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ABSTRACT 

 

 This dissertation presents experimental and computational studies of individual 

nanobubbles electrochemically generated at platinum nanoelectrodes. Chapter 1 provides 

an overview of the physics governing bubble dynamics and a brief summary of the 

literature regarding nanobubbles.  

 Chapter 2 describes a fast scan voltammetric method for measurement of 

nanobubble dissolution rates. After a nanobubble is nucleated from gas generated via an 

electrode reaction, the electrode potential is rapidly stepped to a value where the bubble is 

unstable and begins to dissolve. The electrode potential is immediately scanned back to 

values where the bubble was initially stable. Depending on the rate of this second 

voltammetric scan, the initial bubble may or may not have time to dissolve. The fastest 

scan rate at which the bubble dissolves is used to determine the bubble’s lifetime.  The 

results indicate that dissolution of a H2 or N2 nanobubble is, in part, limited by the transfer 

of molecules across the gas/water interface.  

 Chapter 3 presents electrochemical measurements of the dissolved gas 

concentration, at the instant prior to nucleation of a nanobubble of H2, N2, or O2 at a Pt 

nanodisk electrode. The results are analyzed using classical thermodynamic relationships 

to provide an estimate of the size of the critical gas nucleus that grows into a stable bubble.  

This critical nucleus size is independent of the radius of the Pt nanodisk employed and 
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weakly dependent on the nature of the gas.  

 Chapter 4 reports electrochemical measurements of Laplace pressures within single 

H2 bubbles between 7 and 200 nm radius (corresponding, respectively, to between 200 and 

7 atmospheres). The current, associated with H2 gas generation, supporting a steady-state 

nanobubble is modulated by application of external pressure. The slope of the current-

pressure response allows extrapolation of the bubble’s curvature-dependent internal 

pressure. The results demonstrate a linear relationship between a bubble’s Laplace pressure 

and its reciprocal radius, verifying the classical thermodynamic description of H2 

nanobubbles as small as ~10 nm. 

 Chapter 5 summarizes these results and places them in the context of current 

research. Future directions for further studies are suggested.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 The Physics of Bubbles 
 
1.1.1 Laplace pressure 

A child with a glass of milk and a straw knows what it takes to make a bubble. And 

yet, despite being an everyday experience, bubbles continue to pose new scientific 

questions. As relatively simple systems with ideal composition and geometry, bubbles 

serve as a test bed for our understanding of thermodynamics and surface forces. The 

blowing of a bubble through a straw is an experiment that occupied Erwin Schrödinger 

during his first foray into science.1 The distension of the liquid surface requires a pressure, 

an input of energy, to overcome the liquid’s cohesive forces and create more surface area. 

This energy cost is the surface tension of the liquid and is the reason small bubbles take on 

a spherical shape to minimize surface area. Surface tension is essentially a measure of the 

preference of liquid molecules to bond with one another completely surrounded in the bulk 

as opposed to residing at the air/liquid interface with, on average, half the number of 

cohesive bonds. For bubbles, another avenue to reduce surface area is to shrink and squeeze 

the gas within. Compression of the entrapped gas will find an equilibrium where the 

pressure within the bubble presses back equally against the force of surface tension. The 
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increased pressure within a bubble, Pbubble, in comparison with its surroundings, Pexternal, is 

described by the 200-year-old Young-Laplace equation which, for a sphere, is given by, 

Pbubble - Pexternal = 2g/r      (1.1) 

where g is the surface tension and r is the bubble’s radius. The inverse dependence on r 

means that very small bubbles are expected to have surprisingly high internal pressures, 

e.g., the air within a 10 nanometer bubble in pure water should compressed to ~150 

atmospheres.  

Schrödinger was the first to work out the correct formulation still commonly used for 

calculating surface tension via the maximum bubble pressure.1 Figure 1.1 illustrates the 

method in which a bubble is inflated into a liquid through capillary of known radius while 

a sensor records the pressure within it. Initially, in part a, the curvature of the air/liquid 

interface corresponds to a very large radius and the pressure is low. As the bubble inflates, 

the interface becomes more curved and more pressure is required to inflate the bubble 

further. The pressure sensor will record a maximum when the bubble is a hemisphere with 

radius equal to that of the capillary, Rc, indicated in part b of Figure 1.1. With the pressure 

and radius of the bubble known, the surface tension can be calculated. Chapter 4 of this 

dissertation presents electrochemical measurements of the internal pressure of nanobubbles 

allowing calculation of their surface tension. It has been predicted for very high curvature 

interfaces (whose radius is no longer exceedingly large in comparison to the thickness of 

the interfacial density gradient from gas to liquid) that the surface tension should be 

different from the macroscopic value due to structural effects on water’s hydrogen bonding 

network. The length scale at which this effect becomes important is under debate, although 

this presented work demonstrates  surface tension to  remain constant for bubbles as small 
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Figure 1.1. Illustration of the maximum bubble pressure method for measurement of 
surface tension. With no pressure applied in (a), the air/liquid interface indicated in blue 
has very low curvature. As air is forced through the capillary, the radius of curvature of the 
air/liquid interface decreases and the pressure required to inflate the bubble reaches a 
maximum at (b) where the radius of the bubble is equal to that of the capillary, Rc. 
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as ~10 nm radius. 

 

1.1.2 Bubble lifetimes 

The high-pressure gas is not statically trapped within the bubble, because the 

air/liquid interface is permeable. The gas within is constantly colliding with the surface 

and is free to exchange from the gas phase into the solution and vice versa. For any given 

gas pressure, Pgas, there is an equilibrium dissolved gas concentration, Ceq, approximated 

by Henry’s Law, 

Pgas KH = Ceq       (1.2) 

where KH is Henry’s constant, an empirically measured value for every temperature, gas 

type, and solvent, implying a linear relationship between gas solubility and pressure. 

Equilibrium, in the case of a glass of water sitting open to atmosphere, is a dynamic process 

meaning the dissolved gas concentration is constant because an equal amount of gas is 

exiting solution across the interface as is entering.  

For a bubble in that glass of water, though, there can never be a stable equilibrium 

considering the above equations. The bubble’s internal pressure will always be higher than 

the ambient pressure according to equation 1.1, resulting in a higher gas solubility in the 

liquid immediately surrounding the bubble according to equation 1.2. Consequently, the 

gas from within the bubble will dissolve into solution, driving a higher concentration at the 

bubble interface than the bulk solution. The dissolved gas will then diffuse away down the 

concentration gradient to be replaced at the interface by more gas from the bubble until it 

is emptied. This dissolution process is only limited by diffusion and considers the gas 

transfer across the interface to be infinitely fast, always maintaining the equilibrium 
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concentration at the bubble surface according to Henry’s Law. For large bubbles, 

dissolution occurs very slowly as their internal pressures are small and because diffusion 

is slow over long distances. There is a positive feedback during dissolution; as the bubble 

shrinks, both its internal pressure increases and the diffusive lengths become shorter. In 

1950, Epstein and Plesset worked out the kinetics of the diffusion-limited dissolution 

process.2 Assuming a stationary, solitary, spherical bubble in a gas-saturated solution, 

bubbles of 10 µm, 1 µm, and 100 nm radius were predicted to dissolve in 1 s, 10 ms, and 

100 µs, respectively.  

An alternative fate of a bubble is annihilation through growth until buoyant forces 

carry it to the liquid surface where it will “pop.” This involves the reverse process of what 

was described above. Gas from the aqueous phase will flow into the bubble if the 

concentration of dissolved gas is higher than the concentration corresponding to the 

bubble’s internal pressure and Henry’s constant. This will occur if the solution had been 

previously saturated at a high pressure followed by a lowering of the pressure to give a 

supersaturated solution. The supersaturation, s, is defined by how many fold higher the 

dissolved gas concentration is above the equilibrium concentration at ambient conditions 

such that: 

(Csol – Ceq) / Ceq = s       (1.3) 

Because Henry’s Law is a linear relation, the bubble’s additional pressure arising from 

curvature and the supersaturation value at which the flow of gas switches from out of to 

into the bubble are interchangeable. Simply put, the gas within a 100 nm radius bubble is 

compressed to 14 atm above atmospheric pressure and would be metastable if the solution 

where supersaturated to 14 times higher than the equilibrium concentration. Figure 1.2 
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plots the relationship of bubble radius and the s at which it is metastable. This is only a 

metastable equilibrium, however, because a miniscule fluctuation in size, temperature, or 

concentration will tip the bubble toward growth or dissolution. Chapter 2 of this 

dissertation demonstrates a method for measurement of nanobubble dissolution rates 

between 100 and 1000 times longer than diffusion limited predictions. To explain the 

discrepancy, we propose a kinetic limitation in the transfer of gas across the interface. 

 

1.1.3 Bubble nucleation 

 The spontaneous formation of bubbles that occurs when a carbonated beverage is 

opened is the means by which the supersaturated solution returns to equilibrium. 

Nucleation is the stochastic process by which nanoscale clusters form from dissolved gas, 

thereby creating an interface where there was none to begin with. From Figure 1.2, it is not 

apparent how these clusters can form and grow into a bubble. Because the bubble pressure 

increases indefinitely with decreasing radius, a bubble cannot form by continuous growth 

through infinitesimal radii in a homogeneous medium. Instead, nucleation is driven by 

fluctuations in local density and composition that occur in proportion to the amount of 

thermal energy available at ambient conditions. For a bubble to form from these nuclei at 

a given supersaturation, the critical size at the line in Figure 1.2 must be reached for 

dissolved gas to flow into the bubble. At low supersaturations, it is exceedingly improbable 

that a bubble will form because the nuclei that form are typically too small and rapidly 

dissolve. The fluctuational appearance of a 100 nm radius nucleus is so unlikely to occur 

that a bubble is essentially never expected to grow from a solution supersaturated with a 

partial pressure  of 14 atm.  With increasing  supersaturation,  however,  the  probability of   
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Figure 1.2. Plot of the supersaturation values, s, providing metastability vs bubble radius, 
Rbubble. A bubble of a given radius will dissolve in a solution with a value of s lower than 
the red line and will grow if s is higher than the red line. 
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forming a critical nucleus increases exponentially. Therefore, nucleation is a threshold 

phenomenon where the rate of bubble formation transitions from immeasurably slow to 

extremely fast over a small range of supersaturation. Chapter 3 of this dissertation presents 

a measure of the dissolved gas concentration at which nucleation occurs quickly in 

comparison with the timescale of the experiment. We report that this critical concentration 

is dependent upon gas type and relate the concentration to the critical size of gas nuclei.  

 

1.2 Nanobubble Literature 
 
1.2.1 Interfacial nanobubbles 

In context of the dynamics explained above, the first reports of stable, nanoscale 

bubbles 20 years ago were greeted with skepticism. Soft, sphere caps 10s of nanometers 

high and 100s of nanometers wide were observed on hydrophobic surfaces by atomic force 

microscopy to remain stable for hours in air-saturated water.3,4 These structures were not 

present if solutions were degassed prior, and thus were concluded to be nanobubbles. A 

preponderance of experimental evidence produced over the last decade has supported both 

the gaseous composition and surprising longevity of interfacial nanobubbles.5-10 The most 

widely accepted explanation for their stability involves the pinning of the bubble edges at 

defects on the surface.5,11,12 With their contact line fixed, dissolution of the bubble serves 

to reduce the bubble’s height, interfacial curvature, and consequently, the internal pressure. 

The hydrophobic surface then provides the means for a negative feedback by which the 

bubble can dissolve by shrinking only in height and find an equilibrium curvature provided 

there is a slight supersaturation of dissolved gas.  Several reviews have covered the topic 

of interfacial nanobubbles thoroughly.12-15 
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1.2.2 Technological relevance 

 Much of the initial work studying surface forces was plagued by confounding 

“long-range forces,” eventually leading to the discovery of nanobubbles as the main 

culprit.16,17 Attraction between hydrophobic surfaces18 and thin film stability19 are two such 

cases where nanobubbles would be either a boon or a hindrance depending upon the 

application. Progress in gaining control of when and where or whether nanobubbles appear 

will ultimately determine their usefulness in technological applications.  

 Nanobubbles have important implications for the efficiency of separation processes 

that rely on particle-particle and particle-bubble interactions such as mineral flotation, oil 

extraction, and wastewater treatment.20-24 Microbubbles revolutionized these industries, 

and it remains an intriguing possibility whether nanobubbles will offer further 

improvement through enhanced aggregation and flotation of nanoscale particulates. 

  There is a large body of literature surrounding the effect of surface nanobubbles 

on hydrodynamic slip.25-28 Classical hydrodynamics typically assumes a “no slip” 

condition, or zero fluid velocity at solid walls. Certainly, the presence of nanobubbles will 

alter the slip condition and reduction of drag from the gaseous interface has been suggested 

theoretically.29 Such a finding could be important for applications in microfluidics on up 

to marine cargo transportation. 

 Clever new uses for nanobubbles continue to be reported. An interesting method of 

desalinization was demonstrated employing a nanobubble-based membrane to allow vapor 

transfer while blocking solute transport.30 Bubbles are also central to “nanomotors” that 

catalyze gas evolving reactions and form bubbles that propel them through liquid.31 It has 

been shown that nanobubbles can be utilized to prevent surface fouling.32 Hollow 
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nanoparticles with interesting plasmonic properties have been fabricated employing H2 

nanobubbles as both the substrate and reducing agent for their synthesis.33 The formation 

of nanobubbles has been implicated in the “poisoning” of electrocatalytic nanoparticles.34    

 

1.2.3 Electrochemically generated nanobubbles 

In 2013, our laboratory published the first demonstration that individual 

nanobubbles can be nucleated by gas evolving electrochemical reactions at nanoelectrodes. 

Nanoelectrochemistry provides an avenue for precise and wide-ranging control over 

reaction rates, allowing systems to be taken far from equilibrium. The inspiration for the 

experiment was simply to see if a phase transition was observable when an immense 

amount of gas was forced into a small volume of liquid. Under voltage control, Luo et al. 

reported a precipitous drop in the current associated with H+ reduction to form H2 at Pt 

electrodes smaller than 50 nm radius.35 The phenomenon was attributed to a significant 

decrease in the electroactive area of the electrode due to formation of a nanobubble 

blocking transport of H+. The peak current, or dissolved H2 concentration, at which a 

bubble formed was found to be highly reproducible and essentially independent of scan 

rate (i.e., a threshold phenomenon). Furthermore, it was hypothesized that the low current 

following bubble formation represented a steady-state nanobubble for which the ongoing 

electrogeneration of H2 at the Pt left exposed to solution was limited by the rate of bubble 

dissolution. These experiments could be performed reproducibly on a given electrode, 

suggesting that the bubble dissolved between subsequent experiments. This foundational 

work and the many questions it raises regarding the process of bubble nucleation, steady-

state dynamics, and lifetime after gas supply is removed are the basis for this dissertation.  
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1.2.4 Publications not included in this dissertation 
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are not included in this dissertation except to be listed here. 
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2. Chen, Q.; Wiedenroth, H. S.; German, S. R.; White, H. S. Electrochemical 
Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes. J. Am. Chem. Soc 2015, 
137, 12064–12069. 

 
3. Edwards, M. A.; German, S. R.; Dick, J. E.; Bard, A. J.; White, H. S. High-Speed 

Multipass Coulter Counter with Ultrahigh Resolution. ACS Nano 2015, 9, 12274–
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4. Zhang, Y.; Edwards, M. A.; German, S. R.; White, H. S. Multipass Resistive-Pulse 
Observations of the Rotational Tumbling of Individual Nanorods. J. Phys. Chem. 
C 2016.  
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2.1 Introduction 

 
The lifetimes of individual H2 and N2 nanobubbles, electrochemically generated at 

Pt nanoelectrodes (7-85nm-radius), have been measured using a fast-scan electrochemical 

technique.  To measure lifetime, a stable single H2 or N2 bubble is first generated by 

reducing protons or oxidizing hydrazine, respectively, at the Pt nanoelectrode. The 

electrode potential is then rapidly stepped (<100µs) to a value where the bubble is unstable 

and begins to dissolve by gas molecule transfer across the gas/water interface and diffusion. 

The electrode potential is immediately scanned back to values where the bubble was 

initially stable.  Depending on the rate of this second voltammetric scan, the initial bubble 

may or may not have time to dissolve, as is readily determined by the characteristic 
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voltammetric signature corresponding to the nucleation of a new bubble. The transition 

between these regimes is used to determine the bubble’s lifetime.  The results indicate that 

dissolution of a H2 or N2 nanobubble is, in part, limited by the transfer of molecules across 

the gas/water interface. A theoretical expression describing mixed diffusion/kinetic control 

is presented and fit to the experimental data to obtain an interfacial gas transfer rate of    

~10-9 mol N-1 s-1.  

Interfacial nanobubbles are gaseous, nanoscale spherical caps on a solid substrate 

immersed in a gas-saturated solution. They were first proposed to explain the long-range 

attractive interactions between hydrophobic surfaces.1-3 Initially their existence was 

contentiously debated,4,5 but their existence, composition and stability has since been 

documented in numerous experiments.6-10 The argument against their existence is due to 

the lack of a theoretical understanding of their peculiar longevity, often measured in days.11  

It is well understood that a spherical bubble suspended in a gas-saturated liquid 

should be intrinsically unstable. The internal pressure within a bubble of radius R exceeds 

that of its surroundings by the Laplace pressure, 2γ/R, where γ is the liquid’s surface 

tension. The gas within the bubble therefore has a higher chemical potential than the 

dissolved gas and must reach equilibrium by dissolution into the liquid and transport away 

from the bubble. While this process is quite slow for macroscopic bubbles, the rate of 

dissolution increases by orders of magnitude for nanoscopic bubbles, due to the increase 

in Laplace pressure and decreased diffusion lengths. Epstein and Plesset12 first detailed a 

theoretical framework for growing and shrinking bubbles and later Ljunggren and 

Eriksson13 explicitly extended the theory to the nanoscale. Both mathematical approaches 

predict isolated, spherical bubbles smaller than 100 nm radius to dissolve in less than 100 
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microseconds.  Experimentally, and as noted above, nanobubbles are observed to persist 

for much longer periods, often for several days.11 

Several different mechanisms have been proposed to explain the persistence of 

nanobubbles on surfaces: a transport barrier and lowering of the surface tension by 

contaminants with an affinity for the gas/water interface,14 a dynamic equilibrium afforded 

by a recirculating flow above nanobubbles that keeps dissolved gas localized,15 and a thin 

layer of gas adsorbed to the substrate that feeds into the bubble’s contact line.16,17 Another 

theory gaining acceptance arises from the experimental observation that the contact radius 

of a nanobubble may be pinned to the substrate and only the bubble’s height decreases as 

the bubble dissolves.18 Pinning provides a negative feedback for dissolution, as the Laplace 

pressure reduces as the bubble shrinks in height and increases its radius of curvature. 

Mathematical treatment of this model has been presented that suggests pinned bubbles can 

be stable under a modest gas supersaturation, but will dissolve quite quickly at any level 

equal to or below saturation. 19,20 Indeed, it has been demonstrated that interfacial 

nanobubbles will dissolve if the solution is degassed,21,22 although experimental 

measurements of dissolution rates in this situation are lacking. Dissolution rates of micron-

sized bubbles in bulk solution have been measured and agree well with the theory of 

Epstein and Plesset.23,24 However, recent studies of very high curvature nanobubbles by 

transmission electron microscopy (TEM), where 10 nm radius bubbles were observed to 

be stable over many seconds, may suggest very different dissolution rates for 

nanobubbles.25 

Electrochemistry provides an interesting avenue for the study of both the nucleation 

and stability of nanobubbles. Gas producing reactions create large supersaturations near an 



 

 

18 

electrode surface leading to heterogeneous nucleation of bubbles. The resulting ensembles 

of bubbles decorating electrode surfaces have been imaged by optical microscopy and 

AFM. 26-28 As depicted in Scheme 2.1, our lab has utilized Pt nanodisk electrodes to 

generate individual nanobubbles whose size is determined by the size of the electrode. We 

have reported the generation of individual H2 bubbles by reduction of protons29,30 (2H+ + 

2e-  ® H2), O2 nanobubbles by oxidation of water (H2O ® O2 + 4H+ + 4e-),31 and N2 

bubbles by oxidation of hydrazine (N2H4 + 4OH- ® N2 + 4H2O + 4e-).32  We have 

demonstrated that the nucleation of a bubble occurs when a critical gas supersaturation 

(310 times saturation for H2 (0.25 M) and 160 times saturation for N2 (0.11 M)) is generated 

at the electrode surface. Once formed, these nanobubbles quickly grow across the electrode 

surface and reach a dynamic equilibrium, where the diffusive flux of gas out of the bubble 

is balanced by the electrogeneration of hydrogen, oxygen or nitrogen that enters the bubble, 

resulting in a stable nanobubble, as shown in Scheme 2.1.  

In this work, we utilize the high temporal resolution of nanoelectrodes to 

experimentally measure the lifetime of electrochemically generated nanobubbles using a 

new fast-scan voltammetric method.  These experiments represent a crucial test for existing 

theories regarding the mechanism of nanobubble stability.  

 

2.2 Experimental Methods 

2.2.1 Chemicals 

Sulfuric acid (Mallinckrodt, 96.2%, ACS grade) and N2H4 (Aldrich, 35 wt% in water, 

stored under N2), were used as received.  
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Scheme 2.1. Schematic drawing of the electrochemical formation of single H2 and N2 
bubbles from H+ electroreduction and N2H4 electrooxidation at Pt nanodisk electrodes with 
radii less than 100 nm. 
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2.2.2 Nanoelectrode fabrication and characterization 

Pt nanodisk electrodes were fabricated according to previously reported procedures 

from our laboratory.33 The radii of the nanodisk electrodes, a, were determined from the 

voltammetric steady-state diffusion-limited current, ilim, for the oxidation of ferrocene (Fc 

® Fc+ + e−) dissolved in acetonitrile (CH3CN) containing 0.10 M tetrabutylammonium 

hexafluorophosphate (TBAPF6). The radii were calculated using the equation 

ilim = 4naFDFcC*
Fc (2.1) 

where DFc (2.4 × 10−5 cm2/s)34 and  (3.25 mM) are the diffusion coefficient and the 

bulk concentration of Fc, respectively, n is the number of electrons transferred per molecule 

(= 1 for Fc oxidation) and F = 96485 C/mol is Faraday’s constant. 

 

2.2.3 Cell configuration and data acquisition 

A HEKA EPC10-USB patch clamp amplifier was used for lifetime measurements 

with current sampling at 100 kHz and a 10 kHz filter.  A Ag/AgCl (3 M NaCl) electrode or 

a saturated calomel electrode (SCE) was used as the counter/reference electrode in a two-

electrode cell configuration.  

 

2.3 Results and Discussion 

2.3.1 Nucleation of a single nanobubble 

As previously reported, the formation of a single H2 or N2 gas nanobubble at a Pt 

nanodisk electrode (as in Scheme 2.1) can be observed during the reduction of H+ and 

oxidation of N2H4, respectively. Figure 2.1(a) shows a typical cyclic voltammogram 

recorded  at  a  27  nm  radius  Pt  nanodisk  electrode  immersed  in  0.5 M  H2SO4. As the 

*
FcC
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Figure 2.1.  i-V responses of (a) a 27 nm radius Pt nanoelectrode immersed in 0.5 M H2SO4 
for H2 nanobubble formation, and (b) the same Pt nanoelectrode immersed in 1.0 M N2H4 
for N2 nanobubble formation at a scan rate of 200 mV/s. The voltammograms shown are 
for two cycles each to demonstrate the reproducibility of bubble formation, as well as 
bubble dissolution at slow voltammetric scan rates. 
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voltage is scanned to negative potentials, the current associated with H+ reduction (i.e., H2 

electrogeneration, beginning at ~-0.2V vs Ag/AgCl) increases rapidly until reaching a peak 

current, p
nbi , at 23 nA and then suddenly drops to a low residual current. Figure 2.1(b) 

shows a similar peak-shaped cyclic voltammogram for the same 27 nm radius Pt nanodisk 

electrode immersed in 1.0 M N2H4, where the oxidation of N2H4 , beginning at ~-0.7 V, 

leads to N2 nanobubble nucleation when the current reaches a value, p
nbi , of 6.5 nA.  This 

characteristic waveshape is due to the formation of a single gas nanobubble at the electrode 

surface. After formation of a H2 or N2 nanobubble, the current decreases to a small residual 

current, r
nbi , which is very stable at potentials negative or positive of the peak potentials 

for H2 or for N2, respectively.  As previously reported and detailed,29,32   corresponds to 

the rate of H2 and N2 electrogeneration at the 3-phase interface (gas/water/Pt, see Scheme 

2.1) that is required to balance the H2 and N2 diffusive outflux from the bubble into the 

bulk solution.  H2 and N2 nanobubbles are only stable when the electron-transfer reactions 

are occurring to regenerate the gas lost by dissolution. The low value of r
nbi  also indicates 

that the bubble covers almost the entirety of the electrode. In this work, the radius of the 

electrode is used to approximate the radius of the bubble at this steady state. 

On the voltammetric timescales used in recording the data shown in Figure 2.1, the 

bubbles rapidly disappear when the potential is scanned to positive values at the electrode 

covered by the H2 bubble, or to negative values for the electrode covered by the N2 bubble. 

This is evident by the observations that H2 oxidation is not visible on the positive-going 

scan and that the nucleation wave is observed on consecutive voltammetric scans (the high 

reproducibility of the two consecutive cycles makes it difficult to distinguish them). The 

r
nbi
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peak-shaped waves in Figure 2.1 would not be observed on the second scans if the bubble 

persisted on the electrode after electrogeneration of H2 and N2 ceased, demonstrating that 

the bubble fully dissolves during each cycle when the experiment is performed at a scan 

rate of 200 mV/s.  

 

2.3.2 Kinetics of H2 and N2 bubble formation  

Prior to describing voltammetric experiments aimed at measuring nanobubble 

dissolution rates, we performed a preliminary semi-quantitative investigation of the range 

of scan rates where nanobubble formation can be observed.  Previously, we showed that 

both the bubble formation and dynamic equilibrium stages are in a steady-state condition 

as evidenced by the voltammetric waveshape being insensitive to the scan rate for scan 

rates less than 2 V/s.29,32 At higher scan rates, some distortion of cyclic voltammograms 

occurs from capacitive currents and sluggish electron-transfer kinetics.  However, it is 

anticipated that insufficient gas generation and/or the finite rate of bubble nucleation are 

expected to prevent bubble formation at sufficiently high scan rates.  This is born out in 

the voltammetric data presented in Figure 2.2, which shows the voltammetric response on 

the initial forward scan as a function of potential sweep rate.  We observe bubble formation 

at scan rates up to 500 V/s for H+ reduction and 200 V/s for N2H4 oxidation, as evident by 

the sharp current drop indicating the formation of the gas phase.  The increasing 

overpotential and larger peak currents required for bubble formation suggest that the 

nucleation step is a relatively slow process, but extracting the kinetics of the phase 

transformation   is   complicated   by   kinetic  limitations   due  to  slow   electron   transfer  
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Figure 2.2. i-V responses for both H2 and N2 bubble producing reactions as a function of 
scan rate at a 32 nm radius nanoelectrode immersed in (a) 0.5 M H2SO4, and (b) 1.0 M 
N2H4. Bubble formation is observed at scan rates up to 500 V/s for H+ reduction and 200 
V/s for N2H4 oxidation. 
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(especially for N2H4 oxidation).  While nanobubble formation cannot be observed at scan 

rates above 500 V/s for H2 and 200 V/s for N2, the kinetics for bubble electrogeneration are 

sufficiently fast to design experiments to measure nanobubble dissolution (vide infra).   

 

2.3.3 Bubble dissolution rates  

Figure 2.3 shows the general strategy and voltammetric waveform used to measure 

the lifetime of a H2 nanobubble (an analogous strategy is employed for investigation of N2 

bubble lifetime).  A single H2 bubble is nucleated (i) by scanning the voltage to negative 

potentials at a moderate rate (1 V/s), reaching the dynamic steady state (ii) after bubble 

formation.  The voltage is then rapidly stepped (< 0.1 ms) to 0 V (iii) and immediately 

scanned negatively at varying scan rates ranging between 2-500 V/s (iv). There are two 

experimental outcomes, which can be discriminated by the voltammetric response, and 

which depend upon the scan rate employed in step (iv).  At a sufficiently fast scan rate (iv-

b) the H2 bubble does not completely dissolve, nor is it reoxidized (i.e., H2 ® 2H+ + 2e-) 

before hydrogen generation restores the bubble to its steady state at step (v). Conversely, 

at a sufficiently lower scan rate (iv-a) the H2 nanobubble has sufficient time to dissolve, or 

be oxidized, and a new bubble is nucleated on the second forward scan, as the current 

reestablishes the supersaturation of H2.  As shown in the preceding section, nucleation of 

a H2 nanobubble is observed up to 500 V/s.  Thus, if the bubble dissolves following the 

step to the positive potential, the nucleation of a new bubble can be observed on the fast 

negative-going potential scan.  

Figures 2.4(a) and 2.4(c) shows representative i-t traces resulting from the 

voltammetric  experiment   schematically  depicted  in  Figure  2.3,  corresponding  to  the  
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Figure 2.3. (a) Schematic of the voltammetric experiment used to measure the lifetime of 
a H2 nanobubble .  The voltage is initially scanned towards negative potentials at 1 V/s 
resulting in the electrogeneration of H2 and nucleation (i) of a nanobubble that grows and 
reaches a dynamic equilibrium (ii). Steps (i) and (ii) result in a voltammetric wave in which 
the current drops suddenly upon nanobubble formation, as previously shown in Figure 2.1.  
At the end of the potential scan (-1V), the electrode potential is stepped back to 0.0 V (iii), 
a potential at which H2 is no longer generated, and the H2 within the bubble is either 
oxidized to H+ or diffuses into the bulk solution.  A second scan to negative potentials is 
initiated immediately after the potential step (iv).  If the scan rate of this second forward 
scan is sufficiently slow, the nanobubble has time to completely dissolve, resulting in the 
nucleation and growth of a new nanobubble on the negative scan (iv-a), which is readily 
discerned by appearance of the characteristic voltammetric peak for nanobubble formation.  
Conversely, if the scan rate is sufficiently fast, the preexisting nanobubble does not have 
time to dissolve. In this case, the characteristic voltammetric peak is not observed (iv-b), 
while still restoring the residual current at step (v).  By varying the voltammetric scan rate 
of the second potential scan (step iv) in repeated experiments, the lifetime of the bubble 
can be determined. An analogous voltage waveform is used to measure the lifetime of N2 
nanobubbles. 
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Figure 2.4. i-t traces illustrating the measurement of the lifetimes of H2 bubbles generated 
at Pt electrodes of (a/b) 18 and (c/d) 32 nm radius, following the description of the 
experimental method depicted in Figure 2.3.  The reduction of H+ by scanning the voltage 
at 1 V/s, to -1 V generates a stable single hydrogen bubble as indicated by the drop in 
current at ~1.4 s in (a) and (c). The characteristic lifetime of the bubbles are determined by 
stepping the voltage back to 0.0 V at 1.81 s where the bubble begins to dissolve, and then 
immediately scanning the voltage from 0 to -1 V, again at a fast scan rate. The currents 
resulting from the fast scan are highlighted in red and are shown on an expanded time scale 
in parts (b) and (d). There are two possible outcomes during the fast potential scan: at 
sufficiently fast scan rates the bubble will not completely dissolve and the formation of a 
new bubble is not observed; and at sufficiently slow scan rates the original bubble will 
dissolve and a new bubble will form as indicated by the signature waveshape of a 
nucleating bubble. From the data in (a,b), the 18 nm radius bubble completely dissolves 
between a voltage scan rate of 200 and 500 V/s.  For the 32 nm radius bubble in (c,d), the 
bubble dissolves at scan rates between 15 and 20 V/s.  
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electrogeneration and dissolution of H2 nanobubbles at (a) 18 and (c) 32 nm radius Pt 

nanodisk electrodes.  An expanded view of the high-speed section of the voltammetric scan 

is presented in Figures 2.4(b) and 2.4(d) for each.  For a given electrode, three different 

scan rates are shown: two rates slow enough that the bubble dissolves and a faster rate 

under which the bubble survives.  The series of i-t traces in Figure 2.4(a) all show the p
nbi

~13 nA peak current at ~1.3 s, denoting the formation of the initial 18 nm radius bubble as 

the voltage is scanned at 1 V/s to -1 V.  At 1.81 s, the potential is stepped back to 0.0 V, 

and scanned to negative potentials again, using different scan rates to determine if the 

bubble persists or dissolves. 

Figure 2.4(b) shows expanded regions of the fast-scan region used to estimate the 

lifetime of the bubble at the 18 nm Pt electrode.  The anodic current response to the 

potential step at 1.81 s results from a combination of capacitive current and hydrogen 

oxidation at a gas/water/Pt interface that is changing dynamically while the bubble shrinks.  

Immediately following this transient current, the potential is scanned in the negative 

direction to probe the lifetime of the bubble.  At slower scan rates (50 and 200 V/s), the i-

t response shows the characteristic nucleation peak corresponding to the formation of a 

new H2 bubble, unequivocally demonstrating that the bubble dissolves on the time scale of 

these scans.  At the faster scan rate, 500 V/s, only a small cathodic current is observed, 

which we believe corresponds to cathodic charging current or a small amount of H2 

generation that goes into “reinflating” the original, but partially dissolved, bubble still 

persisting on the electrode. Figures 2.4(c) and (d) show example i-t traces recorded at a 

larger 32 nm radius Pt electrode. As expected, the persistence of the bubble is longer for 

the larger bubble, as indicated by the lack of the peak current for nucleation occurring at 
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lower scan rates (20 V/s). 

In a completely analogous set of experiments, Figure 2.5 demonstrates the lifetimes 

of N2 bubbles can also be measured.  The data in Figure 2.5 were recorded using the same 

32 nm Pt electrode used to generate the H2 nanobubbles shown in Figure 2.4(c) and (d), 

and show that the N2 nanobubble does not dissolve at scan rates at ~10 V/s and above. 

Note, in contrast to the H2 bubble and chemically reversible reduction of H+, the oxidation 

of N2H4 is not chemically reversible, i.e., N2 + 4H2O + 4e- ® N2H4 + 4OH- does not occur. 

Thus, the N2 bubble disappears only by physical dissolution.  

Cyclic voltammetry is frequently used to study short-lived chemical species.  The 

characteristic time, τ, of a voltammetric measurement is related to the scan rate, ν, and the 

difference in potential, ΔE, by the relationship, τ = ΔE/ ν, or simply the time elapsed.35 In 

practice, a reactive intermediate is observable when τ is of the order of magnitude of the 

intermediate’s lifetime of which a dissolving bubble is a specific example. Here, the fastest 

scan rate at which the bubble dissolves and is reformed is used to calculate the lifetime of 

the nanobubble prior to its dissolution with a ΔE of 0.4 V (for both H2 and N2) 

corresponding to the difference between the starting potential of the second forward scan 

and the typical voltage at which bubble nucleation occurs (as in Figure 2.1). (Exact choice 

of ΔE will have small effects on lifetimes.) In addition, the consumption (H2 

only)/generation of gas during the second forward scan will shorten/extend these lifetimes 

slightly, but does not change the conclusions of this work. From the data in Figures 2.4 and 

2.5, the lifetimes of the H2 nanobubbles at the 18 and 32 nm radius Pt electrodes are 2 (ν = 

200 V/s) and 27 ms (ν = 15 V/s), while the lifetime of the N2 at the 32 nm radius Pt electrode 

is 67 ms (ν = 6 V/s).  
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Figure 2.5. i-t traces illustrating the measurement of the lifetime of a N2 bubble formed at 
a 32 nm radius Pt electrode. The principle of the measurement is the same as for H2 bubbles 
(see captions of Figures 2.3 and 2.4). The N2 bubble is generated by oxidation of N2H4 
while scanning the potential from -0.8 to +0.8 V. The potential is stepped from +0.8 V back 
to -0.8 V at 1.6 s, and the voltage is scanned back towards positive potentials at variable 
scan rates to probe the lifetime of the N2 nanobubble.  For this 32 nm radius Pt electrode, 
N2 bubble reformation is observed at 2 and 6 V/s, but not at 10 V/s.   
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Figure 2.6 shows our experimentally measured lifetimes as a function of the 

nanoelectrode/initial bubble radius (points) alongside predictions of bubble 

dissolution rates from theoretical models (lines).  It is clear that our experimentally 

measured lifetimes are 2 to 3 orders of magnitude longer than predicted by theory 

from the literature (solid and dotted lines). Theoretical values were computed both 

for bubbles that maintain a hemispherical shape during dissolution (as in Epstein and 

Plesset,12 dotted lines), and for bubbles that are initially hemispherical but whose 

contact line is pinned at the circumference of the initial bubble (as in Zhang and 

Lohse,19 solid lines). (Mathematical details of these models are given in the 

Appendix.)  In the latter case, the bubble radius of curvature increases and, 

consequently, its internal pressure decreases as it shrinks in height. Both theoretical 

models assume that bubble dissolution is limited by diffusion and that the dissolved 

gas concentration at the bubble interface is always at equilibrium with the bubble’s 

internal pressure (determined by its time-dependent radius of curvature) as described 

by Henry’s Law.  Assuming a mass balance during bubble dissolution, where the 

number of gas molecules leaving the bubble to maintain the surface concentration is 

compensated by a concomitant change in bubble radius or height by the ideal gas 

law, allows calculation of the time for the bubble’s volume to reach zero.  The 

difference in the assumptions of the two theories yields a prediction of approximately 

a factor of two slower dissolution for the “negative feedback” model of a pinned 

bubble relative to the “positive feedback” model of a hemispherical bubble. Both 

models predict that N2 bubbles will have lifetimes ~3 times longer than a H2 bubble 

of  the  same  size  based  upon  the  difference in dissolved gas diffusion coefficients 
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Figure 2.6 Bubble lifetime versus initial hemispherical bubble radius. Black components 
correspond to H2 bubbles and red components to N2. Circles are data points from 
electrochemical lifetime experiments as detailed in Figures 2.3-5. Dotted lines are 
theoretical calculations based upon the model in Epstein and Plesset12 in which bubbles 
maintain a hemispherical shape as they shrink. Solid lines are theoretical calculations based 
upon the model in Zhang and Lohse19 in which only the bubble’s height shrinks as it 
dissolves, because its contact line is pinned to the surface. The dashed line incorporates a 
kinetic rate constant for transfer of H2 across the gas/water interface (Equation 2.2) to allow 
a fit to experimental data. 
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(1.9 x 10-5 cm2/s and 4.5 x 10-5 cm2/s for N2 and H2, respectively)36,37 and difference in gas 

solubility (0.69 mM/atm and 0.8 mM/atm for N2 and H2, respectively). 

 

2.3.4 Kinetic limitations 

Previous studies of dissolution of suspended spherical microbubbles23,24 (5-50 µm) 

correspond well with the diffusion-controlled predictions of Epstein and Plesset theory 

within a factor of 2. However, the dissolution of the electrogenerated nanobubbles might 

not be expected to be diffusion limited. The flux of dissolved gas away from a nanoscale 

bubble is several orders of magnitude faster than the micron-sized bubbles, and the high 

internal pressures further increase the outflux. Our measured slower dissolution rates may 

indicate that a dissolving nanobubble is limited by the transfer of molecules across the 

gas/water interface. To assess this hypothesis, we modified Zhang and Lohse’s dissolution 

model of a pinned bubble by adding a first order rate constant for gas/water interfacial 

transfer, kf, as the sole free parameter (see Appendix for derivation). The resulting 

expression for bubble height, h, as a function of time, t, is governed by 
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which can be solved numerically to give bubble lifetimes (i.e., h = 0). PExt is the external 

pressure, kH is Henry’s constant, D is the diffusion coefficient, R is the gas constant, T is 

temperature, cb is the gas concentration in bulk solution far from the bubble, a is the 
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bubble’s lateral radius, and Φ(θ) is a geometric factor for mass transport at a spherical cap 

(1≤Φ(θ)≤π/2) where θ is the contact angle.38 With this model. a value of kf = 1 x 10-9 mol 

N-1 s-1 provides the best fit to our experimentally determined lifetimes of H2 bubbles 

(dashed line, Figure 2.6). The magnitude of this kinetic constant would only have small 

effects on microbubble dissolution rates, because of the reduction in diffusional fluxes at 

large size bubbles.  While the kinetic fit is not particularly compelling likely due to 

uncertainties in the experimental system, our results are an intriguing first estimate of 

interfacial gas transfer limitations at bubbles of nanometer dimensions.  To the best of our 

knowledge, these experiments provide the first direct evaluation of interfacial gas transfer 

kinetic rates for bubbles less than 100 nm in size. 

 

2.4 Conclusions 

We have demonstrated a new electrochemical method for the measurement of 

bubble lifetimes. Studies of H2 and N2 nanobubbles show dissolution rates that are ~1000 

times slower than predictions from extant theories assuming a diffusion-limited process. 

These experiments represent an extreme test case where the rate of gas transfer across an 

interface may not be able to maintain the high equilibrium surface concentration due to the 

exceedingly fast diffusion of dissolved gas away from the bubble’s nanometric gas/water 

interface. Our results are in closer agreement to these theories than previous observations 

of interfacial nanobubbles via AFM and TEM.  Characterization of the bubble and/or 

electrode sizes with other imaging techniques may bring our lifetime values in closer 

agreement with theoretical expectations, or will provide stronger evidence for the 

development and testing of new theories. 
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2.5 Appendix 

2.5.1 Derivations of analytical expressions for bubble lifetimes 

The following are descriptions of the derivations of expressions used to fit the data 

in Figure 2.6 of the main text, as well as the model including interfacial transfer kinetics, 

Equation 2.2, described in the discussion of this figure. The assumptions made in deriving 

these expressions are explicitly stated. 

All derivations are founded upon a few similar descriptions. The bubble on a 

surface is assumed to take the shape of a spherical cap, and can be described by a number 

of different geometric parameters as is shown schematically in Figure 2.7. Elementary 

geometry/trigonometry gives the following interdependencies: 

R
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=)sin(q  (2.3) 
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The volume of the spherical cap, V, and surface area of the gas/liquid interface, A, are 

defined by  

 (2.5) 

  (2.6) 

The pressure, P, may be described by the Laplace equation (Equation 2.7), where 

Equation 2.4 may be substituted in for the radius of curvature of the bubble, R, 
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Figure 2.7. Schematic showing the geometric parameters describing the geometry of a 
bubble pinned on a surface. 
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PExt is the externally applied pressure (1 atm = 101,325 Pa) and γ is the liquid-gas surface 

tension (0.072 J/m2). 

The ideal gas law relates pressure, volume and temperature (T=298 K in this work) 

to the amount, n (moles), where R=8.31 J/(K mol). 

 nRTPV =  (2.8) 

 

2.5.2 Zhang and Lohse model  

Assumptions: We make the assumption that the bubble is pinned, i.e., a is a constant 

for all time. We assume that the kinetics of interfacial transfer are fast, and thus, that 

Henry’s Law is appropriate to describe the concentration at the gas/liquid interface. Finally, 

we make the assumption that mass transport in solution, which we assume to be governed 

by diffusion only, always attains a steady-state distribution. 

Derivation. For a pinned bubble, a is a constant and we can write the rate of change 

of amount in the bubble with time by combining Equations 2.5, 2.7 and 2.8 and using the 

rules of differentiation: 
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The bubble surface concentration, ksurf, may be defined by Henry’s law 

 Pkc Hsurf =  (2.10) 

The flux away from the bubble is analogous to the limiting current, I, to a sphere-cap 
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microelectrode; a situation that was considered by Alfred and Oldham.38 They give 

 ( )qF= bnaFDcI 4  (2.11) 
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where n is the number of electrons transferred, F Faraday’s constant, cb the bulk 

concentration of the species and D the diffusion coefficient (NB: variable names and the 

definition of angle have been adjusted to keep them consistent with this work). Dividing 

through by nF and replacing cb with csurf - cb gives an expression for flux out of the bubble 

which, after a change of sign, can be equated with Equation 2.9 and rearranged to give: 
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  (2.12) 

Equation 2.12 can be solved numerically – in this work we assumed the bubble to initially 

be hemispherical, (h(0) = a) and that the concentration of the gas in bulk solution is cb = 0 

mM for H2 and cb = 0.55 mM for N2. Note: this result is numerically equivalent to that of 

Zhang and Lohse, although the constituent equations and derivation are somewhat 

different. 

 

2.5.3 Modified Zhang and Lohse model 

Assumptions: This derivation makes the same assumptions as the previous 

derivation (Zhang and Lohse) with the exceptions that interfacial (gas/liquid) transport is 

no longer assumed to be fast, but instead is described by a rate expression (Equation 2.13). 

Derivation: The transfer at the gas-liquid interface may be described by a kinetic 
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expression, which necessarily should agree with Henry’s law (Equation 2.10) when at 

equilibrium. Assuming first order kinetics, which is reasonable as we are considering a 

unimolecular reaction, we have, J, the flux out of the bubble at every point as 

 surfbf ckPkJ -=  (2.13) 

At equilibrium J=0 and Henry’s law (Equation 2.10) holds, which gives that kb=kf/kH. We 

make the assumption that the flux is uniform over the entire surface of the bubble. Equating 

fluxes by combining Equations 2.11 and 2.12 we get 

 ( ) ( ) AaccDckPk bsurfsurfbf /4 qF-=-  (2.14) 

Which we may rearrange to give the surface concentration 
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As expected, reduces to Henry’s law (Equation 2.10) for large values of kf, as the second 

terms in both the numerator and denominator tend to zero. 

 We substitute the surface concentration from Equation 2.14 into Equation 2.11 and, 

as with the previous derivation, equate with Equation 2.9, to give the differential equation 

describing the growth/dissolution of the bubble 
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which can be solved numerically using the initial conditions/parameter values as for the 

initial model. 
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2.5.4 Epstein-Plesset for a hemispherical bubble 

Assumptions: We assume that the bubble always maintains a hemispherical shape, 

that is h=a=R, during the entire period of dissolution. We assume that the surface 

concentration is defined by Henry’s law (Equation 2.10). 

 We make the observation that the situation described is no different to that of an 

isolated (spherical) stationary bubble in solution; as in both cases there is no flux across an 

equatorial plane. The dissolution/growth of an isolated bubble in solution has previously 

been addressed by Epstein and Plesset12 and also Ljunggren and Eriksson.13 The latter 

derived the equation 

 HkRTDtata /3)0()( 22 -=  (2.16) 

to describe the bubble radius as a function of time, which gives a zero bubble radius at 

 RTDkat H 3/)0(* 2=  (2.17) 
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ESTIMATING THE CRITICAL SIZE OF BUBBLE-FORMING NUCLEI FOR 

GAS-EVOLVING ELECTRODE REACTIONS 
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3.1 Introduction 

In this chapter, a fundamental question is addressed: “What is the critical size of a 

single cluster of gas molecules that grows and becomes a stable (or continuously growing) 

gas bubble during gas evolving reactions?”  Electrochemical reactions that produce 

dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water 

electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the 

formation of gaseous bubbles.  Herein, we demonstrate that electrochemical measurements 

of the dissolved gas concentration, at the instant prior to nucleation of an individual 

nanobubble of H2, N2, or O2 at a Pt nanodisk electrode, can be analyzed using classical 

thermodynamic relationships (Henry’s Law and the Young-Laplace equation – including 
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non-ideality) to provide an estimate of the size of the gas bubble nucleus that grows into a 

stable bubble.  We further demonstrate that this critical nucleus size is independent of the 

radius of the Pt nanodisk employed (< 100 nm radius), and weakly dependent on the nature 

of the gas.  For example, the measured critical surface concentration of H2 of ~0.23 M at 

the instant of bubble formation corresponds to a critical H2 nucleus that has a radius of ~3.6 

nm, an internal pressure of ~350 atm, and contains ~1,700 H2 molecules.  The data are 

consistent with stochastic fluctuations in the density of dissolved gas, at or near the 

Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of 

the nucleus as a diffusion-limited process and how that process is affected by proximity to 

an electrode producing ~1011 gas molecules per second. Our study demonstrates the 

advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and 

quantifying complex physicochemical phenomena. 

The spontaneous phase transformation required to initiate bubble formation is a 

highly activated process requiring extreme conditions to proceed. Classical nucleation 

theory (CNT) describes this activation barrier to create a bubble nucleus in terms of the 

cohesive force of the liquid, while assuming a critical nucleus is large enough that it can 

be described by bulk thermodynamics.1-4 CNT applies equally to single component 

systems, where a vapor bubble is generated by single component boiling,5,6 as well as 

binary mixtures, where a dissolved gas phase separates into a bubble;7-10 these two systems 

differ predominantly in their growth/dissolution dynamics. Vapor bubbles in single 

component systems are at all instances surrounded by their comprising material and are 

often violent in their dynamics, such as with cavitation.5 Diffusional gradients control the 

growth of bubbles formed from dissolved gas. In this work we report on nucleation of 



 

 

46 

single gas bubbles from a supersaturated binary mixture induced by electrogeneration of 

dissolved gas at a nanoelectrode.  

The free energy of formation of a gas bubble nucleus in solution, ΔGtot, is the sum 

of the energy cost of creating the new interface and that gained through liberation of 

dissolved gas into the bubble volume. Figure 3.1 (top) schematically presents the classic 

description of ΔGtot as a function of the bubble’s radius, rnb. The free energy attributable 

to the gas/solution interface, ΔGsurf = 4πg  (dashed line, where g is surface energy of the 

gas/solution interface), is proportional to the area of the bubble’s interface. The bulk 

component term, ΔGbulk, (dotted line, 4π/3 ΔGV ) is proportional to the volume of the 

bubble and ΔGV, the energy difference between the dissolved and gaseous state of the 

molecules in that volume.  ΔGtot is the sum of these two components,  

ΔGtot = 4πg  + 4π/3 ΔGV                                              (3.1) 

From Eqn (3.1), ΔGtot initially increases as a function of rnb before reaching a maximum, 

Ea, at a critical radius, rcrit. The implication of this free energy maximum is that a bubble 

of radius greater than rcrit is energetically favored to continue to grow, whereas bubbles 

with radii less than rcrit are inclined to shrink. However, since bubbles of critical size 

necessarily arise from the growth of sub-critical nuclei, their formation relies upon 

relatively improbable fluctuations along the free energy barrier. 

A bubble of critical radius is both in mechanical and chemical equilibrium with the 

dissolved gas. The Young-Laplace equation (eqn (3.2)) describes the pressure difference 

across the gas/solution interface, ΔPY-L = Pinternal - Pambient, where Pinternal and Pambient are the 

total pressure within the bubble and the ambient pressure, respectively. For a bubble of 

radius rcrit	

2
nbr

3
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2
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Figure 3.1. Top. Plot of total free energy of formation of a gas bubble nucleus, ΔGtot = 
ΔGsurf + ΔGbulk, vs. the radius of the nanobubble, rnb. The maximum in ΔGtot corresponds 
to the critical nanobubble radius, rcrit, with an activation energy barrier of Ea.  For a bubble 
nucleus of radius greater than rcrit, the continued growth of the nucleus into a stable bubble 
is energetically favorable. Middle. Plots of ΔGtot vs rnb at different concentrations of 
dissolved H2 (i.e. different supersaturations).  Lower values of [H2] are associated with 
higher values of Ea, (indicated by the dashed line), reducing the probability of bubble 
formation. Increasing [H2] decreases the activation energy such that thermal fluctuations 
may nucleate a bubble of critical radius, as depicted by the red star for an arbitrary H2 
concentration. Bottom. Cyclic voltammogram for H+ reduction in 0.5 M H2SO4 at a 33 nm 
radius Pt nanodisk electrode (500 mV/s). The peak (red star) corresponds to a phase change 
as a nucleus grows into a stable nanobubble covering the electrode. Inlaid schematics show 
the spontaneous formation of nuclei near the surface of the electrode. At sufficiently high 
H2 supersaturation, a nucleus of critical size exists, which grows into a bubble covering the 
electrode. Note: while the schematic shows nucleation as a homogenous process occurring 
just above the electrode, we also consider the possibility of heterogeneous nucleation on 
the electrode surface (see discussion). 
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ΔPY-L = 2g/rcrit .                                              (3.2) 

Large positive values of ΔPY-L tend to drive gas molecules out of sub-critical bubbles into 

the solution, resulting in bubble shrinkage. The bubble’s internal hydrostatic pressure 

(ΔPY-L + Pambient) can be countered when the partial pressure of the dissolved gas, Pgas, is 

equal to the bubble’s internal pressure. For any specific supersaturation of dissolved gas, 

Pgas - Pambient, there is a corresponding Ea that is required for formation of a continuously 

growing bubble. As shown in the middle plot of Figure 3.1, a critical bubble size is 

associated uniquely with a specific Ea and supersaturation. At low supersaturations, the 

value of Ea is sufficiently large such that nuclei are unlikely to reach rcrit and grow into 

stable bubbles. Conversely, large supersaturations serve to lower rcrit such that thermal 

fluctuations of the magnitude of Ea may occur at an appreciable rate. 

We recently reported on the formation of single bubbles of H2, N2, and O2 at the 

surface of Pt nanoelectrodes that are created by electrogeneration of large gas 

supersaturations at the electrode/electrolyte interface.11-15 The lower frame of Figure 3.1 

shows an example cyclic voltammogram for the formation of a single H2 bubble.  In this 

experiment, H+ reduction at a 33 nm radius Pt nanoelectrode in 0.5 M H2SO4 is used to 

drive H2 production. On the initial sweep of the i-E curve, the current for H2 

electrogeneration increases when the electrode potential, E, is scanned to potentials 

negative of the formal potential for H+ reduction (E0
H+/H2 = -0.23 V vs Ag/AgCl).  As the 

potential is scanned to more negative values, the current and rate of H2 electrogeneration 

continue to increase nearly exponentially until there is an abrupt drop in the current to a 

non-zero residual current that is nearly independent of E.  The abrupt drop defines the peak 

current, , that coincides with the formation of a stable nanobubble on the surface of the p
nbi
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electrode.12  The bubble, which covers the electrode surface, significantly diminishes the 

rate of H+ reduction of at the electrode, the latter occurring along the circumference of the 

bubble at the Pt/gas/electrolyte interface.11 In this specific voltammogram, the formation 

of a single bubble occurs at ~-0.4 V as indicated by the sudden drop in current magnitude 

from ~20 nA to ~3 nA. The bubble is only stable as long as the potential is held 

sufficiently negative of ~-0.3 V, such that the constant production of H2 at the electrode 

replenishes the H2 that dissolves from the bubble into solution. As the potential is swept 

back towards positive potentials, the current for H+ reduction decays and the bubble rapidly 

dissolves.15  Note, throughout this work, our analysis does not require knowledge of the 

precise mechanism of the gas evolving electrode reactions, only that such reactions produce 

gas as described by well-known stoichiometric reactions, e.g., 2H+ + 2e- ® H2. 

At the foot of the voltammetric wave, the rate of H2 generation is low, and thus the 

amount of dissolved H2 is also correspondingly low.  Based on the above description, we 

expect that the transient H2 bubble nuclei, schematically shown in the insets of Figure 3.1, 

are smaller than the corresponding rcrit, and thus are unstable and dissolve rapidly. As the 

current is swept to more negative potentials, the concentration (i.e., supersaturation) of 

dissolved H2 in the vicinity of the electrode increases and rcrit decreases until the probability 

of a nucleus of radius approaching or exceeding rcrit becomes sufficiently large. At this 

electrode potential, continued growth of a nucleus leading to a stable bubble is 

thermodynamically favorable. This critical point coincides with the red star on each of the 

graphs. While the thermodynamics suggest that the bubble will continue to grow ad 

infinitum, its growth is self-limited at the Pt disk edges, which acts as the source of H2 for 

its growth.11 A stable bubble is established in a dynamic equilibrium when the rate of H2 
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dissolution and electrogeneration are equal. 

Herein, we show that the value of the peak current recorded at the instant prior to 

formation of a single, stable bubble is proportional to the electrode size, with a constant of 

proportionality that depends on the identity of the gas.  For H2, N2, and O2, the current 

corresponds to a critical supersaturation of dissolved gas, above which a phase 

transformation immediately proceeds. Our voltammetric results indicate a sharp threshold 

from immeasurably slow to extremely fast nucleation rates. The critical supersaturation is 

a direct measure of the chemical potential of gas within the critical bubble nucleus, 

allowing calculation of the critical nucleus pressure and radius, as well as the number of 

constituent gas molecules contained within the nucleus.  

 

3.2 Experimental Methods 

3.2.1 Nanoelectrode fabrication and characterization 

Nanoelectrodes were fabricated as previously reported.16 Briefly, the end of a 25 

μm Pt wire was sharpened by etching in 6 M sodium cyanide, the wire attached to a 

tungsten rod, and the sharp end sealed in a glass capillary in a H2/air flame. The glass was 

then polished on silicon carbide sandpaper (400/1200 grit Buehler) until a Pt nanodisk was 

exposed, as indicated by an electronic feedback circuit. The electrochemically-apparent 

electrode radius , a, was determined by measurement of the steady-state diffusion-limited 

current for ferrocene oxidation in an acetonitrile solution containing 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6). Radii were calculated using17 

ilim = 4nFDFcC*a       (3.3) 

where n is the number of electrons transferred (=1 for Fc), F is Faraday’s constant (=96485 
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C/mol), DFc (2.5 x 105 cm2/s)18 and C* are the diffusion coefficient and bulk concentration 

of ferrocene (5 mM), respectively. 

 

3.2.2 Materials and data acquisition 

Sulfuric acid, hydrazine, and CTAB (Sigma Aldrich) were used as received. 

Ferrocene was purified by sublimation. A Dagan Cornerstone Chem-Clamp and a Pine 

RDE4 (used as a waveform generator) were interfaced with a PCI data acquisition card 

(National Instruments) to perform voltammetry. 

 

3.3 Results and Discussion 

3.3.1 Critical concentration 

Figure 3.2 shows typical voltammograms for electrochemical reactions at Pt 

nanoelectrodes that correspond to the formation of stable individual nanobubbles of H2, 

N2, and O2. Each voltammogram displays a similar shape to that for H2 nanobubble 

formation shown in Figure 3.1; however, the values of potentials and currents are different 

for the different gases.  In each case we expect the bubble to form from a critically sized 

nucleus, although the critical radius for each gas will differ due to the distinct chemical 

properties of the gases. The peak current  just prior to bubble formation is labeled on 

each voltammogram. In all cases,  is reproducible between cycles and is nearly 

independent of the scan rate up to ~10 V/s.  

The reproducibility of  and insensitivity to scan rate suggests a very sharp 

threshold over which the probability of a nucleus having radius greater than rcrit changes  

p
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Figure 3.2. Voltammograms corresponding to H2, N2, and O2 bubble formation at Pt 
nanoelectrodes. The gas-evolving electrode reactions are displayed on the figure. The 
electrode radii, a, indicated on each plot were determined from the steady-state diffusion-
limited current of ferrocene oxidation in acetonitrile. The aqueous solutions contained: (a) 
0.5 M H2SO4, (b) 1 M N2H4, and (c) 0.25 M H2SO4. 

 

  



 

 

53 

from essentially zero to unity, and bubble formation immediately proceeds. If the threshold 

were more gradual, one would expect variability in . Similarly, if the formation of a 

bubble nucleus were a slow event on the voltammetric timescale, one might expect an 

increase in the peak current at increasing scan rates.  

The rate of critical bubble formation is a function of the activation energy (indicated 

in Figure 3.1) by the Arrhenius equation J = Z exp(-Ea/kT). For homogeneous nucleation, 

J has been shown to be a steep function of g and supersaturation (Pgas - Pambient)7 

   J = Z exp −16πγ 3

3kT (Pgas −Pambient )
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟                    (3.4) 

where J (m-3 s-1) is the rate of critical bubble formation, the exponential prefactor, Z, can 

be treated as a constant, k is Boltzmann’s constant, and T is temperature. For nucleation of 

bubbles from dissolved gas in solution, in general, there is wide disagreement between 

experiment and theory, with nucleation often occurring at supersaturation levels that are 

orders of magnitude lower than predicted by eqn (3.4). 10,19-22 A large body of literature 

presents a variety of explanations for the observed discrepancy, ranging from new 

thermodynamic interpretations of surface tension of small nuclei, 6,23 to impinging cosmic 

rays,24 to pre-existing stable nuclei.19 Our current data does not allow speculation about 

nucleation rates aside from the observation that the rate appears to vary from extremely 

slow to very fast over a small voltage range (~5 mV), corresponding to a small change in 

the dissolved gas concentration.  

The majority of studies of nucleation in the literature similarly report a 

supersaturation value at which J is appreciably fast.  There are three types of approach that 

have been employed to measure the critical supersaturation at which bubble formation is 
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observed: homogenous gas-producing chemical reaction in bulk solution,21,23,25,26 release 

of pressure after equilibrium is reached at elevated pressure27,28 and electrochemical gas 

generation.20,29  Lubetkin has compiled the results of a large number of these reports and 

points out that these measurements often reflect kinetic limitations and not true 

thermodynamic values.30   

In the context of nucleation rates,  represents a point in the J vs. supersaturation 

curve where bubble formation occurs quickly relative to the rate of change in gas 

supersaturation. For instance, at a 1 V/s scan rate, bubble nucleation reproducibly occurs 

within an ~5 mV range. The voltage range, ΔV, is related to the characteristic time of a 

physicochemical process to the scan rate, n, by τ = ΔV/n, meaning at least one critical 

bubble forms at that dissolved gas supersaturation in the volume near the electrode at least 

every ~5 ms, corresponding to a minimum nucleation frequency of 200 s-1.  

Figure 3.3 shows the dependence of  for N2 bubble formation on the radius of 

the Pt nanodisk, a. The upper part of the figure shows voltammograms recorded in aqueous 

1 M N2H4 at Pt nanoelectrodes of 10, 23, 47, and 80 nm radius, and at a scan rate of 200 

mV/s. It is apparent from these plots that increases as a function of the electrode size. 

The lower part of Figure 3.3 shows that  is a linear  function of a for the nucleation of 

H2, N2 and O2 bubbles (R2 > 0.97 in all cases). The solid lines in this plot represent least 

squares fits to the data that pass through the origin with slopes of 0.81 ± 0.02 nA/nm, 0.48 

± 0.03 nA/nm and 0.31 ± 0.01 nA/nm for H2, O2 and N2, respectively. 

 The steady-state current at a nanodisk electrode, while typically written in terms of 

the bulk concentration of the reactants, can also be written as a function of the surface 

concentration of electrogenerated dissolved gas, Csurf. Assuming zero concentration of this 
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Figure 3.3. Top: Voltammetry corresponding to the formation of stable N2 bubbles at 
different sizes of Pt nanoelectrodes (labeled) in 1 M N2H4. Bottom: Plot of the  as a 
function of the electrode radius, a, for H2, N2, and O2. Lines are least squares best fits to 
the average  of each electrode with the intercept fixed at zero. Similar data were 
originally presented in ref. 12-14. 
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gas in bulk solution, the relation between current and Csurf is given by:17 

  i = 4naFDCsurf                                                       (3.5) 

where D is the diffusion coefficient of the gas in solution and n the number of electrons 

transferred in the reaction (n = 2 for H2, 4 for N2, and 4 for O2). Rearranging this equation, 

and setting i  to  allows one to obtain the critical concentration of dissolved gas at the 

electrode surface at the moment that a dynamically stable bubble is nucleated.   

Ccrit= /4naFD                                 (3.6) 

Because the plots of  vs. a in Figure 3.3 are linear, we conclude that Ccrit is 

independent of the electrode size and can be calculated from eqn (3.6). Values of Ccrit for 

H2, N2 and O2 are tabulated in Table 3.1, with errors determined from the variance in linear 

fits and uncertainty in the value of D (see Appendix for details). From the value of Ccrit, we 

are able to derive a number of properties of the critical nucleus, which are also listed in 

Table 3.1, and which are discussed below.  

 

3.3.2 Critical nucleus parameters 

The Laplace pressure of a critical nucleus is directly related to Ccrit by the partial 

pressure of the dissolved gas (Pgas = ΔPY-L + Pambient). This relationship is given in a 

rudimentary way using Henry’s Law (KHPgas = C),  

ΔPY-L = (Ccrit/KH) - Pambient                                       (3.7) 

where KH is 0.78 mM/atm for H2 in pure water at 25 °C.32 For the measured Ccrit = 0.23 M, 

eqn (3.7) yields ΔPY-L = 290 atm. The Laplace pressure is a thermodynamic quantity, which 

is related, through the surface tension, g, to the bubble radius of curvature, i.e., the critical 

bubble  radius, by  eqn (3.2). Using  the  macroscopic  surface  tension of  0.5 M H2SO4  at 
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Table 3.1. Parameters describing the critical nuclei for H2, N2, and O2 bubble generation.  
 H2 H2 + surfactant N2 O2 
Ccrit (M) 0.23 ± 0 .02 0.14 ± 0.02 0.09 ± 0.02 0.14 ± 0.01 
 Ideal Corrected Ideal Corrected Ideal Corrected Ideal Corrected 
ΔPY-L (atm) 290 ± 30a 350 ± 30b 180 ± 30 210 ± 30 140 ± 30  160 ± 40 100 ± 10 120 ± 10 
rcrit (nm) 4.9 ± 0.6c 3.6 ± 0.3d 4.1 ± 0.8 3.5 ± 0.6e 10 ± 3 7.9 ± 1.6 14 ± 2 10 ± 1 
ncrit

f 3500 ± 900 1700 ± 300 1300 ± 500 900 ± 300 15000 ± 9000 8100 ± 2500 28000 ± 9000 12000 ± 3000 
 
(a) Pressure difference calculated directly from Henry’s Law at 25°C and 1 atm in pure water (ΔPY-L = Ccrit/KH -1) 
(b) Pressure difference corrected using experimental gas solubility at high pressure in pure water and accounting for electrolyte 
reduction of solubility, see Appendix, eqn (3.14) 
(c) Calculated using the ideal ΔPY-L and surface tension of the air/solution interface at 1 atm 
(d) Calculated using corrected ΔPY-L and modification of the surface tension by surface adsorption of gas at high pressures, see 
Appendix 
(e) Calculated using the surface tension of the air/solution interface at 1 atm, see Appendix 
(f)  Calculated from in-column rcrit and ΔPY-L and the ideal gas law (eqn (3.8)) for a spherical bubble. Recent measurements of 
nucleation rates unpublished at the time of submission of this dissertation indicate a heterogeneous mechanism for nucleation 
of H2 bubbles. The low contact angle for the nucleus (as measured through the bubble) reduces the volume to ~1/100 that of a 
sphere and reduces the calculated n accordingly. The calculated rcrit is independent of mechanism.  
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ambient temperature and pressure (0.072 N/m)33 as a simple estimation of g, we calculate 

the value of rcrit = 4.9 nm. From this we compute the number of molecules, n, in the critical 

nucleus using the ideal gas law, assuming a spherical nucleus of volume 4/3πrcrit
3.  

n = (ΔPY-L+ Pambient) 4π rcrit
3/3RT                           (3.8) 

For the 4.9 nm radius critical H2 nucleus, formed at 1 atm and 298K, the total internal 

pressure is 291 atm, and the critical nucleus contains ~3,500 H2 molecules.  

The thermodynamic relations used above provide a straightforward means to 

estimate parameters describing the critical bubble nucleus and are listed as ideal values in 

Table 3.1. Better estimates of ΔPY-L , rcrit, and n can be obtained by consideration of known 

non-idealities at high pressures. The corrected values in Table 3.1 are based on reported 

measurements of gas solubility in pure water at high pressure, the reduction of gas 

solubility by electrolyte at ambient pressures (i.e., ‘salting out’), and reduction of surface 

tension by gas adsorption at high pressure. These corrections are detailed in the Appendix. 

Another consideration is that the surface tension is a function of the interfacial radius of 

curvature for very small bubbles.34 The size at which the effect becomes important is highly 

debated. However, experimental studies of capillary condensation have shown the surface 

tension of water and cyclohexane droplets as small as ~5 nm to be very nearly that of the 

bulk.35,36   Thus, the possible dependence of g on bubble radius is ignored here.	 It is 

expected from classical nucleation theory that a solution/gas interface with lower surface 

tension will have a significantly lower value of ΔGsurf and hence a lower value of Ea for the 

spontaneous formation of a critical nucleus, Figure 3.1. However, both Rubin et al. 21 and 

Hemmingsen27 observed only marginally lower critical values for nitrogen supersaturation 

induced  by a  chemical  reaction and  argon  supersaturation  induced  by pressure release, 
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respectively, in the presence of surfactant, and argued that the surfactant concentration in 

the bulk was too low to affect homogeneous nucleation. To test this idea, we investigated 

the effect of surfactant on the H2 system. Figure 3.4 demonstrates the influence of adding 

CTAB to the solution on the value of . The voltammograms show the formation of a H2 

bubble in 0.5 M H2SO4, recorded at the same 22 nm radius electrode with and without 0.2 

mg/mL CTAB (cetyltrimethylammonium bromide) surfactant. We observe an ~40% 

reduction of  in the presence of surfactant that is reproducible with different electrodes 

indicating that nucleation proceeds at a lower critical supersaturation of H2. This finding is 

consistent with a critical bubble in the presence of CTAB having a lower internal pressure. 

The results suggest that the lifetime of a sub-critical radius nucleus, as it grows to critical 

size, is long enough for surfactant to adsorb to its surface. While both gas and surfactant 

adsorption reduce surface tension, it has been shown that the two components are not 

additive. Rather, the two components are in competition for available surface area.37 Thus, 

for the CTAB data, in contrast to the other experiments, we do not account for gas 

adsorption in the corrected value of rcrit reported in Table 3.1. 

 

3.3.3 Effect of proximity to an electrode 

The supersaturation pressure values corresponding to a nucleation event at our Pt  

electrodes range between 100 and 350 atm and are dependent upon gas type. These values 

are as high as the highest reported values listed by Lubetkin30 and the magnitude of 

supersaturation and ordering by gas type O2 < N2 (H2 not studied) agrees approximately 

with Hemmingsen,27 who visually observed bubble formation after release of pressure to 

ambient  conditions.  In  comparison  to  the  decompression  method,  our  results are more 
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Figure 3.4. i-V responses from a 22 nm radius Pt electrode in 0.5 M H2SO4 with (red) and 
without 0.2 mg/mL CTAB surfactant (black). Scan rate 100 mV/s. 
 
 

  



 

 

61 

quantitative and the electrochemical method is less cumbersome. Our measured critical 

supersaturation values are an order of magnitude higher than other reports of 

electrochemically induced supersaturation. Dapkus and Sides20 attributed the relative ease 

of nucleation in their electrochemical system to a reduction of surface tension by the large 

electric field within the double layer at the electrode surface. Here we do not speculate on 

electric field effects; however, in the following section, we do consider how bubble 

nucleation might be influenced by proximity to a gas-evolving surface. 

The results presented in Table 3.1 indicate at least a few thousand molecules need 

to spontaneously assemble to form a critical bubble with rcrit between ~4 and ~10 nm. In 

the case of H2, this process occurs at a Ccrit of ~0.23 M. If we consider a homogeneous 

solution containing 0.23 M H2, the requisite number of molecules to form a critical bubble 

(n = 1,700) is found within a spherical volume of solution having a radius of 14 nm. A 

bubble nucleus will deplete the surrounding solution of dissolved gas as it grows, relying 

upon diffusion of H2 to the growing bubble. Random diffusion of thousands of molecules 

to a growing bubble within this volume is an unlikely event.  However, in our experiment, 

the Pt nanoelectrodes can support an immense rate of H2 generation due to the high catalytic 

rate for H+ reduction at Pt, as well as the high convergent flux of H+ to the nanoscale 

electrode.  For instance, a typical 16 nA peak current at a 20 nm radius electrode 

corresponds to the production of ~1011 H2/s and represents the generation of the 103 

molecules to create a bubble of critical nucleus size every ~3 nanoseconds. Thus a growing 

sub-critical bubble nucleus near the Pt nanoelectrode will not deplete the local 

concentration of dissolved gas, and its growth will thus not likely be transport limited.  

We performed steady-state finite element simulations to gain further insight into 
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the flux and concentration distributions of H2 around a bubble nucleus at an electrode. Mass 

transport of H2 in solution and its exchange at the bubble-solution interface were modeled 

in these simulations (detailed description in Appendix). The results are shown in Figure 

3.5 for three bubble nuclei of radius that are, respectively, smaller, larger and nearly equal 

to the value of rcrit  = 4.9 nm reported in Table 3.1. In each simulation, the bubble is situated 

1 nm above a 20 nm radius electrode that generates a uniform surface flux of H2 equivalent 

to the current experimentally observed at  (16.2 nA). The concentration of H2 is 

represented by color (red = high concentration, blue = low concentration); its value at the 

surface of the bubble is fixed to that given by Henry’s Law and the bubble’s internal 

pressure (eqn (3.7)). The streamlines represent H2 flux, from which we can observe that H2 

generated at the electrode underneath the bubble flows into the bubble, whereas the H2 

generated at the electrode far from the bubble diffuses into bulk solution. The arrows at the 

bubble-solution interface represent H2 flux vectors across the interface; the results in Figure 

3.5 indicate that H2 enters the bottom of the bubble that is close to the electrode surface, 

and exits through the top surface of the bubble. The magnitudes of these fluxes are quite 

different for the different sized nuclei. The smallest bubble nucleus (rnb = 4 nm), which has 

the highest internal pressure, has larger H2 fluxes out of the top of the nucleus and smaller 

fluxes into its lower side, due to the higher surface concentration. Overall, this gives a net 

outward flow of H2, and hence this nucleus will tend to shrink. In contrast, for the largest 

bubble (rnb = 7 nm), the lower internal pressure generates a lower surface concentration 

and the net flux of H2 is into the bubble; i.e., this is a growing bubble. The net inward flux 

(7.1 fmol/s integrated over the bubble surface) is such that enough gas enters the bubble to 

grow it  to a  hemisphere the  size  of  the  electrode  in  only  7.1 µs.  The  5.6  nm bubble  
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Figure 3.5. Finite element simulations of bubble nuclei one nanometer above a 20 nm 
radius Pt electrode. 4, 5.6, and 7 nm radius are simulated under conditions in which 5.6 nm 
is the critical radius. Streamlines represent H2 flow away from the electrode and vectors 
show the flux across the bubble surface.  
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corresponds to a size where the H2 fluxes into and out of the bubble, through the lower and 

upper surfaces, are nearly perfectly balanced; however, any perturbation would cause it to 

either grow or shrink. Note that this size bubble is slightly larger than rcrit = 4.9 nm reported 

in Table 3.1. 

For simplicity, the nucleus was fixed 1 nm from the electrode center in the 

simulations; however, moving the nucleus horizontally or vertically only subtly affects the 

calculated values and not the qualitative conclusion that the proximity of the electrode 

provides a sufficient supply of the gas to support the rapid growth of the bubble. Moreover, 

simulations with the different gases show similar flux distributions, although the exact 

concentrations/critical sizes depend on the gas. As the simulations were performed at 

steady state, they do not capture the time dependence; however, they do reflect the expected 

location of fluxes. (NB: the use of steady-state simulations accounts for the anomalously 

high concentration observed around the 4 nm bubble, which, rather than constantly 

generating H2 while maintaining its size, would actually be shrinking.)  

The mechanisms described above consider homogeneous nucleation occurring in 

bulk solution in the sense that the volume to surface area relationship of the bubble nuclei 

is fixed by the radius. However, nucleation might be a pseudo-homogeneous process in 

that bubble growth is a surface mediated process whereby the constituent gas is delivered 

over a short diffusive distance. Heterogeneous nucleation could of course be involved, in 

which a sphere cap nucleus is formed on a portion of the electrode. Our derivation of rcrit, 

which began with the experimentally measured Ccrit, does not require the bubble being a 

complete sphere.  Hence the critical radius for nucleation we calculate is independent of 

mechanism. In addition, the critical radius is unaffected by the kinetic limitation of gas 
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transfer discussed in Chapter 2, because Henry’s Law still determines the equilibrium 

relation. Measuring a rate for kf simply defines a kb that satisfies Henry’s Law constant. 

However, for heterogeneous nucleation, the surface area to volume relationship becomes 

defined by the contact angle of the sphere cap on the Pt surface. The barrier for 

heterogeneous nucleation is lower compared to homogeneous nucleation because fewer 

molecules are required and the surface energy cost is lower. If heterogeneous nucleation is 

occurring in our system, surface adsorption of the bubble nucleus to the electrode would 

likely need to be directed by hydrophobic surface contaminants. Surface roughness would 

also be variable from electrode to electrode and consequently the critical concentration 

would be expected to be less reproducible between electrodes than our results perhaps 

suggest. However, we cannot discount this possibility.  

Recent measurements of nucleation rates as a function of H2 supersaturation, 

unpublished at the time of submission of this dissertation, indicate a heterogeneous 

mechanism for nucleation. Low contact angles for bubble nuclei significantly reduce the 

critical number of gas molecules. As such, the dependence upon gas type could further be 

explained by the electrode/gas/liquid surface energies that affect the contact angle of 

bubble nuclei. Moreover, the electrode surface is in different states at the voltages where 

bubble formation occurs in the different reactions (i.e., PtH for H2 and varying proportions 

of Pt/PtO for both N2 and O2), which also affects the nucleus contact angle.  Further studies 

of nucleation rates for other gas types may reveal different contact angles for different 

bubble nuclei of different composition.  
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3.4 Conclusions 

In this report, we have demonstrated that the study of single gas bubbles at nanodisk 

electrodes allows precise quantitative evaluation of key parameters describing bubble 

nucleation. Specifically, analysis of the voltammetric peak currents at the instant preceding 

stable bubble formation provide the size, internal pressure, and number of gas molecules 

of the critical size nucleus that grows into a stable bubble.  For H2, O2 and N2, we find that 

the critical nuclei have a radius between 4 and 10 nm, a pressure of 100 to 350 atm, and 

contain between 2000 and 10,000 molecules, with the variation arising from a number of 

physiochemical parameters of the gas (e.g., diffusion coefficient, gas solubility, surface 

tension, etc.).  The origin of the largest uncertainty in these values arises from the 

uncertainty in the gas diffusivity in electrolyte solution, as well as potential unknown 

limitations of applying thermodynamic relationships at nanoscale length scales for single 

entities (i.e., individual gas nanobubbles).  

 Our current investigations do not shed significant insight into the frequency of 

transient bubble formation and collapse prior to the formation of a nucleus with radius > 

rcrit that grows into a dynamically stable bubble. The voltammetric data place a lower bound 

of ~200 s-1 for nuclei generation when the electrode is held at a potential in immediate 

vicinity of the nucleation potential.  We are currently exploring measurements on single 

bubble experiments to estimate nucleation rates for gas bubbles, and these studies will be 

communicated in a future report.  
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3.5 Appendix 
 
3.5.1 Description of finite element simulations 

The concentrations and fluxes of H2 presented in Figure 3.5 were calculated by 

numerically solving the equations describing diffusion of H2 and its transfer at the bubble-

solution interface. Boundary conditions were chosen to match those of experiments with a 

20 nm radius electrode in 0.5 M H2SO4 at the experimentally determined  (= 16.2 nA) 

and for a range of bubble nuclei sizes. The lower edge of the bubble was placed 1 nm above 

the nanoelectrode center, as shown in Figure 3.6. 

Mass transfer was described by the steady-state diffusion equation (eqn (3.9)) 

within the axially symmetric domain shown in Figure 3.6. 

  (3.9) 

Here, DH2 (=4.5x10-5 cm2/s)38 and c are the diffusion coefficient and concentration of H2, 

respectively. The concentration at the bulk boundary was taken to match that of the 

experimental conditions, that is 

  (3.10) 

There is no flux of H2 into, or out of, the glass surround of the nanoelectrode, as described 

by 

  (3.11) 

where  is the inward pointing unit normal to the surface. 

On the surface of the bubble, we assume that the gas transfer kinetics are infinitely 

fast, i.e., always at equilibrium.  We use the Young-Laplace equation (eqn (3.6)) to describe 

the internal pressure and Henry’s Law to determine its equilibrium concentration. The 

bubble surface concentration of H2 is thus described by: 
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Figure 3.6. Geometry (not to scale) and mesh for finite element simulations of a bubble 
nucleus above a nanoelectrode. 
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. (3.12) 

The boundary condition on the electrode  was matched  to the  experimentally determined  

current (  = 16.2 nA, for  relec = 20 nm) such that the H2 flux is  distributed evenly across  

the electrode surface, which is a reasonable assumption for a kinetically limited reaction, 

i.e., at moderate electrode overpotentials. 

  (3.13) 

Solution of eqn (3.9) was achieved using the commercial finite element package COMSOL 

Multiphysics (version 5.2). The mesh, which was heavily refined on the boundary between 

the glass and the Pt and the bubble surface, is shown in Figure 3.6. 

The “infinite elements” coordinate transform was used to map the outer region 

(quadrilateral mesh in Figure 3.6) to infinity to rule out any influence of a finitely sized 

domain of simulation. 

 

3.5.2 Calculation of parameters for critical nuclei 

Table 3.2 lists diffusion coefficients for H2, N2, and O2 in water from different 

literature reports. In evaluation of Ccrit from the  vs. a slopes in Figure 3.3, the diffusion 

coefficients for each gas were averaged and the extrema were used to estimate the 

uncertainty in D. 

The ideal values in Table 3.1 in the main text are calculated using straightforward 

classical thermodynamic relationships (see main text).  Henry’s Law is the most well 

studied reference point for gas solubility. At 25°C and 1 atm, KH is 0.78, 0.69, and 1.39 

mM  for  H2,  N2,  and O2  in pure  water,  respectively. 32,41,42 However,  calculation  of the 
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Table 3.2. List of diffusion coefficients found in the literature for each gas type.  

 
 H2 N2 O2 

Diffusivity (10-5 cm2/s) at 25 °C 38 4.50 1.88 2.10 

Diffusivity (10-5 cm2/s) at 20 °C 39 4.25 2.00 2.30 

Diffusivity (10-5 cm2/s) at 20 °C 40 5.0 2.6 2.3 

Average ± extremum (10-5 cm2/s) 4.58 ± 

0.33 

2.16 ± 

0.44 

2.23 ± 

0.13 

 
  



 

 

71 

values using Henry’s Law implicitly assumes that gas solubility increases linearly with 

increasing pressure.  Empirical  measurements  of  gas  solubility  in pure  water at extreme 

pressures are available in the literature and report significant deviation from the linear 

approximation.32,43,44 Figure 3.7 compares the linear approximation with the empirical 

data. The pressure at which the equilibrium solubility matches our measured Ccrit is a more 

accurate partial pressure, which we denote by Pgas(Ccrit). 

From the data presented in Figure 3.7 we obtain the pressure in equilibrium with 

the critical concentration for H2 (Ccrit = 0.23 M), as Pgas(Ccrit) = 310 atm, slightly larger 

than the ideal value, 290 atm, calculated with the Henry’s law (linear) approximation. An 

additional correction concerns the electrolyte’s effect on dissolved gas solubility (“salting 

out”). As no measurements of this effect are available at high pressure, we assume that the 

fractional change is the same at all pressures. Thus this is included through multiplying 

Pgas(Ccrit) by the ratio of equilibrium solubility at 1 atm in pure water and with electrolyte 

present. The corrected value for ΔPY-L, which is reported in Table 3.1 as ‘corrected’, is 

given by 

ΔPY-L = Pgas(Ccrit) KH(water)/KH(electrolyte) - Pambient                (3.14) 

For instance, the Henry’s Law constant for H2 in 0.5 M H2SO4 is 89% of the value in pure 

water (both at 1 atm); 45 consequently, our measured Ccrit represents a higher ΔPY-L of 350 

atm. Experimental studies of gas solubility in the electrolyte solutions employed in this 

study would allow us to further refine these approximations 

Additionally, it is not expected that the surface tension of a bubble nucleus is equal 

to that of the air/solution interface at atmospheric pressure. At high pressures, gases are 

known to adsorb  to  the gas/solution  interface,  reducing  the  surface  tension to different 	
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Figure 3.7. Plot of experimental values (red) of H2 solubility at high pressures from Wiebe 
et al.32 Compared with Henry’s Law linear approximation. 
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extents according to their polarizability. Depending on the gas and the pressure within the 

critical   nucleus, the   reduction   in   surface   tension   can   be   significant   and   would 

proportionally lower the estimated rcrit. For the gases in this study, the order of increasing 

positive gas adsorption to the interface has been empirically measured as H2  < O2 < N2.46 

Measurements of the surface tension of gas/water interfaces were reported up to 80 

atm. Polynomial fits to the data are provided in the form g = g0 + BP + CP2 where g0 

(dyn/cm) is the surface tension at 1 atm, P is the applied pressure, and B and C are the fit 

parameters. Values for B and C were reported as -0.0250 and 0, -0.0835 and 0.000194, and 

-0.0779 and 0.000104 for H2, N2, and O2, respectively. Values of 72 and 73 dyn/cm were 

used for g0 for the H2SO4 and N2H4 solutions, respectively, 33,47 giving corrected values for 

g of 63, 65, and 64 dyn/cm for H2, N2, and O2, respectively. Note, as stated in the main text, 

as the influence of the surfactant (CTAB) cannot easily be combined with that of the gas 

altering the surface tension, we used the surface tension at 1 atm in all cases (g = 37 

dyn/cm).48 From these surface tensions and the corrected pressure we derived the corrected 

values of rcrit displayed in Table 3.1, from which the number of molecules in the critical 

nucleus, ncrit, were deduced using the ideal gas law (eqn (3.7)), with the corrected pressure. 
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4.1 Introduction 
 

The Young-Laplace equation is central to the thermodynamic description of liquids 

with highly curved interfaces, e.g., nanoscale droplets and their inverse, nanoscale bubbles. 

The equation relates the pressure difference across an interface to its surface tension and 

radius of curvature, but the validity in using the macroscopic surface tension for describing 

curved interfaces with radii smaller than tens of nanometers has been questioned. Here we 

present electrochemical measurement of Laplace pressures within single H2 bubbles 

between 7 and 200 nm radius (corresponding, respectively, to between 200 and 7 

atmospheres). Our results demonstrate a linear relationship between a bubble’s Laplace 

pressure and its reciprocal radius, verifying the classical thermodynamic description of H2 
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nanobubbles as small as ~10 nm.  

The pressure difference across a curved liquid interface with surface tension, γ, and 

radius of curvature, R, is described by the well-known Young-Laplace equation, ΔP = 2γ/R. 

This equation was first introduced more than 200 years ago to explain meniscus rise in 

capillaries, and has become the basis of classical nucleation theory,1 Ostwald ripening,2 

capillary adhesion,3 and capillary condensation.4 

Classical thermodynamics treats an interface as a mathematical surface with no 

mass or volume and the density change across it as a step function. The molecular view of 

an interface is one of a density gradient, or thickness, of the interfacial layer. The 

insensitivity of surface tension with respect to curvature holds only so long as the thickness 

of the inhomogeneous layer is small compared with the radius of curvature.5 There is no 

widespread agreement on the length scale at which the effect of curvature on surface 

tension becomes important. The problem has been addressed by simulation and 

thermodynamic interpretations with different authors placing the critical radius at widely 

differing values spanning a few Ångströms to tens of nanometers.5-10 Measurements made 

at atmospheric pressures of the negative interfacial curvature of water and cyclohexane 

droplets suspended between mica surfaces suggest that the Kelvin equation holds for  liquid 

droplets with radii between 5-50 nm.11,12 Spherical gas bubbles with interfacial curvature 

in this same spatial domain, however, are predicted to have extraordinarly high internal 

pressures (tens to hundreds of atmospheres), and their thermodynamic properties have not 

been directly probed by experiment.  Herein, we report an electrochemical experiment that 

allows for the direct determination of the Laplace pressure and surface tension of individual 

H2 nanobubbles as small as 7 nm radius. Our results suggest that the Young-Laplace 
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equation provides a remarkably accurate description of the high internal pressures of very 

small bubbles.  

 

4.2 Experimental Methods 
 
4.2.1 Electrode fabrication 

Quartz capillaries O.D. 1 mm I.D. 0.3 mm (Sutter Instrument #Q100-30-7.5) and 

25 µm diameter Pt wire (Alfa Aesar) were rinsed in acetone followed by water and dried 

in a 100 °C oven. A ~1 inch length of Pt wire was placed in the center of the quartz capillary 

and the capillary was placed in a P-2000 Laser Puller (Sutter Instrument). Clamps were 

placed to prevent puller movement during heating cycles and vacuum was applied to both 

ends of the capillary for 5 minutes prior to heating. Three 45-second heating cycles were 

performed with puller parameters HEAT 690 FILAMENT 4 found to be above the quartz 

melting temperature and below the Pt melting temperature. This step serves to seal the 

quartz to the Pt wire. For the pulling step, clamps were removed from puller arms and the 

vacuum tubing was removed. Puller parameters were set to HEAT 710 FILAMENT 1 

VELOCITY 45 DELAY 128 PULL 220. This step serves to melt the quartz and pull the 

quartz-platinum composite thinning it until it separates into two conical, quartz-encased Pt 

wires that terminate with nanometer dimensions. Inspection of each quartz-Pt assembly 

was then performed with light microscopy to ensure the platinum wire was continuous with 

no breaks. Approximately half of the assemblies did not pass this inspection. Electrical 

contact was made with the Pt wire by painting one end of a 0.010 inch diameter tungsten 

rod (A-M Systems) with silver epoxy (Alfa Aesar) and inserting it into the open end of the 

quartz capillary and curing in an oven at 100°C for ~1 hour. 
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Pt nanodisk electrodes were then exposed using focused ion beam milling (FIB). 

First, the assemblies were coated in a 20 nm thick layer of carbon using a Denton Discovery 

18. The assemblies were then mounted vertically with conductive carbon tape, such that 

the tungsten rod was touching the grounded stage of the Helios Nanolab 650. FIB milling 

was performed using a gallium ion beam perpendicular to the capillary axis to expose a 

circular cross section of platinum at the center of the quartz shank. The electrode was then 

imaged in situ by scanning electron microscopy (SEM). The Pt wire was continuous and 

exhibited electrochemistry at the Pt nanodisk in approximately 10% of the milled 

electrodes while the rest likely were discontinuous due to microscopic breaks in the Pt wire 

that were not visualized by light microscopy inspection. 

 

4.2.2 Electrode characterization 

In the process of handling the electrodes, the Pt disk becomes recessed below the 

planar quartz surface. The depth of this recession, d, was calculated by measuring the 

steady-state diffusion-limited current for the oxidation of 5 mM ferrocene dissolved in 

acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6). The 

radius of the opening at the quartz surface, a, and the half cone angle, θ, of the quartz shank 

are known from SEM images (θ is approximately 1° for all electrodes in this study). Thus 

we can use the equation for the limiting current at disk electrode in a conical pore (eq 4.1),13 

to solve for the unknown depth of recession. 

ilim = 4nFDaC* [(1 + (d/a) tan θ)/(4d/aπ + (1 + (d/a) tan θ))]                  (4.1) 

In this equation, n is the number of electrons transferred per molecule (= 1 for ferrocene), 

F is Faraday’s constant (96485 C/mol), D is the diffusion coefficient of ferrocene (2.5 x 
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10-5 cm2/s),14 and C* is the bulk concentration of ferrocene.  

 

4.2.3 i-V measurements 

Electrochemical measurements were performed using a Chem-Clamp potentiostat 

(Dagan corporation). A Pine RDE4 was used as the waveform generator and the current 

and voltage were recorded using a data acquisition card (National Instruments PCI-6251). 

Data were filtered at 1 kHz and recorded at a 5 kHz sampling rate. In all experiments, a 

silver wire chloridized in bleach was used as a pseudo-reference/counter electrode. 

 

4.3 Results and Discussion 

4.3.1 Description of nanobubble steady state 

Figure 4.1(a) shows a series of cyclic voltammograms recorded at a 125 nm radius 

Pt electrode immersed in an aqueous solution containing 0.5 M H2SO4 and 50 mM KCl.  

The electrochemical cell is contained inside a custom pressure chamber in which the 

pressure, Pext, is controlled by connecting the chamber to a high-pressure N2 gas tank.  For 

each i-V curve, the electrode potential is scanned negatively at 0.5 V/s starting from 0.0 V 

vs Ag/AgCl. The approximately exponentially increasing current beginning at ~-0.2 V vs 

Ag/AgCl reflects the reduction of H+ resulting in the formation of dissolved H2. Upon 

reaching a peak current, , of ~25 nA, H2 generation decreases abruptly to a low residual 

level, . This waveshape is characteristic of a phase transition and corresponds to the 

formation of a single nanobubble15-20 that hinders transport of protons to the electrode 

surface, as illustrated in Figure 4.1(b).  For a single experiment,  is nearly independent  
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Figure 4.1. (a) A series of i-V responses corresponding to H2 nanobubble formation at a 
125 nm radius Pt electrode immersed in 0.5 M H2SO4 and 50 mM KCl as a function of Pext. 
Scan rate 0.5 V/s. (b) Illustration of the steady-state dynamics of an electrochemically-
generated nanobubble mathematically described by eqs 4.2 – 4.5. The steady state arises 
from H2 dissolution through the bubble/solution interface, which occurs over the majority 
of the bubble surface, and is balanced by influx of H2 electrogenerated via reduction of H+ 
at the circumference of Pt exposed to solution at the base of the bubble.  
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of the applied potential and its low value indicates the electrode is nearly entirely covered 

by the bubble.15  

The Laplace pressure resulting from the nanobubble’s curvature increases the 

surface concentration driving the outward diffusive flux of H2
21; the bubbles formed here 

are unstable without continued electrogeneration of H2 to replenish the outwardly diffusing 

H2. Influx of gas occurs along the circumference of the gas/solution/electrode  

interface. It is driven by high local concentrations of dissolved H2 induced by H+ reduction 

at the Pt surface exposed to solution.  Growth or shrinkage of the bubble changes the width 

of the exposed Pt decreasing or increasing, respectively, the rate of gas generation. This 

negative feedback mechanism is the origin of the bubble’s steady state where the 

electrochemical current inb
r  reflects the rate of H2 electrogeneration, and thus is a direct 

measure of the bubble dissolution rate.   

 

4.3.2 Current-pressure response 

The voltammograms in Figure 4.1(a) were recorded at a series of applied pressures, 

Pext, between 1 and 14.6 atm. The peak current at which nucleation occurs is not 

appreciably affected by additional external pressure; however, inb
r  increases with 

increasing Pext.  

The dependence of on Pext can be understood through the illustration in Figure 

4.1(b). An increase in Pext raises the bubble’s internal pressure, PH2 (g) , which is the sum of 

the external pressure and Laplace pressure. The higher PH2 (g)  results in a higher surface 

concentration of H2, CH2 (aq)
s , causing an increased rate of H2 diffusion from the bubble 

r
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surface.  The increased rate of dissolution with Pext necessitates an increase in H2 

electrogeneration to maintain the steady state; thus, increases with Pext. 

Note that the illustration in Figure 4.1(b) shows the surface of the Pt electrode 

below the plane of the surrounding glass surface. This geometry is common among 

nanoelectrode fabrication methods and is important to the interpretation of our results. 

Fabrication methods of Pt nanodisk electrodes are well known, as are the difficulties in 

characterizing their geometry.22 Here we follow a melt-pull-mill procedure to fabricate the 

Pt nanoelectrodes (see Appendix).23  

 

4.3.3 Mathematical model for dissolution flux 

The current, , required to maintain the steady-state bubble can be expressed in 

terms of the dissolution flux of H2.  For a sphere cap bubble covering an electrode of radius 

a, is given by eq 4.2,24 where G(θ,d) is a geometric factor that encompasses the bubble’s 

contact angle, θ, and other factors, e.g., recession depth, d, that dictate the rate of H2 

diffusion from the bubble. The surface concentration of H2, CH2 (aq)
s , has an equilibrium 

value according to Henry’s Law (eq 4.3), where the H2 pressure inside the bubble is the 

ambient pressure plus the Laplace pressure (eq 4.4).  

    i =G(θ,d)nFDH2
aCs

H2 (aq)
                                                        (4.2) 

CH2 (aq)
s = KHPH2 (g)                                                                 (4.3) 

PH2 (g) = Pext +
2γ
Rnb

                                                               (4.4) 

Combining eqs 4.2 through 4.4, we arrive at: 
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inb
r =G(θ,d)nFDH2

aKH Pext +
2γ
Rnb

⎛

⎝
⎜

⎞

⎠
⎟                                         (4.5)  

where n is the number of electrons transferred per molecule (= 2 for H2), F is Faraday’s 

constant (96485 C/mol), DH2  is the diffusion coefficient of H2 (4.5 x 10-5 cm2/s),25 KH is 

Henry’s Law constant (0.78 mM/atm for H2 at 25 °C),26 and Rnb is the radius of interfacial 

curvature of the bubble sphere cap.  Equation 4.5 indicates that  changes linearly with 

Pext, as experimentally observed.  More importantly, eq 4.5 indicates that a plot of  vs 

Pext has an extrapolated x-intercept that occurs when Pext is equal and opposite of the 

nanobubble Laplace pressure, i.e., when Pext =  -2γ/Rnb. This measurement is entirely 

analogous to the analytical technique of “standard additions” where, in this case, 

subsequent additions of pressure allows 2γ/Rnb to be determined from the = 0 intercept 

without knowledge of any constants in the multiplying prefactor (G(θ,d)nFDH2aKH) in eq 

4.5.  

Figure 4.2(a) shows the i-V responses of 50 nm and 88 nm radius Pt electrodes in 

0.5 M H2SO4 and 50 mM KCl as a function of Pext both in the absence and presence of 1 

mM Triton X-100, a non-ionic surfactant. SEM images of the electrodes are shown; in 

these images the bright spot at the center is the Pt disk cross section of a Pt nanowire 

embedded in quartz. The values of  recorded at -1 V are plotted against Pext and fit by 

linear least squares regression in Figure 4.2(b). In all cases, the data fit a regression line 

with an R2 better than 0.999 indicating the linear model of eq. 4.5 well fits the data. The 

linearity also suggests that the bubble geometry is not changing appreciably under 

application of external pressure.  
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Figure 4.2. (a) SEM images of Pt disk nanoelectrodes measuring 50 nm radius and 88 nm 
radius immediately after fabrication taken prior to their recession. Their i-V responses in 
0.5 M H2SO4 and 50 mM KCl at increasing applied pressures are shown in the absence of 
a surfactant and with 1 mM Triton X-100 added to solution. The residual current at -1 V is 
plotted vs applied pressure and fit via linear least squares regression in (b). The absolute 
value of the x-intercept of the regression line gives the Laplace pressure resulting from the 
bubble radius of curvature, Rnb, and surface tension, γ.  
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4.3.4 Calculation of Laplace pressure 

From eq 4.5, the x-intercept of the regression line gives the negative of the Laplace 

pressure where Pext cancels the pressure resulting from interfacial curvature, and the H2 

flux is theoretically zero. The Laplace pressures within bubbles formed on the 88 nm radius 

electrode (black), with and without surfactant, are 6.9 ± 0.2 and 16.4 ± 0.4 atm (95% 

confidence interval), respectively. The measured Laplace pressure in the presence of 

surfactant is 42 ± 2% of that without surfactant, in agreement with the ratio of the known 

surface tensions (45% for γ = 33 mN/m and 73 mN/m in aqueous Triton X-100 and sulfuric 

acid solutions, respectively).27,28 Assuming these macroscopic values for the surface 

tension, we calculate radii of curvature from the Laplace pressures as 92 ± 6 and 87 ± 4 nm 

for γ = 33 mN/m and 73 mN/m, respectively. Similarly, the Laplace pressures of bubbles 

generated at the 50 nm radius electrode were measured as 12.7 ± 0.3 and 24.9 ± 0.5 atm 

(95% confidence interval) equating to radii of 51 ± 2 and 58 ± 3 nm for γ = 33 mN/m and 

73 mN/m, respectively. These radii of interfacial curvature are remarkably close to the radii 

of the electrodes as measured by SEM. The match between the electrode radius and bubble 

radius of curvature signifies the bubbles are very nearly hemispherical. Either a higher or 

a lower contact angle would increase the bubble’s radius of curvature and would require 

an unrealistically high surface tension to equal the experimentally measured Laplace 

pressure.  

While the Laplace pressure measurement by extrapolation does not require any 

prior knowledge of the bubble contact angle or electrode radius or geometry, the current 

magnitude and slope of inb
r -Pext are a reflection of these factors. The geometric factor, 

G(θ,d), should be the same for bubbles on a given electrode if the only parameter that 
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changes is the surface tension. Isolating this factor from the constants in the slope term 

yields G(θ,d) = -0.21 ± 0.01 and -0.22 ± 0.01 for the 88 nm radius electrode and G(θ,d) = 

-0.21 ± 0.01 and -0.24 ± 0.01 for the 50 nm radius electrode, with and without surfactant, 

respectively. The nearly 1:1 ratio of the G(θ,d) factor and the decrease in current magnitude 

in the presence of surfactant to ~45% (corresponding to the ratio of surface tensions) of 

that without surfactant further supports the hypothesis that bubble geometry remains 

constant between experiments. 

Figure 4.3(a) shows the experimentally measured Laplace pressures plotted versus 

the reciprocal electrode radius. The surface tension calculated from the Laplace pressure, 

using eq. 4.4, is shown in Figure 4.3(b). Bubbles were formed on electrodes ranging in size 

from 7 to 200 nm radius both in the presence (blue triangles) and absence of surfactant (red 

squares). The dashed lines indicate macroscopic values of g from the literature (noted 

above). It is apparent from the agreement between experiment and theoretical values in the 

absence of surfactant (data in red) that the bubbles are very nearly hemispherical and that 

the surface tension is not changing appreciably from the macroscopic value over the size 

range studied. With surfactant present (data in blue), Laplace pressures match the expected 

values for radii larger than ~40 nm. The Laplace pressures within bubbles formed on 

electrodes smaller than ~40 nm with surfactant present are approximately half the expected 

value for a hemispherical bubble. In this case, the geometric factors for two of the four data 

points in question are lower in the presence of surfactant – an indication that these bubbles 

may have a larger radius of curvature. Therefore, we cannot make strong conclusions about 

the surface tension of surfactant-coated bubbles below 40 nm radius. There could be 

several reasons for the more complex behavior, e.g., an energy cost of bending a surfactant  
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Figure 4.3. (a) Measured Laplace pressures as described in Figure 4.2 resulting from 
bubble interfacial curvature in the absence of surfactant (red squares) and in the presence 
of 1 mM Triton X-100 (blue triangles) versus reciprocal electrode radius. Dashed lines are 
2g/a assuming macroscopic values for the surface tension with (blue) and without (red) 
surfactant. Data plotted on log scales. (b) Surface tension values calculated from the 
Laplace pressures in (a) assuming bubbles are hemispherical (radius of curvature equals 
the electrode radius). Dashed lines are the macroscopic surface tensions with (blue) and 
without (red) surfactant. Error bars represent a 95% confidence interval. 
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layer with a preferred curvature, or perhaps the increasingly shorter three-phase contact 

line for the smallest of bubbles cannot support high enough rates of gas generation in the 

presence of surfactant. Nevertheless, the interface in the absence of surfactant does not 

suffer these drawbacks for the smallest bubbles studied.  

 

4.4 Conclusions 

The electrochemical pressure-addition measurements presented here demonstrate 

the immense forces at nanoscale interfaces and validate the classical thermodynamic 

description of liquid interfaces as small as ~10 nm.  Our results may contribute to the 

development of new technologies that exploit the thermodynamics of highly curved 

gaseous interfaces, including plasmonic nanobubble therapies,29 underwater adhesives 

based on Gecko feet,30 and nanobubble desalination technology.31  

 

4.5 Appendix 
 
4.5.1 Finite element simulations 

Simulations of H2 diffusion were performed to calculate the expected current 

response as a function of bubble/electrode geometry and pressure. Mass transport was 

described by the steady-state diffusion equation (eq 4.6) within the axially symmetric 

domain shown in Figure 4.4A. 

     (4.6) 

where  (4.5x10-5 cm2/s)25 is the diffusion coefficient of dissolved H2 and CH2  its 

concentration. 

The concentration at the bulk boundary far from the bubble was set to zero and the  

0 = DH2
∇2CH2

DH2
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Figure 4.4. Finite element simulation of nanobubbles.  (A) Geometry, boundary conditions 
and (B) mesh for finite element simulation of a hemispherical bubble of radius, a, recessed 
below the glass support by depth, d, described in detail above.  
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absence of H2 flux into the quartz surface was described by 

    (4.7) 

where  is the inward pointing unit normal to the surface. 

In these simulations, we assumed the rate of gas transfer across the bubble interface 

to be infinitely fast and the concentration of dissolved H2 at the bubble-solution interface 

was held at the equilibrium value for the bubble’s internal pressure (determined by its 

radius of curvature, Rnb, and surface tension, g, through the Young-Laplace equation) 

according to Henry’s Law via eq. 4.8.  

              (4.8) 

The net transport of H2 from the bubble was calculated by integration of the flux over the 

bubble-solution interface and converted to a current by noting that 2 electrons are used to 

form every molecule of H2. 

   (4.9) 

The equations were solved using the commercial finite element package COMSOL 

Multiphysics 5.2. Discretization of the equations was performed using a mesh as shown in 

Fig 4.4B, which was made fine enough such that any further size reduction produced no 

change in the simulation results.  

 

4.5.2 Deviation from Henry’s law  

Making use of linear regression to calculate the Laplace pressure makes the 

assumption that Henry’s Law obtains, i.e., H2 solubility is linear over the range of pressures 

studied. While H2 solubility at increasing pressures is not perfectly linear, this deviation is 
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minor in the ranges of pressures we studied, as can be seen in Figure 4.5A, which plots 

experimental measurements of H2 solubility vs pressure from Wiebe et al.26 alongside those 

predicted by Henry’s law. Importantly, the impact of any deviations on the measured 

Laplace pressures is also negligible. This can be seen in Figure 4.5B which shows results 

for finite element simulation of the currents associated with the diffusion-limited flux of 

H2 from a 7 nm radius bubble at zero recession depth under increasing applied pressures 

assuming Henry’s Law (black) or using the experimentally measured values of Wiebe et 

al. (red). The choice of a 7 nm radius bubble represents the worst-case scenario in our 

experiments. Yet, even in this case, the Laplace pressures derived from intercepts of linear 

least squares differ by less than 3% (211 atm vs 206 atm for experimental and Henry’s law, 

respectively). Thus we can conclude that the assumption that Henry’s law obtains is 

reasonable and does not lead to significant errors. 

 

4.5.3 Imaging electrode recession 

SEM images of electrodes immediately after FIB milling suggest the Pt nanodisk 

is coplanar with the quartz surface. However, the electrodes become recessed during their 

use, even while taking precautions as suggested by Nioradze et al. to minimize electrostatic 

discharge.23 Figure 4.6 shows the same electrode (left) immediately after fabrication and 

(center) after recession occurs. Remilling ~500 nm of quartz off the end of the damaged 

electrode exposes the Pt wire once again, as is shown in the right-hand panel of the figure. 

The mechanism of this damage is not fully understood. The depth of the recession is 

characterized as described above. Figure 4.7 shows reasonable agreement between 

experimental  and  simulated  values  of  the  residual  current  from  H2  bubbles at various  
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Figure 4.5. Validity of Henry’s Law at high pressure. (A) Comparison of (red) 
experimental values of H2 solubility vs pressure reported by Wiebe et al. with (black) those 
predicted by Henry’s Law (B) Simulated currents from a 7 nm radius bubble at zero 
recession depth vs Pext using each solubility-pressure relation to define the surface 
concentration. Intercepts from the linear regression give Laplace pressures of 211 atm 
(Wiebe et al.) and 206 atm (Henry’s law) representing a difference of less than 3%. 
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Figure 4.6. Recession of nanoelectrodes. SEM images of a single 55 nm radius Pt nanodisk 
electrode: (left) immediately after FIB milling, (center) after use in an electrochemical 
circuit outside of the SEM, and (right) after further FIB milling of ~500 nm off the end of 
the quartz shank. It is apparent that the electrode became recessed while outside of the 
SEM and was re-exposed after further milling, providing further evidence that the recession 
depth is only a few electrode radii. 
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Figure 4.7. Comparison of simulation and experiment. (Points) Experimentally measured 
residual currents after bubble formation without surfactant (red) and with surfactant (blue) 
versus the ratio of the depth of recession, d, to the electrode radius, a. Lines are the result 
of finite element simulations calculating the integrated H2 flux from a 50 nm radius 
hemispherical bubble at varying recession depths.  
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recession depths.  

 

4.5.4 Geometric factor 

Determination of the Laplace pressure from the inb
r -Pext response does not require 

any knowledge of the multiplying prefactor (G(θ,d)nFDH2aKH) in eq. 4.5. As such, no 

errors are introduced in the reported values of 2g/Rnb from uncertainties in the bubble and 

electrode geometries, diffusion coefficients, and H2 solubility.  Likewise, the only 

uncertainty in gamma is introduced by the error in the bubble radius. The following 

paragraphs discuss our assertion that Rnb = a in our experiments. 

To estimate Rnb, first, we observe that the low residual current observed upon 

formation of a bubble indicates that it covers the majority of the underlying electrode. We 

also observe that for a given circular contact area a maximum in Laplace pressure occurs 

when the contact angle is 90°, i.e., when the bubble is hemispherical. Combined, these two 

observations imply that the minimal Rnb, corresponding to the maximal Laplace pressure, 

is equal to the radius of the electrode, a. 

For the larger electrodes (bubbles) the surface tension is expected to obtain its 

macroscopic value. For these bubbles, the measured Laplace pressure is in good agreement 

with this maximal Laplace pressure (dashed lines, Figure 4.3(a)), i.e., these bubbles are 

(very nearly) hemispherical and Rnb ≈ a. For the smaller electrodes, in the absence of 

surfactant, this agreement is maintained, suggesting no significant change in either the 

surface tension or the contact angle for the range of bubble sizes investigated.  

For the smallest electrodes in the presence of surfactant, the measured Laplace 

pressure differs significantly from that predicted assuming Rnb = a and the surface tension 



 

 

98 

is equal to the macroscopic value, indicating these bubbles behave differently from those 

on the same electrodes in the absence of surfactant. Inspection of eq 4.4 shows that in 

principle, the different effects of changing g and Rnb should be identifiable from inb
r -Pext 

responses measured with and without surfactant. If the addition of surfactant solely reduced 

the surface tension while leaving the geometry unchanged, then the inb
r -Pext slope with 

surfactant should be identical to that without surfactant and the ratio of the current values 

at the y-intercept equal to the ratio of the surface tensions. Comparison of simulations for 

50 nm radius nanobubbles on a 50 nm radius electrode recessed by 100 nm at various 

surface tensions (Figure 4.8) shows this to be the case. The red, blue, and green three 

parallel lines correspond to without surfactant (73 mN/m), with surfactant causing the 

surface tension lower to the macroscopic level (33 mN/m), and with surfactant but a surface 

tension below its macroscopic level (13 mN/m). The dashed line is the result of simulations 

with the bubble’s radius of curvature increased to 70 nm (base radius of 50 nm, height of 

20 nm) with the surface tension at its macroscopic value in the presence of surfactant (33 

mN/m). As predicted, the different geometry gives rise to a different gradient, yet the slight 

differences in the inb
r -Pext response shown by the green and dashed lines (Rnb = 50 nm & γ 

=33 mN/m and Rnb = 70 nm γ =13 mN/m, respectively) highlight the difficulty of making 

strong claims from experimental inb
r -Pext measurements without independent confirmation 

of bubble geometry. 

With the different effects of g and Rnb in mind, we can examine the experimental 

inb
r -Pext responses from bubbles formed with and without surfactant present on the same 

electrode  shown  in  Figure  4.9A.  Figure  4.9B  plots  the ratio  of  the gradients with and  
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Figure 4.8. Simulated current-pressure response. Finite element simulations of the current 
equivalent to the diffusion limited flux of H2 away from a steady-state bubble as a function 
of applied pressure. The simulations were performed with an electrode recession depth of 
100 nm and an electrode radius of 50 nm. The bubble radius of curvature and the surface 
tension for each simulation is indicated in the legend. 
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Figure 4.9. Examining the current-pressure response. (A) experimental -Pext responses 
for steady-state H2 bubbles on Pt electrodes of different radii, a (indicated on individual 
plots) in a solution of 0.5 M H2SO4 and 50 mM KCl with (blue) and without surfactant 
(red). (B) The ratio of the G(θ,d) factors calculated from the slope of the - Pext responses 
with and without surfactant in (A). 
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without surfactant for each electrode in Figure 4.9A, which due to cancellation of factors 

is equivalent to the ratio of G(q,d) with and without surfactant. Several of the G(q,d) ratios 

are ~1, indicating no difference in the geometry between the two cases. However, at the 

small sizes, the ratio is inconsistent, indicating variation of the bubble geometry between 

the two cases. For these cases, we are unable to deconvolute the two effects accurately and 

errors are introduced if we convert Laplace pressures to surface tensions using the 

assumption that Rnb = a. 

Contact angles of bubbles on surfaces exhibit anomalous behavior in a number of 

ways. Unlike oil droplets,32 the contact angle of nanobubbles tend to be significantly 

smaller (as measured through the air) than macrobubbles.33 AFM images also indicate that 

nanobubbles have a constant interfacial curvature suggesting distance-dependent surface 

forces do not induce any pressure gradient at varying separations along the sphere cap.34 

Different research groups report contrasting results that nanobubble contact angles do35  

and do not36 vary  as a  function of size as expected for either an effect of surface forces or 

line tension. We suspect that the nanobubbles in our study sustained by gas evolution are 

far from their equilibrium contact angle and instead take on a 90° contact angle because 

they are limited from further growth by influences of the geometry and wettability of the 

quartz walls in the electrode recession well. Furthermore, the linearity of the inb
r -Pext 

response also suggests that the bubble geometry is not changing appreciably under 

application of external pressure, which can be understood by considering that H2 generation 

is likely not kinetically limited at the inb
r . Rather, inb

r  is a steep function of the bubble’s 

contact angle and the width of Pt exposed at the 3-phase contact line where the replenishing 

rate can easily match the increased dissolution rate with miniscule change in geometry. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Summary 
 

5.1.1 Context 

Atomic force microscope images have shown that incomplete wetting of surfaces 

results in long-lived interfacial nanobubbles despite well-known theoretical considerations 

suggesting they should dissolve in less than a millisecond. While AFM offers remarkable 

resolution for imaging, it has limited utility in elucidating the underlying mechanisms of 

dynamic systems. Questions about the observed stability of interfacial nanobubbles have 

puzzled researchers for two decades. Vincent Craig, a leader in the field, voiced his 

consternation saying, “We are left with two possible conclusions. Either nanobubbles are 

closed systems that don’t communicate with their surroundings, or there exists a dynamic 

equilibrium whereby the gas that dissolves out of them is recycled back into the bubbles to 

keep them stable. Neither of which is tolerable.”1 The community of researchers working 

on nanobubbles has been actively seeking new techniques to unveil the dynamic nature of 

nanobubbles.  

Application of nanoelectrochemical methods to the study of nanobubbles as 

pioneered in the White laboratory has allowed such dynamic studies for the first time. 
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Nanoelectrochemistry provides means for direct measurement and control of fluxes of 

dissolved gas with high temporal and spatial resolution. Luo et al.2 laid the groundwork for 

these voltammetric studies in 2013 showing the characteristic waveshape with a peak and 

residual current. It was proposed that these features correspond to the nucleation and steady 

state, respectively, of a single nanobubble. Investigating these processes is the focus of the 

work in this dissertation. 

 

5.1.2 Initial scientific questions  

The most notable behavior of nanobubbles as discussed in the literature is their 

surprising stability. Hence, measurement of the lifetimes of electrochemically generated 

nanobubbles was an important goal from the outset. The ability to perform repeated 

voltammetric cycles in which each new scan indicated formation of a bubble was an 

indication that the bubbles must dissolve between scans. Chapter 2 details the analytical 

method we developed to measure nanobubble lifetimes. Our approach was simply to reduce 

the time that gas generation was “turned off” between formation of a bubble and the attempt 

to reform another bubble. Indeed, at short time intervals, as set by the scan rate, the 

characteristic peak corresponding to nucleation of a new bubble was absent on the second 

voltage scan, indicating the bubble survived the time duration over which gas generation 

was stopped. Increasing the time interval with slower scan rates allowed the bubble to 

dissolve and the fastest scan rate at which the bubble dissolved was used to calculate the 

lifetime. The measured lifetimes (on the order of tens of milliseconds) are the shortest 

reported for nanobubbles in the literature, and yet are still 2 to 3 orders of magnitude longer 

than diffusion limited theories predict.3 To account for the discrepancy, we proposed a 
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kinetic limitation on the rate of gas transfer across the gas/water interface.  

Calculation of the rate limitation, however, is highly dependent upon accurate 

knowledge of the geometry of the bubble and electrode. Attempts to image electrodes and 

bubbles via AFM revealed that our nanoelectrodes were of a recessed geometry. Since 

electrode recession increases mass transport resistance, it was an indication that our method 

of electrode sizing based upon a diffusion limited current had underestimated the electrode 

and, therefore, bubble sizes as well. Furthermore, recession serves to slow the diffusive 

flux away from the bubble during lifetime measurements and thus doubly affects the 

calculated kinetic limitation.  

In considering the ramifications of electrode recession on our work, we concluded 

that there are cases where the electrode geometry strongly affects results and cases where 

it does not. Experiments in which we report measurements of the surface concentration of 

generated species are unaffected by electrode geometry. Because we characterize 

electrodes via the diffusion limited current of ferrocene, ilim, the apparent electrode radius, 

a, from this measurement acts as a geometric factor and accounts for deviation from ideal 

nanodisk geometry. In the calculation of surface concentration of dissolved gas, only the 

ratio of diffusion coefficients scaled by the current affects the outcome. All other variables 

cancel out. 

!"#$$%&' = )*+,-./012#3124567
)689-./0*+,#

           (1) 

 The actual electrode size then is slightly larger than the calculated apparent size, but the 

subsequent calculation of surface concentration is correct despite incomplete knowledge 

of geometry. Calculations in which bubble and electrode geometries are assumed to assess 

bubble dynamics are affected by an unknown recession. Thus, while the method for 
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measurement of bubble lifetimes is sound, the calculated rate constant could be made more 

accurate with highly characterized electrodes. 

In subsequent work, laser pulled and focused ion beam milled electrodes were 

employed. This method does not avoid recession, but it allows determination of the 

electrode radius independently via scanning electron microscopy. Measurement of a 

diffusion limited current for ferrocene then allows calculation of the depth of recession. 

This is detailed in section 4.2.2.  

Sizing electrodes accurately in this fashion enabled the measurement of Laplace 

pressures reported in Chapter 4. Here, we demonstrated that the residual current after 

bubble formation could be modulated through application of external pressure which acts 

to increase the dissolved gas solubility at the bubble surface. In a means analogous to 

standard additions, extrapolation of the current-pressure response allows calculation of the 

unknown internal pressure. These extrapolated pressures agree very well with the expected 

values using the macroscopic surface tension and the electrode radius as imaged by SEM. 

Our measurements, therefore, confirm the classical thermodynamic description of 

gas/liquid interfaces for radii of curvature as small as ~10 nm.  

There had been real doubt whether interfacial nanobubbles on hydrophobic surfaces 

were truly highly pressurized as classically expected. A proposed explanation for their 

longevity was that surface contaminants might coat nanobubbles and drive their surface 

tension to zero as they “jam” together upon bubble shrinkage.4 With no surface tension, 

there would be no difference in chemical potential between the gas inside the bubble and 

the dissolved gas in solution and the bubble would be at equilibrium. Based upon our 

measurements of Laplace pressures, contamination does not appear to affect surface 
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tension in our experiments. 

In these studies, electrode size and recession depth were measured independently. 

Thus, we were able to compare experimental values for the residual current with finite 

element simulations of the gas dissolution flux from bubbles on electrodes with comparable 

geometry. These results are shown in Figure 4.7. For these simulations, it was assumed that 

gas transfer at the bubble-solution interface occurs infinitely fast and that flux is solely 

limited by diffusion. As the  we measure from bubbles at various recession depths match 

closely enough to the simulated values assuming infinitely fast gas transfer, our 

experiments suggests that any kinetic limitation that may be present should occur at a rate 

greater than kf = 10-6 mol N-1 s-1. We list this value for kf because placing this limitation on 

flux across the bubble interface reduces the simulated current by ~50% for bubbles 

recessed by d/a < 4 and such a rate limitation would be noticeable. 

Chapter 3 presents measurements of the critical concentration, Ccrit, at which bubble 

nucleation occurs quickly relative to the timescale of the voltammetric experiment.  Bubble 

nucleation is a steep function of the concentration of dissolved gas which in turn increases 

exponentially as a function of voltage. The result is a threshold phenomenon such that the 

probability of bubble formation changes from essentially zero to 1 over a span of ~30 mV. 

The electrode surface concentration of dissolved H2 at the instant prior to bubble formation 

is the reported Ccrit. The critical nucleus that spontaneously forms at this concentration is 

in metastable equilibrium with the dissolved gas according to classical nucleation theory, 

and therefore, has an internal pressure, Pbubble, equal to the partial pressure of dissolved H2 

given by Henry’s Law, Ccrit = PbubbleKH. This pressure is directly related to the radius of 

curvature, rcrit, of the critical nucleus by the Laplace-Young equation, Pbubble – Pambient = 

r
nbi
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2g/rcrit, using the macroscopic value of the solution surface tension, g. Whether nucleation 

in these experiments occurs homogeneously or heterogeneously does not change this 

radius.  

The exact rate of a kinetic limitation has no bearing on the measurement of the 

critical radius of bubble-forming nuclei. Any interfacial gas transfer kinetics must 

necessarily agree with Henry’s law and thus should satisfy kf/kb = KH. At equilibrium, the 

rate of gas exiting and entering the bubble is equal, which can be written as a rearrangement 

of Henry's Law by J = 0 = Pbubble*kf - C*kb. Thus, as it should be, the thermodynamic and 

kinetic descriptions agree on the equilibrium configuration. Our measurement of a kinetic 

limitation for a dissolving bubble does not change the value of Henry's Law. Defining a 

rate of kf simply means there is a corresponding kb that satisfies Henry's Law at equilibrium. 

A consequence of the kinetic limitation is that the rate of growth and dissolution would not 

be diffusion limited, but the radius at which there is a transition between the two regimes 

is unchanged. 

In the experiments reported in this dissertation, electrochemically generated 

nanobubbles exhibit markedly different behaviors compared with the interfacial 

nanobubbles on hydrophobic surfaces reported in the literature. The nanobubbles studied 

in this dissertation behave quite classically in regards to their dissolution and internal 

pressures. These results suggest that the mechanism granting interfacial nanobubbles 

peculiar properties likely has its origin in the bubble’s interface with the hydrophobic 

surface. This is in line with recent reports on interfacial bubbles suggesting that pinning of 

the three phase contact line allows stability. 
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5.1.3 Limitations of this work 

The strength of the conclusions in this dissertation could in general be improved by 

direct imaging of electrodes and bubbles to confirm the pictorial representations presented. 

Also, we do not explicitly control or measure the surface roughness or exposed crystal facet 

of the electrodes. These are expected, in part, to determine the surface energy of bubble 

nuclei and affect nucleation. At this time, we do not know if bubble formation occurs at a 

specific nucleation site on each electrode or if there are many sites. Additionally, 

experimental measurement of surface tensions and gas solubility at the pressure and in the 

solutions employed could improve precision of calculations.  

 

5.2 Future Directions 

5.2.1 Imaging techniques  

Imaging a nanobubble by AFM is a delicate task, but there is a rich literature 

describing that it is possible. Great care must be taken in choosing an AFM probe and 

tuning its oscillation in liquid to ensure the forces exerted by the cantilever are minimized.  

Also the sharpened tip must be rigorously cleaned by plasma treatment such that the bubble 

does not wet the probe and lift off the surface. If the issues surrounding electrode recession 

can be overcome, then combining AFM imaging with electrochemical measurements 

should be possible. 

Dynamic transmission electron microscopy is an emerging tool able to directly 

visualize nanoscale phenomena in liquids with remarkable resolution. It has recently been 

employed to image nanobubbles nucleated in solution by electron beam irradiation.5 With 

a compatible electrochemical cell and low beam energies, high spatially and temporally 
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resolved images could be captured.  

 

5.2.2 Nucleation rates 

Quantitative investigations of the nucleation kinetics of nanobubbles should be 

made to determine factors that lead to the phase-transition electrode overpotential. 

Experiments in this dissertation have shown that at moderate scan rates (<2 V/s), the critical 

current preceding nucleation of a H2 bubble corresponds to a gas supersaturation ratio of 

~300, independent of electrode size. However, at increasingly fast scan, rates both higher 

overpotentials and larger peak currents are required for bubble formation. This behavior 

hints at a kinetic limitation for the nucleation step, consistent with theoretical expectations.  

Experimental study of this nucleation rate is intrinsically difficult. The nucleation 

rate is a very sensitive function of the surface concentration of dissolved gas, [H2]surf. The 

rate of nucleus formation is expected to increase by many orders of magnitude over a small 

range of [H2]surf thus making it difficult to examine this interesting region. Drifting 

potentials resulting from imperfect reference electrodes prohibits the fine control required 

over [H2]surf. Instead of voltage control to study nucleation, experimentally, constant 

current mode could be preferable. Currents can realistically be controlled within ten 

picoamperes allowing exquisite control over [H2]surf. This exacting control would allow 

accurate determination of nucleation rates by performing repeated experiments holding the 

surface concentration constant and measuring with high temporal precision how long on 

average it takes for a bubble to form.  
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5.2.3 Other phase transitions 

The voltammetric techniques demonstrated in this dissertation for studying are 

likely not limited to dissolved gas to bubble phase transitions. Nucleation of droplets and 

solid crystals should also be feasible. An intriguing possibility would be the study of 

nucleation and steady-state systems for iodine crystals and bromine droplets.  
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