jh1,L−j−1, h̄1,j = h1,L−j−1, and

ḡ1,j = (−1)j+1h1,j. Let G1,k the DFT of zero–padded scaling filter. The higher–order wavelet

filters are defined as

hj,k ≡
1
N

N−1

∑
k=0

Hj,kei2πnk/N , (B.5)

where

Hj,k ≡ H1,2j−1k mod N

j−2

∏
l=0

G1,2lk mod N . (B.6)

Elements hj,Lj , hj,Lj+1, . . . , hj,N−1 are equal to zero when Lj ≡ (2j− 1)(L1− 1) + 1 < N. The

filter hj = [hj,0, hj,1, . . . , hj,N−2, hj,N−1]
T is a band–pass filter with approximate frequency

band [1/2j+1, 1/2j]. The Jth scaling filter gJ,k is defined as

gJ,n ≡
1
N

N−1

∑
k=0

GJ,kei2πnk/N , (B.7)

where

GJ,k ≡
J−1

∏
l=0

G1,2lk mod N . (B.8)

The filter gJ = [gJ,0, gJ,1, . . . , gJ,N−2, gJ,N−1]
T is associated with a low–pass filter [0, 1/2J+1].

The first N−N/2J rows of the matrix W contain the circularly shifted wavelet coefficients,

for instance, the first N/2 columns in WT are T2k−1h1, k = 1, . . . , N/2 where T is a N × N

matrix that circularly shifts hj by one unit. The last N/2J columns of WT contain shifted

versions of the Jth order scaling filter gJ , i.e., T2J k−1gJ , k = 1, . . . , N/2J .

Since W is orthonormal the original time series, X, can be reconstructed by X = WTW .

Furthermore, this equation can be decomposed in a multiresolution fashion, i.e., X can be

reconstructed from a series of time series related to variation of the original time series at

certain scales. To do this, vector W is partitioned as before,

W = [W T
1 , W T

2 , . . . , W T
J , V T

J ] (B.9)

and the columns of WT are partitioned according to the partitioning of W , i.e.,

WT = [W1W2 . . .WJVJ ] (B.10)

where Wj is an N×N/2j matrix and VJ is an N×N/2J matrix. Hence, the multiresolution

analysis (MRA) is

X = WTW =
J

∑
j=1

WT
j Wj + VT

J VJ ≡
J

∑
j=1

Dj + SJ (B.11)

where Dj and VJ are the jth order detail and Jth order smooth, respectively.
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B.1.2 Maximal overlap DWT

The MODWT of level J for time series X defines a highly redundant and nonorthogonal

transform with column vectors W̃1, W̃2, . . . , W̃J , ṼJ each with dimension N. The MODWT

wavelet and scaling coefficients are rescaled versions of the DWT analogous, i.e., h̃j =

hj/2j/2, j = 1, . . . , J, and g̃J = gJ/2J/2. The elements of W̃j,k are given by XTTkh̃j, k =

0, . . . N− 1, and the elements of ṼJ are given by XTTk g̃J . The DFT for the wavelet, equation

(B.6), and scaling, equation (B.8), filter at level j are now H̃j,k = Hj,k/2j, j = 1, . . . , J and

G̃J,k = Gj,k/2J , respectively. As for the DWT, the MODWT yields also a MRA given by

X =
J

∑
j=1

Dj +VJ . (B.12)

Specifically, I use LA(8) with 4 vanishing moments, L1 = 8, and J = 5. Figures B.1

presents synthesis and analysis wavelet and scaling coefficients for level j = 1 and Figure

B.2 shows the squared gain function showing the frequency response of each detail level

and the smooth, which is used as a trend.

B.2 Continuous wavelet transform
The Continuous Wavelet Transform (CWT) maps a time series from time domain into

timescale space.1

Given the time series x(t) ∈ L2(R), its CWT regarding the mother wavelet ψ(t) is

defined as an inner product of x(t) with the family ψτ,s(t) of wavelet daughters:

Wx;ψ(τ, s) = 〈x(t), ψτ,s(t)〉 =
∫ +∞

−∞
x(t)ψ∗τ,s(t)dt, (B.13)

with (∗) as the complex conjugate and daughter wavelet function as ψτ,s = |s|−1/2ψ((t−

τ)/s), τ, s ∈ R, s 6= 0. The position of the mother wavelet function in both time and scale

is governed by two parameters s and τ, i.e., the scaling and the translation parameters,

respectively.

The mother wavelet must fulfill two requirements, first ψ(t) ∈ L2(R) and second the

so–called admissibility condition (a positive constant):

0 < Cψ =
∫ +∞

−∞

|Ψ(ω)|
|ω| dω < +∞ (B.14)

1In the case of the Morlet wavelet, one can use exchangeably scale and frequency; however, this relationship
is not always that easy to establish. The Morlet wavelet is defined as ψ(t) = π−1/4eiω0tet2/2.



81

where Ψ(ω) is the Fourier transform of the mother wavelet and ω is the angular frequency.

The importance of the admissibility condition is that it allows us to perfectly recover

the original time series from its CWT, i.e.,

x(t) =
1

Cψ

∫ +∞

−∞

[∫ +∞

−∞
Wx;ψ(τ, s)ψτ,sdτ

]
ds
s2 , s 6= 0, (B.15)

and it preserves energy, i.e.,

||x||2 =
∫ +∞

−∞
|x(t)|2 dt =

1
Cψ

∫ +∞

−∞

[∫ +∞

−∞

∣∣Wx;ψ(τ, s)
∣∣ dτ

]
ds
s2 (B.16)

The power spectrum can be interpreted as the local variance for x(t), which is given by

WPSx(τ, s) = |Wx;ψ(τ, s)|2. (B.17)

A second magnitude that resembles the Fourier spectral density is the global power

spectrum, which averages the spectrum along time,

GWPSx(s) =
∫ ∞

−∞
WPSx(τ, s)dτ. (B.18)

B.3 Bootstrap for the dominant Lyapunov exponent
To calculate the empirical distribution of the dominant Lyapunov exponent for all the

models, I use the ‘resampling error’ approach (Beninca et al., 2008; Davison & Hinkley,

1997). Let F̂(·) be the function estimated by the feedfordward neural network. From

this, I obtain the one–step–ahead forecasting error, defined as et = xt − F̂(Xt−1). Then

each bootstrap sample is generated by first resampling with replacement from {et}N
t=1 to

generate the series {e∗t }N
t=1. With the resampled errors, I create fictitious ‘one–step–ahead’

data

x∗t = F̂(Xt−1) + e∗t . (B.19)

For each data set, I refitted the neural network model with x∗ as the new outputs (or

responses) and Xt−1, the real data, as inputs (or predictors). I used GCV(1.4) to estimate

the number of hidden layers. I allow the model to choose between 1 to 3 hidden layers

with 2,000 bootstrap replications.
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B.4 Computation of LE and LLE using the QR–factorization
In order to calculate the approximation of LE and LLE, we need to use the QR–factorization

from the matrix product in equation (2.3) (see von Bremen, Udwadia, and Proskurowski

(1997)). We rewrite equation (2.3) the n matrix multiplication as Jn Jn−1 . . . J1.

This decomposition can be done sequencially, i.e., starting from Q0 = I,

qr[Jn Jn−1 . . . J1] = qr[Jn Jn−1 . . . J2(J1Q0)] = qr[Jn Jn−1 . . . (J2Q2)][R1]

= qr[Jn Jn−1 . . . (J3Q2)][R2R1] = . . .

= qr[Jn Jn−1 . . . (JiQi−1)][Ri−1Ri−2 . . . R2R1] = . . .

= Qn[RnRn−1 . . . R2R1] = QnR.

Each of the diagonals terms in R are the multiplication of Ri’s diagonal elements. There-

fore, the m LE and LLE in equations (2.4) and (2.6) can be calculated as λk = n−1 ∑n
j=1 ln |Ri(k, k)|, k =

1, . . . , n.

B.5 Levenberg–Marquardt algorithm
Levenberg–Marquardt learning algorithm is a combination of the Steepest Decent and

Gauss–Newton methods. Given a quadratic performance index F(ω), the Gauss–Newton’s

method is

ωk+1 = ωk + A−1
k gk, (B.20)

where ω ∈ Rm, Ak ≡ ∇2F(ω)
∣∣
ω=ωk

∈ Rm×m, and gk ≡ ∇F(ω)|ω=ωk
∈ Rm.

Given the performance index, F(ω) = ε(ω)Tε(ω) and its gradient and Hessian might

be written as follows:

∇F(ω) = 2J(ω)Tε(ω) and ∇2F(ω) = 2J(ω)T J(ω) + 2S(ω)

where

J(ω) =


∂ε1(ω)

∂ω1

∂ε1(ω)
∂ω2

· · · ∂ε1(ω)
∂ωm

∂ε2(ω)
∂ω1

∂ε2(ω)
∂ω2

· · · ∂ε2(ω)
∂ωm

...
...

. . .
...

∂εn(ω)
∂ω1

∂εn(ω)
∂ω2

· · · ∂εn(ω)
∂ωm

 (B.21)

and

S(ω) =
n

∑
i=1

ε i(ω)∇2ε i(ω)
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If we assume that S(ω) is small, the Hessian becomes H = JT J. Therefore, Gauss–

Newton’s method can be written as:

ωk+1 = ωk +
[

J(ωk)
T J(ωk)

]−1
J(ωk)

Tε(ωk), (B.22)

The Levenberg–Marquardt algorithm modifies the above equation in the following

way:

ωk+1 = ωk +
[

J(ωk)
T J(ωk) + µk Im

]−1
J(ωk)

Tε(ωk), (B.23)

If µk is close to zero, equation (B.23) becomes the Gauss–Network method. However, if µk

is very large, it becomes into the Steepest Decent algorithm.

B.6 Bayesian regularization
Generalization (or fear of over or under fitting) is a major concern in ANN. Given the

use of the NAR model, the user choices are the number of delays, squashing function, and

number of hidden units, i.e., the complexity of the model. Broadly speaking, there are two

ways to constrain the complexity a model: first, by restricting the number of parameters

and, second, by constraining their growth.

In this paper, I use the latter through the Bayesian regularization, which was proposed

by MacKay (1992) and was first applied to backpropagation by Foresee and Hagan (1997).

Under regularization, the performance index becomes:

F(ω) = βED(D|ω, M) + αEW(ω|M) (B.24)

where ED is the MSE defined in (3.10), D is the training set with input–output pairs, M is

the network architecture, EW(ω|D) = ∑m
i=1 ω2

j , and α, β are hyperparameters that need to

be estimated.

The posterior distribution of the ANN weights can be updated according the Bayes’

rule:

P(ω|D, α, β, M) =
P(D|ω, β, M)P(ω|α, M)

P(D|α, β, M)
(B.25)

with P(ω|α, M) the prior distribution of weights, P(D|ω, β, M) is the likelihood function,

which is the probability density of the data given the network weights, and P(D|α, β, M)

is called evidence or the normalization factor. Assuming that the noise of the training set
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and the distribution of the weights and biases are Gaussian, the probability densities can

be written as

P(ω|α, M) =
1

ZW(α)
exp (−αEW),

and

P(D|β, M) =
1

ZD(β)
exp (−βED),

with ZW(α) = (π/α)m/2, ZD(β) = (π/β)T/2, α = 1/(2σ2
ε ), β = 1/(2σ2

ω), m number

of network parameters, T number of observations, and σ2
ω and σ2

ε are the variance of the

network weights and training error, respectively.

Then, the posterior probability can be written as

P(ω|D, α, β, M) =

1
ZW(α)

1
ZD(β)

exp (−(βED + αEW))

Normalizing Factor

=
1

ZF(α, β)
exp (−F(ω)) (B.26)

Clearly, maximizing the posterior probability of ω is equivalent to minimizing the regu-

larized performance index equation (B.24).

Since α, β are assumed to be parameters in the Bayesian framework, their posterior can

be calculated as

P(α, β|D, M) =
P(D|α, β, M)P(α, β|M)

P(D|M)
(B.27)

It is further assumed that P(α, β|M) is uniform; therefore, maximizing the posterior distri-

bution translates into maximizing the likelihood function P(D|α, β, M), which is normal-

ization factor in equation (B.25), hence

P(D|α, β, M) =
P(D|ω, β, M)P(ω|α, M)

P(ω|D, α, β, M)

=

1
ZW(α)

exp (−αEW) 1
ZD(β)

exp (−βED)

1
ZF(α,β) exp (−F(ω))

=
ZF(α, β)

ZW(α)ZD(β)
(B.28)

where ZW(α) and ZD(β) are known.
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To calculate ZF, the performance index can be expanded in a second order Taylor

expansion around its local minimum point, ωMP, where the the shape is quadratic.

F(ω) ≈ F
(

ωMP
)
+

1
2

(
ω−ωMP

)T
HMP

(
ω−ωMP

)
, (B.29)

where H is the Hessian matrix of the performance index, i.e., H = β∇2ED + α∇2EW , and

replacing equation (B.29) into (B.26), the posterior distribution can be written as

P(ω|D, α, β, M) =

{
1

ZF
exp

(
−F

(
ωMP

))}
exp

{
1
2

(
ω−ωMP

)T
HMP

(
ω−ωMP

)}
,

(B.30)

for the above density to be equal to the normal density

ZF(α, β) ≈ (2π)m/2
(∣∣∣HMP

∣∣∣−1
)1/2

exp
(
−F

(
ωMP

))
. (B.31)

Then, placing the above equation into (B.28) and maximizing it yields

αMP =
γ

2EW(ωMP)
and βMP =

m− γ

2ED(ωMP)
, (B.32)

where λ = m− 2αMPTr(HMP)−1 is the so–called effective number of parameters, which is

between zero and n. The effective number of parameters measures how many parameters

effectively reduce the error function.

The steps require for Bayesian optimization of the regularization parameters, with the

Gauss–Newton approximation to Hessian, which is readily available if the Levenberg–

Marquardt algorithm is used.

0. Initialize α, β and the weights. The weights are initialized randomly. Then ED and EW

are computed. Set λ = m, and calculate α and β.

1. Take one step of the Levenberg–Marquardt algorithm toward minimizing the objective

function F(ω) = βED + αEW .

2. Compute the effective number of parameters, λ, making use of the Gauss–Newton

approximation to the Hessian available in the Levenberg–Marquardt algorithm (see

Appendix B.5): H = ∇2F(ω) ≈ 2βJT J + 2αIn, where J is the Jacobian matrix of the

training set error (see equation (B.21)).

3. Compute the new estimates for the regularization parameters α and β.

4. Iterate steps 1 through 3 until convergence.
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Figure B.1: MODWT wavelet and scaling filter coefficients: This figure presents the
MODWT synthesis and analysis wavelet and scaling filter coefficient for LA(8).
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Figure B.2: Square gain function for MODWT wavelet and scaling filter coefficients:
This figure presents the squared gain function for the synthesis wavelet and scaling filter,
Figure B.1, with J = 5.


