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ABSTRACT 

 

BALB/c mice have been used to study multiple diseases that cause inflammation 

such as Lyme arthritis, rheumatoid arthritis, and systemic lupus erythematosus. Lyme 

disease or, more specifically, Lyme arthritis is caused by Borrelia burgdorferi that has 

disseminated into joint tissues. A spectrum of Lyme disease severity and symptoms has 

been seen in Lyme disease patients, which suggests that genetics play a role in host 

response. Inbred mouse strains display the range of arthritis severity seen in patients from 

the mild arthritis phenotype in C57BL/6 mice to the severe arthritis phenotype in C3H 

mice. The C3H mouse model develops severe Lyme arthritis that can be attributed to 2 

important inflammatory factors: a hypomorphic allele of GusB and hyper production of 

Type I IFN-induced transcripts. Using SNP-based assessment, the BALB/c mouse was 

found to be closely related to the C3H mouse; however, the BALB/c mouse does not 

have the hypomorphic GusB allele. It was hypothesized that the BALB/c mouse, which 

develops severe, dose-dependent arthritis, would also hyperproduce Type I IFN-related 

transcripts. This study found that the BALB/c mouse does not develop an IFN profile 

similar to the C3H mouse. Multiple inflammatory markers were analyzed to compare and 

contrast BALB/c and C3H mice, and TNFα was determined to be elevated in the 

BALB/c mouse above the levels in the C3H mouse both in vivo during infection and in 

vitro using bone marrow-derived macrophages. This suggests an important role of the 

innate immune response in these mice. Interestingly, peritoneal macrophages derived 
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from BALB/c were able to internalize B. burgdorferi much better than C3H-derived 

peritoneal macrophages. This suggests an elevated intrinsic response in controlling B. 

burgdorferi numbers. TNFα blockade has been shown to be beneficial in relieving 

symptoms in rheumatoid arthritis patients, so it was hypothesized that TNFα blockade in 

BALB/c mice would reduce Lyme arthritis symptoms. This study did not see any benefit 

to TNFα blockade in Lyme arthritis reduction. Overall, this study has shown that there 

are still mechanisms that are yet to be fully understood in the pathogenic relationship 

between the BALB/c mouse and the spirochete bacteria B. burgdorferi. 
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INTRODUCTION 

 

Lyme disease: from infection to fruition 

Lyme disease is the most common tick-borne disease in the Northern Hemisphere 

(1). In the United States, Lyme disease is most typically seen in the Northeast and upper 

Midwest (2). Approximately 30,000 cases of Lyme disease each year are reported to the 

Center for Diseases Control; however, the CDC has acknowledged that there is 

underreporting of the actual cases and has recently published a projected incidence of 

approximately 300,000 cases/ year. This estimate is based on analysis of state health 

department records, diagnostic company records, and health insurance records for 

endemic regions (3). Lyme disease is caused by an infection with the spirochete Borrelia 

burgdorferi that is transferred from the Ixodes tick vector to the host (4). The most 

common types of Ixodes ticks that spread Lyme disease in the United States are the 

blacklegged tick (Ixodes scapularis) in the upper Midwest and Northeast, and the western 

blacklegged tick (Ixodes pacificus) along the west coast (1). Ixodes ticks are very small in 

comparison to ticks commonly associated with livestock and domesticated animals, so 

the presence of an attached Ixodes tick can easily be missed (2). The nymph, a juvenile 

stage in the tick life cycle that is much smaller than the adult tick, is responsible for most 

Lyme disease transmission to humans (3). The most common seasons for infection are 

during the spring and summer months when the nymph pursues a blood meal to fuel its 

transformation from a juvenile into an adult (1). Typically, the tick must be attached to 
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the host for 36 to 48 hours for Lyme disease to be transmitted (2, 5). 

After an infected tick bite, the disease incubation period can range from 3 to 30 

days (6). Upon infection, B. burgdorferi can proceed from an early localized infection to 

a late disseminated infection. During the early localized phase, the symptoms typically 

resemble the flu (6). These symptoms include: headache, fatigue, chills, muscle and joint 

pain, fever, and swollen lymph nodes (2). This is 1 of the reasons that Lyme disease cases 

are under-diagnosed (1). The most characteristic sign of an early localized infection is a 

circular red skin rash called erythema migrans, identified in 70% of individuals and 

considered to be diagnostic. This rash develops at the site of infection 1 to 30 days after 

the infected tick bite (4) and resembles a red, bull’s eye target. If left untreated, the rash 

can become larger and can spread to additional skin lesions throughout the body and 

change in appearance and magnitude (2). In late disseminated infection, B. burgdorferi 

can be found throughout various body tissues and the nervous system (3). Regardless of 

whether antibiotic treatment is provided, 30-60% of patients will go on to develop late-

stage Lyme disease symptoms that include encephalomyelitis, carditis, and arthritis (7, 

8). These symptoms can also be seen in various other diseases, which makes Lyme 

disease difficult to diagnose properly. Patients can develop some or all of these signs and 

symptoms, and the severity and duration of the signs and symptoms are also highly 

variable. When Lyme disease is suspected, a physician can order antibody testing on the 

patient. Antibodies to B. burgdorferi are measured using a 2-step serological process (9). 

First, an enzyme immunoassay is run on a blood sample to screen for B. burgdorferi 

antibodies. If the blood sample test is positive for B. burgdorferi antibodies, a western 

immunoblot is performed to detect specific proteins related to the bacteria. In order for 
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these tests to be analyzed properly, it is best to know the approximate date of infection. 

Antibody levels vary depending on length and severity of infection, so a recently bitten 

patient may be infected but may not yet have detectable antibody levels in their blood 

(10, 11). The primary treatments for B. burgdorferi infection are various antibiotics. 

However, the age of the patient, the stage and severity of the infection, and the symptoms 

present will ultimately guide how the patient is treated (3).  

Due to the wide range of symptom prevalence, severity of the symptoms, and 

severity of the disease, there is reason to believe that studying genetic differences in the 

bacteria and the host (12–15), as well as the host immune response (16, 17), will lead to a 

further understanding of the complete Lyme disease spectrum. It is estimated that 10% of 

patients treated with antibiotic will experience sustained symptoms, even though 

evidence of persisting active infection is lacking (18). This occurrence rate is of great 

interest for the study of Lyme arthritis and B. burgdorferi infection. Interestingly, not all 

isolates of B. burgdorferi isolates are able to disseminate from the skin to other tissues. 

The ability of a B. burgdorferi isolate to cause disseminated disease is clearly dependent 

on its particular genetic composition, with at least 3 bacterial groups identified with 

distinct invasive potentials. Isolates were genetically grouped by genotyping outer 

surface protein C sequences, 16S and 23S rRNA intergenic spacer region sequence, and 

by additional multilocus sequence typing (8, 9, 19–21). In order for Lyme arthritis to 

develop, the isolates must invade the joint tissue. However, different individuals infected 

with the same genetically identical invasive isolate can display a spectrum of symptoms 

and severity, revealing that the individual’s host immune responses are also responsible 

for some of the differences in infection, symptom severity, and symptom persistence. To 
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further assess these variances in bacteria and host, molecular markers are evaluated 

within the host’s infected tissues, fluids, and systems.  

 

Studying the importance of genetics in Lyme arthritis  

Animal models are used to study Lyme arthritis to evaluate in vivo effects of 

specific genes and gene products related to the bacterial infection and subsequent 

inflammation seen in Lyme arthritis. In a previous study, Barthold and colleagues 

demonstrated that a single low dose of B. burgdorferi given intradermally caused arthritis 

and carditis of varying severity in 5 different strains of laboratory mice, implicating 

genetics of the host as a determinant of disease severity (22). The arthritis severity of 

C57BL/6 mice and C3H mice are used to illustrate the wide spectrum of human Lyme 

arthritis. Over a range of inoculum doses, B. burgdorferi was found to cause mild arthritis 

in C57BL/6 mice and severe arthritis in C3H mice (23). BALB/c mice were seen to 

develop mild arthritis in these early studies, but later studies showed that larger infectious 

doses could cause the BALB/c mouse to develop severe arthritis (23–25). Due to the 

varying arthritis severity seen in the laboratory, the BALB/c mice has had limited use in 

the study of Lyme arthritis.  

Both forward genetics and empirical approaches have been taken to assess 

differences in arthritis severity in the C57BL/6 and C3H mouse strains and these 

approaches have converged on the importance of the Type I interferon (IFN) response 

(26) and the hypomorphic GusB allele found in the C3H mouse (27). The GusB gene 

encodes the β-glucuronidase enzyme, which digests glycosaminoglycans (GAGs) in the 

tissues. C3H mice contain an allele that causes reduced β-glucuronidase activity, which 
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results in an increase in GAG accumulation in the tissues, which causes increased 

inflammation in the tissue (27, 28).  

Previous studies comparing over 100 mouse strains using SNP-based analysis 

places C3H and BALB/c mice on the same branch of the SNP-based mouse family tree 

(29). Interestingly, the BALB/c mouse does not carry the hypomorphic GusB allele that is 

associated with Lyme arthritis development in the C3H mouse. So, due to their genetic 

relatedness (30) and the lack of the GusB hypomorphic Lyme arthritis marker, it was 

proposed that the BALB/c mouse might develop a similar exaggerated Type I IFN profile 

as seen in C3H mice during Lyme arthritis development. 

Through gene expression profiling in joint tissues from C57BL/6 and C3H mouse 

strains, it was found that IFN-induced transcripts had a robust peak in C3H mice seen at 7 

days post infection that did not appear in C57BL/6 mice (31). This was a preclinical 

response demonstrating that it may drive Lyme arthritis in these mice. Through forward 

genetic approaches, a quantitative trait locus (QTL) termed Bbaa1 that spans the Type I 

IFN gene cluster on Chr4 was identified that regulated arthritis severity and the 

magnitude of the Type I IFN response (32). Congenic mice on the C57BL/6 background 

with the C3H Bbaa1 allele (B6.C3-Bbaa1) revealed that Bbaa1 regulates arthritis severity 

through intrinsic control of Type I IFN production (33). Using bone marrow-derived 

macrophages (BMDM) from C57BL/6, C3H, B6.C3-Bbaa1, and C3.B6-Bbaa1 as a 

surrogate for myeloid cells, the laboratory saw that in the cells containing the C3H allele 

of Bbaa1, the Type I IFN profile was greater than in the mice that possessed the C57BL/6 

allele for Bbaa1 (the Type I IFN cluster) when co-incubated with B. burgdorferi or the 

unrelated IFN stimulant poly I:C (33). These studies suggest that the C3H alleles for the 
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Type I IFN gene cluster and flanking DNA within Bbaa1contribute to the severe Lyme 

arthritis seen in infected C3H mice. 

 

The importance of inflammatory cytokines and enzymes 

When an infection event occurs, the immune system springs into action to fight 

the infection. To function efficiently, the immune system essentially has positive and 

negative regulatory cytokine production to control the magnitude of the response. Some 

major cytokines that work to increase the immune response are IFN, TNF, IL-6, and IL-

12. Negative regulators include cytokines such as IL-10, TGF-β, and cell surface markers 

such as PD-1. If the immune system fails to keep an accurate balance, these regulators 

can go from being helpful to pathogenic. For example, systemic lupus erythematosus 

(SLE) and rheumatoid arthritis (RA) are examples of inflammatory disorders caused by 

the immune system attacking itself called autoimmunity. 

In mice, Type I IFNs are a group of interferon proteins that consist of 14 IFN-α’s 

and 1 IFN-β. In response to B. burgdorferi infection, IFNβ is more highly produced than 

the IFN-α’s, so the laboratory has focused on determining what regulates IFNβ in the 

Bbaa1 mouse locus, and how IFNβ relates to other genes within the locus. If IFN 

response is not regulated properly, it can become over-expressed, which will eventually 

lead to a pathogenic Type I IFN response causing severe inflammation in Lyme arthritis. 

In SLE, IFNα had been shown to be more important than IFNβ (34) in causing the 

inflammatory state, and blocking Type I IFNs has reduced symptoms severity (35).  

Multiple cell types produce and respond to Type I IFNs. These include: 

fibroblasts, macrophages, endothelial cells, osteoblasts, B cells, T cells, and natural killer 
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cells. The laboratory found that the cells within the joint tissue that produce the largest 

amount of IFN-related transcripts related to Lyme arthritis are endothelial cells and 

synovial fibroblasts (36). In SLE, plasmacytoid dendritic cells (pDC) are a major source 

of IFNα and peripheral blood mononuclear cells (PBMCs) are used to measure Type I 

IFN-related gene products (37). 

On the other side of the immune system, IL-10 has been found to be very 

important in reducing the immune response, and more specifically in Lyme arthritis, it 

reduces arthritis development. The laboratory found that macrophages and CD4+ cells are 

the primary source of IL-10 in the infected joint tissue (38, 39). This study and others 

suggested that if IL-10 is produced early on in infection, the pathogenic IFNγ profile 

could be reduced (38, 40). Other studies have shown that the origin of the macrophages 

(41, 42), as well as their polarization (43), can influence their ability to produce certain 

cytokines. The laboratory uses BMDM in many studies because they can be expanded as 

a pure primary cell culture that is genetically representative for each mouse strain (44).  

Other cytokines that are directly related to Lyme arthritis include IL-1, tumor 

necrosis factor α (TNFα), and matrix metalloproteinases (MMPs). In the synovial fluid 

of Lyme arthritis patients, and in in vitro studies, elevated levels of TNFα and IL-1 have 

been found (45–47). MMPs play a role in Lyme arthritis by participating in cartilage 

erosion, extracellular matrix degradation, and pathologic processes (45). These cytokines 

also play a role rheumatoid arthritis (RA) and osteoarthritis (OA) (48–54). BALB/c mice 

have been studied extensively with RA, but not with Lyme arthritis (55–58). In the model 

of systemic lupus erythematosus (SLE), BALB/c mice develop high levels of 

autoantibodies against dsDNA and RNA when injected with 2,6,10,14-
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tetramethylpentadecane (more commonly known as pristine) (59). BALB/c mice also 

develop arthritis and nephritis in the lupus model and have an IFN gene signature. 

However, they develop a slower and less severe disease compared to some other mouse 

strains (37). BALB/c mice have been studied using multiple forms of induced arthritis 

(IA) which include: collagen (CIA), collagen antibody (CAIA), and proteoglycan (PGIA) 

(56, 57, 60, 61). 

 

BALB/cJ mice and inflammation 

BALB/c mice became interesting to the laboratory as a possible new model for 

Type I IFN-driven Lyme arthritis. As previously stated, BALB/c mice have been studied 

in various forms of inflammatory diseases such as SLE and RA that result in arthritis 

among other symptoms. Research has also shown using SNP-based categorization that 

BALB/c mice and the hyper Type I IFN producing C3H mice are closely related. 

Interestingly, the BALB/c mouse lacks a hypomorphic GusB allele that is seen in the 

C3H mouse to be influential in more severe Lyme arthritis development. Therefore, we 

hypothesized that Lyme arthritis observed in BALB/c mice could be at least partially 

dependent on the Bbaal genetic locus. Bbaa1, the locus that encodes Type I IFN, has 

been identified as important for severe Lyme arthritis in C3H mice, and might also be 

important for the BALB/c mouse to develop pathogenic hyper production of Type I IFN. 

Interestingly, widely used immortalized macrophage cell lines, the RAW 264.7 (ATCC® 

TIB-71™) cells, were originally derived from the BALB/c mouse. RAW 264.7 cells are 

suitable for transfection (62), have been used in the study of SLE (59), and could be a 

good, sustainable in vitro model to study IFN regulation important in Lyme arthritis. 
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Determining the IFN profile of the BALB/c mouse became a new direction that the 

laboratory could explore to further our understanding of B. burgdorferi and Lyme 

arthritis.  

 



	
	

	

MATERIALS AND METHODS 

 

Mice 

BALB/cJ and C3H/HeJ mice were obtained from Jackson Laboratory at 6 weeks 

of age. All mice used in this study were housed in a pathogen-free University of Utah 

Animal Research Center (Salt Lake City, UT) and cared for following all institutional 

guidelines for the care and use of mice in biomedical research and in accordance with 

protocols approved by the University of Utah Institutional Animal Care and Use 

Committee (IACUC). 

 

Bacterial cultures for infection, co-incubation, and phagocytosis 

For infection, a low-passage clonal derivative of B. burgdorferi strain N40 was 

stored at -80˚C and then cultured 6–7 days in Barbour–Stoenner–Kelly II medium (BSK 

II) containing 6% rabbit serum (Sigma-Aldrich) before infection experiments. S. 

Barthold, University of California Davis, provided the N40 isolate. 6- to 7-day-old 

cultures of live B. burgdorferi were visualized using a dark field condenser and counted 

using a Petroff-Houser counting chamber. Spirochetes were diluted with BSK II when 

necessary to reach of concentration of 2 x 105 or 2 x 106 / 20µl for injection. 

For co-incubation with bone marrow-derived macrophage (BMDM), B. 

burgdorferi was cultured for 12-14 days in BSK II medium containing 6% rabbit serum. 

After visualization and counting, aliquots of the B. burgdorferi were centrifuged at 
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5000xg for 10 minutes. The bacterial pellets were resuspended in room temperature PBS 

to wash the spirochetes, centrifuged again, and then resuspended in serum-replacement 

medium at 3 x 106 or 3 x 107. Serum-replacement medium contains RPMI-1640 

(Invitrogen), and 1% Nutridoma (Roche).  

For phagocytosis by peritoneal-derived macrophages, GFP-B. burgdorferi were 

cultured for 7 days in BSK medium containing 6% rabbit serum (63, 64). The 

concentration of spirochetes was determined and aliquots of the bacteria were centrifuged 

at 5000xg for 10 minutes, washed, and resuspended in RPMI.B (75% [RPMI 1640 + 10% 

FBS] + 25% [BSK II + 6% rabbit serum]) at a concentration of 2.5 x 107 /mL (65). 

 

Cell culture 

Bone marrow-derived macrophages (BMDMs) were isolated from the femurs and 

tibias of BALB/cJ and C3H/HeJ mice. BMDM were plated at 7.5 x 106 / dish and 

cultured for 7 days in RPMI 1640 supplemented with 30% L929 conditioned medium and 

20% horse serum (HyClone) (33, 44). Near confluency, macrophage cultures were 

collected and replated in 24-well dishes at a density of 3 x 105 /well in medium 

containing 1% Nutridoma serum-replacement. The next day, the medium was removed 

and replaced with either medium alone or stimulated with a concentration of 3 x 106 or 3 

x 107 B. burgdorferi /well which had been cultured and prepared as previously described 

(44). Stimulated macrophage cultures were incubated at 37˚C, 5% CO2, and harvested 

either at 6 or 24 hours in TRIzol reagent (Invitrogen) for RNA extraction (66). At 

harvest, the cells were shaken for 7 minutes at 300 rpm using a plate shaker (Labnet 

Shaker 20) to homogenize the cells, then stored at -80°C. 
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Infection of mice, assessment of infection, and assessment  

of arthritis severity 

Mice 6 to 7 weeks of age were infected with 2 x 105 or 2 x 106 of the clonal N40 

B. burgdorferi spirochetes by intradermal injection into the skin of the back. This mode 

of infection is reported to require the fewest number of spirochetes and to most closely 

mimic a natural tick transmission (23). Mice were infected for a period of 7-35 days. 

Mice infected for 28-35 days had measurements of the thickest anteroposterior portion 

taken of the ankle with the joint extended using a metric caliper on the day of infection 

and at euthanization. The change in joint thickness was determined by the difference 

from the initial measurements and the final measurements. The most swollen joints were 

collected for histological assessment of arthritis severity and were fixed in 10% neutral- 

buffered formalin, and then decalcified prior to embedding, sectioning, and staining with 

H&E. The less swollen joints were stored in RNALater (Invitrogen) for RNA extraction.  

To confirm infection in mice infected less than 14 days, bladder cultures were 

collected at the time of euthanization and observed using dark field condenser 

microscopy 14 to 21 days later for the presence of B. burgdorferi. ELISA quantification 

of B. burgdorferi-specific IgM and IgG concentrations was used to confirm infection in 

mice that were euthanized 14-35 days after infection. Blood was collected from mice at 

time of euthanization from submandibular puncture and heart puncture when necessary. 

Blood was allowed to clot and serum was collected after centrifugation. 16S RNA of B. 

burgdorferi was also assessed using qRT-PCR for mice infected 7-35 days. 
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Phagocytosis assay 

Peritoneal macrophages were harvested 4 days after intraperitoneal injection of 3 

ml 3% sterile thioglycollate, which has been shown to recruit macrophages to the 

peritoneum (67). Macrophages were collected with ice-cold PBS, and RBCs were lysed 

with ACK lysis buffer. Cells in RPMI 1640 + 10% FBS were plated at 5 x 105 /well in 

12-well plates and allowed to adhere overnight. The next day, nonadherent cells were 

removed by washing with RPMI 1640 + 10% FBS. B. burgdorferi N40-expressing GFP 

were then added to the macrophages in RPMI.B (75% [RPMI 1640 + 10% FBS] + 25% 

[BSK II + 6% rabbit serum]) at a 50:1 ratio (65),(64). Plates were centrifuged at 5000x g 

for 5 minutes and incubated for 1 or 2 hours at 37˚C and 5% CO2, conditions previously 

shown to capture midway and maximal phagocytosis (63). Plates were then washed and 

incubated with 0.25% Trypsin + EDTA (Sigma-Aldrich) for 5 minutes. After incubation, 

the cells were washed and resuspended in flow buffer (PBS + 2% FCS + 2.5% 1M 

HEPES). Cell suspensions were analyzed using a BD FACS Canto II flow cytometer 

FITC channel.  

 

ELISA assays 

ELISAs were performed to quantify protein levels of: B. burgdorferi-specific IgG 

and IgM, Cxcl13, MMP3, MMP13, and TNFα. Determination of B. burgdorferi-specific 

IgM and IgG concentrations was performed as previously described (68). TNFα was 

quantified using methods previously described (63). Cxcl13 was analyzed using the 

Mouse BLC (Cxcl13) ELISA Kit (Thermo Fisher). MMP3 ELISA was performed using 

Mouse MMP3 ELISA Kit (Thermo Fisher). MMP13 was evaluated using the ELISA Kit 
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for Mouse MMP13 (Cloud-Clone Corp).  

 

Isolation of RNA and quantification using qRT-PCR 

Total RNA was recovered from homogenized tibiotarsal joint tissue or cell 

homogenate using TRIzol reagent (Invitrogen). The rear ankle joint tissue was obtained 

from sacrificing the BALB/cJ and C3H/HeJ mice, removing the skin, harvesting the 

joints, and storing the tissue in RNALater (Invitrogen) until homogenized. Joint tissue in 

TRIzol reagent was homogenized using a Benchmark BeadBug microtube homogenizer. 

5 mg total RNA was reverse transcribed using random hexamer primers and Moloney 

murine leukemia virus RT (Invitrogen). Transcripts were quantified using LightCycler 

SYBR Plus master mix and a LC-480 PCR system (Roche). The copy number of the gene 

of interest was calculated from the starting template sample and normalized to 1,000 

copies of the mouse β-actin housekeeping gene. The primers used for amplification are as 

follows: β-actin, Iigp1, Stat1, MMP3, Cxcl13, and B. burgdorferi 16S rRNA (31), Cxcl9, 

Oasl2, and IFNγ (69), Gbp2 (70), TNFα and IFNβ (66), with sequence information in the 

indicated citations. Primers for MMP13 were: MMP13 forward (5' 

TGCATATGAACATCCATCCC 3’) and reverse (5' AGAAGAAGAGGGTCTTCCC 3'). 

 

α-TNFα infection experiment 

Mice infected with 2 x 106 B. burgdorferi received i.p injections of Rat IgG1 

(TNP6A7) or anti-TNFα antibody (XT3.11) at 0.5mg/ mouse the day before infection 

and every other day after for 28 days. The antibodies used here for neutralization and 

isotype control were purchased from BioXCell, were aggregate and endotoxin free, and 
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sterile. The uninfected control group was injected every other day with PBS to mimic the 

treatment groups and once with BSK II to mimic the infection event. 

 

Conjugated antibodies for flow cytometry 

The following antibodies were purchased from either Biolegend or eBioscience 

and used for flow cytometry analysis: PE/Cy7-conjugated anti-CD11b (M1/70) and anti-

CD11c (N418); FITC-conjugated anti-CD80 (16-10A1) and anti-TLR2 (T2.5); 

PerCP/Cy5.5- conjugated anti-F4/80 (BM8) and anti-CD4 (GK 1.5); PE-conjugated anti-

CD3e (145-2C11) and anti-CD335/NKp46 (29A1.4); APC-conjugated anti-CD206/MMR 

(C068C2) and anti-CD44 (IM7); BV 605-conjugated anti-B220/CD45R (RA3-6B2); BV 

421-conjugated anti-CD62L (MEL-14) and anti-MHC II (M5/114.15.2); and AF 700-

conjugated anti-CD8a (53-6.7) and anti-CD86 (PO3). 

 

Data and statistical analysis 

All data represent mean ± SEM. All statistical calculations were performed using 

GraphPad Prism 7. Statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001) is indicated. Continuous variables and 2-sample data sets were analyzed by 2-

tailed Student t test. Multiple-sample data sets were analyzed using 1-way ANOVA with 

Tukey’s post hoc tests for pair-wise comparisons. Flow cytometry data were analyzed 

using FlowJo 10. 1r7, then data were statistically analyzed using Prism 7.  

 



	
	

	

RESULTS 

 

Optimization of infection with Borrelia burgdorferi in the  

BALB/cJ mouse model 

In trying to repeat previous infection protocols for BALB/c mice, we discovered 

through qRT-PCR, bladder cultures, histology, and ankle measurements that a dose of 2 x 

105 B. burgdorferi was not sufficient to establish infection. Failure of infection was 

observed at days 7, 8, 9, and 28 days after infection, and arthritis was not seen in mice 

sacrificed 28 days post infection.  

A modified infection protocol was performed using a larger dose of 2 x 106 B. 

burgdorferi. The infectious dose was now 100 times larger than the 2 x 104 typically used 

in our C3H mouse model. Previous studies have shown that the C3H mouse will develop 

a severe arthritis phenotype regardless of increased dose (23). This is important for when 

C3H mice are used for comparison with BALB/c mice in this study, because the 

increased dose should not alter the arthritis development in the C3H mouse.  

Arthritis severity was measured at 4 weeks post infection for the BALB/c mice 

and C3H mice, and there was evidence of moderate to severe ankle swelling in the 

infected groups. The arthritis was not as pronounced as the laboratory had seen 

previously in the BALB/c mice (23), so the experiment was allowed to run for an 

additional week. At 5 weeks post infection the animals were euthanized and their rear 

ankle joints were measured and harvested (Figure 1.A). The ankle swelling of the 
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BALB/c mice was considered an intermediate arthritis with an average change in 

swelling of the most swollen joint of 0.46mm. cDNA analysis of 16S B. burgdorferi 

RNA in the joint tissue homogenates of infected BALB/c mice (Figure 1.B) showed only 

a small increase of B. burgdorferi 16S RNA in infected BALB/c mice compared to the 

controls. To verify the qRT-PCR results and show a systemic presence of B. burgdorferi 

in the BALB/c mice, an ELISA was performed that was specific for IgG that reacts with 

B. burgdorferi in the serum of these animals. The results from the ELISA indicated that 

there was a significant humoral response to B. burgdorferi in the BALB/c mice (Figure 

1.C). Additional experiments were performed with the 2 x 106 infectious dose of B. 

burgdorferi, and at 2 weeks post infection, B. burgdorferi-specific IgM was tested. The 

B. burgdorferi IgM-specific ELISA showed a significant level of protein in the serum of 

BALB/c mice at 2 weeks post infection (Figure 1.D). There was now a working 

infectious model that resulted in intermediate arthritis in BALB/c mice when infected 

with B. burgdorferi and induced a strong adaptive immune response. 

C3H mice were also included in the 5 week infection experiment as a control for 

arthritis severity. As seen in Figure 1.A, the C3H mice developed severe arthritis with an 

average change in joint thickness of the most swollen joint of 0.84mm, greater than seen 

with the BALB/c mice. This helped confirm that the B. burgdorferi stock being used was 

able to cause severe arthritis, and that the initial problem with the infection protocol was 

restricted to the infectious dose in BALB/c mice. It also showed a clear difference in the 

amount of 16S RNA of B. burgdorferi in the joint tissue of BALB/c and C3H mice 

(Figure 1.B), with C3H mice having close to 6 fold higher levels present than BALB/c 

mice at 5 weeks post infection. This result demonstrated that the B. burgdorferi were able 
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to infiltrate the joint tissue. The C3H mice were also tested for B. burgdorferi-specific 

IgG (Figure 1.C), and again that response was greater in the C3H mice than in the 

BALB/c mice. The results of testing the infected C3H mice confirmed the efficacy of the 

modified infection protocol and highlighted differences in arthritis severity and B. 

burgdorferi levels within the BALB/c and C3H mice. 

 

Determining IFN responses in BALB/cJ mice infected  

with Borrelia burgdorferi 

Using SNP-based assessment of genetic relatedness in >100 mouse strains, 

Petkov, et al. previously grouped BALB/c and C3H mice on genetically related branches 

of the mouse tree (29). Interestingly, BALB/c mice do not possess the hypomorphic allele 

for GusB previously associated with Lyme arthritis severity in C3H mice (27). This 

suggests that the second arthritis-promoting phenotype in C3H mice, the hyperproduction 

of Type I IFN, may be shared between the BALB/c and C3H mice, which could be 

important in arthritis development in the BALB/c mice. Furthermore, BALB/c and C3H 

mice share novel SNPs in the region flanking the Type I IFN genes (29), leading to the 

hypothesis that the BALB/c mouse would have a similar hyperproduction of Type I IFN 

responsive transcripts. To test the hypothesis, multiple mouse experiments were 

performed that directly compare the BALB/c mouse and the C3H mouse in response to 

infection with B. burgdorferi. We have already demonstrated that the BALB/c mouse and 

C3H mouse have different severities of arthritis (Figure 1.A) and levels of B. burgdorferi 

(Figure 1.B-C), so now we aimed to evaluate other differences and similarities between 

the 2 strains of inbred mice. 
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To explore the possibility of a hyper Type I IFN profile similar to what the 

laboratory has seen in the C3H mouse (31), a simple infection experiment was 

performed. BALB/c and C3H mice were infected with 2 x 106 B. burgdorferi and 

sacrificed at 1 week post infection. Type I IFN responsive transcripts were analyzed 

along with 16S RNA of B. burgdorferi (Figure 2). As expected, the C3H mouse 

presented with elevated Type I IFN-related transcripts including: Cxcl9, Oasl2, and iigp 

(Figure 2.C-E).  

In the BALB/c mouse, there was very little evidence of a Type I IFN response at 

1 week post infection. The only IFN- related transcript that was elevated was Cxcl9 

(Figure 2.C). 16S RNA of B. burgdorferi (Figure 2.F) and bladder cultures demonstrated 

that B. burgdorferi had not fully disseminated in the BALB/c mice at 1 week post 

infection. These results indicate that there is not a 1 week post infection Type I IFN 

response detectable in joint tissue of BALB/c mice. 

The lack of 16S RNA in joint tissue at 1 week of infection suggested that 

dissemination of B. burgdorferi in the BALB/c mouse was delayed, and that there might 

also be a delay in the appearance of the Type I IFN profile. Since the BALB/c mouse 

does develop arthritis in response to infection with B. burgdorferi, it was also important 

to evaluate if Type II IFN (IFNγ) plays a role in arthritis development. This is because 

Type II IFN response starting at 2 weeks post infection drives the development of Lyme 

arthritis in another model used in the lab, the C57BL/6 IL-10-/- mouse model (31). Thus, 

the hypothesis was developed that Type I or Type II IFN induced at 2 weeks of infection 

could contribute to arthritis development in BALB/c mice. 

To assess the presence of any IFN response, BALB/c mice were infected with 2 x 
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106 B. burgdorferi and euthanized at 2 weeks post infection. No C3H mice were included 

in this experiment, since it has already been shown that C3H mice have an IFN response 

at 1 week post infection that returns to baseline by 2 weeks of infection and do not 

display elevation greater than 2 fold in IFNγ or IFN-inducible transcripts at 2 weeks of 

infection (31). Joint tissue was obtained and evaluated for B. burgdorferi infiltration and 

IFN-related transcripts as before (Figure 2.A-F). Upon analysis of 16S RNA of B. 

burgdorferi, it was confirmed that joint infiltration had occurred at 2 weeks post infection 

(Figure 2.F) in the BALB/c mice. However, analysis of IFN-related transcripts still 

demonstrated that there was not an IFN response present in the BALB/c mouse (Figure 

2.A-E). After determining that there was no evidence of a robust IFN response similar to 

C3H in the BALB/c mouse, it was important to explore other inflammatory pathways in 

an attempt to find activated inflammation markers responsible for driving the arthritis 

phenotype in the BALB/c mouse. 

 

Identification of inflammatory markers that are altered in response  

to Borrelia burgdorferi infection in BALB/cJ mice 

After testing for the presence of a robust IFN profile in BALB/c mice, and not 

finding 1, there was a sufficient amount of samples remaining to assess other pathways. 

BALB/c and C3H samples at various time points were analyzed for 54 different 

inflammatory markers previously identified in tissues from B. burgdorferi infected mice. 

Of the 54 markers evaluated, 4 were deemed interesting: TNFα, Cxcl13, MMP3, and 

MMP13. TNFα is a member of the innate immune response, and has been seen to be 

important in disease progression and arthritis severity in rheumatoid arthritis (48, 71). 
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Cxcl13 is a B cell chemoattractant found primarily in germinal centers and considered a 

marker for neuroborreliosis. Matrix Metalloproteinases (MMPs) have been strongly 

linked to multiple forms of arthritis (45, 46, 48, 49, 72, 73) and are important in tissue 

remodeling. Each marker selected was considered to be of interest in the BALB/c mouse 

because it was elevated at least ten fold above the uninfected control animals in at least 1 

of the time points collected (Figure 3.A, C, E, and G). ELISA assays were also performed 

for these markers to evaluate systemic levels in serum (Figure 3. B, D, F, and H). For the 

ELISAs, a group of C3H mice infected with 2 x 104 B. burgdorferi that had been 

sacrificed at 4 weeks post infection were included to observe any systemic differences in 

comparison to the group infected with 2 x 106 B. burgdorferi and sacrificed at 5 weeks 

post infection. 

In the BALB/c mice, TNFα, Cxcl13, MMP3, and MMP13 are all at their highest 

elevations at 2 weeks post infection in the joint transcripts (Figure 3.A, C, E, and G). This 

is also seen to be the peak in 16S RNA of B. burgdorferi in the BALB/c joint tissue 

(Figure 2.F) and in previous studies with C3H mice (31). However, in the serum at the 2 

week post infection time point, Cxcl13 was the only marker elevated relative to 

uninfected mice (Figure 3.B, D, F, and H). The peak at 2 weeks post infection seems to 

correlate with the immune response being fully ramped up to fight the infection, and with 

the peak of B. burgdorferi in the joint tissue. 

Since there were no C3H mice included in the 2 week post infection group, I used 

previous studies to compare to my findings with the 2 week post infection BALB/c mice 

(31). Using the previously published data, none of the transcripts upregulated in BALB/c 

mice at 2 weeks post infection were upregulated in C3H mice. However, 16S RNA of B. 
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burgdorferi was highest at 2 weeks post infection in both BALB/c and C3H mice. Thus, 

not only do BALB/c mice lack a robust IFN response, they also respond to B. burgdorferi 

infection and develop arthritis very differently from the C3H mice.  

 

Evaluating differences in cytokine production between BALB/cJ  

and C3H/HeJ bone marrow-derived macrophages in vitro  

when challenged with Borrelia burgdorferi 

It was hypothesized that in the BALB/c mouse, the innate immune response, 

mainly its ability to recruit immune cells to the site of infection, may be responsible for a 

heightened ability to control infection in the mouse by increasing cytokine production. 

This was hypothesized after discovering the heightened TNFα level, reduced B. 

burgdorferi numbers, and minimal IFN response following infection of BALB/c mice 

and relative to the C3H mice. To test this hypothesis, BALB/c and C3H bone marrow-

derived macrophages (BMDM) were harvested from the mice to stimulate with B. 

burgdorferi in vitro and determine if 1 strain had a stronger cytokine response than the 

other. BMDM were chosen because they can be harvested and, using appropriate 

conditions, can be expanded as a pure primary cell culture that is genetically 

representative for each mouse strain (44).The macrophages were cultivated with B. 

burgdorferi as described in the materials and methods (44).  

There were many differences between the BALB/c and C3H cytokine production 

and between the treatment groups. I will only discuss a few of the results that have 

meaning to this particular study. These results were significant in cultures tested with a 

10:1 MOI for BMDMs and were significant between strains in the treated groups. Shown 
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in this experiment was evidence of robust induction of IFN responsive transcripts in the 

BALB/c macrophages (Figure 4.A-D) that was not seen in joint tissues collected from 

infected mice in vivo (Figure 2.). Interestingly, the magnitude of IFN-inducible response 

in the C3H macrophages was greater than in the BALB/c macrophages.  

Importantly, transcriptional upregulation of TNFα, a gene downstream of NFκB 

and not considered IFN inducible, was more highly elevated in BALB/c macrophages 

than in the C3H macrophages treated with B. burgdorferi for 6 and 24 hours (Figure 4. E-

F). This establishes that TNFα in BALB/c mice is elevated both in vitro and in vivo in 

response to B. burgdorferi challenge. These findings suggest that the innate immune 

system is influential in responding to infection from B. burgdorferi, and that TNFα is 

important in the early immune response. This led us to hypothesize that TNFα is an 

important cytokine for the control and development of arthritis in BALB/c mice. 

 

Measuring the phagocytic ability of BALB/cJ and C3H/HeJ  

peritoneal-derived macrophages to ingest  

GFP-B. burgdorferi 

We have shown that BALB/c mice are seemingly able to control levels of 

infection with B. burgdorferi better than C3H mice (Figure 1). The true mechanism for 

this difference is not known. It is hypothesized that macrophages in BALB/c mice are 

better at internalizing and presumably killing the B. burgdorferi than the C3H mouse. 

Phagocytic ability could be an important tool in controlling B. burgdorferi numbers and 

overall infection.  

A phagocytosis assay using peritoneal derived macrophages was performed as 



24	

	

described in the Material and Methods (33, 63). GFP-B. burgdorferi is a B. burgdorferi 

strain N40 constitutively expressing GFP under the flaB promoter (64), which allows us 

to ascertain the number of B. burgdorferi that have been internalized by the macrophages 

using flow cytometry. After trypsin treatment, there was clear evidence that BALB/c-

derived peritoneal macrophages were far better at internalizing B. burgdorferi at 1 and 2 

hours post challenge in comparison to the C3H-derived peritoneal macrophages (Figure 

5.A). Furthermore, not only did more macrophages from BALB/c mice ingest B. 

burgdorferi, but also each macrophage contained a greater number of B. burgdorferi 

within them as determined from the mean fluorescence intensity (MFI) (Figure 5.B). 

These findings suggest that BALB/c peritoneal macrophages are indeed better at 

internalizing B. burgdorferi in comparison to C3H macrophages.  

 

Assessing the effects of blocking TNFα on control of Borrelia  

burgdorferi numbers in tissues and arthritis severity 

After evaluating TNFα levels in joint transcripts, serum protein, and in bone 

marrow-derived macrophages, we next wanted to determine the effects of blocking 

TNFα in BALB/c mice. TNFα blockade has been shown to be beneficial in rheumatoid 

arthritis (RA) by both decreasing symptom severity and stopping disease progression (74, 

75). Approximately 70% of the RA patients given the TNFα blocking treatment obtained 

these results. Of the 30% of RA patients that did not, many had a significant Type I IFN 

profile. The significant Type I IFN profile was not seen in the group of patients that 

benefited from the TNFα blockade (74, 75). This suggested that TNFα blockade might 

serve as a possible treatment for some Lyme arthritis patients lacking an IFN profile. To 
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test the effects of blocking TNFα on arthritis severity and to observe its effects on B. 

burgdorferi numbers in the joint tissue, an infectious experiment was designed using 

BALB/c mice. C3H mice were not used for this experiment since they develop a Type I 

IFN profile that drives arthritis and were not hypothesized to benefit from TNFα 

blocking treatment.  

BALB/c mice were treated every other day with i.p injection of 1 of 3 conditions: 

PBS, rat IgG1, or anti-TNFα. The group receiving PBS treatment was an uninfected 

control group, and the other 2 groups were infected with 2 x 106 B. burgdorferi. After 4 

weeks, the mice were euthanized and their rear ankle joints were harvested. Draining 

lymph nodes were also harvested from these mice to compare leukocyte levels in the 3 

groups. Joint measurements revealed that TNFα blockade had only a small effect, if any, 

on arthritis severity between infected groups (Figure 6.A). To confirm systemic 

dissemination, B. burgdorferi-specific IgG levels were assessed and found to be similar 

between infected groups (Figure 6.B), showing no difference obtained by TNFα 

blockade, but demonstrating an adaptive immune response. 16S RNA of B. burgdorferi, 

and transcripts for TNFα, Cxcl13, MMP3, and MMP13 were evaluated as well as various 

other inflammatory markers in the joint tissue. The 16S RNA of B. burgdorferi showed 

evidence of joint infiltration in the infected groups (Figure 6.C), but no effect of TNFα 

blockade on the level of bacteria in the joint tissue. Interestingly, transcripts for 

TNFα were not significantly different among any of the groups at 4 weeks post infection 

(Figure 6.D). Since TNFα is involved in early immune responses, it is possible that the 

lack of difference seen at 4 weeks is simply past the time that differences would be seen 

in vivo. The only marker analyzed of the joint transcripts that had a difference between 
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the 2 infected groups was MMP3 (Figure 6.E). MMP3 is a downstream product of TNFα 

through the NFκB pathway, so this demonstrated a downstream effect of blocking TNFα. 

Since there was no difference seen in joint swelling or in B. burgdorferi number, it is 

determined that blocking TNFα is not responsible for controlling B. burgdorferi infection 

in BALB/c mice.  

Draining lymph nodes were also harvested from these mice to evaluate cell 

populations. In the popliteal and inguinal lymph nodes, there were various differences 

between the control, infected isotype control, and infected TNFα blockade groups. The 

total number of cells in the lymph nodes of infected mice treated with TNFα blockade 

was greater than in those receiving infected isotype control (Figure 7.A). This increase 

could suggest that in absence of TNFα, the adaptive immune system has to elevate its 

attack on the infection. When looking at the percentages of B and T cells in the lymph 

nodes, (Figure 7.B-D) we see that there is a large increase in B cells and a concomitant 

decrease in T cells in the infected groups relative to mock-infected, which is a result that 

has been seen by our laboratory previously (76). After determining overall percent of B 

and T cells, the next step was to look at these cells for evidence of activation. Activated 

CD4+ (CD44+, CD62L-) and B220+ (B220+, GL7+) both showed an increase in number of 

cells in the infected TNFα blockade group in comparison to the infected isotype and 

uninfected control groups (Figure. E-H). This also suggests that TNFα blockade causes 

the adaptive immune system to increase its attack in B. burgdorferi infected BALB/c 

mice. The percentage of activated cells, however, was not significantly different between 

infected isotype control and infected TNFα blockade groups, which suggests that overall 

there was not a significant difference in how the adaptive immune system reacted to the 
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infection (Figure 7.E-H).  

Also interesting was the increase in the number	of natural killer cells, and the 

number of MHC II+ cells in the TNFα blocked group (Figure 8.A-D), which indicates an 

increase in innate immune response. This does suggest that due to a lack of TNFα 

availability, the innate immune system was forced to fight the infection differently than if 

TNFα was available; however, as determined by B. burgdorferi 16S RNA in the joint 

tissue (Figure 6), the BALB/c mice were generally still able to control the infection when 

TNFα was blocked. Overall, TNFα blockade did not have any significant influence on 

controlling B. burgdorferi numbers or the severity of arthritis.  
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Figure 1. Arthritis severity determination and infection verification in BALB/cJ and 
C3H/HeJ mice. BALB/cJ and C3H/HeJ mice were infected for 5 weeks at a 
concentration of 2 x 106 B. burgdorferi. A) Change in joint swelling, B) 16S RNA of B. 
burgdorferi from joint tissue normalized to β actin, and C) anti-B. burgdorferi-specific 
IgG levels in the serum. D) anti-B. burgdorferi IgM levels in the serum at 2 weeks of 
infection in BALB/cJ mice. Statistical significance was determined by ANOVA or 
Student t test for ankle swelling, joint transcripts, and ELISA Ig results. n = 3-10 per 
group. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.   
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Figure 2. IFN-related transcripts and 16S RNA of B. burgdorferi in the joint tissue of 
BALB/cJ and C3H/HeJ mice. BALB/cJ and C3H/HeJ mice were infected with 2 x 106 
B. burgdorferi for 1, 2, or 5 weeks or injected with BSK medium as a control. Joint 
transcript levels were normalized to β actin. A-F) Are joint transcripts levels of: IFNβ, 
IFNγ, Cxcl9, Oasl2, iigp, and 16S RNA of B. burgdorferi, respectively. Significance was 
determined by ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.   
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Figure 3. Joint transcript levels of inflammation markers and related serum protein 
levels. Joint transcript and serum protein levels of TNFα, Cxcl13, MMP3, and MMP13, 
respectively seen at various time points throughout infection. Joint transcripts normalized 
to β actin. Serum Ig levels determined by ELISA assays at various time points in 
infection and infectious concentrations. Statistical significance was determined by 
ANOVA for joint transcripts and ELISA results. *p < 0.05, **p < 0.01, ***p < 0.001, 
and ****p < 0.0001  
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Figure 4. Responses of BALB/cJ and C3H/HeJ BMDM to B. burgdorferi. BMDM 
from BALB/cJ and C3H/HeJ mice were challenged with a 10:1 MOI of B. burgdorferi. 
Transcripts were analyzed using cDNA from cell lysate. A-E) Transcript levels from cells 
harvested at 6 hours of cultivation: Oasl2, Stat-1, GBP2, IFNβ, and TNFα, respectively. 
F) TNFα transcript levels from cells harvested at 24 hours of cultivation. Statistical 
significance was determined by ANOVA and Student t test for cell lysate transcript 
results. n = 3 per group. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.  
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Figure 5. Phagocytic ability of macrophages from BALB/cJ and C3H/HeJ mice. 
BALB/cJ and C3H/HeJ peritoneal derived macrophages where stimulated with a 10:1 
MOI GFP-B. burgdorferi for 1 or 2 hours. Upon completion, cells were trypsinized for 5 
minutes to remove extracellular GFP-B. burgdorferi. A) Percent of macrophages with 
internalized GFP-B. burgdorferi ascertained using flow cytometry B) MFI of 
macrophages that internalized GFP-B. burgdorferi. Statistical significance was 
determined by Student t test for internalized GFP-B. burgdorferi results. n = 3 per group. 
**p < 0.01, and ***p < 0.001.  
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Figure 6. Impact of TNFα  blockade on Lyme arthritis in BALB/cJ mice. BALB/cJ 
mice infected with 2 x 106 B. burgdorferi and treated with isotype control or TNFα 
neutralizing antibody. A) Change in joint swelling at 4 weeks post infection. B) Serum 
levels of anti B. burgdorferi specific IgG. C-E: Joint transcript levels normalized to β 
actin. C) 16S RNA of B. burgdorferi, D) TNFα , and E) MMP3. Statistical significance 
was determined by ANOVA for ankle swelling, ELISA Ig, and joint transcript results. *p 
< 0.05, ***p < 0.001, and ****p < 0.0001.  
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Figure 7. Analysis of lymphocyte populations and activated cell types in draining 
lymph nodes of BALB/cJ mice. Popliteal and inguinal lymph nodes from BALB/cJ 
mice that were infected with 2 x 106 B. burgdorferi and treated with PBS, isotype, or 
TNFα neutralizing antibody. Populations within the lymph nodes analyzed using flow 
cytometry for the presence of T cells (CD3+), then characterized to be either CD4+ or 
CD8+ by a (CD3+CD4+) or (CD3+CD8+) stain and evaluated for activation using CD62L 
and CD44 stains. Activated T cells (CD4+CD62L-CD44+) are distinguished from other T 
cell populations. B cells distinguished by (CD3-B220+) stain. Activated B cells (CD3-

B220+GL7high) were distinguished from other B cell populations (77, 78). A) Total cells 
in the lymph nodes. B-D) Percent of total T and B cells. E-G) Percent and number of 
activated CD4+ and B220+ cells. Statistical significance was determined by ANOVA for 
percentage and total number results. *p < 0.05, **p < 0.01, and ***p < 0.001.  
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Figure 8. Increased number of early immune response cell markers in BALB/cJ 
mice. Popliteal and inguinal lymph nodes from BALB/cJ mice infected with 2 x 106 B. 
burgdorferi and treated with PBS, isotype or TNFα neutralizing antibody. Natural killer 
cells (CD3-CD335+) and MHC II (MHC II+) populations were determined using flow 
cytometry. A and B) The percent and number of natural killer cells determined by CD335 
(NKp46) positive stain (47). C and D) The percent and number of MHC II positive cells. 
Statistical significance was determined by ANOVA for percentage and total number 
results. *p < 0.05 and **p < 0.01. 
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DISCUSSION 

 

Summary 

From this study, it seems that the BALB/c mouse is very different in regard to 

infection with B. burgdorferi when compared with the closely related C3H mouse. The 

laboratory had already found that the BALB/c mouse develops a dose-dependent arthritis 

that is not seen in C3H mice, and that the dose needed for BALB/c mice to develop 

arthritis is 100 times larger than that of the C3H mouse (23). This study performed 

roughly 20 years later now needed an infectious dose of 2 x 106 B. burgdorferi to cause 

intermediate arthritis to develop in BALB/c mice, although low levels of B. burgdorferi 

still cause severe disease in C3H mice. This suggests that something in the laboratory’s 

N40 strain or growth medium has again changed, which is responsible for the increased 

infectious dose needed to induce severe arthritis in the BALB/c mouse. Analysis from 

this study has also shown that there are multiple differences between BALB/c and C3H 

mice in response to B. burgdorferi infection aside from the dose needed for severe 

arthritis.  

Previous studies have suggested that the reason for the dose-dependent nature of 

the BALB/c arthritis phenotype is that the BALB/c mouse is intrinsically better at 

controlling the infection from either the initial site of infection or through some 

mechanism of dissemination control (23).Through various analysis in this study, it was 

seen that the BALB/c mouse model has lower levels of 16S RNA of B. burgdorferi in 
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the joint tissue, lower levels of B. burgdorferi-specific IgG, and less severe arthritis at 5 

weeks post infection than the C3H mouse (Figure 1). These findings suggest that the 

BALB/c mouse is better at controlling a B. burgdorferi infection both locally and 

systemically. In trying to determine what was responsible for the reduced Lyme arthritis 

phenotype, this study demonstrated that peritoneal-derived macrophages are more 

efficient at phagocytizing B. burgdorferi. Thus, enhanced phagocytic capacity of BALB/c 

mice throughout the animal may be 1 of the major contributors to the heightened ability 

to controlling an infection with B. burgdorferi (Figure 5). Another important factor in 

controlling infection may be increased cytokine production. 

BALB/c mice sacrificed at 2 weeks post infection seem to have upregulated the 

largest quantity and magnitude of cytokines to fight the B. burgdorferi infection (Figure 

3), but this upregulation seems to be a local reaction to infection, not a systemic 1. This 

could be due to the fact that at 2 weeks post infection, the BALB/c mouse has the highest 

number of B. burgdorferi 16S RNA in the joint tissue (Figure 2.F), so the immune system 

could be reacting in kind. At 2 weeks post infection, the adaptive immune system has not 

had time to develop mature IgG, so many innate systems are still functioning to control 

the infection. TNFα, being a major innate immune cytokine, could be influential in 

controlling the infection at this early stage.  

The BALB/c mouse has elevated TNFα in the joint tissue collected from mice 

sacrificed at 2 weeks post infection when infected with 2 x 106 B. burgdorferi in vivo, and 

BMDM at both 6 and 24 hours of cultivation with 3 x 106 B. burgdorferi in vitro. 

Elevated TNFα is not seen in the Type I IFN-driven Lyme arthritis phenotype of C3H 

mice. BALB/c mice do not display a robust increase in IFN-related transcripts in vivo 
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(Figure 2). However, BALB/c BMDM’s do display an elevated Type I IFN profile in 

vitro, but not to the magnitude of the C3H BMDM (Figure 4). This result suggests that 

the BALB/c macrophage has the ability to use an IFN pathway of inflammation in vitro, 

but elects to use another pathway, possibly involving TNFα, in vivo. As discussed 

previously, TNFα blockade has been very instrumental as a treatment for RA by both 

decreasing symptoms and stopping disease progression. Treatment outcome can vary 

depending on the disease duration, severity of disease, and IFN profile (74, 75). 

1 way to test the importance of a cytokine in an infection is to deplete or 

neutralize it. To determine the influence that the elevated TNFα has on the BALB/c 

mouse, an experiment was performed that blocked it. BALB/c mice were infected with 2 

x 106 B. burgdorferi and the TNFα was neutralized in vivo using a neutralizing antibody. 

It was hypothesized that the arthritis severity would decrease similarly to how TNFα 

blockade reduces RA symptoms. The results, however, showed that blocking TNFα 

actually had very little influence on the B. burgdorferi infection in the BALB/c mouse at 

4 weeks post infection. Compared to the infected isotype group, there was not a 

significant difference in the number of copies of B. burgdorferi 16S RNA in the joint, the 

concentration of B. burgdorferi-specific IgG, or in arthritis severity (Figure 6). This result 

was in contrast to the impact of TNFα blockade seen in RA.  

To further analyze these data, joint transcript levels of various cytokines were 

evaluated to locate possible downstream effects of blocking TNFα, and of the 30 markers 

evaluated, only 1 marker was significantly different between the 2 infected groups. 

MMP3 was reduced in the infected group that was given the treatment of TNFα blockade 

compared with the infected isotype group and the uninfected control group (Figure 6.E). 
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This further justifies the conclusion that TNFα does not directly affect B. burgdorferi 

numbers or arthritis severity at 4 weeks post infection.  

The only outcome found in this study that seemed to be influenced by TNFα 

blockade was draining lymph node populations. In the popliteal and inguinal lymph node 

populations, the number of activated CD4+ and activated B cells was elevated above both 

the infected and uninfected control groups (Figure 7.G and H). This suggests that 

blocking TNFα caused the adaptive immune system to have a more robust response to 

the B. burgdorferi infection by elevating the number of these activated populations.  

There was also evidence of increased innate immune responses in the draining 

lymph nodes (Figure 8). The number of MHC II positive and the number of natural killer 

cells increased in the infected TNFα blocked group. There were no markers used to 

differentiate B cells from other antigen presenting cells, so it is possible a majority of the 

MHC II cells are in fact B cells. The increase in natural killer cells, however, is a true 

increase due to the selective nature of the antibody used (79). TNFα blockade could be 

allowing more natural killer cells to proliferate and survive to attack the infection. 

From the cumulative results found in this study, it is evident that there is still 

much that is not understood about the infectious relationship between BALB/c mice and 

B. burgdorferi. The BALB/c mice presumably possess an unknown mechanism that 

allows them to control B. burgdorferi infection better than C3H mice. This unknown 

mechanism could be a barrier of some kind or a combination of cell types in the tissues 

that work together more efficiently due to some other factor. The only results from this 

study that can address this mechanism are the enhanced ability of macrophages to 

phagocytize B. burgdorferi and produce more cytokines in response to B. burgdorferi 
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infection.  

 

Future directions 

With so many questions left unanswered, there are many directions in which this 

study could proceed. Most important to the laboratory would be to evaluate the change in 

virulence of the B. burgdorferi. The laboratory is currently using mouse models on the 

C3H and C57BL/6 backgrounds, which do not develop a dose-dependent arthritis, so the 

change in virulence might not be seen at 2 x 104 B. burgdorferi. To evaluate the change, 

various stocks of B. burgdorferi N40 isolate in the laboratory would need to be tested in 

BALB/c mice at higher concentrations to determine if a particular stock is less virulent. 

Another possible reason for the change could be the BSK II growth medium. The stock 

could be fine, but the growth medium is no longer able to support the B. burgdorferi 

growth well enough to maintain virulence in the strain.  

After determining the change in virulence, it would be informative to reevaluate 

the BALB/c mouse strain with an even larger dose of 2 x 107 B. burgdorferi and 

determine if that dose will cause the BALB/c mice to develop severe arthritis. If the 

increased dose causes the arthritis severity to increase more than this study found, then 

the various results found in this study should be reevaluated to look for differences that 

may have arisen from the higher dose. If no changes are found in the cytokine or cellular 

makeup of the BALB/c mice infected with 2 x 107 B. burgdorferi, then additional 

inflammatory pathways should be evaluated in an attempt to define the mechanism that 

causes BALB/c mouse to develop dose-dependent arthritis. 

Regardless of increased dose, additional infection experiments should be 
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performed to evaluate draining lymph node populations. In this current study, lymph 

node populations were only assessed in the TNFα blockade experiment. That experiment 

showed differences in cell populations between the infected groups, but there were only 

minimal cellular markers evaluated. Further research into the lymph node populations 

and the cytokines they produce could help to develop a better picture of the immune 

response to B. burgdorferi in the BALB/c mouse. 

Aside from in vivo experiments with the BALB/c mouse, additional in vitro 

experiments should be performed to evaluate the BALB/c macrophage abilities. This 

study demonstrated that the BMDM produced elevated TNFα in vitro, and the peritoneal-

derived macrophages were highly efficient at phagocytizing B. burgdorferi in vitro. 

These 2 results suggest that macrophages would be a good cell type to further evaluate 

for their influence on the overall B. burgdorferi infection.  

The first in vitro experiment that should be performed would be a repeat of the 

phagocytosis assay performed in this study, but include TNFα to prime the macrophages. 

This could tie together the upregulation of TNFα and phagocytic ability. Aside from the 

trypsin treated experiments, a nontreated phagocytosis experiment should also be 

performed to evaluate the total B. burgdorferi that is associated with the macrophages 

both internally and externally.  

Another interesting in vitro experiment to perform with macrophages would be to 

determine if the BALB/c macrophage is better at internalizing other infectious agents 

than B. burgdorferi, or if it is a specific reaction to B. burgdorferi infection. There is 

some evidence that BALB/c macrophages are efficient at phagocytizing other bacterium  
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(80), but a direct comparison was not found. This could lead to other infectious 

experimental designs using the BALB/c mouse model.   
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