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ABSTRACT

A mapping class group element can be understood by an inductive process - by passing
to its action on the curve complexes of the subsurfaces in the complement of the curves it
tixes. By the result of Masur and Minsky, the curve complex of any surface of finite type is
hyperbolic. A fully irreducible outer automorphism (Out(IF) analog of a pseudo-Anosov)
acts with positive translation length on the free factor complex, which is also a hyperbolic
space. But a reducible outer automorphism & fixes the invariant free factor A in the free
factor complex and thus, the action is not very informative. In analogy to subsurfaces, we
then look at the action of ® on the free factor complex relative to A, which is a hyperbolic
complex that captures the information in the complement of A. In this dissertation, we
prove that a fully irreducible outer automorphism relative to a free factor system A acts
with positive translation length on the free factor complex relative to A. In order to prove

this, we prove the following key results:

e Define relative currents and prove that ® acts with uniform north-south dynamics

on a certain subspace of the space of projectivized relative currents.
e @ acts with uniform north-south dynamics on the closure of relative outer space.

e Define an intersection form between the space of projective relative currents and the

closure of relative outer space.



For my parents and brother.
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CHAPTER 1

INTRODUCTION

The study of Out(IF), the outer automorphism group of the free group F of finite
rank, is highly influenced by the study of the mapping class group of a surface. Like
the action of a pseudo-Anosov homeomorphism on the curve complex, a fully irreducible
outer automorphism acts with positive translation length on the free factor complex. But a
reducible outer automorphism fixes a point on this complex. In this dissertation, we take
a step towards understanding reducible outer automorphisms that are fully irreducible
relative to a free factor system .4 by studying their action on three different spaces - the
free factor complex relative to A [HM14], the space of relative currents (Chapter 4) and

relative outer space [GLO7].

1.1 What is Out(F)?

A free group F of rank n is the fundamental group of a wedge of n circles. In order
to understand F, it is important to know how it transforms under automorphisms and
hence, it is natural to study the group of automorphisms Aut(IF). An inner automorphism
is given by conjugation by an element of IF and so the group of inner automorphisms,
Inn([F), is isomorphic to IF. Thus one studies the outer automorphism group, defined as
follows:

Out(F) := Aut(F)/ Inn(F).

The group Out(F) can be thought of as the mapping class group of a wedge of circles
or the group of homotopy equivalences of a wedge of circles which do not preserve a fixed
point.

Early fundamental contributions to the study of Out(F) were made by Whitehead and
Nielsen. It acquired a strong geometric flavor by the influence of Gromov and Thurston
and got a boost when Culler and Vogtmann defined a space called Culler-Vogtmann'’s outer

space, which is an analog of the Teichmiiller space, on which Out(FF) acts. Later, Bestv-
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ina and Handel developed a powerful geometric tool by adapting Thurston’s train track
technology to study outer automoprhisms. For a detailed history of Out(IF), the reader is
referred to [Vog02].

1.2 Mapping class group as a guiding example

Mapping class group of a surface X is the group of orientation preserving homeo-
morphism of X taken up to isotopy. The group MCG(X) acts on a simplicial complex
called the curve complex C (%) which is defined as follows: vertices are given by homotopy
class of essential, simple closed curves, and a k-simplex is given by a collection of k + 1
vertices which can be realized mutually disjointly. In 1999, Masur and Minsky [MM99]
showed that C(X) is hyperbolic and since then, it has played a crucial role in understanding
MCG(X). Some remarkable applications include rigidity results for MCG(X), bounded
cohomology for subgroups of MCG(X) and finite asymptotic dimension for MCG(X).
Several analogues of the curve complex for Out(IF) have been defined and proven to
be hyperbolic, like the free factor complex, the free splitting complex and the cyclic splitting
complex. But none of them have proven to be as useful as the curve complex.

For instance, when a mapping class group element acts on C(X) with a fixed point,
that is, it fixes a curve a, then one can look at its action on the curve complex of the
subsurface given by the complement of x. Thus mapping class group elements can be
understood by an inductive process. On the other hand, consider an outer automorphism
which fixes a free factor A in the free factor complex of F. Since the complement of A in
F is not well defined, one cannot pass to the free factor complex of a free group of lower
rank. In [HM14], Handel and Mosher define free factor complex relative to a free factor system
FF(E, A) which is an Out(IF)-analog of the curve complex for a subsurface. They also
prove that these relative complexes are hyperbolic for nonexceptional free factor systems.

In order to draw parallels with the theory of subsurfaces used to understand MCG(Z),
we take a step towards understanding the action of a certain subgroup of Out(F) that acts
on the relative free factor complex. Our main theorem is a relative version of a result of
[MM99] that a mapping class group element acts loxodromically, that is with positive trans-
lation length, on the curve complex if and only if it is a pseudo-Anosov homeomorphism.

Let Out(FF, A) be the subgroup of Out(F) containing outer automorphisms that fix A.
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After passing to a finite index subgroup, assume that each free factor in A is invariant un-
der the elements of Out(F, .A). An outer automorphism ® € Out(F, A) is fully irreducible
relative to A if no power of ® fixes a nontrivial free factor system of F properly containing

A.

Theorem A. Let A be a nonexceptional free factor system and let ® € Out(F, A). Then ® acts
loxodromically on FF (I, A) if and only if @ is fully irreducible relative to A.

1.3 Pseudo-Anosovs are loxodromic for the curve complex
In order to motivate the different chapters of this dissertation and explain the proof

strategy for Theorem A, we present a proof of the following theorem.

Theorem 1.3.1 ([IMM99]). Let X be an oriented surface of finite type and let ¥ € MCG(X). Then

Y acts loxodromically on C(X) if and only of ¥ is a pseudo-Anosov homeomorphism.
The following proof is due to Bestvina and Fujiwara [BF02, Proposition 11].

Proof. Let AT and A~ be the attracting and repelling measured laminations associated to
Y. Let PML(X) be the space of all projective measured laminations, which contains the

curve complex as a subset. The following facts will be used later:

e The pseudo-Anosov ¥ acts on P M L(X) with uniform north-south dynamics, that s,
there are two fixed points A* and A~ and any compact set not containing A~ (A™)

converges to AT(A™) under ¥(¥!)-iterates.

e The intersection number i(-, -) between two curves in the curve complex extends to

a continuous, symmetric bilinear form i : PML(X) x PML(X) — R.

e The fixed points A" and A~ are uniquely self-dual, that is, i(A*, #) = 0 if and only
if u = A%,

If U is a neighborhood of A™, then there exists a neighborhood of V of AT, such that
V C Uand ifa € U% b € V, then i(a,b) > 0. Indeed, if this is not true, then find a
sequence of neighborhoods U D V; D V, D ... and curves a; € U® and b; € V; such that
{b;} converges to AT, {a;} converges to a # A' and i(a;,b;) = 0. But by continuity of the

intersection number, i(a;, b;) converges to i(a, AT) which is not zero. Such a pair is called a
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UV-pair. Now consider a sequence of nested neighborhoods of A™, Uy D U; D Up D U3 D

... D Uy for some N > 0, such that the following hold:
e (U;,Ujyq)isaUV-pair forall 0 < i < 2N.
e Jk > 0such that forall 0 < i < 2N, ¥¥(U;) C U4

Let a be a curve such that a € Upand a ¢ U;. Given & € UF such that i(a, f) = 0, then

B € Ui, 1. Thus d(a, ¥2N¥(a)) > N in the curve complex.

1.4 Dissertation aim

The proof due to Bestvina and Fujiwara can also be employed to prove that a fully
irreducible outer automorphism acts loxodromically on the free factor complex (original
proof in [BF10]). However, in this case, we need north-south dynamics on a certain space
of measured currents ([Mar95], [Uyal4]), north-south dynamics on the closure of outer
space ([LLO3]) and an intersection number between measured currents and F-trees in the
closure of outer space ([KL09]). The case of the fully irreducible automorphism will be
referred to as the “absolute case’.

Keeping in mind that we want to prove Theorem A using the Bestvina and Fujiwara

strategy, we aim to do the following in this dissertation:
o Define relative currents. (Chapter 4)

e Show that a fully irreducible outer automoprhism relative to .4, denoted ®, acts
with uniform north-south dynamics on a certain subspace of the space of projective

relative currents. (Chapter 4)

e Show that ® acts with uniform north-south dynamics on the closure of relative outer

space. (Chapter 5)

e Define an intersection form between relative currents and trees in relative outer

space. (Chapter 6)

e Classify loxodromic elements for the free factor complex relative to a free factor

system. (Chapter 7)



CHAPTER 2

BACKGROUND ON OUT(F)

In this chapter, we will review some basics about Out(IF) and define objects that will

be used throughout.

2.1 Outer space

In [CV86], Culler and Vogtmann defined outer space (unprojectivized outer space), CV,
(cvy), as the space of F-equivariant homothety (isometry) classes of minimal, free and
simplicial action of IF by isometries on metric simplicial trees with no vertices of valence
two.

An F-tree is an R-tree with an isometric action of IF. An F-tree is called very small if the
action is minimal, arc stabilizers are either trivial or maximal cyclic and tripod stabilizers
are trivial. Outer space can be embedded into RF via translation lengths of elements of IF
in a tree in cv, [CM87]. The closure of CV; under the embedding into PRF was identified
in [BF94] and [CL95] with the space of all very small F-trees. Denote by CV, the closure of
outer space and by dCV;, its boundary.

2.2 Marked graph and topological representative

We recall some basic definitions from [BH92]. Identify F with 771 (R, %) where R is a
rose with n petals and n is the rank of IF. A marked graph G is a graph of rank n, all of whose
vertices have valence at least two, equipped with a homotopy equivalence m : R — G
called a marking. The marking determines an identification of IF with 771 (G, m(x)).

A homotopy equivalence ¢ : G — G induces an outer automorphism of 7r1(G) and
hence an element ® of Out([F). If ¢ sends vertices to vertices and the restriction of ¢ to
edges is an immersion, then we say that ¢ is a topological representative of ®.

A filtration for a topological representative ¢ : G — G is an increasing sequence of (not

necessarily connected) ¢-invariant subgraphs @ = Go C G; C --- C Gk = G. The closure
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of G, \ G,_1, denoted H,, is a subgraph called the r"-stratum. Let  be a reduced path in
G. Then ¢(vy) is the image of v under the map ¢. Denote the tightened image of ¢ () by
[()]-

A path ¢ is a periodic Nielsen path if ¢ is nontrivial and ¢*(c’) is homotopic relative to
end points to o for some k > 1. The minimal such k is the period of ¢ and if the period is
one, then ¢ is a Nielsen path. A (periodic) Nielsen path is indivisible, denoted IND, if it does
not decompose as a concatenation of nontrivial (periodic) Nielsen subpaths. A path ¢ is a

pre-Nielsen path if ¢*(c) is a Nielsen path.

2.3 Train track map

We recall some more definitions from [BH92]. A turn in a marked graph G is a pair of
oriented edges of G originating at a common vertex. A turn is nondegenerate if the edges
are distinct, and it is degenerate otherwise. A turn (e1, ez) is contained in a filtration element
G if both e; and e, are contained in G,. If 7 is an edge path given by e - e+ --e,,—1 - ey,
then we say that vy contains the turn (€;_1, e;) where ¢; denotes opposite orientation.

For ¢ : G — G, a topological representative and an edge e, set T¢(e) equal to the
first oriented edge of the edge path ¢(e). Given a turn (ej,ez), we define T¢(eq,e2) =
(Tp(e1), Tp(ez)). We say a turn is illegal if under some iterate of T¢, the turn maps to a
degenerate turn, it is legal otherwise. A path 7 is called r-legal if all of its illegal turns are
contained in G,_;.

We associate a matrix called transition matrix, denoted M,, to each stratum H,. The i jth
entry of M, is the number of occurrences of the i edge of H, in either direction in the
image of the j* edge under ¢. A nonnegative matrix M is called irreducible if for every i, j,
there exists k(i,j) > 0 such that the ij'" entry of MF is positive. A matrix is called primitive
or aperiodic if there exists k > 0 such that M* is positive. A stratum is called zero stratum
if the transition matrix is the zero matrix. If M, is irreducible, then its Perron-Frobenius
eigenvalue A, is greater than or equal to 1. A stratum with an irreducible transition matrix

is exponentially growing (EG) if A, > 1, itis called nonexponentially growing (NEG) otherwise.

Definition 2.3.1 (Relative train track map). A topological representative ¢ : G — G of a
free group outer automorphism @ is a relative train track map with respect to a filtration

@ = Gg C Gy C --- C Gg = G if G has no valence one vertices, if each nonzero stratum
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has an irreducible matrix and if each exponentially growing stratum satisfies the following

conditions:
e If E is an edge in H,, then the first and the last edges in [¢(E)] are also in H,.

e If v € G,_1 is a nontrivial path with endpoints in H, N G,_1, then [¢(-y)] is a nontrivial

path with endpoints in H, N G,_;.
e For each r-legal path B C H,, [¢(B)] is r-legal.

A reduced path ¢ C G has height r if the highest stratum it crosses is G,.

2.4 Completely split train track map (CT)

In [FH11], Feighn and Handel defined completely split train track maps for outer
automorphisms, which are better versions of relative train track maps. Instead of giving
a complete definition, we list some facts which are used in Chapter 3 and then describe a
complete splitting. Let ¢ : G — G be a completely split train track map. The following

facts proved in different papers can be found in [HM13, Section 1.5.2].

Facts 2.4.1. 1. Every periodic Nielsen path has period one.

2. If H, is an EG stratum, then there is at most one indivisible Nielsen path (INP) in G,

that intersects H, nontrivially.

3. If H, is an EG stratum and if p, is an INP of height r, then p, crosses each edge of H,
at least once, the initial oriented edges of p, and p, are distinct oriented edges of H,,

and:

(a) pris not closed iff it crosses some edge of H, exactly once and in this case:
i. atleast one end point of p is not in G,_;.
ii. There does not exist a height r fixed conjugacy class.

(b) pris closed iff it crosses each edge of H, exactly twice, and in this case:
i. the endpoint of p, is not in G,_;.

ii. the only height r fixed conjugacy classes are those represented by p,, its

inverse and their iterates.
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If H, is an EG stratum, then a nontrivial path in G,_; with end points in H, N G,_1 is
called a connecting path. If an NEG stratum H, is a single edge e; such that ¢(e;) = e;u; for
a nontrivial closed Nielsen path u;, then ¢; is called a linear edge. Let u; = w'z-j" for some
d; # 0 where w; is root-free. If ¢; and e; are distinct linear edges such that Ple;) = e;wti and
Ple;) = ejwdf where d; # d;j and d;,d; > 0, then a path of the form e;wPe; where p € Z is
called an exceptional path.

A decomposition of a path or a circuit ¢ into subpaths is a called a splitting if one can
tighten the image of o under ¢ by tightening the image of each subpath. In other words,
there is no cancellation between images of two adjacent subpaths in the decomposition of
.

Let e be an edge in an irreducible stratum H, and let k > 0. A maximal subpath ¢ of
[¢%(e)] in a zero stratum H; is said to be r-faken. A nontrivial path or circuit in G is said to
be completely split if it has a splitting into subpaths, each of which is either a single edge
in an irreducible stratum, an indivisible Nielsen path, an exceptional path or a connecting
path in a zero stratum H; that is taken and is maximal in H;.

A relative train track map is completely split if for every edge e in each irreducible
stratum ¢(e) is completely split and if o is a taken connecting path in a zero stratum,

then [¢(0)] is completely split.

2.5 BFH laminations

In [BFHO0], Bestvina, Feighn and Handel defined a dynamic invariant called the at-
tracting lamination associated to an EG stratum of a relative train track map ¢ : G — G.
The elements of the lamination are called leaves.

Let B be the space of lines defined as the quotient of ’F := (0F x oF — A)/Z;, by
the action of IF, where A denotes the diagonal. We say p' € B is weakly attracted to
B € B under the action of ® if [®(B)] converges to . A subset U C B is an attracting
neighborhood of B for the action of ® if [®(U)] is a subset of U and if {[®F(U)] : k > 0} isa
neighborhood basis for B in B. A bi-infinite path ¢ in a marked graph is birecurrent if every
finite subpath of ¢ occurs infinitely often as an unoriented subpath of each end of ¢. An
element of B3 is birecurrent if some realization in a marked graph is birecurrent.

A closed subset AT of Bis called an attracting lamination for a free group outer automor-
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phism & if it is the closure of a line B that is bireccurent, has an attracting neighborhood
for the action of some iterate of ® and is not carried by a ®-periodic free factor of rank
one. The line B is said to be a generic leaf of A™. In this paper, we will look at the lift of the

attracting lamination to 9*FF and denote it also by A™.

Lemma 2.5.1 ([BFHOO, Lemma 3.1.9]). Suppose that ¢ : G — G is a relative train track map
with respect to a filtration © = Gg C Gy C - - - C Gk = G representing ® and H, is an aperiodic
EG stratum. Then there is an attracting lamination A" with generic leaf B so that H, is the highest

stratum crossed by a realization of B in G.

In Chapter 6, we will give a more general definiton of lamination associated to IF due

to Coulbois, Hilion and Lustig.

2.6 Free factor system

A free factor system of FF is a finite collection of proper free factors of F of the form
A = {[A1],...,[Ax]}, k > 0such that there exists a free factorization F = Ay * - - - % A * Fy,
where [-] denotes the conjugacy class of a subgroup. We refer to the free factor Fy as the
cofactor of A keeping in mind that it is not unique, even up to conjugacy. There is a partial
ordering C on the set of free factor systems given as follows: A C A’ if for every [A;] € A
there exists [A]] € A’ such that A; C A} up to conjugation. The free factor systems @ and
{[[F]} are called trivial free factor systems. Define rank(.A) to be the sum of the ranks of the
free factors in A and let {(A) = k + N.

Example 2.6.1. The main geometric example of a free factor system is as follows: suppose
G is a marked graph and K is a subgraph whose noncontractible connected components
are denoted Cy, ..., Cy. Let [A;] be the conjugacy class of a free factor of IF determined by
m1(C;). Then A = {[A1],...,[Ak]} is a free factor system. We say A is realized by K and
denote it by F(K).

2.7 Relative free factor complex
Let A be a nontrivial free factor system of F. In [HM14], the complex of free factor
systems of F relative to .4, denoted FF (IF; A), is defined to be the geometric realization

of the partial ordering [ restricted to the set of nontrivial free factor systems B of [F such
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that A C B and A # B. The exceptional free factor systems are certain ones for which

FF(F, A) is either empty or zero-dimensional. They can be enumerated as follows:
o A={[A1],[A2]} withF = Ay * Aj,. In this case, F F (F, A) is empty.
o A= {[A]} with F = A x Z. In this case, F F(FF, A) is 0-dimensional.

o A = {[A1],[A2],[A3]} with F = Ay % Ay x A3. In this case, FF(F, A) is also 0-

dimensional.

Theorem 2.7.1 ((HM14]). For any nonexceptional free factor system A of IF, the complex of free

factor systems of [F relative to A is positive dimensional, connected and hyperbolic.

Definition 2.7.2 (Out(F, A)). The group Out(F, A) is the subgroup of Out(FF) containing
outer automorphisms that fix A. After passing to a finite index subgroup, assume that

each free factor in A is invariant under the elements of Out([F, A).

Out(FF, A) acts on FF(FF, A) as follows: for ¥ € Out(F, A) and D € FF(F, A), ¥ -
D =Y (D).

2.8 Fully irreducible relative to a free factor system

Let A be a nontrivial free factor system. An outer automorphism & € Out(F, A) is
called irreducible relative to A if there is no nontrivial ®-invariant free factor system that
properly contains A. If every power of @ is irreducible relative to .4, then we say that ® is
fully irreducible relative to A (or relative fully irreducible).

Let ® € Out(F, A). Then by [BFH00, Lemma 2.6.7], there exists a relative train track
map for @, denoted ¢ : G — G, and filtration ® = Gp C G; C --- C G, = G such that
A = F(Gs) for some filtration element G;. If ® is fully irreducible relative to A, then
A = F(G,_1) and the top stratum H, is an EG stratum with Perron-Frobenius eigenvalue

Ap > 1.

Example 2.8.1. Here is an example of a relative fully irreducible outer automorphism when
rank of cofactor of A is zero. Let F = (a,b,c) and let A = {[{(a)], [(D}], [{c)]}. Let ® be an

outer automorphism given by

®(a) =a,P(b) = aCbcA,P(c) = CbcBe.
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Let ¢ : G — G be a relative train track representative of ® with G as in Figure 2.1. The
marking is given by

a— ey, b— ereqerE4E1, ¢ — ese3Es

and the map ¢ is given as follows

ple1) = e P(e2) = e P(es) = e3

¢(es) = esEzEseres  ¢(es) = esEzEsejeserE4Eqes

2.9 North-south dynamics
Let X be a topological space. Let f : X — X be a homeomorphism. The map f is said to
have pointwise north-south dynamics if there are two points x™ and x~ in X which are fixed
by f and any x # x~ (xT) converges to x (x~) under f(f~!)-iterates.
The map f as above is said to have uniform north-south dynamics if the following hold:
there are two fixed points x* and x~ and for any compact set K in X \ x~ (x™) and neigh-

borhood Ut (U™) of x*(x7), there exists M (M) such that for all m > M*T(M™),
frE)y curt(fME) cu).

If the space X is compact, then by [HK53], point-wise north-south dynamics is equiva-

lent to uniform north-south dynamics.

210 Loxodromic element
Let X be ametric space and let f : X — X be a homeomorphism. Then f is a loxodromic

element if for some (any) x € X,

. d(x, fN(x))

For example, a hyperbolic isometry of the hyperbolic plane is a loxodromic element,
a pseudo-Anosov is loxodromic for the action on the curve complex [MM99] and a fully
irreducible outer automorphism is loxodromic for the action on the free factor complex

[BF94].
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Figure 2.1. The graph G for Example 2.8.1
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CHAPTER 3

CT TRAIN TRACK MAP AS A SUBSTITUTION

A train track representative ¢ : I' — T’ of a fully irreducible outer automorphism ¥ can
be viewed as a substitution since the image of an edge in I' is legal. If a is an edge of T’
such that (a) starts with 4, then we get a ray p, which is invariant under ¢. The results of
[Que87] about primitive substitutions can be used to calculate the frequency of occurrence
of subpaths in p,;, which turn out to be independent of the edge a. These frequencies of
subpaths in turn give rise to a ‘measured current’ intrinsically associated to ¥. Detailed
discussion of currents follows in Chapter 4.

In the next chapter, we want to associate similarly defined currents to a fully irreducible
outer automorphism relative to a free factor system. Since the transition matrix of a relative
train track representative of such an automorphism is not primitive, the results of [Que87]

cannot be applied directly. In this chapter, we

e generalize the results on substitution dynamics for primitive substitutions to more

general substitutions,

e discuss how to view a completely split train track map as a substitution for the

purpose of calculating frequency of subpaths in a fixed ray.

3.1 Preliminaries
Let A be a finite set with cardinality greater than or equal to two. Let { be a substitution
on A, thatis, a map from A to the set of nonempty words on A which associates to a letter
e € A the word {(e) with length |{(e)|. The substitution { induces a map on the set of all

words on A by concatenation, that is,

C(x1x0 ... xm) = C(x1)8(x2) ... C(x)

where x1x3...x, is a word on A. Thus we define iterates " for all n > 1. To the

substitution {, we associate its transition matrix, denoted M, where for a,b € A, M(a,b)
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is the number of occurrence of 4 in ((b). The transition matrix for {" is given by M".
Likewise, define a map from AN to AN the set of all infinite words on A, also denoted
¢, by the formula {(x1x2...) = {(x1){(x2) .... We are interested in possible fixed points or

periodic points of .
Lemma 3.1.1 (Lemma 5.1, [Que87]). Let ¢ be a substitution on an alphabet A such that

lim [("(a)| = +oc0

n—oo

for every a € A. Then { admits periodic points, that is, there exists p € AN, k > 1 such that
M) =

Suppose { admits a fixed point, denoted p € AN, such that ¥(p) = p for all k > 1.
From now on, only keep in the alphabet A the letters that actually appear in p.

For every | > 0, let A; denote the set of all words on A of length I that appear in
p. Define a substitution {; on A; as follows: let w = x1xp...x; € A;. Define {;(w) :=
W1Wy ... Wir(y,)| Where w; € A and w; is the length | subword of (w) starting at the
i'" position of {(x;). In other words, ;(w) consists of the ordered list of the first |{(x1)|
subwords of length I of the word {(w). The substitution {; extends to a map on the set of
all words on A;. Denote by | - |; the length of words on A;. We have |;(w)|; = |{(x1)|. Let

M, denote the transition matrix for ¢;. It is clear from definitions that ("), = ({;)".

Lemma 3.1.2 (Lemma 5.2, [Que87]). If p = x1x2... is a fixed point for {, then p; € AN isa

fixed point of {; where py = (x1x2...x7) (X2 ... X141) - -

3.2 Primitive substitution
A substitution is called irreducible if for every pair a,b € A, there exists k := k(a, b)
such that a occurs in ¥(b). A substitution is called primitive if there exists k such that for

every pair a,b € A, a occurs in gk(b).

Theorem 3.2.1 (Lemma 5.3, 5.4 [Que87]). If the substitution  is primitive, then for every I > 2,

(1 1s also primitive with the same Perron-Frobenius eigenvalue as (.

For u,w two words on A, let L,(w) denote the number of times u occurs in w. The

following two lemmas tell us about the frequency of occurrence of subwords of p in p.
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Proposition 3.2.2 (Proposition 5.8, 5.9 [Que87]). Let { be a primitive substitution. Let a € A.
Then

(a) foreveryb € A
Ly (¢"(a))

lim ~2= YW g,

nveo |G (a)l

where dy, is positive, independent of a and ) e p dp = 1.

(b) for every subword w of p,
Ly(C"(a))

lim ——= =dy

n=veo |07 (a)|

where d, is independent of a and is positive.

We want to generalize the above results to substitutions which are not necessarily

primitive but are primitive on a subset of the alphabet.

3.3 Nonprimitive substitution
Consider an alphabet A = | |*_ B;. Define a partial order on the alphabet as follows. First
define a partial order on subsets of A given by B; > B; for i < j. For example, By > B; and
so on. Thus we get a partial ordering on the letters of A wherea > bifa € B;and b € B,
where i < j. The alphabet A; can now be given a partial lexicographic order as well. From

now on, we will consider a substitution ¢ on A with the following properties:

e Fora € B;, {(a) contains letters only from B; for j > i. This implies that the transition
matrix M for { is lower triangular block diagonal with respect to the partial order on
the set {B;}¥_,. Denote the diagonal blocks of M also by B; for 0 < i < k where By is

the top left block, followed by B; and so on.
e If B; is a primitive block, then {(a) for a € B; ends and begins in a letter in B;.
e By is primitive.

Lemma 3.3.1. Let B; be a primitive block of M. After possibly passing to a power of {, there exists
a € B; such that {(a) begins in a. Also p, := limy,_,e (" (a) is fixed by {, that is, {(pa) = pa- If
b € B is another letter which begins in b and py, is fixed by {, then the set of subwords of p, and py

are the same.
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Proof. Consider a function f : B; — B; where for a € B;, f(a) is the first letter of {(a). Since
B; is a finite set, some power of f has a fixed point. After possibly passing to a power,
let a € B; be a fixed point of f. Since {(a) begins with a, we have that {"(a) begins with
{""1(a) for every n > 0. Thus p, is fixed by . Since B; is a primitive block, {"(a) contains

b for some n > 0. Thus subwords that appear in p;, also appear in p, and vice versa. O

Example 3.3.2. Let A = {a,b,c,d}. Let { be given as {(a) = abbab,(b) = bababbab, {(c) =

cad,{(d) = dcad. The transition matrices for { and (, are given by

ca da dc ad bd ab ba b
M 1 1 0 0 0 0 0]

O R R = A0
O R, N = Q
WNO O o

OO OO OO
ol eNeNell S
SO OO, NO
—__NR O OO
—_ W Wk OoOoo
NP, NOOOCO
— s W o O oo
N O WO OoOoOo

3.4 Eigenvalues for M and M;

We now want to understand the spectrum of M; and relate it to the spectrum of M. The

main result from this section is Proposition 3.4.1.

Proposition 3.4.1. For every | > 2, the eigenvalues of M; are those of M with possibly some

additional eigenvalues of absolute value less than equal or to one.

The three lemmas that follow will be used to prove Proposition 3.4.1.

Notation 3.4.2. Since ({"); = (;)", we have (M"); = (M;)", which is denoted by M unless
the order needs to be specified. Denote the rows and columns of M by Ry and C, forx € A,

those of M; by Ry, and Cy, and those of M} by Ry, ,, and Cyy i, for w € A;.

Lemma 3.4.3. Let n > 2. Let M, M;, M} be transition matrices for {,(;, (]!, respectively. Then

(a) M is a lower triangular block diagonal matrix with respect to the partial order on A;.

(b) Let w € A start with x € A. Then the sum of the entries of Cy, is the same as the sum of the

entries of Cy which is equal to |{(x)|.
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(c) Let wy, wy € A be such that both words begin with x € A. Then the entries of Cy, and Cy,
differ at most by (I — 1). The entries of Cy, ., and Cy, also differ at most by (I — 1).

Proof. (a) Clear from definitions of M and M;.

(b) Letw, x be as in the statement of the lemma. Then |{;(w)|; = |{(x)|, which implies that

column sum of C,, is the same as that of C,.

(c) Let wq, ws, x be as in the statement of the lemma. Then {;(w1) and {;(w>) differ only
when the length | words starting at some position in {(x) are not subwords of {(x). If
|C(x)| > 1, then the first time such a word occurs is when it starts at position (I — 1)
from the end of {(x). If |{(x)| < I, then {;(w;) and {;(wy) can differ in at most | (x)| <
I length I words. Thus there are at most (I — 1) such words. Replace g, {; by ", ("),

above to conclude that entries of Cy, 4, and C, 4, also differ at most by (I — 1). O

Lemma 3.4.4. If Q is a s x s matrix such that absolute values of all its entries are bounded above

by 6 > 0, then the absolute values of the eigenvalues of Q are bounded above by sJ.

Proof. Let A # 0 be an eigenvalue of Q and let v = (vy,...,v;5) be a corresponding
eigenvector. Let r; denote rows of Q. Then |r; - v| = [Av;|, which gives [Av;| < 6 Y7 [v)]

for every 1 < i < s. Adding all the inequalities together, we get |A| < s4. O

Notation 3.4.5. We say a word w on A crosses B; if w contains a letter in B;. For every
B; C A, let B; C A, be the set of all words w that start with a letter in B; and such that w
does not cross B; for any j < i. For every B; C A, let B C A, be the set of all words w
that start with a letter in B; and there exists a j < i such that w crosses B; (note that By is
empty). Then B; U B; is the union of all words of length | that start with a letter in B;. The
partial order on A; defined earlier gives that E) > By > E > ...> By > ka, The matrix
M, is lower triangular block diagonal with respect to this partial order on A;. For a subset

S C A, denote by S the transition matrix of {; restricted to S.

Lemma 3.4.6. (a) For every 0 < i < k, the characteristic polynomial of B; divides the character-

istic polynomial of B;.

(b) The eigenvalues of B; are those of B; with possibly some additional eigenvalues of absolute value

less than or equal to one.
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The eigenvalues of B; have absolute value less than or equal to one.

Proof. (a) Consider the matrix P; = B; — AI. We will do certain row and column operations

(b)

on this matrix to reduce it to a lower triangular block diagonal matrix with B; — AI as
a diagonal block, which would imply that the characteristic polynomial of B; divides

the characteristic polynomial of B;. For later use, denote the other diagonal block of P;
by Q.

First perform the following row operations: for every x € B;, choose a word w € B;
such that w starts with x. For every such w, replace the row Ry, of gl by the sum of
rows R, for all u € B; that start with x. Rearrange the rows and columns such that
the top left block is indexed by the chosen words w. Denote the rearranged matrix by
P!. The top left block of P/ is exactly B; — AI. Indeed, suppose w,u € B; in the top
left block of P/ start with x,y € B;, respectively. Then P/(w, v) is exactly the number of

occurrences of x in {(y).

Now for any two columns Cy, and Cy, of Pl-/ , Wwhere wy, w, start with the same letter in
B;, the first few entries (as many as the number of rows in the top left block of P/) are
equal. Now perform column operations as follows: for every x € B; and w the chosen
word in the top left block, subtract C,, from C, for every u # w that start with x. Thus
we have a lower triangular block diagonal matrix, again denoted P/, with diagonal

blocks B; — Al and Q.

Consider the lower block diagonal matrix P/ from above. Eigenvalues of P/ not coming
from the block B; — AI come from the lower block, denoted Q. By Lemma 3.4.3(c), the
entries of Q are bounded in absolute value by (I — 1). We claim that the eigenvalues of

Q are bounded in absolute value by one.

Let Ag be an eigenvalue of Q and hence of E, Then for n > 1, Aj is an eigenvalue of
(B;)" which is a diagonal block of (M;)" = (M");. Thus A} is an eigenvalue of (B;)"
that does not come from eigenvalue of B}, the corresponding diagonal block of M".
Applying part (a) to ", (B;)" can also be put in a lower triangular block diagonal form
with diagonal blocks B! — AI and Q' whose entries are bounded by (I — 1) and hence

every eigenvalue bounded in absolute value by size of Q' times (I — 1) by Lemma 3.4.4.
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Thus |Ajj| is uniformly bounded, which can happen only when |Aq| < 1.

Thus all eigenvalues of B; are eigenvalues of B; with the exception of some eigenvalues

whose absolute value is less than or equal to one.

(c) Let A be an eigenvalue of B;. Then A" is an eigenvalue of (B;)", the diagonal block of
(M"); corresponding to words that start with a letter in B; and there exists a j < i such
that they cross B;. For every n, the entries of (B;)" are bounded by (I — 1). Indeed, if w
is a length [ word that starts with x, then only the words that start at some position less
than [ away from the last letter of {"(x) belong to (B;)". This implies that eigenvalues

of (B;)" are uniformly bounded. That is, |A"| is uniformly bounded, which can happen

only when |A| < 1. O

Proof of Proposition 3.4.1. Since eigenvalues of a lower triangular block diagonal matrix are

obtained from eigenvalues of each block, the proposition follows from Lemma 3.4.6. [

3.5 Frequency of words
The main result in this subsection is Proposition 3.5.5, which tells how to calculate the

frequency of occurrence of words which cross By in p.

Notation 3.5.1. Let A be the top eigenvalue of the block By of M. Consider a subset B; :=
/B\B U (Ué‘:1 B;) of A;. Then the set of all length | words that cross By is a subset of 55;. The
transition matrix of {; restricted to B; is also lower triangular block diagonal with respect
to the order By > B; > ... > By of words in B;. Then by Lemma 3.4.6, A > 1 is the
top eigenvalue of B; with multiplicity one. Since B; is a diagonal block of M;, we have
M} (w,a) = B}'(w, a) for all w, & € A, that cross By.

For w, v words on A or A}, let (w,v) denote the number of occurrences of w in v.

Lemma 3.5.2. Let a € By and let p, = limy,_s« (" (a) be such that {(p,) = pa. Let w € A bea

word that crosses By. Then

n
frequency of occurrence of w in p, = nlggo (w,in(a)) =tdy,

exists and is nonnegative. Here A is the top eigenvalue of By.
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Proof. Let &« € A start with a. For n large, the number of occurrences of w in {"(a) is
approximately the same as the number of occurrences of w in (' (a). Also (w,{}'(x)) =

M} (w, ). We have
@& @) _ o @G@) _ | M) _ B

n—00 Al n—00 Al n—00 Al n—00 Al w.a

Indeed, the limit exists because A is the top eigenvalue of 5;. The limit is nonnegative
because it is a sequence of nonnegative numbers. The limit does not depend on the exact
choice of a because by Lemma 3.4.3(c), any two columns of M} starting with the same

letter in A differ by a bounded amount and thus give the same limit. O

Lemma 3.5.3 (Kirchhoff’s Law). Let a € By. Let w € A cross By. Let we and ew be length one
extensions of w by e € A. Then
dw,a - Z dwe,u - Z dew,a-
ecA ecA
Proof. We have (w,("(a)) and Y ,ca (we, " (a)) differ only when ("(a) ends in w so the

difference is at most one. Thus

(w, " (a)) (we, " (a))
AN B Z AN

—0asn — o0
eeA

which implies that dy ;s = ) oca dwe,q- Similarly, dy o = Y ocp dew,a- O
Lemma 3.5.4. Let a,b € By be distinct. Then

Aoy = Kdw,a
for every word w that crosses By where k = «(a, b, {|p, ).

Proof. Let’s first consider the case when length of w is one. The substitution { restricted to

By is primitive with top eigenvalue A > 1. Then

. M'(wa) | Biwa)
o = Jim S5 tim S

Since By is primitive, the limit of B /A" is a matrix P that is spanned by a positive eigen-
vector corresponding to A. Since left eigenvector of By is also positive, all columns of P are
positive multiples of each other. Thus d,;, = P(w, ) is a scalar multiple of dy,, = P(w,a)

which does not depend on w. Let this constant be denoted x;.
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Now consider the case when length of w is [. We will first show that the constant x;,
where d,, = x;dy,q, does not depend on w and then show that x; = x; for all | > 2. Since
A is the unique top eigenvalue of B, lim;, . B}’ /A" is a matrix P whose column span is an
eigenvector corresponding to A. Thus d,,, = P(w, b) is a scalar multiple of d,, = P(w, a)
which does not depend on w. Let this constant be denoted ;.

Now we will show that x; = x;. Let w be a word of length one. We have d,,;, =
Yoeen Qwep. Also dy = K1dwe and dyep = Kodwea. Thus kK1dwe = €2 Y e p Awea = K2dw,a,

which implies x; = «1. Repeat the same argument to get x; = «; for every [ > 2. O

To summarize the results about substitutions, we have the following proposition.

Proposition 3.5.5. Let ( be a substitution on an alphabet A such that the transition matrix is
lower triangular block diagonal with top left block By primitive, and for every e € By, {(e) starts
and ends with a letter in By. Then there is a fixed infinite word p obtained by iterating a letter in By
under (. Moreover, the frequency of a word w on A in p that crosses By is well defined up to scale

and satisfies Kirchhoff’s law.

3.6 CT train track as a substitution

Let @ be a free group outer automorphism. Let ¢ : G — G be a completely split train
track representative of ® with filtration @ = Gy C G; C --- C Gg = G. The transition
matrix for ¢, denoted My, is lower triangular block diagonal. Let a be an edge in an EG
stratum H, such that up to taking powers ¢(a) starts with a. Let p; = lim, .« ¢"(a). We
want to understand the frequency of occurrence of paths in G, that cross H, and appear in
pa. We may not be able to treat ¢ as a substitution directly since there could be cancellations
and inverse of edges would have to be treated separately. The proof of the next proposition
explains how to view a completely split train track map as a substitution for the purpose
of calculating frequencies of certain paths.

We set up some notation about exceptional paths that will be used in the next proposi-
tion. Let ej,e2 € G be two linear edges such that ¢(e1) = e;0? and ¢(ez) = e20% where
isan INP and d; # d». If dy,d, > 0, then x,, = e;0™e, where m € Z is an exceptional path.

We say x,, has height |m|. Let 6 = di — dy. Then ¢(x,,) is the exceptional path x,, 5.
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Proposition 3.6.1. Let ¢ : G — G be a completely split train track map. Let a be an edge in an
EG stratum H, such that ¢(a) starts with a. Let <y be a path in G, that crosses H,. Then

(v, ¢"(a)) _

lim =idy,

n—00 AN

exists and is nonnegative. Here A is the Perron-Frobenius eigenvalue of the aperiodic EG stratum

H,. If b € H, is another edge, then for every -y as above,
d’)/,b — dey/a

where « is a constant with k = «(a, b, §|m,).

Proof. Let p, := lim,_ ¢" (a). The ray p, is completely split and the terms of the complete
splitting, called splitting units, of p, form an alphabet A, for a substitution. But A, can
be an infinite set if there are exceptional paths. We will define a finite alphabet A, which
depends on 7, by identifying some elements in A in order to calculate the frequency of
occurrence of 7y in p,. We will also show that the frequency of y in p, does not depend on
the choice of the alphabet A,,. Let \/ be the set of all INPs, r-taken connecting paths and
exceptional paths that appear in p,.

Before defining the alphabet A, define a relation from the set of all finite paths in p,
that cross H,, denoted P;(p,), to the set of all finite words on A, denoted W(Aw),

r:Pr(pa) = W(Aw).
For a finite path v € P,(p,), the set 7(+y) consists of the following words:

(a) If an occurrence of 7 in p, is a concatenation of splitting units, then r(-y) contains the

corresponding word on Ac.

(b) If an occurrence of v in p, is a subword of an INP ¢, then r(vy) contains the element of
A determined by ¢, denoted w,. There are only finitely many INPs that appear in p,,
therefore the number of occurrences of a path y in an INP is bounded. If ¢ contains n
occurrences of v, then let r(vy) contain n copies of w,. Note that a path v in P,(p,) is

not contained in an exceptional path or an r-taken connected path.

(c) If an occurrence of -y has partial overlaps with some elements of N/, then consider a
path 9/ such that 9/ is the smallest subpath of p, that is a concatenation of splitting

units and which contains . Then r(7y) contains the word on A, corresponding to 7'.
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Thus every occurrence of 7 in p, corresponds to the occurrence of some word in r(7y).
Note that r(vy) can be an infinite set, for instance, when -y has partial overlap with infinitely
many exceptional paths in p,. We will define the alphabet A, such that the set of words
in r(y) viewed in A, will be a finite set. For simplicity, let’s assume that 7 intersects only

one family of exceptional paths, say determined by linear edges e, e, € G.

e Let X = {H, = H;,...,H;} be the collection of strata crossed by edges in H,.
For every H;, let A(H;;) be the alphabet which contains an edge and its inverse

as distinct letters if they both appear in p, otherwise the edge with the orientation

that appears.

An edge in G is called a Type 1 edge if it always appears with positive or negative
orientation but not both in p,. An edge which appears with both orientations in p, is
said to be of Type 2. If H;, is an EG stratum, then either all edges in Hj; are Type 1 or
all are Type 2 (see [Uyal4] for proof). Thus, if we consider a substitution on A (H,)

representing ¢ restricted to H,, then the substitution will be primitive.

e Now consider splitting units which are INPs, r-taken connecting paths and excep-

tional paths. Let A (/) be an alphabet defined as follows:

(a) All oriented INPs and r-taken connecting paths that appear in p, are contained

in A(N,). There can be infinitely many INPs in G, but only finitely many

appear in p,.

(b) Suppose ¥ contains an exceptional path determined by e, e; or a subsegment of
an exceptional path determined by e1, e;. Let N be the maximum length of such
an exceptional path that appears in 7, in ¢(e) for all edges e in H, and in an
r-taken connecting path. Then A(N,,) contains exceptional paths determined
by e1, ez of height less than or equal to N + 1 as distinct elements. All other
exceptional paths determined by ey, e; of height greater than N + 1 correspond

to a single element of A(N,,).

(c) Suppose 7y does not intersect an exceptional path determined by e, e;. Then all

exceptional paths determined by ey, e, correspond to a single element of A (N,).
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e Let A, be defined as the set A(H;,) Ll ---UA(H;)UA(N,) and let {4 be a sub-
stitution on A., determined by ¢. Let 7(vy) be the set of words in r(7y) viewed in the
alphabet A.,. Then 7(7) is a finite set of words on A.,. The frequency of occurrence

of a path v € P,(p,) in p, is given by the sum of the frequencies of the words in 7(y).

If we replace N + 1 by N + C for any C > 1 in the above construction to get a different
alphabet A, then the frequency of 7 calculated from the two alphabets is the same. More
precisely, let A, and A/, be two alphabets which differ only in the naming of exceptional
paths determined by ey, e; of length greater than N + 1. Let { and {’ be the corresponding
substitutions, and let 7(y) and #'(7) be the set of words in r(y) viewed in A, and A’,
respectively. An exceptional path maps to another exceptional path under ¢. Therefore, {
and ¢’ have the same growth rate when restricted to A(H,). Since the number of occur-
rences of oy does not change, the two substitutions yield the same frequency for words in
7() and 7 () and hence the same frequency for .

Thus, we have obtained an alphabet A.,. The completely split train track map ¢ indcues
a substitution 7, on this alphabet. Now Proposition 3.5.5 can be applied to {, to compute
the frequency of occurrence of <y in p,. Different substitutions constructed here for different
words v differ only in exceptional paths. Since an exceptional path maps to another
exceptional path these different substitutions have the same growth rate when restricted
to A(H,). Also Kirchhoff’s law still holds for frequencies of paths in p, because (v, ¢"(a))
and ) .., (e, ¢"(a)) differ by a bounded amount. O

We do some examples below to exhibit how to view a completely split train track map

as a substitution.

Example 3.6.2. Let R3 be the rose on three petals with labels 4, b, c. Consider a homotopy

equivalence ¢ : R3 — R3 given by
¢(a) =a,¢(b) = Bac,¢(c) = CBac.

Here capital letters denote inverses. The transition matrix for ¢ is

a

0
0
1

= = N O

1
_ = e S
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There are two strata H; = {a} and H, = {b,c}. Every edge in H; is of Type 2. Let pc =
lim, 0 ¢"(C). We have H = {Hy, H1}, A(Hz) = {b,c,B,C} and A(H;) = {a, A}. Since
there are no exceptional paths, use one alphabet A = {b,¢,B,C,a, A} and a substitution

{y on A whose transition matrix is given by

b ¢c B CalA
[0 01 1 0 07
110100
110000
011100
110010
1001 10 1|

Example 3.6.3. Consider a homotopy equivalence ¢ : Rs — Rs given by
¢(a) = ab, p(b) = bab, p(c) = cae, p(d) = dcod, ¢p(e) = dcae

where ¢ = abAB is a Nielsen path. There are two strata Hy = {a,b} and H, = {c,d, e}.
Let p. = lim,_,00 ¢"(c). We have H = {H,, H1}, A(Hy) = {c,d,e}, A(H;) = {a,b} and
A(N) = {c}. Since there are no exceptional paths, use one alphabet A = {c,d,e,a,b,0}

and a substitution {, on A whose transition matrix is given by

COoO R R ORD
== SR
OO R R =R =
ORr R, OO ONN
oONFRr OO O S
— 000 O0Oq

In this example, the frequency of occurrence of the edge path ca in p. comes from the
occurrence of the words ca and co in p.. Thus the frequency of ca in p. is equal to d¢;c +

d co,ct

Example 3.6.4. This example illustrates the discussion of exceptional paths in Proposi-

tion 3.6.1. Consider a homotopy equivalence ¢ : Rg — R¢ given by

¢(a) =ab,  ¢(b) = bab,
¢(c) =co?, ¢(d) =do,
¢(e) = eaf, ¢(f) = feoDeaf,

where ¢ = abAB. Some exceptional paths are x; = co'D for i > 0. To calculate the
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frequency of words like fx, or fco* in pf, we consider the alphabet
A ={e f,a,b,c,D,x1,x2,X3,X4,X5,0,0}

and substitution ¢ such that

{(a) = ab ¢(b) = bab,
g(c):c {(d) = do,
o(f) = fx 1eaf C(e) = eaf,
{(o) =0, {(o) =0,
C(x;) = xi4 forl <i<3,
O(x4) = C( 5) = X5.

The path v = fco* does not occur as a concatenation of splitting units in py. The path
7" = fx4 is the smallest subpath of pf that is a concatenation of splitting units and contains

7. Thus the frequency of occurrence of 7 is the same as the frequency of occurrence of 7.

3.7 Summary

In this chapter, we saw how to study substitutions which are not primitive but their
restriction to a smaller alphabet is primitive. In particular, we saw how to compute fre-
quencies of words that cross a particular subset of the alphabet, in an infinite word that is
fixed by the substitution.

A CT train track representative of ®, a fully irreducible outer automorphism relative to
a free factor system .4, satisfies Proposition 3.6.1, with top stratum exponentially growing.
We will define ‘relative currents’ in the next chapter and associate a relative current 74, to
®. The relative current 15, will assign to every word in IF which is not entirely contained
in A the frequency calculated in Proposition 3.6.1. Explicit examples of these calculations

are given in the next chapter.



CHAPTER 4

RELATIVE CURRENTS

In [Bon88], Bonahon first defined a space of geodesic currents for surfaces such that it
contains the set of closed curves as a dense set. He studied the embedding of Teichmiiller
space in the space of geodesic currents and recovered Thurston’s compactification of Te-
ichmtiller space. Currents for free groups were first studied by Reiner Martin [Mar95] in
his thesis. Analogous to geodesic currents, the space of currents for IF contains the set of
conjugacy classes of elements of [F as a dense set. Currents for free groups have also been
studied in [Kap05], [Kap06], [KL09].

Let A be a free factor system of FF. In this chapter, we define a space of currents relative
to A (also called relative currents) such that it contains the conjugacy classes of elements of
IF that are not contained in A as a dense set.

The main result of this chapter is a generalization of a theorem in [Mar95] (see also
[Uyal4]) which says that a fully irreducible outer automorphism acts with uniform north-
south dynamics on a subspace of the space of projectivized currents. Let MRC(A) (see

Definition 4.2.6) be a subspace of the space of projectivized relative currents.

Theorem B. Let A be a nontrivial free factor system of IF with {(A) > 3. Let ® € Out(F, A) be
fully irreducible relative to A. Then ® acts with uniform north-south dynamics on MRC(A).

4.1 Preliminaries

We give a short introduction to currents for free groups and define some basic terms.

411 Boundary of F
Given F and a fixed basis B of F, let Cay(IF,B) be the Cayley graph of F with respect
to B. The space of ends of the Cayley graph is called the boundary of IF, denoted by JF. It
is homeomorphic to the Cantor set. A one-sided cylinder set determined by a finite path

7y starting at the base point is the set of all rays starting at the base point that cross y. Such
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cylinder sets form a basis for the topology on JIF and are in fact both open and closed.

Let A denote the diagonal in dFF x oF. Let 9°F := (JF x oFF — A)/Z; be the space of
flip-invariant bi-infinite geodesics in Cay(IF,B). This space is also called the double boundary
of IF. Finite paths -y in Cay(IF,B) determine two-sided cylinder sets, denoted C(y), which
form a basis for the topology of 9’F. Two-sided cylinder sets are open and compact and
hence closed. Compact open sets are given by finite disjoint union of cylinder sets. Also

02FF is locally compact but not compact. The action of IF on 9°F is cocompact.

41.2 Currents for F

In [Mar95], a measured current is defined as an additive, nonnegative, [F-invariant and
flip-invariant function on the set of compact open sets in 9°F. It is uniquely determined
by its values on the cylinder sets given by words in [F. For each conjugacy class « € TF, a
measured current , can be defined as follows: for a cylinder set C in 9*TF, j, (C) is defined
as the number of lifts of a that are in C.

In [Mar95], Martin shows that the set of conjugacy classes of elements in IF is dense
in the space of measured currents, denoted MC(IFF). He also shows that the space of pro-
jective measured currents is compact. In this chapter, we aim to generalize the following

theorem:

Theorem 4.1.1 ([Mar95]). A fully irreducible outer automorphism acts with uniform north-south
dynamics on the closure of the set of primitive conjugacy classes in the space of projectivized

measured currents.

4.1.3 Bounded cancellation constant and critical length
Lemma 4.1.2 ([Coo87]). Let G be a marked metric graph and let ¢ : G — G be a homotopy
equivalence. There exists a constant BCC(¢), called the bounded cancellation constant, depending

only on ¢ such that for any path p in G obtained by concatenating two paths «, B, we have

L(¢(p)) = L(¢(a)) + L(¢(B)) — BCC(¢)

where L is the length function on G.

Let BCC(¢) be the bounded cancellation constant for ¢ : G — G, a relative train track

representative of a relative fully irreducible outer automorphism ® with top EG stratum
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H,. The transition matrix of H, has a unique positive eigenvector whose smallest entry
is one. For an edge ¢; in H,, the eigenvector has an entry v; > 0. Assign a metric to G
such that each edge ¢; in H, is isometric to an interval of length v; and all edges in G,_;
have length one. Then the r-length of edges in H, gets stretched by the PF eigenvalue Ao
under ¢. Let [, denote the r-length. Let «, 3, ¥ be r-legal paths in G. Let «.5.7y be the path
obtained by concatenating these r-legal paths. The only r-illegal turns possibly occur at
the ends of the segments of B. Thus if Ael,(B) —2BCC(¢) > 1,(B), then iterations and
tightening of ..y will produce paths with r-length of legal segments corresponding to 8
going to infinity. We call 2135%(147) the critical length for ¢.
4.1.4 A subspace of 9*F
Let A = {[A1],...,[Ak]}, k > 0, be a free factor system such that {(A) > 3.

Definition 4.1.3 (Relative basis). Let B 4 be a basis of [F such that a basis of A is a subset

of B 4. Specifically,

’BA = {allr---a115/~--/aill--~rﬂii5/---/akll---rakks/blr---/bp}

where a;; € A; and b; ¢ A for any [A] € A. Let Yk | is =: s. Define a set By to be
the collection of all words aﬁaﬁ of length two such that i # k and all b;. Note that if

rank(.A) = rank([F), then the set of b; is empty. We call B 4 a relative basis of FF.

Definition 4.1.4. Given a free factor A, a one-sided infinite geodesic starting at the base point
in Cay(IF, B 4) is in 0A if eventually it crosses only edges labeled by words in A. Note that

A is an F-invariant set. Define 9.4 = | 5, 9A;.

Definition 4.1.5 (Double boundary of A). Given a free factor A, define d?A to be the set
of bi-infinite geodesics in 9°F which are lifts of conjugacy classes of elements in A. Then

define the double boundary of A as A= |_|le 9% A;.

Definition 4.1.6. Let Y = 9%FF \ 9% A. It inherits the subspace topology from 9°F. It can also
be given a topology where cylinder sets in Y determined by finite paths that cross at least

one word in B 4 form a basis for the topology. The two topologies are in fact equivalent.

Lemma 4.1.7. Y is locally compact.
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Proof. A space is locally compact if every point has a compact neighborhood. Let x be
an element of Y. Take a finite subpath of x that cannot be written as a string of words
contained in a single [A] € A and consider the cylinder set determined by that path. Then

this cylinder set is a compact open set in Y containing x. O
Lemma 4.1.8. The action of IF on'Y is cocompact.

Proof. Consider a compact set C C Cay(FF,B 4) given by a finite union of cylinder sets
determined by all paths with one end point at the origin such that the label of each path is
a word in B 4. For every bi-infinite geodesic 7y in Y, there is a g € IF such that g - 7y crosses

a path starting at the origin determined by a word in B 4. O

4.2 Relative currents
In this section, we define a relative current. We show that the space of projective relative

currents, denoted PRC(.A), is compact and that conjugacy classes in FF \ A are dense in

PRC(A).

4.2.1 Definition of relative current
Definition 4.2.1. With respect to the basis B 4, let F \ A denote the set of all words in FF that
are not contained in any free factor A;, for 1 < i < k. Note that IF \ A contains conjugates

of words in A;, as long as the conjugating elements are not in A;.

Definition 4.2.2. Let [IF \ A] be the set of all conjugacy classes of elements in IF that are not
contained in any conjugacy class of a free factor in .A. Note that an element of F \ A can

be contained in the free product of distinct free factors representing elements of A.

Let C(Y) be the collection of compact open sets in Y. A relative current is an addi-
tive, nonnegative, F-invariant and flip-invariant function on C(Y). Let RC(.A) denote
the space of relative currents. A subbasis for the topology of RC(.A) is given by the sets
{n € RC(A) : |#(C) —no(C)| < €} whereny € RC(A),C € C(Y)and e > 0.

Out(F, A) acts on RC(.A) as follows: let 7 € RC(A), ¥ € Out(F, A) and let C € C(Y).
Then
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A relative current can also be defined as an [F-invariant, locally finite, inner regular

measure (called Radon measure) on the c-algebra of Borel sets of Y.

Lemma 4.2.3. A nonnegative, additive function on C(Y) corresponds to a Radon measure on the

Borel o-algebra of Y.

Proof. Given a nonnegative, additive function # on C(Y), define an outer measure 1* :
2Y — [0, 0] as follows: for A € 2Y
7*(A) := inf {in(Ci) tAC G C; where C; € C(Y) is a cylinder set } .
i=1 i=1

We have 17*(C) = 5(C) for C € C(Y) because every cover of a compact set has a finite
subcover and then use additivity of 1. A cylinder set C in C(Y) is outer measurable, that
is, for every A € 2Y, we have 1*(A) = n*(ANC) +n*(ANC). An outer measure is
a measure on the o-algebra of outer measurable sets which in this case is the same as the
o-algebra of Borel sets. Therefore, the outer measure 7* is a measure on the Borel r-algebra
of Y. The space Y is locally compact and Hausdorff and every open set in Y is o-compact,
that is, a countable union of compact sets. Also 77* is a nonnegative Borel measure on Y
such that it is finite on compact sets. Therefore by [Rud87, Theorem 2.18], #* is a regular

measure. O

Thus the space of relative currents can be given a weak-* topology, that is, 7, — 7 in

RC(A) iff / fan, — / f dn for all compactly supported functions f on Y. Since Y is a
Y Y

locally compact space, by the result in [Bou65, Chapter III, Section 1], RC(.A) is complete.

4.2.2 Coordinates for the space of relative currents
Fix a relative basis B 4 of F. Given w # 1 € F, consider the unique oriented path,
denoted 7, determined by w starting at the base point and let C(w) := C(7y). This
cylinder set contains unoriented bi-infinite geodesics that cross . For w € F \ A, we have
C(w) C C(Y). Orbits of cylinder sets of the form C(w) under deck transformations cover

Y. We denote 1 applied to C(w) by n(w).

e Letv € F. Then v- C(w) is the set of all bi-infinite geodesics that cross an edge path
labeled by w starting at the vertex labeled v in the Cayley graph. By F-invariance of

a relative current, 17(C(w)) = 5(v- C(w)). Thus we work just with the cylinder sets
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determined by finite paths starting at the base point. Since every compact open set
is a finite disjoint union of cylinder sets, a relative current is uniquely determined by

its values on F \ A.

e Since a relative current is uniquely determined by its values on IF \ A, a sequence of

relative currents 77, converges to 7 iff 7, (w) — n(w) forallw € F\ A.

e For any finite path 7 in Cay(F,B 4), we have C(y) = C(7), where % denotes the
opposite orientation on 7. If w and 1y, are as above, then C(w) = C(yy) = C(Yw) =
w - C(w). Thus n(w) = n(w).

o Letw = epey...e; € F\ A where each e; € B 4. Then C(w) = UC(we) where
the union is taken over all basis elements in 25 4 except ¢ = ¢;. Here e denotes the
inverse of e. Also C(w) = Ue - C(ew) where e is any basis element other than &;. Thus

additivity of a relative current can be stated as

n(w) =Y n(we) or nlw)=Y nlew).
ey o7

For example, let F = (4,b) and A = {[(a)]}, we have

n(b) = n(ba) +n(bb) +n(ba),
1(b) = n(ab) + 1 (bb) + n(ab)

o Letv,w € F\ Abe such that v is a subword of w. Then (w) < 1(v).

Example 4.2.4 (Relative current). Consider a conjugacy class « € [F \ A] such that « is
not a power of any other conjugacy class in IF. Then #,(w) is the number of occurrences
of w in the cyclic words « and @. Equivalently, one can also count the number of lifts of
« that cross the path 7, in the Cayley graph. We call such currents and their multiples
rational relative currents. For example, let F = (a,b), A = {[(a)]} and let « = ababab. Then
11a(b) = 3,74(ba) = 2,1,(abab) = 1 and 7, (bab) = 1.

Definition 4.2.5 (Length k-extension). Given w € [, a length k extension of w is a word

w' = wxy ...x, where x; € B4, x; # X;11 and x; is not the inverse of the last letter of w.
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Lemma 4.2.6. Any nonnegative function n on IF \ A invariant under inversion and the action of
F, and satisfying the condition

nw)= Y, n(v)

length one
extension of w

forallw € F \ A determines a relative current.

Proof. A set C € C(Y) can be written as a disjoint union of cylinder sets C(wy), ... C(wy)
with w; € F\ A. Then define 5(C) := Y, #(w;). The value #(C) does not depend on
the choice of w;. Thus we have an additive and nonnegative function on C(Y) which is

invariant under the action of IF. O

4.2.3 Projectivized relative currents
Let PRC(.A) be the space of projectivized relative currents. It has quotient topology
induced from RC(.A). A sequence of projective currents [#;] converges to [7] in PRC(.A)
iff there exist scaling constants a; such that the sequence of relative currents a;; converge

ton in RC(A).

Example 4.2.7. Let F = (4,b) and let A = {[(a)]}. Consider the sequence 7,1, € RC(A).
This sequence converges to a relative current 1 which is given by 7. (a"ba™) = 1 for all
n,m > 0and 7. (w) = 0 for all other w € F\ A. Whereas in the space of measured currents

as defined in [Mar95], the sequence yi,n,/n converges to the current p,.
Lemma 4.2.8. PRC(.A) is compact.

Proof. Consider a sequence of projective relative currents [#,]. We have to show that it has
a convergent subsequence. Fix a relative basis B 4 and the associated set B4 = {u1, ..., u,}
(see Definition 4.1.3). Let 7, be a representative of [1,] normalized such that 7, (u;) < 1
for all u; € By and 7,(uj) = 1 for some u; € B4. We have n,(w) < #,(u;) where
w € F\ A and crosses a path labeled u; € B4 in Cay(F,B 4). The bounded sequence
{(n(u1), ..., mn(ur)) }nen has a subsequence that converges to a nonzero element of R”.
For every w € F\ A, {#,(w) }nen is a bounded sequence and hence has a convergent
subsequence. Now by the diagonal argument, conclude that {(#,(w)),cp\ 4}uen has

a subsequence that converges to a nonzero element. Thus {[#,]},en has a convergent
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subsequence in PRC(A). O

4.2.4 Density of rational relative currents

Proposition 4.2.9. The set of projectivized relative currents induced by conjugacy classes x €

IF \ A are dense in PRC(A).

Let B 4 be a relative basis of F and let |w| denote the word length of w € F with
respect to B 4. In the absolute case, the following lemma is the main step to prove density
of rational measured currents in the space of measured currents for IF. But it does not

directly apply to the relative setting as explained below.

Lemma 4.2.10 ([Mar95, Lemma 15]). Let u be a measured current and let k > 2. Let P =
2n(2n — 1)@V pe g constant, where n = rank(F). If u(wy) > P for some wy € F with
|wo| = k, then there exists a conjugacy class « € T and the corresponding measured current p,

with u(w) > p(w) forall w € F and |w| < k.

The proof of the above lemma relies on finding cycles in a certain labeled directed graph
associated to p defined as follows: vertices are given by words of length k — 1 and edges
are given by words of length k. A directed edge w joins vertex u to vertex v if u is the prefix
of w and v is the suffix of w. An edge w is labeled by y(w). Since y satisfies additivity laws
for all words in F, this graph satisfies Kirchhoff’s law at each vertex which is crucial to find
cycles (which correspond to «) in the graph. The same graph defined for a relative current
1o does not satisfy Kirchhoff’s law at vertices which correspond to words in .A because 79

is not defined for words in A.

Definition 4.2.11 (Signed measured current). A signed measured current on 0°F is an F-

invariant and additive function on the set of compact open sets of 9°F.

We now restate the above lemma for a signed measured current which is nonnegative

on words in IF of bounded length.

Lemma 4.2.12. Let k > 2 and let 17 be a signed measured current such that n(w) > 0 for all
w € Fwith |w| < k. Let P = 2n(2n — 1)222=10 pe g constant. Ifn(wp) > P for some wy € F

with |wy| = k, then there exists a conjugacy class « € F and the corresponding measured current
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N with n(w) > n(w) forallw € F and |w| < k.

Definition 4.2.13 (k-extension of a current). For 179 € RC(.A), let 57 be a signed measured
current such that y(w) = no(w) for w € F\ A and y(w) > 0 for all words w € F with

|w| < k. We call such an 17 a k-extension of 1.

Lemma 4.2.14. Let 1o be a relative current and let k > 1. Then there exists a signed measured

current i which is a k-extension of 1.

To prove the above lemma, start by defining # on length one words in A arbitrarily and
then extend the current to length two words by satisfying the additivity property. It needs
to be checked that the constraints obtained from the additive property are consistent. A
detailed proof is given in Appendix A. Assuming the above lemma is true, we now prove

Proposition 4.2.9.

Proof of Proposition 4.2.9. We follow the same method of proof as in [Mar95, Proposition
16]. Let 59 be a relative current and let k > 2. Choose R > 0 such that Ryo(wy) > P
for some wy € F\ A with |wyg| = k. Consider a signed measured current 7 which is a
k-extension of #y9. Then by Lemma 4.2.12 applied to Ry, there exists an a1 € [F such that
Ry(w) > #a (w) for all w € F with |w| < k. If Ry(w) < #4 (w) + P for all w € F with
|w| < k, then stop, otherwise again apply Lemma 4.2.12 to Ry — 7, to obtain ay € F
such that Ryy(w) — 14, (w) > 14, (w) for all w € FF with |w| < k. By induction, )" #,, (w) <
Ry(w) < Y54 (w) + P for all words of length less than or equal to k.

It is necessary that at least one of the a; € FF\ A. Indeed, if they were all in A, then

Y- #a; (wo) = 0 which would mean Ry (wp) < P which is a contradiction. Now we have

) - B2 < 2

for all w € F with |w| < k. For w € F \ A in fact, we have

thi 7()4(?'0)
o(w) - ZHEATE ) <

P
R

where 77, is the restriction of 77, to Y.
Since R can be chosen arbitrarily large, relative currents can be approximated by sums
of rational relative currents for all w € F\ A with |w| < k. Now we can approximate

Yoz A DY %ﬂﬁm where " = wl'wy' - - - wi" and w; is in the conjugacy class of «;. ]
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4.2.5 A-Whitehead graph
Definition 4.2.15 (A-separable conjugacy class). A conjugacy class « € [F\ A] is A-
separable if it is contained in a nontrivial free factor system containing .A. Topologically,
« is A-separable if there is an F-tree T with the set of vertex stabilizers given by A such

that an axis of « does not cross every orbit of edges.

To detect when a conjugacy class is A-separable, use Whitehead’s algorithm and a
theorem of Stallings [Sta99]. As defined in [Sta99], a collection C of conjugacy classes in IF
is separable if there exist free factors F, F’ such that F = F * F’ and each conjugacy class in
C is contained in either F or F'. Leta; € A;, 0 < i < k, be a conjugacy class such that «; is

not contained in any proper free factor of A;. We say «; is filling in A;.

Lemma 4.2.16. A conjugacy class « € [IF \ A] is A-separable if and only if the collection of

conjugacy classes C = {a, aq, ..., a;} is separable.

Proof. 1f C is separable, then there exist a decomposition F = F * F’ such that each con-
jugacy class in C is contained either in F or F’. Suppose «; € F. Then we claim that A;
is contained in F up to conjugation. Suppose not. Then F N A; # @ up to conjugation.
Also the intersection of two free factors is a free factor. So «; is contained in a nontrivial
free factor of A;, which is a contradiction. Thus {[F]|, [F']} is a nontrivial free factor system
containing .4 that contains the conjugacy class w. On the other hand, if « is contained in a

proper free factor system D containing .A, then C is separable. O

Definition 4.2.17 (Whitehead Graph [Whi36]). Given a basis ‘B of [F, the Whitehead graph
of a collection C of conjugacy classes, denoted Wh(C), is defined as follows: the vertices
are given by basis elements and their inverses. There is an edge connecting vertices x and

y if Xy is a subword of a conjugacy class in C.

Theorem 4.2.18 ([Sta99, Theorem 4.2]). Let C be a collection of conjugacy classes in F. If Wh(C)

is connected and C is separable, then there is a cut vertex in Wh(C).

Definition 4.2.19 (A-Whitehead Graph). For each [A;] € A, fix filling conjugacy classes
a; € A;. The A-Whitehead graph of a conjugacy class « € [F \ A], denoted Wh(w, A), is
defined as the Whitehead graph of the collection {a, a1, ..., ax}.
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Note that even though we fix some filling conjugacy classes to define the relative White-

head graph, detecting A-separability of « is independent of them by Lemma 4.2.16.

Example 4.2.20. Let F = (a,b,c,d) and A = {(a,b)}. Let « = cadb and a; = abab. In the
A-Whitehead graph of &, a is a cut vertex with disjoint sets {a,c} and {a,b,b,c,d,d}. See
Figure 4.1. Let ¢ be the Whitehead automorphism given as ¢(a) = a,$(b) = aba, p(c) =
ac,¢(d) = ada. Then ¢(cadb) = cdb. Now the A-Whitehead graph for o’ = cdb is
disconnected, which implies that « = cadb is A-separable. See Figure 4.2. Indeed, « is

contained in the free factor system {(c, adb), (a,b) }.

4.2.6 A closed subspace of PRC(.A)

In the absolute case, when a fully irreducible outer automorphism ¥ is a pseudo-
Anosov on a surface with one boundary component, the measured current corresponding
to the boundary conjugacy class in the space of projectivized measured currents MC(F)
is fixed under the action of ¥. Thus in [Mar95], a closed subspace is considered which is
the closure of all primitive conjugacy classes in MC(IF). For the same reason, we pass to a

smaller closed Out(F, A)-invariant subspace of PRC(.A). Let

MRC(A) = {[1a) € PRC(A)|a is A-separable}
Lemma 4.2.21. [17,] € PRC(A) is in MRC(A) if and only if a is A-separable.

Proof. Let’s assume that « is not A-separable. Then by Theorem 4.2.18, the .A-Whitehead
graph of a with respect to any relative basis is connected without a cut vertex. Let w, €
F \ A be a cyclically reduced representative of x. Consider a relative current 7, where
v € [F\ A] such that 17,(w2) > 0. This means that any .A-Whitehead graph of v contains
the Whitehead graph of a as a subgraph and hence is connected without cut vertices. By
Theorem 4.2.18 and Lemma 4.2.16, this implies that v is not .A-separable. Thus 7, (w2) = 0
for all A-separable conjugacy classes v in [F \ \A], which in turn implies that #(w,) = 0 for

any [n7] € MRC(A). Since 1, (w?) > 0, we have that 7, ¢ MRC(A). O

4.3 Stable and unstable relative currents
In this section, we associate a pair of relative currents to ®, a fully irreducible outer

automorphism relative to A. A completely split train track representative of ® will be
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used for this purpose. Since such a topological representative is often defined on a marked
graph which may not be a Cayley graph, we first show how to define coordinates for

relative currents using a marked graph.

Definition 4.3.1 (Coordinates with respect to a marked graph). Let G be a marked metric
graph in Culler-Vogtmann'’s outer space, such that G has a subgraph I with F(T') = A.
Let ¢ : R — G be the marking of G. Here R is the quotient of Cay(F, B 4) under the
action of F. Let G be the universal cover of G. The map g lifts to an F-equivariant map
§: Cay(F,%B4) — G. The map § identifies 92G with 02FF and 9T with 92 A. Given an edge
path v in G, let
C(o) = {(x,y) € PF|v C (3(x),8(x))}

be a compact open set of 3°F determined by the path v of G. For a relative current 7 and
a path v of G that is not entirely contained in the lift of T, #(v) is defined to be equal to
7(C(v)). Since 7 is F-equivariant, we may consider v to be a reduced edge path in G itself.
The collection of compact open sets C(v) for all paths v in G that are not entirely contained
in I' contains the cylinder sets determined by words in [F that determine a basis for topol-
ogy of 9°FF. Since a relative current is uniquely determined by its values on elements in FF,
it is also uniquely determined by its values on compact open sets determined by reduced

paths v in G that are not entirely contained in I'.

Lemma 4.3.2. Let ¢ : G — G be a completely split train track representative of ®, a fully
irreducible outer automorphism relative to A. Let a be an edge in the top EG stratum H, such
that p, is fixed under ¢. Let v be any reduced edge path in G that crosses H,. Let d,, be the

frequency of occurrence of v in p,. Then the set of values
o + doa = 17(0)

define a unique current 1 relative to A. That is,

(a) g (v) >0,

®) 14(0) = 15(0),

(c) 1745(v) = ) 1 (ve) where E is the set of edges of G and e is not equal to the inverse of the

. eckE
terminal edge of v.
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For an edge b # a in H, we have that 175/’) = Ki11g for some constant x(a,b, §|u,). Thus for every

fully irreducible outer automorphism relative to A, get a unique projective relative current, denoted
e = [173)-

Proof. By Proposition 3.6.1, we know that the values d,, exist and are non-negative for
all reduced paths v in G that cross H,. The equation (b) holds by definition of #¢(v).
Proposition 3.6.1 provides a substitution determined by ¢. Applying Proposition 3.5.5 to
this substitution, we see that 172(2)) satisfies Kirchoff’s laws, that is, (¢) holds. Since a
relative current is uniquely determined by its values on compact open sets in 0°F deter-
mined by reduced paths in G that cross H,, we get a unique relative current #7;. Again by
Proposition 3.6.1, we have 74 (v) = Kiyg(v) for all reduced paths v in G that cross H, and
for some constant x. Thus the projective class [173] =: [17g] of the relative current 773 is also

unique. [

The projective relative current [174] is called the stable current for ®. The stable current

for ¢!, denoted [174], is called the unstable current for ®.

4.4 Examples
Relative currents are uniquely determined by their values on words in F \ A. Using
the substitution dynamics techniques developed in Chapter 3, we show some examples of
how to calculate 7 (w) for w € F \ A for some relative outer automorphisms ®. The three
examples that follow illustrate the cases when the growth in the stratum corresponding to

A is less than, greater than and equal to the growth in the top EG stratum.

Example 4.4.1. Let F; = (a,b,c). Let G be the rose on three petals labeled 4,b and c.

Consider an outer automorphism & given by a train track representative ¢ : G — G where

¢(a) =a,¢(b) = bac, $(c) = cbac.

Let A = {[(a)]}. The transition matrix for ¢ is given by

- 43

_ ==
— N~ o
= O O
— —
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Note that ® is not fully irreducible relative to A because {[(b,ac)], [(a)]} is P-invariant.
But it is still instructive to understand the limiting behavior in this simple case.

Let pp = lim,_0 ¢"(b) be a ray that is fixed by ¢. View ¢ as a substitution { on the
alphabet A = {a,b,c}. Let A; be the set of words of length I on A that appear in p,.
For example, A, = {ba,ca,cb,ac}. Note that the sets A are independent of the specific
choice b. Define a substitution {; on A, as follows: let w € A, start with x € A. Then
1(w) consists of the ordered list of the first | (x)| subwords of length I of the word {(w).
For example, {»(ba) = ba - ac - ca. Let M be the transition matrix of {; and let B; be the
transition matrix for ¢ restricted to words in IF \ \A. We want to calculate the frequency of
occurrences of words which are not in A, in py.

Let w € A and let B be a word of length [ that starts with b. Then

(w, 9" (b)) M (w, B) Bf'(w, p)

lim ~— P ) fim P iy = dy)

n—»00 n n—»00 n—00

Here A is the PF-eigenvalue of the top EG stratum. See Section 3.5 for detailed explanation.

For example, in length one and two, we have

ba ca cb ac

b c 1110
11 1100

Br = [12' 2= 1o 120
1111

Let B = b and § = ba for length one and length two words, respectively. Then

_ (565 1
dpp = BT dep = =
1 5—+/5
duc,b = = dbu,b = ( )/
V5 10
g _(=5+3v5) . (5-V5)
cab — 10 ’ cbb — 10 .

We get dy, = dpsp and d.p, = doyp + depp, which indicates that additivity holds for 17$
(defined in Lemma 4.3.2).

One way to calculate the above numbers is to compute the Jordan decomposition of
the matrix B;. Say B; = SJS~!. Consider another matrix J’ which has a 1 in the spot
for A and zeros everywhere else. Compute SJ’S~! and read off entries from the column

corresponding to B. For example, we have
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10 0 0
B,=5JS'=5 01 30\/5 0 5!
2 00 5 9 ’
3+v5
00 o G0N

[ (5-V5) B I
00 0O 10 V5 V5
(-5+3v5) (5-v5) (5-V5) 0
[ = 0 00O SJ's1 = 10 10 10
“lo o o0 ol I ) S U
0001 N V5 V5
L (5+v5)  (5+V5)
L 5 10 10 i

Example 4.4.2. Let F;, = (a,b,¢,d). Let G be the rose on four petals labeled 4,b,c,d.

Consider an outer automorphism @ given by a train track representative ¢ : G — G by

¢(a) = abbab, p(b) = bababbab, $(c) = cad, $(d) = dcad.

Let A = {[(a,b)]}. The transition matrix for ¢ is given by

O = = =0
N

W NO O

g W o O

Let p. = lim, . ¢"(c). Consider ¢ as a substitution on the alphabet A = {a,b,c,d}.
Let A; be the set of words of length | on A that appear in p.. We want to calculate the
frequency of occurrences of words, which cross c and d, in p.. Let w € A; and let y be a

word of length [ that starts with c. Using the same notation as in the previous example,

n
lim 7(w,q> (c)) = lim
n—c0 Al n—oo

M (w,y) _ . Blw7)

n—oo AN = dw,c

For example, A, = {ab,ba,bb,ad,bd,ca,da,dc} and B, = {ad,bd,ca,da,dc}. We get the

matrices
ca da dc ad bd
b e 11100
11 11000
B = [1 2} , By= 01200
11100
00011

and compute the frequencies as in the previous example.
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Example 4.4.3. Let F;, = (a,b,c,d). Let G be the rose on four petals labeled 4,b,c,d.

Consider an outer automorphism @ given by a train track representative ¢ : G — G by

¢(a) = ab, p(b) = bab, p(c) = cad, p(d) = dcad.

Let A = {[(a,b)]}. The transition matrix for ¢ is given by

c d a b
1100
1 200
M= 1111
001 2

Let p. = lim, o ¢"(c). Consider ¢ as a substitution on the alphabet A = {a,b,c,d}.
As before,

n
tim (29D _ iy
n—00 AN n—00

= lim 781 (w,7)

L

M (w, )
n

where A is the PF-eigenvalue of the top stratum. We have A, = {ab, ba, bb,ad, bd, ca,da,dc}
and B, = {ad, bd, ca,da,dc}. We get the matrices

ca da dc ad bd

b e 11100

11 11000

B = [1 2}, B,= (01 2 00
11100

00011

and compute the frequencies as above.

4.5 Goodness

In [BFH97], Bestvina, Feighn and Handel studied the legal structure of conjugacy classes
under forward and backward iterates of a train track representative of a fully irreducible
outer automorphism. In [Bri00], Brinkmann generalized some of those results to relative
train track maps which will be used in this section.

Throughout this section, ® € Out(IF, A) will be a fully irreducible outer automorphism
relative to Aand ¢ : G — G a completely split train track representative of ® with filtration
@ =Gy C Gy C -+ C Gy = Gsuch that F(G,_1) = A, and H, is the top EG stratum with
PF eigenvalue Ag > 1. In this section, we use Facts 2.4.1 about completely split train track

maps.
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In [Bri00], Brinkmann considers the following metric on G: edges in H, get length
according to the PF eigenvector such that the smallest length is one and hence edges in H,
get stretched by Ag under the application of ¢. Edges in G,_; get length one.

Throughout, we use the same notation for a conjugacy class in [F and its representative
in G which is taken to be cyclically reduced. For a reduced path p in G by [¢p(p)], we
mean the tightened image of p. Define i,(p) to be the number of r-illegal turns in p, I,(p)

the r-length of p and L,(p) the length of the longest r-legal segment in p. Recall from
2BCC(¢)

Section 4.1.3 that L; = 1
o —

is the critical r-length where BCC(¢) is the bounded
cancellation constant.

Denote by p~ a path in G with the property that the tightened image of ¢*(pF) is p.
For a subpath p of a path ¢, let [¢*(p)], denote the maximal subpath of [¢*(p)] contained
in [¢*()].

The following proposition is a generalization of [BFH97, Lemma 2.9].

Proposition 4.5.1 ([Bri00, Lemma 6.2]). Let ¢ : G — G be a relative train track map and let H,
be an EG stratum. For every L > 0, 3M(L) > 0 such that if p is a path in G, that crosses Hy,
then one of the following holds:

(a) [¢M(p)] contains an r-legal segment of r-length > L.
(b) [¢pM(p)] has fewer r-illegal turns.

(c) p can be expressed as a concatenation T1p'1p, where I,(t1) < 2L, I,(12) < 2L, ir(11) <
1,i,(12) < 1, and p' splits as a concatenation of pre-Nielsen paths (with one r-illegal turn

each) and segments in G,_.

Lemma 4.5.2 (Backward iterations). Let ¢ : G — G be a completely split train track repre-
sentative of a fully irreducible outer automorphism relative to A. Given some number Ly > 0,
there exists M > 0, depending only on Lo and H,, such that for any subpath p of an A-separable

conjugacy class w realized in G, with 1 < L,(p) < Lo and i,(p) > 5, we have

(3) ey < ilo™™)

foralln > 0.
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Proof. In [Bri00, Lemma 6.4], the same statement is proved for atoroidal outer automor-
phisms and for any path in G,. The same proof follows by using Facts 2.4.1 about com-
pletely split train track representatives.

Given L = Lo + Lf, choose M as in Proposition 4.5.1. Subdivide the path p into subpaths
P1,-.,pm, T such that i,(p;) = 5 and i,(t) < 5. Let p; ™ be the pre-image of p; under
®M. Then p~M is the concatenation of pi’M and 7M. We claim that ir(pi’M) > 6 for
all i. Suppose for contradiction that i,(p; ) = 5 for some i. Then by Proposition 4.5.1,
p; M splits as a concatenation of at least three pre-Nielsen paths and paths in G,_;. By
Facts 2.4.1, every Nielsen path has period one and there is at most one INP ¢ of height
r. If o is not closed, then at least one end-point of ¢ is not contained in G,_;. Therefore,
we cannot have three Nielsen paths in pi’M separated by paths in G,_;1. If ¢ is closed,
then its end point is not in G,_;. Since « is A-separable, it cannot have two consecutive
occurrences of ¢ in it. Indeed, since ¢ (which is not contained in G,_;) is fixed by ¢, it is
not A-separable. Therefore, its relative Whitehead graph is connected without cut points.
If « has two consecutive occurrences of ¢, then its relative Whitehead graph will also be
connected without cut points, but « is .A-separable. Therefore, p and p;M cannot have two
consecutive occurrences of ¢.

We claim that i,(0~M) > 6m +i,(t) > (10/9)i,(p) and the lemma follows by induction.

Indeed, we have
ir(p~™) > 65 + ir(7)
ir(p) T 5s+ir(7)

.10
-9

when i,(t) = 4 and s = 1. Here i,(p) = 5s + i,(T) because the concatenation points are

legal. O

Lemma 4.5.3 ([Bri00, Lemma 6.5]). Suppose H, is an EG stratum. Given some L > 0, there
exists some constant C > 0 such that for all paths p C G, with 1 < L,(p) < L and i,(p) > 0, we

have
C Y (p) <1:(p) < Cir(p).

The notion of goodness was introduced in [Mar95] and formalized in [BFH97].

Definition 4.5.4 (Goodness). Given a loop or a path a in G, that crosses H,, we say that the

good portion, denoted g, of « is the set of r-legal segments that are r-distance Ly away from
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r-illegal turns. The bad portion, denoted b, is the part of & which is r-distance less than or
equal to L{ from an r-illegal turn. The r-length of « is equal to the r-length of ¢ (denoted
<r(a)) plus the r-length of b (denoted b, («)). Define goodness of « as
gr(@)
a) = .
g(a) ()

Lemma 4.5.5 (Monotonicity of goodness). Let 6 > 0 and € > 0 be given. Then there exists

an integer M = M(J, €) such that for any A-separable conjugacy class « that crosses H, with
g(a) > 6, we have g(¢™ (x)) > 1 — € forall m > M.

The proof of the above lemma which is the same as in the absolute case can be found

in [Uyal4, Lemma 3.10].

Definition 4.5.6 (Desired growth [Bri00]). Let ¢ be a path in G that crosses an EG stratum
H,. We say ¢ has desired growth if there exist N > 0,A > 1, > 0 and a collection of
subpaths S of ¢ such that the following hold:

(a) For every integer n > 0 and for every p € S, we have
AL (p) < max{L([¢"" (p)]o), (1)},
where 7 is a subpath of ¢~V such that [¢"N ()], = p.
(b) There is no overlap between distinct paths in S.
(c) The sum of the lengths of the paths in S is at least €I, ().

Lemma 4.5.7. Let « € F be an A-separable conjugacy class that crosses H,. Then « has desired

growth either under forward iteration or under backward iteration.

Proof. Let Ly > L be a constant. There are several cases to consider.

1. l"’(“)
ir(a)
has desired growth in the forward direction.
L ()

2. -
ir()

(a) ir(a) > 5. By [Bri00, Proposition 7.1 (2)(b)(ii)] and using Lemma 4.5.2, 4.5.3 we

> Lo. The proof of [Bri00, Proposition 7.1 (2)(b)(i)] shows that in this case, «

< Ly.

get desired growth in the backward direction.
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(b) i,(a) < 5. We have that « is .A-separable and crosses H, nontrivially. Therefore,
« is not fixed and does not have two consecutive occurrences of a closed INP.
Since I,(«) is bounded from above, there are only finitely many possibilities for
« N H,. Suppose the r-length of no segment of « N H, grows under ¢. Since
there are only finitely many segments of H, of bounded length, after passing
to a power, assume that a segment «; of a N H, is fixed under ¢. Also the end
points of a; are in H, N G,_1. There has to be an illegal turn in «;, otherwise it
would grow and in fact, it has to be an INP because it persists. But at least one
end-point of an INP in G is not in G,_1, thus we get a contradiction. Therefore,
we can pass to a uniform power M such that ¢M(«) satisfies (1) and hence has

desired growth in forward direction.

It can be seen in Brinkmann’s proofs that the numbers N, A, € do not depend on a specific

conjugacy class. O

Let ¢' : G’ — G’ be a completely split train track representative of ®~!. Let I,s, i, L,
and C’ be the corresponding notation related to ¢’. There exists a constant B such that for
any conjugacy class &, we have

lr’ (D‘)
B

< lr(“) < Blr’(“)'
Let g’ denote the goodness with respect to the train track structure of ¢'.

Lemma 4.5.8. Given 6 > 0, there exists M > 0 such that for any A-separable conjugacy class «

that crosses H,, either
o g(¢"™(a)) > éforalln > 1or
o o' ((¢)"M(a)) > 6 foralln > 1.

Proof. Let Ly > L{ be the constant from Lemma 4.5.7. By the same lemma, there exist
N > 0,A > 1 and € > 0 such that any .4-separable conjugacy class that crosses H; has

desired growth. There are two cases:

(a) Let’s first consider the case when a has desired growth in the forward direction. This

happens when [,(«) > Loi,(«). For case 2(b) in the proof of Lemma 4.5.7, pass to a



47

uniform power of & which satisfies I,(«) > Loi,(«). Let S be the collection of maximal
r-legal subpaths of a of r-length at least Ly + 1. Then by the choice of Ly we have for

pES,
1

L()—I-ll (P)

The paths in S account for a definite fraction € > 0 of x. Now

(@™ (p)) > A"

nN nN n
2™ = D0 el > A Corg el 2 A el ()

We also have I, (¢"N (a)) < AZNI,(«). Thus

8™ W) =

(b) If « has desired growth in the backward direction, then Lemma 4.5.2 and Lemma 4.5.3

imply
B¢ () 2 19~ @) = i (g™ @) 2 () e

Now the number of '-illegal turns in (¢')"N(a) is bounded above by those in a. We

have
i ((9)™(@)) < i (@) < C'loa).
Also the bad portion of (¢')"N(a) is bounded from above by 2Li, ((¢')"N («)). Thus

2L, C'BC? 2L, C'B2C?
/ \nN >1— r >1— r’ .
o (90" ) = 1= =g =1~ ~(1079)

Now by Lemma 4.5.5, find M > 0 such that either one of the goodness is greater than
J. O

4.6 North-south dynamics
We are now ready to prove a north-south dynamic result. Recall we have @ a fully irre-
ducible outer automorphism relative to A and a completely split train track representative

¢ : G — G. We also have a stable current [74] and an unstable current 5] in MRC(A).

Notation 4.6.1. Let G be a marked metric graph in CV,, and let G be the universal cover of G.
By identifying 9*IF with 9?G, we can define relative currents on cylinder sets determined

by paths in G.
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Let a be the realization in G of a conjugacy class in IF and let v be a reduced path in G.

Let (v, &) be the number of occurrences of v in «. For a relative current 7, let
{0.1):=n(), (v,a):=(0,0)+(7,a)

nl=) (&)

ecEH,
where EH, is the set of edges in H,.

Proposition 4.6.2. Given a neighborhood U of (4] in MRC(A), there exists 0 < 6 < 1 and
M(U) > 0 such that for any [n,] € MRC(A), with g(«) > 6, we have that ¢" ([1.]) € U for all
n > M.

Proof. The proof is similar to the proof of [Uyal4, Lemma 3.11].
A relative current [5] is in U if there exists € > 0, R >> 0 both depending on U such
that for all reduced paths v with 0 < I,(v) < R, we have

(0,m) _ (0ng)
il gl

<e.

We need to show there exists a 6 > 0 and M(U) > 0 such that for any conjugacy class «

with g(«) > ¢ and for any n > M, we have that

() (0,13)

< ¢, which is the same as
1 (a) | 1 lr

(0.9"(@) _ (o1g)|
lr(fP”(ﬂé)) g lr

Let a be written as a concatenation of some good edges denoted c; in H,, some bad

edges denoted b; in H, and some subpaths in G, 1. Since there are only finitely many
edges in H, and finitely many paths v up to intersection with H, with /,(v) < R, pick an
integer No(U) > 1 such that

v, ¢"(ci))  (v1g)
r(¢™(ci)) "7q>‘r

for all edges c; and all n > Ny(U). The following is true by triangle inequality.

<e/4

{
1

(0.9"(@) _(og)| | (@¢" (@)  Llo,¢"()|  |T(9"(c) Y@ ¢"(c))
L(@"(a)  L(ng) |~ [ I(¢n())  L(¢"(a)) (@)  Lh(¢"(ci))
L Zl9"(e) (o)
Lh(@na))  Inglr

We will look at individual terms in the inequality and find upper bounds.
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e The following argument will show that one can choose Ni(U) > 0 and 6 > 0 such
thatif n > N;(U) and if g(«) > J, then the contribution to occurrences of v in ¢" («)

from mixed regions and from bad portions of « is arbitrarily small.

The segment v can occur in ¢"(«) either as a subsegment of some ¢"(c;), or as a
subsegment of ¢" (b;), or v can cross those mixed regions in ¢" (x) whose pre-image
in « is also a mixed region. The number of such mixed regions is bounded by /,(«).

Thus

(0,¢"(0)) L0, ¢"(c))| . Ri(@)  ¥{o,¢"(bi))
L(¢"(@) L") |~ L(¢"(a)  L(¢"(a))

Using the definition of goodness, we have the following:

L(¢"(a) > Afg(@)l(a),  b(a) <L(a)(1—g(w), Y L(¢"(b:) < ALbr(a)
where b, () is the length of the bad portion of a. Thus

Y L("(bi) _ AM1—g(a))l(a) (1-g(a))
L)~ Aawb@ - o) <t

Choose ¢ > 0 such that ﬁ < 6 < 1 and such that the above statement holds for
g(a) > 6. We have

Rl () < R
(¢"(a)) — Atg(a)
Choose N1(R,e) = Ni(U) > 1 such that N; > log, (R(1+4/¢€)) and g(a) > 6 so

that
R|al, <
()] — Arg(w)
for all n > Ny(U). Thus for all n > N;(U), we have
(v,¢"(a)) _ YAv.9"(ci))

|9 ()] |9 (@)1

<e/4

<e/2

Zl (9" (bz))Z< ¢"(ci))
= L(en(a) Ll (¢"(ci))

|z<v,¢"(ci)> (v ¢" () < (e/4)(1)

L(¢"(a)  EL(¢"(ci))
foralln > Ny (U).

(0. ¢"(c1)) _ (0,7g)

Yh(¢"()  |ngl L(¢(cd))  Ingls

for some edge c; in H, by using mediant inequality (for a,b,c,d > 0, we have that

u+c a
d b = E)forallnzNo.

Y(v,¢"(ci))  (v1a) <e/d
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Thus combining the three steps, we have that

0,9"(@) _{o.lah| _
L) gl | T
for all n > M(U) where M(U) = max{Ny, N1 }. O

Lemma 4.6.3. Given neighborhoods U and V of 4] and [ng] in MRC(A), respectively, there
exists My > 0 such that for any A-separable conjugacy class a that crosses H,, either ¢" ([1.]) €
Uor (¢)"([1«]) € V forallm > M;.

The proof follows from Lemma 4.5.8 and Lemma 4.6.2.

Proposition 4.6.4 ([LU15, Proposition 3.4]). Let ¢ : X — X be a homeomorphism of a compact
space X and assume that X is sufficiently separable, for example metrizable. Let Y C X be a dense
set, and let P, Q be two distinct ¢-invariant points in X. Assume the following holds: for every
neighborhood U of P and V of Q, there exists an integer My > 1 such that for all m > M, and
ally € Y, one has either " (y) € U or ¢~ " (y) € V. Then ¢* has uniform north-south dynamics
from P to Q.

Proof. We recollect the proof from [LU15, Proposition 3.4] here. Let K be a compact set
in X\ Q. The set K may or may not be disjoint from V. If not, then consider an open
neighborhood W of K which is also disjoint from Q. Then V; = V \ (VN W) is also a
neighborhood of Q. Now consider y € Y N f™(W). Then f~"(y) is not in V; because W
is disjoint from Vj, therefore f”(y) € U. Since Y is dense in X, Y N W is also dense in W.
This is not true for a closed set or a compact set, we need an open set. Consider an open
set U; C U such that U; C U. We need this because we are working with a dense set and
will need to take a closure. Therefore, f™(f™(W)) is in Uy. Thus f2"(K) is in U. Similar

argument works for f~!. Thus 2 has generalized north-south dynamics. ]

Proposition 4.6.5 ([LU15, Proposition 3.5]). Let ¢ : X — X be as in Proposition 4.6.4 with
distinct fixed points P and Q and assume that some power ¢° with s > 1 has uniform north-south

dynamics from P to Q. Then ¢ also has uniform north-south dynamics from P to Q.

Theorem B. Let A be a nontrivial free factor system of IF such that {(A) > 3. Let ® € Out(F, A)
be fully irreducible relative to A. Then ® acts with uniform north-south dynamics on MRC(A).
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Proof. The proof follows from Lemma 4.6.3, Proposition 4.6.4 and Proposition 4.6.5. O

4.7 Summary
In this chapter, we defined relative currents and showed that a fully irreducible outer
automorphism relative to A acts with uniform north-south dynamics on a certain subspace
of the space of projectivised relative currents. In the next chapter, we will show that such an
outer automorphism also acts with north-south dynamics on a relative version of Culler-
Vogtmann’s outer space. In Chapter 6, we will establish a duality between relative currents

and trees in relative outer space.
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Figure 4.1. Whitehead graph for &« = cadb and a; = abab, Example 4.2.20
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Figure 4.2. Whitehead graph for « = cdb and a1 = abab, Example 4.2.20



CHAPTER 5

NORTH-SOUTH DYNAMICS ON RELATIVE
OUTER SPACE

In the surface theory, a pseudo-Anosov mapping class group element acts with uni-
form north-south dynamics on the compactified Teichmdiller space. In [BFH97], Bestvina,
Feighn and Handel showed that a fully irreducible outer automorphism acts with north-
south dynamics in the interior of Culler-Vogtmann’s outer space CV,,. Then in [LLO03],
Levitt and Lustig showed that in fact, north-south dynamics holds for all points in the
closure of CV;. The key technical tool they introduced was a map called Q-map defined
from the boundary of F to the completion of a tree in CV; union its boundary. In this
chapter, we aim to generalize the north-south dynamics result to the action of a relative
fully irreducible outer automorphism on the closure of relative outer space, PO(TF, A).

The main result of this chapter is the following;:

Theorem C. Let A be a nontrivial free factor system of F such that (A) > 3. Let ® € Out(F, A)
be fully irreducible relative to A. Then ® acts on PO(F, A) with uniform north-south dynamics.

5.1 Relative outer space
In [GLO7], Guirardel and Levitt define relative outer space for a countable group that

splits as a free product

G:Gl*...*Gk*FN

where N 4k > 2. In [Hor14], Horbez shows that the closure of relative outer space is
compact and characterizes the trees in the closure of relative outer space. In our setting,
G =FanditsplitsasF = Ay *...x Ay x Fy fork > 0. Let A = {[A1],...,[A]} be the
associated free factor system of F.

Subgroups of F that are conjugate into a free factor in A are called peripheral sub-

groups. An (F, A)-tree is an R-tree with an isometric action of IF, in which every peripheral
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subgroup fixes a unique point. A Grushko (F, A)-tree is a minimal, simplicial metric
(FF, A)-tree whose set of point stabilizers is exactly the free factor system .4 and edge
stabilizers are trivial. Two (I, .A)-trees are equivalent if there exists an F-equivariant
isometry between them. An (I, A)-tree T is small if arc stabilizers in T are either trivial, or
cyclic and nonperipheral. A small (FF, A)-tree T is very small if in addition, the nontrivial
arc stabilizers in T are closed under taking roots and tripod stabilizers are trivial.

The unprojectivized relative outer space O(IF, A) is the space of all equivalence classes of
Grushko (F, A)-trees. Relative outer space, denoted PO(F, A), is the space of homothety

classes of trees in O(F, A).

Example 5.1.1. (a) Let F = A; x Ay. In this case, relative outer space is just a point
represented by a one edge splitting with vertex stabilizers A; and A, and trivial edge

stabilizer.

(b) Let F = Ay x Z. In this case, relative outer space is one-dimensional. A schematic is
shown in part (i) of Figure 5.1. The central vertex v in (i) corresponds to the graph
shown in (ii) and the end points of the one simplices in (i) correspond to graphs shown
in (iii).

(c) Let F = A; x Ay x Az. In this case, relative outer space is unbounded with respect to

the simplicial metric.

The graph of groups decomposition of F represented in Figure 5.2 is called a relative

rose.

5.2 Preliminaries

Let ® be a fully irreducible outer automorphism relative to A.

Notation 5.2.1. Let ¢}, : G’ — G’ be a relative train track representative of ®, where G’ is a
marked metric graph in CV,, with filtration @ = Gy C G; C ... C G, = G’ such that A =
F(Gy-1) and the top stratum H, is an EG stratum with Perron-Frobenius eigenvalue A¢ >
1. Denote by A} the attracting lamination associated to H, and by A (G’) its realization
in G'. Let Tg be the universal cover of G’ and let ¢/ : Te: — Tg be a lift of the map

¢ : G — G’ which satisfies ®(g) o ¢’ = ¢’ o g for g € FF.
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Definition 5.2.2 (A-train track map). Let T¢ be the tree in O(F, A) obtained by equivari-
antly collapsing the maximal ¢’-invariant proper forest of Ti. Denote the collapse map by
7 : Tgr — Tg. See Figure 5.3. The map ¢’ : Tgr — T descends to a map ¢ : Tg — Tg
representing ®. Let G = T¢/IF and ¢ : G — G be the corresponding map. We say ¢y is an

A-train track representative of ®.

5.3 Stable and unstable trees

Out(F, A) acts on O(F, A) via

Ity (a) =I7(¥(a))

for ¥ € Out(F, A) and for every conjugacy class « € IF, where I7(a) is the translation
length of @ in T. A stable tree Tq"f of ® is defined as follows:

p
T, = lim Te9”
p=oo AR

In other words,

p
Ips (2) = lim w'
¢ P A

The stable tree is well defined projectively and we denote the projective class by Tg .
The unstable tree, denoted T, , of ® is defined to be the stable tree of ® 1. The fact that Tég
do not depend on the choice of the train track map ¢ follows from the same arguments as

in [BFH97, Lemma 3.4] whose relative version is stated below.

Proposition 5.3.1. Let T € PO(F, A). Suppose there exists a tree Ty € PO(F, A), an equivari-
ant map h : Ty — T and a bi-infinite geodesic vy C Ty representing a generic leaf 7y of Ag such

that h(vyo) has diameter greater than 2BCC(h). Then
(a) h(7yo) has infinite diameter in T.
(b) there exists a neighborhood V of T such that ®F (V') converges to Tg uniformly as p — oo.

The proof of Proposition 5.3.1 is essentially the same as in the absolute case in [BFH97,
Lemma 3.4] and [LL03, Proposition 6.1]. After proving Proposition 5.3.1, our goal will be
to prove that every tree T € PO(F, A) satisfies the assumptions of Proposition 5.3.1 if 1 is

allowed to be either in A or Ag.
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Proposition 5.3.1 (a). Fix an equivariantmap y : Tg — Tp with some bounded backtracking.
Let o be the tightened image of v, a generic leaf of A}, under u. Leth : Ty — T be
the [F-equivariant map as given in the proposition. If AB C T is a segment, denote by
I7(v(AB)) the length of the tightened image of AB under v = ho u. Let Lip(v) be the
Lipschitz constant of v and let BCC(v) be the bounded backtracking constant. We have
BCC(v) < Lip(u) BCC(u) + Lip(h) BCC(h).

By assumption, there is a segment AgBp in g such that its image in T by & has length
greater than 2BCC(h). Let o be the central subsegment of h(Ag)h(By) whose length is
Ir(h(Ao)h(By)) — 2BCC(h). We can find a segment AB C < such that its image by u
contains AgBp and hence its tightened image by v contains ¢. Choose m such that ¢ (e)
contains a translate of AB for every edge ¢ in Tg. If B is any leaf segment contained in AJ,
then IT(v(¢™ (B))) > Ir(c)|B| where |B]| is the simplicial length of  in Tg.

We claim that /() has infinite diameter in T. Indeed, the attracting lamination is
given by the closure of a generic leaf, say g. A leaf v € 7y if every subsegment of 7 is
contained in 7. Since %y is invariant under the action of ¢, we have ¢ () € 7o. This

implies that ¢ (B) is a subsegment of yg. Thus /(7o) has infinite diameter in T. O

We have that (o) has infinite diameter in T. Consequently, for every edge e € T, the
length I7(v(¢?(e))) tends to infinity with p. Let B be an arbitrary edge path in T; and let

d+(,3) — lim ZTG((PP(/%)).

peo AR
The following lemma is restating Lemma 7.1 and Lemma 7.2 in [LLO3] in the relative

setting and will be used to prove Proposition 5.3.1(b).

Lemma 5.3.2. (a) There exists ¢ > 0 such that for all  C AL (Tg)
Ir(v(9"(B)))
p=ee /\élTG (B)
(b) Let B be an arbitrary edge path in Tg. Then

(@ (B)
P Agd(B)

and the convergence is uniform, that is, it is independent of B.

= C.

Proof. The proofs are essentially the same as for [LL03, Lemma 7.1, 7.2]. We provide the

proofs here for completeness.
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(b)
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For an edge ¢ in Tg let N} be the number of occurrences of e in ¢? (). Since transition
matrix of ¢p : G — G is primitive, lim, N/ Afb has the form c.kg where c, depends
only on e and kg depends on B. Since I, (¢P(B)) = Allr,(B) = ¥ NIz, (e), where the
sum is taken over orbits of edges in Tg. Up to normalization, we have kg = I, (B). We

have that

N¢
lim ————
P Al lTG (ﬁ)

= Ce.

Given € > 0, fix po such that IT(v(¢P°(B))) > (1/€) BCC(v). This is possible because
by Proposition 5.3.1(a), a generic leaf of AJ is unbounded in T. Consider ¢P*70(B)
which is a union of translates of ¢ (e), with ¢*0(e) appearing N} times. We get the

following;:

Y NE(Ir(v(¢(e))) — 2BCC(v)) < Ir(v(¢" P (B))) < Y Nelr(v(¢"(e))).

Dividing throughout by AL I7_ (), we get

o < HE@ @) e
(1—26)2% r(v(¢P(e))) < AT (B) SZ%OIT( (9™ (e))).

We claim that I7(v(¢#(e))) /Al is bounded which implies that the limit in the state-

ment of the lemma exists. Indeed, we have I1_ (¢ (e)) = Al I, (e). Under the map v,

we get that I7(v(¢P(e))) < A7, (e) Lip(v).

Write 8 as a concatenation 81 - B2 - ... - B such that each f; is a subsegment (or a trans-
late of a subsegment) of A (T;). The maximum amount of cancellation under the map
¢* is given by AL lr. (B) — 1. (¢7 (B)) which is less than or equal to A% (I, (B) — d+ (B)).
Also if ¢*(B;) and ¢*(Bi+1) overlap in a segment of length D, then the cancellation
between their tightened images under v in T is bounded by D Lip(v) +2BCC(v). From

this, we obtain,

< Ap(l15(B) — d+(B)) Lip(v) + kBCC(v).

- LIn(u(

Dividing by AL 7. (8) and using part(a), we get

lim
p‘)OO

(o1 e

Ir(v( I ﬁz
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Replacing B by ¢7°(B), we have

@) | (g de@ e
P [ AL Iz, (@77 (B)) ‘§<1 lTG<¢Po<ﬁ>>>Lp( )

d, (¢P AR .
We have AR0d. (B) = d(¢P°(B)). Thus for py large, ZTG((Z,,%((?))) = ZTGQE(P%(([;))) is close to 1.

Thus we get the desired limit. Also notice that the convergence only depends on the

Lipschitz constant of v. O

Proof of Proposition 5.3.1(b). Let g € IF be a nonperipheral conjugacy class. For n > 1, let §,
be a fundamental domain for the action of ¢" € IF on Tg. Let ||g||r be the translation length
of gin T. Since I7(v(¢7(Bn))) — 2BCC(v) < ||@F(g")|Ir = [Ig"|[rgr < Ir(v(¢7(Bn))) and
dy(Bn) = 18"ll1z, by Lemma 5.3.2, we get

18" |7
C/\g

— 18"l as p — oo.

Since ||g||T = limy— ||8"]|7/71, we get that T converges to T, under forward iteration by
D.

For T’ close to T, there exists I’ : Ty — T’, linear on edges such that images of edges
have approximatey the same length in T’ as in T. Thus Lip(h) is close to Lip (/') and thus
Lip(v’) is close to Lip(v). Since the convergence in Lemma 5.3.2(b) depends only on the
lipschitz constant of v, we can find a small neighborhood V of T where the convergence is

uniform. O

Our goal now is to prove that every tree T € PO(F, A) satisfies the assumptions of
Proposition 5.3.1 if  is allowed to be either in A$ or Ag. We prepare ourselves for this
task by proving some results about Whitehead graphs, transverse coverings and Q map in
the next three sections which will then be put together in Section 5.7 to complete the proof

of Theorem C.

5.4 Relative Whitehead graph
The main lemma in this section is Lemma 5.4.6 which is used in the proof of Lemma 5.7.1.
We first recollect some observations in the absolute case about the Whitehead graph for a
fully irreducible automorphism. We then define a relative Whitehead graph and make

similar observations for a fully irreducible automorphism relative to A.
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Let : I — I' be a train track representative of a fully irreducible automorphism where

I' e CV, and let Ajp' be the attracting lamination.

Definition 5.4.1 (Whitehead graph [BFH97]). At a vertex v of I, the Whitehead graph, de-
noted Wh(v), is defined as follows: the vertices are given by the outgoing edges incident
at v and two vertices are joined by an edge if the corresponding outgoing edges in I' form

a A;g -legal turn, that is, there is a ip-iterate of an edge of I that crosses that turn.

If ¢(v) = w where v, w are vertices in I', then ¢ induces a simplicial map from Wh(v)

to Wh(w).

Definition 5.4.2 ([BFH97]). A finitely generated subgroup H of F carries a lamination A
if there exists a marked metric graph I'p, an isometric immersion i : I'y — Ty with
m1(i(Ty)) = H and an isometric immersion [ : R — TI'y such that i o[ is a generic leaf

of A(rg).

Proposition 5.4.3 ([BFH97, Lemma 2.1, Proposition 2.4]). (a) At every vertex of I', the White-

head graph is connected.

(b) Suppose 1t : I — T is a finite sheeted covering space and ' : T" — T is a lift of 1. Then the
transition matrix of ¢’ is primitive and the Whitehead graph of ¢’ at a vertex v of I is the lift
of the Whitehead graph of ¢ at 7t(v) and in particular is connected.

(c) If a finitely generated subgroup H of [F carries Afp“ , then H is a finite index subgroup of IF.

We now look at an example of the Whitehead graph of a fully irreducible automor-

phism relative to A to see why a notion of a relative Whitehead graph is needed.

Example 5.4.4. Let F, = (a,b,c,d), A = {[(a,b)]} and ® a relative automorphism be given
by

®(a) = ab,®(b) = b, P(c) = cad, ®(d) = dcad.

Let ¢ : G’ — G’ be a relative train track representative of ® where G’ is the rose on four

petals labeled 4, b, ¢, d and vertex v. The Whitehead graph at v is shown in Figure 5.4.
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The Whitehead graph at v is disconnected with two gates {c,c,a,d} and {a,b,b,d}. If
all the directions coming from the rose corresponding to (a,b) are identified, then we do

get a connected graph.

We will now define a relative Whitehead graph. Let ¢ : G — G be the A-train track
representative of a relative fully irreducible automorphism @ from Definition 5.2.2, with

the attracting lamination AJ.

Definition 5.4.5 (Relative Whitehead graph). Let v be a vertex of G of valence greater than

one.

e If v has trivial stabilizer, then the relative Whitehead graph is defined as in Defini-

tion 5.4.1.

e If v has a nontrivial stabilizer, then do the following: attach a rose representing the
vertex stabilizer at v, construct the Whitehead graph as in Definition 5.4.1 and then
identify all the directions coming from the attached rose. Thus the vertices of the
relative Whitehead graph are the outgoing edges incident to v and a vertex, denoted

v 4, representing the nontrivial vertex stabilizer A.

In Example 5.4.4, after collapsing the maximal invariant subgraph of G, we get a
graph G which is a rose with two petals and vertex stabilizer A = (a,b). The relative
Whitehead graph at the vertex of G has vertices corresponding to ¢, ¢, d,d, v and is shown
in Figure 5.5.

Before stating the next lemma, let’s look at two examples of covering spaces for the
relative rose, one by a finite index subgroup and another by an infinite index subgroup.

Let Fs = (a,b,c,d,e, f) and A = {[{(a, )], [(c,d)]}.

o Let H = (a,b,ef) be a subgroup of F. The (infinite sheeted) cover of the relative rose

corresponding to H is shown in Figure 5.6:

e A finite sheeted cover whose fundamental group contains H = (a, b, ef) is shown in

Figure 5.7:

Lemma 5.4.6. Let ¢g : G — G be an A-train track representative of a fully irreducible automor-

phism relative to A.
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(b)

(c)
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The relative Whitehead graph of ¢ is connected at each vertex of G.
Suppose p : G” — G is a finite sheeted covering space such that for every vertex v of G”,
p«(Stab(v)) = Stab(p(v)), and ¢"" : G” — G" is a lift of ¢o : G — G. Then the relative
Whitehead graph of ¢ at a vertex v of G” is the lift of the relative Whitehead graph of ¢ at

p(v) and in particular is connected.

Let H be a ®-invariant, finitely generated subgroup of IF such that for every [A] € A, HN A

equal to A, up to conjugation. If H carries A, then H has finite index in F.

Proof. (a) The same proof as in the absolute case works by doing a blow-up construction

(b)

([BH92, Proposition 4.5]) at a vertex. We give a proof here for completeness. Suppose
the relative Whitehead graph at a vertex of G is not connected. For simplicity, let’s
tirst assume G has only one vertex v with valence greater than one. Then this vertex
is fixed under ¢. Construct a new graph G by first deleting the vertex v and adding a
new vertex v; for each component of the relative Whitehead graph. Then connect all
the new vertices to a common vertex T by edges E;. Thus G is a blow-up of G at v.
There is a homotopy equivalence ¢ : G — G such that no leaf of the lamination crosses
the new edges E;. The fundamental group of the complement of UE; gives a nontrivial

®-invariant free factor system containing A, which is a contradiction.

If G has more than one vertex of valence greater than one, then do the blow-up con-

struction at all the vertices of valence greater than two and repeat the argument.

The graph G” gets a legal turn structure from the lift of G and it gets a legal turn
structure from the map ¢”. It needs to be shown that a turn in G” whose image in G is

AJ-legal is in fact crossed by a lift of a leaf of AJ to G”.

(i) Leta”,b” be two edges incident at a vertex v of G” where p(a”’) = aand p(b") =
b are such that ab is a legal turn at p(v”) = v in G. The same proof as [BFH97,
Lemma 2.1] works in this case. We present a proof here for completeness. Since
the transition matrix of ¢p : G — G is primitive, after passing to a power, assume
that ¢p(a) = ...ab.... Thus a has a fixed point x. Since ¢y is a homotopy
equivalence, ¢” permutes the set p~!(x). After passing to a power, assume that

¢’ also has a fixed point on a”. Thus a” maps over a”b” under ¢”. Since the
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image under ¢ of an edge of G” crosses the turn formed by 4 and b”, a leaf of

the lamination associated to ¢ (which is the lift of Ag) crosses that turn.

(ii) Let v be a vertex of G” with nontrivial vertex stabilizer. Let a” be an edge at v”
such that a = p(a”) and it forms a Aj-legal turn with the vertex stabilizer of
p(v") = v, that is, after passing to a power ¢o(e) = ...aw... for some edge e and
some path w in a blow-up of the vertex stabilizer of v. After passing to a further
power, assume that ¢o(a) = ...aw.... Thus a has a fixed point. Now by the same

argument as in the previous case, ¢" (a”") maps over a"w".

(c) Let I'y be the core of the covering space of G corresponding to a subgroup H as in the
statement of the lemma. Here I'y is a finite graph. Leti : 'y — G be the isometric
immersion. If H has infinite index in F, then add more vertices and edges to I'y to
complete it to a finite sheeted covering I'}; of G. Then pass to a further finite sheeted
cover I'}; such that ¢p : G — G lifts to a map ¢” : I, — T,. By the previous part,
the relative Whitehead graph is connected at every vertex of I'};. Therefore, lifts of the
leaves of AL (G) cross every edge of I'/;. Under the projection p : I'f; — I'}, the edges

added to I'yy are crossed by leaves of A so H does not carry Ag. O

5.5 Transverse covering
Let ¢o : G — G be an A-train track representative of a relative fully irreducible
automorphism ®. Let ¢ : T — T be a lift to the universal cover T of G. In this section,
we define a transverse covering for T which will be used in the proof of Lemma 5.6.12.
Define an equivalence relation on A (Tg) as follows: two leaves vy, 7/ are equivalent
if there is a sequence of leaves v = 1,72,...,7» = 7 such that 7; and ;1 overlap in a
nontrivial edge path in Tg. Let Y(AL) = {Y;}ics be the set of subtrees of T; such that Y; is

the realization of leaves of A (Tg) in an equivalence class.

Definition 5.5.1 (Closed subtree [Gui04, Definition 2.4]). A subtree Y of a tree T is called

closed if the intersection of Y with any segment of T is either empty or a segment of T.

Definition 5.5.2 (Transverse Covering [Gui04, Definition 4.6]). A transverse covering of

an R-tree T is a family ) of nondegenerate closed subtrees of T such that every arcin T is
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covered by finitely many subtrees in ) and any two distinct subtrees in ) intersect in at

most one point.
Lemma 5.5.3. The set Y(A) forms a transverse covering of Tg.

Proof. Since an element Y of Y(A{) contains a leaf of A}, Y(AY) is a covering of Tg. We
now need to check that every arc of T is covered by finitely many Y;. Indeed, if an edge
of T is covered by multiple Y;, then by the definition of the equivalence relation, they are
connected. Therefore, an edge of T; is covered by one subtree Y; and a finite arc is covered
by finitely many subtrees in Y (Ag). Also by definition, two distinct subtrees Y;, Y; intersect

in at most one point. O

Example 5.5.4. Recall the automorphism ® from Example 5.4.4 givenby ®(a) = ab, ®(b) =
b, ®(c) = cad, ®(d) = dcad. Let ¢' : Te — T be a relative train track representative of ®.
Say two leaves in A (Tg) are equivalent if they overlap in an edge in the top EG stratum.
There are two different equivalence classes of leaves at a vertex in the universal cover T¢'.
See Figure 5.8.

By collapsing the edges with labels 2 and b in G’, we get a relative rose G with two
petals and a nontrivial vertex stabilizer. The covering of T in Figure 5.8 descends to a

transverse covering of T¢. See Figure 5.9.

5.6 O map

In [LLO3], Levitt and Lustig define a map called the Q map from the boundary of F
to a tree with dense orbits in CV,. This map is the key tool used to prove north-south
dynamics for a fully irreducible automorphism on the closure of outer space. We will
follow the same techniques to get a relative result. The main proposition in this section is
Proposition 5.6.11.

Let Ty be a metric simplicial F-tree. Let v(Tj) denote the volume of the quotient graph
To/F. Let T be a metric minimal very small F-tree and let T be the metric completion of
T. Let T be an (IF, A)-tree. The boundary of T, denoted 9T, is defined as the set of infinite
rays p : [0,00) — T up to an equivalence. Namely, two rays are equivalent if they intersect
along a ray. If T is a Grushko (IFF, A)-tree, then there is a canonical identification between

dF \ 0A (see Definition 4.1.4) and 9Ty. Denote by p a ray in T representing the point X
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in 9Tp. Given an equivariant map h : Ty — T, let r = h(p). We say X is T-bounded if r
is bounded in T (this does not depend on the choice of I as shown in [LLO03, Proposition
3.1]). If r is unbounded, then we get a ray representing a point in 97T

Let h : Ty — T be a continuous map between R-trees. We say h has bounded cancellation
property if there exists a constant C > 0 such that the h-image of any segment pg in Tj is
contained in the C neighborhood of the geodesic joining /(p) and h(g) in T. The smallest
such C is called the bounded cancellation constant for /, denoted BCC(%). The following
fact about BCC for very small trees is a generalization of Cooper’s bounded cancellation

lemma [Co0087], and can be found in [BFH97, Lemma 3.1] and [GJLL98].

Lemma 5.6.1. Let T be an R-tree with a minimal very small action of IF. Let Ty be a free simplicial
F-tree, and h : Ty — T an equivariant map. Then h has bounded cancellation, with BCC(h) <
Lip(h)v(To), where Lip(h) is the Lipschitz constant for h.

Proposition 5.6.2 (Small BCC). Let T € PO(F, . A) be a minimal F-tree with dense orbits and
trivial arc stabilizers. Given € > 0, there exists an (IF, A)-tree Ty € PO(F, A), v(Ty) < €, and

an equivariant map h : To — T whose restriction to each edge is isometric and BCC(h) < e.

The proof of the above proposition when T € CV,, and Ty € CV, in [LL03, Proposition
2.2] starts with an equivariant map # : Ty — T which is isometric on edges. Then given an
edge e of Tp, one replaces h by I’ : T} — T with v(T}) < v(Ty) — 1/6|e|. If T € PO(F, A),
then start with an equivariant map h : Ty — T isometric on edges where Ty € PO(F, A)

and do the same argument.

Proposition 5.6.3 (Q map). Let T € PO(F, A) be a minimal (I, A)-tree with dense orbits and
trivial arc stabilizers. Suppose X € OF \ 0.A is T-bounded. Then there is a unique point Q(X) € T
such that for any equivariant map h : Ty — T and any ray p representing X in Ty € PO(F, A),
the point Q(X) belongs to the closure of h(p) in T. Also, every h(p) is contained in a 2 BCC(h)-ball
centered at Q(X), except for an initial part.

In [LLO3, Proposition 3.1], the above lemma is proved for any tree with dense orbits in
the closure of outer space hence it applies to our setting as well. Since the free factors in A

are elliptic in T, take the tree Tj in the original proof to be such that Ty € PO(F, A).
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Remark 5.6.4 ([LL03, Remark 3.7]). If Q(X) = Q(X’) for a bi-infinite geodesic y with end
points X, X', then () lies in a 2BCC(h)-neighborhood of Q(X).

Example 5.6.5. Let H be a vertex stabilizer in T and X € dH C JF. Then clearly, X is
T-bounded and Q(X) is the point of T fixed by H. Another less trivial example is as
follows: let L be an arational lamination on a surface with boundary. Let T be the dual
tree to the lamination. Then in the universal cover of the surface for {X, X'} € L, the point

Q(X) = Qs the point in T to which the leaf collapses as the dual tree is formed.

Definition 5.6.6 (Dual lamination of a tree [CHLO08b]). Let T be a tree with dense orbits in
dCV,.

Lo(T) = {{X, X'} € F| Q(X) = Q(X")}.

It is shown in [CHLO8b] that Lo(T) is the same as L(T) (see Section 2.5 for definition).
For an algebraic lamination L, let support s(L) C 0F \ 0.A be the set of all X € JIF such
that L contains some pair {X, X'}. The laminations Lo (T4 ) and Lo(T, ) are F-invariant

and ®-invariant.

Definition 5.6.7 (Eigenray). Let fy : T — 7 be a relative train track map or an A-train track
map. Let f : T — T; be a lift of fj to the universal cover T; of T. Let vy be a fixed vertex
in T with a fixed direction e, where ¢ is an edge in an EG stratum. Let v be a lift of vg to T-.
Then a lift based at v of the ray lim,_, fJ/ (e) is called an eigenray of f based at v, denoted
by X, € 0Tx.

Recall from Definition 5.2.2 the A-train track map ¢y : G — G representing ® and a lift

to the universal cover ¢ : Tg — Tg. Let EAJ be the set of all eigenrays of ¢.

Remark 5.6.8. In the absolute case of a fully irreducible automorphism, any eigenray is
in fact a half-leaf of A$, that is, it is contained in a generic leaf of A$. Thus it suffices
to consider points in s(Ag) for the proof of [LL03, Lemma 5.2]. In the relative case, an
eigenray based at a vertex with trivial stabilizer is a half-leaf of A}, but an eigenray based
at a vertex with nontrivial vertex stabilizer might not be a half-leaf of AS. It will be a

half-leaf of a diagonal leaf of Lo(Tg, ) as explained below.

Lemma 5.6.9. s(Lo(Tg)) contains s(Ag) and EAG.
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Proof. The statement that s(Lo(Tg )) contains s(Ag) follows from Lemma 6.6.1 where it is
shown that Lo(Tg ) contains Ag. Let R, : Rt — T be a ray representing an eigenray X,
of ¢ based at a vertex v of Tg with nontrivial stabilizer. Let R,(c0) = X, € 9T, which is
identified with a point in JIF, also denoted by X,. Let v : Tc — T, be an F-equivariant
map.

We first show that v(R,) is Tg-bounded. Suppose not. Then for every C > 0 and
every to > 0, there exist t, > t; > fo such that dy_ (V(Ry(t2)),v(Ry(t1))) > C. Now
choose C > 2BCC(v). Since Ry, is an eigenray, a generic leaf I of A crosses the segment
0v = [Ry(t2), Ry(t1)] of Ry. By Remark 5.6.4, the v image of I = {X, X'} is in a 2BCC(v)
neighborhood of Q(X) = Q(X’). This implies that the diameter of ¢, under v is less than
2BCC(v), which is a contradiction.

Next we want to prove that Q(X,) = @ where 7 is the point in Ty, whose stabilizer
contains the stabilizer of v. Given € > 0, let h : Ty — T, be an F-equivariant map with
BCC(h) < e as given by Proposition 5.6.2. Let u : Tz — Ty be an F-equivariant map
and let v = hopu. Let R, = u(R,). Then by Proposition 5.6.3, h(R,) is contained in a
2BCC(h)-neighborhood of Q(X,) except an initial segment. Suppose Q(X,) # . There
exists a g € IF\ A for which the following is true: let oy be the subsegment of R joining
v and gv such that the length of oy := pu(0y) is nonzero and k(o) is not contained in
a 2BCC(h)-neighborhood of Q(Xy). Since R, is an eigenray, it contains translates of the
segment 0. There exists some translate o of 0 joining points u, gu on Ry such that h((?é),
where 7, := 1i(0y), is in a 2 BCC(h)-neighborhood of Q(X,) because h(Ry) is Tg -bounded.
But g acts by isometries on Ty, so the diameters of k() and h(?é) cannot be different.
Thus 7 is in a 2BCC(h)-neighborhood of Q(X,). Since €, which bounds BCC(h), was
arbitrary, we have that Q(X,) = 3.

Now we show that for every vertex v of T with nontrivial stabilizer, there are at least
two eigenrays X,, X}, based at v. This will imply that {X,, X},} € Lo(Tg ) and hence EAJ C
s(Lo(Tg)). If the image of v in G = T¢/F has at least two gates, then each gate will have
a fixed direction which gives different eigenrays based at v. If there is only one gate at
v, then in T the orbit of a given ray R, under the stabilizer of v gives distinct eigenrays

based at v. O
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Remark 5.6.10. From the above proposition, the following two types of leaves are contained

in Lo(Ty):
(a) leaves of the lamination A, which we call Aj-leaves, and,

(b) leaves obtained by concatenating two eigenrays, which are called diagonal leaves.

The next proposition, which is the relativization of [LL03, Proposition 5.1], is the main

technical proposition of this section.

Proposition 5.6.11. If T € PO(F, A) is a minimal (F, A)-tree with dense orbits and trivial arc

stabilizers, then at least one of the following is true:
(a) there exists a generic leaf {X, X'} of A or Ag such that Q(X) # Q(X),
(b) there exists a diagonal leaf {X, X'} of Lo(Tg ) or Lo(Tg)) such that Q(X) # Q(X').

Since diagonal leaves are obtained by concatenating eigenrays, (b) implies () in the
above proposition. Morally, the above proposition says that if T € PO(F, A) is a minimal
(F, A)-tree with dense orbits such that Lo(T) contains both Lo(Tg) and Lo(Tg ), then
T is in fact a trivial tree. The proof of the proposition depends on Lemma 5.6.13 and

Lemma 5.6.14. We need the following lemma for the proof of Lemma 5.6.13.

Lemma 5.6.12. Ife, ¢’ are edges with a common initial vertex v in Tg, then there exists a sequence
e=ep,e1,... e =€ of distinct edges starting at v such that every edge path eje; 1 is crossed by

either a Ag-leaf or a diagonal leaf of Lo(Ty).

Proof. If the vertex stabilizer of v is trivial, then by Lemma 5.4.6, the Whitehead graph
of A} is connected at the vertex v. Hence the lemma follows by using the Aj-leaves
of Lo(Tg ). Now let’s assume that the vertex stabilizer of v is nontrivial. Consider the
transverse covering Y(Ag) of Tg from Section 5.5. Since an element Y of J(Ag) contains
a generic leaf of AJ, Y crosses the IF-orbit of every edge in Ti. Let Y, and Y, be the elements
of J/(Aflg) that contain e and ¢, respectively. Let E, E’ be the set of edges with initial vertex
v which are in Y, and Y, respectively.

If Y, is equal to Y/, then the lemma follows by using Aj-leaves in Lo(Tg ). Suppose

Y, # Yp. Let p : T — G be the quotient map by the action of IF. Every gate at the vertex
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7(v) has a fixed direction. Thus we can find an eigenray X in T based at v with initial
edge f in E (since Y, crosses [F-orbit of every edge at v). Similarly, get an eigenray X’ based
at v and initial edge f’ in E’. The diagonal leaf { X, X'} of L(Tg ) crosses ff'. Now we have
a sequence of edges e = ep,e1,...,e; = f,e141 = fl e, . .., =¢ starting at v such that
every edge path ¢;e; 1 for i # [ is crossed by a A$—leaf and eje;y1 is crossed by a diagonal

leaf. O

Lemma 5.6.13. Suppose Q(X) = Q(X') for every generic leaf {X, X'} of A and for every
diagonal leaf {X, X'} of Lo(Tg). Let Z,Z' belong to s(Ag) U EAY. Then the distance in T
between Q(®F(Z)) and Q(DP(Z")) tends to 0 as p — +oo.

Proof. We follow the proof of Lemma 5.2 in [LL03]. If Z is in s(Ag), then there exists a ray
p in T contained in A (T) with end point Z. If Z is in EA}, then there exists an eigenray
p of ¢ with end point Z. Let’s suppose Z € EA} and Z' € s(AJ) with corresponding rays
p and p’ to exhibit the proof in both cases. Let e, ¢’ be the initial edges of the two rays p
and p’. By Lemma 5.6.12, we can find a sequence of edges e = ¢y, e1,¢e2,...,¢r = ¢,in Tg
connecting e to ¢’ such that the finite subpaths 7; = ¢;e/ are subpaths of either Aj-leaves or
diagonal leaves of Lo(Tg ) where ¢/ is the same as ;1 but not necessarily with the same
orientation. Note that the union of 7y; and ;. is either a tripod or a segment of length 3.

The rest of the proof follows exactly as in [LL03, Lemma 5.2]. O

The following lemma is the relativization of [LL03, Proposition 5.3]. Recall the A-train
track map ¢ : G — G, and a lift to the universal cover ¢ : Tg — T representing ® where

T € PO(F, A).

Lemma 5.6.14. Suppose Q(X) = Q(X') for every generic leaf {X, X'} of A and for every
diagonal leaf {X, X'} of Lo(Tg ). Then there exist maps iy : Tgc — T, p € N such that i, o ¢¥ is

F-equivariant and BCC(i,) — 0as p — oo,

Proof. Assume that there are no vertices with trivial stabilizer in T. If there were some
such vertices, then collapse a tree in Tg/FF and factor through the quotient of T;. For a
representative v of an orbit of vertices in T, fix an eigenray X, in EAg such that Q(X,) =

0, where 7 is a point in T whose stabilizer contains the stabilizer of v. Then F-equivariantly
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assign an eigenray to every vertex in the orbit of v. In this way, assign an eigenray to each
vertex of Tg.

We will now define a map i, : T — T and show that i,(¢) — 0 as p — oo for every
edge e of Tg. For a vertex v € Tg, set i,(v) = Q(P77(X,)) and extend linearly on edges.
Now for an edge e of T; with end points v, u, we have, by applying Lemma 5.6.13 to
@~ !, that distance between i,(v) = Q(® P (X)) and ip(u) = Q(P (X)) goes to zero as
p — oo. Thus iy(e) — 0 which implies that BCC(i,) — 0. The map i, satisfies a twisted
equivariance relation g 0 i, = i, o ®¥(g) forall g € FF.

Also i, o ¢7 is [F-equivariant. Indeed,

goipod! = gojyomogl =j,0®F(g)ogl o
= jpogogom=jyomoglog=i09’og.

Thus we have maps i p asin the lemma. O

Proof of Proposition 5.6.11. Assume by contradiction that Q(X) = Q(X’) for every generic
leaf {X, X'} of A and Ag and every diagonal leaf of Lo(Ty ) and Lo(Tg). Let e be an edge
in Tg and let v € AJ be a leaf that crosses e. Then ¢ (7y) is also a leaf of the lamination. By
assumption, the end points of v map to the same point under the Q map. By Proposition
5.6.3 and Remark 5.6.4, (i, o ¢7)(7y) is contained in a ball of radius 2 BCC(i, o ¢?) in T. We
have BCC(i, o ¢?) < BCC(iy) + Lip(¢?) BCC(¢*). Since v is a leaf of A, ¢? restricted to
7 has no cancellation thus (i, o ¢”)(7y) is in fact contained in a ball of radius 2 BCC(i;) in
T. Thus the diameter of (i, o ¢?)(e) in T is bounded by 4 BCC(iy,).

Now let u be a conjugacy class, represented by a loop of edge-length k in G = T /F.
Since i, o ¢7 is [F-equivariant, the translation length of u in T is bounded by 4k BCC(ip).
Since BCC(i,) — 0 as p — oo, every u has zero translation length in T, which is a

contradiction. O

5.7 Main theorem
We will now put together the results from Section 5.4 and Section 5.6 to prove the
following lemma, which shows that the conditions mentioned in Proposition 5.3.1 are

satisfied by all trees in PO(F, A) if 7 is allowed to be a leaf of A or Ag.
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Lemma 5.7.1. Let T € PO(F, A). Then there exists a tree Ty € PO(F, A), an equivariant map
h: Ty — T and a bi-infinite geodesic v C Ty representing a generic leaf y of A§ or Ag such that
h(yo) has diameter greater than 2 BCC(h).

Proof. There are three cases to consider for a tree T in PO(F, A).

o T has dense orbits (which implies that arc stabilizers are trivial by [LL03, Lemma
4.2]): Proposition 5.6.11 provides either a generic leaf {X, X'} in A§ or Ay with
Q(X) # Q(X'), or it provides an eigenray X, € EA} or EAg based at a vertex v
of Tg such that Q(X,) # 9, where 7 is the vertex of T containing the stabilizer of v.
Choose h : Ty — T with 2BCC(h) < d(Q(X), Q(X")) or 2BCC(h) < d(Q(Xy),d)
using Proposition 5.6.2. In the first case, let g be the geodesic joining end points cor-
responding to X, X’ in Tj. In the second case, there exists a subsegment of an eigenray
Ry, corresponding to X, whose diameter in T is at least d7(Q(X,), 7). Choose 7 to

be any generic leaf (of either Aj or Ag) crossing that subsegment.

o T does not have dense orbits and is also not simplicial: then T contains simplicial parts
and also subtrees T, with the property that some subgroup G, C I acts with dense
orbits on T;,. Let 7 : T — T’ be a collapse map such that T’ has dense orbits. Choose
70 as in the previous case, using T'. Then by Proposition 5.3.1, 7y is unbounded in T

and hence it is T-unbounded. The map h : Ty — T may be chosen arbitrarily.

e T is simplicial: we want to show that a generic leaf of AJ is unbounded in T. We need
to show that a tail of a generic leaf of A or Ag does not live in 9B for any vertex
stabilizer B. By [GL95, Corollary III.4], vertex stabilizer in a tree in CV, is finitely
generated and has infinite index in F. Also given T in PO(F, A), for every [A] € A,
a vertex stabilizer in T either contains the full free factor A or intersects it trivially.
By Lemma 5.4.6, a generic leaf of the attracting lamination cannot be carried by a
vertex stabilizer of T, therefore it is unbounded in T. One can choose hh : Tgp — T

arbitrarily. O

Theorem C. Let A be a nontrivial free factor system such that {(A) > 3. Let ® € Out(F, A)
be fully irreducible relative to A. Then ® acts on PO(F, A) with uniform north-south dynamics:
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there are two fixed points Tg and Ty, and any compact set that does not contain Ty, (Tg ) uniformly

converges to T3 (Tg ) under ®(P~1)-iterates .

Proof. By Lemma 5.7.1 and Proposition 5.3.1, every T in PO(TF, A) converges either to
T4 under forward iterates or to Ty, under backward iterates. We know that Ty is locally
attracting and T, is locally repelling. Thus given a tree T # T, the set of its limit points
under forward iterates cannot contain the repelling point Ty and hence T converges to Ty .
Similarly, a tree T # T4 under backward iterates converges to Ty . Since W isa
compact space, by [HK53], pointwise north-south dynamics implies uniform north-south

dynamics. O

5.8 Summary
Now we know that a fully irreducible outer automorphism relative to A acts with
uniform north-south dynamics on both the relative outer space PO(F, A) and a subspace
MMRC(A) of the space of projectivized relative currents. In the next chapter, we will see
how relative currents and trees in relative outer space act as dual to each other. We will
also see that the duality between the fixed points in PO(TF, A) and MRC(A) is especially

nice.

(i) (i) (iif)

Figure 5.1. Relative outer space
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Figure 5.2. Relative rose
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Figure 5.3. Collapse map 7

Figure 5.4. Whitehead graph for Example 5.4.4



72

vA

c

ul

Figure 5.5. Relative Whitehead graph for Example 5.4.4
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Figure 5.6. Infinite sheeted cover
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Figure 5.7. Finite sheeted cover
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CHAPTER 6

INTERSECTION FORM

Given two homotopy classes of simple closed curves on a surface, there is a well-
defined notion of geometric intersection number of the two curves. Such curves are special
examples of measured geodesic laminations. Thurston extended the notion of geometric
intersection number between curves to a pair of measured geodesic laminations. Using
this intersection number, the space of measured geodesic laminations can be viewed as its
own dual space. In [KL09], Kapovich and Lustig showed the space of measured currents
for FF acts like a dual space to the closure of outer space. The goal of this chapter is to
establish a similar duality between the space of relative currents and relative outer space

(see Section 6.8).

6.1 Intersectin form for outer space and measured currents
In [KL09], Kapovich and Lustig established an intersection form between ¢v,, the clo-
sure of unprojectivized outer space and MC(FF), the space of measured currents. The

precise statement is as follows:

Theorem 6.1.1 ([KL09, Theorem A]). There is a unique Out(IF)-invariant, continuous length

pairing that is R>o homogeneous in the first coordinate and R>g linear in the second coordinate.
(v, ) : T x MC(F) — Rxg

Further, (T, ng) = I7(g) for all T € €0, and all rational currents 1, where g € IF\ {1}.
Kapovich and Lustig also give the following characterization of zero pairing;:

Proposition 6.1.2 ([KL10, Theorem 1.1]). Let T € cvy, and let y € MC(F). Then (T,n) =0 if
and only if supp () C L(T), where L(T) is the dual lamination of T and supp(n) is the support
of 17 in 9°F.
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In this chapter, we define an intersection form for O(F, A), the closure of relative outer

space and RC(.A), the space of relative currents.

6.2 First attempt
Generalizing the definition of intersection form due to Kapovich and Lustig, if T €
O(F, A) and 7, € RC(A) is a rational relative current, then we can define (T, 1,) := I7(«).
But unfortunately, this pairing is not continuous. The following example was shown to us

by Camille Horbez.

Example 6.2.1. Let F, = (a,b) with A = {[(a)]}. Let Ty € O(F, A) be a simplicial tree
such that I'y = Ty /F is a graph with two vertices joined by an edge and there is a loop
at one of the vertices. Let (a) be the stabilizer of the vertex away from the loop. The
graph T is marked such that the loop is labeled by a*b. Let the loop and the edge have
length 1. The limit of the sequence of trees Tj is the Bass-Serre tree of an HNN extension
whose vertex stabilizer is given by (a) and it has a length 3 loop labeled b. Next consider a
sequence of relative currents 77y = 1,1, converging to 1., which is given by 7 (a"bm™) =1
for all n,m > 0 and #e(w) = O for all other w € FF\ A. We have that (Ty, 7)) = 1
and (T, #x4+1) = 3 for all k. For continuity of the pairing, (T, #x) and (T, #7x+1) should

converge to a unique value, (T, 1), but that does not happen in this example.

In Section 6.8, we will define a pairing for PO(F, A) and PRC(.A) along the lines of

zero pairing criterion of Kapovich and Lustig.

6.3 CHL laminations
In [CHLO8a], Coulbois, Hilion and Lustig defined three laminations associated to [F: al-
gebraic laminations, symbolic laminations and laminary languages. They also established
the equivalence of the three definitions. An algebraic lamination is a nonempty, closed and
F-invariant subset of 9°F. Let A?(IF) be the (compact, metric) space of algebraic lamination

inlF.

Definition 6.3.1 (Convergence of laminations [CHL08a, Remark6.3]). A sequence of alge-
braic laminations L, converges to a lamination L in A?(FF) if the following holds: let L,

and Lg, be the symbolic laminations associated to L, and L, respectively, with respect to
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some (any) basis of IF. Given a symbolic lamination L*, let £,,(L?) be the set of words in L*
of length less than or equal to m. The sequence L, converges to L« if for every m > 1 there

exists a K(m) > 1 such that for every k > K(m), £,,(L}) = Ly (L3,).

6.4 Dual lamination for a tree
Definition 6.4.1 (L(T)). For a tree T € CV,, a dual algebraic lamination L(T) is defined as
follows in [CHLO8b]: let

Le(T) == {(g=,8*)lIgllr < e,g € F} C &F,

s0 Le(T) is an algebraic lamination and set L(T) := () Le(T).

€>0
For trees in CV,, L(T) is empty. If Ay is the attracting lamination and Ty is the unstable
tree associated to ¥, a fully irreducible outer automorphism, then L(Ty ) is the diagonal
closure of A?I?, that is, if (X, X’) € 9°F and (X, X") € 9°F are in A$ which is a subset of
L(Ty ), and X" # X", then (X', X") is also in L(Ty ).

For trees in dCV, with dense orbits, two more definitions are given in [CHLOS8b]:

Definition 6.4.2 (L (T)). For abasis B of F, let L% (T) C 9F be the set of one-sided infinite
words with respect to B that are bounded in T. By [CHLO08b, Proposition 5.2] this set is
independent of the basis and henceforth will be denoted L'(T). The lamination L (T) is
the algebraic lamination defined by the recurrent laminary language in B+ associated to

LY(T). It is shown in the same paper that this definition is also independent of the basis.
Definition 6.4.3 (Lo(T)). See Definition 5.6.6.

The equivalence of the three definitions of dual lamination of a tree in dCV;, with dense
orbits is established in [CHLO8b]. Note that L (T) can also be defined for trees which do

not have dense orbits, but it might not be equal to L(T).

6.5 Limits of trees and their dual laminations
In this section, we prove some results for trees in CV,. Since trees in PO(F, A) are
contained in CV,, the results of this section are applied to them later. The main proposition

in this section is Proposition 6.5.5.
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Consider a sequence of trees Ty in CV, converging to a tree T. Then one may ask
whether sequence of laminations L(Tj) converges to L(T) or not. An example in [CHLO8b,
Section 9] shows that Lo, = limy_,, L(T;) may not be equal to L(T). Another example is

recorded here.

Example 6.5.1. Let F = (a,b) be the free group of rank two. Let Ty be a simplicial
[F-tree given as follows: it is the universal cover of the one-edge free splitting with vertex
stabilizers given by (a*b) and (a). The sequence T converges to a tree T which is the
Bass-Serre tree of the HNN extension with vertex group (a) and edge labeled b. The
algebraic lamination L(Ty) is the set of periodic lines determined by a and a*b which
converges to the periodic lines determined by a, denoted ...aaaa ..., and the lines of the
form ...aaaabaaaa.... On the other hand, L(T) is given by the periodic lines determined
by a. Thus Lo = limy_, L(T)) is not equal to L(T). But the birecurrent line in Ly is

contained in L(T). This is in fact always true by a result of [CHL06] (see Proposition 6.5.5).
The following lemma is needed for the proof of Lemma 6.5.5.

Lemma 6.5.2. Let T be a tree in CVy,. Then the birecurrent leaves of Leo(T), which is the algebraic
lamination defined by the birecurrent laminary language associated to L'(T), are contained in

L(T).

Proof. Consider different cases according to whether T is simplicial or has dense orbits.

T has dense orbits: by [CHLO8b, Proposition 5.8], a stronger statement is true, which says
that Lo (T) = L(T).

T is simplicial with trivial edge stabilizers but is not free: let T be a free simplicial tree with
a collapse map ¢ : T — T with BCC(c) equal to zero. The map c extends to 9T and we
denote its restriction to 9T by Q : 9T — T LT There is a canonical identification between
0%F and 0°T. If X € 9T is carried by a vertex stabilizer of T, then Q(X) is precisely (since
¢ has no cancellation) the vertex in T with that stabilizer, otherwise Q(X) is a point in 97.
Let I = {X, X'} be a birecurrent leaf in Lo (T). Since X and X’ are T-bounded, Q(X) and
Q(X") are vertices in T. If Q(X) # Q(X'), then I crosses an edge e in T that maps to a
nondegenerate edge in T. Since ] is birecurrent, [ crosses translates of e infinitely often,

which implies that X or X’ is not T-bounded. Thus Q(X) = Q(X'). Thus [ is carried by a
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vertex stabilizer of T and hence I € L(T).

T is simplicial with nontrivial edge stabilizers: by results of [Swa86] and [She55], for T there
exists T a free simplicial tree with an F-equivariant map c : T — T which is a composition
of a collapse map and a fold map. The edge paths in T that possibly backtrack under the
map c are the ones that cross a minimal subtree (of T) of an edge stabilizer of T. By [BFH97,
Lemma 3.1], BCC(c) < Lip(c)vol(T). By scaling the metric on T, we may assume that
Lip(c) is less than or equal to 1. Since the volume of the free simplicial tree T is bounded,
BCC(c) is finite.

As before, consider the map Q : 9T — TUOT. Let X € 9T be represented by a
one-sided infinite word x starting at the basepoint in T. If the tail of x is carried by a
vertex stabilizer of T, then except an initial segment, c¢(x) crosses the corresponding vertex
in T infinitely often with possibly some bounded backtracking. Thus set Q(X) to be that
vertex. If the tail of x is carried by an edge stabilizer H, then except an initial segment,
c(x) is a vertex of T whose stabilizer contains H and set Q(X) to be that vertex. Even
though there are finitely many vertices in T whose stabilizer contains H, there is only one
minimal subtree for H in T, which maps to a unique vertex in T. Thus in this case, Q(X)
only depends on the choice of T If the tail of x is neither carried by a vertex stabilizer nor
an edge stabilizer, then Q(X) is an element of 9T.

Now for a birecurrent leaf | = {X, X’} such that X and X’ are T-bounded, we get that
Q(X) = Q(X'). Thus the leaf I maps to a vertex of T under the map ¢ with possiblly
bounded backtracking from edges in T that fold under the map c. Hence [ is in L(T).

When T is neither simplicial nor does it have dense orbits: let T’ be the simplicial tree which
is the graph of actions (see [Gui04] for definition) of T corresponding to the Levitt decom-
position [Lev94] of T. Let I = {X, X'} be a birecurrent leaf in L« (T). Since X, X" € L1(T),
we get that X, X’ are also T'-bounded. Since ! is birecurrent, by the previous two cases, I is
carried by a vertex stabilizer H of T'. Since vertices of T’ correspond to subtrees with dense
orbits in T, the leaf [ is contained in some subtree T; of T with dense orbits and stabilizer
H. Since Ty is a subtree of T, X and X’ are also T;-bounded.

The subgroup H is finitely generated because point stabilizers in the very small tree
T’ have bounded rank [GL95]. Therefore, there exists a finite graph 'y and an immersion

i : I'y — Rg, where Ry is a rose with petals labeled by elements of a basis B of F, such
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that 711 (i(I'y)) = H. Since H carries [, which can be viewed as a map I : Z — Ry, there
exists amap Iy : Z — I'y such thatioly = [. Since [ is birecurrent, we claim that /5 is also
birecurrent. Consider a word w in Iy such that i(w) is a subword of I. Since [ is birecurrent,
i(w) appears infinitely often in both ends of I. Let wy, wy, ..., w, be the pre-images of all
occurrences of i(w) in Iy. There are only finitely many such w; because I'y; is a finite graph.
Thus at least one of the w; appears infinitely often in both ends of /. But we need to show
that every such w; appears infinitely often in /. So consider a finite subword u of Iy that
contains at least one appearance of each w;. Such a word exists because there are only
finitely many w;. Now i(u) appears infinitely often in both ends of I. Therefore, some
pre-image 1 of i(u) in Iy appears infinitely often. Since every pre-image of i(u#) contains
all the w;s, each w; appears infinitely often in both ends of /5. Thus I is birecurrent.

Let Iy = {Xp, X}y }. Since i is an immersion and X, X’ are T;-bounded, X, X}, are also
Ts-bounded. Thus Iy is in Le(T,;), which is equal to L(T,;) by the first case. Since Ty is a

subtree of T and [ is contained in T, we get that ] = iolyisin L(T). O

Example 6.5.3 (Proof of Lemma 6.5.2 - T is simplicial with nontrivial edge stabilizer).
Consider the one-edge cyclic splitting T with vertex stabilizers (a,b) and (b, c) and edge

stabilizer (b). Let T be the blow-up of a one-edge free splitting with stabilizers (a, b) and

(c).

Definition 6.5.4. A lamination L is called birecurrent if every leaf of L is birecurrent.

Proposition 6.5.5 ((CHL06]). Let {Ty ke be a sequence of trees in CV,, converging to a tree
T. Also suppose that the sequence of laminations L(Ty) converges to Lo, in A*(FF). Let L, be a

birecurrent sublamination of Les. Then L, C L(T).

Proof. We will use notation from [CHLO8b]. If the trees Ty are free simplicial, then their
dual lamination is empty and the lemma is true vacuously. So let’s assume that L(Tj) is
nonempty. Let | = {X, X'} be a leaf of L. Fix a basis B of IF and realize X in this basis as
a one-sided infinite word. For | > 1, let X; € FF be the prefix of length [ of X. We first show
that X € L!(T), that is, for a point p € T, the sequence X;p is bounded in T. Suppose not.
Then for any C > 0, p € T, Ky > 0, there exists g > r > Ko such that dr(X;p, X;p) > C.
Let u = X;'X,. Then dr(up,p) > C. By Gromov-Hausdorff topology on CV,, given
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p,up € T, let py,sx € Ty be approximations of p and up relative to some exhaustions
(see [Horl6, Lemma 4.1] for details). Then dr, (upy, sk) goes to zero and dr,(sk, px) goes to
dr(up,p) as k — oo. Thus given 6 > 0, there exists a K; > 0 such that for all k > Kj,
dr(up,p) — 9 < dr (upy, px), or in other words, dr, (upy, px) > C — 0.

Now by the convergence criterion (Definition 6.3.1), for any m > 1, there exists a
Ky(m) > 0 such that for all k > Ky, £,4(L(T)) = Lm(Ls). Let m be the word length
of u with respect to the fixed basis. Since u € L,,(L), we get that u € L,,(L(T)) for all
k > max(Ky, Kq,Kz). By [CHLO8b, Remark 4.2], this means that, for every € > 0, there
exists a cyclically reduced w in F such that ||w||7, < € and u is a subword of w. Also by

[CHLO8b, Lemma 3.1(c)]
dr, (upr, pr) < 2BCC(B, pr) + [|w]| 1,

where BCC(%B, px) is the bounded cancellation constant of the F-equivariant map from
Cay/([F,®B) to Ty such that the base point of Cay([F,B) is mapped to p;. We claim that
BCCy := BCC(%B, px) is bounded above by a constant. Let BCCr := BCC(%B, p). Since
up is in the BCCr neighborhood of an axis of w in T, then by [Hor16, Lemma 4.1 (c)], for
sufficiently large k, sy is in the BCCr +1 neighborhood of axis of w in Ty. Given ¢’ > 0, for
sufficiently large k, dr, (upy, sx) < &'. Therefore, upy is in a BCCr +1 + ¢’ neighborhood of
axis of w in Tj. Since this is true for any cyclically reduced word w and a subword u, we
get that BCCy < BCCp +1+4'.

By choosing C large enough, we get a contradiction since
C—-06< di(upk, Pk) < 2BCCy + HZUHTk < 2<BCCT + 14 (5/) +e€

for all k sufficiently large. Thus X and similarly X’ are both in L!(T). Therefore, I € Loo(T).
If I = {X,X'} is birecurrent and | € L(T), then by Lemma 6.5.2, | € L(T). Thus
L, C L(T). O

Lemma 6.5.6. Let {T }re be a sequence of trees in CV, converging to a tree T such that T has
dense orbits. Also suppose that the sequence of laminations L(Ty) converges to Lo, in A?(IF). Then

Lo C L(T).

Proof. 1f the trees T are free simplicial, then Lo, = @. Thus after passing to a subsequence,

assume that L(Ty) # @. Since T has dense orbits, by [LL03, Proposition 2.2] (see Propo-
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sition 5.6.2), given € > 0, there exists a free simplicial IF-tree S and an [F-equivariant map
h : S — T which is isometric on edges (Lip() = 1) and BCC(h) < vol(S) < e. We will
now construct F-equivariant maps hy : S — Ty for k sufficiently large such that BCC (/) is
bounded above by a linear function of .

For trees S € CV, and T in CV,,, let Lip(S, T) be the infimum of the Lipschitz constant
of all F-equivariant maps f : S — T. By [Algl12, Proposition 4.5], [Hor16, Theorem 0.2],
Lip(S, T) is equal to

A(S,T):= sup |‘|’g|"|T
geF\{1} 118]1s

By [Alg12, Proposition 4.5], [Hor16, Proposition 6.15, 6.16], the supremum above can be
taken over a set of candidates C(S) C IF. Since S is free simplicial, the set C(S) is finite.

For every 6 > 0 and the finite set C(S) of elements of F, there exists a K > 0 such that
forallk > Kand forall ¢ € C(S),

gl < lIgllr + 0.

Thus A(S, Ty) < A(S,T) + ¢’ where ¢’ is the maximum of 6/]|g||s over all g € C(S).
This implies that Lip(S, Ty) < Lip(S, T) 4+ ¢’ < Lip(h) + ¢’ < 1+ ¢'. By [Hor16, Theorem
0.4], Lip(S, Ty) is realized, that is, there exists an F-equivariant map hy : S — Ty, where T

is the metric completion of Ty, such that Lip(hy) = Lip(S, Tx) < 1+ ¢’ for all k > K. Also
BCC(hx) < Lip(hg) vol(S) < (14 &)e.

Now consider a sequence of leaves I, € L(T;) converging to a leaf I € L. Then by
Proposition 5.6.3 (Q map), the diameter of ki (l;) in T is bounded by 2BCC(hy) which
is less than 2(1 + ¢')e. Thus, in the limit, the diameter of /(1) in T is bounded above by
2(1+ ¢')e. Since € and § were arbitrary, we get that I € L(T). O

6.6 Stable and unstable trees
Lemma 6.6.1. A} C L(T3), A; € L(TE).

n
Proof. We have T§ = lgn ig) . Let w be a nontrivial conjugacy class in F \ A. Assume
< Ao

ZT$(w) = 1. Let g = @ " (w). Then Iy (gm) = 1/AY which implies (g,;"",gﬁ) is con-

tained in Ly /yn (Tg ). Thus [ = limy, ;e g is contained in L(Tg) = (7] L1z (T§). Since
m—00

I_ is a generic leaf of Ag and L(Ty)) is a closed subset of 9FF, conclude that Ag C L(Tg ).
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Let g = ®"(w) such that g, converges to a generic leaf I, € A}. We have Irs(§m) =

Aglrs (w) which grows as m goes to infinity. Thus I, ¢ L(Tg). O
Lemma 6.6.2. The stable and unstable trees Tg have dense orbits.

Proof. By a result of [Hor14, Proposition 4.16], which is a relativization of Levitt's decom-
position theorem for trees in CV,, [Lev94], we have the following: if Tg does not have
dense orbits, then Ty splits uniquely as a graph of actions, all of whose vertex trees have
dense orbits, such that the BassSerre tree Gr+ of the underlying graph of groups is very
small (Section 5.1), and all its edges have positive length. Up to taking powers, ng is
®-invariant. If gTQE has an edge with trivial stabilizer, then by collapsing all other edges,
we get a ®-invariant free factor system, which is a contradiction. If the edge stabilizers
are nontrivial, then they are nonperipheral. Then by theorems of Shenitzer [She55] and
Swarup [Swa86], there is a smallest free factor system containing the edge stabilizer and

A, which will have to be ®-invariant. This is a contradiction. O

6.7 Support of a relative current
Definition 6.7.1 (Support of a relative current). Support of a relative current 7 is defined
as the closure in Y (see Section 4.1.4 for definition) of the intersection of the complement of
all open sets U C Y such that #(U) = 0. For y € PRC(A), supp() is a closed, nonempty

and F-invariant subset of Y.

Since Y is not a closed subset of 9*FF, supp(#) C Y may not be a closed subset of 9*F.

Let supp(7) denote its closure in 9*FF. Then supp(7) \ supp(7) is contained in 924 which

is nonempty when lines in supp(7) accumulate on lines in 9% A.

Example 6.7.2. Let F, = (a,b), A = {[(a)]} and consider the sequence of relative currents
1+ converging to 7, in PRC(A) as in Example 6.2.1. Then supp (%) is given by bi-
infinite geodesics determined by ...aaabaaa. ... Thus the set supp(7«) also contains the
bi-infinite lines given by ...aaaa.... Geometrically, consider a lamination L on a torus
with one puncture (with fundamental group identified with F, = (a,b)) as follows: the
lamination L contains the simple closed curve a and another leaf / which goes around b

and spirals towards a from both sides. In the absolute case, the support of the current
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is the curve a and the curve ¢, obtained by Dehn twisting b around g, k times. The absolute
currents i, projectively converge to the absolute current y, whose support is just the
curve a. But in the relative case, the support of the relative current 7, is the curve c; and
the relative currents #,;, converge to 7. whose support is the leaf . Thus the closure of [

also contains the curve a.

We have that supp(7) is a closed, nonempty, F-invariant subset of d*IF. Recall Nota-

tion 5.2.1 for a relative train track representative of ®.

Lemma 6.7.3. A$ NY is minimal inY, that is, A$ MY contains no proper closed (in'Y), nonempty

F-invariant subset.

Proof. By [BFH00, Lemma 3.1.15], we have the following: suppose § is a generic leaf in A
that is not entirely contained in G,_;. Then the closure of § in 9°F is all of AJ. Suppose
A NY contains a proper closed (in Y), nonempty, F-invariant subset S. A generic leaf §
in S is not entirely contained in G,_; where F(G,_1) = A. Since Y gets subspace topology

from 9%F, the closure of § in Y is all of A:f) MY, which is a contradiction. O

Lemma 6.7.4. We have supp(173) as a subset of Y is equal to Ag N'Y and supp(n3) C Az U
92A.

A proof of a similar fact in the case of a fully irreducible automorphism can be found

in [CP12, Proposition 6.1].

Proof. Let a be a primitive conjugacy class in F \ A realized as a in G’ = T/F (see
Notation 5.2.1). Then « is a union of N r-legal paths for some N > 0. For every m > 0,
am = (¢')" () contains at most N segments of leaves of AJ NY. Let the complement
of A§ NYin Y be covered by cylinder sets C(7) where 7 is a subpath of G’ that crosses
H, and is not crossed by any leaf of AJ. For every m > 0, a,, contains at most N occur-
rences of -y (at concatenation points of the r-legal segments). Thus 7,,, (C(y)) < N. Since
Nan /A — 14 as m — oo, we have that 1§ (C(7)) = 0. Thus supp(74) € A$NY. By
Lemma 6.7.3, A§ NY is minimal in Y, therefore we have supp(14) = A§ N'Y. Since A is

a closed subset of 9°F, we get that supp(14) C Ad U A. O
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Lemma 6.7.5. Let {# }ren be a sequence of relative currents converging to a relative current 1.

Suppose the sequence supp(1x) converges to Seo C Y. Then supp(#7) C Sco.

Proof. Consider a word w € F \ A such that #(w) > 0. Then given € > 0, there exists an
Ny > 0 such that for every k > Ny, x(w) > €. Thus C(w) N supp(#yx) is nonempty for
every k > Ny which implies that C(w) N S is nonempty. Since this is true for any word

w € F\ Awith (w) > 0, we get that supp (1) C Sco. O

6.8 Intersection form
We are now ready to define an intersection form for closure of relative outer space and

the space of projectivized relative currents.

Definition 6.8.1. Define a function I : PO(F, A) x PRC(A) — {0,1} as follows:

I(T,n) =0 ifsupp(n) € L(T),

I(T,n) =1 ifsupp(n) £ L(T).

Lemma 6.8.2. The function I satisfies the following properties:
(a) I(TY,n) = I(T,¥n) for ¥ € Out(F, A).

(b) Let Ty — T in PO(F, A) and 5y — 1 in PRC(A) such that 1(Ty, 1x) = 0 for all k. If either

T has dense orbits or supp(n) is a birecurrent lamination, then I(T,n) = 0.

Remark 6.8.3. It is not true in general that if I(Ty, %) = O for all k, then I(T,5) = 0.
Consider the sequence of trees Tj as in Example 6.5.1 and the sequence of currents 7 as in

Example 6.7.2. Then I(Ty, 1x) = 0but I(T,n) # 0.

Proof. (a) We have supp(¥7) = ¥supp(y) and L(TY) = Y 'L(T) which gives the de-

sired equality.

(b) Let S be the closure of lim, . supp(#,) and let L(T,) converge to Lo. Then & C
Lo and by Lemma 6.7.5, supp(7) € S. If T has dense orbits, then by Lemma 6.5.6,

Lo C L(T). Thus supp(y) € L(T). If supp(n) is a birecurrent lamination, then by

Proposition 6.5.5, it is contained in L(T). O
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Lemma 6.8.4 (Uniqueness of dual). Let ® be a fully irreducible outer automorphism relative to

A. Let T € PO(F, A) and € PRC(A). Then
(@) I(Tg,nd) =0.

() IfI(Tg5,n) =0, then = 53,

© IfI(T,ng) =0, then T = Tg.

Proof. (a) By Lemma 6.6.1, Af C L(T3). Also 9>A C L(T3) because A is elliptic in T.
Thus by Lemma 6.7.4, supp(174) C L(Tg).

(b) By Lemma 6.6.1 and Lemma 6.7.4, supp(174) ¢ L(Tg), therefore I(TS,14) # 0. Now
suppose (T4, ) = 0 for some 7 # 1g. Then by definition, supp () C L(Tg). By
the Out(F, A) action, we also get that supp(®” (1)) C L(Tg). By Theorem B, ®" (1)

converges to 174, therefore in the limit supp(74) C L(Tg ), which is a contradiction.

(c) Similar argument as above using Theorem C. O

6.9 Summary

Even though we were not successful in defining an intersection number along the
lines of Kapovich and Lustig, we were able to generalize the zero pairing criterion. Our
definition of intersection form was sufficient to establish uniqueness of pairing for the
stable and unstable trees and currents obtained from north-south dynamics on PO(FF, A)
and MRC(A), respectively. The intersection form defined here is not continuous in gen-
eral (Remark 6.8.3), but Lemma 6.8.2 gives continuity at pairs containing the stable and
unstable trees or currents. The fact that the intersection form behaves well for the four

special points is enough to carry out the proof of Theorem A in the next section.



CHAPTER 7

LOXODROMIC ELEMENTS IN RELATIVE
FREE FACTOR COMPLEX

In this chapter, we will prove Thereom A. The proof is based on [BF02, Proposition 11].

Lemma 7.1 (UV-pair). Let D be fully irreducible relative to A. For every neighborhood U of Tg
in PO(TF, A), there exists a neighborhood V of g in PRC(.A) such that for every T € U and
n €V, wehave I(T,n) # 0.

Proof. Assume by contradiction that there exists a U such that for every neighborhood V
of 75, there exist T € U and 57 € V such that I(T,7) = 0.

Let V; be an infinite sequence of nested neighborhoods of 74, such that V; O V;; and
NV; = ng. Then by assumption, there exist T; € U® and #; € V; such that I(T;, ;) = 0.
Since PO(FF, A) is compact, after passing to a subsequence, T; — T, for T # Tg. Also 17; —
Ne- Since the support of 774 gives a birecurrent lamination, by Lemma 6.8.2, I(T,74) = 0,

which contradicts Lemma 6.8.4. O

Lemma 7.2 (VU-pair). For every neighborhood V of g, in PRC(.A), there exists a neighborhood
U of T in PO(F, A) such that for every n € V< and T € U, we have I(T, 1) # 0.

Proof. Same as for Lemma 7.1. O

Lemma 7.3. There exist nested sequences Uy O Uy D Uy D Uz... D Upyand Vi D Vo D

Vs... D Vay of neighborhoods of T3 and g, respectively, such that the following are true:
e 3k > 0 such that for every i, ®*(U;) C U;, 1 and ®5(V;) C Viiq.
o (Uj, Viy1) form a UV-pair for all i > 0.

o (Vi U;) form a VU-pair forall i > 1.
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Proof. Start with Uy to build a sequence as in the statement of the lemma. Then there
exists V; such that (Up, V1) form a UV-pair. Next there exists a Uj such that (V;, U;) form
a VU-pair. If Uy € Uy, then replace U, by a smaller open set in U N Up.

Let r; = min{p|®?(U;) C U1} for 0 < i < 2N and lets; = min{p |P (V) C
Viy1} for 0 < i < 2N. The numbers r; and s; exist because we have uniform north-south

dynamics. Now define k to be the maximum of the numbers {r;}2Y,, {s;}?},. O

Theorem A. Let A be a nonexceptional free factor system and let & € Out(FF, A). Then ® acts
loxodromically on F F (I, A) if and only if ® is fully irreducible relative to A.

Proof. Let D € FF(F, A) be a free factor system. Let Tp € PO(F, . A) be a simplicial
tree such that its set of vertex stabilizers is equal to D. Let #p be a relative current with
support contained in 9%D. Consider nested neighborhoods Uy D U; D ... D Uy of Tg
and V; D Vo D ... D Vay of 775 and constant k as in Lemma 7.3 such that Tp € Uy N U{j

and n7p € Vlc. See Figure 7.1. By Lemma 7.1 and 7.2, the following holds:
o If T € Uf and I(T, %) =0, thenyy € VS,.
o If7 € VEand I(T,57) =0, then T € Uf.

We have Tp®* € U; and CD‘”‘UD € V;. If D is the set of vertex stabilizers of Tp, then
®~2k(D) is the set of vertex stabilizers of Tp®%k.

We claim that dzz (g 4) (D, ®2MD) > 2N and dzz, 4)(D, ®*N*D) > 2N. For sim-
plicity, let’s first consider the case when N = 1 and for contradiction, assume that the
distance d r (g, 4) (D, ®~%D) is equal to 2. Let £ be a free factor system distance one from

both D and ® 2D. There are two cases to consider:

(@ EC Dand & C ®%D: let Ts be a simplicial tree whose set of vertex stabilizers is
given by €. Choose 7 such that I(Tg, 1) = 0. Then I(Tp,7) = 0. Since Tp € UL, we
get € V5. Also I(Tp®?, 1) = 0 and since 57 € Vi, we get Tp®?* € US. But thatis a

contradiction since Tp®* € U,.

(b) £ 3D and &€ 3 & %*D: wehave I(Tg,7p) = 0. Since np € V<, we get Te € UL. Also

I(Tg, ®*p) = 0. Since Tg € US, we get ®~2Fp € VS, which is a contradiction.
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The above proof in particular also shows that d r (g, 4) (D, ®2NK(D)) > 2. For contra-

diction, suppose that d r (g, 4) (D, ®-2NkD) < ON. Consider a geodesic
D = 50,51,52 .. .,5],81+1 — <I)_2Nk’D,

I < 2N, in FF(F, A). Without loss of generality, assume & [ D. Then starting with
applying the same argument as in (a) for the triple D, &, &, alternatively apply (a) and

(b) to reach a contradiction. O

Example 7.4. As an example to exhibit the proof of Theorem A for N = 3, consider
a geodesic D = &y,&1,&...,E5,E = DD in FF(F, A) connecting D and & %D.
Without loss of generality, assume & [ D. Let T; be a tree in PO(F, A) whose set of

vertex stabilizers is given by &;. We have Ty € Uy N Lllc and thus Ty is contained in U.

e Given Ty, choose 71 such that I(Ty,71) = 0, which implies that I(Tp, 771) = 0 because
supp(i1) C 9*E1 C 0°D. Also I(T, 11) = 0 because supp(n7;) C 9°&; C 9%&,.

e Given T3, choose #; such that I(T3,7,) = 0, which implies that I(T»,72) = 0 because
supp(172) C 9?3 C 9%&,. Also I(Ty, 172) = 0 because supp(172) C 9*E3 C 9%&,.

e Given Ts, choose 73 such that I(T5,#3) = 0, which implies that I(Ty, #3) = 0 because
supp(173) C 9*E5 C 9%&,. Also I(Ty, 173) = 0 because supp(173) C 9*E5 C 9*Es.

We get the following chain of implications using all of the above information: Tp €
Ut = mevVvy = el = meVE = T,elUf = 3¢

VS = Ty € U§, which yields a contradiction. See Figure 7.2.
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APPENDIX A

EXTENDING RELATIVE CURRENTS

In this appendix, we will prove Lemma 4.2.14, which says that given a relative current
1o, there exists a signed measured current # which is a k-extension of #9. We will first
show that we can extend 7y to a signed measured current # which may or may not be
nonnegative on all words of length less than or equal to k. We then show how to modify 7
to get a k-extension of 7.

Throughout this appemdix, we will assume that .A has only one free factor Agp. When
A has more than one free factor in it, then the same process can be repeated for all the free

factors independently of each other.

Notation A.1. e Let B 4 be a relative basis of IF. Let s be the rank of the free factor Ay.

Denote the generators of Agby a;,1 <i <s. Alsolet A := {ali, Y

Let Sy be the set of words in Ag of length k with respect to B 4. Let #S; denote the

cardinality of Sk.

Let S? be a subset of Sy (chosen once and for all) such that for every w € S, exactly

one of w or W appears in SY.

We will use letters e, x, y, z to denote the elements of B 4.

Whenever we write a forward (backward) extension of a word w by e € B 4 as we

(ew), it is to be understood that e is not the inverse of the last (first) letter of w.

For every k > 0, define a signed measured current # on words in A of length (k — 1)
and use those values together with the additivity laws satisfied by # to define 17 on words
of length k. To start with words of length one, choose arbitrary values for 7(a;) for all
1 <i <'s. By induction, assume #(v) is defined for all words v of length less than or equal

to (k — 1). The following holds forallv € S) | by additivity:
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n(0) = ) n(ve) + ) no(ve),

ecA et A
(@) =) n(e) + ) 10(ve).
ecA et A

Since 7 is invariant under taking inverses, the equation obtained from forward extension
of 7 is the same as the equation obtained from backward extension of v.

Rearranging the equations to have the unknown terms on the left-hand side, we get

Y, n(ve) =n(v) = ) no(ve) =:cu,

ecA e¢ A
Z n(ve) =n(v) — Z 1no(ve) =: cz.
ecA ed A

Thus there are #S;_; equations in #52 variables and the number of variables are more
than the number of equations. Denote this system of equations by E}_,, that is, equations
obtained from one edge extensions of length (k — 1) words. Similarly, we can look at the
system E,i(_ -

Consider the augmented matrix [M]|c] for the system of equations E} , with rows
labeled by v € Sx_; and columns by w & 52. Then M, = 1if w = ve or w = ve for
some ¢ € A and 0 otherwise. Denote a row vector of M by r, corresponding to v € Sy_;.

Here are some observations about the matrix M.

e Each column has exactly two ones. Indeed, M, is 1 exactly when v is a prefix of w

or w.

e There are (2s — 1) nonzero entries in each row because there are (2s — 1) possible

extensions of v by e € A.

e Any two distinct rows can be the same in at most one column. Let w be common to

two distinct rows r,, and r,,. Then
w=muvie10re;v; and w = vye; Ore; Uy

for some e1,e; € A. Then it must be true that v; begins with e; and v, begins with ey.

Thus w is uniquely determined.

Lemma A.2. (a) For every i > 1, an equation in the system E;:jfl is a linear combination of
equations in the system E, .. Thus it is sufficient to look at the system E} | to obtain all

constraints satisfied by 1(w) for all w € SY.
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(b) Let u € Sx_,. Then we have

Z Yoy = Z Yxa-

x€A x€A
(c) The set of relations Z Txy = Z txi for every u € Sy_p generate any other relation among

x€eA xX€A

the rows of M.

(d) We also have that

Z Cxu = Z Cxu

x€A x€A
where c, is the constant term of the equation determined by v € Si_1.

(e) The system of equations E] | is consistent and hence has a solution. Thus we can define 1 on

words of length k.
Proof. (a) Letu € S_;_1. Then
n(u) =Y n(ux)+ Y n(ux).
x€A xZA
By equations in E,L » we have
n(ux) = ) nluxy).

yeF Jyl=i

Adding all these equations over x € B 4 we get

n(u) = Y. n(uxy) = Y, n(uz)

xy€F,|x|=1,|y|=i z€F,|z|=i+1

Thus we recovered an equation in Ellci_l by a combination of equations in E}__.

(b) For every x € A, My,» # 0 exactly when w = xuy or w = yux for somey € A.
Therefore, if My, 7 0, then My; 4, # 0 for some y € A.

(c) Consider a minimal relation R given by Z dyry = 0 where d, € R. The equation
VESK_q
can be rescaled such that coefficient of at least one row, say ry, for some x € A and

U € Sp_p,is 1.

For every y € A and w = xuy, we have Myy,y = Myz» = 1. Thus ryy, and r,5 share
exactly one common entry w and no other row has a nonzero entry in w. Thus d,z =
—1. Now consider y € A. For any z € A and w = yuz, we have Mz = Mz = 1.

Thus dz, = 1. Hence our minimal relation is just Z Ty — Z ryn = 0.
x€A yeEA
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(d) We have

Y cw=) nlxu)— Y, n(xuy)

xeA x€EA X€AYEA
=n(u) = Y nlxu)— Y n(xuy)
X¢A x€AYEA
=n(u)— Y, nlxuy)— Y, n(xuy)
XEAYEB 4 xeAYyEA

and similarly

Yoca=nu)— Y, nlxay)— Y, n(xuy)

xX€EA XEAYEDB xeAy¢A
=n(w)— ), nux)— ), n(yux)
XEAyEB 4 xeAyEA

We see that

Yo n(uy)+ Y, ylauy) =), pmux)+ Y, n(jux).

XEAYEDB Y x€EAYEA XEA,YEDB 4 XEAYEA

Geometrically, we are looking at the same subset of 9°FF as a union of cylinder sets in

two different ways. See Figure A.1 when F = (a,b,¢,d).

(e) Since the relations which generate all other relations among the rows of M are consis-

tent, [M|c] has a solution. O

Proof of Lemma 4.2.14. Given a relative current 79, by Lemma A.2, get a signed measured
current # such that 7o (w) = 5 (w) forallw € F\ A. This extension need not be nonnegative
on all words of length less than or equal to k. Let —M for M > 0 be the smallest value
attained by 77 (w) for a word w € A with |w| < k. Consider a signed measured current 7 4 ¢

defined as follows:

nac(w) = (25,—('i)w|—1 for w € A and 0 otherwise.

For C = M(2s — 1)¥=1, 57 + 174 ¢ is nonnegative on words of length less than or equal to

k. O]



LHS

RHS

Figure A.1. Example for proof of Lemma A.2(d)
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APPENDIX B

ANOTHER DEFINITION OF RELATIVE
CURRENTS

In this section, we give another formulation of relative currents. We show that this new
space of relative currents is homeomorphic to RC(.A).

Let SMC(F) be the space of F-invariant, locally finite, signed measured currents (Def-
inition 4.2.11) on 9%FF. It is a vector space and comes equipped with a weak-* topology,
that is, a sequence 77; € SMC(F) converges to 7 iff [ fdy; — [ fdn for all compactly

supported continuous functions f on 9°F. Let
SMC(F)* :={n € SMC(F)|y(w) > 0forallw € F\ A}.

Define an equivalence relation on SMC(IFF)" as follows : 71 ~ 12 if 1]y = 2]y, that is,
1 (w) = na(w) for all w € F\ A. Denote the equivalence class of 7 € SMC(F)" by [n].
Note that all currents supported on 924 are in a single equivalence class, denoted [174]. A
sequence [17;] converges to [77] iff there exist signed measured currents y; € [14] such that

ni(w) + pi(w) — n(w) forallw € F.
Proposition B.1. (a) There exists a continuous injective map frest : SMC*(F)/ ~— RC(A).
(b) There exists a continuous injective map foxt : RC(A) — SMC*(F)/ ~.

Proof. (a) Given [7] € SMC*(F)/ ~,n(w) forw € F\ Aiswell defined. Thus fres([17]) :=
1]y The function is injective since two different classes [#1], [172] differ on some w €
F\ A giving different relative currents in the image. Consider a sequence [1;] converg-

ing to []. Then #;(w) converges to (w) forallw € F \ A.

(b) Given € RC(A), let 7’ € SMC(F)™ be an extension of # given by Lemma 4.2.14.
Define fext(17) := [¢#']. This function is well defined because any two extensions of

n differ only by values on w € A. This map is injective since two distinct relative
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currents differ on some w € [F \ A and hence the equivalence classes of the extensions

are also distinct.

To establish continuity of the map f.., consider a sequence 17; — 1 € RC(A) and
an extension 7’ of 17. We will show that there exist extensions 7/ of #; such that #(w)

converges to 7' (w) for all w € F. The convergence is clear for w € F \ A.

Let B 4 be a relative basis of F and let |w| be the length of w € [ with respect to
B 4. Given € > 0 and n > 0, there exists M > 0 such that |;(v) — #(v)| < € for all
i > Mandv € F\ Awith |v| < n. Let N be the rank of the cofactor of A. Since the
extension process (Appendix A) can be done for each free factor in A independently
of one another, we may assume that .4 has only one free factor A of rank s. Starting
with words of length one in A, set 77/(e) equal to 1’(e). We claim that for all i > M, 7!

can be chosen such that for all words w € A such that |w| < n, we have

< 2Ne(1+... +4'72)

|7 (w) = 7' (w)] < e < 2Ne

where g =2s —1and [ = |w|.
Let the augmented matrix representing the system of equations for extension of #; to
words of length [ be [M|c"!] and let the corresponding matrix for 7 be [M|c!]. For a
length [ — 1 word v, let e represent the corresponding entry of the vector c/. We have
¢’ =ni(v) = ) mi(ve)
et A
Thus

e — e < Jni(0) — 7' (0)| + | Y- mi(ve) = Y n(ve)| < |yi(v) —n'(v)] + 2Ne,
e¢A e A

Consider the base case | = 2 for induction. We have c% —2Ne < ci,’z < c% + 2Ne since
1i(e) = n'(e) fore € A and |e| = 1. Since the sum of every row of M is ¢ = 2s — 1, find

17/ (w) such that

7 (w) - ”; < l(w) < ' (w) + 22’

Now by induction on length, we have

2Ne(1+...+4"73) oNe — 2Ne(1+...+ ql*Z).

et — bl < y7i(v) = ' (0)| +2Ne < g2 77
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Again using the fact that row sum is q, we get

o 2Ne(1+... +4'72)

[7i(w) = 7' (w)] < i < 2Ne

for |w| = 1.

Thus we can find signed measured currents 7/ that are extensions of #; such that

i (w) — n'(w) for all w € F. Thus the function fe; is continuous. O



APPENDIX C

EXAMPLES OF TRANSVERSE COVERING

Let @ be a fully irreducible outer automorphism relative to A. Let ¢) : G’ — G’
be a relative train track representative of ® and let ¢y : G — G be an A-train track
representative of ® (see Definition 5.2.2). Let T and T be the universal covers of G’ and
G, respectively. In Section 5.5, a transverse covering for T; was defined. In this appendix,
we record some examples of such transverse coverings and study their skeleton (defined

below).

Definition C.1 (Skeleton of a transverse covering). Given a transverse covering ) = {Y},
the skeleton S is a graph obtained as follows: the vertex set is the set J U V;(S) where
Vo(S) is the set of all intersection points between distinct subtrees in ). There is an edge
between Y € Y and y € V(S) whenever y € Y. The skeleton S is in fact a tree with a

simplicial action of IF.

Remark C.2. In the absolute case of a fully irreducible outer automorphism, the Whitehead
graph of a leaf of the attracting lamination at a vertex (see Definition 5.4.1) is connected and
the skeleton of the transverse covering corresponding to the attracting lamination is just a
point. But in the relative case, there seems to be no relation between the connectivity of the
Whitehead graph of Ag(Tg) and the skeleton of transverse covering of Tg corresponding

to A$, as can be seen by the examples that follow.

Example C.3. Recall Example 5.5.4. The Whitehead graph of AJ at the vertex of G’ was
disconnected. The F-quotient of the skeleton for the transverse covering Y(Ag) of Tg is a
graph with two vertices and two edges with one endpoint on each vertex. The vertex sta-
bilizers are [(a,b)] and [(c, ad, abd)] and the edge stabilizers are conjugates of (b). Indeed,
there are two orbits of edges in the skeleton since the group element d acts with positive

translation length on the skeleton and corresponds to the loop.
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Example C.4. Consider the automorphism ® given by
®(a) = ab, ®(b) = bab, ®(c) = cad, ®(d) = dcad.

Let ¢' : G’ — G’ be a relative train track representative where G’ is a rose on four petals.
The Whitehead graph of Aj is connected at the vertex of G'. The skeleton of Y(A}) is just

a point with stabilizer IF.
Example C.5. Consider the automorphism ® given by
®(c) = codod, ®(d) = docodod, ®(a) = a,d(b) = b,

where o = abab. Let A = {[{a,b)]}. Let ¢} : G’ — G’ be a relative train track represen-
tative, where G’ is a rose on four petals. In this example, the Whitehead graph of AJ is
connected at the vertex of G’ as shown in Figure C.1.

A partial covering of the universal cover of G, which gives the transverse covering of
Tg, is shown in Figure C.2. Different colors correspond to different equivalence classes.
The transverse covering Y (A4) of Tg is nontrivial. The stabilizer of a subtree in Y(Ag) is
[{c, 0, dod)]. The F-quotient of the skeleton of the transverse covering has two vertices and
two edges with one endpoint on each vertex. The edges are labelled by (o) and the loop

corresponds to d.
Example C.6. Consider the automorphism @ given by
®(c) = coyd, d(d) = deoyd, (a) = ab, d(b) = a,

where 01 = abAB is not fixed under ®. Let 0; := ®'~1(¢). By iterating d under ®, get the

ray

dcondeordordeoydeoydeodordeodosd . ...

Some subwords that appear in this ray are do;d for all i. We claim that the stabilizer of a
tree Y in the transverse covering V(Ag) of T will be infinitely generated such that the
set of generators contains the set {c, 01,02, ..., }. Indeed, when we draw a covering of Tg
which descends to Y(AY), then the only deck transformation of T that takes two edges
labeled d at the beginning and end of a ¢; is given by ¢;. Moreover, neither a nor b stabilize

the subtree Y. For H = (¢, 01,07, .. .), the subgroup ®(H) is properly contained in H. Also
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in S/TF (which is finite), there is an edge with infinitely generated stabilizer generated by
the o;.
In this example, the lamination is in fact carried by the infinitely generated subgroup

(c,0nd, 07d, . . .), which is also not ®-invariant.

Definition C.7. We say a group I is finitely generated relative to a collection of subgroups

{Ha, ..., Hy} if there exists a finite set F C T such that I is generated by F, Hj, ..., H.

Definition C.8 (Finitely supported action [Gui08, Definition 1.13]). An action of a count-
able group I' on an R-tree T is said to be finitely supported if there is a finite subtree K

whose images under I' cover T.
The following lemma is about the structure of the skeleton.

Lemma C.9. Let S be the skeleton of the transverse covering Y(Ag) of Tg.
(a) S/F is a finite graph of groups decomposition of IF.
(b) The vertex stabilizers of S are finitely generated relative to peripheral subgroups.

(c) There is only one IF-orbit of vertices with nonperipheral stabilizer in S.

Proof. (a) Since F is finitely generated and its action on T is minimal, the action on Tg
is finitely supported. By [Gui08, Lemma 1.14], the action of IF on S is minimal and
finitely supported. Since S is simplicial, S/ is a finite graph of groups decomposition

of F.

(b) By [Gui08, Lemma 1.11], for a finite graph of groups decomposition of a finitely gener-
ated group, the vertex groups are finitely generated relative to the edge groups. Since
every edge in S is incident to a peripheral subgroup, an edge stabilizer is either trivial,
or nontrivial and peripheral. Thus the vertex stabilizers of S are finitely generated

relative to peripheral subgroups.

(c) Since each subtree Y; € Y(Ag) contains a generic leaf of a lamination as a line, every
orbit of edges in Tg crosses Y;. Let ¢, ¢’ be two edges in two different subtrees Y; and
Y; such that e maps to ¢’ under some deck transformation g. Then by definition of our

transverse covering, ¢ in fact takes Y; to Y;. Thus up to the action of IF, there is only
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one subtree in y(Ag). Therefore, there is only one vertex with nonperipheral vertex

stabilizer in S/TF. O



102

Figure C.1. Whitehead graph for Example C.5

Figure C.2. Transverse covering for Example C.5
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