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ABSTRACT

Peptide nucleic acid (PNA) is a nucleic acid mimic that shows tremendous 

potential for use in therapeutic and biosensing applications due to its high binding affinity 

for DNA and RNA and its excellent biostability. The therapeutic potential of PNA is 

hindered, however, by poor cellular uptake, solubility, and bioavailability. Although 

various approaches have been taken to overcome these critical limitations and realize 

the full potential of PNA, more efficient solutions are still desired. We hypothesize that 

negatively charged PNA analogues would electrostatically mimic DNA and RNA, thus 

overcoming the limitations mentioned above. This dissertation is mainly focused on our 

initial studies to investigate the tolerance of the PNA structure to the addition of 

negatively charged side chains.

We explored the effect of ionic strength on binding affinity for modified PNAs 

having either negatively charged side chains or positively charged side chains (Chapter 

2). We observed that as ionic strength is increased, negatively charged PNA increases 

in affinity for DNA and RNA, whereas positively charged PNA decreases in affinity for 

DNA and RNA. The point at which these trends intersect hovers near physiological salt 

concentration. In a simulated physiological buffer, negatively charged PNA shows 

slightly higher affinity for RNA whereas positively charged PNA shows slightly higher 

affinity for DNA. Intrigued by the effect of side chain structure and electrostatics on 

binding affinity, we were also curious to explore the mismatch and orientation selectivity 

of these y-substituted PNAs (Chapter 3). We observed that positively charged side 

chains provide higher selectivity in DNA binding, while negatively charged side chains



provide higher selectivity in RNA binding.

Our results provide insight into the impact of side chain structure and 

electrostatics on the binding affinity and selectivity with DNA and RNA under 

physiological conditions. Since PNA can be negatively charged without sacrificing 

binding affinity and selectivity, we anticipate that these molecules will show promise as 

therapeutics that take advantage of both the inherent benefits of PNA and the multitude 

of charge-based delivery technologies currently being developed for DNA and RNA.

PNA also shows promise for use in synthetic biology applications, but the 

evolution of abiotic polymers such as PNA requires methods for sequence encoding and 

amplification. Chapter 4 describes our efforts to synthesize a modified PNA monomer 

that is designed to polymerize using dynamic reaction conditions.

DNA-based micelles have the potential to be used as stimuli-responsive 

materials due to their ability to undergo programmable assembly and disassembly. 

Chapter 5 outlines our synthesis of a potential multivalent micellar scaffold.
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CHAPTER 1

PEPTIDE NUCLEIC ACID: A VERSATILE NUCLEIC ACID ANALOGUE

“Molecular recognition between nucleic acids via nucleobase complementarity is 

probably the most elegant molecular recognition system in nature. It is beautifully simple, 

yet very powerful.”

- Peter E. Nielsen1

Nucleic acids, together with this powerful molecular recognition system, provide 

high fidelity information transfer via the processes of replication, transcription, and 

translation, and this system is the key to our existence. Naturally occurring nucleic acids, 

2’-deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are polymers of nucleotides, 

and contain a phosphate group, a sugar moiety, and a nucleobase. The molecular 

recognition between nucleic acids predominantly occurs via “Watson-Crick base-pairs” 

(Figure 1.1, 1.2), which consist of noncovalent hydrogen bonds between two 

complementary purine-pyrimidine base-pairs (adenine-thymine/uracil and guanine- 

cytosine).2 In addition, non-Watson-Crick base pairing modes such as Hoogsteen3 and 

wobble4 are also possible (Figure 1.3). In Hoogsteen mode, thymine pairs with an 

adenine, which is already involved in Watson-Crick A:T base pair, and protonated 

cytosine pairs with guanine of a Watson-Crick C:G base pair, and thus enable formation 

of triplexes. In wobble base pairing, purine bases recognize noncomplementary 

pyrimidine bases.

The potential of nucleic acids is not just limited to bioevolution, but they also play 

a diverse role in numerous disciplines, including therapeutics, diagnostics, research, and
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nanotechnology. In particular, nucleic acids have shown great promise for the treatment 

of various conditions, including cancer, diabetes, cystic fibrosis, and other genetic 

disorders.5 One therapeutic approach to treat these diseases is known as the ‘antisense 

strategy’, in which gene expression is silenced by binding complementary 

oligonucleotides (AON) to the disease-causing mRNA sequence. This prevents the 

translation of proteins either by sterically blocking translation or recruiting RNase H 

enzyme to degrade the RNA strand in the mRNA-AON duplex (Figure 1.4).6 In the 

‘antigene strategy’, transcription or replication processes are interrupted by binding of 

the AON to DNA.7
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Copyright (2012) American Chemical Society].
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Nucleic Acid Analogues

The use of native nucleic acids for therapeutic applications comes with specific 

obstacles, including degradation by endogenous enzymes, poor pharmacokinetics, and 

low intrinsic binding affinity.9 However, modified nucleic acid analogues have the 

potential to overcome these challenges. Nucleic acids can be modified at the backbone, 

sugar, or nucleobase; and these nucleic acid analogues have gained widespread use in 

therapeutic and diagnostic applications (Figure 1.5).10

Synthetic oligonucleotides having modified backbones have been extensively 

studied in antisense and numerous other biological applications (Figure 1.6). 

Phosphorothioate (PS) oligonucleotides are one example of ‘first generation’ antisense 

oligonucleotides; these are synthesized by replacing one of the nonbridging phosphate 

oxygen atoms with a sulfur atom, thus improving enzymatic stability and 

pharmacokinetics. The first PS-based antisense drug, Vitravene™ (ISIS-2922), was 

approved by the FDA in 1998 to treat cytomegalovirus retinitis in immunocompromised 

patients.11 Although PS has remained the most successful and widely used 

oligonucleotide analogue until now, it does have disadvantages, such as lowered duplex 

stability, existence of diastereomeric mixtures, and toxicity induced by nonspecific 

protein binding.12 Similarly, phosphoramidates are synthesized by replacing the 3’- 

hydroxyl of the backbone with an amine.13 Phosphoramidates show increased duplex 

stability and nuclease resistance but they do not induce RNase H-dependent 

degradation of the complementary RNA strand in a duplex.9 Phosphoramidates have 

been further modified by replacing one of the nonbridging phosphate oxygen atoms with 

a sulfur atom, providing acid-stable thiophosphoramidates, which have exhibited 

anticancer activity.14,15
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Modification of the 2'-position of the ribose sugar moiety to give analogues such 

as 2 '-fluoro and 2 '-0-alkyl nucleotides has also gained success in therapeutic 

applications (Figure 1.6). Among these ‘second generation’ antisense oligonucleotides, 

2'-0-methoxyethyl (MOE) was the most successful candidate in terms of affinity, 

stability, and entering into clinical trials.9 In 2013, the FDA approved the second 

antisense drug, Mipomersen (Kynamro), to treat homozygous familial 

hypercholesterolemia in patients with high levels of low-density lipoprotein cholesterol.16 

This drug also contains a PS oligonucleotide sequence, where each end of the 

sequence contains five nucleotides with 2-MOE modifications.

In addition to 2'-substitution of ribose, the ribose sugar moiety itself can be 

replaced by various nonnatural sugar or cyclic structures to obtain nucleic acid 

analogues (Figure 1.7). Among these ‘third generation’ antisense oligonucleotides are 

arabinose nucleic acid (ANA) consisting of an inverted 2'-configuration compared to 

native RNA,17 hexitol nucleic acid (HNA) containing a pyranose moiety, and cyclohexene 

nucleic acid (CeNA) containing a cyclohexene ring instead of the furanose sugar moiety 

of native nucleic acids.12,18 ANA exhibits higher affinity to RNA than DNA, but overall 

lower affinity relative to PS oligonucleotides.12 Similarly, HNA shows increased nuclease 

resistance and higher affinity to RNA than DNA. Both ANA and CeNA can induce RNase 

H-dependent degradation of the complementary RNA strand in antisense therapy.

In an attempt to reduce the entropic cost of duplex formation, and thus increase 

binding affinity, structurally constrained, bicyclic nucleic acid analogues, such as locked 

nucleic acid (LNA) were developed (Figure 1.7).19,20 LNA and LNA analogues have 

shown great promise in numerous biomedical and nanotechnology applications, 

including antisense therapy, due to their higher binding affinity, selectivity, and stability.21 

In contrast to locking the backbone, the C2'-C3' bond of ribose can be cleaved to give a

http://en.wikipedia.org/wiki/Cholesterol
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flexible nucleic acid analogue, unlocked nucleic acid (UNA). Although UNA reduces 

duplex stability, conjugates of UNA with other antisense oligonucleotides have been 

investigated to achieve flexibility in binding and enhance stability.22 Another simply- 

structured nucleic acid analogue, glycol nucleic acid (GNA), has shown promise for 

biotechnology applications due to its higher duplex stability with DNA and RNA, in 

contrast to UNA (Figure 1.7).23

All of the aforementioned nucleic acid analogues retain either the phosphate 

group or ribose sugar moiety. In contrast, replacement of the sugar-phosphate backbone 

with an isostere gives rise to morpholino phosphorodiamidate (MO) and peptide nucleic 

acid (PNA), which are both neutrally charged due to the lack of a phosphate group 

(Figure 1.7).9 Both PNA and MO are promising antisense agents and are stable to 

nucleases, but PNA shows much higher affinity to DNA and RNA than MO.24,25

Peptide Nucleic Acid (PNA)

PNA was first reported by Peter E. Nielsen, Michael Egholm, Rolf H. Berg, and 

Ole Buchardt in 1991,26 and was originally designed as a triplex-forming oligonucleotide 

mimic to bind double-stranded DNA in the major groove via Hoogsteen base pairing.26,27 

However, it was later realized that PNA can also bind to single-stranded nucleic acids.28 

The unique physicochemical properties of PNA can largely be attributed to its achiral, 

neutral, peptide-like W-(2-aminoethyl)glycine backbone in place of the sugar-phosphate 

backbone found in DNA and RNA (Figure 1.8). The nucleobases are linked to secondary 

amines in the PNA backbone via methylene carbonyl linkages.26 PNA is neither a protein 

nor a nucleic acid and has thus become a promising biomolecular tool with an enhanced 

lifetime for in vivo and in vitro applications, such as molecular diagnostics and antisense 

therapeutics, as it can withstand both nucleases and proteases.24,29'31
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In addition to high affinity, PNA shows high selectivity in binding to DNA and 

RNA. PNA is more vulnerable to base mismatches than are native nucleic acids, due to 

the constrained flexibility of the PNA backbone and the inherent asymmetry in 

PNA:DNA/RNA duplexes.32 PNA can bind to complementary nucleic acids in both 

parallel and antiparallel orientations because of its achiral backbone, but generally 

prefers the antiparallel orientation in binding with nucleic acids (Figure 1.8). The potential 

of PNA to hybridize with complementary DNA/RNA with high affinity and selectivity 

following Watson-Crick rules,28 and also the ability to invade double stranded-DNA,33,34 

has even led to the speculation that PNA may have been a prebiotic material.35 This 

interest in finding the relationship of PNA to the origin of life has inspired the recent 

discovery of PNA-like materials in cyanobacteria.36
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Structures of PNA in complex w ith PNA and nucleic acids

Structural information has been obtained for duplexes of PNA:DNA37 and 

PNA:RNA38 using NMR, while structures of PNA2:DNA triplex39 and PNA:PNA40 

duplexes were solved by using X-ray crystallography (Figure 1.9). According to these 

data, PNA:RNA duplexes adopt the A-form structure preferred by RNA,38 whereas 

PNA:DNA duplexes adopt an intermediate structure between A- and B-form, in which the 

base stacking is more A-like.37,41,42 PNA:PNA duplexes40 and (PNA)2-DNA triplexes39 

adopt a P-form structure preferred by PNA, which is different from both A- and B-form 

but more like A-form. Consequently, PNA:RNA duplexes generally show a higher 

thermal stability relative to analogous PNA:DNA duplexes. These data provide evidence 

that the backbone geometry and constrained flexible structure of PNA could be the 

major factors that facilitate stronger affinity with nucleic acids, as PNAs can easily adopt 

the desired geometries of DNA or RNA by enthalpy-entropy compensation.1

PNA-RNA PNA-DNA PNA-DNA-PNA PNA-PNA

Figure 1.9. Structures of PNA complexes: side view (top) and upper view (bottom). 
[Reprinted with permission from (Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624-630; 
Copyright (1999) American Chemical Society) and (Eriksson, M.; Nielsen, P. E. Q. Rev. 
Biophys. 1996, 29, 369-394; Copyright (1996) Cambridge University Press)].
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PNA backbone modifications

The ease of altering the PNA backbone has encouraged synthetic organic 

chemists to develop various PNA analogues to enhance properties such as binding 

affinity with nucleic acids and cellular delivery (Figure 1.10).30 Consequently, PNA has 

been modified by the introduction of conformationally constrained cyclic backbones, 

different substituents, or modified nucleobases.1 For example, when the amide group in 

the backbone is replaced with an amine to remove the rigidity imposed by the amide, 

this results in reduced binding affinity. This illustrates the significance of the “constrained 

flexibility” of the PNA backbone. To enhance the rigidity, a cyclic group such as 

cyclohexyl has been incorporated in the ethylene diamine portion of the PNA backbone, 

but results in a decrease in binding affinity.43 However, the introduction of cyclopentyl44 

and proline45 groups into the backbone has improved binding affinity. Moreover, in an 

effort to enhance the solubility and cellular delivery of PNA, charged PNA has been 

developed by incorporating functional groups such as phosphates in PNA backbone.30

Raco Base

n  H
Ethylamine PNA Cyclohexyl PNA Aminoproline PNAaeg-PNA

Base Base Base Base

R

Phosphono PNA a-substituted PNA p-substituted PNA y-substituted PNA

Figure 1.10. Chemical structures of a selection of modified PNAs.
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Among PNA modifications, the use of various amino acids for the synthesis of 

PNA provides a facile way to incorporate diverse substituents with different chirality at 

the a, p, or y-positions of PNA. Installation of L-amino acids at the a-position and D- 

amino acids at the y-position is detrimental to PNA binding, but L-amino acids at the y- 

position and D-amino acids at the a-position enhance binding affinity. Further, 

substitution at the y-position is known to be advantageous over substitution at the a- 

position, with regard to binding affinity, unambiguous antiparallel binding, and helical 

induction.41,46-51 p-substituents have only been investigated recently, but exhibited 

reduced affinity.52 Specifically, a (S)-stereocenter at the y-position (from L-amino acids) 

conformationally preorganizes the PNA backbone into a right-handed helix, which is 

favorable for binding to DNA and RNA.51 This stereoinduction is unidirectional from the 

C- to N-terminus, resulting in an antiparallel sequence alignment, and projects the y- 

substituents away from the backbone. This ease of modifying the PNA backbone with 

amino acids allows incorporation of different functional groups to enhance properties 

such as stronger binding, intercalation, enhanced solubility, and cellular delivery.47,53

PNA nucleobase modifications

In addition to backbone modifications, PNA has also been synthesized using 

“non-Watson-Crick” nucleobases to achieve higher duplex/triplex stabilities (Figure

1.11).30 For instance, replacement of adenine by diaminopurine increases the melting 

temperature (Tm) of PNA with nucleic acids by ~4 oC per substitution. In addition, PNA 

modified with diaminopurine and thiouracil can invade double-stranded DNA in antigene 

applications. Similarly, cytosine has been replaced with pseudoisocytosine, which can 

bind with guanine irrespective of the surrounding pH via Hoogsteen base pairing in 

triplex-forming PNAs. Additionally, incorporation of a tricyclic G-clamp modified nucleo-
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2,6-diaminopurine

H
0

2-aminopurine thiouracil pseudoisocytosine

N-benzoyl-cytosine G-clamp P-base E-base

Figure 1.11. Chemical structures of a selection of modified nucleobases.

base has increased duplex stability via both base pairing and base stacking, while 

enhancing the solubility due to positively charged side chains.54 Recently, Rozners and 

coworkers have reported that PNA monomers modified with P and E nucleobases were 

able to isolate pyrimidine interruptions in polypurine tracts of double helical RNA.55,56

PNA has been utilized in a diverse range of applications, including therapeutics, 

diagnostics, molecular biology, and nanotechnology, due to its unique physicochemical 

properties. For example, PNA is effective in antisense and antigene applications, where 

stronger binding of PNA to mRNA and DNA inhibits the processes of translation, 

transcription, and replication.57 Since RNase H does not recognize the PNA: RNA duplex 

as a substrate, antisense activity occurs via sterically blocking mRNA translation rather 

than degradation of RNA strand.24 Similarly, PNA displays antigene properties by

Applications of PNA
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binding to single-stranded DNA (during replication)58 and double-stranded DNA (Figure

1 .12).1

The antisense and antigene potential of PNA has been explored to develop 

anticancer and antimicrobial PNAs. For example, PNA has shown anticancer effects by 

suppressing telomerase activity,59 c-myc oncogene,60 and T antigen61 expression. PNA 

has exhibited antimicrobial properties by silencing gene expression in bacteria, viruses, 

and amoebae.62 For instance, PNA has inhibited bacterial translation in vitro with an 

efficiency comparable to tetracycline.24,63 However, the in vivo performance was severely 

hindered by poor cellular uptake of PNA.24

The detection of single nucleotide polymorphisms (SNPs) facilitates the 

diagnosis of genetic diseases, as these slight changes in DNA sequences lead to drastic 

changes in gene expression or protein function. The highly sequence-specific binding of 

PNA has been utilized to develop biosensors for SNP detection. For instance, 

immobilization of PNA into a synthetic ion channel has facilitated the discrimination 

between complementary DNA and mismatched sequences.64 Moreover, efficient and 

sensitive PNA fluorescence in situ hybridization (FISH) techniques have been developed 

for quantitative telomere analyses, chromosome painting, and genotyping of viruses and 

bacteria (Figure 1.13).24

Cellular delivery of PNA

Oligonucleotides are not cell permeable by simple diffusion due to the 

hydrophobic nature of the membrane lipid bilayer. For instance, negatively charged 

siRNAs or antisense moieties, as well as charge neutral methylphosphonates, PNAs,65 

or MOs are not cell permeable. Despite the uncharged nature of PNA, its large size 

(>2000 Da) prevents eukaryotic and prokaryotic cell permeability.24,25 However, in some 

cell lines, antisense effects have been observed when PNA was used in fairly high



15

Figure 1.12. PNA binding modes to target double stranded DNA (A) triplex, (B) triplex 
invasion, (C) duplex invasion, and (D) double duplex invasion (thick structures indicate 
PNA). [Reprinted with permission from (Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624
630). Copyright (1999) American Chemical Society].

P. aeruginosa

Figure 1.13. PNA-fluorescence in situ hybridization (FISH) technique (reproduced with 
permission from reference 66).

concentrations (10-100 ^M).30 Several methods have been introduced to overcome this 

critical delivery issue of PNA, ranging from physical or electrical disruption of the cell 

membrane to chemical complexation, conjugation, or modification of PNA.24 Temporary 

disruption of cell membranes by electroporation, pore-forming agents, and physical 

scrape loading have been successful in some systems; for instance, a 20mer PNA 

microinjected into cells has reduced T antigen expression.61 However, due to the stress 

applied by these methods, they are mainly limited to cultured cells.24

Great efforts have been taken to modify PNA to enable effective cellular
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penetration. As an example, conjugating fatty acid chains or adamantyl moieties 

increases the lipophilicity of PNA, enabling its cellular uptake.24 Additionally, conjugation 

of PNA to cell penetrating peptides (CPPs), including Tat and penetratin, is a popular 

method of PNA cellular delivery.56 PNA is rapidly excreted by the kidneys, thus limiting 

its bioavailability, but chemical conjugation to cationic peptides may increase its 

circulation time.30 However, the bioavailability of PNA delivered via CPP is controlled by 

endosomal release. As a consequence, endosomal disruption methods, such as 

photochemical internalization, Ca2+ treatment, or chloroquine treatment, have been 

reported to enhance the efficacy of PNA delivered via CPP.67 Unfortunately, CPPs are 

relatively large peptides, making synthesis complicated and also leading to nonspecific 

toxic effects.56

Interest was instead drawn towards using short sequences of cationic peptides 

such as oligolysine and oligoarginine. For example, PNA covalently linked to a peptide 

(PKKKRKV) has down-regulated c-myc oncogene expression.60 Covalently linking PNA 

to cationic shell-cross-linked knedel-like nanoparticles, lipophilic triphenylphosphonium 

cations, and polyethylenimine have also enhanced cellular delivery.56

The use of amino acids to introduce positively charged side chains at the a- or y- 

position of PNA is more promising than conjugation to cationic peptides or CPP in terms 

of low cytotoxicity and convenience in synthesis. Accordingly, Ly and colleagues 

introduced GPNA (guanidine-based PNA),68 inspired by the remarkable cellular uptake 

properties and activity of the human HIV-1 Tat transduction domain (YGRKKRRQRRR)69 

and the homoarginine peptoid70 (Figure 1.14). Similarly, Ganesh and coworkers reported 

cationic PNA having aminomethylene side chains.50,71 Of the cationic modifications 

investigated by the Ly and Ganesh research groups, y-GPNA48 and y-aminomethylene 

PNA50,71 have demonstrated the most promising results in terms of binding, cellular 

uptake, and antisense activity. PNAs having positively charged side chains, however,
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Figure 1.14. Chemical structures of y-PNA having cationic side chains.

can lead to nonspecific binding due to electrostatic interactions with negatively charged 

nucleic acids.72

Negatively charged PNA: an attempt to enhance cellular delivery

The development of methods to enhance the circulation lifetime and cell 

permeability of nucleic acids in vivo is an ongoing area of research. In particular, the 

success and widespread application of RNA interference (RNAi) and numerous gene 

manipulation applications rely on the discovery of clinically suitable, safe, and effective 

delivery methods.73,74 Anionic oligonucleotides are efficiently delivered into cells by cell- 

targeting ligands and nanocarriers, including cationic polymer complexes and polymeric 

nanoparticles.74 However, nearly all of these technologies function on the basis of the 

negatively charged backbone found in native nucleic acids.

Although the inherent neutral charge of PNA limits the use of these methods, 

complexation with partially complementary oligonucleotide has facilitated the delivery of 

PNA into cells via cationic liposomes.24 But some optimization of the carrier 

oligonucleotide is required to ensure that PNA is released once inside cells. 

Furthermore, PNA-DNA chimeras were introduced to take advantage of the 

aforementioned delivery methods and to increase solubility (Figure 1.15).75 Although
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PNA-DNA chimeras have been taken up by cells and demonstrated antisense 

properties, synthesis of these chimeras is challenging due to the requirement for 

orthogonal protecting groups to ensure stability of DNA.76

The abovementioned limitations can be overcome when PNAs having negatively 

charged groups are synthesized. Nielsen and coworkers investigated phosphonate- 

peptide nucleic acid conjugates containing twelve phosphonate moieties per PNA 

oligomer, which were derived from phosphonate modified glutamine or lysine (Figure 

1.15). These negatively charged PNAs have been delivered to HeLa cells by cationic 

lipids and exhibited dose-dependent antisense activity in the nanomolar range.77

Taking a different approach to charge incorporation, the research groups of 

Peyman and Efimov independently synthesized and studied phosphono PNA 

(pPNA/PHONA), having a negatively charged phosphate group inserted into the PNA 

backbone (Figure 1.15).78"80 Efimov and colleagues have also investigated 

conformationally constrained chiral phosphono-PNA analogues based on 

4-hydroxyproline (pHypNAs). Although negatively charged, these analogues have been 

delivered into cells mostly via microinjection;81"83 and selective regulation of 

developmentally important genes was achieved using caged PNA,81 HypNA-pPNA,82 

and phosphonic ester PNA83 in fish embryos. However, these modifications often 

affected the binding affinity of PNA with DNA and RNA. Moreover, synthesis of these 

negatively charged PNA analogues is more challenging than the incorporation of 

negatively charged side chains into PNA using amino acids.

Accordingly, incorporation of negatively charged side chains from amino acids 

(D-Glu, L-Asp) at the a-position of PNA has been investigated, but resulted in reduced 

binding affinity with DNA.68,84,85 As the introduction of side chains at the y-position of PNA 

enhances its binding properties, we hypothesized that negatively charged y-side chains 

would overcome the aforementioned limitations, thus facilitating the use of delivery
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vehicles currently being developed for DNA and RNA. This hypothesis is further 

supported by recent work providing the evidence that negatively charged side chains (L- 

Glu, sulfate) are tolerated at the y-position (Figure 1.15).46,86

Objectives of this Dissertation

Ever since the DNA double helix structure was elucidated by Watson and Crick in 

1953,2 tremendous strides have been made toward understanding the structure and 

function of nucleic acids, as well as the use of nucleic acid analogues in biomedical 

applications. These efforts led to the invention of PNA, a nucleic acid mimic with 

remarkable binding properties and potential to be used in numerous therapeutic, 

diagnostic, and nanotechnology applications. The therapeutic potential of PNA, however, 

is hindered by its poor solubility, cellular uptake, and bioavailability, predominantly due to 

its uncharged backbone. Although various approaches have been taken to overcome 

these critical limitations and realize the full potential of PNA, more efficient and attractive 

solutions are still desired.

We hypothesized that negatively charged PNA analogues would electrostatically 

mimic DNA and RNA and thus be compatible with conventional nucleic acid delivery 

technologies. This dissertation will primarily focus on our studies to investigate the 

effects of negatively charged side chains on PNA. We investigated the duplex stability of 

charge-modified PNA with DNA and RNA (in Chapter 2), and the sequence recognition 

ability and duplex structures of modified PNA (in Chapter 3). Our results provide insight 

into the binding affinity and selectivity of modified PNA in antisense and antigene 

applications.

PNA also shows promise for use in synthetic biology applications, but the 

evolution of abiotic polymers such as PNA requires methods for sequence encoding and 

amplification. Nonenzymatic, templated polymerization allows the generation of
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sequence-defined, genetically-encoded synthetic polymers with desired functional 

properties. Although significant work has been done related to DNA-templated PNA 

polymerization, a system that can execute polymerization from single-monomer building 

blocks with high fidelity is still needed. Chapter 4 of this dissertation will emphasize the 

Heemstra group’s efforts toward developing a modified PNA monomer that could 

overcome the aforementioned limitation by taking advantage of dynamic covalent 

chemistry.

The Heemstra group is also involved in investigating DNA-based micelles, as 

they have the potential to be used as stimuli-responsive materials due to their ability to 

undergo programmable assembly and disassembly. Chapter 5 of this dissertation will 

highlight the design and synthesis of a potential micellar scaffold, which can undergo 

azide-alkyne cycloaddition with nucleic acids and polymers to generate multivalent 

amphiphilic monomers.
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CHAPTER 2

TAILORING PEPTIDE NUCLEIC ACIDS TO ELECTROSTATICALLY 

MIMIC DNA AND RNA1 

Introduction

Peptide nucleic acid (PNA) is a nucleic acid mimic that shows tremendous poten

tial for use in therapeutic and biosensing applications due to its high binding affinity and 

selectivity for DNA and RNA and its excellent biostability.1,2 The therapeutic potential of 

PNA, however, is hindered by its poor solubility, cellular uptake, and bioavailability, pre

dominantly due to its uncharged backbone. The Heemstra group hypothesizes that neg

atively charged PNA analogues would electrostatically mimic DNA and RNA, overcoming 

the abovementioned challenges by taking advantage of the multitude of charge-based 

delivery technologies currently being developed for DNA and RNA. However, the en

hanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with 

DNA:DNA and DNA:RNA duplexes has been in part attributed to the lack of electrostatic 

repulsion between the uncharged PNA backbone and negatively charged DNA or RNA 

backbone.3 This previous hypothesis has led to the belief that having a negative charge 

on PNA is detrimental to the duplex formation of PNA with native nucleic acids, and thus 

discouraged the development of negatively charged PNA analogues.

This hypothesis is further supported by the reduced binding affinities observed in

1 Adapted under the terms of the Creative Commons Attribution License from De Costa, N. T. S.;
Heemstra, J. M. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having
Negatively or Positively Charged Side Chains. PLoS ONE 2013, 8, e58670.
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some of the previously reported negatively charged PNA analogues.4-6 For example, 

negatively charged pPNA:DNA and pPNA:RNA duplexes were found to have Tm values 

significantly lower than those of PNA:DNA and PNA:RNA, and, in fact, even lower than 

those of the corresponding DNA:DNA and DNA:RNA duplexes. But alternating pPNA 

monomers with PNA monomers to give a pPNA-PNA hybrid resulted in duplex stabilities 

with DNA and RNA that approached those of PNA:DNA and PNA:RNA.6 In addition, oli

gomers of alternating pPNA-HypNA monomers showed higher duplex stabilities with 

DNA and RNA than oligomers of pPNA-PNA, yet lower than PNA:DNA and PNA:RNA.6 

The results of these studies could be interpreted to conclude that increasing negative 

charge decreases PNA duplex stability via electrostatic repulsion. However, it is im

portant to note that the backbone conformation of pPNA is likely to differ significantly 

from that of PNA and a- or y-substituted PNA. Thus the decreased duplex stability of 

pPNA may result predominantly from structural rather than electrostatic effects.

Previous studies have also attempted to introduce charged side chains at the a- 

and y-positions of the PNA backbone. For example, incorporation of negatively charged 

(D-Glu, L-Asp) or neutral (L-Leu, L-Ile) side chains at the a-position reduces binding af

finity with DNA, whereas the incorporation of positively charged (D-Lys) side chains in

creases binding affinity with DNA and has negligible effects on binding affinity with 

RNA.7-9 However, these studies were only carried out at a single salt concentration, and 

the binding affinity of negatively charged PNA with RNA was not studied. In the case of 

y-substituted PNA, positively charged (L-Lys, L-Arg), or neutral side chains (L-Phe, L- 

Val) increase the binding affinity with DNA,10-15 though this increase is primarily attributed 

to steric or hydrogen-bonding effects leading to conformational preorganization of the 

PNA backbone.16,17 There is evidence that negatively charged side chains (L-Glu, sul 

fate) are also tolerated at the y-position,11,18 but their effect on binding affinity with DNA at 

varying ionic strength has not been thoroughly studied. Additionally, the binding proper
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ties of y-substituted PNA with RNA have only been minimally investigated.10

Although electrostatic repulsion can obstruct duplex formation between negative

ly charged nucleic acids and negatively charged PNA, we anticipate that Debye screen

ing of this electrostatic repulsion by the counter ions in the medium could overcome this 

repulsion.19,20 However, there are no reported studies that systematically evaluate the 

effect of ionic strength on duplex stability for PNAs having a charged backbone. Our at

tempts to study negatively charged PNA analogues focused on installing Asp residues at 

the y-position of PNA. While our manuscript was under review,21 Romanelli and cowork

ers reported a negatively charged PNA analogue containing Y-sulfate side chains.18 They 

observed that doubling the salt concentration increased the stability of PNA2:DNA tri

plexes containing Y-sulfate PNA; yet, they did not thoroughly evaluate the effect of ionic 

strength on duplex stability of negatively charged Y-sulfate PNA.

In this chapter, we present the first detailed investigation of the effect of ionic 

strength on binding affinity for charged PNA. We show that charge screening of electro

static repulsion by counterions in solution enables negatively charged side chains to be 

incorporated into the PNA backbone without reducing duplex stability with DNA and 

RNA.21 While electrostatic interactions do play a role in PNA binding, this effect is mani

fested in differential salt dependence, such that at medium to high salt concentrations, 

negatively charged PNA actually binds more strongly to DNA and RNA than does posi

tively charged PNA.

Results and Discussion 

Monomer synthesis

The desired Y-substituted PNA monomers were synthesized from commercially 

available Fmoc-L-aspartic acid p-te/f-butyl ester 2.1a, Fmoc-L-Lys(Boc)-OH 2.1b, and 

Fmoc-L-Ala-OH 2.1c using previously reported procedures (Scheme 2.1).11 First, Fmoc-
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Scheme 2.1. Synthesis of y-substituted PNA monomers.

protected amino acid 2.1 was reduced to give the corresponding alcohol 2.222 in quanti

tative yield, which was subsequently subjected to Parikh-Doering conditions23 to yield 

aldehyde 2.3.24 Aldehyde 2.3 was immediately subjected to reductive amination with gly

cine benzyl ester 4-toluenesulfonate to afford the y-substituted PNA backbone 2.4. Sub

sequent coupling of 2.4 with thymine-1-acetic acid using HATU/DIPEA yielded amide 

2.5. Final removal of the benzyl ester via hydrogenation produced y-substituted PNA 

monomer 2.6.
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Structure and sequence of modified PNA strands

To investigate the effect of ionic strength on duplex stability for charged PNA, 

negatively25 and positively11 charged PNA monomers and y-methyl substituted PNA 

monomer26 were synthesized using L-Asp, L-Lys and L-Ala residues, respectively to 

construct the ethylenediamine portion of the PNA backbone (Figure 2.1). We used the 

Nielsen decamer sequence H-GTAGATCACT-NH2 3 for the current study, as its hybridi

zation to DNA and RNA has been thoroughly investigated. This sequence contains three 

equally-spaced thymine residues as convenient points for substitution with our charged 

monomers. We used solid-phase peptide synthesis27 (SPPS) to generate our nonfunc- 

tionalized PNA (PNA nf), as well as PNA strands containing either one or three positive

ly charged (PNA 1pos/3pos), negatively charged (PNA 1neg/3neg), or y-methyl substi

tuted (PNA 1Me/3Me) PNA monomers (Table 2.1). With these sequences in hand, we 

investigated their thermal melting behavior with complementary DNA (DNA 1) and RNA 

(RNA 1) at varying salt concentrations.

The effect of ionic strength on duplex stability fo r DNA, RNA, and PNA

DNA:DNA and DNA:RNA duplexes are known to demonstrate positive salt de

pendence, in which increased ionic strength of the buffer solution leads to increased 

melting temperature (Tm) due to charge screening of the electrostatic repulsion between 

the negatively charged strands.19 Thus, we were not surprised to see the Tm values of 

DNA 1:DNA 2 and RNA 1:DNA 2 increase with increasing concentrations of NaCl (Fig

ure 2 .2).

In contrast, PNA:DNA duplexes demonstrate negative salt dependence, in which 

increased ionic strength leads to a decrease in Tm.3 The thermodynamic stability of 

PNA:DNA duplexes has been attributed in part to entropically favorable counterion re

lease upon duplex formation.28 Therefore, increasing the salt concentration destabilizes
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T : R = H 
Td: R = CH2C02- 
Tk:R = (CH2)4NH3+ 
Ta:R = CH3

H
Figure 2.1. Chemical structure of y-substituted PNA monomers.

Table 2.1. PNA,* DNA, and RNA sequences.

Name Sequence
PNA nf h -g ta g a tc a c t - n h 2
PNA 1neg H-GTAGATdCACT-NH2
PNA 3neg h - g tda g a tdc a c t d-n h 2
PNA 1pos H-GTAGATkCACT-NH2
PNA 3pos h - g tka g a tkc a c t k-n h 2
PNA 1Me H-GTAGATaCACT-NH2
PNA 3Me H-GTaAGATaCACTa-NH2
DNA 1 5’-AGTGATCTAC-3’
DNA 2 5’-GTAGATCACT-3’
RNA 1 5’-AGUGAUCUAC-3’

* PNAs are depicted like peptides by convention with the N-terminus 
at the left position and the C-terminus at the right.

25 -|------------------- 1--------------------1--------------------1------------------- r
0 250 500 750 1000

[NaCI] (mM)

Figure 2.2. Tm vs [NaCl] for DNA 1:DNA 2 and RNA 1:DNA 2 duplexes. 
(Conditions: 3 ^M DNA, 3 ^M RNA, 10 mM sodium phosphate buffer with added 
NaCl, pH 7.2. Error bars represent standard deviation of three independent trials.)



35

the PNA:DNA duplex. However, the efflux of cations in PNA:DNA duplex formation is 

less than the influx of cations in DNA:DNA duplex formation, so the net salt effect is 

smaller for PNA:DNA relative to DNA:DNA. As anticipated, the Tm of PNA nf:DNA 1 

shows a weak negative salt dependence (Figure 2.3, green line). In the case of 

PNA:RNA duplexes, ionic strength appears to have little effect on hybridization, as PNA 

nf:RNA 1 shows neutral salt dependence (Figure 2.4, green line). In previous work by Ly 

and colleagues, positively charged guanidinium-PNA (GPNA):DNA duplexes demon

strated negative salt dependence.12 Conversely, Romanelli and coworkers have shown 

that in the case of PNA2:DNA triplexes containing negatively charged PNA, doubling salt 

concentration increases stability.18 Thus, we anticipated that our negatively charged PNA 

would demonstrate positive salt dependence in duplex formation with DNA and RNA.

Duplex stability of charged PNA with DNA at varying salt concentrations

The introduction of a single positive or negative-substituent was found to en

hance PNA:DNA duplex stability, as PNA 1pos:DNA 1 and PNA 1neg:DNA 1 displayed 

higher Tm values than PNA nf:DNA 1 (Figure 2.3a). This increase in duplex stability can 

be attributed primarily to backbone preorganization induced by the y-substituent, as an 

analogous PNA strand having a single y-methyl substituent (PNA 1Me) 29-31 demonstrat

ed nearly identical Tm values to PNA 1pos (Table 2.2). Similar to GPNA, PNA 1pos:DNA

1 showed a negative salt dependence with increasing concentrations of NaCl. In con

trast, PNA 1neg:DNA 1 showed a neutral salt dependence, providing preliminary evi

dence that the presence of negative charge in PNA backbone can result in reversal of 

salt dependence for duplex formation.

Upon increasing the number of charged residues from one to three, a more pro

nounced effect on Tm was observed (Figure 2.3b). As anticipated, the duplex stabilities 

of PNA 3neg and PNA 3pos with DNA 1 were greater than that of PNA nf with DNA 1,
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Figure 2.3. Tm vs [NaCl] for PNA:DNA 1 duplexes (a) PNA (nf/1neg/1pos): 
DNA 1, (b) PNA (nf/3neg/3pos):DNA 1, (c) PNA (nf/1Me/3Me):DNA 1.
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Figure 2.4. Tm vs [NaCl] for PNA:RNA 1 duplexes (a) PNA (nf/1neg/1pos): 
RNA 1, (b) PNA (nf/3neg/3pos):RNA 1, (c) PNA (nf/1Me/3Me):RNA 1.
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Table 2.2. Tm of PNA:DNA 1 duplexes at varying salt concentrations.*

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M

PNA nf 46.3 ± 1.3 44.4 ± 0.8 43.7 ± 0.5 43.4 ± 0.3 42.4 ± 0.8 42.9 ± 0.8

PNA 1neg 45.8 ± 0.5 44.9 ± 0.8 44.9 ± 1.3 45.3 ± 1.5 45.4 ± 1.3 45.9 ± 0.8

PNA 3neg 43.6 ± 0.1 47.5 ± 0.9 46.5 ± 0.4 48.1 ± 0.3 48.1 ± 0.9 48.9 ± 0.7

PNA 1pos 56.0 ± 1.5 49.3 ± 0.9 48.5 ± 1.1 48.7 ± 0.9 47.7 ± 0.7 47.5 ± 0.4

PNA 3pos 61.6 ± 1.0 57.9 ± 0.4 52.3 ± 1.2 47.7 ± 1.5 47.1 ± 1.2 46.3 ± 1.2

PNA 1Me 52.2 ± 0.8 50.5 ± 0.8 49.8 ± 0.5 49.3 ± 0.5 48.8 ± 0.5 49.0 ± 0.3

PNA 3Me 43.2 ± 0.5 42.4 ± 0.6 42.7 ± 0.5 41.9 ± 0.8 40.5 ± 1.1 40.7 ± 1.5

*Conditions: 3 ^M PNA, 3 ^M DNA, 10 mM sodium phosphate buffer with added NaCl, 
pH 7.2. Errors represent standard deviation of three or four independent trials.

likely due to backbone preorganization by the y-substituents. Similar to PNA 1pos:DNA

1, PNA 3pos:DNA 1 showed a negative salt dependence with increasing NaCl concen

tration. However, as we anticipated, incorporation of three negative charges resulted in a 

positive salt dependence for PNA 3neg:DNA 1, as this duplex is presumably able to take 

advantage of charge screening when cations are present. In the presence of only 10 mM 

sodium (from the sodium phosphate buffer), Tm values follow the order of PNA 

3pos>PNA nf>PNA 3neg, revealing the effect of unscreened electrostatic contributions. 

But, with added NaCl concentrations of 250 mM and above, PNA 3neg:DNA 1 surpris

ingly becomes more stable than PNA 3pos:DNA 1 (Figure 2.3b and Table 2.2).

We were also curious to investigate the duplex stability of y-PNA having three 

neutral side chains (PNA 3Me). Although PNA 1Me demonstrated nearly identical Tm 

values to PNA 1pos, PNA 3Me showed Tm values even lower than those of PNA nf 

(Figure 2.3c and Table 2.2). These results are inconsistent with the well-known increase 

in Tm with an increasing number of y-substituents. We believe that these inconsistent Tm
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data are a result of the aggregation of PNA 3Me.

Duplex stability of charged PNA with RNA at varying salt concentrations

We next investigated the binding of charged PNA strands with complementary 

RNA. As was the case for DNA, incorporation of one or three y-substituted monomers in 

the PNA sequence increase the overall duplex stability with RNA (Figure 2.4 and Table 

2.3). Both PNA 1neg:RNA 1 and PNA 1pos:RNA 1 showed an initial decrease in Tm go

ing from 0 to 50 mM NaCl, followed by a gradual increase in Tm up to 1 M NaCl (Figure 

2.4a). However, the Tm values of these two duplexes are the same within error at NaCl 

concentrations of 50 mM and above, indicating that the presence of a single charged 

residue has only minimal impact on PNA:RNA binding. Increasing the number of 

charged residues on PNA from one to three produced a more dramatic effect on RNA 

binding (Figure 2.4b).

Table 2.3. Tm of PNA:RNA 1 duplexes at varying salt concentrations.*

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M

PNA nf 47.4 ± 0.6 46.4 ± 0.8 47.3 ± 1.0 47.1 ± 1.1 47.8 ± 1.0 48.5 ± 0.8

PNA 1neg 48.3 ± 0.5 46.9 ± 1.3 47.4 ± 1.3 48.5 ± 1.3 49.1 ± 1.3 53.5 ± 1.3

PNA 3neg 50.1 ± 0.7 52.5 ± 0.7 51.3 ± 0.4 53.5 ± 0.4 54.1 ± 0.9 55.8 ± 0.6

PNA 1pos 54.7 ± 1.3 46.9 ± 1.4 48.3 ± 1.5 49.5 ± 1.3 51.1 ± 1.2 52.1 ± 1.0

PNA 3pos 57.2 ± 0.8 54.6 ± 0.4 51.6 ± 1.1 48.0 ± 1.3 50.6 ± 1.0 50.9 ± 1.5

PNA 1Me 50.5 ± 1.3 50.1 ± 1.1 50.6 ± 1.1 51.6 ± 1.1 53.3 ± 0.9 54.0 ± 1.0

PNA 3Me 39.4 ± 0.8 40.9 ± 0.3 41.2 ± 0.1 42.6 ± 0.3 42.6 ± 0.6 43.9 ± 0.3

*Conditions: 3 ^M PNA, 3 ^M RNA, 10 mM sodium phosphate buffer with added NaCl, 
pH 7.2. Errors represent standard deviation of three or four independent trials.
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Analogous to the above described binding results of triply charged PNA with 

DNA, PNA 3pos:RNA 1 also displayed a negative salt dependence while PNA 

3neg:RNA 1 displayed a positive salt dependence. However, in the case of RNA, the 

threshold of negatively charged PNA to surpass positively charged PNA binding affinity 

was much lower at approximately 100 mM NaCl (Figure 2.4b and Table 2.3). As we ob

served with DNA, PNA 1Me showed a higher duplex stability than PNA nf with RNA; but 

PNA 3Me showed a lower duplex stability than PNA nf (Figure 2.4c and Table 2.3), 

which we again attribute to possible aggregation.

Duplex stability of charged PNA with DNA and RNA under 

physiological salt conditions

Given the increasing use of PNA for in vivo applications, we sought to investigate 

the duplex stability of our charged PNA with DNA and RNA in a buffer that mimics 

physiological salt conditions (0.49 mM MgCl26H2O, 137 mM NaCl, 2.7 mM KCl, 1.5 mM 

KH2PO4, 8.1 mM Na2HPO4, pH 7.4)32 (Table 2.4). Consistent with previous 

observations, negatively charged PNA binds slightly more weakly with DNA than does 

positively charged PNA. However, in the case of RNA binding, negatively charged PNA 

was again superior to positively charged PNA when three charged substituents were 

present on the PNA backbone. These results reinforce the observations outlined above 

and lead to the unexpected conclusion that adding negative charge to PNA may in fact 

increase binding affinity in RNA-targeted antisense therapeutics.

Thermodynamic data analysis

The thermodynamic parameters for the interactions of PNA with nucleic acids 

can be calculated by van’t Hoff analysis of UV melting data and by calorimetric methods,
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Table 2.4. Tm of PNA:DNA 1 and PNA:RNA 1 duplexes under simulated physiological 
buffer conditions.*

Complement
Tm with DNA 1

(oC)

Tm with RNA 1

(oC)

DNA 2 37.2 ± 0.1 32.5 ± 0.8

PNA nf 43.2 ± 0.5 47.1 ± 1.1

PNA 1neg 45.9 ± 0.8 48.1 ± 1.1

PNA 1pos 46.9 ± 0.3 46.9 ± 0.8

PNA 1Me 47.3 ± 1.3 48.1 ± 1.5

PNA 3neg 46.1 ± 0.6 49.9 ± 1.5

PNA 3pos 49.1 ± 1.0 46.5 ± 1.7

PNA 3Me 40.0 ± 0.6 41.4 ± 0.6

*Conditions: 3 |jM PNA, 3 |jM DNA or RNA, 0.49 mM M g C h ^ O , 137 mM NaCl,
2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4. Errors represent standard de
viation of three independent trials.

including isothermal titration (ITC) and differential scanning calorimetry (DSC).1 We per

formed van’t Hoff analysis on the UV melting data to obtain the thermodynamic parame

ters for duplex formation of PNA 3neg and PNA 3pos with DNA and RNA in physiologi

cal buffer (Table 2.5).33,34 As expected, the Gibbs free energy change (AG) follows a 

similar trend as the Tm values for the duplexes, with higher free energy gain observed for 

duplexes having higher values of Tm. In duplex formation with DNA, PNA 3neg shows 

lower enthalpic driving force but also lower entropic cost, relative to PNA 3pos. Howev

er, in the case of RNA duplex formation, the opposite is observed; PNA 3neg shows 

higher enthalpic driving force but higher entropic cost, relative to PNA 3pos.

The observed higher salt sensitivity of PNA:RNA duplexes can be attributed to 

the higher density of counterions associated with A-form structures than B-form struc

tures. Thus, we hypothesize that the structural variation between PNA:DNA and 

PNA:RNA duplexes is responsible for the increased contribution of PNA backbone 

charge and NaCl concentration in PNA:RNA binding. This hypothesis is supported by
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Table 2.5. Thermodynamic parameters for the formation of duplexes of PNA 3neg and 
PNA 3pos with DNA and RNA.*

Duplex Tm (oC) AG (kJmol-1) AH (kJ mol-1) TAS (kJmol-1)

PNA 3neg:DNA 1 46.1 ± 0.6 -48.0 ± 0.3 -208.4 ± 1.0 -160.4 ± 1.0

PNA 3pos:DNA 1 49.1 ± 1.0 -49.8 ± 0.3 -213.2 ± 2.7 -163.4 ± 2.9

PNA 3neg:RNA 1 49.9 ± 1.5 -49.1 ± 0.8 -203.4 ± 3.6 -154.3 ± 2.9

PNA 3pos:RNA 1 46.5 ± 1.7 -47.9 ± 0.3 -191.5 ± 0.4 -143.6 ± 0.6

*Averages from van’t Hoff analysis of three trials of UV melting data. Errors represent 
standard deviation of three independent trials.

the thermodynamic data in Table 2.5, where the PNA 3neg:RNA duplex has greater en- 

thalpic gain with greater entropic cost, relative to the PNA 3pos:RNA duplex, as would 

be anticipated in the case of tight counterion binding to the PNA 3neg:RNA duplex. We 

are intrigued by the fact that the charged PNA:RNA duplexes do not follow a logarithmic 

trend for Tm as a function of ionic strength, as is the case for DNA: DNA and DNA:RNA 

duplexes.35

It should be noted that the Asp and Lys residues used for this initial study have a 

slight variation in side chain length. However, given the fact that the PNA:DNA helix di

ameter is approximately 23 A ,17 and previous studies have reported that the Lys side 

chains are not involved in non specific charge-charge interactions,10 the two carbon dif

ference in side chain length is anticipated to have little to no impact on duplex stability. 

Thus, we attribute the changes in duplex stability for negatively and positively charged 

PNA primarily to the differential electrostatic properties of these PNA strands.
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Conclusion

Given the hypothesis that the lack of electrostatic repulsion plays a key role in 

PNA binding, it is surprising to discover that adding negatively charged side chains to 

PNA does not significantly decrease binding affinity with DNA and RNA at physiological 

ionic strength. Moreover, because positively charged PNA displays negative salt de

pendence and negatively charged PNA displays positive salt dependence, at medium to 

high salt concentrations, negatively charged PNA actually binds more strongly to DNA 

and RNA than does positively charged PNA. Presumably, preorganization of the PNA 

backbone via hydrogen bonding is primarily responsible for the enhanced duplex stability 

of PNA with DNA and RNA. This hypothesis has been previously reported in the litera

ture,36,37 and recent studies by Ganesh and coworkers14 have demonstrated that addi

tional backbone hydrogen bonding interactions can be used to further increase binding 

affinity or favor parallel versus antiparallel alignment of the nucleic acid strands. Future 

studies will utilize molecular dynamics simulations to provide greater insight into the ef

fect of PNA charge on duplex structure.

In general, PNA:RNA duplexes are known to have higher thermal stabilities than 

PNA:DNA duplexes;1,16 yet our data shows that positively charged PNA:DNA duplexes 

have a higher thermal stability than positively charged PNA:RNA duplexes.21 This sug

gests that careful modification of PNA may be used to modulate the selectivity of binding 

to DNA and RNA.38

The recent popularity of antisense therapeutics such as siRNA has prompted the 

development of a multitude of technologies aimed at enhancing the circulation lifetime 

and cell permeability of nucleic acids in vivo.39,4° However, nearly all of these technolo

gies function on the basis of the negatively charged backbone found in native nucleic 

acids. Thus, the ability to impart negative charge to PNA without sacrificing binding affini

ty with DNA and RNA may enable the development of therapeutics that are able to take
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advantage of the delivery technologies described above as well as the inherent benefits 

of PNA such as increased stability and enhanced binding affinity.41 This process would 

open the door to previously unexplored nucleic acid-delivery vector combinations and 

may lead to the discovery of antisense therapeutics with enhanced in vivo efficacy. This 

concept is further supported by the recent work of Romanelli and coworkers, in which 

they observed the expression of antigene activity by y-sulfate PNA delivered via cationic 

liposome, lipofectamine.18

Experimental Section 

General techniques

Glassware for all reactions was oven dried or flame dried and cooled prior to use. 

All reactions were run under an atmosphere of nitrogen or argon unless otherwise stat

ed. Tetrahydrofuran (THF) was distilled from sodium and benzophenone. Dichloro- 

methane (CH2Cl2) and dimethylformamide (DMF) were passed through a solvent purifi

cation system (J. C. Meyer). Unless otherwise noted, all starting materials were obtained 

from commercial suppliers and were used without further purification. Thin layer chro

matography was performed on Silica gel 60 F254 plates eluting with the solvent indicated, 

visualized by a 254/365 nm UV lamp, or stained with a solution of ninhydrin or potassium 

permanganate. Column chromatography was performed on Merck silica gel Kieselgel 60 

(230-400 mesh, 40-63 ^m particle size). Yields were calculated for material judged ho

mogenous by thin layer chromatography and NMR. Compounds were named using CS 

ChemBioDraw Ultra 12.0. NMR spectra were acquired on a Varian Unity-300 or VXR 

500 spectrometer. Chemical shifts for 1H NMR spectra are reported in parts per million 

relative to the signal of residual CHCl3 at 7.27 ppm or the center line of the residual ace

tone pentet at 2.05 ppm. Chemicals shifts for 13C NMR spectra are reported in parts per 

million relative to the center line of the CDCl3 triplet at 77.23 ppm or the center line of the
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acetone septet at 29.9 ppm. The abbreviations s, d, dd, t, q, m, br, and rot stand for sin

glet, doublet, doublet of doublets, triplet, quartet, multiplet, broad, and rotamer respec

tively. IR spectra were obtained from Nicolet 380 FT-IR spectrometer. Optical rotations 

were obtained at ambient temperature on a Perkin Elmer Model 343 polarimeter (Na D 

line) using a microcell with a 1 decimeter path length, and the reported concentrations 

(c) are in g/100 ml. Mass spectra were recorded at the Mass Spectrometry facility in the 

Department of Chemistry of the University of Utah. DNA/RNA was purchased from the 

University of Utah DNA/Peptide Synthesis Core Facility. Milli-Q water was obtained from 

Millipore Simplicity UV water purification system.

Oligomer synthesis

PNA oligomers were synthesized on NovaSyn TGR R resin (0.2 mmol/g) accord

ing to published procedures using manual or semi-automated (Activo P-14 Peptide Syn

thesizer) solid-phase peptide synthesis.27,42-45 The oligomers were cleaved from the res

in using TFA:triisopropylsilane:H2O (95:2.5:2.5) cocktail. The resulting mixtures were 

precipitated with ether, purified by RP-HPLC (Agilent ZORBAX 300SB-C18, 5 ^M parti

cle size, 9.4 x 250 mm) with a binary mixture of 0.1% TFA in water (eluent A) and 0.1% 

TFA in CH3CN (eluent B). The linear gradient was 8-18% of eluent B for 26 min at 50 °C 

at a flow rate of 4.0 mL/min. A small fraction of the purified compound was reinjected to 

RP-HPLC (Agilent ZORBAX 300SB-C18, 5 ^M particle size, 4.6 x 250 mm) for analysis. 

The linear gradient was 8-18% of eluent B for 26 min at 50 °C at a flow rate of 1.0 

mL/min. PNA strands were characterized by MALDI-TOF mass spectrometry in reflec- 

tron positive mode using a Waters Micromass MALDI Micro MX. The concentrations of 

the PNA oligomers were determined from the OD at 260 nm recorded in a UV-VIS Spec

trophotometer (SHIMADZU 1800), using the extinction coefficient 100,300 M'1cm'1 for 

the sequence GTAGATCACT.



UV melting studies

The thermal melting studies were performed by using the temperature depend

ence UV absorbance. All samples were prepared in buffer containing 10 mM sodium 

phosphate, pH 7.2, with added NaCl (0, 50, 100, 250, 500 1000 mM), except for the 

physiological buffer, which was 0.49 mM MgCl26H2O, 137 mM NaCl, 2.7 mM KCl, 

1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4. The samples were incubated at 95 oC for 

1 min, followed by gradual cooling to room temperature using a BioRad-MJ Mini Person

al Thermal Cycler, before data collection. UV-Vis absorbance at 260 nm was recorded 

and corrected using the absorbance at 380 nm. The data were recorded at a rate of

1 oC/min, in 0.5 oC intervals, for both the heating (20-80 oC) and cooling (80-20 oC) runs 

(except PNA 3pos from 20-90 oC and reverse). The Tm values were determined by tak

ing the first derivative of the cooling profiles, using Origin 8.5.1 software. Final Tm is an 

average of three or four independent trials, and error bars represent the standard devia

tion.

Buffer preparation

Varying concentrations of NaCl were added to 10 mM phosphate buffer, pH 7.6, 

and initial pH measured. pH was adjusted to 7.2 using 6 M HCl or 5 M NaOH. The 

change of Na+ concentration in the buffer due to NaOH is equal to or less than 0.4%.

Thermodynamic analysis

The UV melting data were analyzed to obtain van’t Hoff transition enthalpies.33,34 

Baseline correction was applied to each plot of normalized absorbance vs temperature, 

providing plots of fraction melted (0) vs temperature. The thermodynamic parameters 

were determined by plotting ln Ka vs 1/T (van’t Hoff plot). Values of Ka, the affinity con

stant, at each temperature were determined using the following equation for bimolecular,

46
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complementary oligonucleotides, where Co is the initial strand concentration.

e

For a two-state transition, if AH is independent of the temperature, then a plot of ln Ka vs 

1/T is linear, giving -AH/R as the slope and AS/R as the y-intercept. Gibbs free energy 

(AG) was calculated using the following equation, where T = 298 K.

(S)-tert-butyl3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-((2-(benzyloxy 

)-2-oxoethyl)amino)butanoate 2.4a. To a solution of aldehyde 2.3a24 (1.61 mmol) in 

CH2Cl2 (20 mL), glycine benzyl ester 4-toluenesulfonate (0.652 g, 1.93 mmol) and Et3N 

(0.67 mL, 4.8 mmol) were added at 0 °C. After stirring for 30 min, sodium triacetoxy- 

borohydride (0.444 g, 2.09 mmol) was added and the reaction mixture was stirred at rt 

for 16 h. The reaction mixture was quenched with sat. NaHCO3 (12 mL) and sat. Na2CO3 

(4 mL). After stirring for 30 min, the mixture was extracted with CH2Cl2 (3 x 30 mL). The 

combined organic extracts were washed with brine, dried over Na2SO4, and concentrat

ed. The crude material was purified by silica flash column chromatography (1:1 

EtOAC:Hexane) to afford 0.526 g (60%, two steps from 2.2a) of the secondary amine 

2.4a as a pale yellow oil (Rf = 0.4 in 1:1 EtOAC:Hexane); [a]D25 = +0.4o (c 0.9, CH2Cl2); 

1H NMR (300 MHz, CDCl3) 5 7.67 (d, J = 7.4 Hz, 2 H), 7.54-7.5 (m, 2 H), 7.33-7.17 (m, 9

H), 5.54 (br d, J = 8.4 Hz, 1 H), 5.08 (s, 2 H), 4.31 (d, J = 6.7 Hz, 2 H), 4.14 (t, J = 6.7 

Hz, 1 H), 3.97 (br s, 1 H), 3.38 (d, J = 3.7 Hz, 2 H ), 2.78-2.62 (m, 2 H), 2.51-2.38 (m, 2

AG = AH -  TAS

Procedures and characterizations

fBu02C.

2.4a
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H), 1.88 (br s, 1 H), 1.37 (s, 9 H); 13C NMR (125 MHz, CDCfe) 172.2, 170.9, 156.1, 

143.8, 141.2, 135.5, 128.5, 128.32, 128.27, 127.6, 127, 125, 119.9, 81, 66.6, 64, 52, 

50.5, 50.1, 47.2, 37.2, 28; IR (neat): 3330, 2975, 1724, 1521, 1450, 1251, 1158 cm'1; 

HRMS (ESI) m/z for C32H36N2O6: 567.2477 (calcd [M+Na]+ 567.2471).

(S)-tert-butyl3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(N-(2-(benzyl 

oxy)-2-oxoethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)bu 

tanoate 2.5a. To a solution of thymine-1-acetic acid (0.059 g, 0.32 mmol), HATU (0.122 

g, 0.320 mmol) and 4 A MS in DMF (0.9 mL) at 0 °C, DIPEA (0.060 ml, 0.32 mmol) was 

added. After stirring at 0 °C for 15 min, a solution of secondary amine 2.4a (0.146 g, 

0.267 mmol) in CH2Cl2 (1.5 mL) was added and stirred at 0 °C for 10 min. After stirring 

at rt for 16 h, the reaction mixture was concentrated and washed with H2O. The aqueous 

layer was extracted with EtOAc (3x). The combined organic extracts were washed with 

sat. NH4Cl, sat. NaHCO3, and brine, dried over Na2SO4, and concentrated. The crude 

mixture was purified by silica flash column chromatography (a gradient of 

EtOAC:Hexane from 3:7 to 8:2) to afford 0.037 g (20%) starting secondary amine 2.4a 

and 0.097 g (51%) of amide 2.5a as a pale yellow oil (Rf = 0.5 in 8:2 EtOAC:Hexane);

[a]D25 = +5.5o (c 0.2, CH2Cl2); 1H NMR (500 MHz, CDCl3) 5 9.7 (s, 0.6 H, rot 1), 9.66 (s, 

0.4 H, rot 2), 7.62 (d, J = 7.7 Hz, 2 H), 7.49-7.46 (m, 2 H), 7.31-7.24 (m, 5 H), 7.23-7.15 

(m, 4 H), 6.83 (s, 0.6 H, rot 1), 6.73 (s, 0.4 H, rot 2), 6.27 (d, J = 8.4 Hz, 0.5 H, rot 1), 

5.81 (d, J = 8.4 Hz, 0.4 H, rot 2), 5.1 (s, 0.8 H, rot 1), 5.0 (s, 1.2 H, rot 2), 4.56 (s, 1 H, rot

o

2,5a



1), 4.34-4.22 (m, 3 H), 4.2-4.0 (m, 4 H), 3.6-3.4 (m, 2 H), 2.56-2.49 (m, 1.2 H, rot 1), 

2.44-2.34 (m, 0.8 H, rot 2), 1.73 (s, 1.7 H, rot 1), 1.72 (s, 1.3 H, rot 2), 1.34 (s, 5 H, rot

1), 1.32(s, 4 H, rot 2); 13C NMRmajor rotamer(125 MHz, CDCl3) 170.7, 169.1, 168.5, 168, 

156.4, 151.5, 144, 143.8, 141.4, 135.2, 128.9, 128.7, 128.3, 127.8, 127.2, 125.2, 120.1, 

110.7, 82, 67.3, 66.8, 51, 49.2, 47.9, 47.4, 47.2, 37.4, 28.1, 12.4; IR (neat): 3335, 2924, 

1720, 1522, 1450, 1248, 1155 cm’1; HRMS (ESI) m/z for C39H42N4O9: 733.2841 (calcd 

[M+Na]+ 733.2849).
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(S)-2-(N-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-ox 

obutyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid 

2.6a. To a solution of amide 2.5a (0.098 g, 0.14 mmol) in MeOH (5 mL) was added Pd/C 

(0.010 g) under N2. The flask was evacuated, then flushed with H2 gas. The reaction 

mixture was placed under H2 (balloon pressure). After stirring for 16 h, the reaction mix

ture was filtered through a pad of Celite® and evaporated under reduced pressure to 

give 0.068 g (80%) of the modified peptide nucleic acid monomer 2.6a as a white solid 

(Rf = 0.1 in 9:1 CH2Cl2:MeOH); mp = 88-90 oC; [a]D25 = +2.4o (c 0.5, CH3OH); 1H NMR 

(500 MHz, acetone-d6) 5 10.67 (br s, 1 H), 7.82 (d, J = 6.8 Hz, 2 H), 7.66 (d, J = 4.9 Hz,

2 H), 7.38-7.23 (m, 5 H), 6.95 (br s, 0.5 H, rot 1), 6.7 (br s, 0.5 H, rot 2), 4.92-4.76 (br m, 

1 H), 4.59 (br s, 1.6 H, rot 1), 4.43 (br s, 0.4 H, rot 2), 4.38-4.32 (partially obscured br m,

1.4 H, rot 1,2), 4.28 (partially obscured br s, 1.6 H, rot 1), 4.24-4.1 (partially obscured br 

m, 2 H), 3.91 (dd, J = 6.8 Hz, 0.5 H, rot 1), 3.64-3.54 (partially obscured m, 1 H, rot 1,2),



3.39 (dd, J = 6.8 Hz, 0.5 H, rot 2), 2.6-2.48 (m, 2 H), 1.74 (br s, 3 H), 1.42 (s, 4 H, rot 1), 

1.39(s, 5 H, rot 2); 13C NMRmajor rotamer (125 MHz, acetone-d6) 171, 169.4, 168.8, 165.5, 

157.1, 152.5, 144.8, 143.1, 141.9, 128.5, 127.8, 124.9, 120.8, 110.3, 81.2, 67.4, 52 (br), 

49.2 (br), 48.4, 47.9, 47.8, 43, 28.2, 12.3; IR (neat): 2978, 1662, 1477, 1230, 1155 cm'1; 

HRMS (ESI) m/z for C32H36N4O9: 643.2396 (calcd [M+Na]+ 643.2380).
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CHAPTER 3

DIFFERENTIAL DNA AND RNA SEQUENCE DISCRIMINATION 

BY PNA HAVING CHARGED SIDE CHAINS1 

Introduction

Peptide nucleic acid (PNA)1 is a nucleic acid mimic that shows excellent potential 

for use in therapeutic and biosensing applications, due to its high binding affinity and 

selectivity for DNA and RNA.2-4 PNA also benefits from excellent biostability, as the 

native nucleic acid sugar-phosphate backbone is replaced by an W-(2-aminoethyl)glycine 

unit.5 A number of modifications have been made to the PNA backbone to enhance 

binding affinity, cellular uptake, and solubility.6,7 Addition of side chains at the y-position 

of the PNA backbone has proven to be particularly successful, as this modification 

increases binding affinity by preorganizing the backbone,8 and enables a diverse range 

of chemical functionalities to be incorporated via simple amino acid building blocks.9,10

The Heemstra group is currently investigating PNAs having negatively charged y- 

substituents, as these would electrostatically mimic DNA and RNA, and thus likely be 

compatible with conventional nucleic acid delivery technologies. In Chapter 2, we 

explored the effect of ionic strength on binding affinity for PNA having either negatively 

charged aspartic acid side chains or positively charged lysine side chains.11 We 

observed that as ionic strength is increased, negatively charged PNA increases in

1 Reprinted from Bioorg. Med. Chem. Lett., 24, De Costa, N. T. S., Heemstra, J. M., Differential 
DNA and RNA Sequence Discrimination by PNA Having Charged Side Chains, 2360-2363,
Copyright (2014), with permission from Elsevier.
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affinity for DNA and RNA, whereas positively charged PNA decreases in affinity for DNA 

and RNA. Interestingly, the point at which these trends intersect hovers near 

physiological salt concentration. And, in simulated physiological buffer, negatively 

charged PNA shows slightly higher affinity for RNA whereas positively charged PNA 

shows slightly higher affinity for DNA.

Intrigued by the effect of side chain structure and electrostatics on binding 

affinity, we were also curious to explore the mismatch and orientation selectivity of these 

Y-substituted PNAs. In this chapter, we report that side chain structure also plays a 

surprising role in PNA binding selectivity. We find that introduction of Y-substituents 

results in similar or slightly decreased selectivity compared to unmodified PNA. 

However, for Y-substituted PNAs, positively charged side chains provide higher 

selectivity in DNA binding and negatively charged side chains provide higher selectivity 

in RNA binding.12

Results and Discussion 

Structure and sequence of modified PNA strands

To investigate the role of side chain structure and electrostatics on sequence 

selectivity, we utilized our previous Y-functionalized sequences, PNA 3neg and PNA 

3pos (Figure 3.1).11,12 These sequences have three aspartic acid or lysine side chains, 

respectively, distributed across the well-studied Nielsen decamer sequence (Table 3.1).4 

The thermal melting stability of PNA 3neg, PNA 3pos, and unmodified PNA nf with 

complementary, single base mismatched, and parallel DNA and RNA sequences under 

simulated physiological salt conditions were measured. The complementary, antiparallel 

DNA 1 and RNA 1 sequences contain X=A, whereas the mismatched sequences contain 

X=G, C, or T/U. The mismatch was introduced in the middle of the sequence,13
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H

Figure 3.1. Chemical structure of y-substituted PNA monomers.

Table 3.1. PNA, DNA, and RNA sequences.

Name

PNA nf 
PNA 3neg 
PNA 3pos
DNA 1 (X = A,G,C,T) 
DNA 2
DNA 3 (Y = T,C)
RNA 1 (X = A,G,C,U) 
RNA 2
RNA 3 (Y = U,C)

Sequence

HGTAGATCACT-NH
H-GTdAGATdCACTd-NH2
H-GTkAGATkCACTk-NH2
5’-AGTGXTCTAC-3’
5’-CAT CTAGT GA-3’
5’-AGT GAYCT AC-3’
5’-AGUGXUCUAC-3’
5’-CAUCUAGUGA-3’
5’-AGUGAYCUAC-3’

and was positioned opposite a y-functionalized PNA monomer, as this was anticipated to 

maximize the impact of side chain structure on duplex stability. Sequences DNA 2 and 

RNA 2 are fully complementary to the PNA strands, but form duplexes in the less stable 

parallel orientation. The mismatch and orientation selectivity of y-PNA having three 

neutral side chains (PNA 3Me) were not examined; as discussed in Chapter 2, due to 

the unreliable data, which likely resulted from the aggregation of the sample.



The effect of side chain structure on mismatch and 

antiparallel versus parallel discrim ination

We first investigated the effect of side chain structure on mismatch and 

antiparallel versus parallel discrimination in PNA:DNA duplexes. As shown in Figure 

3.2a and Table 3.2a, PNA nf and PNA 3pos showed similar levels of duplex 

destabilization after the introduction of a single base mismatch or reversal of strand 

orientation. However, the selectivity of PNA 3neg is significantly lower, as evidenced by 

the smaller net ATm values. In the case of PNA:RNA duplexes, we found that the effects 

of side chain electrostatics were reversed, as PNA nf and PNA 3neg show similar levels 

of duplex destabilization upon introduction of a single base mismatch or reversal of 

strand orientation, and as the selectivity of PNA 3pos is significantly lower (Figure 3.2b, 

Table 3.2b). In previous work by Ly and coworkers, positively charged guanidinium 

PNAs (GPNAs) have also exhibited a similar trend in binding by having a greater 

destabilization for most of the mismatched DNA over RNA sequences.14

Previous studies have been performed to understand the unmodified PNA:DNA 

sequence selectivity, in terms of best and worst mismatched base pairs, but data are 

quite contradictory at times since the impact created by mismatches varies with the 

contexts.13 We were also curious to see whether the variation in the mismatched base 

from X=G, C, or T/U showed any significant trend. In comparing the identity of the 

mismatched base and the ATm, we expected that X=G would result in a smaller duplex 

destabilization than X=C or X=T/U, as the T:G mismatch can still form a wobble base 

pair.13,15,16 The data in Figure 3.2 show that this is the case for the PNA:RNA duplexes, 

but the PNA:DNA duplexes show a relative insensitivity to the identity of the mismatched 

base. Previous studies have observed quite inconsistent results for T:T mismatch, with 

T:T mismatch being either the most stable or the most unstable in considering the

58
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Complementary DNA strand

X = G X = C X = T DNA 2

■  PNA nf ■  PNA 3neg ■ PNA 3pos

Complementary RNA strand

X = G X = C X = U RNA 2

■ PNA nf ■  PNA 3neg l_PNA3pos

Figure 3.2. Comparative ATm values of duplexes of PNA 
(nf/3neg/3pos) with mismatched and parallel sequences of 
(a) DNA and (b) RNA.
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Table 3.2. Tm (oC) of (a) PNA:DNA and (b) PNA:RNA duplexes under simulated 
physiological buffer conditions.*

(a) DNA 1 DNA 1 DNA 1 DNA 1 DNA 2

A)=(X (X = G)

O
=(X (X = T)

PNA nf 43.0 ± 0.7 32.5 ± 0.1 36.2 ± 0.3 32.5 ± 0.7 31.7 ± 1.5
PNA 3neg 46.3 ± 0.7 40.6 ± 0.3 40.8 ± 1.0 42.6 ± 1.4 43.2 ± 0.8
PNA 3pos 49.1 ± 1.0a 38.6 ± 1.3 37.9 ± 0.4 39.0 ± 0.7 40.0 ± 1.3

(b) RNA 1 RN A 1 RNA 1 RNA 1 RNA 2
(X = A) (X = G) (X = C) (X = U)

PNA nf 47.1 ± 1.1 a 36.6 ± 0.4 28.5 ± 0.7 28.5 ± 0.7 31.2 ± 1.2
PNA 3neg 49.9 ± 1.5 a 40.0 ± 1.3 30.3 ± 1.0 34.0 ± 0.8 39.0 ± 1.1
PNA 3pos 46.5 ± 1.7 a 40.8 ± 1.3 38.4 ± 0.7 37.1 ± 1.2 39.7 ± 0.7

Conditions: 3 |jM PNA, 3 |jM DNA or RNA, 0.49 mM MgCl26H2O, 137 mM NaCl, 
2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4. Errors represent standard 
deviation of three independent trials. aFrom Chapter 2.

stacking (size).13 We observed T:T mismatch to be the most unstable in all three 

PNA:RNA duplexes, but only for some PNA:DNA duplexes.

Previous studies conducted on PNAs having neutral or positively charged y- 

substituents have shown that modified PNAs have similar or improved selectivity relative 

to unmodified p n a .8-10,14,16-19 The data presented here deviate from this trend, as in 

most cases PNA nf shows equal or higher binding selectivity relative to the y-substituted 

PNAs. One potential source of this difference is the number of y-substituents present in 

our PNA sequences. However, in the previous reports, substitution densities ranging 

from 1 to 10 substituents over a 10-mer sequence were investigated. Thus, it is unlikely 

that our choice of sequences having 3 substituents is the source of the observed 

deviation. Since previous studies investigated PNA strands having a structurally-diverse 

range of side chains,8'10,14,16'19 our specific choices of aspartic acid and lysine are likely 

not the source of the observed deviation. Rather, in nearly all of the previous studies, 

duplex stability was measured at ionic strengths that were significantly weaker than the 

physiological salt conditions used in the current study. In fact, the studies which used
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the lowest ionic strength resulted in the greatest observed selectivity for Y-substituted 

PNA relative to unmodified PNA.16,18,19

We and others have previously observed that ionic strength plays a significant 

role in PNA:DNA and PNA:RNA duplex stability,11,20 and for unmodified PNA, the highest 

stability is observed at the lowest ionic strength due to the polyelectrolyte behaviour of 

PNA duplexes. The stability of a mismatched PNA:DNA duplex is nearly the same at low 

and high ionic strengths. However, the presence of mismatches prevent the duplex 

stabilization at low ionic strength, thus sequence selectivity with DNA has been shown to 

be highest at low ionic strength.21,22 Hence, we hypothesize that the relatively higher 

ionic strength of the simulated physiological buffer is primarily responsible for the 

difference between our results and those reported in previous studies.

Thermodynamic data analysis

Thermodynamic parameters for duplex formation of PNA 3neg and PNA 3pos 

with DNA and RNA were derived using van’t Hoff analysis of the UV thermal melting 

data (Tables 3.3-3.6).23 As expected, the calculated AG values mirror the measured Tm 

values for each duplex, with reduced Gibbs free energy gain in duplexes having lower 

values of Tm. In general, duplex formation with mismatched or parallel sequences 

experienced a lower enthalpic driving force; but this was partially compensated for by a 

reduced entropic cost, except for the PNA 3pos:RNA duplexes with X=G and RNA 2. 

This result is logical, as the introduction of mismatches reduces the enthalpy gained 

from Watson-Crick base-pairing interactions, and the conformational freedom gained 

from loss of these interactions would be expected to be entropically favorable.13 This 

enthalpy-entropy compensation could result from combined effects of interruption of
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Table 3.3. Thermodynamic parameters for the formation of duplexes of PNA 3neg with 
DNA.*

Duplex Tm (oC) AG (kJ^mol-1) AH (kJ^mol-1) TAS (kJ^mol-1)
DNA 1 (X = A) 46.3 ± 0.7 -48.0 ± 0.1 -200.2 ± 6.2 -152.2 ± 6.2

DNA 1 (X = G) 40.6 ± 0.3 -45.6 ± 0.1 -151.4 ± 5.3 -105.7 ± 5.1
(-5.7) (2.4) (48.8) (46.5)

DNA 1 (X = C) 40.8 ± 1.0 -46.2 ± 0.5 -167.7 ± 15.7 -121.5 ± 15.2
(-5.5) (1.8) (32.5) (30.7)

DNA 1 (X = T) 42.6 ± 1.4 -45.9 ± 0.3 -175.1 ± 9.4 -129.2 ± 9.3
(-3.7) (2.1) (25.1) (23.0)

DNA 2 43.2 ± 0.8 -46.4 ± 0.2 -172.7 ± 12.6 -126.3 ± 12.4
(-3.1) (1.6) (27.5) (25.9)

Table 3.4. Thermodynamic parameters for the formation of duplexes of PNA 3pos with 
DNA.*

Duplex Tm (°C) AG (kJ^mol-1) AH (kJ^mol-1) TAS (kJ^mol-1)
DNA 1 (X = A) 49.1 ± 1.011 -50.2 ± 0.4 -217.0 ± 2.1 -166.8 ± 2.2

DNA 1 (X = G) 38.6 ± 1.3 
(-10.5)

-44.9 ± 0.4 
(5.3)

-162.9 ± 5.5 
(54.1)

-118.0 ± 5.2 
(48.8)

DNA 1 (X = C) 37.9 ± 0.4 
(-11.2)

-44.8 ± 0.2 
(5.4)

-183.3 ± 14.1 
(33.7)

-138.5 ± 14.1 
(28.3)

DNA 1 (X = T) 39.0 ± 0.7 
(-10.1)

-45.2 ± 0.3 
(5.0)

-177.2 ± 7.1 
(39.8)

-132.0 ± 6.9 
(34.8)

DNA 2 40.0 ± 1.3 
(-9.1)

-45.7 ± 0.4 
(4.5)

-188.5 ± 4.4 
(28.5)

-142.8 ± 4.4 
(24.0)
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Table 3.5. Thermodynamic parameters for the formation of duplexes of PNA 3neg with 
RNA.*

Duplex Tm (°C) AG (kJ^mor1) AH (kJ^mol'1) TAS (kJ^mol'1)
RNA 1 (X = A) 49.9 ± 1.511 -49.7 ± 0.9 -211.3 ± 5.1 -161.6 ± 4.3

RNA 1 (X = G) 40.0 ± 1.3 
(-9.9)

0. 
) 

± 
.9) 

.8 
(3. 

5. 
( 

4 - -197.9 ± 13.3 
(13.4)

-152.2 ± 13.4 
(9.4)

RNA 1 (X = C) 30.3 ± 1.0 
(-19.6)

-41.2 ± 0.1a 
(8.5)

-125.5 ± 1.2 a 
(85.8)

-84.4 ± 1.3 a 
(77.2)

RNA 1 (X = U) 34.0 ± 0.8 
(-15.9)

-42.0 ± 0.4b 
(7.7)

-128.6 ± 6.9 b 
(82.7)

-86.6 ± 6.5 b 
(75.0)

RNA 2 39.0 ± 1.1 
(-10.9)

-45.1 ± 0.5 
(4.6)

-147.3 ± 9.7 
(64.0)

-102.2 ± 9.3 
(59.4)

Data were calculated over a temperature range of a7-85 oC and b15-85 oC.

Table 3.6. Thermodynamic parameters for the formation of duplexes of PNA 3pos with 
RNA.*

Duplex Tm (°C) AG (kJ^mol'1) AH (kJ^mol'1) TAS (kJ^mol'1)
RNA 1 (X = A) 46.5 ± 1.711 -47.6 ± 0.8 -186.2 ± 6.0 -138.5 ± 5.3

RNA 1 (X = G) 40.8 ± 1.3 
(-5.7)

-46.2 ± 0.5 
(1.4)

-203.2 ± 0.8 
(-17.0)

-157.0 ± 0.3 
(-18.5)

RNA 1 (X = C) 38.4 ± 0.7 
(-8.1)

.2 0. 
) 

± 
.8) 

.8 
(2. 

4. 
( 

4 - -167.4 ± 1.9 
(18.8)

2.± 
.9) 

.6 
5. 

2. 
(1 

2
( 

-

RNA 1 (X = U) 37.1 ± 1.2 
(-9.4)

-45.9 ± 0.5 
(1.7)

-158.3 ± 5.2 
(27.9)

-112.4 ± 5.7 
(26.1)

RNA 2 39.7 ± 0.7 
(-6.8)

-45.5 ± 0.4 
(2.1)

-187.6 ± 4.4 
(-1.4)

-142.1 ± 4.1 
(-3.6)

*Averages from van’t Hoff analysis of UV melting data. Errors represent standard 
deviation of three or four independent trials. Red colored values in parenthesis represent 
the difference with respect to the matched, antiparallel sequence.
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base pair formation and stacking, as well as rearrangement of solvent molecules and 

ions.

The effect of varying the position o f the mismatch site relative 

to the side chains on mismatch discrim ination

In an effort to study the generality of the observed trends, we shifted the 

mismatched base by one position, so that it was still in the middle of the duplex but 

opposite an unmodified PNA monomer. We chose to investigate the A:C mismatch at 

this position, as this was the most suitable mismatched pair for direct comparison to the 

data in Table 3.2. The complementary, antiparallel DNA 3 and RNA 3 sequences contain 

Y=T/U, whereas the mismatched sequences contain Y=C. We found that again PNA 

3pos showed higher selectivity for DNA and PNA 3neg showed higher selectivity for 

RNA (Table 3.7).

Table 3.7. Tm data (oC) of PNA:DNA 3/RNA 3 duplexes under simulated 
physiological salt conditions.*

Tm with DNA (oC) Tm with RNA (oC)

DNA 3 DNA 3 RNA 3 RNA 3

T)=(Y (Y = C) (Y = U) (Y = C)

PNA nf 43.0 ± 0.7 32.7 ± 1.0 
(-10.3) 47.1 ± 1.1a 30.1 ± 1.0 

(-17.0)

PNA 3neg 46.3 ± 0.7 44.3 ± 0.7 
(-2.0) 49.9 ± 1.5a 37.9 ± 0.4 

(-12.0)

PNA 3pos 49.1 ± 1.0a 38.1 ± 1.4 
(-11.0) 46.5 ± 1.7a 36.0 ± 0.4 

(-10.5)
"Conditions: 3 |jM PNA, 3 |jM DNA or RNA, 0.49 mM MgCl26H2O, 137 mM NaCl, 
2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4. Errors represent standard 
deviation of three independent trials. aFrom Chapter 2.
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Structural analysis by circular dichroism (CD) spectroscopy

We initially hypothesized that the difference in selectivity between PNA 3neg and 

PNA 3pos may be due to differences in duplex structure caused by the charged side 

chains. Using CD spectroscopy, we first analysed each of the PNA strands alone in 

simulated physiological buffer conditions (Figure 3.3). As expected, achiral PNA nf 

shows no CD signal; but y-modified PNAs 3neg and 3pos show maxima at 220 and 

260 nm and minima at 210 and 240 nm respectively, indicative of preorganization into a 

right-handed helix.8,9,24 All three PNA:DNA duplexes show similar CD spectra, with peak 

shapes and wavelengths (maxima at ~275 nm and minima at ~240 nm) characteristic of 

a B-form helix; and all three PNA:RNA duplexes show similar CD spectra, with peak 

shapes and wavelengths (maxima at ~260 nm and minima at ~210 nm) characteristic of 

an A-form helix (Figure 3.4 and 3.5).4 This result was unexpected, given the 

dramatically different mismatch selectivity of PNAs 3neg and 3pos. However, we 

hypothesize that the charged side chains may still give rise to local structural 

perturbations, which could impact selectivity without significantly altering the overall CD 

spectrum. We are currently pursuing computational studies in an attempt to gain more 

detailed insight into the impact of the charged side chains on PNA:DNA and PNA:RNA 

duplex structure.

Conclusion

The results discussed here is the first to directly compare sequence selectivity for 

y-modified PNAs having positively or negatively charged side chains. For these 

y-modified PNA strands, PNA 3pos shows superior binding selectivity with DNA; and 

PNA 3neg shows superior binding selectivity with RNA. CD studies reveal that the side 

chains do not significantly alter the overall structure of the PNA:DNA or PNA:RNA
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2 ----- PNA nf
PNA 3neg 
PNA 3pos

Figure 3.3. CD spectra of PNA (nf/3neg/3pos) under simulated 
physiological buffer conditions.
(Conditions: 10 j M PNA, 0.49 mM MgCl26H2O, 137 mM NaCl, 2.7 mM 
KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4, 20 oC).
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Figure 3.4. CD spectra of PNA (nf/3neg/3pos) with complementary (a) DNA 1 
and (b) RNA 1 under simulated physiological buffer conditions.
(Conditions: 5 |jM PNA, 5 |jM DNA or RNA, 0.49 mM MgCl26H2O, 137 mM 
NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4, 20 oC).
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Figure 3.5. Representative CD spectra overlap to demonstrate the 
structural variations of single stranded y-PNA and y-PNA in duplex 
formation with DNA and RNA.

duplexes. However, they may still provide sufficient local perturbation to account for the 

observed differences in selectivity. It should be noted that the aspartic acid and lysine 

monomers used in this initial study have slightly different side chain lengths. In lysine 

monomer, the charged atom is two carbons away from the PNA backbone compared to 

aspartic acid monomer. This may have a minor impact on counterion binding and 

backbone hydration, but data from our previous study support the hypothesis that the net 

charge of the backbone is the prevailing factor in determining duplex stability.11

y-PNAs structural stability is influenced by the tri-centered backbone-water- 

nucleobase interactions. Specifically, the availability of numerous donor and acceptor 

sites in the backbone may further impact the solvent interactions.25 We hypothesize that 

the functionality in the incorporated y-side chains together with the variations in structure 

of native nucleic acids could influence the solvation network, H-bonding, and cation- 

binding interactions; hence resulting in differential binding properties and sequence 

recognition of side chain functionalized PNAs.
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Thus, in the development of y-substituted PNA strands for specific biological 

targets, it may be important to investigate the selectivity of each individual sequence. 

Additionally, our results highlight the potential importance of investigating PNA binding 

affinity and selectivity under physiological conditions when biological applications are 

anticipated. Together, this research provides insight into the surprising impact of side 

chain structure on binding selectivity for y-substituted PNA, and suggests that the ideal 

side chains for PNA:DNA duplex formation may be different from those that are ideal for 

PNA:RNA duplex formation. We anticipate that PNA together with its enhanced 

sequence specificity and differential binding ability would play a revolutionary role in the 

detection of single point mutations.

This work highlights that the variation of functional group in the y-position allows 

differential binding tendency toward nucleic acids. Future studies in spectroscopic, 

crystallographic, and computational fields are required to fully understand our findings. 

Future investigations are also needed to explore the effect of side chain length on duplex 

stability and mismatch discrimination. While we do observe that side chain structure and 

electrostatics are the prevailing factors in determining selectivity, the positioning of the 

side chains relative to the mismatch site may also have a subtle impact. Also, further 

work is needed to understand the effect of numerous side chains, sequences, and 

sequence lengths on mismatch discrimination of y-substituted PNAs.

Experimental Section 

General techniques

DNA/RNA was purchased from the University of Utah DNA/Peptide Synthesis 

Core Facility. Mass spectra were recorded at the Mass Spectrometry facility in the 

Department of Chemistry of the University of Utah. Milli-Q water was obtained from
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Millipore Simplicity UV water purification system.

UV melting studies

All samples were prepared in buffer containing 0.49 mM MgCl26H2O, 137 mM 

NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4.26 The samples were 

incubated at 95 oC for 1 min, followed by cooling to room temperature at a rate of 0.1 

oC/sec using a BioRad-MJ Mini Personal Thermal Cycler, before data collection. UV-Vis 

absorbance at 260 nm was recorded and corrected using the absorbance at 380 nm (UV 

cell path length = 1 cm). The data were recorded at a rate of 1 oC/min, in 0.5 oC 

intervals, for both the heating and cooling runs. The Tm values were determined by 

taking the first derivative of the cooling profiles (85-20 oC), using Origin 8.5.1 software. 

Final Tm is an average of three or four independent trials, and error bars represent the 

standard deviation.

Thermodynamic analysis

The UV melting data were analyzed to obtain van’t Hoff transition enthalpies.23,27 

Baseline correction was applied to each plot of normalized absorbance versus 

temperature (over 20-85 oC range), providing plots of fraction melted (0) versus 

temperature. The thermodynamic parameters were determined by plotting ln Ka vs 1/T 

(van’t Hoff plot). Values of Ka, the affinity constant, at each temperature were determined 

using the following equation for bimolecular, non-self-complementary oligonucleotides, 

where Co is the initial strand concentration.

9

K° C  •(> -0Y ]

In order to have a precise Ka, 0 values lying in the range of O.15<0<O.85 are



taken for the van’t Hoff plot. For a two-state transition, if AH is independent of the 

temperature, then a plot of ln Ka vs 1/T is linear, giving -AH/R as the slope and AS/R as 

the y-intercept. Gibbs free energy (AG) was calculated using the following equation, 

where T = 298.15 K.

AG = AH -  TAS

Circular dichroism (CD) analysis

CD spectra were recorded on JASCO J815 CD spectrometer. All samples were 

prepared in a buffer containing 0.49 mM MgCl26H2O, 137 mM NaCl, 2.7 mM KCl,

1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4.26 The samples of PNA:DNA/RNA duplexes 

were incubated at 95 oC for 1 min, followed by cooling to room temperature at a rate of 

0.1 oC/sec using a BioRad-MJ Mini Personal Thermal Cycler, before data collection. All 

CD spectra were recorded at 20 °C in the range 200-320 nm (cell path length =

1.00 mm). Final spectra are an average of 10 scans, which were scanned at a speed of 

100 nm/min. Buffer data was subtracted from the sample data, which was then 

smoothed via 40 point Adjacent Averaging algorithm using Origin 8.5.1 software.

71
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CHAPTER 4

TOW ARD DNA-TEMPLATED PNA POLYMERIZATION USING  

DYNAMIC COVALENT CHEMISTRY

Introduction

Nucleic acid-templated polymerization translates genetic information into 

functional macromolecules and allows the evolution of biopolymers.1 The molecular 

recognition capability of oligonucleotides can be used to direct the programmable 

assembly of reactive partners to engage in chemical reactions.2 Groundbreaking work by 

the Gilham3 and Orgel4 groups revealed that oligonucleotide templates can drive the 

ligation of complementary strands having activated phosphodiesters. This pioneering 

work, together with the curiosity to unveil the mysteries of prebiotic chemistry, has driven 

the exploration of various template-driven chemical reactions. Significant progress has 

been achieved with translating information from oligonucleotide sequences into 

functional materials and novel architectures (conductive polymers, nanopatterns), 

fluorescent or bioactive molecules, and synthetic polymers.2,5

In template-driven reactions, the spontaneous reaction between unbound 

reactants is inhibited in the absence of the template. In the presence of the template, the 

effective concentrations of the reactive partners are increased upon binding, thereby 

increasing the rate of the reaction.2 Numerous chemical functionalities and reactions 

have been investigated in template driven systems. Nucleic acid-templated reactions 

can be divided into three types, (1) templated inter-strand crosslinking, (2) templated 

strand ligation, and (3) templated transformation without ligation (Figure 4.1).2
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a) Templated interstrand crosslinking
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R2 R1

Photocrosslinking via [2+2] cycloaddition
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b) Templated strand ligation
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Templated Staudinger reaction

PNA Pr 2 N3 PNA .
or DNA L or DNA

R,P NH,
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Figure 4.1. Three types of nucleic acid-templated reactions with representative 
examples [adapted with permission from (Gorska, K.; Winssinger, N. Angew. Chem. Int. 
Ed. 2013, 52, 6820-6843), copyright © (2013) WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim].
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"Inter-strand crosslinking” approaches have been used for the selective capturing 

of complementary strands, followed by light or oxidant-induced crosslinking (Figure 

4.1a). These are utilized in applications such as single-nucleotide polymorphism (SNP) 

detection.6 The second approach, "templated ligation” was the first nucleic acid- 

templated reaction to become popular because of its relevance to the origin of life as 

templated ligations are required for the enzyme free amplification of genetic material. 

Thus, numerous efficient, orthogonal, and biocompatible templated ligations have been 

studied based on reactions such as photoligation, azide-alkyne cycloaddition,7,8 

nucleophilic substitution, and condensation (Figure 4.1b).2 These ligation chemistries 

have been used in applications including SNP detection, generation of fluorogenic 

probes,9 and construction of sophisticated nanostructures such as catenanes,10 

dendrimers, G-quaduplexes, and conducting polymers.2 The third type of templated 

reaction, "templated transformations” , are required for the synthesis of functional 

molecules (proteins) using the information encoded in the nucleic acid sequences 

(Figure 4.1c). Various templated transformation reactions, such as templated hydrolysis, 

acyl transfer, azide reduction,11,12 and Wittig reaction, have been investigated (Figure 

4.2a).2 Interestingly, the Liu group performed one-pot, six-step, DNA-templated 

synthesis utilizing this method (Figure 4.2b).13

In fact, one of the ultimate goals of the aforementioned nucleic acid-templated 

reactions is to find a suitable method to translate information encoded in a DNA 

sequence into an evolvable synthetic polymer. In particular, the ability of biopolymers to 

translate from DNA and RNA, and then mutate and evolve allows them to expand their 

potential, performing functions essential for life. As discussed previously, the use of 

natural polymers in numerous applications is limited due to their stability, bioavailability, 

and immunogenicity. Artificial polymers can be tailored to overcome the above 

limitations. However, in vitro selection methods such as phage display14 and SELEX15
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Figure 4.2. Selected applications of nucleic acid-templated reactions (a) fluorogenic 
probes,* (b) six-step DNA-templated synthesis.** [*Adapted with permission from 
(Franzini, R. M.; Kool, E. T. J. Am. Chem. Soc. 2009, 131, 16021-16023), copyright © 
(2009) American Chemical Society. **Reprinted with permission from (Gorska, K.; 
Winssinger, N. Angew. Chem. Int. Ed. 2013, 52, 6820-6843), copyright © (2013) WILEY- 
VCH Verlag GmbH & Co. KGaA, Weinheim].
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are limited to biopolymers. Therefore, the evolution of abiotic polymers, including PNA,16 

requires methods for sequence encoding and amplification. Towards this endeavor, 

polymerase catalyzed templated synthesis of nucleic acids with modified bases and 

backbone-modified nucleic acid analogues, such as oligonucleotides of 

phosphorothioates, phosphoramidates, 2’-modified ribose, TNA (threose nucleic acid),17 

HNA, GNA, and LNA have been investigated.1 In addition, protein synthesis by 

ribosomal machinery has been mimicked to generate artificial peptides and 

polyesters.18,19 However, the structural and functional diversity of nonnatural polymers 

derived from biosynthetic pathways is limited by the need for compatibility with 

polymerases or the ribosome.1

Nonenzymatic, templated polymerization allows for the generation of sequence- 

defined, genetically-encoded synthetic polymers having desired functional properties. 

Nonenzymatic ligation of hexitol and altritol nucleic acids has been investigated, but the 

polymerization was limited to only tetramers.1 Also, PNA-templated RNA polymerization 

has been examined, but suffers from regioselectivity issues in polymerization. Lynn and 

coworkers expanded the substrate scope of nonenzymatic ligations by introducing 

amine-DNA and amido-DNA, in which reductive amination was used as an alternative 

strategy for polymerizations that do not contain phoshodiester linkages.1,20

Recently, the Liu group has put forth strategies to overcome the limitations of 

nonenzymatic, templated polymerization by taking advantage of PNA in DNA-templated 

polymerizations.1,21-23 The favorable stability and affinity of PNA together with 

speculation of its prebiotic relevance has made PNA an attractive tool for templated 

polymerizations.24 Early studies of DNA-templated PNA polymerization used amine 

acylation as the coupling reaction.25 Based on the pioneering work by the Lynn group, 

the Liu group demonstrated the condensation of PNA oligomers under reductive 

amination conditions.21 Reductive amination conditions are advantageous over acylation
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conditions, as the initial imine intermediate forms reversibly, thus driving the assembly of 

the oligomers of fully complementary sequence.

The Liu group tested the templated ligation of PNA fragments containing one or 

multiple side chains at various positions to generate a 40-mer PNA, having 24 side-chain 

modifications.22 This innovation opens up potential applications of nonenzymatic 

translation of nucleic acid sequences to multifunctional synthetic polymers. They further 

ensured the success of this method by presenting both the transcription of DNA 

templates to synthetic PNA polymers, as well as a method for selection, amplification, 

and retranscription of these PNA sequences.26 Although significant work has been done 

related to DNA-templated PNA polymerization, all of the previous systems utilized 

polymerization between small blocks of oligomers, rather than single monomers.

As an alternative to templated polymerization via backbone ligation, the groups of 

Liu23 and Ghadiri27 concurrently reported a base-filling approach, in which nucleobases 

were added to a preformed abasic PNA backbone (Figure 4.3). In the method reported 

by the Liu group, four nucleobase aldehydes or acids were incubated into PNA duplexes 

having an abasic site, and subsequently subjected to reductive amination conditions or 

carboxylic acid activation conditions.23 They were able to successfully isolate the 

complementary base-filled PNA duplex with high yield and selectivity under reductive 

amination conditions. The method reported by Ghadiri group utilized a trans- 

thioesterification between cysteine residues in an abasic peptide backbone and 

nucleobase thioesters.27

Dynamic covalent chemistry is defined as chemical ligation reactions that are 

carried out reversibly under equilibrium control.28 This reversible nature of the reactions 

allows error checking and proofreading, thus yielding the more thermodynamically stable 

final product. Although numerous dynamic covalent chemical reactions have been 

investigated in supramolecular assembly systems, our interest was drawn towards the
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Figure 4.3. Templated polymerization via base filling [adapted from (ACS 
AuthorChoice article: Heemstra, J. M.; Liu, D. R. J. Am. Chem. Soc. 2009, 131, 11347
11349) and (Ura, Y.; Beierle, J. M.; Leman, L. J.; Orgel, L. E.; Ghadiri, M. R. Science
2009, 325, 73-77, with permission from AAAS)].

thiolactone exchange zip-reaction,29 as thioesters are ubiquitous in nature and also 

postulated as precursors to life.30

Previous work by the Seitz group utilized native chemical ligation (NCL) for the 

coupling of PNA fragments.31,32 They achieved higher yield and turnover rates when 

using PNA fragments containing isocysteine at the N-terminus and glycine thioesters at 

the C-terminus (Figure 4.4).2,32 In addition, templated acyl transfer reactions have used
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Trans-thioesterification; rearrangement

PNA
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PNA
O.

H
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SH
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Figure 4.4. Templated native chemical ligation of PNA [adapted with permission from 
(Gorska, K.; Winssinger, N. Angew. Chem. Int. Ed. 2013, 52, 6820-6843), copyright © 
(2013) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

the NCL strategy to achieve rapid, robust reactions with high turnover rates.32 In some 

instances, nontemplated hydrolysis of the thioester led to background signal, but careful 

optimization of conditions allowed for these limitations to be overcome.32 Additionally, as 

we mentioned above, the Ghadiri group used a trans-thioesterification between cysteine 

residues in an abasic peptide backbone and nucleobase thioesters in their base-filling 

method.27

In an attempt to achieve single-nucleotide templated polymerization, we 

designed the PNA monomer 4.1 that can take advantage of the reversible thiol- 

thiolactone ring opening reaction (Figure 4.5). We anticipate that the dynamic nature of 

the ligation chemistry will allow the editing of misincorporated nucleotides, analogous to 

the exonuclease activity of polymerases. Our current research on this project mainly 

involves the synthesis of modified PNA monomer 4.1. Outlined here in the fourth chapter 

of this dissertation are studies directed toward the synthesis of the modified PNA 

monomer. Upon synthesis of the monomer, the ability of base pairing and base stacking 

to drive the templated polymerization will be investigated.
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Figure 4.5. Proposed DNA-templated PNA polymerization via thiol-thiolactone ring 
opening method.

Results and Discussion 

Retrosynthesis

We initially planned on synthesizing the modified PNA monomer via two different 

approaches, a convergent route and linear route. In the convergent route, it was 

envisioned that the desired cyclic monomer 4.1 would arise from amide bond formation 

between diaminopurine acetic acid 4.2 and thiomorpholinone 4.3 (Scheme 4.1). 

Thiomorpholinone 4.3 would be obtained from disulfide bond cleavage of dimer 4.4 

followed by thioesterification. Alkylation of the amines of cystamine dihydrochloride 4.5 

with bromoacetyl ester would give 4.4.

In the linear route, it was envisioned that the cyclic monomer 4.1 would arise 

from thioesterification of modified PNA backbone 4.6, which would be obtained from 

disulfide bond cleavage of dimer 4.7 (Scheme 4.2). The alkylation of cystamine 

dihydrochloride 4.5 with bromoacetyl ester, followed by amide bond formation with 

diaminopurine acetic acid 4.2, would give dimer 4.7.
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Studies toward the synthesis of cyclic PNA monomer via 

convergent route

First, alkylation of diaminopurine 4.8 with bromoacetic acid ethyl ester afforded 

alkylated diaminopurine 4.9, and subsequent ester hydrolysis provided diaminopurine 

acetic acid 4.2 (Scheme 4.3).33 Although we attempted direct coupling of diaminopurine 

with bromoacetic acid to obtain diaminopurine acetic acid 4.2, we isolated unidentified 

byproducts along with the product. Therefore, we decided to follow the previous route, 

which provided the clean product.

We decided to use the commercially available disulfide-containing dimer 

cystamine, in which the thiol is inherently protected. First, cystamine dihydrochloride 4.5 

was alkylated with bromoacetic acid benzyl ester to give the dibenzyl ester compound 

4.10 (Scheme 4.4). Deprotection of the benzyl esters to give diacid 4.11 was sluggish 

under hydrogenation conditions. This was possibly due to poisoning of the palladium 

catalyst by sulfur in the substrate. Although deprotection under HCOOH acid and Pd/C 

seemed promising, it required nearly equivalent amounts of Pd/C for an efficient 

reaction.34 Thus, we decided to use a t-butyl ester instead of a benzyl ester for alkylation 

of cystamine 4.5.

Cystamine 4.5 was alkylated with bromoacetic acid f-butyl ester to give the di-t- 

butyl ester compound 4.12 in 46% yield (Scheme 4.5). Then, disulfide bond cleavage of 

dimer 4.1235 using TCEP36 gave monomer 4.13,37 and removal of the f-butyl ester with 

TFA provided mercaptoethyl glycine 4.1438 in quantitative yield. With 4.14 in hand, next 

we investigated the formation of thiomorpholinone 4.3 under peptide coupling and 

dehydration conditions. However, we were not able to successfully isolate the product. 

This was possibly due to the free amine interfering with the reactive thioester bond.
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Next, we decided to protect the free amine to avoid the aforementioned 

problems. Deciding on the best protecting group that would require mild deprotection 

conditions became demanding. Solid phase peptide synthesis (SPPS)39,40 using Fmoc40 

protecting groups is known to be more attractive than SPPS using Boc protecting groups 

due to the milder basic deprotection of Fmoc in comparison to the harsh acidic 

conditions required for Boc. However, the use of popular SPPS Fmoc removal base, 

piperidine, becomes problematic when thioester functional groups are present in the 

substrates. Previous work has reported the use of DBU as a safe alternative to 

piperidine in the presence of the thioester functionality.41,42 Hence, we chose Fmoc as 

the choice of protecting group for our substrate 4.12.35

Accordingly, Fmoc protection of the amino groups of 4.1235 provided the di-Fmoc 

protected compound 4.15, and subsequent disulfide bond cleavage gave the cyclization 

precursor 4.1643 (Scheme 4.6). The known thiol compound 4.16 was then subjected to 

dehydration conditions under Dean-Stark apparatus to provide Fmoc-protected 

thiomorpholinone product 4.17.44 However, isolation of thiomorpholinone 4.3 after 

removal of the Fmoc group was not successful under numerous conditions. This could 

possibly be due to the instability of the thioester group and the reactivity of the 

secondary amine group. Consequently, we decided not to isolate the free amine 

compound 4.3, and instead attempt a one-pot procedure for Fmoc removal from 4.17 

and subsequent amide bond formation with diaminopurine acetic acid 4.2 to give the 

desired cyclic PNA monomer 4.1 (Scheme 4.7). Accordingly, we investigated an addition 

of Fmoc protected thiomorpholinone 4.17 to the activated acid of 4.2, with a base in the 

medium. However, we were not able to isolate the product 4.1, nor completely recover 

the starting thiomorpholinone 4.17.

Although our attempts to optimize the conditions of the aforementioned one-pot 

synthesis are currently underway, we propose an alternative route for future attempts by
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Scheme 4.6. Synthetic attempts for cyclic PNA monomer 4.3 via Fmoc-protected route.
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Scheme 4.7. Synthetic attempts for cyclic PNA monomer 4.1.

modifying our choice of protecting groups. We anticipate that alkylation of cystamine 4.5 

with bromoacetic acid ethyl ester, followed by protection of the diamines with a Boc 

protecting group will provide 4.18 (Scheme 4.8). Then, we envision that sequential 

disulfide cleavage, ester hydrolysis, and thiolactonization45 will afford 4.19. We predict 

that acidic deprotection of the Boc group will not hydrolyse the thioester, thus enabling 

isolation of thiomorpholinone 4.3 as a TFA salt. Finally, amide bond formation with Boc- 

protected diaminopurine acetic acid 4.20, followed by Boc removal, would provide the 

desired cyclic PNA monomer 4.1 as a TFA salt.

Meanwhile, we also attempted the linear route that we initially proposed. 

Although the amide bond formation between diaminopurine acetic acid 4.2 and benzyl
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Scheme 4.8. Proposed convergent synthetic route for cyclic PNA monomer 4.1.

ester protected dimer 4.10 seemed promising, t-butyl ester protected dimer 4.12 yielded 

decomposed material (Scheme 4.9), and we did not further investigate this route. 

Nevertheless, in future attempts, we recommend the use of Boc protected diaminopurine 

acetic acid 4.20 for coupling to minimize side reactions.

Conclusion

The research presented here shows our initial efforts towards synthesizing the 

desired PNA monomer 4.1. Some of the difficulties associated with successful isolation 

of the desired PNA monomer can be attributed to the labile thioester moiety being 

sensitive to aqueous, basic, and nucleophilic conditions. This indeed challenges the use 

of this monomer in future experiments, which would be mainly conducted under aqueous 

conditions. However, previous successful examples of the use of thioesterification and 

thioester functional groups in experimental settings similar to physiological conditions 

suggest the viability of our monomer in similar settings.
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Scheme 4.9. Synthetic attempts via proposed linear route.

Upon synthesis of the monomer, the ability of base pairing and base stacking to 

drive the templated polymerization will be investigated. If successful, our efforts will lead 

to a templated PNA polymerization system that can execute polymerization from single

monomer building blocks with high fidelity.

Glassware for all reactions was oven dried or flame dried and cooled prior to use. 

All reactions were run under an atmosphere of nitrogen or argon unless otherwise 

stated. Dichloromethane (CH2Cl2) and dimethylformamide (DMF) were passed through a 

solvent purification system (J. C. Meyer). Unless otherwise noted, all starting materials 

were obtained from commercial suppliers and were used without further purification. 

Thin layer chromatography was performed on Silica gel 60 F254 plates eluting with the 

solvent indicated, visualized by a 254/365 nm UV lamp, or stained with a solution of 

ninhydrin, p-anisaldehyde, or potassium permanganate. Column chromatography was 

performed on Merck silica gel Kieselgel 60 (230-400 mesh, 40-63 ^m particle size) or 

aluminium oxide (activated, neutral, Brockmann 1, ~150 mesh, 58 A pore size). Yields 

were calculated for material judged homogenous by thin layer chromatography and 

NMR. Compounds were named using CS ChemBioDraw Ultra 12.0. NMR spectra were

Experimental Section

General techniques



acquired on a Varian Unity-300 or VXR 500 spectrometer. Chemical shifts for 1H NMR 

spectra are reported in parts per million relative to the signal of residual CHCl3 at 7.27 

ppm or the center line of the residual DMSO pentet at 2.50 ppm. Chemicals shifts for 13C 

NMR spectra are reported in parts per million relative to the center line of the CDCl3 

triplet at 77.23 ppm or the center line of the DMSO septet at 39.51 ppm. The 

abbreviations s, d, t, m, br, and rot stand for singlet, doublet, triplet, multiplet, broad, and 

rotamer, respectively. IR spectra were obtained from Nicolet 380 FT-IR spectrometer. 

Mass spectra were recorded at the Mass Spectrometry facility in the Department of 

Chemistry of the University of Utah.

Procedures and characterizations
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OH
4.2

2-(2,6-Diamino-9H-purin-9-yl)acetic acid 4.2. To a suspension of 2,6- 

diaminopurine 4.8 (2.00 g, 13.3 mmol) in dry DMF (25 mL) was added portionwise NaH 

(0.586 g, 60% in oil, 14.7 mmol) under an atmosphere of N2. After stirring for 40 min, 

ethyl bromoacetate (1.92 mL, 17.3 mmol) was added and the reaction mixture was 

stirred at rt for 20 h. The reaction mixture was then filtered over a pad of Celite® and the 

clear orange solution was reduced in volume. The mixture was dissolved in EtOAc and 

washed with sat. NH4Cl. The organic layer was separated and the aqueous layer was 

extracted with EtOAc (3x). The combined organic extracts were washed with brine, dried 

over Na2SO4, and concentrated to afford alkylated diaminopurine 4.9,33 which was used
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forward without further purification.

To the above crude product 4.933 (13.3 mmol) in dioxane:H2O (1:1, 40 mL) was 

added 2.5 M NaOH (30 mL) for 5 min at 0 °C. After stirring for 15 min, ice bath was 

removed, and stirred at rt for 1 h. Then the mixture was washed with EtOAc and the 

aqueous layer was acidified to ~pH 3 with HCl. The solid product was filtered, washed 

with water, and dried over Drierite™ under vacuum to yield diaminopurine acetic acid 4.2 

(0.60 g, 22%) as a pale orange solid (Rf = 0.1 in 9:1 CH2Cl2:MeOH); 1H NMR (500 MHz, 

DMSO) 5 7.66 (s, 1 H), 6.65 (br s, 2 H), 5.79 (br s, 2 H), 4.69 (s, 2 H); IR (neat): 3416, 

1662, 1003, 823, 761 cm-1; HRMS (ESI) m/z for C7H8N6O2: 209.0791 (calcd [M+H]+ 

209.0787).

Dibenzyl-2,2'-((disulfanediylbis(ethane-2,1-diyl))bis(azanediyl))diacetate 

4.10. To a suspension of cystamine dihydrochloride 4.5 (6.00 g, 26.6 mmol) and KI 

(0.221 g, 1.33 mmol) in acetonitrile (100 mL), Et3N (16.3 mL, 117 mmol) was added for 5 

min at rt under an atmosphere of N2. Then benzyl bromoacetate (8.4 mL, 53 mmol) was 

added for 5 min. After stirring for 20 h, the reaction mixture was concentrated, dissolved 

in EtOAc, and washed with sat. NH4Cl. The organic layer was separated and the 

aqueous layer was extracted with EtOAc (3x). The combined organic extracts were 

washed with brine, dried over Na2SO4, and concentrated to a brown oil. The crude 

mixture was purified by alumina (activated, neutral) flash column chromatography (9:1 

CH2Cl2:MeOH) to yield dibenzyl ester 4.10 (2.63 g, 22%) as a yellowish brown oil (Rf = 

0.6 in 9:1 CH2Cl2:MeOH); 1H NMR (500 MHz, CDCl3) 5 7.37 (m, 10 H), 5.18 (s, 4 H), 

3.50 (s, 4 H), 2.96 (t, J = 6.2 Hz, 4 H), 2.83 (t, J = 6.4 Hz, 4 H), 1.98 (br s, 2 H); 13C

O

4.10



NMR (125 MHz, CDCfe) 171.7, 135.4, 128.2, 128, 127.97, 66.1, 50.2, 47.5, 38.7; IR 

(neat): 3032, 2914, 1733, 1455, 1140, 978, 737 cm-1; LRMS (ESI) m/z for C22H28N2O4S2: 

449.1 (calcd [M+H]+ 449.16), 471.1 (calcd [M+Na]+ 471.14).

' BU<\ ^ N ^ S' S ^ NH^ 0 , B u5 H
4.12

Di-fert-butyl-2,2'-((disulfanediylbis(ethane-2,1-diyl))bis(azanediyl))diacetate 

4.12. To a suspension of cystamine dihydrochloride 4.5 (5.00 g, 22.2 mmol) and KI 

(0.737 g, 4.44 mmol) in acetonitrile (150 mL), Et3N (13.0 mL, 93.2 mmol) was added for

10 min at rt under an atmosphere of N2. After stirring for 5 min, f-butyl bromoacetate (6.9 

mL, 47 mmol) was added for 10 min. After stirring for 40 h, the reaction mixture was 

refluxed for 3 h, cooled to rt, and TBAI (0.01 eq.) was added. The mixture was refluxed 

for another 3 h and stirred at rt for 20 h. Then the reaction mixture was filtered to remove 

a white precipitate and filtrate was concentrated. The concentrate was dissolved in 

EtOAc, washed with sat. NH4Cl and brine, dried over Na2SO4, and concentrated to a 

brown oil. The crude mixture was purified by alumina (neutral, activated) flash column 

chromatography (a gradient of 8:2 EtOAC:Hexane to 9:1 CH2Cl2:MeOH) to yield di-f- 

butyl ester 4.12 (3.88 g, 46%) as a yellowish brown oil (Rf = 0.8 in 9:1 CH2Cl2:MeOH); 1H 

NMR (500 MHz, CDCl3) 5 3.2 (s, 4 H), 2.81 (t, J = 6.1 Hz, 4 H), 2.70 (t, J = 6.3 Hz, 4 H), 

2.12 (br s, 2 H), 1.34 (s, 18 H); 13C NMR (75 MHz, CDCl3) 171.2, 81.1, 51.3, 47.7, 38.8,

28.0 IR (neat): 2977, 1731, 1456, 1367, 1228, 1154 cm-1; HRMS (ESI) m/z for 

C16H32N2O4S2: 403.1709 (calcd [M+Na]+ 403.1701).
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Fmoc

4.17

(9H-fluoren-9-yl)methyl2-oxothiomorpholine-4-carboxylate 4.17. To a soluti

on of di-f-butyl ester 4.12 (2.10 g, 5.53 mmol) in CH2Cl2 (55 mL), FmocOSu (3.768 g,

11.17 mmol) was added at 0 oC under an atmosphere of N2. After stirring for 5 min, Et3N 

(1.6 mL, 11.2 mmol) was added for 5 min and stirred at 0 oC for 0.5 h. Then the reaction 

mixture was warmed to rt and stirred for 16 h. The mixture was concentrated and 

purified by silica flash column chromatography (a gradient of EtOAC:Hexane from 2:8 to 

8:2) to yield the di-Fmoc compound 4.15 (1.01 g, 22%) as a yellowish oil (Rf = 0.3 in 1:1 

EtOAC:Hexane), which was subjected to next step without further characterization.

To the above product 4.15 (0.423 g, 0.513 mmol) in MeOH (10 mL), TCEP (0.147 

g, 0.513 mmol) was added at 0 oC under an atmosphere of N2. After stirring for 5 min, 

ice bath was removed and stirred at rt for 25 min. The mixture was concentrated, 

triturated with Et2O, and concentrated. Then the resulting white precipitate was dissolved 

in Et2O. Et2O layer was separated and concentrated to yield the known thiol 4.16 (crude 

0.32 g, 77%),43 as a yellow oil, which was subjected to next step without further 

purification.

To the above crude thiol 4.1643 (0.44 mmol) in toluene (5 mL), TsOH H2O 

(0.083 g, 0.44 mmol) was added (prior to the addition, TsOHH2O was dissolved in 

benzene and concentrated). The mixture was refluxed under Dean-Stark apparatus for 

16 h (the reaction set up was covered with Al foil during the reaction). The reaction 

mixture was purified by silica flash column chromatography (1:1 EtOAC:Hexane) to 

afford thiomorpholinone 4.17 (0.071 g, 48%) as a pale yellow oil (Rf = 0.6 in 1:1 

EtOAC:Hexane); 1H NMR (500 MHz, CDCh) 7.75 (d, J = 6.7 Hz, 2 H), 7.53 (s, 2 H), 7.39



(t, J = 7.4 Hz, 2 H), 7.31 (t, J = 7.4 Hz, 2 H), 4.56-4.48 (m, 2 H), 4.27-4.2 (m, 3 H), 3.82 

(br s, 1 H, rot 1), 3.61 (br s, 1 H, rot 2), 3.21 (br s, 1 H, rot 1), 2.98 (br s, 1 H, rot 2); 13C 

NMRmajor rotamer (125 MHz, CDCfe) 195.6, 154.8, 143.7, 141.5, 128.1, 127.3, 125, 120.3, 

68.2, 55.5, 47.4, 42.7, 28.7; IR (neat): 2921, 1699, 1451, 1227, 1117, 739 cm-1; HRMS 

(ESI) m/z for C19H17NO3S: 362.0835 (calcd [M+Na]+ 362.0827).
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CHAPTER 5

A MULTIVALENT SCAFFOLD FOR USE IN THE SYNTHESIS OF 

DNA-POLYMER CONJUGATES 

Introduction

The molecular recognition properties of biomacromolecules can be tailored to 

develop programmable materials for biosensing and controlled drug release. In 

particular, targeted drug delivery and release in a stimuli-responsive manner has 

significant potential for use in therapeutics, but substantial challenges remain, including 

low efficacy, occurrence of side effects, and uncontrolled release.1,2 Numerous drug 

delivery systems, including micelles, have been investigated to overcome the 

aforementioned challenges.3 Micelles are formed by the self-assembly of amphiphilic 

monomers into well-defined, three-dimensional nanostructures having a hydrophobic 

core and a hydrophilic surface in aqueous environments. Thus, small, hydrophobic 

molecules can be entrapped in the core region of the micelles.

Due to the dynamic nature of micelles, guest molecules are in equilibrium with 

the surrounding solution and can diffuse out. In addition, micelles can be dissociated by 

high temperatures, low monomer concentrations, and changes in surrounding solvent 

conditions, thus leading to an uncontrolled release of entrapped molecules.4 

Consequently, numerous methods have been explored to covalently crosslink the 

micellar monomers, such as radical polymerization and disulfide bond formation,4 and 

the stability and rate of guest molecule release from crosslinked micelles are directly 

proportional to crosslink density.5
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Micellar structures that can dissociate in a stimuli-responsive manner using pH, 

light, temperature, and redox potential have been reported.6 Additionally, amphiphilic 

micelles containing DNA7 as the hydrophilic component have been used in various 

applications such as nucleic acid detection8 and drug delivery.9,10 For example, 

anticancer micelles have been designed for targeting folate receptors, which are highly 

expressed in many types of cancers, including ovarian, lung, breast, and bladder.11 DNA 

strands of these micellar monomers were conjugated to folic acid, which can recognize 

the folate receptors of cancer cells.10 In addition, doxorubicin was incorporated in the 

hydrophobic core of micelles. The selective uptake of these doxorubicin-loaded micelles 

resulted in the death of cancer cells, without affecting the normal cells. However, the 

assembly, disassembly, and guest release of micelles, triggered by the response of DNA 

to a specific chemical or biological signal, has yet to be explored.

The Heemstra group has proposed the design of programmable DNA-based 

micelles to control the release of guest molecules using the molecular recognition 

properties of DNA. In contrast to covalent crosslinking,4 we hypothesized that the 

inherent Watson-Crick base pairing12 between complementary DNA strands could 

provide noncovalent crosslinks that can stabilize the micellar structure, preventing the 

escape of guest molecules. In addition, these DNA-crosslinked micelles (DCMs) will be 

designed to respond to stimuli such as nucleic acids, small molecules, or enzymes that 

can disrupt the DNA crosslinks. Consequently, specific chemical or biological signals will 

be converted into the physical outputs of micelle dissociation and guest release (Figure 

5.1).

We envisioned that DCMs would perform a multitude of applications, ranging 

from biosensors to drug carriers, depending on the nature of the guest molecules and 

DNA sequences. For instance, DCMs would act as a user-friendly biosensor, giving a 

visual output when the guest molecule is a solvatochromic dye that is sensitive to
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CD
DNA polymer central 

scaffold

Figure 5.1. Stimuli-responsive dissociation of DNA-crosslinked micelles (Stimuli: small 
molecule, nucleic acid, or restriction endonuclease).

solvent polarity. If the DCMs are prepared by incorporating a therapeutic agent, they 

would act as a selective drug delivery vehicle capable of releasing the payload upon 

exposure to a specific toxin or pathogen. Quick, stimuli-responsive drug release is 

essential in many situations, such as war zones or areas hit with an epidemic crisis. For 

instance, the survival rate of army personnel and civilians exposed to chemical or 

biological warfare agents can be enhanced by pretreatment with micelles containing 

drugs known to counteract these harmful agents. Thus, the chemical or biological stimuli 

from warfare agents will disrupt the micelle, facilitating immediate drug release.

Aptamers are nucleic acid sequences that selectively bind to small molecules or 

proteins and can be generated for a wide range of targets using the SELEX process.13-15 

We envision that functionalizing the micellar monomers with known aptamers will 

facilitate the disassembly of the micelles upon exposure to the desired target (small 

molecule or nucleic acid), releasing the guest molecules. Similarly, when DCMs have 

complementary sequences of the EcoRI target sequence, crosslinks can be cleaved in 

the presence of restriction endonuclease enzymes.

To develop our DCMs, we intended to synthesize amphiphilic monomers 

comprised of DNA strands (including known aptamers) and hydrophobic polymers 

(including PNIPAAm) joined through a central multivalent scaffold. The DNA strands



within each monomer would be identical to one another in sequence and orientation. We 

would also synthesize a second monomer having DNA sequences complementary to the 

first. In addition, in order to have the desired crosslinking throughout the micelle, each 

monomer should have at least three (ideally four) DNA strands. A monomer having only 

two DNA strands (A2) can only form an isolated dimer with a complementary monomer 

(B2), preventing further crosslinks (Figure 5.2). However, when four DNA strands are 

present on one monomer, though two DNA strands of monomer (A4) pair with two DNA 

strands of a complementary monomer (B4), and steric effects would avoid further 

dimerization. Sequential base pairing between complementary DNA sequences on 

different monomers would then form noncovalent crosslinks to facilitate the assembly of 

the micellar structure and the entrapment of small guest molecules.

Our desired central scaffold would contain azide and alkyne moieties installed in 

the same synthetic unit, enabling it to undergo azide-alkyne cycloaddition with nucleic 

acids and polymers in a modular fashion to generate multivalent amphiphilic monomers 

(Figure 5.3).16 This modular assembly would facilitate the optimization of multivalent 

scaffold by enabling variation in the extent of crosslinking, and hydrophobicity of the 

polymer. Originally, we decided to use calix[4]arene as the central unit of multivalent 

scaffold, as it is an attractive macrocyclic receptor in supramolecular chemistry, having a 

rigid, bowl-shaped structure that can be easily functionalized.17 It can hold four spatially 

segregated DNA strands, and also, calixarene-DNA conjugates are known to form 

micellar structures.18 Outlined here in this chapter are studies directed toward the design 

and synthesis of a potential micellar scaffold.

Results and Discussion
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Our original design was to synthesize calixarene-based multivalent scaffold 5.1

(Scheme 5.1). The upper rim of calixarene 5.2 was converted to azidomethyl calixarene
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Figure 5.2. Monomers having two or four DNA strands (a) monomers having two DNA 
strands may form isolated dimers, (b) monomers having four DNA strands dimerize but 
retain the capacity to further crosslink.

DNA-alkyne 
CuBr, TBTA

2. TBAF

3r v J \ ;
Polymer-azide 
CuBr, TBTA

Multivalent scaffo ld

Figure 5.3. Modular assembly of multivalent micellar monomer.
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Scheme 5.1. Synthetic attempts for calixarene-based multivalent scaffold 5.1.

5.3 in a two-step procedure.19 Then, we investigated phenolic alkylation with TIPS- 

protected propargyl bromide 5.4a in the lower rim of calixarene.20 As it was not 

successful, alkylation with less sterically hindered TMS-protected propargyl bromide 

5.4b was attempted. After several synthetic attempts using numerous methods, 

however, we could not optimize suitable reaction conditions for installing the alkynes in 

the presence of the azides, or vice versa.

Therefore, we redesigned the multivalent scaffold; the desired multivalent 

scaffold is required to have at least three azide functionalities for the attachment of DNA 

and preferably two or more protected alkyne functionalities for the attachment of polymer 

chains. Our second generation designs were 5.5 with two alkynes and three azides, and

5.6 with two alkynes and four azides (Figure 5.4). In this chapter, we will only discuss the 

synthesis of 5.5, as we were not able to complete the synthesis of 5.6 during the time 

frame of the project.

Retrosynthesis of multivalent scaffold 5.5

We envisioned that the desired multivalent scaffold 5.5 would arise from a 

convergent route via the phenolic etherification between gallic acid amide compound 5.7 

and azido iodopropane 5.8 (Scheme 5.2). The amide bond formation between gallic acid

5.9 and amine 5.10 would yield amide 5.7.
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O

O
---  /

TIPS

Figure 5.4. Second generation multivalent scaffold designs.

OH

OH
HO OH

TIPS-

n h 2

COOH TIPS —
5.9 5.10

Scheme 5.2. Retrosynthetic analysis of multivalent scaffold 5.5.

Synthesis of multivalent scaffold 5.5

In order to synthesize the TIPS-protected subunit 5.10, commercially available 2- 

aminoglycerol 5.11 was reacted with Boc2O to give Boc-protected amine 5.12 (Scheme 

5.3).21 Although the direct coupling of 5.12 with TIPS-protected propargyl bromide20 and 

KOH was attempted, basic reaction conditions led to the removal of the TIPS group, 

yielding dipropargylic ether compound 5.13 in 40% yield. Instead, treatment of amine 

5.12 with propargyl bromide and KOH afforded the dipropargylic ether compound 5.13.
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5.14 5.10

Scheme 5.3. Synthesis of amine coupling precursor 5.10.

Subsequent deprotonation of the alkyne of 5.13 and treatment with TIPSCl provided the 

TIPS-protected dipropargylic ether compound 5.14. Finally, removal of the Boc- 

protecting group of 5.14 with TFA afforded the TIPS-protected bis-alkyne portion of 

scaffold 5.10.

Next, we investigated coupling of amine 5.10 with the central subunit in the 

scaffold, gallic acid 5.9. Previous work has reported amide bond formation with gallic 

acid while having the phenolic groups unprotected.22 Therefore, different amide bond 

formation conditions were screened with unprotected gallic acid 5.9 and amine precursor

5.10 to obtain gallic acid amide 5.7 (Scheme 5.4). However, we were not successful in 

isolating the desired product under these conditions due to polymerization, as indicated 

by mass values from MALDI-MS. Next, coupling conditions a, b, and c were investigated 

with gallic acid trimethyl ether 5.15 to obtain amide 5.16. We found that both b and c 

conditions gave the desired amide product (Scheme 5.5). However, the attempt to 

remove methyl ethers of 5.16 with BBr3 was unsuccessful.

Consequently, we decided to investigate amide coupling condition with acetyl-

protected gallic acid 5.17 (Scheme 5.6).23 Acetyl protection of phenol 5.9 gave tri-acetyl
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OH

Conditions

a) EDCI, HOBt, DIPEA, DMF, CH^Ch

b) HATU, DIPEA, DMF, CH2Cl2

c) PyBOP, HOBt, DIPEA, DMF, C ^C fe

d) TOTU, Et3N, THF, DMAP

e) IBCF, NMM, THF, DMAP

5.7

Scheme 5.4. Synthetic attempts for gallic acid amide compound 5.7 from gallic acid.

OMe
MeO. OMe

TIPS-

TIPS-

OMe

° > N O—-J 5.10

- n h 2 t f a

BBr3

CH2CI2 
0 ° C - ^  rt

HATU, DIPEA 
DMF/CH2CI2 

4 A MS
35%

OH

Scheme 5.5. Synthetic attempts for gallic acid amide 5.7 from methylated gallic acid.
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Scheme 5.6. Synthesis of gallic acid amide 5.7.

protected gallic acid 5.17. Next, coupling of 5.17 with amine 5.10 using HATU/DIPEA 

conditions yielded gallic acid amide compound 5.18. In addition, acetyl-protected amine 

5.19 was isolated as a byproduct. Different ester hydrolysis conditions were then 

investigated to remove acetyl esters of 5.18, and finally, basic hydrolysis with NaHCO3 

yielded the phenol coupling precursor 5.7.24 Concurrently, 1-azido-3-iodopropane 5.8 

was synthesized as previously reported.25,26 Lastly, etherification of phenols of 5.7 by 

treating with azido-iodopropane 5.8 and K2CO3 formed the desired multivalent scaffold 

5.5 (Scheme 5.7).
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N3

Scheme 5.7. Synthesis of multivalent scaffold 5.5.

Conclusion

DNA-based micelles have potential to serve as stimuli-responsive materials due 

to their ability to undergo programmable assembly and disassembly. In order to develop 

our desired DCMs, we anticipated synthesizing amphiphilic monomers containing DNA 

strands and hydrophobic polymers joined through a central, multivalent scaffold. We 

were not able to successfully synthesize the calixarene-based scaffold 5.1 during the 

time frame of the project, but we were able to synthesize second generation multivalent 

scaffold 5.5 via a convergent route. However, attempts to find conditions to couple three 

DNA strands to obtain the amphiphilic monomer were not successful, likely due to 

unfavorable steric effects.27 Studies to generate DNA-based micelles using new 

scaffolds are currently underway.

Experimental Section 

General techniques

Glassware for all reactions was oven dried or flame dried and cooled prior to use.

All reactions were run under an atmosphere of nitrogen or argon unless otherwise
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stated. Tetrahydrofuran (THF) was distilled from sodium and benzophenone. 

Dichloromethane (CH2Cl2) and dimethylformamide (DMF) were passed through a 

solvent purification system (J. C. Meyer). Unless otherwise noted, all starting materials 

were obtained from commercial suppliers and were used without further purification. 

Thin layer chromatography was performed on Silica gel 60 F254 plates eluting with the 

solvent indicated, visualized by a 254/365 nm UV lamp, or stained with a solution of 

ninhydrin, p-anisaldehyde, or potassium permanganate. Column chromatography was 

performed on Merck silica gel Kieselgel 60 (230-400 mesh, 40-63 ^m particle size). 

Yields were calculated for material judged homogenous by thin layer chromatography 

and NMR. Compounds were named using CS ChemBioDraw Ultra 12.0. NMR spectra 

were acquired on a Varian Unity-300, Inova 400, or VXR 500 spectrometer. Chemical 

shifts for 1H NMR spectra are reported in parts per million relative to the signal of 

residual CHCl3 at 7.27 ppm. Chemicals shifts for 13C NMR spectra are reported in parts 

per million relative to the center line of the CDCl3 triplet at 77.23 ppm. The abbreviations 

s, d, dd, t, p, m, and br stand for singlet, doublet, doublet of doublets, triplet, pentet, 

multiplet, and broad, respectively. IR spectra were obtained from Nicolet 380 FT-IR 

spectrometer. Mass spectra were recorded at the Mass Spectrometry facility in the 

Department of Chemistry of the University of Utah.

Procedures and characterizations 

TI PS— — \

y—NHBoc
O—'

TI PS— — /

5.14

(tert-Butyl(3,3,15,15-tetraisopropyl-2,16-dimethyl-7,11-dioxa-3,15-disilahept 

adeca-4,13-diyn-9-yl)carbamate 5.14. To a solution of Boc-protected 2-aminoglycerol



5.1221 (2.000 g, 10.46 mmol) in DMF (40 mL), propargyl bromide (80 wt.% in toluene, 

2.80 mL, 31.4 mmol) were added at 0 °C under a nitrogen atmosphere. Then portions of 

finely ground KOH (2.349 g, 41.86 mmol) were added over a period of 15 min. The 

reaction mixture was then heated to 35 °C and stirred for 24 h. To the resulting brown 

mixture, ethyl acetate (10 mL) was added, poured into a separatory funnel containing 

ethyl acetate, and washed with water (3x30 mL). The organic layer was washed with 

brine, dried over Na2SO4, and concentrated. The crude material was purified by silica 

flash column chromatography (a gradient of EtOAC:Hexane from 1:9 to 3:7) to yield 

propargyl coupled amine 5.13 (1.73 g, 62%) as a brown oil (Rf = 0.8 in 3:7 

EtOAC:Hexane). The amine was subjected to the alkyne TIPS protection without further 

characterization.

To the above product 5.13 (1.73 g, 6.48 mmol) in THF (70 mL), LDA (1.8 M in 

THF, 12.6 mL, 22.7 mmol) was added at -78 °C under a nitrogen atmosphere. After 

stirring for 30 min, TIPSCl (3.16 mL, 14.9 mmol) was added and stirred at -78 oC for 10 

min. Then the reaction mixture was warmed to rt and stirred for 2 h. The reaction mixture 

was concentrated and dissolved in CH2Cl2. The resulting mixture was washed with 2 N 

HCl and brine, dried over Na2SO4, and concentrated. The crude material was purified by 

silica flash column chromatography (a gradient of EtOAC:Hexane from 5:95 to 3:7) to 

afford TIPS-protected alkyne 5.14 (3.0 g, 80%) as a pale yellow oil (Rf = 0.8 in 3:7 

EtOAC:Hexane); 1H NMR (500 MHz, CDCl3) 5 4.93 (d, J = 7.7 Hz, 1 H), 4.37-4.27 (m, 1 

H), 4.19 (dd, J = 16.2, 4.7 Hz, 4 H), 3.63-3.62 (m, 4 H), 1.44 (s, 9 H), 1.07 (s, 42 H); 13C 

NMR (125 MHz, CDCl3) 155.5, 103.3, 87.8, 79.3, 68.3, 59.2, 49.5, 28.4, 18.7, 11.3; IR 

(neat): 2943, 2865, 1721, 1500, 1464, 1366, 1252, 1100, 998, 883 cm-1; HRMS (ESI) m/z 

for C32H61NO4Si2: 602.4048 (calcd [M+Na]+ 602.4037).
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5.10

The TFA salt of 3,3,15,15-tetraisopropyl-2,16-dimethyl-7,11-dioxa-3,15- 

disilaheptadeca-4,13-diyn-9-amine 5.10. To a solution of the alkyne-TIPS-protected 

amine product 5.14 (2.42 g, 4.18 mmol) in CH2Cl2 (40 mL), TFA (5 mL) was added 

dropwise at 0 °C under an atmosphere of N2. After the addition, reaction mixture was 

stirred at 0 °C for 15 min. Then the reaction mixture was slowly warmed to rt, stirred for 

another 2 h, and concentrated. The trituration of the crude reaction mixture with Et2O 

yielded 5.10, which was used forward without further purification.

OMe

3,4,5-Trimethoxy-N-(3,3,15,15-tetraisopropyl-2,16-dimethyl-7,11-dioxa-3,15- 

disilaheptadeca-4,13-diyn-9-yl)benzamide 5.16. To a solution of gallic acid trimethyl 

ether 5.15 (0.623 g, 2.94 mmol), HATU (1.21 g, 3.18 mmol), and 4 A MS in DMF (12 

mL), DIPEA (3.84 mL, 22.0 mmol) was added at 0 °C under a nitrogen atmosphere. 

After stirring at 0 °C for 10 min, a solution of amine 5.10 (1.173 g, 2.447 mmol) in CH2Cl2 

(15 mL) was added and stirred at 0 °C for 10 min. After stirring at rt for 16 h, the 

reaction mixture was concentrated and dissolved in EtOAc. The resulting mixture was 

washed with H2O, sat. NH4Cl, sat. NaHCO3, and brine. The organic layer was dried over 

Na2SO4, and concentrated. The crude mixture was purified by silica flash column
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chromatography (3:7 EtOAC:Hexane) to yield gallic acid amide 5.16 (0.59 g, 35%) as a 

yellow oil (Rf = 0.5 in 3:7 EtOAC:Hexane); 1H NMR (300 MHz, CDCl3) 5 7.01 (s, 2 H), 

6.58 (d, J = 8.4 Hz, 1 H), 4.54-4.51 (m, 1 H), 4.24 (dd, J = 16.1, 5.4 Hz, 4 H), 3.89 (s, 9 

H), 3.77 (d, J = 5 Hz, 4 H), 1.06 (s, 42 H); 13C NMR (75 MHz, CDCh) 166.7, 153.1, 141,

130, 104.6, 103, 87.9, 68.1, 60.8, 59.1, 56.3, 48.7, 18.5, 11.1; IR (neat): 2941, 2865, 

2171, 1584, 1463, 1352, 1232, 1127, 997, 882, 678 cm-1; HRMS (ESI) m/z for 

C37H63NO6Si2: 696.4104 (calcd [M+Na]+ 696.4092).

N3

3,4,5-Tris(3-azidopropoxy)-N-(3,3,15,15-tetraisopropyl-2,16-dimethyl-7,11- 

dioxa-3,15-disilaheptadeca-4,13-diyn-9-yl)benzamide 5.5. To a solution of tri-acetyl 

protected gallic acid 5.1723 (0.84 g, 2.8 mmol), HATU (1.168 g, 3.073 mmol), and 4 A 

MS in DMF (5 mL), DIPEA (3.7 mL, 21 mmol) was added at 0 °C under a nitrogen 

atmosphere. After stirring at 0 °C for 10 min, a solution of amine 5.10 (1.133 g, 2.364 

mmol) in CH2Cl2 (14 mL) was added and stirred at 0 °C for 10 min. After stirring at rt for 

16 h, the reaction mixture was concentrated and dissolved in EtOAc. The resulting 

mixture was washed with H2O, sat. NH4Cl, and brine. The organic layer was dried over 

Na2SO4 and concentrated. The crude mixture was purified by silica flash column 

chromatography (3:7 EtOAC:Hexane) to yield tri-acetyl gallic amide 5.18 (0.33 g, 18%) 

as a yellow oil (Rf = 0.4 in 3:7 EtOAC:Hexane). The amide was subjected to the next



step without further characterization.

To the above tri-acetyl protected gallic amide 5.18 (0.187 g, 0.247 mmol) in 

MeOH:H2O (5:1, 12 mL), sat. NaHCO3 (8 mL) was added for 20 min at 0 °C. After stirring 

for 1 h, ice bath was removed, and stirred at rt for 7 h. As some starting material was still 

remaining, the reaction mixture was cooled to 0 °C and sat. NaHCO3 (5 mL) added for 

10 min. After stirring for 10 min, ice bath was removed, and stirred at rt. Then, the 

reaction mixture was concentrated and dissolved in EtOAc and H2O. The aqueous layer 

was washed with EtOAc and acidified to ~pH 3 with HCl. The aqueous layer was 

extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, and 

concentrated to afford gallic amide 5.7 (crude 0.12 g, 77%), which was used forward 

without further purification.

To the above gallic amide 5.7 (0.1 g, 0.16 mmol) in DMF (0.5 mL), K2CO3 

(0.098 g, 0.71 mmol) was slowly added at 0 °C under a nitrogen atmosphere. After 

stirring at 0 °C for 10 min, a solution of 1-azido-3-iodopropane 5.825,26 (1.12 g, 0.583 

mmol) in DMF (1 mL) was added and stirred at 0 °C for 1 h (Caution! azide containing 

reaction). After stirring at rt for 16 h, the reaction mixture was warmed to ~50 oC and 

stirred for another 16 h. The reaction mixture was filtered, diluted with EtOAc, and 

washed with ~0.5 N HCl. The aqueous layer was extracted with EtOAc. Then, combined 

organic layers were washed with brine, dried over Na2SO4, and concentrated to an oil. 

The crude mixture was purified by silica flash column chromatography (3:7 

EtOAC:Hexane) to afford the multivalent scaffold 5.5 (0.038 g, 27%) as a pale yellow oil 

(Rf = 0.3 in 2:8 EtOAC:Hexane); 1H NMR (500 MHz, CDCl3) 5 7.00 (s, 2 H), 6.40 (d, J =

8.7 Hz, 1 H), 4.52-4.50 (m, 1 H), 4.24 (dd, J = 16.1, 9.4 Hz, 4 H), 4.13 (t, J = 6.5 Hz, 4 

H), 4.07 (t, J = 5.8 Hz, 2 H), 3.75 (d, J = 4.7 Hz, 4 H), 3.60 (t, J = 6.6 Hz, 2 H), 3.55 (t, J 

= 7.6 Hz, 4 H), 2.10 (p, J = 7.4 Hz, 4 H), 2.00 (p, J = 7.4 Hz, 2 H), 1.06 (s, 42 H); 13C 

NMR (100 MHz, CDCl3) 166.7, 152.7, 140.7, 130.5, 106.4, 103.1, 88.3, 70.2, 68.3, 66.2,
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59.4, 53.6, 48.4, 29.9, 29.1, 18.8, 11.3; IR (neat): 2943, 2866, 2096, 1582, 1464, 1354, 

1234, 1099, 997, 884 cm-1; HRMS (ESI) m/z for C43H72N10O6Si2: 903.5078 (calcd 

[M+Na]+ 903.5073).
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Peptide nucleic acid (PNA)1 shows tremendous potential to be used in numerous 

therapeutic, biosensing, and nanotechnology applications due to its excellent biostability, 

strong binding affinity, and high selectivity toward nucleic acids.2-4 However, PNA faces 

challenges for in vivo applications such as poor solubility, cellular uptake, and 

bioavailability, predominantly due to its uncharged backbone. The Heemstra group 

hypothesized that negatively charged PNA analogues would overcome the 

abovementioned limitations by taking advantage of the delivery methods available for 

DNA and RNA. However, it has been hypothesized that the high binding affinity of PNA 

to DNA and RNA is due to the lack of electrostatic repulsion in duplex formation between 

charge neutral PNA and negatively charged nucleic acids.4 According to this hypothesis, 

incorporation of negative charge to PNA backbone would be detrimental in duplex 

formation with DNA and RNA, yet, there were not any studies in literature that 

investigated this hypothesis. Thus, the major objectives of this dissertation were to 

investigate whether there is a role of electrostatics in PNA:DNA and PNA:RNA duplex 

formation and whether negatively charged groups could be incorporated into the PNA 

backbone without affecting its binding affinity and selectivity with DNA and RNA.

Towards these goals, we explored the effect of ionic strength on binding affinity 

for y-modified PNAs having either negatively charged aspartic acid side chains or 

positively charged lysine side chains.5 We observed that electrostatic effects do play a 

role in binding of PNA to DNA and RNA, as negatively charged PNA shows lowest
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duplex stability at low ionic strength. However, with the increase of ionic strength, charge 

screening of electrostatic repulsion by counterions in solution enables negatively 

charged side chains to be incorporated into the PNA backbone without reducing duplex 

stability with DNA and RNA. Presumably, preorganization of the PNA backbone via 

hydrogen bonding is primarily responsible for the enhanced duplex stability of PNA with 

DNA and RNA.6,7 We observed that at medium to high salt concentrations, negatively 

charged PNA actually binds more strongly to DNA and RNA than does positively charged 

PNA. Interestingly, in a simulated physiological buffer, negatively charged PNA shows 

higher affinity for RNA whereas positively charged PNA shows higher affinity for DNA.

Intrigued by the effect of side chain structure and electrostatics on binding 

affinity, we were also curious to explore the mismatch and orientation selectivity of these 

y-substituted PNAs.8 We found that introduction of y-substituents results in similar or 

slightly decreased selectivity compared to unmodified PNA. However, for y-substituted 

PNAs, positively charged side chains provide higher selectivity in DNA binding and 

negatively charged side chains provide higher selectivity in RNA binding. Although we 

obtained CD spectra to understand these differential binding properties, these studies 

revealed that the side chains do not significantly alter the overall structure of the 

PNA:DNA or PNA:RNA duplexes. However, we hypothesize that side chains may still 

provide sufficient local perturbation to account for the observed differences in affinity and 

selectivity.

Appella and coworkers have previously reported a y-Lys PNA:DNA duplex model 

in which side chains with S stereochemistry orient along the periphery of the duplex, 

whereas side chains with R stereochemistry point towards the interior of the duplex 

(Figure 6.1).9 Similarly, the Ly group observed that methyl group of L-Ala y-PNA point 

towards the solvent (Figure 6.2).10 Thus, y-substituents are less likely to introduce steric 

effects on base pairing and base stacking interactions of a duplex.11 In addition, the
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9
Figure 6.1. y-Lys PNA:DNA duplex model [Side chain derived from l-(S)-lysine projects 
away from the duplex (blue) and side chain from d-(R)-lysine projects into the minor 
groove (yellow). Purple=base pairs, orange=PNA backbone, and fuscia=DNA 
backbone]. Reproduced with permission from (Englund, E. A.; Appella, D. H. Angew. 
Chem., Int. Ed. 2007, 46, 1414-1418), copyright © (2007) WILEY-VCH Verlag GmbH & 
Co. KGaA, Weinheim.

Figure 6.2. Solution structure of L-Ala y-PNA determined from NMR (arrow points 
toward the backbone carbonyl group and y-methyl group in the circled region). Adapted 
with permission from (Dragulescu-Andrasi, A.; Rapireddy, S.; Frezza, B. M.; Gayathri, 
C.; Gil, R. R.; Ly, D. H. J. Am. Chem. Soc. 2006, 128, 10258-10267). Copyright © (2006) 
American Chemical Society.



carbonyl oxygen of the PNA backbone points towards the solvent (in trans configuration 

with y-Me group) and the backbone-nucleobase linker amide points towards the carboxyl 

end of backbone.12 Furthermore, 1D and 2D NMR studies of y-PNA suggest that y-Me 

groups are orientated away from the duplex, but in the edge between minor and major 

groove.11

We envision that y-substituents could non-covalently interact with the backbone 

carbonyl group, as pointed out by the arrow in Figure 6.2. Among intra-residue non- 

covalent interactions, y-Lys PNA could exhibit favorable hydrogen bonding and 

electrostatic attractions whereas y-Asp PNA could induce electrostatic repulsion effects 

(Figure 6.3). In y-Lys PNA, favorable electrostatic effects could bring the side chain in 

close proximity to the backbone but in y-Asp PNA, unfavorable interactions could point 

the side chain away from the backbone. We hypothesize that Lys PNA:DNA duplex can 

accommodate the side chain of Lys in the wide major groove but with RNA, these 

electrostatic interactions could give rise to unfavorable steric effects due to its narrow 

major groove. Unfavorable electrostatic effects could interfere with the duplex formation 

of Asp-PNA with DNA and RNA. However, with RNA these electrostatic effects can be 

screened more efficiently by counterions than in the case of DNA, as A-form helices are 

known to recruit a higher density of counter ions than B-form helices.13 Although our 

hypothesis provides a possible explanation for the differential binding properties that we 

observed, exact conclusions cannot be derived from the limited structural data that is 

currently available for y-PNA. Thus, in the future, extensive structural information is 

required to thoroughly understand our results.

Typical A-form and B-form helices have 11 and 10.5 base pairs per turn, 

respectively. Most of the previous structural studies utilized 10-mer sequences of PNA,10 

presumably due to the sequence length which gives one helical turn. Further studies are 

required that vary the length of our initial 10-mer sequence to confirm the assumption

122
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©
H-bonding and 

electrostatic 
interaction

y-Lys PNA y-Asp PNA

Figure 6.3. Potential noncovalent interactions between PNA backbone and y-side chain 
(for clarity: all the potential interactions are not shown).

that the differential binding properties are independent of PNA sequence length. It 

should be noted that the aspartic acid and lysine monomers used in this initial study 

have slightly different side chain lengths. Future investigations are needed to explore the 

effect of side chain length on duplex stability and mismatch discrimination, to confirm 

that the differential binding properties predominantly arise due to altered charges of side 

chains rather than the side chain lengths. In addition, further work is necessary to 

understand the effect of numerous side chains and sequences, and the effect of 

positioning of the side chains relative to the mismatch site on binding affinity and 

selectivity.

PNA can bind to DNA and RNA in both parallel and antiparallel orientations 

because of its achiral backbone, but generally prefers the antiparallel orientation. 

Introduction of y-substituents had previously been shown to favor unambiguous 

antiparallel binding.10 However, we observed that unmodified PNA discriminates parallel 

versus antiparallel orientations better than modified PNA. y-substituted PNAs have a 

rigid right handed helical structure with less conformational freedom than unmodified 

PNA. Therefore, in duplex formation, DNA and RNA may undergo conformational 

changes to accommodate y-PNA, rather than y-PNA undergoing changes to bind to DNA 

and RNA.14 Thus, we assume that under the salt conditions that we studied, DNA and 

RNA binding to right handed y-PNA in the parallel orientation is entropically favorable.
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Whereas, unmodified PNA has more conformational flexibility and needs to preorganize 

into a right handed-helix in binding to DNA and RNA, which imposes a higher entropic 

penalty in duplex formation in the parallel orientation. Further work must be carried out 

under different salt conditions to validate the observed orientation selectivity of y-PNA.

In general, we perceived that the error associated with PNA:RNA duplex data is 

higher than with DNA. This could be due to the greater instability of RNA than DNA in 

long cycles of thermal melting (Tm) experiments. However, it is interesting to see whether 

the error can be minimized by using a new sample of PNA:RNA duplex in each trial of Tm 

studies. In addition, the simulated physiological buffer used for this initial study mimics 

the extracellular salt conditions. Therefore, it is desirable to investigate the binding 

properties in a buffer mimicking intracellular salt conditions. Also, the salt dependent 

melting properties should be examined with varying concentrations of other monovalent 

cations including lithium and potassium, instead of sodium.

Our results provide insight into the impact of PNA side chain structure and 

electrostatics on the binding affinity and selectivity with DNA and RNA in antisense and 

antigene applications. Since PNA can be negatively charged without sacrificing binding 

affinity and selectivity, we anticipate that these molecules will show promise as 

therapeutics that take advantage of both the inherent benefits of PNA and the multitude 

of charge-based delivery technologies currently being developed for DNA and RNA. 

Thus, future studies will explore the competence of our negatively charged PNA as an in 

vivo therapeutic agent.
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APPENDIX A

SPECTRAL DATA OF CHAPTER 2: 1H AND 13C NMR, HPLC, MALDI-TOF, UV-

MELTING CURVES, AND TM DATA
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Reinjected HPLC traces and MALDI-TOF data fo r PNA oligomers.

a)

b)

m/z 2727.48 (calcd [M]+ 2727.04).

Figure A.1. HPLC and MALDI-TOF MS of PNA nf (H-GTAGATCACT-NH2).
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a)

m ir

b)

m/z 2785.54 (calcd [M]+ 2785.04).

Figure A.2. HPLC and MALDI-TOF MS of PNA 1neg (H-GTAGATDCACT-NH2).
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b)

m/z 2902.67 (calcd [M+H]+ 2902.14); 2924.68 (calcd [M+Na]+ 2924.12).

Figure A.3. HPLC and MALDI-TOF MS of PNA 3neg (H-GTdAGATdCACTd-NH2).
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a)

b)
10<

m/z 2800.76 (calcd [M+H]+ 2799.12); 2822.71 (calcd [M+Na]+ 2821.1).

Figure A.4. HPLC and MALDI-TOF MS of PNA 1pos (H-GTAGATKCACT-NH2).
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a)

b)

m/z 2941.38 (calcd [M+H]+ 2941.26); 2963.37 (calcd [M+Na]+ 2963.24).

Figure A.5. HPLC and MALDI-TOF MS of PNA 3pos (H-GTKAGATKCACTK-NH2).
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a)

mm

b)

m/z 2740.99 (calcd [M]+ 2741.05); m/z 2741.96 (calcd [M+H]+ 2942.06); 2763.93 (calcd

[M+Na]+ 2764.04).

Figure A.6. HPLC and MALDI-TOF MS of PNA 1Me (H-GTAGATaCACT-NH2).
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a)

rrnn

b)

m/z 2769.99 (calcd [M+H]+ 2770.08); 2792.03 (calcd [M+Na]+ 2792.06).

Figure A.7. HPLC and MALDI-TOF MS of PNA 3Me (H-GTaAGATaCACTa-NH2).
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Representative UV-melting curves and Tm data fo r duplexes under varying salt 
concentrations.
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Figure A.8. Representative UV-melting curves of DNA 1:DNA 2 duplex under varying 
salt concentrations.

Table A.1. Tm data (oC) for DNA 1:DNA 2 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 n.d. 28.6 33.1 37.7 40.7 42.7
Trial 2 n.d. 28.6 33.1 37.7 40.7 42.2
Trial 3 n.d. 28.6 33.1 37.7 40.7 42.7

Average n.d. 28.6 ± 0.1 33.1 ± 0.1 37.7 ± 0.1 40.7 ± 0.1 42.6 ± 0.3
(n.d.- not determined)



142

20 30 40 50 60 70

Temperature (°C)

Figure A.9. Representative UV-melting curves of PNA nf:DNA 1 duplex under varying 
salt concentrations.

Table A.2. Tm data (oC) for PNA nf:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 47.3 45.2 44.2 43.7 43.2 43.7
Trial 2 46.8 44.2 43.7 43.2 42.2 42.7
Trial 3 44.8 43.7 43.2 43.2 41.7 42.2

Average 46.3 ± 1.3 44.4 ± 0.8 43.7 ± 0.5 43.4 ± 0.3 42.4 ± 0.8 42.9 ± 0.8
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Figure A.10. Representative UV-melting curves of PNA 1neg:DNA 1 duplex under vary
ing salt concentrations.

Table A.3. Tm data (oC) for PNA 1neg:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 46.3 45.8 46.3 46.8 46.8 46.8
Trial 2 45.8 44.8 44.8 45.2 45.2 45.8
Trial 3 45.2 44.2 43.7 43.7 44.2 45.2

Average 45.8 ± 0.5 44.9 ± 0.8 44.9 ± 1.3 45.3 ± 1.5 45.4 ± 1.3 45.9 ± 0.8
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Figure A.11. Representative UV-melting curves of PNA 3neg:DNA 1 duplex under vary
ing salt concentrations.

Table A.4. Tm data (oC) for PNA 3neg:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 43.6 48.5 46.7 48.5 49.1 49.7
Trial 2 43.6 47.3 46.7 47.9 47.3 48.5
Trial 3 43.4 46.7 46.1 47.9 47.9 48.5

Average 43.6 ± 0.1 47.5 ± 0.9 46.5 ± 0.4 48.1 ± 0.3 48.1 ± 0.9 48.9 ± 0.7
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Figure A.12. Representative UV-melting curves of PNA 1pos:DNA 1 duplex under vary
ing salt concentrations.

Table A.5. Tm data (oC) for PNA 1pos:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 57.6 50.3 49.7 49.7 48.5 47.9
Trial 2 55.8 49.1 47.9 48.5 47.3 47.3
Trial 3 54.6 48.5 47.9 47.9 47.3 47.3

Average 56.0 ± 1.5 49.3 ± 0.9 48.5 ± 1.1 48.7 ± 0.9 47.7 ± 0.7 47.5 ± 0.4
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Figure A.13. Representative UV-melting curves of PNA 3pos:DNA 1 duplex under vary
ing salt concentrations.

Table A.6. Tm data (oC) for PNA 3pos:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 62.7 58.1 54.1 49.6 48.9 47.6
Trial 2 61.4 58.1 51.5 46.3 46.3 45.6
Trial 3 60.7 57.4 51.5 46.9 46.9 45.0
Trial 4 52.2 48.2 46.3 46.9

Average 61.6 ± 1.0 57.9 ± 0.4 52.3 ± 1.2 47.7 ± 1.5 47.1 ± 1.2 46.3 ± 1.2
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Figure A.14. Representative UV-melting curves of PNA 1Me:DNA 1 duplex under vary
ing salt concentrations.

Table A.7. Tm data (oC) for PNA 1Me:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 52.8 51.3 50.3 49.8 49.3 49.3
Trial 2 52.3 50.3 49.8 49.3 48.8 48.8
Trial 3 51.3 49.8 49.3 48.8 48.3 48.8

Average 52.2 ± 0.8 50.5 ± 0.8 49.8 ± 0.5 49.3 ± 0.5 48.8 ± 0.5 49.0 ± 0.3
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Figure A.15. Representative UV-melting curves of PNA 3Me:DNA 1 duplex under vary
ing salt concentrations.

Table A.8. Tm data (oC) for PNA 3Me:DNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 43.2 41.7 42.2 41.2 39.7 39.2
Trial 2 42.7 42.7 43.2 42.7 40.2 40.7
Trial 3 43.7 42.7 42.7 41.7 41.7 42.2

Average 43.2 ± 0.5 42.4 ± 0.6 42.7 ± 0.5 41.9 ± 0.8 40.5 ± 1.1 40.7 ± 1.5
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Figure A.16. Representative UV-melting curves of RNA 1:DNA 2 duplex under varying 
salt concentrations.

Table A.9. Tm data (oC) data for RNA 1 :DNA 2 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 n.d. 27.6 31.1 35.2 37.7 39.2
Trial 2 n.d. 27.1 31.6 35.7 37.7 39.2
Trial 3 n.d. 28.1 32.1 35.7 38.2 38.7

Average n.d. 27.6 ± 0.5 31.6 ± 0.5 35.5 ± 0.3 37.8 ± 0.3 39.0 ± 0.3
(n.d.- not determined)
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Figure A.17. Representative UV-melting curves of PNA nf:RNA 1 duplex under varying 
salt concentrations.

Table A.10. Tm data (oC) for PNA nf:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 47.8 47.3 48.3 48.3 48.8 49.3
Trial 2 47.8 46.3 47.3 46.8 47. 8 48.3
Trial 3 46.8 45.8 46.3 46.3 46.8 47.8

Average 47.4 ± 0.6 46.4 ± 0.8 47.3 ± 1.0 47.1 ± 1.1 47.8 ± 1.0 48.5 ± 0.8
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Figure A.18. Representative UV-melting curves of PNA 1neg:RNA 1 duplex under vary
ing salt concentrations.

Table A.11. Tm data (oC) for PNA 1neg:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 48.8 48.3 48.8 49.8 50.3 54.8
Trial 2 48.3 46.8 47.3 48.3 49.3 53.3
Trial 3 47.8 45.8 46.3 47.3 47.8 52.3

Average 48.3 ± 0.5 46.9 ± 1.3 47.4 ± 1.3 48.5 ± 1.3 49.1 ± 1.3 53.5 ± 1.3
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Figure A.19. Representative UV-melting curves of PNA 3neg:RNA 1 duplex under vary
ing salt concentrations.

Table A.12. Tm data (oC) for PNA 3neg:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 49.7 52.1 50.9 53.3 55.2 55.8
Trial 2 49.7 53.3 51.5 53.3 53.9 56.4
Trial 3 50.9 52.1 51.5 53.9 53.3 55.2

Average 50.1 ± 0.7 52.5 ± 0.7 51.3 ± 0.4 53.5 ± 0.4 54.1 ± 0.9 55.8 ± 0.6
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Figure A.20. Representative UV-melting curves of PNA 1pos:RNA 1 duplex under vary
ing salt concentrations.

Table A.13. Tm data (oC) for PNA 1pos:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 55.8 48.5 50.3 51.5 52.7 53.3
Trial 2 55.2 46.1 47.9 49.1 50.9 52.1
Trial 3 53.3 46.1 48.5 49.1 50.9 52.1
Trial 4 46.7 48.5 49.7 50.9

Average 54.7 ± 1.3 46.9 ± 1.4 48.3 ± 1.5 49.5 ± 1.3 51.1 ± 1.2 52.1 ± 1.0
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Figure A.21. Representative UV-melting curves of PNA 3pos:RNA 1 duplex under vary
ing salt concentrations.

Table A.14. Tm data (oC) for PNA 3pos:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 58.1 54.7 51.8 49.5 51.5 52.5
Trial 2 56.8 54.1 50.4 47.6 49.6 49.7
Trial 3 56.8 54.8 52.5 46.9 50.9 50.4

Average 57.2 ± 0.8 54.6 ± 0.4 51.6 ± 1.1 48.0 ± 1.3 50.6 ± 1.0 50.9 ± 1.5
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Figure A.22. Representative UV-melting curves of PNA 1Me:RNA 1 duplex under vary
ing salt concentrations.

Table A.15. Tm data (oC) for PNA 1Me:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 51.8 51.3 51.3 52.3 53.8 54.3
Trial 2 50.3 49.8 51.2 52.3 53.8 54.8
Trial 3 49.3 49.3 49.3 50.3 52.3 52.8

Average 50.5 ± 1.3 50.1 ± 1.1 50.6 ± 1.1 51.6 ± 1.1 53.3 ± 0.9 54.0 ± 1.0
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Figure A.23 Representative UV-melting curves of PNA 3Me:RNA 1 duplex under vary
ing salt concentrations.

Table A.16. Tm data (oC) for PNA 3Me:RNA 1 duplex under varying salt concentrations.

[NaCl] = 0 M 50 mM 100 mM 250 mM 500 mM 1 M
Trial 1 38.7 40.7 41.2 42.2 42.2 44.2
Trial 2 39.2 40.7 41.2 42.7 42.2 43.7
Trial 3 40.2 41.2 41.2 42.7 43.2 43.7

Average 39.4 ± 0.8 40.9 ± 0.3 41.2 ± 0.1 42.6 ± 0.3 42.6 ± 0.6 43.9 ± 0.3
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Representative UV-melting curves and Tm data for duplexes under physiological 

salt conditions.
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Figure A.24. Representative UV-melting curves of PNA/DNA 2:DNA 1 duplexes under 
physiological salt conditions.

Table A.17. Tm data (oC) for PNA/DNA 2:DNA 1 duplexes under physiological salt condi
tions.

complement = DNA 2 PNA nf PNA 1neg PNA 1pos PNA 3neg PNA 3pos
Trial 1 37.2 43.7 46.8 47.3 46.7 50.2
Trial 2 37.2 42.7 45.8 46.7 46.1 48.9
Trial 3 37.2 43.2 45.2 46.8 45.4 48.2

Average 37.2 ± 0.1 43.2 ± 0.5 45.9 ± 0.8 46.9 ± 0.3 46.1 ± 0.6 49.1 ± 1.0
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Figure A.25. Representative UV-melting curves of PNA/DNA 2:RNA 1 duplexes under 
physiological salt conditions.

Table A.18. Tm data (oC) for PNA/DNA 2:RNA 1 duplexes under physiological salt condi
tions.

complement = DNA 2 PNA nf PNA 1neg PNA 1pos PNA 3neg PNA 3pos
Trial 1 33.1 48.3 49.3 47.8 51.5 48.2
Trial 2 32.6 46.8 47.8 46.7 49.7 46.3
Trial 3 31.6 46.3 47.3 46.3 48.5 45.0

Average 32.5 ± 0.8 47.1 ± 1.1 48.1 ± 1.1 46.9 ± 0.8 49.9 ± 1.5 46.5 ± 1.7
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Figure A.26. Representative UV-melting curves of PNA 1Me and PNA 3Me duplexes 
under physiological salt conditions.

Table A.19. Tm data (oC) for PNA 1Me and PNA 3Me duplexes under physiological salt 
conditions.

duplex = PNA 1Me: 
DNA 1

PNA 3Me: 
DNA 1

PNA 1Me: 
RNA 1

PNA 3Me: 
RNA 1

Trial 1 48.8 39.7 49.7 41.7
Trial 2 46.8 39.7 47.9 41.7
Trial 3 46.3 40.7 46.7 40.7

Average 47.3 ± 1.3 40.0 ± 0.6 48.1 ± 1.5 41.4 ± 0.6



APPENDIX B

SPECTRAL DATA OF CHAPTER 3: UV-MELTING CURVES AND Tm DATA
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Representative UV-melting curves and Tm data fo r duplexes

Temperature (oC)

Figure B.1. Representative UV-melting curves of PNA nf:DNA duplexes 
under simulated physiological salt conditions.

Table B.1. Tm data (oC) for PNA nf:DNA duplexes under simulated physiological salt 
conditions.

Complement = DNA 1 
(X = A)

DNA 1 
(X = G)

DNA 1 
(X = C)

DNA 1 
(X = T)

DNA 2

Trial 1 43.6 32.5 36.4 31.8 33.8
Trial 2 43.0 32.5 35.8 33.1 30.5
Trial 3 42.3 32.5 36.4 32.5 31.2
Trial 4 31.2

Average 43.0 ± 0.7 32.5 ± 0.1 36.2 ± 0.3 32.5 ± 0.7 31.7 ± 1.5
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Figure B.2. Representative UV-melting curves of PNA 3neg:DNA 
duplexes under simulated physiological salt conditions.

Table B.2. Tm data (oC) for PNA 3neg:DNA duplexes under simulated physiological salt 
conditions.

Complement = DNA 1 
(X = A)

DNA 1 
(X = G)

DNA 1 
(X = C)

DNA 1 
(X = T)

DNA 2

Trial 1 46.9 41.0 41.7 44.3 43.6
Trial 2 46.3 40.4 41.0 41.0 43.6
Trial 3 45.6 40.4 39.7 42.3 42.3
Trial 4 43.0

Average 46.3 ± 0.7 40.6 ± 0.3 40.8 ± 1.0 42.6 ± 1.4 43.2 ± 0.8
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Figure B.3. Representative UV-melting curves of PNA 3pos:DNA 
duplexes under simulated physiological salt conditions.

Table B.3. Tm data (oC) for PNA 3pos:DNA duplexes under simulated physiological salt 
conditions.

Complement = DNA 1 
(X = A)

DNA 1 
(X = G)

DNA 1 
(X = C)

DNA 1 
(X = T)

DNA 2

Trial 1 50.2 40.4 38.4 39.7 41.7
Trial 2 48.9 37.7 37.7 38.4 39.0
Trial 3 48.2 38.4 37.7 39.0 40.4
Trial 4 37.7 39.0

Average 49.1 ± 1.011 38.6 ± 1.3 37.9 ± 0.4 39.0 ± 0.7 40.0 ± 1.3
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Figure B.4. Representative UV-melting curves of PNA nf:RNA duplexes 
under simulated physiological salt conditions.
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Table B.4. Tm data (oC) for PNA nf:RNA duplexes under simulated physiological salt 
conditions.

Complement = RNA 1 
(X = A)

RNA 1 
(X = G)

RNA 1 
(X = C)

RNA 1 
(X = U)

RNA 2

Trial 1 48.3 37.1 27.9 28.5 30.5
Trial 2 46.8 36.4 28.5 27.9 30.5
Trial 3 46.3 36.4 29.2 29.2 32.5

Average 47.1 ± 1.111 36.6 ± 0.4 28.5 ± 0.7 28.5 ± 0.7 31.2 ± 1.2



165

Temperature (oC)

Figure B.5. Representative UV-melting curves of PNA 3neg:RNA 
duplexes under simulated physiological salt conditions.

Table B.5. Tm data (oC) for PNA 3neg:RNA duplexes under simulated physiological salt 
conditions.

Complement = RNA 1 
(X = A)

RNA 1 
(X = G)

RNA 1 
(X = C)

RNA 1 
(X = U)

RNA 2

Trial 1 51.5 41.7 30.5 34.4 39.0
Trial 2 49.7 40.4 31.2 34.4 40.4
Trial 3 48.5 39.0 29.2 33.1 37.7
Trial 4 39.0 39.0

Average 49.9 ± 1.511 40.0 ± 1.3 30.3 ± 1.0 34.0 ± 0.8 39.0 ± 1.1
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Figure B.6. Representative UV-melting curves of PNA 3pos:RNA 
duplexes under simulated physiological salt conditions.

0

Table B.6. Tm data (oC) for PNA 3pos:RNA duplexes under simulated physiological salt 
conditions.

Complement = RNA 1 
(X = A)

RNA 1 
(X = G)

RNA 1 
(X = C)

RNA 1 
(X = U)

RNA 2

Trial 1 48.2 42.3 39.0 38.4 40.4
Trial 2 46.3 40.4 37.7 36.4 39.0
Trial 3 45.0 39.7 38.4 36.4 39.7

Average 46.5 ± 1.711 40.8 ± 1.3 38.4 ± 0.7 37.1 ± 1.2 39.7 ± 0.7
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Figure B.7. Representative UV-melting curves of mismatched PNA:DNA 3 
duplexes under simulated physiological salt conditions.

Table B.7. Tm data (oC) for mismatched PNA:DNA 3 duplexes under 
simulated physiological salt conditions.

Duplex =
PNA nf: 
DNA 3 
(Y = C)

PNA 3neg: 
DNA 3
(Y = C)

PNA 3pos: 
DNA 3
(Y = C)

Trial 1 32.5 44.9 39.7
Trial 2 33.8 44.3 37.7
Trial 3 31.8 43.6 37.0

Average 32.7 ± 1.0 44.3 ± 0.7 38.1 ± 1.4
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Figure B.8. Representative UV-melting curves of mismatched PNA:RNA 3 
duplexes under simulated physiological salt conditions.

Table B.8. Tm data (oC) for mismatched PNA:RNA 3 duplexes under 
simulated physiological salt conditions.

Duplex =
PNA nf: 
RNA 3 
(Y = C)

PNA 3neg: 
RNA 3
(Y = C)

PNA 3pos: 
RNA 3
(Y = C)

Trial 1 31.2 38.4 36.4
Trial 2 29.8 37.7 35.8
Trial 3 29.2 37.7 35.7

Average 30.1 ± 1.0 37.9 ± 0.4 36.0 ± 0.4



APPENDIX C

SPECTRAL DATA OF CHAPTER 4: 1H AND 13C NMR DATA
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APPENDIX D

SPECTRAL DATA OF CHAPTER 5: 1H AND 13C NMR DATA
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