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ABSTRACT 

 

 The segmentation model of the Wasatch Fault Zone (WFZ) in north-central Utah 

has been central to understanding normal fault systems around the world. In this study, 

we test the notion that the classically defined Brigham City-Weber segment boundary is a 

barrier to earthquake rupture. To do this, we examined the elevation change of the 

Bonneville and Provo highstand shorelines of Lake Bonneville along these fault 

segments. We measured shoreline paleoelevation using the publicly available ± 20 cm 

vertical accuracy light detection and ranging (lidar) dataset sponsored by the State of 

Utah (2013-2014) and a new ArcGIS toolbox called PaleoElev that was developed as part 

of this study.  

 Elevation profiles of the Bonneville and Provo shorelines along the footwall of 

the fault exhibit constant elevation from the southern end of the Weber segment to the 

northern subsegment of the Brigham City segment. These elevation patterns suggest that 

the southern subsegment of the Brigham City segment is linked to the Weber segment 

and has commonly ruptured coseismically with the Weber segment since the late 

Pleistocene. The northern subsegment of the Brigham City segment exhibits little to no 

elevation change, and it is unclear as to whether this subsegment has been active since the 

late Pleistocene. 

 Where the shorelines are displaced by the WFZ, we have calculated vertical slip 

rates. The vertical slip rates calculated in this study have significant uncertainty 
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associated with the shoreline paleoelevation measurements. We can only confidently 

report two vertical slip rates from the Provo shoreline at the Pleasant View Salient, which 

correlate well to Holocene rates calculated from paleoseismic trenching data and support 

our interpretation that the Pleasant View Salient is not a barrier to fault rupture.  
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INTRODUCTION 

 

 The growing availability of high-resolution light detection and ranging (lidar) data 

has created the potential to measure surface topography in great detail. Of particular 

interest are geomorphological features such as shorelines and marine terraces that 

preserve a record of fault activity in tectonically active regions. The Bonneville and 

Provo shoreline highstands of late Pleistocene Lake Bonneville are prime examples of 

potential tectonic markers: they are laterally continuous, well age-constrained, and in 

close proximity to the Wasatch Fault Zone (WFZ). These features can be measured in 

detail using a publicly available lidar dataset sponsored by the State of Utah in 2013-2014 

(http://gis.utah.gov/data). This high-resolution lidar dataset, with 0.5 m horizontal and ± 

20 cm vertical accuracy, covers the extent of the WFZ and many proximal Bonneville 

and Provo shorelines within the state of Utah. 

 Shoreline paleoelevation needed to accurately interpret neotectonic deformation is 

not always straightforward to measure, however. Many Pleistocene and Holocene 

shorelines have been subject to surface processes that make surface elevation a poor 

approximation of paleoelevation. Even the most well-preserved Lake Bonneville 

shorelines have developed colluvial wedges on their shoreline benches as a result of 

landscape diffusion. In this study, we present a new ArcGIS toolbox named PaleoElev 

that automates paleoelevation approximation based on the methods presented by Jewell 

and Bruhn (2013). We apply the PaleoElev tool to Lake Bonneville shorelines in order to  
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interpret the temporal and spatial rupture patterns of the Brigham City and Weber 

segments of the WFZ since the late Pleistocene.  

 

Lake Bonneville 

 Lake Bonneville was the largest pluvial lake located in the Great Basin of western 

North America during the late Pleistocene (Figure 1). Fluctuating lake levels through 

time (Figure 2) formed both constructional and erosional landforms during the respective 

transgressive and regressive phases of the lake’s history. These features have been used 

in interpretations of paleoclimate (Currey, 1990; Oviatt et al., 1992), isostatic 

reconstructions (Gilbert, 1890; Currey, 1982; Bills et al., 2002; Adams and Bills, 2016; 

Chen and Maloof, 2017), lithosphere and mantle characterization (Bills and May, 1987), 

and more recently, neotectonic analysis (Jewell and Bruhn, 2013).  

 Although both constructional and erosional landforms have been analyzed in 

these and other studies, erosional shoreline terraces have long been considered more 

robust indicators of still-water lake elevation than their depositional counterparts 

(Johnson, 1933; Miller, 1939). The most prominent and easily correlated of these 

shoreline landforms are the Bonneville, Provo, and Stansbury shorelines first identified 

by G.K. Gilbert (1890). This study focuses on the Bonneville and Provo shorelines. 

 Characterization of Bonneville and Provo shorelines.  The Bonneville shoreline 

was first recognized, named, and described by Gilbert (1890). Gilbert postulated that the 

lake never stabilized at the Bonneville highstand, but began to overflow as soon as it 

reached the basin low-point at Red Rock Pass and catastrophically flooded into the Snake 

River basin almost immediately thereafter. Later investigations of the Bonneville 
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shoreline classified it as an erosional shoreline that briefly stabilized at its highstand 

before the flood. This characterization prevailed over Gilbert’s original interpretation 

throughout much of the published literature (Oviatt and Jewell, 2016).  

 Recently, Oviatt and Jewell (2016) have revisited Gilbert’s original interpretation 

of the shoreline. They suggest that as the lake transgressed to the 18 ky Bonneville level 

(Oviatt, 2015), it deposited the material that it eroded from the basin walls onto its own 

shoreline platforms (Figure 3). This material was never eroded away because the lake 

never stabilized at its highstand, and therefore, the Bonneville shoreline should be 

reclassified as a depositional terrace (Oviatt and Jewell, 2016). The Provo shoreline, in 

contrast, represents a stable lake level that formed between 15-18 ky (Oviatt, 2015) 

following the Bonneville flood. Due to stable nature of the lake level over the course of 3 

ky, the wave cut platforms of the Provo shorelines are well-developed and considered to 

be true erosional terraces (Godsey et al., 2005, 2011) (Figure 3). 

 Isostatic rebound.  The shorelines of Lake Bonneville were approximately 

horizontal at their formation. Any subsequent change in shoreline elevation is a record of 

surface deformation, which for the Bonneville and Provo shorelines is caused primarily 

by isostatic rebound and tectonic activity. Isostatic rebound of the shorelines was first 

recognized by G.K. Gilbert (1890), who observed that the shorelines were characterized 

by a domal deformation pattern with the greatest deformation at the center of the basin.  

 Since Gilbert’s first observations of this phenomenon, multiple studies have been 

carried out to characterize and quantify the rebound of the basin following removal of the 

lake. Adams and Bills (2016) utilized shoreline elevations measured by Currey (1982) at 

various locations across the basin to create palinspastically restored digital elevation 
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models (DEMs) for the Bonneville and Provo highstands. Rebound contours for the 

Bonneville and Provo levels are illustrated in Figure 4. The products of the Adams and 

Bills (2016) investigation are utilized in this study to discern between the isostatic and 

tectonic signals recorded by the Bonneville and Provo shorelines. 

 

The Wasatch Fault Zone 

 Tectonic setting.  The Wasatch Fault Zone is a 370 km segmented normal fault 

comprising the eastern border of the extensional Basin and Range Province. The classic 

segmentation model of the WFZ divides it into 10 independent segments, based primarily 

on structural complexities and bedrock salients (Schwartz and Coppersmith, 1984; 

Wheeler and Krystinik, 1992). The most seismically active of these are the five central 

segments: the Brigham City, Weber, Salt Lake City, Provo, and Nephi segments (Figure 

5). While no historic surface-rupturing earthquakes have been recorded on these 

segments, paleoseismic trenching studies have identified 20 surface-rupturing earthquake 

events estimated to be greater than ~M 7.0 in the last 7 ky (DuRoss et al., 2016). 

 Characterization of Brigham City and Weber segments.  The Brigham City 

segment is the northernmost of the central segments, characterized by a 60° bend in the 

fault at Box Elder canyon that was defined as a subsegment boundary by Personius 

(1990). The primary linear length of the segment is 35 km, where the northern 

subsegment is 18 km and the southern subsegment is 17 km in length (DuRoss et al., 

2016). There have been four Holocene earthquake events on this segment based on 

paleoseismic trenching studies (Personius et al., 2012; DuRoss et al., 2016). A 

comparison of slip rates from the southern subsegment and northern subsegment reveals 
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significantly more events on the southern subsegment (Personius et al., 2012). Personius 

et al. (2012) suggest that the southern subsegment of the Brigham City segment has 

experienced spillover rupture from the Weber segment, and that ruptures may be more 

likely to nucleate on the southern subsegment of the fault. 

 The Weber segment is the only one of the central segments without a subsegment 

boundary or significant structural complexities (DuRoss et al., 2016). It is also the 

longest of the central segments, with a primary linear length of 56 km. The continuous 

length of this segment merits it as a significant seismic hazard, capable of producing 

earthquakes M 7.0-7.2 (DuRoss, 2008). Five Holocene events have been identified on the 

Weber segment, as well as the potential for partial segment ruptures (DuRoss et al., 

2016). 

 Brigham City – Weber Segment boundary.  The Brigham City – Weber segment 

boundary is characterized by the Pleasant View Salient, a complexly faulted bedrock 

salient with significantly decreased throw, or vertical component of slip (Figure 6). It is 

unclear as to whether preexisting faults throughout the salient are reactivated by ruptures 

on the Brigham City and Weber segments (Personius et. al, 2012). At least one spillover 

rupture from the Weber to the Brigham City segment has been identified from Holocene 

trenching data (Personius et al., 2012; DuRoss et al., 2016). Increased Holocene 

displacement on the northern Weber Segment near the segment boundary is interpreted 

by DuRoss and others (2016) as evidence for mechanical interaction between the two 

segments.   

 Theoretical fault displacement models.  Along-strike displacement for the 

individual segments of the WFZ has been modelled (Chang and Smith, 2002; DuRoss, 
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2008) using a half-ellipse displacement pattern for simple linear elastic fracture 

(Watterson, 1986; Watterson and Walsh, 1987). In this model, the displacement is 

greatest at the center of the fault and zero at the tips (Figure 7a). The half-ellipse model 

corresponds to faults or fault segments that rupture independently, where the zero 

displacement at the tips represents a complete stress drop caused by strong fault 

boundaries or strong segment boundaries (Ward, 1997).  

 Earthquake ruptures can also terminate in areas of low stress where energy is 

gradually dispersed. In this case, there is an incomplete stress drop that exhibits a 

concave-up displacement pattern at the termination of the rupture (Figure 7b), which can 

occur anywhere along the fault (Ward, 1997). Fault segments can also mechanically 

interact or link over time. Mechanically interacting faults at fault step-overs exhibit a 

shift in maximum displacement to the area of overlap between fault strands (Figure 7c) 

(Willemse et al., 1996), while linked fault segments exhibit decreased displacement at the 

former segment boundary (Peacock and Sanderson, 1991; Figure 7d).  

 The half-ellipse model has been empirically validated for Basin and Range 

normal faults (Olig, 1994; Pezzopane and Dawson, 1996) and applied as a standard 

model for individual segments of the WFZ. Given the structural complexity of the WFZ, 

however, any combination of the described displacement models could manifest in the 

elevation profiles of Lake Bonneville shorelines.   

 

Purpose 

 The WFZ poses a seismic risk to 80% of Utah’s population, or approximately 2.3 

million people. Current risk assessments are based primarily on: 
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1) Holocene vertical slip rates derived from paleoseismic trenching. 

2) The classic fault segmentation model (Schwartz and Coppersmith, 1984; Wheeler 

and Krystinik, 1992).  

The majority of seismic hazard analyses treat the segments of the WFZ as 

seismogenically independent segments that rupture along their full length (Wong et al., 

2016). Several paleoseismic studies suggest that partial and multisegment ruptures are 

possible (Chang and Smith, 2002; DuRoss, 2008; DuRoss et al., 2016), which 

complicates our understanding of the fault system and the development of seismic risk 

assessments. DuRoss et al. (2016) establish the need for further investigation into the 

probabilities of these rupture scenarios. Holocene trenching data also indicate that some 

segment boundaries, considered barriers to rupture in seismic hazard analyses, are mature 

fault zones that can facilitate rupture. Classically defined segment boundaries also need 

to be investigated further to improve our understanding of the fault system. 

 Neotectonic analysis of Lake Bonneville shorelines is an alternative to trenching 

for understanding segment boundaries and further constraining seismic hazard analyses. 

Vertical slip rates measured from displaced Bonneville and Provo shorelines establish a 

Pleistocene perspective of the temporal and spatial pattern of surface ruptures, while 

kilometer-scale elevation profiles of measured shoreline paleoelevation serve as a 

geomorphic test for the generally accepted segmentation model. While the deformation of 

Lake Bonneville shorelines cannot provide insight to the rupture length of single events, 

it represents cumulative deformation since the late Pleistocene and can provide insight 

into the most probable rupture scenarios. 
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Scope 

 The scope of this study is limited to the Brigham City and Weber segments of the 

WFZ. Of the 5 central segments, only the Brigham City, Weber, and Salt Lake City 

segments contain shorelines with preservation sufficient to extract robust paleoelevation 

measurements. The Provo segment is the most heavily developed of the central segments, 

and anthropogenic activity has erased many shoreline features. Lake Bonneville at its 

highstand did not extend to the southern boundary of the Nephi segment, which makes 

this segment also unsuitable for analysis.  

 Neotectonic analysis of the Salt Lake City segment using Lake Bonneville 

shorelines was initially carried out by Jewell and Bruhn (2013), and we have chosen not 

to repeat their analysis using the PaleoElev tool in the scope of this study. In addition, the 

Brigham City and Weber segments contain the most abundant and well-preserved 

Bonneville and Provo shorelines. Therefore, these segments are the best choice for testing 

and applying the PaleoElev tool and neotectonic analysis of the WFZ.  
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Figure 1. Isostatically corrected Bonneville and Provo highstands of Lake Bonneville. 
The black box represents the study area for this investigation. Lake shapefiles were 
provided by Ken Adams from data compiled in Adams and Bills (2016).  
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Figure 2. A Lake Bonneville hydrograph. R, O, and T correspond to the regressive, 
overflow, and transgressive stages of the lake’s history. U1, U2, and U3 are unnamed 
oscillations. Figure reproduced from Charles G. Oviatt (personal communication, 
unpublished work).  
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Figure 3. Shoreline morphology of depositional and erosional terraces. (a) Detail of 
deposits on a depositional terrace. (b) An erosional terrace, the expected morphology of 
the Provo shoreline. (c) A depositional terrace, representing morphology of the 
Bonneville shoreline. (d) A geometric example of shoreline slope. Figure reproduced 
from Oviatt and Jewell (2016).  
 

 

(d) 

(c) 

(a) (b) 
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Figure 4. Isostatic rebound contours associated with the Bonneville and Provo 
highstands. The contour interval is 5 m. (a) Rebound contours for the Bonneville 
highstand, where the greatest rebound (center of the basin) is 73 m. (b) Rebound contours 
for the Provo highstand, where the greatest rebound (center of the basin) is 58 m. These 
contours were produced from 30 m DEMs of isostatic rebound provided by Ken Adams 
from data compiled in the Adams and Bills (2016) investigation. 
 

  

 

  

(a) (b) 
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Figure 5. The central segments of the Wasatch Fault Zone.  
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Figure 6. Brigham City – Weber segment boundary. The WFZ is shown here in black. 
The Brigham City segment is located to the north, terminating at the Pleasant View 
Salient. The Weber segment is located to the south.  
  

N 
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Figure 7. Theoretical models of along-strike fault displacement. (a) Half-ellipse 
displacement model based on simple linear fracture mechanics. Adapted from Watterson 
(1986) and Walsh and Watterson (1987). (b) Dogtail displacement model, where rupture 
gradually terminates in a low stress zone. Adapted from Ward (1997). (c) Displacement 
model for mechanically interacting faults in a fault step-over zone, where the maximum 
displacement occurs within the fault overlap. Adapted from Willemse et al. (1996). (d) 
Displacement model for linked fault segments, where the former segment boundary 
exhibits decreased displacement. Adapted from Peacock and Sanderson (1991).  
 

(a) 

(b) 

(c) 
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MEASURING SHORELINE PALEOELEVATION 

 

Theoretical Framework 

 Previous work.  The shoreline angle, defined as the intersection between the 

wave-cut platform and wave-cut sea cliff (Kern, 1977), has long been considered the 

most robust geomorphic indicator of paleoelevation for shorelines and marine terraces 

(Bradley and Griggs, 1976). It should be noted that the shoreline angle is not truly 

reflective of an angle, but a point of intersection between two surfaces. Hereafter, the 

shoreline angle will be referred to as the shoreline datum. Pleistocene and Holocene 

shoreline features have experienced varying degrees of diffusion, burying the shoreline 

datum and complicating measurement of its elevation. Multiple methods have been 

developed to measure elevation of the shoreline datum beneath postformational colluvial 

wedges.  

 Meyer and Locke (1986) used qualitative criteria for surveyed shoreline profiles 

at Yellowstone Lake to project platform and cliff surfaces beneath colluvial wedges, 

where the intersection of the projections represents the location of the shoreline datum. 

Using a similar approach, McCalpin et al. (1992) projected platform and cliff surfaces 

based on criteria for the angle of the surface. Trenches excavated in this study showed 

these projections to be within 30 cm of what they identified as the top surface of Lake 

Utaho deposits, located in the Pocatello Valley at the border of Utah and Idaho 

(McCalpin et al., 1992). 
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 Expanding on these methods, Jewell and Bruhn (2013) applied quantitative 

criteria to constraining the platform and cliff in their analysis of Lake Bonneville 

shorelines. They used lidar DEMs to extract shoreline profiles and perform a second 

derivative analysis along each profile. Each shoreline platform and cliff were defined by 

inflection points along the shoreline profile and projected using linear regressions, where 

the intersection of the projections is the shoreline datum (Figure 8).  

 Measuring paleoelevation.  This study expands on the Jewell and Bruhn (2013) 

approach to calculating paleoelevation. The second derivative of a shoreline profile is 

defined in this study as the second derivative parallel to slope, or profile curvature. Under 

this definition, negative values are convex, positive values are concave, and inflection 

points have a value of 0 (Figure 9). In an ideal model, the inflection point is analogous to 

a hinge across the shoreline surface where curvature equals 0. Inflection of a shoreline 

manifests not as a hinge, however, but as a zone where the shoreline surface is relatively 

planar (Figure 10). In this zone, the inflection point does not have an exact value of 0 but 

occurs where curvature changes sign.  

 Following the methodology of Jewell and Bruhn (2013), a linear regression 

through inflection points of both the shoreline platform and sea cliff are projected 

beneath colluvium on the shoreline bench (Figure 8). The intersection of these 

projections approximates the location of the shoreline datum, representing the best 

possible estimation of paleoelevation for a shoreline that has been modified by landscape 

diffusion. This method has proven to exhibit irregular results when shoreline morphology 

is affected by mass wasting, fluvial processes, or anthropogenic activity (Jewell and 

Bruhn, 2013).  
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Data Requirements and Description of PaleoElev Tool 

  The ArcGIS toolbox presented in this study was designed to automate 

calculations of paleoelevation. The methodology of Jewell and Bruhn (2013) employed 

manual data selection and analysis, which limited the resolution of data they were able to 

acquire to ~50-100 m on average. The PaleoElev tool efficiently measures paleoelevation 

with minimal manual inputs at a resolution specified by the user. The batch-processing 

capability of the tool also allows for analysis of swaths instead of single profiles. This 

modified approach incorporates the shoreline surface in its entirety, representing an 

averaging of the landscape in final paleoelevation calculations. Ultimately, the PaleoElev 

tool produces a more comprehensive dataset of paleoelevation than previous methods 

limited by the manual selection and analysis of profiles. 

 Development of PaleoElev as an ArcGIS toolbox allows for 100% of shoreline 

analysis to be carried out using ArcGIS software: there is no need to export lidar data to 

external software programs. The toolbox is composed of three scripts written in the 

Python programming language using the Python 2.7 integrated development environment 

(IDLE). These scripts utilize a combination of existing ArcGIS tools and custom Python 

functions developed as part of this study. Required extensions for the ArcGIS tools 

applied in PaleoElev include Spatial Analyst and 3D Analyst. Python modules required to 

operate these toolboxes include numpy (Python package for scientific computing), sympy 

(Python package for symbolic math), and math (Python package for mathematical 

functions). A simplified workflow for the toolbox is illustrated in Figure 11. 
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Inflection Points Script 

 Preprocessing input data.  The required input data for the Inflection Points script 

are:  

1) Polyline shapefile of mapped shorelines.  

2) High-resolution DEM raster that covers the extent of the shoreline shapefile.  

For best results, shorelines should be mapped as close as possible to the base of the sea 

cliff and exclude visible mass wasting, fluvial, or anthropogenic modifications (Figure 

12). The input DEM must cover the full extent of the input shoreline polyline. 

 Description of Inflection Points Script.  The purpose of this script is to create 

inflection points where a shoreline feature changes curvature. A workflow for this script 

is illustrated in Figure 13 and the required user-defined inputs and parameters are defined 

in Table 1. After input data and parameters are provided, the script creates swaths 

perpendicular to the mapped shoreline feature. To create the swaths, profiles are first 

generated using Mateus Ferreira’s publicly available custom toolbox Transect2.0 

(Cooley, 2014). This tool creates profiles perpendicular to the mapped shoreline at the 

length and spacing specified in the input parameters. Swaths are then created using the 

ArcGIS Buffer tool. This tool creates rectangles, at a width specified in the input 

parameters, around the profiles generated by the Transect2.0 toolbox. Once the swaths 

are created, the script performs the inflection point analysis for each swath in a loop.  

 The ArcGIS Focal Statistics tool is necessary to average swaths of the high-

resolution input DEM (Figure 14a) in order to produce generalized curvature and 

inflection point outputs for each swath (Figure 14b, Figure 14c). Focal statistics performs 

an average for each cell in the DEM based on a user-defined neighborhood, which 
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includes a shape (rectangle, circle, or wedge, among others) and size. The script is set up 

so that if the neighborhood contains NoData values, which occurs at the edges of the 

swath, then all cells within the neighborhood are assigned values of NoData.  

 The assignment of NoData cells reduces low quality averaging at the edges of 

each swath, but also reduces the size of the swaths and produces edge effects (Figure 15). 

Both of these effects can be mitigated, however. Edge effects are removed based on user-

defined parameter m, which reflects the maximum thickness of the edge effects. The 

maximum thickness of edge effects is dependent on the resolution of the input DEM. To 

mitigate size reduction, the user should specify a swath size larger than the desired swath 

size based on the size of the user-defined neighborhood in addition to the edge effect 

reduction parameter m. 

 After the swath has been processed using focal statistics, the curvature tool is used 

to produce a profile curvature raster. The final analysis in this script is the custom Python 

function Inflection_Function.py. This function requires input of the focal statistics raster, 

the profile curvature raster, and user-defined parameter m. Inflection_Function.py 

converts the input raster files to arrays, which establishes grids of curvature and elevation 

data across the xy extent of the swath. Grids for x and y values are produced from the 

minimum and maximum xy extents of the input curvature raster. Once these four grids 

are established, xyz coordinates can be indexed for inflection points in the curvature grid 

(Figure 16). To determine points of inflection, the curvature grid is analyzed row-by-row 

and column-by-column. An inflection point is indexed wherever the curvature changes 

sign (Figure 17).  

 Inflection_Function.py eliminates edge effects utilizing the user-defined 
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parameter m. The edge points of the input raster are identified and compared to calculated 

inflection points. Any inflection point that is within m distance of any edge point is 

excluded from the final output. After inflection results are filtered to exclude edge 

effects, the xyz coordinates are written to a multipoint feature class. The multipoint 

feature class for each swath is written to the final output, which is a multipoint feature 

class that holds all inflection points for the input shoreline feature (Figure 18). 

 

Swath Profiles Script 

 The purpose of this intermediate script is to resolve the inflection points onto a 

profile in order to perform subsequent analysis in two dimensions. The required inputs 

for this script are both outputs from the Inflection Points script:  

 1. Inflection point multipoint feature class, produced by previous script. 

 2. Profile polyline, produced by previous script.  

One user-defined parameter, a distance tolerance for points to be resolved onto a profile, 

must also be specified. In order to include all inflection points in the swath, it is 

recommended to use a tolerance larger than the swath size. In a loop, this script compares 

each swath of inflection points to its corresponding transect and uses the ArcGIS Snap 

tool to resolve the points onto the transect (Figure 19). The Swath Profiles script is only 

necessary for batch-processing. For a single profile, the ArcGIS Snap tool can be used 

directly to resolve inflection points onto a profile. 
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Shoreline Elevations Script 

 Preprocessing input data.  To calculate paleoelevation, it is necessary to constrain 

calculated inflection points to the extents of the shoreline platform and sea cliff. These 

morphological features are naturally spatially variable due to post shoreline modification 

and the materials in which the shoreline formed. The extents of the shoreline platform 

and sea cliff must be mapped as individual polygons to constrain relevant inflection 

points (Figure 20). These shapefiles are required inputs for the Shoreline Elevations 

script. Extent polygons can be mapped using simply a hillshade or slopeshade of high-

resolution DEMs, however, we recommend utilizing curvature rasters to aid in mapping 

these features. 

 Description of Shoreline Elevations Script.  The purpose of the Shoreline 

Elevations script is to calculate paleoelevation using the inflection point data produced by 

the preceding scripts. This script requires input of the swath profiles produced from the 

Swath Profiles script and mapped extents of the platform and sea cliff. This script loops 

through the swath profiles and clips each profile to the input extents of the platform and 

sea cliff. If either of the clip outputs are empty, then the script continues to the next swath 

profile. If both clip output files contain points, then the custom function 

Shoreline_Elevation_Function.py is implemented.  

 The Shoreline Elevations script designates the inflection points located on the 

platform and sea cliff as the inputs to the function. The function then extracts the xyz 

coordinates of these points. To fit a linear regression to the platform and cliff surfaces, 

the function resolves the xyz points into 2D space. In 2D, the x-axis corresponds to 

distance along the swath profile, where the minimum platform point is assigned a value 
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of 0. The y-axis corresponds to elevation, or the z coordinate.  

 The function then requires a minimum of two points for each surface. If this 

requirement is met, then the inflection points on each surface are fit with a linear 

regression, where the intersection of these projections is the paleoelevation (Figure 21). 

After this point is calculated, it is resolved back into xyz space using trigonometric 

principles of similar triangles (Figure 22). The function is equipped to handle any transect 

orientation. An example output of this function is illustrated in Figure 23. 

  



24 
 

 
 

 

 

Figure 8. Generalized profile of a Lake Bonneville shoreline. The projected datum is the 
location of the original shoreline angle. Figure reproduced from Jewell and Bruhn (2013). 
 
 
 

 

 
Figure 9. Schematic illustrating profile curvature. (a) Negative curvature (-) representing 
a convex surface. (b) Positive curvature (+) representing a concave surface. (c) A planar 
surface with 0 curvature. Modified from Environmental Systems Research Institute, Inc. 
(ESRI) ArcGIS Desktop Documentation (ESRI, 2016). 
 
 
 

  

(a) (b) (c) 

(-) (+) (0) 
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Figure 10. Inflection of a Bonneville shoreline. The shoreline in this example has been 
vertically exaggerated by a factor of 2. (a) Ideal inflection points shown as dashed lines 
for the shoreline platform and cliff. Arrows indicate the extents of the platform and cliff. 
(b) Calculated inflection points, excluding drainages, for the shoreline platform and cliff. 
Inflection points are shown in black. Base map is a slopeshade of 0.5 m lidar.  
  

 

(a) 

(b) 

Vertical 
Exaggeration 2x 

Vertical 
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Figure 11. Generalized workflow for the PaleoElev toolbox. Black boxes represent the 
scripts in the PaleoElev toolbox. Green boxes are external inputs, blue boxes are 
intermediate outputs used as inputs to the subsequent scripts, and the red box represent 
the final output of the toolbox.  
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Figure 12. Example of a mapped shoreline. Note that the mapped shoreline excludes 
areas with visible modifications in addition to erosion. Base map is a slopeshade of 0.5 m 
lidar. 
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Table 1. Input data and parameters required by PaleoElev 

1. Inflection Points Script 
Input Data Data Type Description 

Output Folder Workspace Folder where output file will be saved 

Mapped Feature Feature Layer Mapped geomorphic features 

DEM Raster Layer Lidar or other high-resolution DEM 

Transect2.0 Toolbox Transect2.0 toolbox 

Output File String Name of the output file 

Parameters Data Type Description 

Profile Spacing Double 
Integer of profile spacing. This value 
reflects the final resolution of 
paleoelevation points 

Profile Length Double Integer of profile length. This value 
reflects half of the total length 

Units String Units of profile length 

Swath Width Linear Unit Requires value and units. This value 
reflects half of the total width 

Statistics Neighborhood Neighborhood Recommended: NbrRectangle({width}, 
{height}, {units}) 

Maximum Thickness of 
Edge Effects Double Integer representative of the maximum 

width of edge effects 
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Table 1. Continued. 

2. Swath Profiles Script 
Input Data Data Type Description 

Output Folder Workspace Folder where output file will be saved 

Profiles Feature Layer Output polyline feature class from the 
previous script 

Inflection Points Feature Layer Output multipoint feature class from the 
previous script 

Parameters Data Type Description 

Swath Area Linear Unit 
Requires a value and units - 
recommended to use a value larger than 
the swath area 

3. Shoreline Elevations Script 
Input Data Data Type Description 

Output Folder Workspace Folder where output file will be saved 

Swath Profiles Feature Layer The output file from the previous script 

Cliff Extent Feature Layer Polygon shapefile of mapped cliff 
extents 

Platform Extent Feature Layer Polygon shapefile of mapped platform 
extents 
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Figure 13. Generalized workflow of the Inflection Points script. Green boxes indicate 
required inputs and blue boxes are outputs. Black boxes represent ArcGIS and custom 
tools implemented in the Inflection Points script. Black ellipses are intermediate outputs 
utilized within the script. 
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Figure 14. Example effects of mean focal statistics on curvature and inflection point 
output for a single swath. (a) Analysis of a lidar bare-earth DEM swath without 
application of focal statistics. (b) Curvature swaths with focal statistics applied. The size 
of the rectangular neighborhood is indicated beneath each swath. (c) Inflection points 
overlain on curvature swaths with focal statistics applied. The size of the rectangular 
neighborhood is indicated beneath each swath. Edge effects have not been removed in 
this example. Note that inflection points are created around the edge of each swath 
because of edge effects. 

(b) 

(a) 

(c) 
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Figure 15. Size reduction and edge effects produced by mean focal statistics. The black 
border represents the original swath extent. (a) Magnitude of size reduction for different 
rectangular neighborhood sizes, indicated below each swath. (b) Edge effects for two 
swaths with different rectangular neighborhood sizes. The maximum thickness of the 
edge effects is constant regardless of neighborhood size. 
 
 
 

(b) 

(a) 



33 
 

 
 

 

Figure 16. Schematic of grids created for each swath. The swath area is shown in red. 

 

 

 

Figure 17. Schematic of inflection function producing inflection points. Vertical arrows 
represent column-by-column analysis and horizontal arrows represent row-by-row 
analysis.  
 



34 
 

 
 

 

 

Figure 18. Example output of Inflection Points Script. (a) Output inflection points for a 
single swath. (b) Output inflection points for an entire shoreline feature. Base map is a 
slopeshade of 0.5 m lidar. 
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Figure 19. Example output of Swath Profiles Script. (a) Output for a single swath. (b) 
Output for an entire shoreline feature. Base map is a slopeshade of 0.5 m lidar. 
  

(a) (b) 
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Figure 20. Mapped cliff and platform extents for a Bonneville shoreline. Base map is a 
slopeshade of 0.5 m lidar. 
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Figure 21. Example projection of a Bonneville shoreline paleoelevation datum point. 
Black points represent inflection points along the swath profile. Red lines represent linear 
regressions, where their intersection is the paleoelevation datum point calculated by the 
function. The paleoelevation datum point is shown in blue, and enlarged for clarity. 
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Figure 22. Trigonometric relationship used to resolve inflection point to xy space. X, Y, 
H, x, y, and h are all calculated distances from the 2D projection of the elevation point 
(xi, yi). Points (px, py) and (cx, cy) represent the minimum platform point and maximum 
cliff point, respectively. The calculated distances are added or subtracted from the xy 
coordinates of the platform (px, py), depending on the orientation of the profile, to 
determine the xy coordinates of point (xi, yi).  
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Figure 23. Example output of the Shoreline Elevations Script. (a) Map view of elevation 
points produced by the script. Base map is a slopeshade of 0.5 m lidar. (b) 3D view of 
shoreline elevation points. 

(b) 

Vertical 
Exaggeration 2x 

(a) 



 
 

 
 

APPLICATION OF PALEOELEV TOOL TO  

LAKE BONNEVILLE SHORELINES 

 

Analysis of Bonneville and Provo Shorelines 

 Assumptions and inputs to PaleoElev.  To apply the PaleoElev tool to Lake 

Bonneville shorelines we make the following assumptions: 

1) Shorelines were approximately the same elevation at the time of formation. 

2) Diffusion of the sea cliff has been the primary source of sediment for the colluvial 

wedges on the shoreline platforms. 

Mapped shorelines represent the most well-preserved shorelines along the Brigham City 

and Weber segments (Figure 24). Poorly preserved Bonneville and Provo shorelines are 

identifiable in the lidar data, but were not mapped for purposes of this analysis. Publicly 

available bare-earth DEMs of 0.5 m lidar (http://gis.utah.gov/data) were used exclusively 

in measurement of paleoelevation for mapped shorelines. 

 The parameters chosen for analysis of Bonneville and Provo shorelines using the 

PaleoElev tool were based on observations and measurements of the shoreline features 

(Table 2). The input parameter profile length of 400 m and swath width of 60 m 

correspond to a swath size of ~370 m by ~30 m after mean focal statistics and removal of 

edge effects were applied. Small ~30 m swath widths are preferred over wider swaths 

because shorelines curve where they change strike in response to topography. Using a 

relatively small swath width ensures that a linear projection of inflection points in a swath   
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profile is a reasonable approximation of the land surface. Larger swath sizes, while 

potentially averaging out greater small-scale shoreline variability, may not be 

approximated well by a linear regression.   

 Mean focal statistics were performed using a 20 m by 20 m rectangular 

neighborhood, which corresponds to the least possible averaging required to produce a 

generalized inflection point output for 0.5 m lidar (Figure 14c). Edge effects generated 

from application of mean focal statistics exhibit a maximum thickness of 3 m in the 0.5 m 

lidar, so this thickness was used as the edge effects reduction parameter (Figure 15b). The 

final input parameter required was utilized in the Swath Profiles script. A swath area of 

50 m was chosen as a conservative parameter to ensure all inflection points in each ~30 

m wide swath were incorporated in their respective swath profile. 

 PaleoElev outputs.  The number of paleoelevation datum points ultimately 

produced by the tool was 4,283 for the Bonneville shoreline (Figure 25), as compared to 

a potential 4,756 points based on the number of swath profiles. Fewer well-preserved 

Provo shorelines were mapped, which is reflected in the total 3,571 paleoelevation datum 

points (Figure 26) produced by the PaleoElev tool. This output is compared to a potential 

number of 4,400 for the Provo shoreline. The total output is less than the potential output 

because the custom function Shoreline_Elevation_Function.py within the PaleoElev tool 

requires a minimum of 2 inflection points on the platform and 2 inflection points on the 

sea cliff to perform linear regressions for these surfaces. Even so, the number of output 

points produced by the PaleoElev tool is an order of magnitude higher than any previous 

study employing manual analysis of profiles. 

 Elevation profiles of the PaleoElev outputs (Figures 27a-30a) exhibit visible 
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outliers. We identify two primary causes for these outliers. First, an R² parameter is not 

currently included in Shoreline_Elevation_Function.py, so outliers are produced from 

poor fits of platform and cliff surfaces with low density inflection points. Secondly, while 

manual mapping was as thorough as possible, it is evident from the PaleoElev output that 

some poorly preserved shorelines were included in the PaleoElev analysis. These outliers 

are removed in a series of corrections following primary analysis by the PaleoElev tool. 

 

Corrections Applied to PaleoElev Output Points 

 Isostatic rebound correction.  Lake Bonneville shorelines preserve a cumulative 

record of surface deformation since their formation, which includes isostatic rebound in 

addition to tectonic deformation. Isostatic rebound is particularly relevant to shoreline 

measurements in this study, as compared to the Jewell and Bruhn (2013) study, because 

rebound contours are oblique to shorelines along the Brigham City and Weber segments 

(Figure 25, Figure 26). When rebound contours are parallel to the shoreline features, as is 

the case for the Salt Lake City segment, the rebound signal is constant throughout 

shoreline elevation measurements and does not significantly affect tectonic interpretation.  

 To isolate the tectonic signal in the PaleoElev outputs, we corrected the output 

paleoelevations for isostatic rebound. To do this, we utilized 30 m DEMs of the 

magnitude of isostatic rebound for both the Bonneville and Provo lake levels. These 

DEMs were provided by Ken Adams, produced as part of work published in Adams and 

Bills (2016). The rebound magnitude DEMs were produced from the shoreline elevations 

surveyed by Currey (1982). Adams and Bills (2016) did not attempt to remove shoreline 

elevations from this dataset that Currey (1982) observed as having been affected by local 
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tectonic activity. The wavelength of tectonic deformation is small-scale in comparison to 

the isostatic signal recorded in a basin-wide dataset of shoreline elevation, however, and 

so the tectonic signal does not have a significant effect on the rebound magnitude DEMs. 

For this reason, we consider use of the rebound magnitude DEMs to be a reasonable 

approach to correcting isostatic rebound for shoreline elevations in this study. 

 To determine the magnitude of rebound at each paleoelevation datum point, the 

xy location of each point was interpolated from the corresponding rebound magnitude 

DEM. The magnitude of rebound was then subtracted from the calculated paleoelevation 

for that point to produce a rebound corrected paleoelevation datum (Figures 27b-30b). 

 Preprocessing for outlier removal.  To remove outliers, we performed a two-pass 

filter on the rebound-corrected PaleoElev outputs. In order to preserve kilometer-scale 

tectonic trends, we performed these analyses on continuous shoreline sections (Figure 28, 

Figure 30). We define a continuous shoreline section as having no gaps in data greater 

than 300 m. Therefore, a shoreline is considered continuous if it is has small-scale 

discontinuities such as narrow drainages or fan deposits, but is not continuous across 

major rivers, areas of significant anthropogenic modification, or other factors 

contributing to large-scale discontinuities. Based on these criteria, we performed a two-

pass filter to eliminate outliers on 52 continuous Bonneville shoreline sections and 37 

continuous Provo shoreline sections.  

 Adjacent point filter.  The first filter reduces point to point perturbations in 

elevation caused by poor projections from the code or small-scale surface variability 

caused by modification other than landscape diffusion (Figures 27c-30c). Acceptable 

points are defined as having an elevation difference of < 1 m from neighboring points, or 
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a slope less than 20% based on a minimum horizontal resolution of 5 m. We assume that 

a slope greater than 20% between elevation points at this resolution is unreasonable based 

on the assumption that the shoreline is approximately horizontal at small scales. Each 

point is compared to the neighboring points on either side of it, and only has to meet the 

difference criteria of < 1 m as compared to one of its neighbors to be retained in the 

dataset. Because this filter is designed to remove small-scale outliers, its effects are best 

observed for single continuous Bonneville and Provo shoreline sections (Figure 28c, 

Figure 30c).  

 The adjacent point filter eliminated 1,070 outliers from the Bonneville dataset and 

691 outliers from the Provo dataset, reducing the total number of points to 3,213 for the 

Bonneville dataset and 2,880 for the Provo dataset. 

 Statistical filter.  Following application of the adjacent point filter, the statistical 

filter is designed to eliminate outliers along each continuous shoreline section (Figures 

27d-30d). These outliers are caused primarily by poor fits produced within the PaleoElev 

tool, so the effects of the statistical filter are best observed across the total paleoelevation 

dataset for the Bonneville and Provo shorelines (Figure 27d, Figure 29d).  

 First, we test whether the continuous shoreline sections exhibit a normal 

distribution. We calculate distance from the mean for each point in a shoreline section 

and compile these values for all continuous shoreline sections to produce a cumulative 

distribution. The distribution for each shoreline section is essentially stacked in the 

cumulative distribution, which gives greater weight to shoreline sections with higher 

point densities.  

 Both Bonneville and Provo continuous shoreline sections exhibit a normal 
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distribution, where the standard deviation for the Bonneville shoreline is ± 5.02 m and 

standard deviation for the Provo shoreline is ± 4.25 m (Figure 31). Outliers are eliminated 

in the statistical filter by restricting paleoelevation datum points to 3 sigma standard 

deviations from the mean of its respective shoreline section. The 3 sigma rule 

corresponds to 99.7% confidence bounds, so 99.7% of the dataset lies within the 3 sigma 

bounds.  

 The statistical filter reduces the number of points in the Bonneville dataset by 70 

and reduces the number of points by 59 in the Provo dataset. As a result, the total number 

of paleoelevation datum points after application of the statistical filter is 3,143 for the 

Bonneville dataset and 2,821 for the Provo dataset.  

 

Bonneville and Provo Shoreline Paleoelevation Measurements 

 Shoreline geomorphology.  Once isostatic rebound is corrected and outliers are 

removed from the PaleoElev outputs, the remaining points in the Bonneville and Provo 

datasets are representative of robust paleoelevation shoreline datums (Figure 32, Figure 

33). Any trends evidenced by these measurements are interpreted as real shoreline 

signals, not scatter produced as an artifact of the methods.  

 The total number of measurements in the Bonneville dataset is 3,143 and in the 

Provo dataset is 2,821. The standard deviation for each shoreline after all corrections 

have been applied is ± 4.89 m for the Bonneville and ± 3.99 m for the Provo. There is 

better coverage for the Bonneville shoreline along the Brigham City and Weber segments 

than the Provo shoreline, but Bonneville measurements are more variable. This difference 

can be attributed to difference in shoreline morphology, shoreline age, or greater 
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secondary modification of the Bonneville shoreline. 

 Relation to the Wasatch Fault Zone.  In order to make neotectonic interpretations 

from shoreline paleoelevation, we classify shorelines by their location relative to the fault 

(Figure 32, Figure 33). Shorelines are classified as located on the footwall or hanging 

wall block of the main fault strand, where possible. The WFZ transitions from a single 

strand to a complex fault zone south of Brigham City, where some of the most well-

preserved shorelines on the Brigham City segment are located. The fault strands within 

this zone cut across Bonneville and Provo shorelines, causing the shorelines to exhibit 

rapid elevation change over small distances (Figure 34, Figure 35). Sections of the Provo 

shoreline in particular have been noticeably down-dropped on hanging wall blocks within 

this fault zone (Figure 35). The Bonneville shoreline is more consistently located on the 

main footwall block within this fault zone, but is noticeably offset across a single non-

parallel fault strand within the fault zone that cuts up Evans Canyon (Figure 34).  

 Interaction with the fault does not explain all of these elevation changes, however. 

The Bonneville shoreline just south of Box Elder Canyon, between ~19.0 and ~19.5 km 

in Figure 34, is clearly located on the footwall based on the mapped fault strands. It 

exhibits the lowest elevation of any Bonneville shoreline analyzed in this study, however. 

Investigation of the lidar in this area indicated that many of the faults are concealed, so 

there is the possibility that mapped faults could be inaccurate and the shoreline is actually 

located on a down-dropped hanging wall block. Geologic maps of the area also reveal 

complex bedrock faults and landslides on the south side of Box Elder Canyon. Deep-

seated bedrock landslides or reactivation of bedrock faults can cause block rotation, 

which would also cause an anomalously low shoreline elevation at this site.  
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 Due to the complexity of both the fault and local geology in this area, we have 

chosen not to classify shorelines within this complex fault zone as located on the footwall 

or hanging wall block. Classifications are therefore only made for shorelines with a clear 

relationship to the main strand of the fault. Because shoreline elevations within the 

complex fault zone are likely affected by a combination of local geology and activity on 

the WFZ, we also do not calculate vertical slip rates where shorelines are offset within 

this zone. 

 

Footwall Elevation Profiles 

 The majority of the Bonneville and Provo shorelines in this analysis are located 

on the footwall block of the Wasatch Fault. Therefore, we analyze elevation trends 

exhibited by footwall block shorelines to interpret fault segmentation patterns because 

they provide the most comprehensive representation of elevation change along the fault 

segments (Figure 36). Changes in footwall elevation are not representative of a complete 

displacement profile, however. Relative uplift along the footwall block of a normal fault 

is between 10-25% of total displacement on the fault (McCalpin, 2009). Therefore, trends 

in paleoelevation along the footwall are a low-amplitude representation of the 

displacement profile for each fault segment.   

 From the northern boundary of the Brigham City segment (0 km) to the Pleasant 

View Salient (30 km), the Bonneville shoreline exhibits ~15-20 m in elevation change 

and the Provo shoreline exhibits ~20 m of elevation change (Figure 36). The northern 

subsegment of the Brigham City segment exhibits little to no elevation change along the 

Bonneville and Provo shorelines. Displacement trails off at ~25 km south, just north of 
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the 60 degree bend in the fault at Brigham City (Figure 36b, Figure 36c). This trend is 

more evident in the Bonneville shoreline elevations, as the Provo shorelines near Box 

Elder canyon are heavily modified and not measured in this analysis.  

 There is no clear decrease in elevation at the Brigham City – Weber segment 

boundary, which would be expected based on the classic segmentation model. Elevation 

is relatively constant from the segment boundary south. Shoreline measurements end just 

north of Bountiful.  Shorelines have been heavily modified by anthropogenic activity in 

and around Bountiful, so it is unclear as to whether displacement decreases at the Weber 

– Salt Lake City segment boundary. 

 

Vertical Slip Rates 

 Calculation of vertical slip rates and uncertainties.  Vertical slip rates are 

calculated where the Bonneville and Provo shorelines are offset by the main strand of the 

WFZ (Figure 37). To calculate shoreline offset, we constrain footwall and hanging wall 

shoreline measurements to within ~5 km of where the fault trace intersects the shoreline. 

Offset of the shoreline is calculated as the difference between the mean footwall 

elevation and mean hanging wall elevation for the ~5 km of shoreline measurements 

(Figure 38).  

 Distances greater than ~5 km from where the fault trace intersects the shoreline 

begin to exhibit trends that would be best represented by a linear regression instead of a 

mean elevation. The lengths of hanging wall shorelines in all three locations for this 

analysis are ~5 km or less, however, and a linear regression is less preferable to a mean 

elevation at this resolution. For this reason, we constrain the footwall elevations to ~5 km 
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and use mean elevations instead of fitting shoreline measurements with linear 

regressions. It is important to note here that using shoreline measurements over an area of 

± 5 km from the fault trace is a gross estimation of vertical offset, as compared to vertical 

offsets calculated from piercing points in paleoseismic trenches. 

 Vertical slip rates are calculated by dividing the mean offset across the shoreline 

by the known age of the shoreline (Table 3, Table 4). Uncertainty of the slip rate is 

calculated from combined measurement and shoreline age uncertainties. Measurement 

uncertainty, measured in meters, is determined from 2 sigma standard deviation (95% 

confidence bounds) for both the footwall and the hanging wall mean elevations. The total 

measurement uncertainty is calculated from the root sum squared of the footwall and 

hanging wall 2 sigma uncertainties. The relative measurement uncertainty, or percentage 

uncertainty, is the ratio of measurement uncertainty to calculated offset multiplied by 

100. 

 The shoreline ages utilized in this study represent estimated ages from a 

comprehensive dataset of radiocarbon ages for the Bonneville and Provo shorelines 

(Oviatt, 2015). Oviatt (2015) does not provide an exact uncertainty, but indicates that an 

uncertainty of several hundred years is reasonable for these age estimates. We chose an 

arbitrary uncertainty of ± 300 yr for the Bonneville and Provo age estimates based on this 

informed opinion (Oviatt, 2015). While this uncertainty is an estimate, like the ages of 

the shorelines, it serves as a reasonable approximation of the uncertainty associated with 

the shoreline ages. Relative age uncertainty is then calculated as the ratio of the 

uncertainty to the age of the shoreline multiplied by 100. 

 The relative uncertainty of each vertical slip rate is calculated by adding the 
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measurement and shoreline age relative uncertainties. The absolute uncertainty in mm/yr 

is then determined by multiplying the vertical slip rate by the percentage of relative 

uncertainty. 

 Comparison to Holocene vertical slip rates.  The mean preferred vertical slip 

rates calculated in this study, as a gross estimate of vertical slip, are lower than mean 

preferred Holocene vertical slip rates calculated from piercing points observed in 

trenches (Table 5). Uncertainties for the slip rates calculated in this study are large, 

however, primarily affected by measurement uncertainty in shoreline elevations. Where 

uncertainty causes the lower bound to be negative, we assign that bound a value of 0 as 

we do not expect reverse motion on these faults.  

 The measurements of vertical slip rates on the Provo shoreline at the Pleasant 

View Salient have the smallest uncertainties for vertical slip rates calculated in this study, 

so we are most confident in these values. The upper bounds of these slip rates correlate 

well to the Holocene mean preferred vertical slip rate for the Brigham City segment and 

the lower bound for the Weber segment.  

 Vertical slip rates calculated from the Bonneville shoreline at the Pleasant View 

Salient exhibit lower vertical offset than the Provo shoreline. This measurement 

challenges the interpretation that as the older shoreline, the Bonneville should exhibit the 

displacement on the Provo shoreline at a minimum. There is greater uncertainty 

associated with the elevation measurements on the Bonneville shoreline, however, which 

at the Pleasant View South location creates a range that overlaps with measurements on 

the Provo shoreline and Holocene vertical slip rates. 

 The largest uncertainties are associated with the lowest slip rates located at the 
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Honeyville Spur. There are no Holocene trenches located this far north along the 

Brigham City segment with which to directly compare vertical displacement, but the 

vertical slip rate calculated from the shoreline elevations as compared to the projected 

Holocene slip rates for the segment are anomalously low. 
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Figure 24. Bonneville and Provo mapped shorelines. These shapefiles were used as input 
to the PaeloElev tool. Shorelines were mapped to exclude drainages, landslides, alluvial 
fans, anthropogenic modification, and other factors significantly affecting shoreline 
morphology.  
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Table 2. Parameters used in application of PaleoElev to Lake Bonneville shorelines. 

1. Inflection Points Script 
Parameter Value Description 

Profile Spacing 5 Output resolution of 5 m 

Profile Length 200 Total profile length of 400 m 

Units "METERS" Units of profile length 

Swath Width "30 Meters"  Total swath width of 60 m 

Statistics 
Neighborhood NbrRectangle(40,40,"CELL") 

Specified rectangular 
neighborhood with width 20 
m and height 20 m 

Edge Effects 3 Width of edge effects in map 
units (m) 

2. Swath Profiles Script 
Parameter Value Description 

Swath Area "50 Meters" 
Any point within 50 m of the 
profile is resolved onto that 
profile 

3. Shoreline Elevation Script 

No input parameters required 
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Figure 25. PaleoElev output for the Bonneville shoreline. 
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Figure 26. PaleoElev output for the Provo shoreline.  
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Figure 27. Bonneville shoreline corrections. Paleoelevation datum points are shown in 
black and the red box indicates the location of Figure 28. Segment boundaries are shown 
as dotted blue lines, where BCS is the Brigham City segment and WS is the Weber 
segment. Note the scale change from one figure to the next. a) Output of PaleoElev with 
no corrections. b) Isostatic rebound correction. c) Paleoelevation datum points meeting 
the adjacent point criteria. d) Paleoelevation datum points within 3 sigma standard 
deviations (99.7% confidence interval) for each continuous shoreline section.   

(a) 

(b) 

(c) 

(d) 



57 
 

 
 

 

Figure 28. Detail of Bonneville shoreline corrections. Paleoelevation datum points are 
shown in black. The location of this figure is indicated by the red box indicates in Figure 
27. Note the scale change from one figure to the next. a) Output of PaleoElev with no 
corrections. b) Isostatic rebound correction. c) Paleoelevation datum points meeting the 
adjacent point criteria. d) Paleoelevation datum points within 3 sigma standard deviations 
(99.7% confidence interval) for the continuous shoreline section shown. 

(a) 

(b) 

(c) 

(d) 
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Figure 29. Provo shoreline corrections. Paleoelevation datum points are shown in black 
and the red box indicates the location of Figure 30. Segment boundaries are shown as 
dotted blue lines, where BCS is the Brigham City segment and WS is the Weber segment. 
Note the scale change from one figure to the next. a) Output of PaleoElev with no 
corrections. b) Isostatic rebound correction. c) Paleoelevation datum points meeting the 
adjacent point criteria. d) Paleoelevation datum points within 3 sigma standard deviations 
(99.7% confidence interval) for each continuous shoreline section.   

(a) 

(b) 

(c) 

(d) 



59 
 

 
 

 

Figure 30. Detail of Provo shoreline corrections. Paleoelevation datum points are shown 
in black. The location of this figure is indicated by the red box indicates in Figure 29. 
Note the scale change from one figure to the next. a) Output of PaleoElev with no 
corrections. b) Isostatic rebound correction. c) Paleoelevation datum points meeting the 
adjacent point criteria. d) Paleoelevation datum points within 3 sigma standard deviations 
(99.7% confidence interval) for the continuous shoreline section shown. 

(a) 

(b) 

(c) 

(d) 
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Figure 31. Cumulative distribution of difference from the mean elevation for continuous 
shoreline sections. The shaded region represents ± 3 sigma standard deviations, which 
corresponds to a confidence interval of 99.7%. a) Bonneville continuous shoreline 
distribution. b) Provo continuous shoreline distribution. 

(a) 

(b) 
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Figure 32. Bonneville shoreline final paleoelevation datum locations and elevation 
profile. Paleoelevation points located on the footwall of the fault are shown in black and 
points located on the hanging wall of the fault are shown in red. Blue paleoelevation 
points represent shorelines affected by complex faulting and geology that cannot be 
definitively classified as footwall or hanging wall datums. a) Map view location map of 
final paleoelevation datum points for the Bonneville shoreline. b) Elevation profile of 
final paleoelevation datum points for the Bonneville shoreline.   

(a) 

(b) 
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Figure 33. Provo shoreline final paleoelevation datum locations and elevation profile. 
Paleoelevation points located on the footwall of the fault are shown in black and points 
located on the hanging wall of the fault are shown in red. Blue paleoelevation points 
represent shorelines affected by complex faulting and geology that cannot be definitively 
classified as footwall or hanging wall datums. a) Map view location map of final 
paleoelevation datum points for the Provo shoreline. b) Elevation profile of final 
paleoelevation datum points for the Provo shoreline. 

  

(b) 

(a) 
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Figure 34. Detail of unclassified paleoelevation datum points on the Bonneville shoreline. 
a) GoogleEarth image of the local geology, where faults are shown in orange and the 
location of the paleoelevation datum points are shown in blue. b) Elevation profile for 
unclassified paleoelevation points. 

 

  

(a) 

(b) 
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Figure 35. Detail of unclassified paleoelevation datum points on the Provo shoreline. a) 
GoogleEarth image of the local geology, where faults are shown in orange and the 
location of the paleoelevation datum points are shown in blue. b) Elevation profile for 
unclassified paleoelevation points. 

 

  

 

(b) 

(a) 
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Figure 36. Footwall elevation profiles for the Bonneville and Provo shorelines. 
Paleoelevation datum points are shown in black. a) Surface topography with significant 
topographic features labeled. The Wasatch Fault is shown in black. b) Footwall elevation 
profile for the Bonneville shoreline. c) Footwall elevation profile for the Provo shoreline. 

 

  

(a) 

(b) 

(c) 
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Figure 37. General locations of displaced Bonneville and Provo shorelines.  
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Figure 38. Offset across Bonneville and Provo shorelines. Locations are shown in Figure 
37. Footwall paleoelevation datums are shown in blue, where the thick blue line indicates 
the mean elevation and the blue shaded region indicates a 2 sigma uncertainty (95% 
confidence interval). Hanging wall paleoelevation datums are shown in red, where the 
thick red line indicates the mean elevation and the red shaded region indicates a 2 sigma 
uncertainty (95% confidence interval). The thick black line indicates the location where 
the fault trace intersects the shoreline, assigned location 0. a) Displacement at the 
Honeyville Spur. b) Displacement at the Pleasant View Salient North. c) Displacement at 
Pleasant View Salient South.  

(a) 

(b) 

(c) 
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Table 3. Bonneville shoreline uncertainties and vertical slip rates. 

  Honeyville 
Spur 

Pleasant View 
Salient North 

Pleasant View 
Salient South 

Offset  
(m) 1.18 7.87 11.91 

Hanging Wall 2 
sigma uncertainty  

(m) 
5.92 4.71 4.71 

Footwall 2 sigma 
uncertainty  

(m) 
10.01 8.44 12.96 

Total measurement 
uncertainty  

(m) 
11.63 9.66 13.79 

Relative 
Uncertainty (%) 983.76 122.72 115.72 

Shoreline Age  
(yr) 18000 18000 18000 

Uncertainty  
(yr) 300 300 300 

Relative 
Uncertainty (%) 1.67 1.67 1.67 

Slip Rate  
(mm/yr) 0.065 0.44 0.66 

Total Relative 
Uncertainty  

(%) 
985.43 124.39 117.39 

Total Uncertainty 
(mm/yr) 0.079 0.54 0.78 

Final Slip Rate 
(mm/yr) 0.065 ± 0.079 0.44 ± 0.54 0.66 ± 0.78 
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Table 4. Provo shoreline uncertainties and vertical slip rates. 

  
Honeyville  

Spur 
Pleasant View 
Salient North 

Pleasant View 
Salient South 

Offset  
(m) 0.31 13.76 13.34 

Hanging Wall 2 
sigma uncertainty  

(m) 
6.35 4.22 4.22 

Footwall 2 sigma 
uncertainty  

(m) 
8.27 7.6 7.97 

Total measurement 
uncertainty  

(m) 
10.43 8.69 9.02 

Relative Uncertainty 
(%) 3416.92 63.18 67.63 

Shoreline Age  
Lower – Upper 

Bound 
(yr) 

15000 - 18000 15000 - 18000 15000 - 18000 

Uncertainty  
(yr) 300 300 300 

Relative Uncertainty 
(%) 2 1.67 2 1.67 2 1.67 

Slip Rate  
(mm/yr) 0.02 0.017 0.92 0.76 0.89 0.74 

Total Relative 
Uncertainty  

(%) 
3418.92 3418.5

8 65.18 64.84 69.63 69.2
9 

Total Uncertainty 
(mm/yr) 0.7 0.58 0.6 0.5 0.62 0.51 

Final Slip Rate 
Lower Bound 

(mm/yr) 
0.017 ± 0.58 0.76 ± 0.5 0.74 ± 0.51 

Final Slip Rate 
Upper Bound 

(mm/yr) 
0.02 ± 0.7 0.92 ± 0.6 0.89 ± 0.62 
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Table 5. Comparison of calculated vertical slip rates to published Holocene slip rates. 
Bolded values represent the mean preferred rate, with all values are measured in mm/yr. 
WGUEP Report values after Wong et al. (2016). 

  Age Honeyville  
Spur 

Pleasant View 
Salient North 

Pleasant View 
Salient South 

This Study 

Bonneville  
(18 ky) 0 - 0.07 - 0.14 0 - 0.44 - 0.98 0 - 0.66 - 1.4 

Provo  
(18 ky) 0 - 0.17 - 0.60 0.26 - 0.76 - 1.26 0.23 - 0.74 - 1.25 

Provo  
(15 ky) 0 - 0.02 - 0.72 0.32 - 0.92 - 1.52 0.27 - 0.89 - 1.51 

  Brigham City Segment Weber Segment 
WGUEP 
Report  

(Open mean 
slip rate per 

segment) 

< 7,000 yr 0.9  - 1.2 - 1.3 1.2 - 1.7 - 2.3 

 



 
 

 
 

DISCUSSION  

 

Performance of the PaleoElev Tool 

 Application of the automated PaleoElev tool in measurement of shoreline 

paleoelevation significantly increased data resolution as compared to previous studies 

that employed manual analysis. High density shoreline measurements combined with 

analysis of averaged swath profiles was intended to: 

1) Provide a more comprehensive dataset of shoreline paleoelevation along the 

Brigham City and Weber segments of the WFZ.  

2) Reduce surface noise considered a possible cause of scatter in previous studies.  

We conclude that these goals for the PaleoElev tool have been met in its application in 

this study. Although shoreline paleoelevation measurements are more variable than 

expected, we now have the data resolution to investigate small-scale shoreline variability 

in detail and are confident that the variability is not derived from the quantitative analysis 

of the shoreline features.  

 Aside from meeting its primary functional goals, application of the PaleoElev tool 

to Lake Bonneville shorelines raised several possibilities for improvements and future 

applications. Most significantly, outliers produced by the tool as the result of low 

inflection point densities require more postprocess filtering than initially anticipated. The 

tool can be updated to include an optional user-defined R² threshold in 

Shoreline_Elevation_Function.py. This new parameter would allow the user to constrain
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shoreline output by how well the linear regressions fit the cliff and platform surfaces of 

each shoreline, likely reducing the need for postprocessing filters. 

 The speed and processing capability of the PaleoElev tool is currently limited by 

the use of loops within Python. Python loops are notoriously slow as compared to other 

programming languages. In addition to being slow, the loops also store data in lists, 

which can overload the memory of a computer and crash the script if the data files are 

large. These problems associated with PaleoElev can also be fixed with simple updates. 

Python allows vectorization of loops, which allows loops to perform at the speed of other 

programming languages. Vectorization of loops also eliminates storage of data in lists, 

thereby increasing the speed and reducing the memory needed to process large datasets.  

 

Shoreline Geomorphology 

 Increased data resolution generated by PaleoElev also provided insight into 

“scatter” recognized in previous studies measuring shoreline paleoelevation. Regardless 

of subtle differences in methodology, Meyer and Locke (1986), McCalpin et al. (1992), 

and Jewell and Bruhn (2013) all observed an unexpected amount of variability 

throughout their shoreline elevation measurements. Explanations for this variability 

ranged from problems with the methodology to natural variability of the shoreline 

features. This variability could not be explained in more detail because of relatively low 

resolution paleoelevation measurements limited by manual profile analysis. 

 The high-resolution output produced by PaleoElev suggests that variability in 

these previous studies likely represents a true signal from the shoreline features 

measured. We propose two possible explanations for the variability evidenced in these 
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elevation profiles. First, the shorelines could be more heavily modified than is 

recognizable in lidar and in the field. If this is the case, postformational modification 

could be a factor contributing to variability. Secondly, these trends indicate that local 

factors may play a larger role in the formation of basin-wide shoreline features than 

previously recognized, and as a result, variability of basin-wide correlated shoreline 

terraces is to be expected.  

 Our preferred interpretation is that there is likely a combination of these factors 

causing variability of paleoelevation measurements. We can test this interpretation by 

comparing shoreline measurements along the Wasatch Front to shorelines in the West 

Desert, for example, where fluvial and anthropogenic modifications are greatly reduced. 

 

Characterization of Segmentation 

 Footwall elevation profiles of the Bonneville and Provo shoreline challenge the 

current characterization of the Brigham City segment. The northern subsegment of the 

Brigham City segment exhibits little to no vertical offset at the Honeyville spur and 

nearly constant elevation until it reaches Brigham City. We question, therefore, if the 

northern subsegment has experienced surface ruptures since the late Pleistocene. The 

northernmost paleoseismic trenches do not extend to this region (~10 km to ~ 20 km in 

Figure 36) where we observe significantly reduced displacement along the Brigham City 

Segment, so there is no Holocene trenching data to compare to the elevations we see 

along the shorelines.  

 In contrast, the southern subsegment of the Brigham City segment exhibits 

elevations approximately equal to elevations along the Weber segment. There is also no 
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observable decrease in displacement at the Brigham City – Weber segment boundary. 

This pattern, observed both on the Provo and Bonneville footwall elevation profiles, 

suggests that the spill-over rupture identified from Holocene trenching data is likely 

representative of the most probable rupture scenario. The elevation pattern we see across 

the shorelines on the footwall of the fault indicate that although the southern subsegment 

of the Brigham City segment and the Weber may have ruptured independently at one 

time, these segments are now linked and likely rupture coseismically. 

 Another important observation is that elevation is more or less constant from the 

southern subsegment of the Brigham City segment to the southernmost extent of our 

shoreline measurements on the Weber segment. We interpret this elevation signature as 

evidence for coseismic rupture of the entire segment length as more likely than partial 

segment ruptures. If partial segment ruptures were more common, we would expect to 

see elevation minimums along the Weber segment.  

 We cannot currently make interpretations about the segment boundary between 

the Weber and Salt Lake City segments. Our shoreline measurements only extend to 

north of Bountiful, where shorelines have been heavily modified by anthropogenic 

activity. It is possible that the shoreline elevation decreases as it approaches this segment 

boundary, as expected based on the classic segmentation model, and this should be 

investigated further. 

 

Vertical Slip Rates 

 Vertical slip rates calculated for offset Lake Bonneville shorelines have large 

uncertainties, primarily associated with the 2 sigma uncertainty of paleoelevation 
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measurements on the footwall and hanging wall. We interpret this uncertainty not to 

analytical uncertainty, but true variability associated with shoreline elevation. These large 

uncertainty ranges complicate our final vertical slip rate calculations, especially where 

the uncertainty range would cause the vertical slip value to be negative. For example, we 

can only confidently report the vertical slip rates calculated from the Provo shoreline at 

the Pleasant View Salient. 

 Another unexpected observation was that the Provo shoreline exhibited more 

offset at the Pleasant View Salient locations than the Bonneville shoreline. We propose 

two possible explanations for the lower vertical displacement on the Bonneville 

shoreline. First, the morphology of the Bonneville shoreline (a depositional terrace, as 

opposed to an erosional terrace) complicates precise measurement of paleoelevation, 

which depresses the tectonic signal. Another possibility is that bedrock faults in the 

salient, some of which are identifiable in the lidar, in close proximity to Bonneville 

shorelines on the hanging wall of the fault accommodate some of the displacement from 

ruptures along the Wasatch Fault. Our preferred interpretation is that preexisting bedrock 

faults accommodate displacement from ruptures propagating across the Pleasant View 

Salient.  

 Anomalously low vertical slip rates at the Honeyville Spur can be interpreted as a 

decrease in displacement at a known segment boundary. We do not prefer this 

interpretation, however, based on the elevation profiles of shorelines along the northern 

subsegment of the Brigham City segment. Instead, we interpret the anomalously low slip 

rate at the Honeyville Spur as representative of a trend that begins at ~ 15 km south of the 

Honeyville Spur, where elevation stabilizes at a more or less constant level. We suggest 
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that the northern subsegment of the Brigham City segment has been significantly less 

active than the southern subsegment since the late Pleistocene.



 
 

 
 

CONCLUSIONS 

 

1. The PaleoElev Tool is a useful tool for automated measurement of paleoelevation 

and can be applied to shorelines and other fluvial terraces in studies of fluvial 

geomorphology or to neotectonic analyses. 

2. The Bonneville and Provo shoreline highstands exhibit variable elevations over 

short horizontal scales with standard deviations of ± 4.89 m and ± 3.99 m, 

respectively. This variability may point to local factors as the primary influence in 

shoreline formation, which can be tested by comparing shoreline measurements 

from the Wasatch Front to those in the West Desert. 

3. Our analysis suggests that the northern subsegment of the Brigham City segment 

has had little to no activity since the late Pleistocene, as exhibited by a lack of 

elevation change on the footwall elevation profiles of both the Bonneville and 

Provo shorelines in addition to a negligibly small slip rate calculated at the 

Honeyville Spur. 

4. The southern subsegment of the Brigham City segment is linked to the Weber 

segment, and has likely coseismically ruptured with the Weber segment since the 

late Pleistocene. A lack of decreased elevation at the classically defined segment 

boundary along the footwall elevation profiles and vertical slip rates calculated at 

the segment boundary that correspond to mean-preferred Holocene vertical slip 

rates for the Brigham City and Weber segments support this interpretation. 
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5. Vertical slip rates have high uncertainties, primarily derived from the 2 sigma 

uncertainty of shoreline paleoelevation measurements. We interpret this 

uncertainty as inherent to shoreline variability, not analytical uncertainty, but 

recognize the complications in reporting vertical slip rates with significant 

uncertainty. We can further test the precision of the vertical slip rates calculated in 

this study by comparing them to vertical slip rates calculated on the western side 

of the Oquirrh Mountains, where Bonneville and Provo shorelines are offset by 

the Oquirrh Fault but are much less affected by postformational modification.
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