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ABSTRACT

Structural health monitoring systems collect and process large volumes of data

taken over many years of a structure’s service. Ultrasonic guided wave systems,

in particular, must process an abundance of time-domain waveform data from

widely distributed sensors. As few as 8 sensors that transmit and receive ultrasonic

waves in pitch-catch mode every 10 minutes can accumulate over one terabyte of

data in five to ten years. This number quickly rises as systems grow in size and

complexity. As a result, computation and storage efficiency is extremely important,

and current guided wave damage detection technologies cannot efficiently process

such large data sets. This thesis starts with an introduction and survey of the struc-

tural health monitoring and data compression fields. A dimensionality reduction

technique using random projections is proposed. The potential for dimensional-

ity reduction method for improving computation time and storage efficiency is

discussed. Random projections using sparse matrices is investigated as a tool in

implementing a real-time structural health monitoring system with singular value

decomposition as a damage detection method. At the end, future directions for

research to make this technology more viable in application are suggested.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
According to the U.S. Department of Transportation, pipeline incidents have

killed over 300 people, injured an additional 1,300, and caused over 7 billion dol-

lars in damage over the past 20 years [1]. Furthermore, bridge inspections during

the late 1980s showed that of the 576,000 US highway bridges, 236,000 were rated

deficient by present-day standards [2]. As a result of these disasters, structural

health monitoring (SHM) systems are being researched to increase safety and re-

duce costs by preventing catastrophic failures in our structure.

The main component of an SHM system is nondestructive evaluation. Nonde-

structive evaluation is the practice of detecting, classifying, and locating damage in

materials and structures. SHM is the process of performing and monitoring these

evaluations over time, often with in situ sensor networks.

There are two main classes of SHM systems: passive and active. Passive SHM

use sensors to “listen” over time for strain/loading on the structure, environmental

conditions, and acoustic emissions due to cracks [3]. This data is then compared to

existing models. Active SHM, on the other hand, uses sensors to “interrogate” the

structure by transmitting a signal from a single sensor while the remaining sensors

listen for this transmission. The data is then fed back into the system where signal

processing techniques are used to determine the state of the structure [4].

The use of guided waves is a common approach for active SHM due to their

ability to propagate long distances [5]. Guided waves are defined as stress waves

that follow a path defined by the geometry of the structures [3]. When guided

waves are incident on structural discontinuities (such as boundaries or damage),

the guided wave will scatter in all directions. Owing to this complex nature of

guided waves, knowledge of the structure is needed a priori to discriminate scat-
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tered waves caused by the structure’s boundaries from those caused by damage.

This knowledge comes from complex models or baseline measurements of the

structure in a known healthy state [3]. Current measurements are then compared

to the baseline to determine the state of the structure.

Singular value decomposition [6] is one damage detection method that has

been recently introduced to extract damage variations from entire data sets. This

strategy exploits all of the available data to more effectively extract critical trends

and achieve robust damage detection. Yet, as SHM data sets grow over years of

operation, the efficient storage of this data and computational feasibility of the

these types of algorithms will become a significant issue. As a result, there is a

growing need to improve the efficiency of these methods.

This thesis addresses this challenge by integrating singular value decompo-

sition damage detection with random projection theory [7]. Random projection

theory has been used extensively in big data analysis [8]. It allows for the com-

pression of data while approximately retaining linear similarity metrics (such as

correlation). As a result, we can accurately detect damage with high storage and

computational efficiency.

1.2 The Field of Structural Health Monitoring
Structural Health Monitoring is an emerging technology that seeks to give a

real-time diagnosis of the “damage state” of the structure under observation. SHM

systems are developed for the following tasks: detect damage, classify damage,

determine damage extent, locate damage, and give a prognosis of the remaining

life of the structure [9]. Due to their ability to complete these tasks, SHM systems

are of particular interest in aviation, oil and gas, and construction industries. In the

following sections, we give a discussion on the motivations associated with SHM,

a brief history of SHM, the tasks SHM seeks to accomplish, and recent work in the

field of SHM.
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1.2.1 Motivations for SHM

Complex structures are typically created with an anticipated lifetime and are

retired after a set number of years. Aircrafts, for example, are one type of complex

structure that are aging in the United States and around the world. The average

aircraft, in the United States, is over 15 years old and the airline industry spends

over 6 billion dollars annually in maintenance and inspections for their fleets [10].

Airlines utilize schedule-based maintenance programs that involve four levels of

“checks”, each increasing in detail. “A-checks” are the most frequent and require

the least amount of detail. These typically occur after 500 flight hours and require

approximately 150 man hours. “B-checks” and “C-checks” occur less frequently

but require a more thorough inspection and the aircraft is out of commission for

longer periods. “D-checks” are the least common, occurring 4-6 times throughout

the service life of the aircraft. “D-checks” require major disassembling and can

take tens of thousands of man hours, putting the aircraft out of service for several

weeks [11].

Advances in SHM systems will allow current schedule-based inspections to

evolve into more cost-efficient condition-based maintenance schedules [2]. Condition-

based maintenance is a program that allows for maintenance decisions based on

information collected from SHM systems [12]. This will avoid catastrophic failures,

minimize costly downtime, and allow optimal use of the structure to operate for a

maximized lifetime.

In addition to the economical benefits, safety improvements are strong mo-

tivational factors. The following two accidents are examples of unsatisfactory

maintenance. Aloha Airlines flight 243 was an accident in 1988 where the aircraft

suffered extensive damage after an explosive decompression in flight, killing one

and injuring 65 others. Investigations determined that sufficient inspection and

maintenance would have avoided the failure [13]. In addition, the collapse of the

Mianus River bridge in 1983 killed several motorists and injured several others.

Investigations report the structure was not properly inspected and corrosion of key

parts led to the collapse [14]. Proper implementation of SHM systems can greatly

improve the safety of new and existing structures as well as reduce the operational
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costs.

1.2.2 Tasks of SHM

SHM is a complex system comprised of multiple subsystems such as: sensor

integration, data transmission, computational power, processing of data, and stor-

age of data [2]. The processing of data subsystem for damage detection can be

described in a five-step process [9, 15].

• Existence - Is the structure damaged?

• Location - Where is the structure damaged?

• Type - What type of damage does the structure contain?

• Extent - How bad is the structure damaged?

• Prognosis - What is the remaining lifespan of the structure?

Answers to these questions are a crucial step in a SHM system. Each answer

will provide engineers with more knowledge about the structure and what course

of action to take. Unfortunately, each question is increasingly difficult to answer,

requiring more baseline information and a more complex system [15, 16].

1.2.3 Brief History and Background: Damage Detection

Structural health monitoring has existed in one form or another throughout

the years. Tap tests were common in the railroad and oil and gas industries.

Technicians would move down the railroad or pipeline, occasionally tapping and

listening for abnormalities [15]. More recently, logs made by mechanics and pilots

during scheduled inspections are a common practice in aviation [11].

With the advent of the computer, more sophisticated methods for damage de-

tection began to be explored. During the late 1970s and early 1980s, a lot of work

was done in the oil and gas industry as well as at NASA for vibration-based SHM.

Simulations for common damage scenarios were performed. Any changes in res-

onant frequencies were then correlated with empirical measurements of the struc-

ture [15]. Further advances in electronics, memory storage, and signal processing
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has led to the modern field of SHM [17]. Due to these technological advancements,

guided wave-based SHM has received a lot of attention in the past two decades.

1.2.4 Ultrasonic Guided Waves

Ultrasonic guided waves are a popular tool in active SHM schemes. There

are several reasons guided waves are attractive: (1) due to the advancement in

electronics, sensors and transducers have become exceedingly small and cheap;

(2) they are simple to implement and generate, (3) are sensitive to many types

of damage [5], and (4) can propagate long distances with little attenuation and

therefore, can cover large areas with relatively few sensors [18]. Guided waves are

also an attractive tool because they are already a well-established practice in the

nondestructive testing industry [5]. Therefore, many signal processing methods

have been developed for effective damage detection, classification, and localiza-

tion.

Guided waves are mechanical stress waves that propagate along a path deter-

mined by the boundaries of the structure [3]. For example, acoustic waves guided

by the geometry of long, wide plates with a finite thickness are a type of guided

waves. The boundaries of the plate reflect the acoustic waves back and forth,

guiding them down the direction of the plate’s length and width [19]. One specific

class of guided waves that is dealt with in this thesis is Lamb waves.

1.2.4.1 Lamb Waves

Lamb waves are elastic longitudinal waves that exist in thin, infinite plates

and were first theorized by an English mathematician Horace Lamb in 1917 [9].

More extensive theoretical frameworks were developed by others in the following

decades. In the early 1960s, Worlton experimented with Lamb waves as a form of

damage detection [20]. Due to the abundance of many plate-like structures, e.g.,

an airplane’s wing, Lamb waves are a popular class of guided waves in SHM [3].

Another attractive reason for Lamb wave-based SHM is the many advantages

they possess: (1) transducers are cheap and light-weight and can easily be incor-

porated into the material during construction of a structure; (2) due to the fact that

they are multimodal in nature, Lamb waves are able to identify multiple defects;
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(3) higher frequency content in transmitted signals lend to being able to detect

small, even millimeter length, damage; (4) due to the structure’s guidance of the

wave, there is little attenuation and large areas can be interrogated with relatively

few sensors; (5) expensive and complicated equipment for rotating and vibrating

the structure is unnecessary; (6) guided wave transducers require little energy

consumption making them an ideal candidate for long-term use for inaccessible

structures [5, 9].

The numerous advantages of Lamb wave-based SHM do come with some trade-

offs. Due to the fact that the waves consist of multiple wave-modes, all propagat-

ing simultaneously, a received Lamb wave signal is quite complex. Furthermore,

the high velocity of the waves can cause multipath reflections from the structures

boundaries to mask any reflections due to damage [21]. Lamb waves are also

highly dispersive; the shape of the wave changes as it propagates, i.e., group

and phase velocities are dependent on frequency [4]. Finally, Lamb waves are

sensitive to high-frequency ambient noise, low-frequency structural vibrations,

and environmental and operating conditions such as temperature [17].

One commonly used approach for Lamb wave-based SHM is a pitch-catch

technique [3]. In this method, a pulse signal is sent across a structure where a

sensor, located elsewhere, will receive the signal. Based on the time-of-flight, am-

plitude, frequency, and phase of the received signal, abnormalities in the structure

can be identified [21]. Lamb wave-based SHM relies heavily on signal processing

methods to detect and classify damage. Current research in guided wave SHM

is largely focused on signal processing techniques to extract information from the

signal charactersitics and provide a solution for any or all of the tasks listed in

section 1.2.2. In the following section, we go into some detail on two popular

signal processing techniques used in guided wave SHM.

1.2.5 Recent Work

1.2.5.1 Baseline Subtraction

Guided waves are inherently complex signals. In an undamaged structure, the

received signal will consist of many interfering reflections from the surfaces and



7

boundaries of the structure. These interfering reflections are detrimental because

they can mask damage signals [22]. One simple method of damage detection is to

compare snapshots of the structure before and after damage occurs. The simplest

method is to subtract the two signals [23]. When damage occurs, the guided waves

will scatter from the damage, creating new interfering reflections. However, exist-

ing reflections from artifacts and boundaries will remain unchanged. As a result,

upon subtraction, reflections due to benign structural features will be removed,

leaving only those pertaining to damage [23–25].

While this approach works well in ideal circumstances, it is well known that en-

vironmental and operating conditions, such as low-frequency vibrations, changes

in humidity, and temperature effects, lead to fundamental changes in the struc-

ture’s properties, such as expansion and contraction of the materials [26]. This

change in the physical properties leads to changes in the propagating wave that

can be misinterpreted as damage when compared with a baseline [23].

Temperature change is the environmental condition that has the largest detri-

mental effect on guided waves. Two main bodies of research have formed in order

to compensate for temperature change: restoring the amplitude and phase the

guided wave had when the baseline signal was taken [26–28] and comparing with

look-up tables of signals representing environmental conditions that the structure

would commonly see [18, 25]. These temperature compensation methods are typ-

ically referred to in literature as baseline signal stretch (BSS) and optimal baseline

selection (OBS), respectively [22]. However each method has its limitations. BSS

methods model temperature changes as having a stretching or compressing effect

on the signal. This is only an approximate model. BSS also assumes temperature

affects the structure uniformly, which is not necessarily true. OBS, on the other

hand, requires multiple baseline signals resulting in a sizable amount of data [26].

Furthermore, this database has the baseline signals taken at discrete temperatures,

when in reality, the structure will be subject to a continuous range of tempera-

tures. These baselines can be difficult to obtain and introduce errors due to the

discretization of temperature effects [6].
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1.2.5.2 Singular Value Decomposition

Singular value decomposition (SVD) has recently been introduced as a new

temperature compensation and damage detection framework [6]. SVD extracts

critical trends across the data set and achieves robust damage detection. SVD

is a linear decomposition method that is closely related to principle component

analysis and commonly used in dimensionality reduction. SVD is beneficial be-

cause it does not require a baseline or depend on models detailing temperature

affect on guided waves, and it has the ability to reduce noise by looking across

multiple measurements [29]. As the name suggests, this strategy is implemented

by computing the SVD of the data set. Time-domain measurements from a single

sensor are gathered into a Q × M data matrix. In this data matrix, each column

of length Q represents a measurement in “fast time”, a single measurement taken

over several milliseconds. Each row of length M represents a single instance of

the guided wave signal over days, weeks, months, and years [6, 29, 30]. SVD then

decomposes the data into a matrix product

X = USVH (1.1)

In (1.1), the columns of U contain the left singular vectors of the data matrix,

X, S is a diagonal matrix where the elements are the singular values of X, and the

columns of V contain the right singular vectors of X. SVD will decompose the

principle variations in slow time as the left singular vectors [6, 29] . As a result,

the columns of V will represent “slow time” trends such as slow variations in

temperature. If damage were to occur, one of the left singular vectors would show

the corresponding change in “fast time” [29]. Thus, in addition to being a robust

temperature compensation and damage detection framework, SVD-based damage

detection can also perform a robust baseline subtraction.

1.3 Data Compression
Since the development of the transistor, the world has seen advances in elec-

tronics and digital hardware on an exponential scale. This has started a digital

revolution and brought the world into what is commonly referred to as the “In-

formation Age.” Due to this digital revolution, researchers in many fields have
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begun collecting enormous amounts of data to analyze. During that past few

decades, the amount of digital information stored has nearly doubled every 2.5

years. By the year 2007, approximately 2 zettabytes of optimally compressed data

were digitally stored [31]. This trend is expected to continue if not increase with

the ever-growing Internet. Although significant advances have been made in data

storage, it is simply not enough. The need to store and transmit data is steadily

outpacing the development of mass storage [32]. Data compression, the ability

to represent information in a compact form, is the only solution. This is done by

identifying and exploiting the structure of the data [32].

Structural health monitoring is not exempt from this issue. When SHM systems

are implemented, sensors will begin collecting data the moment the system is

turned on. As a result, data storage is a concern that needs to be addressed.

Data collected throughout the service life of the structure needs to be efficiently

compressed for storage. However, this data will also be periodically recalled and

analyzed and therefore, much of the information contained in the compressed data

needs to be maintained.

Taking a data matrix X and forming a compact representation Xc is only the

first half of data compression. In order to obtain an estimate of the original data

X̂, a reconstruction step is needed. There are two main classes of data compres-

sion: lossless compression and lossy compression. In general, lossy compression

can provide much higher compression rates than lossless compression but at the

expense that X̂ will differ from X [32].

In this thesis, we focus on lossy compression, and in particular, dimensional-

ity reduction. Dimensionality reduction is defined as finding a low-dimensional

manifold that embeds the high-dimensional data [33]. The following two sections

give a brief introduction into two popular techniques in dimensionality reduction:

principal component analysis and random projections.

1.3.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical method that takes a set of

vectors, with possibly correlated directions, and maps them to a set of vectors
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with orthogonal directions (principal directions/components) via an orthogonal

transformation. The principal components form an orthogonal basis in which

the first principal component maximizes the variance of the data set. The second

principal component will then maximize the variance of the data set subject to the

constraint that it must be orthogonal to the first principal component and so on.

Commonly, the first k principal components can describe most of the variance in

a data set [34]. The remaining principal components can then be discarded with

little loss in information. PCA is regarded as the optimal linear decomposition

in the mean-squared sense [35]. PCA is widely used in many fields and is very

similar to singular value decomposition and the Karhunen-Loéve transformation

[36].

PCA is a linear decomposition based on the covariance matrix [34] and has

several interpretations depending on the field of study. In a statistical framework,

PCA can be thought of as method to decorrelate related variables, selecting those

that best represent the entire data set [37]. PCA is also a spectral decomposition

method as it projects the data along the eigenvectors of the correlation matrix.

1.3.1.1 PCA Relation to Singular Value Decomposition

Suppose we have the Q × M standardized data matrix X, detailed in section

1.2.5.2. The empirical covairance matrix for the guided wave samples is given by

C = 1
M−1XXT. This C matrix is a symmetric semipositive definite matrix and can

therefore be diagonalized as

C =
1

M− 1
XXT

= UΛUT
(1.2)

where U is a matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues in

descending order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λQ ≥ 0. As mentioned previously, PCA is

a spectral decomposition where the eigenvectors are called principle directions [38].

The projection of the data matrix onto the principal directions are the principal

components, where the i-th principal component is given by the i-th column of

XTU. As was shown in section 1.2.5.2, the singular value decomposition of the
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data matrix, X, is given by

X = USVT (1.3)

substituting (1.3) into (1.2), one can easily see that

C =
1

M− 1
XXT

=
1

M− 1
(USVT)(USVT)T

=
1

M− 1
USVTVSUT

= U
S2

M− 1
UT

(1.4)

Upon closer inspection, a few things are obvious from (1.4). First, the principle

directions are given by the left singular vectors in U. Second, the eigenvalues of C

are related to the singular values of X by Λ = S2

M−1 . Thirdly, the principal components

of X are given by the columns of VS, XTU = (USVT)TU = VS.

1.3.1.2 PCA Applied to Structural Health Monitoring

Although principal component analysis is one of the most widely used linear

dimensionality reduction methods, it is ill-suited for structural health monitoring

for two reasons. Firstly, computation-time for PCA, much like SVD, is directly

proportional to the size of the data matrix. Structural health monitoring data

sets will grow in size as time goes on, making PCA computationally infeasible.

Secondly, the key concept behind PCA is the span of the k-dimensional basis,

formed by the first k eigenvectors of the covariance matrix C. The span of this

basis has the smallest deviation from the original data matrix X.[34]. As a result,

in PCA dimensionality reduction, only the k most significant eigenvectors are kept

while the remaining Q− k eigenvectors are discarded. However, in section 1.2.5.2,

we showed that one of the left singular vectors, which is one of the principal

components of XXT, will correspond to damage. Depending on the severity of

damage, this singular vector may or may not be among the k most significant

singular vectors, and hence may not be one of k principal components. As a result,

PCA dimensionality reduction may throw away important information regard-
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ing damage. Therefore, we consider another approach for dimensional reduction

based on random projections.

1.3.2 Low-dimensional Subspace Embeddings

An alternative approach is to find a mapping that takes data in RQ → Rk

where k � Q. Let us begin by considering a Q × M matrix X; however, in this

setting, it will be useful to consider this as a set of M points in a Q dimensional

space. The Johnson-Lindenstrauss lemma states that a set of points in a high-

dimensional space can be embedded into a lower dimensional space where the

pair-wise (euclidean) distances, between points, can be approximately preserved

with high probability. Interestingly enough, the Johnson-Lindenstrauss lemma is

a by-product of a proof that extends Lipschitz mappings to Hilbert spaces; the

authors needed the lemma in order to complete the proof [39]. Since then, this

lemma has seen widespread application in computer science due to its implication

of compression [40].

Advances in data collection and storage capabilities have allowed researchers

to collect enormous amounts of data. However, many analysis techniques are slow

and bottlenecked due to a large number of features or dimensions. This is often

referred to as the “curse of dimensionality.” Many existing data analysis tools are

exponential in time with regards to dimensionality and therefore scale poorly with

size. The JL lemma is one viable solution to this challenge. Due to the JL lemma’s

ability to reduce dimensionality, while maintaining euclidean distances between

features, many existing analysis tools can be applied to big data sets with little loss

in accuracy. Below is a formal definition of the JL lemma.

LEMMA 1 [39]. Given a tolerance 0 < ε < 1, and an integer M, let k be a positive

integer where k ≥ (ε2 − ε3

3 )
−1 log M. Then for any set V of M points in RQ, there exists

a mapping f : RQ → Rk such that for all u, v ∈ V,

(1− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (1 + ε)||u− v||2. (1.5)

There are a couple of important properties to notice about the JL lemma. First,

(1.5) shows that the lower dimensional subspace Rk is inversely proportional to the

“tolerance” ε and therefore implies that the mapping is good for reduction from a
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high space to a “medium” space. In other words, if we require a strict tolerance for

distortion, we must project into a sufficiently high dimension k. Therefore, if we

wanted to perfectly preserve all pairwise distances, we cannot reduce the dimen-

sions. Second, the cardinality of the subspace does not depend on the dimension

Q of the higher space but rather the number of points M we wish to embed into

the subspace. This means that the dimension into which we wish to embed our

points only depends on the number of pairwise distances we wish to preserve (the

distance between any two columns in X). The more data we collect, the higher

k must be. However, this scales logarithmically with measurements instead of

polynomially or exponentially.

This lemma finds use in many computer science fields such as nearest neighbor

search [41], clustering [42], compressed sensing [43], and various other machine

learning algorithms. Later we will show that this lemma can be used in singular

value decomposition, which we will apply to structural health monitoring data

sets for damage detection.

1.3.2.1 Finding the Random Projection

The Johnson-Lindenstrauss lemma would not be very useful if it only told us

that there exists a mapping f : RQ → Rk. However, the proof for the lemma in

[39] relies heavily on the isoperimetric inequality property for a volume defined in

a Q dimensional space [44]. Isoperimetric problems ask for sets or objects whose

boundary is smallest for a given volume. In our case, we have a notion of volume

defined by M points in RQ and we wish to find the smallest (possibly scaled)

boundary for this scenario. This is in fact an old problem dating back to ancient

Greece, to determine the shape in the plane for which the perimeter is minimized

subject to a volume constraint. The answer is, in fact, a circle and was known in

ancient Greece; however, a rigorous proof did not exist until the 19th century. This

shape turns into a sphere in higher dimensions and therefore, in order to find the

smallest shape that “preserves” the volume of our data, we must project onto the

surface of a sphere. So how exactly do we choose the mapping f ? We choose it

randomly. Early JL proofs would select at random a rank k orthogonal projection
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on RQ [39]. This is why this dimension reduction technique is often referred to as

“random projections.” Conceptually, One way to think about random projections

is to first apply a random rotation to RQ and then read off the first k coordinates.

1.3.3 Random Projections

Random projections or mappings provide a computationally feasible method

for this low-dimensional subspace embedding [45]. In a linear random projection,

the high-dimensional data matrix, X, is mapped to a lower dimensional subspace

by multiplying with a random matrix Ω. The elements of the random matrix

are samples from a probability distribution, most commonly the standard Normal

distribution.

Xc = ΩX (1.6)

A key concept behind random projections is that several properties of the orig-

inal high-dimensional matrix X are preserved in the reduced matrix Xc. This idea

can be used to compute a linear function of the higher dimensional matrix f (X) in

a more efficient manner by finding an estimator g(Xc) such that E [g(Xc)] = f (X)

[46].

In structural health monitoring, the matrix X is composed of M time-domain

measurements collected by a single sensor. Each column represents a new pitch-

catch measurement, where each measurements consists of Q samples of the guided

wave, taken over several milliseconds. Each measurement, xt, is a point that

lies in a Q dimensional subspace. The samples of the measurement, xi, are co-

ordinates of the point in RQ. The coordinates are weights of orthogonal unit

vectors that compose a basis for the Q dimensional subspace. When we perform

the random mapping, each unit vector comprising dimension i in the original

high-dimensional space is replaced with a nonorthogonal random direction ωi in

the smaller dimensional space [45]. If the vectors ωi are orthogonal, the random

mapping will not introduce any distortions. However, Hecht-Nielsen [47] showed

that there exists a larger number of almost orthogonal directions than orthogonal

directions in high-dimensional spaces. Therefore, randomly selecting directions in
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a sufficiently high dimension will only provide directions that are close to orthogo-

nal. As a result, small distortions will be introduced into similarity metrics such as

correlation. Reference [45] shows that similarity metrics can be maintained within

some threshold ε when using random matrices. The key concept behind random

projections is the Johnson-Lindenstrauss lemma [39].

Random projections offer a promising solution to the growing issues of storing

and processing the inevitable massive amounts of data in structural health moni-

toring systems. The class of linear functions are preserved in random mappings.

As a result, linear signal processing methods, such as singular value decomposi-

tion, can be used on the compressed data for damage detection. In addition, ran-

dom projections can significantly reduce the amount of data needed to be stored

without losing much information, given that the dimension of the reduced data set

is sufficiently high.

1.4 Thesis Outline
In the following chapters, we show how random projections described in the

previous section can be used to dramatically reduce computational time needed

for singular value decomposition-based damage detection as well as storage needs

in structural health monitoring. In Chapter 2, we describe how random Gaussian

matrices can be used to accomplish the two tasks previously stated for an existing

data set (post processing). In Chapter 3, we extend this idea to sparse random

projections that can be utilized to implement real-time damage detection in an

SHM system. Finally, in Chapter 4, we discuss results found throughout this

research and conclude this thesis.



CHAPTER 2

STRUCTURAL HEALTH MONITORING WITH

EXISTING LARGE DATA SETS

2.1 Introduction
Structural health monitoring (SHM) seeks to give a real-time diagnosis of the

state that a structure is in. However, real-time diagnostics are not always necessary.

Bridges, for example, are built to endure daily loads. Determining the state of

the bridge on a daily basis is not necessary. Instead, we may seek a diagnosis

of the structural integrity after a set period of time or after a natural disaster,

an earthquake or hurricane. In this case, a monitoring network can be placed

throughout the structure to collect data. Then when a diagnosis is needed, the

collected data can be recalled and analyzed offline in a postprocessing method.

As mentioned earlier, singular value decomposition [6] is an ideal damage

detection technique in this scenario because these methods analyze the entire data

set to extract critical trends and achieve robust damage detection. However, as the

data set grows in size, this method becomes computationally expensive. Comput-

ing the full SVD of a Q×M matrix with reasonable accuracy takes O(QM min {Q, M})
floating point operations (flops). As more measurements are taken and the data

matrix Y grows in size, the factorization of the data matrix can take a significant

amount of time to compute.

In this chapter, we show that by integrating random projections [7] with sin-

gular value decomposition, the computational speed of postprocessing can be im-

proved by a factor of 2537 times with a less than 3% reduction in accuracy. Random

projection theory has been used extensively for big data processing [8]. It allows

us to compress data while approximately retaining linear similarity metrics (such

as correlation).
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2.2 Methodologies
2.2.1 Singular Value Decomposition

In prior work, singular value decomposition SHM was used to extract struc-

tural information from guided wave data [6]. Here we will consider an Q × M

data matrix where each column represents a single measurement recorded over

several milliseconds and each row represents a guided wave instance over many

measurements. Singular value decomposition then decomposes the matrix Y into

three matrices such that

Y = USVH , (2.1)

where (·)H represents the Hermitian or conjugate transpose.

Here, and in the following sections, the S remains a diagonal matrix of sin-

gular values. The terms U and V are still orthogonal matrices that describe the

principal variations in Y. The columns of V describe the principal variations over

days, weeks, months, or years. These variations are due to environmental and

operational effects as well as damage formation and growth. The columns of U

represent acoustic signatures that correspond to the variations in V. Figure 2.1

graphically illustrates these matrices and their dimensions.

2.2.2 Dimensionality Reduction

As the number of measurements M grows, the storage and computational cost

to perform singular value decomposition becomes prohibitive. Random projec-

tions provide an efficient storage and computational solution by reducing the di-

mensionality of the data. This reduction can improve the computation time of

many well-established damage detection techniques. In this section, we focus on

applying random projections to singular value decomposition-based methods.

We use random projections to project our high-dimensional data onto a lower

dimensional subspace [7, 47] while retaining the metrics of similarity between each

measurement. The key idea behind this approach is the Johnson-Lindenstrauss

lemma [39]. This lemma states that a set of points in a high-dimensional subspace

can be embedded into a lower dimensional subspace while nearly maintaining the

distances between points.
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Figure 2.1: The figure illustrates the singular value decomposition of our data
matrix Y and compressed data matrix Y0. Under each matrix, we show the di-
mensions under different conditions. The first set of dimensions illustrates the un-
compressed singular value decomposition. The second set shows the compressed
singular value decomposition where k� Q, M.

Consider our Q × M data matrix Y. In general, Y is not full rank (i.e., the M

columns of Y can be expressed by a linear combination of fewer than M linearly

independent vectors). We can approximate our data matrix as a factorization of

two lower rank matrices

Y ≈ BY0 , (2.2)

where B and Y0 have dimensions of Q× k and k×M, respectively. Note that the

factorization is approximate since there is typically undesirable noise in the data

that increases the overall rank.

Let Q be a matrix with orthonormal (or approximately orthonormal) columns

that form an approximate length-k basis for the data matrix Y. If we let B = Q and

Y0 = QHY, then (2.2) becomes

YQ ≈ QQHY, (2.3)

The matrix YQ is a projection of Y onto the space spanned by the columns of Q. If

the columns of Q are approximately orthonormal, then QQH ≈ I and YQ ≈ Y.
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Notice that Y0 possesses a dimension of k × M. Therefore, it is a compressed

version of our original data matrix. The singular value decomposition of Y0 can be

approximated by
Y0 ≈ QHY

≈ QHUSVH

≈ UcSVH

= UcScVH
c .

(2.4)

In (2.4), the V matrix from the singular value decomposition of Y0 is approximately

equal to the V matrix from the uncompressed data matrix Y. The matrices Sc

and Vc are “economy-size” matrices that remove the columns of S and V that

correspond to the M − k or more singular values equal to 0 and therefore do not

contribute to Y0. The dimensions of these matrices are illustrated in Figure 2.1.

The results of (2.4) show that we do not need the uncompressed Q × M data

matrix to perform singular value decomposition damage detection. Instead, we

can process a compressed k×M matrix, where k� Q and achieve nearly the same

result. In the next two subsections, we choose Q to reduce both storage needs and

computational costs.

2.2.3 Reducing Storage Needs with Random Projections

To reduce our storage needs, we must choose a fixed Q matrix with which we

can multiply any new measurement. We choose Q = Ω0, such that

Y0 = ΩH
0 Y . (2.5)

The matrix Ω0 is a Q × k0 fixed random matrix with each element defined by

independent Gaussian random variables of variance of 1/
√

Q. This choice of

variance ensures that the norm of each column is approximately equal to one. This

is a common approach to designing Ω0, although there are many other random

matrices that work. The resulting compressed data matrix Y0 has dimension of

k0 ×M.

For a k0 � Q, the resulting matrix Y0 is significantly smaller than the original

data matrix Y. Any additional measurements can be multiplied by the fixed Ω0
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and then concatenated onto Y0. Based on the previous subsection, we can then

apply singular value decomposition on Y0 to retrieve the V matrix. Hence, we

can store and update our new compressed data matrix Y0 with fewer storage

constraints.

Note that Ω0ΩH
0 Y is not an orthogonal projection in the strict sense because the

columns of Ω0 are not strictly orthogonal [7]. However, when reducing from suf-

ficiently high-dimensional spaces, the columns are orthogonal in expectation. In

practice, this means that we can achieve better compression with greater accuracy

if we can construct a Q matrix with strictly orthogonal columns. In the following

subsection, we create this Q matrix. Note though that the next Q matrix cannot be

directly used for storage improvement because the matrix will change as we add

measurements into our data.

2.2.4 Reducing Computation with Random Projections

As previously described, singular value decomposition-based damage detec-

tion traditionally computes the full decomposition of our Q × M data matrix Y.

However, as Q (the number of time samples) and M (the number of measurements)

grow, the full decomposition becomes computationally intractable. Singular value

decomposition has a computational complexity of O(min(QM2, Q2M)). In the

previous subsection, we premultiplied the data matrix with the random matrix Ω0

to reduce Q to size k0. Therefore, if this step reduces storage needs by 100 times, it

also improves our computational speed by 100 to 10, 000 times.

In this section, we further reduce the computational cost by choosing a more

effective Q matrix for (2.4). To create this Q matrix, we further process the com-

pressed data matrix

Y1 = Y0Ω1 , (2.6)

where Ω1 is an M× k1 random matrix. The matrix Y1 has dimensions of k0 × k1.

As with Ω0, the elements in Ω1 are independent, Gaussian random variables and

the columns are orthonormal in expectation. We then find a new Q matrix (now

with orthonormal columns) by performing a QR decomposition on Y1, such that



21

Y1 = QR . (2.7)

The matrix Q has a length of k0×min(k1, k0). Each column in Q represents part of

an orthonormal basis for Y1. Note that the computational complexity for the QR

decomposition is O(k3
1), which is not significant when k1 is sufficiently small.

We create our final compressed data matrix Yc with dimensions of k1 × M

(assuming k1 < k0) such that

Yc = QHY0 . (2.8)

We then apply singular value decomposition on Yc to retrieve the approximate

V matrix. Since Q has strictly orthonormal columns, this process should reduce

the k0 column length of Y0 to k1 and further reduce the computational burden of

singular value decomposition.

2.3 Experimental Setup
We demonstrate the effectiveness of random projections with a collection of

guided data from an aluminum plate. The purpose of this experiment is to com-

press and process the data very efficiently. Therefore, for simplicity, this prelimi-

nary experiment does not include significant temperature variations.

We consider a 50.8 cm by 50.8 cm aluminum plate with circular 10 mm diameter

PZT (lead zirconate titanate) transducers at opposite corners of the plate. From one

transducer, we transmit a 0.5 ms linear chirp with a center frequency of 225 kHz

and a bandwidth of 350 kHz. The second transducer receives and stores this signal

after travelling through the plate. Before processing, the data was filtered with a

Gaussian filter at a center frequency of 20 kHz and a bandwidth of 20 kHz. The

low frequencies (i.e., under approximately 100 kHz) were generally more sensitive

to the masses on the plate.

The transmit-receive process was repeated every 10 minutes over one week. In

total, we collected 1447 measurements. Just before measurement 62 (hour 10.3),

an uncoupled 8.9 cm by 3.81 cm aluminum piece was placed on the plate. Just

before measurement 474 (hour 79), another heavier, but still uncoupled, 10.2 cm by

10.2 cm aluminum piece was placed on the plate. Just before measurement 1065
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(hour 177.5), a pair of grease-coupled circular magnets with 1.9 cm diameters and

separated by approximately 5 cm were placed on the top surface of the plate. A

7.93 cm by 5.6 cm uncoupled steel plate was placed on the back surface of the plate

to secure each of the magnets. Figure 2.2 illustrates the approximate locations.

2.4 Results
Performing singular value decomposition on the original, uncompressed data

requires approximately 8.5 s, or 8500 ms. Figure 2.3(a) illustrates the computational

time to perform a singular value decomposition on our compressed data Yc. The

horizontal axis illustrates the initial dimension reduction to a length of k0 (for

improved storage) and each line corresponds to a second reduction to length k1

(for computational improvement). The figure shows an approximate linear rela-

tionship between k0 and computation time until k0 = k1. After this point, compu-

tation time is entirely determined by the choice of k1. Notice that by reducing our

dimension to k1 = 10 with k0 > k1, the computation time reduces to approximately

Transmi er

Receiver

Placed at 

measurement 62

(hour 10.3)

Placed at 

measurement 474

(hour 79)

Placed at 

measurement 1065

(hour 177.5)

Figure 2.2: The figure illustrates the experimental setup and the approximate
positions of the masses that we places over time. The grease-coupled magnets
placed during measurement 1065 create the most significant variations.
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Figure 2.3: Effects of low rank reduction on computation time and correlation. (a)
The measured computation times for computing the singular value decomposition
of our compressed data set Yc for different combinations of k0 and k1. (b)
The correlation coefficient between singular vectors from the compressed data
set Y and the uncompressed data set Y for different combination of k0 and k1. A
correlation coefficient of 1 indicates no change in the singular vectors.

3.35 ms, a 2537 times improvement in speed.

Figure 2.3(b) illustrates the correlation coefficient between the rows of SVT

from the uncompressed data Y and the same vectors generated from the com-

pressed data Yc. A correlation coefficient of 1 indicates a perfect recovery. We

see a gradual improvement in accuracy as both k0 and k1 increase. As k1 increases

beyond k1 = 10, we see only minor improvements. This plot illustrates the benefits

of further reducing our data’s dimension from k0 to k1. Reducing the data initially

to k0 = 10 would only achieve a correlation coefficient of 0.76. Yet, choosing

k0 = 100 and then k1 = 10 achieves a correlation coefficient of 0.97 with nearly

the same computational expense, as shown in Figure 2.3(a).

Figure 2.4 illustrates the first two singular vectors taken from V. The first

singular vector represents overall changes in the signal over the course of the

experiment. The second singular vector isolates the most substantial event in our

data set – the addition of the grease-coupled magnets at measurement 1065 (after

approximately 177.5 hours of operation). This confirms that we can use singular

value decomposition to isolate simulated damage events in the data set.

Overall, our results show that if we choose to reduce the data with k0 = 100

and k1 = 10, we would achieve a 100 times improvement in storage efficiency
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Figure 2.4: The first two singular vectors of V from taken from the uncompressed
data set. The second singular vector isolates the most significant event from the
experiment.

and a 2537 times reduction in computation time with only a 3% reduction in the

correlation coefficient.

2.5 Discussion
This chapter demonstrates how to use random projections to improve storage

and computational efficiency of guided wave structural health monitoring dam-

age detection algorithms. We achieved greater than 2537 times computational

improvement after applying random projections to a 1447 measurement data set.

Note that this approach scales well with the number of measurements. That is, if

we collected 10 times the number of measurements, we would expect a 10 times

improvement in computation time. As structural health monitoring systems grow,

these algorithms will be essential to data analysis.



CHAPTER 3

STRUCTURAL HEALTH MONITORING WITH

LARGE DATA SETS FOR REAL-TIME

SYSTEMS

3.1 Introduction
Structural health monitoring (SHM) seeks to give a real-time diagnosis of the

state of the structure. However, as the SHM system ages, the amount of data

collected (and subsequently analyzed) grows in size. As a result, many successful

damage detection methods are bottlenecked by the number of dimensions associ-

ated with the growing number of measurements. Many damage detection tech-

niques, namely singular value decomposition (SVD), scale poorly as the size of the

dimensions of the data set grow. For a M × Q matrix, the SVD factorization has

a computational complexity of O(min(QM2; Q2M)). Therefore, as the quantity

min(QM2; Q2M) grows larger, SVD becomes a less viable damage detection option

for a real-time system. In this chapter, we use Johnson-Lindenstrauss embeddings

to overcome this challenge and maintain SVD’s standing as a viable damage de-

tection method, even in a real-time system.

There are three main challenges to consider when designing a real-time system,

referred to here as the 3S challenge.

• Size - How much data is collected.

• Speed - How fast can we process data.

• Scalability - How well does the process scale.

In the previous chapter, we addressed the first challenge, size. Namely, we showed

that we can use Gaussian matrices to perform JL-embeddings and reduce the size
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of the data. In this chapter, we will address the second challenge, speed. Gaus-

sian matrices are dense matrices. When a Gaussian matrix Ω ∈ RQ×k is used

to perform JL-embeddings and the dimension Q is large, a lot of memory and

computation is needed to perform the embedding. This slows down analysis

methods [48]. Due to this fact, we adopt a method of using a sparse random matrix.

Sparse matrices will allow us to perform the embeddings with only a fraction

of the data, speeding up embedding computations. Reference [49] showed that

sparse matrices can be used to perform JL-embeddings with little loss in accuracy.

Furthermore, this is a simple matrix to create as it requires only a uniform ran-

dom number generator. In this chapter, we show that we can use a sufficiently

sparse matrix to improve embedding times, thereby reducing computation times

for damage detection methods when dealing with very large dimensions. Due to

these fast embeddings, we can use SVD as a viable damage detection technique for

real-time SHM systems, as opposed to postprocessing.

3.2 Methodology
3.2.1 Low-dimensional Subspace Embeddings

Here we will consider a transpose of the M×Q matrix Y dealt with in Chapter

2; however, in this setting, it will be useful to consider this as a set of M points

in a Q dimensional space. Recall that the Johnson-Lindenstrauss lemma states

that a set of points in a high-dimensional space can be embedded into a lower

dimensional space where the pair-wise (euclidean) distances, between points, can

be approximately preserved with high probability. One important property of the

JL lemma, pointed out in Chapter 1, is the fact that the dimension into which we

wish to embed our points only depends on the number of pairwise distances we

wish to preserve (the distance between any two columns in Y). The more data we

collect, the higher k must be.

This poses an unfortunate limitation on the method of random projections.

In the previous chapter, we showed that given a data set, we can reduce both

dimensions Q and M, thereby, significantly improving computation times and

storage needs. However, in a real-time monitoring system, this is not possible
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as we do not have all the measurements. Instead we collect measurements one

at a time and therefore, the dimension M grows in size over time. As a result of

this, the more data that is collected, the slower SVD will be at performing damage

detection. However, random projections are still useful in this scenario. Random

projections can be used to decrease the dimension Q, which can be quite large. As

was discussed in Chapter 1, this thesis addresses guided wave structural health

monitoring. In guided wave SHM, sensors will transmit a Lamb wave and the

remaining sensors will capture the received transmission. The physical nature

of the structure and Lamb waves will effect the dimension of the measurements.

Lamb waves contain high-frequency components that must be sampled at suffi-

ciently high rates in order to avoid aliasing. Therefore, the higher the frequency

content of the Lamb wave, the higher the dimension Q of the measurements will

be. Furthermore, the dimension Q is dependent upon the spacing between sensors.

The farther sensors are, the longer the sensors must sample as the Lamb wave

traverses the structure, thereby increasing the dimension Q as well. From this, we

can see that the dimension Q can be quite large and reducing this dimension will

provide significant improvements in computing the SVD of the data set.

3.2.2 Gaussian Subspaces

The original work of finding JL embeddings approached the problem from a

geometric viewpoint. While although a geometric interpretation may be insightful,

it can lead to a rather cumbersome analysis. Dasgupta and Gupta substantially

simplified the proof for finding JL embeddings by approaching the problem for a

probabilistic viewpoint [50]. First, let us define a k-dimensional random subspace

Ω ∈ RQ×k by choosing k random vectors independently from the standard Nor-

mal distribution, where each element in a random vector is chosen according to

ωi ∼ N (0, 1). Then, let zi denote the ith coordinate of a projection in the random

subspace by taking the inner product of a fixed unit vector, y ∈ RQ, with the ith

random vector. According to the 2-stability of the Gaussian distribution: for any

real numbers y1, y2, ..., yQ, if ω is a vector of independent Normal random variables

then [51]
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z =
d

∑
i=1

yiωi

= ωT
i y

∼ N (0, ||y||2)

(3.1)

From (3.1) we see that each coordinate in the projected vector is also a Gaussian

random variable. Furthermore, we can interpret the mapping z = yΩ as mapping

y from RQ to Rk, where each new coordinate of y in Rk is obtained by taking the

inner product of y with a column in Ω. Then, the squared length of the vector

z follows the Gamma distribution which possesses strong concentration bounds

[52]. Therefore, we can bound the length of the vector y in the random mapping.

For a complete proof of (1.5) where the projection matrix has elements drawn

from a Gaussian distribution, the reader is directed to [53–55]. Below, we will try

to provide some high-level intuition on Gaussian random projections. Consider

the mapping Ω : RQ → Rk, where k � Q. Assume each element of Ω is defined

by an independent Gaussian random variable with zero mean and variance σ2 = 1

and the signal y ∈ RQ. We have that

E
[
||yΩ||22

]
= E [(yΩ)(yΩ)∗]

= E [yΩΩ∗y∗]

= yE [ΩΩ∗] y∗

= yIy∗

= ||y||22

We can extend this short proof to preserving distances by letting the vector y =

u− v, where u, v are two points in RQ and repeating the same proof above. Fur-

thermore, random projections preserve inner products, which can be shown using

a similar proof to the one above.

3.2.3 Non-Gaussian Matrices

In an effort to make random projections easier to use in practice, Achlioptas

[49] presented a much simpler method for creating the random projection and
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performing the embeddings. The main results in [49] show that spherical sym-

metry (the projection onto Rk maintains the same distribution as the matrix Ω)

is not necessary. In fact, it is only necessary for the square of the projections to

be concentrated about the norm of the fixed vector, in expectation. This can be

accomplished by drawing the elements of the random matrix independently from

a zero mean distribution.

As we saw earlier, the inner product between the fixed vector y ∈ RQ with

rows of Ω ∈ RQ×k gives the coordinates of the projection in Rk. Furthermore, the

squared sum of the coordinates gives the length of the projection. We can think of

the inner product of y with each row of Ω as effectively giving an estimator for the

length of the projection that we then average over k estimates (one for each row).

In the previous chapter, we performed the projection using Gaussian random vari-

ables. However, it turns out that so long as the values of Ω are sampled from a

zero mean distribution, we will obtain an unbiased estimate on the length of the

vector y [49, 56]. Intuitively, we can describe this result as

zi =
1
k

yiΩ


yiω1
yiω2

...
yiωk


T

=
[
y1 y2 . . . yQ

] ω1 ω2 ... ωk


E[||zi||22] = E[

1
k
||yiΩ||22]

=
1
k

yiE[ΩΩT]yT
i

=
1
k

yiΣyT
i

≈ 1
k

k

∑
j=1
||yi||22var(ωj)

≈ ||yi||22

(3.2)

From (3.2), we notice a few properties. First, so long as the random vector ω

is zero mean, we will obtain an unbiased estimator for the length of y. Second,
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the accuracy of the estimate depends on the variance of the random vector ω.

Therefore, the distribution selected to create the mapping Ω plays an important

role in the accuracy of the estimator. Lastly, the closer the random matrix is to being

orthogonal, the closer the off diagonal elements in the covariance matrix Σ will be

to zero and the better each estimate will be. Furthermore, so long as each column

of Ω is independent and zero mean, we can apply the central limit theorem and

take enough projections to get a satisfactory estimate of length. Where the number

of projections needed depends on the variance of the estimate [49]. Furthermore,

we can bound the concentration by applying the Law of Large Numbers.

Prob
(
‖z1 + z2 + ... + zk

k
− E[z]‖ ≥ ε

)
≤ var(z)

kε2 (3.3)

From 3.3, it is apparent that the concentration, and hence the distortion, of the

lengths of the projected vectors are dependent on the variance of the distribution

used to create the random mapping Ω. Therefore, we are free to choose distribu-

tions other than the Gaussian distribution.

The computation time to perform the embeddings can be greatly improved by

selecting elements from the set Ωij = {−1,+1} with probability
{

1
2 , 1

2

}
. This is a

zero mean distribution with unit variance and will therefore act as an unbiased es-

timator for the length of the original vector. Also, we know from [47] that there ex-

ists more almost orthogonal vectors than orthogonal vectors in a high-dimensional

space. The covariance matrix of Ω will then be close to the identity matrix, and

hence the length of the projected vector will be an accurate approximation of the

original vector’s length. By drawing from this distribution, there are no floating

point operations needed in the embedding, saving significant computations and

memory in the process. The projection can be completed much faster by drawing

the elements of Ω independently from a sparse distribution.

3.2.3.1 Sparsity

As was previously shown, it is not necessary to use the standard Normal dis-

tribution to create the random matrix for low-dimensional embeddings. Instead,

it is possible to project onto a matrix where elements of Ω are drawn from Ωij ∈
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{−1,+1} [57]. Both of these choices are simple to construct but are dense matrices.

This is generally undesirable. For example, embedding into a lower subspace us-

ing Gaussian matrices requires many floating point operations and a large amount

of memory to perform the computations. Therefore, it would be beneficial to find

a distribution other than Gaussian.

Using a projection matrix where the elements are defined by the Bernoulli

distribution, Ωij ∈ {−1,+1}, is simpler to create and the embeddings using this

distribution do not require any floating point operations. However, we can further

reduce our computation because the projection matrix need not be dense. Let

Ω : RQ → Rk where the elements are defined by independent random variables

drawn from the sparse Bernoulli distribution defined as [56]

Ωij =
√

s


+1 with probability 1

2s
0 with probability 1− 1

s
−1 with probability 1

2s

By creating the matrix Ω to be a sparse matrix, the computation time for the JL

embeddings can be sped up by a factor of s because there are only 1
s non zero

entries per row[49, 56]. Since the multiplicative factor
√

s can be delayed, the

JL embedding does not require any floating point operations, providing another

improvement to computational speed. Even with the use of a sparse projection

matrix, we lose surprisingly little in terms of preserving pair-wise distances in the

embedded subspace.

3.2.3.2 Real-time Processing

Due to the significant speed up in the time needed to perform the embeddings,

sparse random matrices are a prime candidate to assist in real-time damage detec-

tion. In order to reduce computations, we choose a sparse Bernoulli distribution

(defined above) to create the projection matrix Ω.

When we initialize our structural health monitoring system, we begin with an

empty “compressed” data matrix, Y0 ∈ Rk. Periodically, sensors will interrogate

the structure providing a new measurement yt ∈ RQ at time t. This new measure-

ment is then mapped into Rk using the sparse Bernoulli matrix defined above and
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then added as the tth row vector in the “compressed” data matrix Y0.

y0,t = ytΩ

Y0,t = [YT
0,t−1 yT

0,t]
T

(3.4)

Equation (3.4) shows how we can compress measurements in real time as we

receive them. It also shows a data matrix that is growing row-wise with each

new measurement. This “compressed” data matrix resides in Rk as opposed to

the original measurements, which reside in RQ, where k � Q. Because of this,

when the number of measurements is comparable to the size of k, this will pro-

vide significant computational improvements when computing the singular value

decomposition; this is shown below in the Results section.

Recall the treatment of dimensionality reduction given in Chapter 2. We showed

that we can successfully compute the singular value decomposition of the com-

pressed data matrix. However, in Chapter 2, we found a rank k orthonormal basis

Q for the data matrix by randomly mapping it to Rk, and orthogonalizing the

mapped vectors. We then restricted the data to this basis B = QHY and computed

SVD for this result. This provided an approximation for the SVD of the original

data set.

Y0 = YΩ

= USVTΩ

= USṼT

(3.5)

Here, we rely on the results of [47], proving there exists more almost orthogonal

vectors in high dimensions than orthogonal vectors. Sampling random vectors

from the sparse Bernoulli distribution should give orthogonal vectors in expecta-

tion, that E[ΩΩT] ≈ I.

E[Y0ΩT ] = E[USṼT
ΩT]

= USVTE[ΩΩT]

≈ USVT

(3.6)

Due to the fact that we are storing new measurements as rows in (3.4), the roles

of U and V switch. Therefore, we are interested in the columns of U in order to
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observe slow-time trends, such as damage, in the data. The last step (3.6) is to

obtain an approximation for V, which is unnecessary since we are interested in the

columns of U. Therefore, we see that we can apply singular value decomposition

on the compressed data, Y0, to retrieve the U for real-time damage detection.

3.3 Results
We use the same experimental setup established in Chapter 2. The transmit-

receive process was repeated every 10 minutes over one week. In total, we col-

lected 1447 measurements. Just before measurement 62 (hour 10.3), an uncoupled

8:9 cm by 3.81 cm aluminum piece was placed on the plate. Just before measure-

ment 474 (hour 79), another heavier, but still uncoupled, 10.2 cm by 10.2 cm alu-

minum piece was placed on the plate. Just before measurement 731 (hour 121.83),

the heavier mass was removed. Just before measurement 1065 (hour 177.5), a

pair of grease-coupled circular magnets with 1.9 cm diameters and separated by

approximately 5 cm were placed on the top surface of the plate. A 7.93 cm by 5.6

cm uncoupled steel plate was placed on the back surface of the plate to secure each

of the magnets.

Performing singular value decomposition on the uncompressed data matrix

took approximately 8 seconds. Figure 3.1(a) shows the computation time required

to perform singular value decomposition using a sparse projection matrix. The

horizontal axis corresponds to the sparsity of the projection matrix. This can be

thought of as a percentage of the matrix consisting of zero elements. Each line

in 3.1(a) corresponds to a dimension of a lower subspace into which the data is

embedded. For s = 100 and k = 50, the computational time required to process the

entire data set is roughly 19 ms, a 450 times improvement over computing SVD on

the uncompressed data set. Figure 3.1(b) shows the correlation between the rows of

SVT of the original data set and the compressed data set. Again, each line in 3.1(b)

corresponds to the dimension of the lower dimensional subspace. From the figure,

there is almost perfect correlation between the original data and the compressed

data for k = 50. Note that, the correlation seems to be independent of the sparsity

of the matrix. According to [56], We can achieve a sparsity of upwards of s =
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Figure 3.1: Effects of sparsity on computation time and correlation. (a) The mea-
sured computation times for computing the singular value decomposition of our
compressed data set for different combinations of sparsity and reduced dimension,
k. (b) The correlation coefficient between singular vectors from the compressed
data set and the uncompressed data set for different combination of sparsity and
reduced dimension k. A correlation coefficient of 1 indicates no change in the
singular vectors.

Q
log(Q)

(however, they recommend a less aggressive sparsity such as s =
√

Q) before

we begin to see a decrease in accuracy. The computation time in Figure 3.1(a)

appears to be inversely exponential and therefore, we see diminishing returns on

the computational savings as the sparsity gets large.

Figure 3.2 illustrates the computational improvement of using a sparse Bernoulli

distribution (with sparsity s = Q
log(Q)

≈ 1000) over a Gaussian distribution to

create Ω. The horizontal axis of Figure 3.2 is the correlation between the rows

of SV T of the original data set and the compressed data set. The vertical axis

shows the computational improvement, which is the ratio of the time it takes to

compute the SVD of the original uncompressed data set to the compressed data set.

Figure 3.2 shows that for a correlation of 0.97, the sparse Bernoulli achieves roughly

a 115% increase in computational improvement, thus giving a clear indication
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Figure 3.2: Comparison of embedding techniques using sparse Bernoulli distribu-
tion and Gaussian distribution to create Ω.

that a sparse matrix can achieve high of accuracies for damage detection, while

significantly outperforming traditional random matrices.

Figure 3.3 shows the first singular vectors of the compressed data and the

original data for s = 1000. The first singular vector for the compressed data is

shown on top and the first singular vector for the original data is the bottom plot.

The singular vector for the compressed data set, even with a large sparsity, looks

identical to the the original singular vector. From this, we can tell exactly when

damage was introduced to the system by observing the “steps” in the singular

vector.

3.4 Discussion
Singular value decomposition scales poorly as the size of the data set grows.

This chapter demonstrates that singular value decomposition can be a viable op-

tion for real-time damage detection when embedded into a lower dimensional

subspace using sparse random projections. This sparse random projection consists

of {+1,0,-1} and is easy to create using a uniform random generator. The benefit

of a sparse matrix over a Gaussian matrix is no costly floating point operations
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Figure 3.3: The 1st singular vectors for the compressed data set and the original
data set for s = 1000.

are needed in the embedding, and approximately only 1
s data points are needed,

saving memory during the embedding. We lose surprisingly little, in terms of

accuracy, when using sparse matrices. We showed there remains an almost perfect

correlation between the compressed data and the original data, while introducing

a 450 fold improvement over the uncompressed data in computation time.



CHAPTER 4

CONCLUDING REMARKS AND FUTURE

WORK

4.1 Summary
In this thesis, we proposed random matrices as a tool for dealing with the ever-

increasing size of data sets collected during structural health monitoring (SHM).

Singular value decomposition is a robust tool for damage detection; however, it

scales poorly with the size of the data. Projecting the large data set onto a random

smaller subspace allows for computational improvements when computing the

singular value decomposition of the data. Furthermore, the Johnson-Lindenstrauss

lemma demonstrates that so long as the reduced subspace is sufficiently large, dis-

tance between points in the data set can be approximately maintained. Therefore,

these significant computational improvements can be achieved with little loss in

accuracy.

We began with a brief literature review in the field of SHM, particularly guided

wave SHM and a few damage detection frameworks, namely baseline subtraction

and singular value decomposition (SVD). SVD’s ability to extract critical trends

across a data set makes it an excellent damage detection method that is robust

to temperature variations. We then provided a brief description of popular data

compression tools such as principal component analysis and random projections.

We show that random matrices can be applied to SHM data sets to boost compu-

tational speed on a large data set or when a data set needs to be reduced in order

to save storage cost. Thus, our approach keeps SVD as a viable damage detection

technique in a real-time SHM system.

Chapter 2 demonstrated that, when we have existing data sets, we can use ran-

dom projections to improve storage and computational efficiency of guided wave
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structural health monitoring damage detection algorithms. We achieved a greater

than 2537 times computational improvement over SVD on the uncompressed data

after applying random projections to a 1447 measurement data set. Furthermore,

we noted that this approach can scale well with the number of measurements.

That is, if we collected 10 times the number of measurements, we would expect

a 10 times improvement in computation time. As structural health monitoring

systems grow, these algorithms will be essential to postprocessing data analysis.

In Chapter 3, we further iterated the point that singular value decomposition

scales poorly as the size of the data set grows. We then demonstrated that singular

value decomposition can be viable option for real-time damage detection when

embedded into a lower-dimensional subspace using random projections. We also

pointed out that while creating the random matrix from a Gaussian distribution

provides a simple and intuitive analysis, it also results in a dense matrix that slows

down embedding times. So long as the elements of the random matrix are drawn

independently from a zero mean distribution, we can successfully use random pro-

jections for SHM applications. This allows us to pursue other distributions for the

embedding that will be computationally feasible for performing the embeddings

in real time.

Furthermore, we used a sparse random projection consisting of {+1, 0, -1}with

probability { 1
2s , 1− 1

s , 1
2s} to perform embeddings. This distribution is easy to cre-

ate using a uniform random number generator. Using this distribution to create the

random matrix drastically improved the computational time needed to perform

the embeddings. The benefit of a sparse matrix over a Gaussian matrix is that no

costly floating point operations are needed in the embedding, and approximately

only 1
s data points are needed, saving memory during the embedding. In addition,

we lose surprisingly little in terms of accuracy. We showed there remains an almost

perfect correlation between the compressed data and the original data, while in-

troducing a 450 fold improvement in computation time compared to computing

the SVD on the original data.
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4.2 Future Work
We provide here a brief list of suggested work that would elaborate and extend

the work described in this thesis.

As was mentioned earlier, there are three main challenges presented to a real-

time system: size, speed, and scalability. The work done in this thesis has ad-

dressed the first two challenges, namely size and speed. However, this work

should be extended to a network of sensors to ensure random projection dimen-

sion reduction technique can be scaled. In practice, a network of sensors is needed

to implement any sort of sophisticated structural health monitoring system. We

believe random projections have the capability to scale well with the complexity

of SHM systems.

Structural health monitoring systems need to be able to detect when a structure

is damaged. Furthermore, SHM systems need to be able to distinguish between

multiple sources of damage in order to successfully operate. There are a limited

number of algorithms that can successfully perform this task of damage separa-

tion. These algorithms need to be tested on data sets once they have been projected

onto a random subspace.

Finally, guided wave-based SHM is susceptible to environmental conditions

that can drastically alter the received signals. Environmental compensation algo-

rithms need to be created to work on data sets after they have been projected onto

a random subspace. Johnson-Lindenstrauss lemma states that random projections

can approximately maintain Euclidean distances. Therefore, any environmental

compensation algorithm will most likely need to be able to perform on euclidean

distances.



REFERENCES

[1] “Pipeline incidents 20 year trend,” U.S. Department of Transportation and
Hazardous Materials Safety Administration, Tech. Rep., 2015. [Online].
Available: https://hip.phmsa.dot.gov/analyticsSOAP/saw.dll?Portalpages

[2] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural health monitoring. Wiley
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