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ABSTRACT

In this dissertation, we take a cohomological approach to study positive properties

of higher codimensional subvarieties. First, we prove generalizations of Fujita vanishing

theorems for q-ample divisors. We then apply them to study positivity of subvarieties with

nef normal bundle in the sense of intersection theory. We also study the positivity of the

cycle class of an ample curve or a curve with ample normal bundle.

After Ottem’s work on ample subschemes, we introduce the notion of a nef subscheme

(resp. locally ample subscheme), which generalizes the notion of a subvariety with nef

normal bundle (resp. ample normal bundle). We show that restriction of a pseudoeffective

(resp. big) divisor to a nef subvariety is pseudoeffective (resp. big). We also show that

ampleness, nefness and locally ampleness are transitive properties.

We define the weakly movable cone as the cone generated by the pushforward of cycle

classes of nef subvarieties via proper surjective maps. This cone contains the movable cone

and shares similar intersection-theoretic properties with it, thanks to the aforementioned

properties of nef subvarieties.

On the other hand, we prove that if Y ⊂ X is an ample subscheme of codimension

r and D|Y is q-ample, then D is (q + r)-ample. This is analogous to a result proved by

Demailly-Peternell-Schneider.

We also show that the cycle class of an ample curve (resp. locally ample curve) lies in

the interior of the movable cone of curves (cone of curves).
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CHAPTER 1

INTRODUCTION

The concept of ampleness of a divisor or a line bundle is central in the subject of

algebraic geometry. A line bundle L on a scheme X is called very ample if the global

sections of the line bundle give an embedding into a projective space. A line bundle L is

ample if L⊗k for some k > 0 is very ample. Ampleness of a divisor plays an important role

in intersection theory. For example, Nakai-Moishezon theorem says that a divisor D on a

projective variety X is ample if and only if for any closed subvariety Z ⊂ X, Ddim Z · Z > 0.

Ampleness of a line bundle is also crucial in various vanishing theorems on cohomologies.

The Serre vanishing criterion says that a line bundle L is ample if and only if for any

coherent sheaf F on X, Hi(X,F ⊗L⊗m) = 0 for i > 0 and m� 0.

Weakening the Serre vanishing condition, a line bundle L is defined to be q-ample if

given any coherent sheaf F , there is an m0 such that

Hi(X,F ⊗L⊗m) = 0

for i > q and m > m0. After the works of Andreotti-Grauert [2], Sommese [29] and

Demailly-Peternell-Schneider [7] on q-ample divisors, Totaro established the basic, yet not

elementary, properties of q-ample divisors [30].

In Hartshorne’s extensive work [16], he attempted to develop the notion of an ample

subvariety, which should give a generalization to higher codimension the concept of an

ample divisor. Although a definition was not given in his work, he listed a number of

properties that an ample subvariety ought to satisfy, and studied their relationship. We

will state two of the properties here. The first one is that an ample subvariety should

have ample normal bundle; the second one is that the cohomological dimension of the

complement of the subvariety U := X\Y is r− 1, where r is the codimension of Y in X. The

cohomological dimension of a scheme U, cd(U), is defined to be the largest integer i such

that there is a coherent sheaf F on U with Hi(U,F ) 6= 0. Note that U is affine if and only
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if the cohomological dimension of U equals to 0. Thus, the requirement of cd(U) = r− 1

generalizes the fact that the complement of an ample divisor is affine. Recently, Ottem

discovered what is probably the right notion of an ample subscheme [26]. He defined

a subscheme of Y of codimension r of a projective scheme to be ample if the exceptional

divisor in the blowup of X along Y is (r − 1)-ample. Note that the exceptional divisor is

anti-ample along the fibers over Y, which has dimension at least (r − 1). In this sense,

(r − 1)-ampleness is as positive as the exceptional divisor can get. When the subscheme

Y is locally complete intersection, this definition holds if and only if both of the properties

stated above due to Hartshorne holds. Ottem also showed that if the ground field is of

characteristic zero, then the zero locus of a global section of an ample vector bundle is an

ample subscheme [26, Proposition 4.5].

In Chapter 3, we prove two generalized versions of Fujita vanishing theorem for q-

ample divisors (Theorem 3.3.3 and Proposition 3.3.4). One of the applications of these

theorems, stated below, sheds more light on the connection between q-ample divisors and

ample subschemes. It says q-ampleness of a divisor may be detected by restricting it to an

ample subscheme.

Theorem 1.1. Let X be a projective scheme of dimension n. Let Y be an ample subscheme of X of

codimension r. Suppose L is a line bundle on X, and that its restriction L|Y to Y is q-ample, then

L is (q + r)-ample.

We now move on to study a weaker positivity condition of a subscheme. Given a

locally complete intersection subvariety Y ⊂ X with nef normal bundle, we would like to

understand its positivity properties in terms of intersection theory. Fulton and Lazarsfeld

[14] gave an answer to this: They showed that if dim Y + dim Z ≥ dim X, then degH(Y ·

Z) ≥ 0. Here H is an ample divisor.

Now let Y ⊂ X be an arbitrary subscheme of codimension r and let E be the exceptional

divisor in BlYX. We say that Y is nef (resp. locally ample) if (E + εA)|E is (r − 1)-ample,

(resp. E|E is (r− 1)-ample) where is A is an ample divisor and 0 < ε � 1. This definition

is inspired by Ottem’s definition of an ample subscheme [26]. Assuming that Y is locally

complete intersection in X, Y is nef (resp. locally ample) if and only if Y has nef (resp.

ample) normal bundle. We show that
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Theorem 1.2. Let ι : Y ↪→ X be a nef subvariety of codimension r of a projective variety X. Then

the natural map ι∗ : N1(X)R → N1(Y)R induces ι∗ : E f f
1
(X) → E f f

1
(Y) and ι∗ : Big(X) →

Big(Y).

When Y is a curve with nef normal sheaf, this is a result of Demailly-Peternell-Schneider

[7, Theorem 4.1]. We also show that nefness and ampleness are transitive properties

without any assumptions on smoothness, thus generalizing Ottem’s result [26, Proposition

6.4].

Theorem 1.3. Let X be a projective scheme of dimension n. If Y is an ample (resp. nef or locally

ample) subscheme of X and Z is an ample (resp. nef or locally ample) subscheme of Y, then Z is

ample (resp. nef or locally ample) in X.

We then study the cycle classes of nef subvarieties. We use this new notion of nef

subvarieties to introduce the notion of the weakly movable cone, WMovd(X). We define it

as the closure of the convex cone that is generated by pushforward of cycle classes of nef

subvarieties of dimension d via proper surjective morphisms. We show that the weakly

movable cone shares similar properties to that of the movable cone of d-cycles, Movd(X).

Theorem 1.4. Let X be a projective variety of dimension n. For 1 ≤ d ≤ n− 1,

1. Movd(X) ⊆WMovd(X) and Mov1(X) = WMov1(X).

2. E f f
1
(X) ·WMovd(X) ⊆ E f f d−1(X).

3. Let H be a big Cartier divisor, α ∈WMovd(X). If H · α = 0, then α = 0.

4. Ne f 1(X) ·WMovd(X) ⊆WMovd−1(X).

Analogous statements of 2, 3 and 4 hold for the movable cone [10, Lemma 3.10]. One

can ask whether in general the two cones Movd(X) and WMovd(X) are the same. This

is true if and only if the cycle class of any nef subvariety lies in the movable cone. This

question is closely related to the Hartshorne’s conjecture A. Hartshorne’s conjecture A

states that if Y is a smooth subvariety with ample normal bundle of a smooth projective

variety X, nY moves in a large algebraic family for n large. A counterexample to this

conjecture was given by Fulton and Lazarsfeld [13].
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It is unclear what kind of intersection theoretic statements one should expect if we

further assume that Y has ample normal bundle. Hartshorne’s conjecture B states that if Y

and Z are subvarieties with ample normal bundle of a projective variety X and that they

have complementary dimension, then Y ∩ Z is non-empty. This conjecture is still open.

Voisin gave an example of a subvariety with ample normal bundle such that its cycle class

lies on the boundary of the pseudoeffective cone of cycles [31]. On the other hand, Ottem

showed that the cycle class of a curve with ample normal bundle lies in the interior of the

cone of curves [27]. We shall generalize his theorem to locally ample curves in theorem 1.5.

In Chapter 5, assuming Y ⊂ X is a locally ample subvariety, we study the behaviour of

the restriction map ι∗ : E f f
1
(X) → E f f

1
(Y) at the boundary of E f f

1
(X). We prove that if

ι∗η is not big, then the numerical dimension of η, κσ(η), is bounded above by that of ι∗η,

i.e. κσ(η) ≤ κσ(ι∗η). From this, we deduce that

Theorem 1.5. The cycle class of an ample curve lies in the interior of the movable cone of curves

and the cycle class of a locally ample curve lies in the interior of the cone of curves.

All schemes in this work are over a field of characteristic 0.



CHAPTER 2

PRELIMINARIES

In this chapter, we will recall some known results on q-ample divisors and ample

subschemes; we will also introduce the notions of nef and locally ample subschemes. Some

basic facts on the dualizing sheaf and numerical dimension will also be discussed.

2.1 q-ample divisors
In this section, we briefly review some basic facts on q-ample divisors. Let us recall the

definition of a q-ample line bundle.

Definition 2.1.1 (q-ample line bundle [7],[30]). Let X be a projective scheme. A line bundle

L is q-ample if for any coherent sheaf F on X, there is an m0 such that

Hi(X,F ⊗L⊗m) = 0

for i > q and m > m0.

Lemma 2.1.2 ([26, Lemma 2.1]). Let X be a projective scheme and fix an ample line bundle O(1)

on X. A line bundle L is q-ample if and only if for any l ≥ 0,

Hi(X,L⊗m ⊗O(−l)) = 0

for m� 0.

We shall start with the definition of a Koszul-ample line bundle. The details are not

very important in this dissertation, but they are included for the sake of completeness.

One useful fact is that any large tensor power of an ample line bundle is 2n-Koszul-ample,

where n is the dimension of the underlying projective scheme [4].

Definition 2.1.3 (Koszul-ampleness [30, Section 1]). Let X be a projective scheme of dimen-

sion n, and that the ring of regular function O(X) on X is a field (e.g. X is connected and



6

reduced). Let k = O(X). Given a very ample line bundle OX(1), we say that it is N-Koszul

ample if the homogeneous coordinate ring A =
⊕

j H0(X,OX(j)) is N-Koszul, i.e. there is

a resolution

· · · → M1 → M0 → k→ 0

where Mi is a free A-module, generated in degree i, where i ≤ N.

Definition 2.1.4 (q-T-ampleness [30, Definition 6.1]). Let X be a projective scheme of di-

mension n. Suppose the ring of regular functions of X,O(X) is a field. We fix a 2n-Koszul-

ample line bundleOX(1) on X. We say that a line bundle L is q-T-ample if there is a positive

integer N, such that

Hq+i(X,L⊗N(−n− i)) = 0,

for 0 ≤ i ≤ n− q.

Totaro showed that

Theorem 2.1.5 ([30, Theorem 6.3]). Under the same assumptions as in definition 2.1.4, a line

bundle is q-ample if and only if it is q-T-ample.

Even though the q-T-ampleness notion may appear technical, the equivalence is the

key result of his paper. It reduces the problem of showing a line bundle being q-ample

to checking the vanishing of finitely many cohomology groups. Using the notion of q-

T-ampleness, Totaro showed that q-ampleness is Zariski open [30, Theorem 8.1]. We can

extend the definition to R-Cartier divisors.

Definition 2.1.6 (q-ample R-divisors). Let X be a projective scheme. An R-Cartier divisor

on X is q-ample if D is numerically equivalent to cL + A with L a q-ample line bundle,

c ∈ R>0, A an ample R-Cartier divisor.

Based on the work of Demailly, Peternell and Schneider, Totaro also proved that

Theorem 2.1.7 ([30, Theorem 8.3]). An integral divisor is q-ample if and only if its associated

line bundle is q-ample. The q-ample R-divisors in N1(X)R define an open cone (but not convex in

general) and that the sum of a q-ample R-divisor and a r-ample R-divisor is (q + r)-ample.
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These facts are nontrivial. We shall use the notion of q-T-ampleness to prove proposi-

tion 2.1.9.

We note that (n− 1)-ampleness admits a pleasant geometric interpretation, which we

shall use a few times in this paper.

Theorem 2.1.8 ([30, Theorem 9.1]). Let X be a projective variety of dimension n. A line bundle

L on X is (n− 1)-ample if and only if [L∨] ∈ N1(X) does not lie in the pseudoeffective cone.

We will need the following result on the positivity of the pullback of a q-ample divisor

later.

Proposition 2.1.9 (Pullback of a q-ample divisor). Let f : X′ → X be a morphism of projective

schemes. Let D be a q-ample divisor on X, and let A be a relatively (to f ) ample divisor on X′. Then

m f ∗D + A is q-ample, for m� 0.

Proof. First, let us show that it suffices to prove the proposition in the case when both X

and X′ are irreducible and reduced. Note that a line bundle is q-ample on X′ if and only if

it is q-ample when restricting to each irreducible component of X′ [26, Proposition 2.3.i,ii].

We can now assume X′ is integral. Let X1 be an irreducible component of X that contains

the image of X′. The map X′ → X factors through X1, and D|X1 is again q-ample.

Now we can assume both X and X′ are integral. In fact, we shall prove that m f ∗D + A

is q-T-ample, for m � 0. In other words, we shall show that for m � 0, there is a positive

integer r, such that

Hq+a(X′,OX′(r(m f ∗D + A))⊗OX′(−n− a)) = 0

for 1 ≤ a ≤ n− q. HereOX′(1) is a 2n-Koszul-ample line bundle on X′, where n = dim X′.

Using the relative ampleness of A, one can find an integer r such that

Rj f∗(OX′(rA)⊗OX′(−n− a)) = 0,

for j > 0 and 1 ≤ a ≤ n− q. The Leray spectral sequence then says

Hq+a(X′,OX′(r(m f ∗D + A))⊗OX′(−n− a))

∼= Hq+a(X,OX(rmD)⊗ f∗(OX′(rA)⊗OX′(−n− a))). (2.1)

The right-hand side group vanishes for all big m, by the q-ampleness of rD.
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2.2 Ample subschemes
In this section, we shall discuss some basic facts on ample subschemes. Let us first

review the definition of ample subscheme, given by Ottem:

Definition 2.2.1 (Ample subscheme [26, Definition 3.1]). Let X be a projective scheme. Let

Y be a closed subscheme of X of codimension r and let π : BlYX → X be the blowup of

X with center Y. We say that Y is an ample subscheme of X if the exceptional divisor E of π is

(r− 1)-ample in BlYX.

We shall follow his definition in this paper. An example of an ample subscheme would

be the zero locus (of codimension r) of a section of an ample vector bundle of rank r [26,

Proposition 4.5]. On the other hand, many good properties listed in Hartshorne’s book [16,

p.XI] are satisfied under this definition. Before stating some of these properties, we need

the definition of cohomological dimension of a scheme U: it refers to the number

cd(U) := max{i ∈ Z≥0|Hi(U,F ) 6= 0, for some coherent sheaf F .}

Theorem 2.2.2. Let Y be a smooth closed subvariety of a smooth projective variety X.

1. Y is ample if and only if its normal bundle is ample and the cohomological dimension of the

complement is r− 1.

Assume further that Y is an ample subscheme in X. Then

2. Generalized Lefschetz hyperplane theorem with rational coefficient holds, i.e. Hi(X, Q) →

Hi(Y, Q) is an isomorphism for i < dim Y and is an injection for i = dim Y.

3. Y is numerically positive, i.e. Y · Z > 0 for any effective cycle Z of dimension r.

4. Hi(X,F ) → Hi(X̂, F̂ ) is an isomorphism for i < dim Y and is injective for i = dim Y.

Here X̂ is the formal completion of X along Y, F is a locally free sheaf on X and F̂ is its

restriction to X̂.

Proof. [26, Theorem 5.4], [26, Corollary 5.3] and [16, Chapter III, Theorem 3.4] give 1, 2 and

4, respectively. For 3, since the cohomological dimension of (X − Y) = r− 1, Y meets any

effective cycle of dimension r. We can then apply the result of Fulton and Lazarsfeld [23,
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Corollary 8.4.3], which says if Y has ample normal bundle and Y meets Z, where Z is an

effective cycle of complementary dimension to that of Y, then Y · Z > 0.

The above list of properties is incomplete; for a more complete picture, c.f. [26].

2.3 Nef and locally ample subschemes
In this section, we shall define the notion of nef and locally ample subschemes. They are

generalizations of the notions of subvarieties with nef and ample normal bundle, respec-

tively. We shall study them more closely in later sections. To streamline the arguments, we

first make the following definition, which generalizes the notion of a nef divisor.

Definition 2.3.1 (q-almost ample). Let X be a projective scheme, D an R-Cartier divisor on

X, A an ample Cartier divisor on X. We say that D is q-almost ample if D + εA is q-ample

for 0 < ε� 1.

The definition is clearly independent of the choice of A. Note that D is 0-almost ample

if and only if D is nef.

Ottem observed that ampleness of a vector bundle E can be expressed in terms of q-

ampleness of P(E∨) [26, Proposition 4.1]. We give the straightforward generalization to

the case when the vector bundle is nef.

Proposition 2.3.2. Let E be a vector bundle of rank r on a projective scheme X. Then E is ample

(resp. nef) if and only if OP(E∨)(−1) is (r− 1)-ample. (resp. (r− 1)-almost ample.)

Proof. Let π′ : P(E∨) → X and π : P(E) → X be the natural projection maps. Using [17,

Exercise III.8.4], we have for m > 0,

Rjπ′∗OP(E∨)(−m− r) ∼=
{

SymmE ⊗ det(E) for j = r− 1
0 otherwise.

Here we implicitly used the isomorphism (SymmE∨)∨ ∼= SymmE which holds when the

ground field is of characteristic 0.

Therefore, we have the isomorphisms

Hr−1+i(P(E∨),OP(E∨)(−m− r)⊗ π′
∗
(F ⊗ det E∨)) ∼= Hi(X, SymmE ⊗ F )

∼= Hi(P(E),OP(E)(m)⊗ π∗F ), (2.2)
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where F is locally free on X, i > 0 and m > 0.

If OP(E∨)(−1) is (r − 1)-ample, then the above observation shows that OP(E)(1) is

ample. Indeed, any line bundle on P(E) can be expressed as π∗L⊗OP(E)(l).

Suppose OP(E∨)(−1) is (r − 1)-almost ample. Choose an ample divisor A on X. To

show thatOP(E)(1) is nef, we want to check thatOP(E)(k)⊗π∗O(A) is ample for all k > 0.

By replacing A with a large multiple, we may assume OP(E)(1)⊗ π∗O(A) is ample. We

apply lemma 2.1.2 and fix an l ≥ 0. Observe that we have the following isomorphisms

given by (2.2):

Hi(P(E),OP(E)(mk− l)⊗ π∗O((m− l)A))

∼= Hr−1+i(P(E∨),OP(E∨)(−mk− r + l)⊗ π′
∗
(O((m− l)A)⊗ det E∨)),

where i, m > 0. The latter term vanishes for m� 0 sinceOP(E∨)(−k)⊗π′∗O(A) is (r− 1)-

ample for any k > 0. This shows that OP(E)(1) is nef.

Similarly, we may also assume OP(E∨)(1)⊗ π′∗O(A) is ample.

If E is ample, we fix an l ≥ 0, we have the following isomorphisms of cohomology

groups,

Hr−1+i(P(E∨),OP(E∨)(−m− l)⊗ π′
∗O(−lA))

∼= Hi(P(E),OP(E)(m + l − r)⊗ π∗(O(−lA)⊗ det E)),

the latter term vanishes for i > 0 and m� 0, which says OP(E∨)(−1) is (r− 1)-ample.

If E is nef, we fix l ≥ 0 again, we observe that for any k > 0, we have the following

isomorphism of cohomology groups,

Hr−1+i(P(E∨),OP(E∨)(−mk− l)⊗ π′
∗O((m− l)A)))

∼= Hi(P(E),OP(E)(mk + l − r)⊗ π∗(O((m− l)A)⊗ det E)),

for i, m > 0. The latter term vanishes for m � 0. This says that OP(E∨)(−k) ⊗ O(A) is

(r− 1)-ample for any k > 0, which means OP(E∨)(−1) is (r− 1)-almost ample.

The augmented base locus gives us another measure of how far a divisor is being

ample.
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Definition 2.3.3 (Augmented base locus [9, Definition 1.2]). The augmented base locus of

an R-divisor D on X is the Zariski-closed subset:

B+(D) =
⋂

D=A+E

SuppE

where the intersection is taken over all decompositions D = A + E such that A is ample

and E is effective.

Proposition 2.3.4 (Positivity of normal bundle vs. positivity of exceptional divisor). Let

Y ⊂ X be a subscheme of codimension r. Then the normal bundle of the exceptional divisor E in

BlYX, OE(E) is (r− 1)-almost ample if and only if E ⊂ BlYX is (r− 1)-almost ample.

Proof. The ”if” part of the statment is clear, since restriction of a q-ample divisor to a

subscheme is always q-ample. For the ”only if” part, observe that B+(E + εA) ⊆ SuppE

for 0 < ε� 1, where A is an ample divisor on X. Now we can apply Brown’s theorem [6,

Theorem 1.1] to E + εA, which says that an R-divisor D is q-ample if and only if D|B+(D) is

q-ample.

Definition 2.3.5 (Nef and locally ample subschemes). Let Y be a closed subscheme of

codimension r of X, a projective scheme, and let E be the exceptional divisor in BlYX.

Then we say that Y is nef (resp. locally ample) if OE(E) is (r − 1)-almost ample (resp.

(r− 1)-ample).

Remark 2.3.6. Proposition 2.3.4 says that Y is a nef subscheme if and only if E is (r − 1)-

almost ample in BlYX. If Y is locally complete intersection in X, then Y is nef (resp. locally

ample) if and only if the normal bundle NY/X is nef (resp. ample) (proposition 2.3.2).

The advantage of making this more general definition, without requiring Y to be locally

complete intersection, is to include more subschemes that are apparently ”positive”, for

example, a closed point that is not necessarily nonsingular, or if Y is a smooth subvariety

with nef normal bundle, the subscheme of X defined by a power of ideal sheaf of Y is also

considered as nef in this definition.

The following proposition is the direct generalization of [26, Proposition 3.4].

Proposition 2.3.7 (Equidimensionality of nef subschemes). Suppose Y is a nef subscheme of

X. Then the restriction of the blowup morphism to E, π|E : E → Y, is equidimensional. In
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particular, Y is pure dimensional.

Proof. Suppose Y ⊂ X has codimension r. Let y ∈ Y be a closed point, we want to show

Z := π−1(y) is of dimension (r− 1). Note that E has dimension n− 1, where n = dim X.

This implies dim Z ≥ r− 1.

On the other hand, −E is π-ample. In particular, (−E− εA)|Z is ample for 1� ε > 0,

where A is an ample divisor on E. We also know that OE(E + εA) is (r − 1)-ample, for

1� ε > 0. By theorem 2.1.7, this forces Z to have dimension (r− 1).

Proposition 2.3.8 (Inverse image of nef and locally ample subschemes). Suppose Y is a nef

subscheme of X of codimension r, p : X′ → X a morphism from an equidimensional projective

scheme X′. If p−1(Y) has codimension r in X′, then p−1(Y) is nef in X′. In particular, if p is

equidimensional, p−1(Y) is nef. Moreover, assuming Y is locally ample in X and p is a closed

immersion. If p−1(Y) has codimension r in X′, then p−1(Y) is locally ample in X′.

Proof. We have the following commutative diagram:

Blp−1(Y)(X′)
p̃ //

��

BlY(X)

��
X′ p

// X,

with p̃ induced by the universal property of blowup and p̃∗(E) = E′, where E and E′ are

exceptional divisors in the respective blowups. We can now apply proposition 2.1.9 to

conclude the proof.

Proposition 2.3.9. Let Y be an ample (resp. nef or locally ample) subscheme of codimension r of

X. Let Z be a closed subscheme of X. If Y ∩ Z has codimension r in Z, then Y ∩ Z is an ample

(resp. nef or locally ample) subscheme of Z.

Proof. Indeed, we have the following commutative diagram

BlY∩ZZ �
� //

πZ
��

BlYX

πX
��

Z �
� // X.
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The proposition follows from the fact that the exceptional divisor of πZ is the restriction

of the exceptional divisor E of πX.

2.4 Dualizing sheaf
We shall need to use the dualizing sheaf to study the σ-dimension of a divisor.

Definition 2.4.1 (Dualizing sheaf [17, p.241]). Let X be a projective scheme of dimension n.

A dualizing sheaf for X is a coherent sheaf ωX, together with a trace map t : Hn(X, ω) → k

to the ground field k, such that for any coherent sheaf F on X, the natural pairing

Hn(X,F )× Hom(F , ωX)→ Hn(X, ωX),

followed by t, induces an isomorphism

Hom(F , ωX) ∼= Hn(X,F )∨

of k-vector spaces.

Proposition 2.4.2. [17, Proposition 7.2, 7.5] Let X be a projective scheme of dimension n. Then

the dualizing sheaf for X exists and is unique up to unique isomorphism.

We now show that a dualizing sheaf can be embedded into a sufficiently ample line

bundle. The proof can be found in the proof of [30, Theorem 9.1], but we include it here

for the sake of convenience.

Lemma 2.4.3 (Embedding a dualizing sheaf into a line bundle). Let X be a projective variety

of dimension n. Given an ample divisor H on X. Then ωX is torsion-free. Moreover, there is l such

that there is an embedding ωX ↪→ OX(lH).

Proof. Let us first show that ωX is torsion-free. Indeed, let T ⊂ ωX be the torsion subsheaf.

Then

Hom(T , ωX) ∼= Hn(X, T )∨ = 0.

The last equality follows from the fact that T is supported at a proper closed subscheme

of X.

As ωX is generically a line bundle, ω∨X 6= 0. For l large, there is a nontrivial section

s ∈ H0(X, ω∨ ⊗OX(lH)). This induces a nontrivial map ωX → OX(lH), which has to be

an injection, since ωX is torsion free of rank 1.
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2.5 σ-dimension
We will discuss the notion of σ-dimension, also known as numerical dimension, of an

R-Cartier R-divisor.

Definition 2.5.1 (σ-dimension). Let X be a projective variety. Let D = ∑ aiCi be an R-

Cartier R-divisor, where ai ∈ R and Ci’s are integral Cartier divisor and let H be any

integral Cartier divisor. We then define

κσ(D, H) = max{l ∈ Z| lim sup
t→∞

h0(X,OX(∑btaicCi + H))

tl > 0}

and

κσ(D) := max
H integral Cartier

{κσ(D, H)}.

The quantity κσ(D) measures the positivity of an R-Cartier R-divisor that lies on the

boundary of the pseudoeffective cone. However, this definition looks slightly different

from the one that appeared in the literature ([25], [24] and [8]), as we do not assume X

to be smooth or even normal. We shall prove in proposition (2.5.3) that the definition

is well-defined, i.e. independent of the decomposition D = ∑ aiCi; is a numerical in-

variant and agrees with the usual definition when X is smooth. Nakayama’s proof that

the σ-dimension is a numerical invariant relies on an Angehrn-Siu type argument, which

requires smoothness on X. One can apply resolution of singularities on a singular X and

reduce to the case when X is smooth. We shall give a proof that has no assumptions on

singularities on X using q-ample divisors.

Lemma 2.5.2. Let X be a projective variety. Let B ⊂ N1(X)R be a bounded subset. Then there is

an integral Cartier divisor H such that for any integral Cartier divisor C with [C] ∈ B,

H0(X,OX(H − C)) 6= 0.

Proof. Let A be an ample divisor on X. Fix a (2n)-Koszul-ample line bundle OX(1) on X.

Let ωX be the dualizing sheaf of X. There is an embedding ωX ↪→ OX(j) for some j, and

that dim Supp(coker(ωX ↪→ OX(j))) ≤ n− 1 by lemma 2.4.3.

One can choose a sufficiently large m such thatOX(mA−C)⊗OV(−j− n− 1) is ample

for any integral Cartier divisor C with [C] ∈ B. In particular, OX(−mA + C)⊗OX(j + n +
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1) is not (n− 1)-ample. This implies hn(X,OX(−mA+C)⊗OX(j)) 6= 0 [30, Theorem 6.3],

and h0(X,OX(mA− C)) = hn(X,OX(−mA + C)⊗ωX) 6= 0.

Proposition 2.5.3. Let X be a projective variety and let D be a pseudoeffective R-Cartier R-divisor

on X. Then

1. The definition of κσ(D) does not depend on the decomposition D = ∑ aiCi. In fact, if D ≡

D′, then κσ(D) = κσ(D′).

2. Assuming that X is smooth,

κσ(D) = max
H integral Cartier

{max{l ∈ Z| lim sup
m→∞

h0(X,OX(bmDc+ H))

ml > 0}}.

The right-hand side of this equation is the usual definition of the κσ(D) ([25],[24],[8]). Here

we are rounding down D as an R-Weil divisor.

Proof. For (1), suppose D ≡ D′, D = ∑ aiCi and D′ = ∑ a′iC
′
i . By lemma 2.5.2, there is

an integral Cartier divisor H′ such that OX(H′ + C) is effective for any integral Cartier

C ≡ ∑ riCi + ∑ r′jC
′
j where ri, r′j ∈ [−2, 2]. Given any integral Cartier divisor H, write

∑bma′icC′i + H + H′ as

∑bmaicCi + H + (∑bma′icC′i −mD′) + (mD−∑bmaicCi) + (mD′ −mD) + H′.

This implies h0(X,OX(∑bmaicCi + H)) ≤ h0(X,OX(∑bma′icC′i + H + H′)). We can reverse

the roles of D and D′ and conclude (1).

For (2), D is expressed uniquely as ∑ aiΓi, where Γi’s are prime divisors (which are

Cartier by the smoothness assumption), ai ∈ R. We have bmDc = ∑bmaicΓi, the equality

then follows from (1).

Thanks to Proposition 2.5.3 (1), we may refer to κσ(η), where η ∈ N1(X)R, without

ambiguity.

Here are some of the basic properties of κσ(D). The proof is essentially the same as the

one given in [25, Proposition V.2.7].

Proposition 2.5.4 (Basic properties). Let X be a projective variety of dimension n and let η ∈

N1(X)R be a pseudoeffective class.
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1. If f : X′ → X is a surjective morphism from a projective variety, then κσ(η) = κσ( f ∗(η)).

2. 0 ≤ κσ(η) ≤ n.

3. κσ(η) = n if and only if η is big.



CHAPTER 3

GENERALIZED FUJITA VANISHING

THEOREMS

In this chapter, we shall prove two generalized versions of Fujita vanishing theorem

for q-ample divisors (theorem 3.3.3 and proposition 3.3.4). They will be used repeatedly in

the next chapter. Before that, we shall quickly go through the results in section 2 and 3 in

Totaro’s paper [30]. There Totaro developed on Arapura’s idea [3] on using resolution of

the diagonal to study Castelnuovo-Mumford regularity of a sheaf. Using these ideas, we

shall provide a weak extension of a vanishing theorem for q-ample line bundles proved by

Totaro [30, Theorem 6.4] (theorem 3.3.1). From this, we prove a generalization of the Fujita

vanishing theorem (theorem 3.3.3) to the q-ample divisors setting. It also generalizes the

Fujita-type vanishing theorem that Küronya proved [22, Theorem C].

In this chapter, we assume X to be a projective scheme of dimension n over a field, with

the ring of regular functions on X being a field. Furthermore, we fix a 2n-Koszul-ample

line bundle OX(1) on X.

3.1 Resolution of the diagonal
We now recall Totaro’s result on resolution of the diagonal. The lemma that follows

shows how this can be applied towards establishing results on vanishing of cohomologies.

Theorem 3.1.1 (Totaro [30, Theorem 2.1]). On X×k X, we have the following exact sequence of

coherent sheaves:

R2n−1 �OX(−2n + 1)→ · · · → R1 �OX(−1)→ R0 �OX → O∆ → 0, (3.1)

where ∆ ⊂ X ×k X is the diagonal. Here all the Ri’s are locally free sheaves on X that can be fit

into short exact sequences:

0→ Ri+1 ⊗OX(−1)→ Bi+1 ⊗k OX(−1)→ Ri → 0, (3.2)
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where the Bi+1’s are k-vector spaces.

Lemma 3.1.2. [30, Lemma 3.1] Let E and F be a locally free sheaf and a coherent sheaf on X,

respectively. Suppose that for each pair of integers 0 ≤ a ≤ 2n − i and b ≥ 0, either Hb(E ⊗

Ra) = 0 or Hi+a−b(F (−a)) = 0. Then Hi(E ⊗ F ) = 0.

Sketch of proof. After tensoring with E �F , the sequence (3.1) remains exact, we now apply

Künneth’s formula.

3.2 Partial regularity of a coherent sheaf
Partial regularity is a generalized notion of the Castelnuouvo-Mumford regularity of a

coherent sheaf, in the sense that we only focus on studying vanishing of higher cohomol-

ogy groups.

Definition 3.2.1 (Partial regularity [20, Definition 2.1]). Let G be a coherent sheaf on X and

let q be any integer greater than or equal to 0. We say that G is (m, q)-regular if the following

holds:

Hq+i(X,G ⊗OX(m− i)) = 0 (3.3)

for all 1 ≤ i ≤ n− q.

We set

regq(F ) = inf{m ∈ Z | F is (m, q)-regular.}

When q = 0, this is just the usual Castelnuovo-Mumford regularity of the sheaf F ,

relative to OX(1). It is clear that regq(F ) ∈ [−∞,+∞), by the ampleness of OX(1).

Lemma 3.2.2 ([20, Lemma 2.2]). If F is (m, q)-regular, then F ⊗OX(1) is also (m, q)-regular.

Lemma 3.2.3 ([30, Lemma 3.3]). If F is a (0, q)-regular coherent sheaf on X, then

H j(X,F ⊗Ri) = 0,

for j > q and i < n + j. Here, we are referring to theRi’s that appear in lemma 3.1.2.

We next generalize [30, Theorem 3.4].
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Theorem 3.2.4 (Subadditivity of partial regularity). Let E and F be a locally free sheaf and a

coherent sheaf on X, respectively, then

regq(E ⊗ F ) ≤ regl(E) + regq−l(F )

for any 0 ≤ l ≤ q.

Proof. Replacing E and F by E ⊗ OX(k) and F ⊗OX(k′), respectively, where k and k′ are

sufficiently large, we may assume E and F are (0, l)- and (0, q − l)-regular, respectively.

We want to show

Hq+i(X, E ⊗ F ⊗OX(−i)) = 0,

for 1 ≤ i ≤ n− q. We now apply lemma 3.1.2.

Case 1. b > l and a < n + b.

By lemma 3.2.3,

Hb(X, E ⊗Ra) = 0.

Case 2. b > l and n + b ≤ a ≤ 2n− (q + i).

Since q + i + a− b ≥ q + i + n > n,

H(q+i)+a−b(X,F ⊗OX(−a− i)) = 0,

for dimensional reason.

Case 3. 0 ≤ b ≤ l and 0 ≤ a ≤ 2n− (q + i).

We have q− b ≥ q− l, and

H(q−b)+a+i(X,F ⊗OX(−a− i)) = 0,

by (q− l)-regularity of F and lemma 3.2.2.

3.3 Vanishing theorems
We next prove a vanishing theorem for q-ample divisors, it is an analogue of [30,

Theorem 6.4]. This will play a crucial role in proving theorem 3.3.3.
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Theorem 3.3.1 (Uniform vanishing). Let L be a q-ample line bundle on X. Then for any N,

there is an integer mN , such that, for any coherent sheaf F on X with regq′(F ) ≤ N,

Hi(X,F ⊗L⊗m) = 0

for i > q + q′ and m > mN .

Proof. Fix an integer i such that q + q′ < i ≤ n, by lemma 3.1.2, it is enough to show

that there is an M, depending only on the choice of N, but not the coherent sheaf F , such

that for m > M, 0 ≤ a ≤ 2n − i and b ≥ 0, either Hb(X,L⊗m ⊗OX(−N)⊗Ra) = 0 or

Hi+a−b(X,F ⊗OX(N − a)). Here F is any coherent sheaf with regq′(F ) ≤ N.

Case 1. b > q and 0 ≤ a < n + b.

Using the q-ampleness of L, there is an mN , such that we have

Hq+j(X,L⊗m ⊗OX(−N − j)) = 0

for all 1 ≤ j ≤ n− q and m > mN , i.e. L⊗m ⊗OX(−N) is (0, q)-regular for all m > mN .

Now lemma 3.2.3 says

Hb(X,L⊗m ⊗OX(−N)⊗Ra) = 0

for all m > mN , b > q and a < n + b.

Case 2. b > q and n + b ≤ a ≤ 2n− i.

We have i + a− b ≥ i + n > n, and

Hi+a−b(X,F ⊗OX(N − a)) = 0

for dimensional reason.

Case 3. 0 ≤ b ≤ q and 0 ≤ a ≤ 2n− i.

We have i − b > q′, and H(i−b)+a(X,F ⊗ OX(N − a)) = 0 by the partial regularity

assumption of F and lemma 3.2.2. This proves the theorem.

Lemma 3.3.2. There is an N such that reg0(P) ≤ N for any nef line bundle P on X.

Proof. By the Fujita vanishing theorem, there is an N such that

Ha(X,OX(N − a)⊗P) = 0

for a > 0 and any nef line bundle P .
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We prove a Fujita-type vanishing theorem for q-ample divisors. It is a generalization

of the Fujita-type vanishing theorem that Küronya proved in [22, Theorem C], thanks to

the fact that a divisor D is q-ample if and only if its restriction to its augmented base locus

D|B+(D) is q-ample [6]. Note that we do not assume O(Z) is a field in the following.

Theorem 3.3.3 (Fujita-type vanishing theorem for q-ample divisors). Let Z be a projective

scheme of dimension n. Let Lj be qj-ample line bundles on Z, 1 ≤ j ≤ k and let F be a coherent

sheaf on Z. Then for any (k− 1)-tuple (M2, · · · , Mk) ∈ Zk−1, there is an M1, such that

Hi(Z,F ⊗L⊗m1
1 ⊗L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗P) = 0

for i > ∑k
j=1 qj, mj ≥ Mj, where 1 ≤ j ≤ k, and any nef line bundle P on Z.

Proof. We can assume that Z is connected. It suffices to prove the lemma assuming that

Z is also reduced. Indeed, let N be the nilradical ideal sheaf of Z, and chase through the

following exact sequence:

0→ N e+1 · F ⊗ L⊗m1
1 ⊗L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗P

→ N e · F ⊗ L⊗m1
1 ⊗L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗P

→ (N e · F/N e+1 · F )⊗L⊗m1
1 ⊗L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗P → 0.

Note that (N e · F/N e+1 · F )⊗L⊗m1
1 ⊗L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗P is a coherent sheaf on Zred,

and that N e = 0 for e� 0.

Since Lj is qj-ample,

Hqi+a(Z,L⊗mj
j ⊗O(−a)) = 0

for mj � 0 and 1 ≤ a ≤ n− qi. This says regqj(L⊗mj
j ) ≤ 0 for all mj � 0. Therefore, there

are Nj such that regqj(L⊗mj
j ) ≤ Nj for all mj ≥ Mj. We apply theorem 3.2.4 and lemma

3.3.2 to see that reg∑k
i=2 qj(F ⊗ L⊗m2

2 ⊗ · · · ⊗ L⊗mk
k ⊗ P) ≤ reg0(F ) + ∑k

j=2 Nj + N for all

mj ≥ Mj, where 2 ≤ j ≤ k and N is the one mentioned in lemma 3.3.2. Now, we may

apply theorem 3.3.1 to get the desired result.

Suppose we are only interested in the vanishing of the top cohomology group, we may

relax the assumption in theorem 3.3.3 a bit. We shall use this to prove theorem 4.3.1.



22

Proposition 3.3.4. Let Z be a projective scheme of dimension n. Let L1 and Li be line bundles on

Z that are q1-ample and qi-almost ample, respectively, where 2 ≤ i ≤ k and ∑k
i=1 qi ≤ n− 1. Then

for any coherent sheaf F on Z and any (k− 1)-tuple (Mi)2≤i≤k ∈ Zk−1, there is an M1 such that,

Hn(Z,F ⊗L⊗m1
1 ⊗

k⊗
i=2

L⊗mi
i ) = 0

for mi ≥ Mi.

Proof. Let us first reduce to the case where Z is integral. Indeed, argue as in the proof

of theorem 3.3.3, we may assume Z is reduced. Suppose Z =
⋃k

i=1 Zi, where Zi are the

irreducible components of Z. Let I be the ideal sheaf of Z1 ⊂ Z. Consider the short exact

sequence

0→ I · F → F → F/I · F → 0.

Note that I · F and F/I · F are supported on
⋃k

i=2 Zi and Z1, respectively. We then

tensor the above short exact sequence with L⊗m1
1 ⊗⊗k

i=2 L
⊗mi
i and induct on the number

of irreducible components of Z. Therefore, we may assume that Z is irreducible as well.

Now we assume Z is a projective variety. We can find a surjection ⊕OZ(a) � F ,

where OZ(1) is an ample line bundle on Z. Thus it suffices to prove the case when F is a

line bundleM. Let ωZ be the dualizing sheaf of Z [17, III.7]. We have

Hn(Z,M⊗L⊗m1
1 ⊗

k⊗
i=2

L⊗mi
i ) ∼= H0(Z,M∨ ⊗L⊗−m1

1 ⊗
k⊗

i=2

L⊗−mi
i ⊗ωZ)

∨

We can embed ωZ ↪→ O(j) [30, Proof of Theorem 9.1]. This reduces to proving the

vanishing of H0(Z,M∨ ⊗ O(j) ⊗ L⊗−m1
1 ⊗⊗k

i=2 L
⊗−mi
i ). We may find an M1 such that

L⊗m1
1 ⊗⊗k

i=2 L
⊗Mi
i ⊗M⊗O(−j) is q1-ample for m1 ≥ M1, by theorem 2.1.7. By theorem

2.1.7 again,
⊗k

i=2 L
⊗mi
i ⊗L⊗m1

1 ⊗M⊗O(−j) is (n− 1)-ample for mi ≥ Mi and m1 ≥ M1.

By theorem 2.1.8,
⊗k

i=2 L
⊗−mi
i ⊗L⊗−m1

1 ⊗M∨ ⊗O(j) is not pseudoeffective for mi ≥ Mi.

Therefore, it cannot have any global sections.



CHAPTER 4

AMPLE, NEF AND LOCALLY AMPLE

SUBVARIETIES

In this chapter, we shall show how the generalized Fujita vanishing theorems for q-

ample divisors (theorem 3.3.3 and proposition 3.3.4) can be applied to study positivity of

higher codimensional subvarieties.

4.1 Transitivity properties
Using theorem 3.3.3, we shall deduce that the notions of ample, nef and locally ample

subschemes are transitive properties, respectively.

4.1.1 Ample case

The following theorem generalizes the transitivity property of ample subschemes [26,

Proposition 6.4] in the sense that we do not require Y (resp. Z) to be lci in X (resp. Y). This

gives further evidence that Ottem’s definition of an ample subscheme is a natural one.

Theorem 4.1.1 (Transitivity of ample subschemes). Let Y ⊂ X be an ample subscheme of

codimension r1, Z ⊂ Y be an ample subscheme of codimension r2. Then Z ⊂ X is also an ample

subscheme of codimension r1 + r2.

Before we can prove the theorem, we need two lemmas:

Lemma 4.1.2. Let X be a projective scheme and let Y be a closed subscheme of X of codimension

r. Suppose the blowup of X along Y, π : BlYX → X, has fiber dimension at most r− 1. If a line

bundle L on X is q-ample on Y, and

Hi(BlYX, π∗(L⊗m ⊗OX(−l))) = 0

for any l ≥ 0, i > q + r and m� 0, then L is (q + r)-ample. Here OX(1) is an ample line bundle

on X.
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Proof. Applying the Leray spectral sequence, we have

Ep,s
2 = Hp(X, Rsπ∗OBlY X ⊗L⊗m ⊗OX(−l))⇒ Hp+s(BlYX, π∗(L⊗m ⊗OX(−l))).

Since the fiber dimension of π is at most r − 1 (proposition ), Rsπ∗OBlY X = 0 and

Ep,s
2 = 0 for s > r− 1.

For s > 0, Rsπ∗OBlY X is a coherent sheaf on Y. Indeed, this follows by considering the

long exact sequence

· · · → Rsπ∗OBlY X(−jE)→ Rsπ∗OBlY X((−j + 1)E)→ Rsπ∗OE((−j + 1)E)→ · · · ,

where E is the exceptional divisor, and the fact that Rsπ∗OX̃(−jE) = 0 for j� 0, since −E

is π-ample.

By the q-ampleness of L|Y, we have Ep,s
2 = Hp(X, Rsπ∗OBlY X ⊗ L⊗m ⊗OX(−l)) = 0

for p > q, s > 0 and m� 0.

These two vanishing results imply that Ep−h,h−1
h = Ep−h,h−1

2 = 0 for h ≥ 2, p > q + r

and m� 0.

By the hypothesis,

Ep,0
∞ = Hp(BlYX, π∗(L⊗m ⊗OX(−l))) = 0

for p > q + r and m � 0. Hence we arrive at the desired vanishing Ep,0
2 = Hp(X,L⊗m ⊗

OX(−l)) = 0 for p > q + r and m� 0.

Lemma 4.1.3. Under the same hypothesis as in the theorem, we have the following commutative

diagram.

BlIY ·IZ X
πY

))

πZ

$$

ι

((
BlIY X×X BlIZ X

p //

q
��

BlIZ X

π′Z
��

BlIY X
π′Y // X.

Here π′Z (resp. π′Y) is the blowup of X along IZ (resp. IY), with exceptional divisor E′Z (resp.

E′Y); πZ and πY are blowups along the ideal sheaves IZ · OBlIY X and IY · OBlIZ X ⊗OBlIZ X(E′Z),

with exceptional divisor EZ and EY, respectively. The composition πY ◦ π′Z = πZ ◦ π′Y is the

blowup map of X along IY · IZ. The square in the above diagram is a fiber diagram, with ι induced

by the maps πZ and πY. Moreover,
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1. π∗YE′Z = EZ and π∗ZE′Y = EY + EZ.

2. ι is a closed immersion.

Proof. First, let us check that the blowup of X along IY · IZ factors through the maps π′Y

and π′Z. By the universal property of blowup, it suffices to check that the inverse image

ideal sheaves IY · OBlIY ·IZ X and IZ · OBlIY ·IZ X are invertible. Let J be the inverse of (IY ·

IZ) · OBlIY ·IZ X, i.e. the fractional ideal sheaf such that (IY · IZ) · OBlIY ·IZ X · J = OBlIY ·IZ X.

We check locally that IY · OBlIY ·IZ X is invertible. Let a and b be the stalk of IY · OBlIY ·IZ X

and (IZ · OBlIY ·IZ X) · J at a scheme-theoretic point x ∈ BlIY ·IZ X, respectively, and let

R = OBlIY ·IZ X,x be the local ring at x. Since a · b = R, we may write ∑i aibi = 1, where

ai ∈ a and bi ∈ b. Note that each aibi ∈ R, so there must be some j such that ajbj is a unit.

Let u = (ajbj)
−1. Let f : R → a be the R-module homomorphism that sends r 7→ rai. We

shall see that f is an isomorphism. For any a ∈ a, we can write a = (abju)aj. Note that

(abju) ∈ R. Thus, f is onto. Suppose there is an r ∈ R such that f (r) = raj = 0. Then

r = r(ajbju) = 0. Therefore, f is injective. We conclude that IY · OBlIY ·IZ X is locally free of

rank 1, hence is invertible. Applying a similar argument, we see that IZ · OBlIY ·IZ X is also

invertible. This gives us the maps πZ and πY.

Next, let us check that IY · OBlIZ X ⊗ OBlIZ X(E′Z) is an ideal sheaf. Indeed, we have

the inclusion IY · OBlIZ X ⊂ IZ · OBlIZ X
∼= OBlIZ X(−E′Z). We then tensor the terms in

the inclusion by OBlIZ X(E′Z) to see that IY · OBlIZ X ⊗ OBlIZ X(E′Z) ⊂ OBlIZ X. Applying

the universal property of blowup again, we see that πZ : BlIY ·IZ X → BlIY X and πY :

BlIY ·IZ X → BlIZ X are the same as the blowup of BlIY X and BlIZ X along IZ · OBlIY X and

IY · OBlIZ X ⊗OBlIZ X(E′Z).

For 1, note that IZ · OBlIZ X
∼= OBlIZ X(−E′Z). Therefore, we have the surjection

π∗YOBlIZ X(−E′Z) � (IZ · OBlIZ X) · OBlIY ·IZ X
∼= IZ · OBlIY ·IZ X

∼= OBlIY ·IZ X(−EZ). This is also

an injection, since the pullback of a local generator of IZ · OBlIZ X to BlIY ·IZ X is not a zero

divisor, thanks to the fact that IZ · OBlIY ·IZ X is invertible. A similar argument leads to the

second statement in 1.

For 2, let W be the scheme-theoretic image of BlIY ·IZ X under ι. It suffices to show that

IY · OW (resp. IZ · OW) is invertible. Note that the natural surjection q∗OBlIY X(−E′Y) →

IY · OW is injective if and only if the pullback of a local generator of OBlIY X(−E′Y) is not
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a zero divisor, which follows from the fact that the natural map OW → OBlIY ·IZ
X is an

injection [1, Lemma 28.6.3]. We can use the same argument to show that IZ · OW is also

invertible.

Proof of theorem 4.1.1. Note that πY has fiber dimension at most r1 − 1. This follows from 2

of lemma 4.1.3 and the fact that π′Y has fiber dimension at most r1 − 1 (proposition 4.1.1).

Let Ỹ be the strict transform of Y in BlIZ X. Since Z is an ample subscheme of Y, E′Z|Ỹ is

(r2 − 1)-ample.

By lemma 4.1.2, it suffices to prove that given any l ∈ Z≥0,

Hi(BlIY ·IZ X,OBlIY ·IZ X(mEZ)⊗ π∗Y(OBlIZ X(−lH))) = 0

for i > r1 + r2 − 1 and m � 0. Here H is an ample divisor on BlIZ X. We fix an l ∈ Z≥0

from now on.

Claim 1. (EZ − δEY)|EY is (r2 − 1)-ample for 0 < δ� 1.

Proof of claim. Since−EY is πY-ample, (π∗YE′Z − δEY)|EY = (EZ − δEY)|EY is (r2− 1)-ample,

for 0 < δ� 1, by proposition 2.1.9.

Claim 2. EZ + EY − εEZ is (r1 − 1)-ample for 0 < ε� 1.

Proof of claim. Indeed, EZ + EY = π∗YE′Y and E′Y is (r1 − 1)-ample by ampleness of Y ⊂ X.

Note that −EZ is πY-ample. The claim then follows from proposition 2.1.9.

By the above claims, we may choose a big enough k ∈ Z such that (kEZ − EY)|EY is

(r2 − 1)-ample and kEZ + (k + 1)EY is (r1 − 1)-ample.

Write

m1EY + m2EZ = λ1(kEZ − EY) + λ2(kE2 + (k + 1)EY) + j1EY + j2EZ,

where λ2 = bm1+b
m2
k c

k+2 c; λ1 = bm2
k c− λ2; j1 = ((m1 + bm2

k c) mod (k + 2)) and j2 = (m2 mod

k). Note that 0 ≤ j1 < k+ 2 and 0 ≤ j2 < k. The precise formulae for λ1 and λ2 are not very

important. The plan is to choose a big m2, then let m1 increases. As m1 grows, λ1 decreases

and λ2 increases. We then use the positivity of (kEZ − EY)|EY and kEZ + (k + 1)EY to prove

the required vanishing statement.
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Since kEZ + (k + 1)EY is (r1 − 1)-ample, we may find Λ2 such that

Hi(BlIY ·IZ X,O(λ2(kE2 + (k + 1)EY) + j1EY + j2EZ)⊗ π∗Y(OBlIZ X(−lH))) = 0 (4.1)

for i > r1 − 1, λ2 ≥ Λ2, 0 ≤ j1 < k + 2 and 0 ≤ j2 < k.

Applying theorem 3.3.3 to the scheme EY, there is an Λ′2 such that

Hi(EY,OEY(λ1(kEZ − EY) + λ2(kE2 + (k + 1)EY) + j1EY + j2EZ)⊗ π∗YOBlIZ
(−lH)) = 0

for i > (r2 − 1) + (r1 − 1), λ1 ≥ 0, λ2 ≥ Λ′2, 0 ≤ j1 < k + 2 and 0 ≤ j2 < k. This implies

Hi(BlIY ·IZ X,O(m2EZ + m1EY)⊗ π∗Y(OBlIZ X(−lH)))

∼= Hi(BlIY ·IZ X,O(m2EZ + (m1 + 1)EY)⊗ π∗Y(OBlIZ X(−lH))) (4.2)

for i > r1 + r2 − 1, 0 < m1 + 1 < (k + 1)bm2
k c+ k + 2 and bm1+1+bm2

k c
k+2 c ≥ Λ′2.

Choose some big M2 such that b b
M2

k c
k+2 c ≥ max{Λ2, Λ′2}. Applying (4.2) repeatedly, we

have for m2 > M2,

Hi(BlIY ·IZ X,O(m2EZ)⊗ π∗Y(OBlIZ X(−lH)))

∼= Hi(BlIY ·IZ X,O(m2EZ + (k + 1)bm2

k
cEY)⊗ π∗Y(OBlIZ X(−lH))) (4.3)

for i > r1 + r2 − 1. The above cohomology group can be rewritten as

Hi(BlIY ·IZ X,O(bm2

k
c(kEZ + (k + 1)EY) + (m2 − kbm2

k
c)EZ)⊗ π∗Y(OBlIZ X(−lH))),

which is 0 by (4.1).

4.1.2 Nef and locally ample case

We then prove the analogue of theorem 4.1.1 for nef subschemes. The idea of the proof

is essentially the same, although we have to use the full statement of theorem 3.3.3 by

allowing a nef term, as well as take extra care with the variables.

Theorem 4.1.4 (Transitivity of nef subschemes). Let Y ⊂ X be a nef subscheme of codimension

r1, Z ⊂ Y be a nef subscheme of codimension r2. Then Z ⊂ X is also a nef subscheme of

codimension r1 + r2.

Proof. Lemma 4.1.3 still holds under the hypothesis of the theorem. We shall use the same

notation as in lemma 4.1.3. Since −E′Z and −E′Y is π′Z-ample and π′Y-ample, respectively,
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we may choose an ample divisor A′ on X such that π′∗Z A′ − E′Z and π′∗Y A′ − E′Y are ample.

Let A = π∗Yπ′∗Z A′ be the pullback of A to BlIY ·IZ X, note that A is nef.

Note that we can write kEZ + A as π∗Y((k + 1)E′Z + (π′∗Z A′ − E′Z)). By lemma 4.1.2, it

suffices to prove that given any l ≥ 0, for k� 0

Hi(BlIY ·IZ X,O(m2(kEZ + A))⊗ π∗Y(OBlIZ X(−l))) = 0

for i > r1 + r2 − 1 and m2 � 0. We fix l and k from this point on.

Note that F′1 := (EZ + 1
3k π∗Y(π

′∗
Z A′ − E′Z)− 1

k1
EY) is (r2 − 1)-ample when restricted to

EY and F′2 := EZ + EY + 1
3k π∗Z(π

′∗
Y A′− E′Y)− 1

k1
EZ is (r1− 1)-ample for k1 � 0. We fix such

a k1. Let α = 3kk1− k1 and β = 3kk1− k1− 3k. Let F1 = 3kk1βF′1 and F2 = 3kk1αF′2. They are

both integral divisors. In fact, F1 = β(αEZ − 3kEY + k1A) and F2 = α(βEZ + αEY + k1A).

Write

m1EY + m2(kEZ + A) = λ1F1 + λ2F2 + λ3A + j1EY + j2EZ,

where λ2 = b
m1+3βkbm2k

αβ c
α2+3βk c; λ1 = bm2k

αβ c − λ2; λ3 = m2 − λ1βk1 − λ2αk1; j1 = ((m1 +

3βkbm2k
αβ c) mod (α2 + 3βk)) and j2 = (m2k mod αβ). Note that if 0 ≤ m1 ≤ α2bm2k

αβ c, then

λ1 ≥ 0 and λ3 ≥ 0.

Since F2 is (r1 − 1)-ample and A is nef, there is a Λ2 such that

Hi(BlIY ·IZ X,O(λ2F2 + λ3A + j2EZ)⊗ π∗Y(OBlIZ X(−l))) = 0 (4.4)

for i > r1 − 1, λ2 > Λ2, λ3 ≥ 0 and 0 ≤ j2 < αβ.

Since F1|EY is (r2 − 1)-ample, F2 is (r1 − 1)-ample and A is nef, there is a Λ′2 such that

Hi(EY,OEY(λ1F1 + λ2F2 + λ3A + j1EY + j2EZ)⊗ π∗Y(OBlIZ X(−l))) = 0

for i > (r2 − 1) + (r1 − 1), λ2 > Λ′2, λ1 ≥ 0, λ3 ≥ 0, 0 ≤ j1 < α2 + 3βk and 0 ≤ j2 < αβ.

This implies if b
m1+3βkbm2k

αβ c
α2+3βk c > Λ′2,

Hi(BlIY ·IZ X,O(m2(kEZ + A))⊗ π∗Y(OBlIZ X(−l)))

∼= Hi(BlIY ·IZ X,O(α2bm2k
αβ
cEY + m2(kEZ + A))⊗ π∗Y(OBlIZ X(−l)))

for i > r1 + r2 − 1.
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The above cohomology groups can be rewritten as

Hi(BlIY ·IZ X,O(bm2k
αβ
cF2 + λ3A + j2EZ)⊗ π∗Y(OBlIZ X(−l)))

where λ3 ≥ 0 and 0 ≤ j2 < αβ. By (4.4), the above cohomology groups vanish for m2 �

0.

The analogous statement holds for locally ample subschemes. The proof is essentially

the same, therefore we shall omit it.

Theorem 4.1.5 (Transitivity of locally ample subschemes). Let Y be a locally ample subscheme

of X of codimension r1 and let Z be a locally ample subscheme of Y of codimension r2. Then Z is a

locally ample subscheme of X of codimension r1 + r2.

The following corollary says that intersection of 2 ample (resp. nef or locally ample)

subschemes is ample (resp. nef or locally ample), respectively, assuming the intersection

has the desired codimension. It is the generalization of [26, Proposition 6.3], in the sense

that we do not assume that X is smooth and the subschemes are lci in X.

Corollary 4.1.6 (Intersection of ample, nef and locally ample subschemes). If Y and Z are

both ample (resp. nef or locally ample) subschemes of X, of codimension r and s, respectively, and

Y ∩ Z has codimension r + s in X, then Y ∩ Z is an ample (resp. nef or locally ample) subscheme

of X.

Proof. By proposition 2.3.9, Y ∩ Z is an ample (resp. nef or locally ample) subscheme of

Z. We now conclude using the transitivity property of ample (resp. nef or locally ample)

subschemes (theorem 4.1.1, theorem 4.1.4 or theorem 4.1.5, respectively).

4.2 Positivity upon restriction
If a line bundle is ample after restricting to an ample subscheme, it is reasonable to

expect the line bundle to exhibit some positivity features. The following theorem demon-

strates a nice interplay between ample subschemes and q-ample divisors. The proof again

uses one of the generalized Fujita vanishing theorems (theorem 3.3.3).
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Theorem 4.2.1. Let X be a projective scheme of dimension n. Let Y be an ample subscheme of X of

codimension r. Suppose L is a line bundle on X, and that its restriction L|Y to Y is q-ample. Then

L is (q + r)-ample.

Proof. We fix an ample line bundle OX(1) on X. Let π : X̃ → X be the blowup of X along

Y.

Step 1. Pass to the blowup.

By lemma 4.1.2, it suffices to prove that

Hi(X̃, π∗(L⊗m ⊗OX(−l))) = 0 (4.5)

for i > q + r and m� 0.

Step 2. Pass to the exceptional divisor.

We claim that it is enough to show that there is an m0 such that

Hi(E, π∗(L⊗m ⊗OX(−l))⊗OE(kE)) = 0 (4.6)

for i > r + q− 1, m > m0 and k ≥ 1. Here E is the exceptional divisor on the blowup X̃.

Indeed, let us consider the short exact sequence:

0→ π∗(L⊗m ⊗OX(−l))⊗OX̃((k− 1)E)→ π∗(L⊗m ⊗OX(−l))⊗OX̃(kE)

→ π∗(L⊗m ⊗OX(−l))⊗OE(kE)→ 0.

By looking at the long exact sequence of cohomology groups induced from the above

short exact sequence and using the hypothesis (4.6), we observe that

Hi(X̃, π∗(L⊗m⊗OX(−l))⊗OX̃((k− 1)E)) ∼= Hi(X̃, π∗(L⊗m⊗OX(−l))⊗OX̃(kE)) (4.7)

for i > r + q, m > m0 and k ≥ 1.

Since E is (r− 1)-ample, for any fixed m,

Hi(X̃, π∗(L⊗m ⊗OX(−l))⊗OX̃(kE)) = 0

for k � 0 and i > r − 1. Together with the isomorphisms in (4.7), we have the desired

vanishing result (4.5).
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Step 3. Rewrite the line bundles of interest in (4.6) in terms of q- and (r − 1)- ample line

bundles.

Note that since −E is π-ample, there is an N > 0 such that π∗(L⊗N) ⊗ OX̃(−E) is

q-ample, by proposition 2.1.9. We can replace L by L⊗N and assume that π∗(L)⊗OE(−E)

is q-ample. We now rewrite the line bundle on E in (4.6):

π∗(L⊗m ⊗OX(−l))⊗OE(kE)) ∼= π∗(OX(−l))⊗OE((k + m)E)⊗ (π∗(L)⊗OE(−E))⊗m

with the second term OE((k + m)E) on the right-hand side being an (r − 1)-ample line

bundle, and the third term (π∗(L)⊗OE(−E))⊗m being an q-ample line bundle.

We now apply theorem 3.3.3 with L1 := π∗(L)⊗OE(−E), L2 = OE(E) and M2 = 1 to

conclude.

This theorem can be compared to a result by Demailly-Peternell-Schneider [7, Theorem

3.4]. Given a chain of codimension 1 subvarieties Yn−r ⊂ Yn−r+1 ⊂ · · · ⊂ Yn−1 ⊂ Yn = X,

such that for n− r ≤ i ≤ n− 1, there exists an ample divisor Zi in the normalization of Yi+1,

with Yi being the image of Zi under the normalization map. Assuming Totaro’s results on

q-ample divisors, they showed a posteriori if L|Yn−r is ample, then L is r-ample, .

One may ask whether we have a converse to theorem 4.2.1, i.e. given an r-ample line

bundle L on a projective scheme X, there is a codimension r ample subscheme Y, such

that L|Y is ample. Demailly, Peternell and Schneider gave a counter-example to this in [7,

Example 5.6]:

Example 4.2.2. Let S be a general quartic surface in P3. Let X = P(Ω1
S). They showed that

−KX is 1-ample, and yet for any ample divisor Y in X, (−KX)
2 · Y < 0, thus −KX cannot

be ample when it is restricted to any ample divisor.

For the reader’s convenience, we shall include the proof of −KX being 1-ample in

example [7]. In fact, it might be worthwhile to extract from the argument of [7, Example

5.6] the following general property.

Proposition 4.2.3. Let

0→ E ′ → E → L → 0 (4.8)

be a short exact sequence of vector bundles on a projective scheme X. We assume E to be a q-ample

vector bundle of rank r, E ′ is of rank (r− 1) and L is of rank 1. Then E ′ is (q + 1)-ample.
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Proof. We first dualize (4.8), then take symmetric product, and dualize again. This will

give us the following short exact sequence

0→ SymkE ′ → SymkE → Symk−1E ⊗ L → 0.

Fix an ample line bundle OX(1) on X, and tensor the above short exact sequence with

OX(−l), for l ≥ 0. Note that Hi(X, SymkE ⊗OX(−l)) = Hi(X, Symk−1E ⊗L⊗OX(−l)) =

0, for i > q and k� 0. Hence Hi(X, SymkE ′ ⊗OX(−l)) = 0, for i > q + 1 and k� 0.

Going back to the example 4.2.2, note that Ω1
S
∼= TS, where TS is the tangent sheaf of S.

We have the following short exact sequence of locally free sheaves on S.

0→ TS → TP3 |S → OS(S)→ 0.

The tangent bundle of a projective space is ample, therefore the tangent bundle of S is

1-ample by the lemma. Since OX(−KX) ∼= OP(Ω1
S)
(2), −KX is 1-ample. It is not ample

since the tangent bundle of S is not ample (S is a K3-surface).

Remark 4.2.4. Interestingly, we note that

H2(X, KX − KX) ∼= H2(S,OS) 6= 0,

Hence, Kodaira-type vanishing theorem fails for −KX, which is 1-ample. Ottem also gave

a counterexample to Koadaira-type vanishing theorem for q-ample divisors [26, Chapter

9].

Example 4.2.5. One may also ask if we can relax the positivity assumption on Y in theorem

4.2.1. For example, if we only assume that the normal bundle of Y is ample, we shall

see the conclusion of the theorem does not hold in general. Let us start with a smooth

ample subvariety Y ⊂ X of a smooth projective variety. We blowup a closed point p in

X \ Y. Observe that the normal bundle of Y ⊂ BlpX is still ample. Let E ∼= Pn−1 be

the exceptional divisor, and let A be an ample divisor on Blp(X). Then E + εA is not

(n − 2)-ample, for 0 < ε � 1, since it is anti-ample when restricted to the exceptional

divisor. But (E + εA)|Y = εA|Y is ample.

On the other hand, as we shall see in the following section, a small yet interesting part

of the theorem still holds if we assume Y is a nef subvariety.
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4.3 Restriction pseudoeffective divisors
There are not many results regarding the positivity of subvariety with nef normal

bundle, in terms of intersection theory. Here are two such results the author is aware

of.

In Fulton-Lazarsfeld’s work [14] (see also [23, Theorem 8.4.1]), they proved that if Y is

a closed, lci subvariety of a projective variety X and the normal bundle of Y is nef, then

for any closed subscheme Z ⊂ X with dim Y + dim Z ≥ dim X, degH(Y · Z) ≥ 0. (Here H

is an ample divisor on X.) On the other hand, it is not hard to show that if Y has globally

generated normal bundle, then restriction of any effective cycle to Y is either effective or 0

[12, Theorem 12.1.a)].

We show that the restriction of a pseudoeffective divisor to a nef subvariety is still

pseudoeffective.

Theorem 4.3.1. Let Y be a nef subvariety of codimension r of a projective variety X. Then

ι∗E f f
1
(X) ⊆ E f f

1
(Y)

and

ι∗Big(X) ⊆ Big(Y).

Here ι : Y ↪→ X is the inclusion map, ι∗ : N1(X)R → N1(Y)R is the induced map on the

Néron-Severi group with R-coefficients and E f f
1
(X) (resp. Big(X)) is the cone of pseudoeffective

(resp. big) R-Cartier divisors.

Remark 4.3.2. Before proving the theorem, let us point out it is rather straightforward to

obtain the conclusion under the stronger assumptions in theorem 4.2.1 and the added

assumption that X and Y are integral. Let D be a pseudoeffective divisor on X, i.e. −D

is not (n− 1)-ample (theorem 2.1.8). Suppose on the contrary D|Y is not pseudoeffective.

Then −D|Y is (n− r− 1)-ample. This gives a contradiction to theorem 4.2.1.

Proof of theorem 4.3.1. A divisor is big if and only if it can be written as the sum of a pseu-

doeffective divisor and an ample divisor. Therefore, we can focus on the pseudoeffective

case. We shall follow the steps in the proof of theorem 4.2.1 closely. Recall that a Cartier

divisor D is (n− 1)-ample if and only if−D is not pseudoeffective (theorem 2.1.8). Given a
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line bundle L on X such that L|Y is (n− r− 1)-ample, we need to show L is (n− 1)-ample.

Fix an ample line bundle OX(1) on X.

Step 1 (Pass to the blowup). It suffices to show for any l ≥ 0, there is an m0 such that

Hn(X̃, π∗(L⊗m ⊗OX(−l))) = 0 for m ≥ m0.

This is true by lemma 4.1.2.

We now fix l.

Step 2 (Pass to the exceptional divisor). It is enough to show that there is an m0 such that

Hn−1(E, π∗(L⊗m ⊗OX(−l))⊗OE(kE)) = 0

for m ≥ m0 and k ≥ 1.

We just have to repeat the argument in step 2 in the proof of theorem 4.2.1, i.e. consider

the long exact sequence of cohomologies associated to

0→ π∗(L⊗m ⊗OX(−l))⊗OX̃((k− 1)E)→ π∗(L⊗m ⊗OX(−l))⊗OX̃(kE)

→ π∗(L⊗m ⊗OX(−l))⊗OE(kE)→ 0.

Also note that for a fixed m,

Hn(X̃, π∗(L⊗m ⊗OX(−l))⊗OX̃(kE)) = 0

for k� 0. Indeed, E is (n− 1)-ample (−E is not pseudoeffective!).

Step 3 (Rewrite in terms of an (n− r− 1)-ample line bundle and an (r− 1)-almost ample

line bundle).

Replacing L with L⊗N for N large enough, we may assume π∗L⊗OE(−E) is (n− r−

1)-ample, by proposition 2.1.9. Now we can write

π∗(L⊗m ⊗OX(−l))⊗OE(kE) ∼= π∗OX(−l)⊗ (π∗L⊗OE(−E))⊗m ⊗OE((k + m)E).

By proposition 3.3.4, there is an m0 such that

Hn−1(E, π∗OX(−l)⊗ (π∗L⊗OE(−E))⊗m ⊗OE((k + m)E)) = 0

for k ≥ 1 and m ≥ m0. This proves the theorem.
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Remark 4.3.3. Suppose the conclusion of theorem 4.3.1 holds, the normal bundle of Y is not

necessarily nef. Take a 3-fold with Picard number 1 that contains a rational curve C with

normal bundle O(−1)⊕O(−1). The condition D · C > 0 for any pseudoeffective divisor

D is obvious due to the Picard number 1 condition on the 3-fold. This example is taken

from Ottem’s paper [27, Example 1.2.vii].

Boucksom, Demailly, Păun and Peternell showed that the dual cone of the pseudoef-

fective cone is the cone of movable curves [5]. Hence we have the equivalent statement:

Corollary 4.3.4. With the same assumptions as in theorem 4.3.1, the map on the numerical equiv-

alence classes of 1-cycles, ι∗ : N1(Y) → N1(X), induces ι∗ : Mov1(Y) → Mov1(X), where

Mov1(Y) and Mov1(X) are the cones of movable curves in Y and X, respectively.

We apply the adjunction formula to get

Corollary 4.3.5. If both X and Y are non-singular, Y has nef normal bundle and KX is pseudoef-

fective, then KY is also pseudoeffective. If KX is big, then KY is also big.

Remark 4.3.6. The first assertion in the above corollary follows also from [5] and the theory

of deformation of rational curve. More specifically, Boucksom-Demailly-Păun-Peterenell

showed that on a smooth projective variety Z, KZ is pseudoeffective if and only if Z is not

uniruled. If Y is uniruled, take a smooth rational curve C that covers Y. By considering the

short exact sequence of normal bundles on C, we see that the normal bundle of C in X is

nef. Thus, X is uniruled.

4.4 Weakly movable cone
We shall define and study the weakly movable cone. In this section, we assume the

ground field k is algebraically closed and of characteristic zero. On a smooth projective

variety, we know that the movable cone of divisors is the smallest closed convex cone that

contains all the pushforwards of nef divisors from Xπ, where π : Xπ → X is projective

and birational. With this in mind, we define the weakly movable cone as the closure

of the cone that is generated by pushforward of cycles of nef subvariety via generically

finite morphism. We find that it contains the movable cone and satisfies some desirable

intersection theoretic properties.
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First, let us recall the definition of a family of effective cycles. We shall follow Fulger-

Lehmann’s definition [10].

Definition 4.4.1 (Family of effective cycles). Let X be a projective variety over k. A family

of effective d-cycles on X with Z-coefficient, (g : U → W), consists of a closed reduced

subscheme SuppU of W ×k X, where W is a variety over k; a coefficient ai ∈ Z>0 for each

irreducible component Ui of SuppU; and the projection morphisms gi : Ui → W is proper

and flat of relative dimension d.

Over a closed point w ∈ W, g−1
i (w) is a closed subscheme of X. Its fundamental cycle

[g−1
i (w)] is a d-cycle of X. We define the cycle theoretic fiber over w to be ∑ ai[g−1

i (w)].

We say that the family of effective d-cycles is irreducible if SuppU is irreducible.

Remark 4.4.2. Kollár’s definition [21, Definition I.3.11] of a well-defined family of d-dimensional

proper algebraic cycles is more general. By [21, Lemma I.3.14], given an effective, well-

defined family of proper algebraic cycles of a projective variety X over a variety W (both

are over k), there is a proper surjective morphism W ′ → W from a variety W ′ such that

there is a family of effective cycles (in the sense of Fulger-Lehmann) over W ′ that ”pre-

serves” the cycle theoretic fibers over the closed points of the original family. Therefore for

our purpose, it is enough to use Fulger-Lehmann’s definition.

Definition 4.4.3 (Strictly movable cycles [10, Definition 3.1]). We say that a family of

effective d-cycles of X (g : U →W) is strictly movable if each of the irreducible components

Ui of SuppU dominates X via the second projection.

We say that an effective d-cycle of X (with Z-coefficient) is strictly movable if it is the

cycle theoretic fiber over a closed point of a strictly movable family of d-cycles on X.

We define the movable cone of d-cycles Movd(X) ⊂ Nd(X) to be the closure of the convex

cone generated by strictly movable d-cycles.

Proposition 4.4.4. The movable cone of d-cycles is the closure of the convex cone generated by

irreducible, strictly movable d-cycles.

Proof. Suppose ∑ aiZi is the cycle theoretic fiber over a closed point of a family of strictly

movable d-cycles (g : U → W) with irreducible components Ui. It suffices to show that Zi
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is algebraically equivalent to a sum of irreducible strictly movable d-cycles. If the generic

fiber of pi : Ui → W is geometrically integral, then the fiber over a general closed point is

also (geometrically) integral [15, Théorème 9.7.7], and we are done.

Suppose the generic fiber of pi is not geometrically integral. Let ηW be the generic point

of W, let k(ηW) be the algebraic closure of k(ηW) and let U′ij ⊂ Xk(ηW) be the irreducible

components of Speck(ηW)×Speck(ηW) Ui. We may take a finite field extension k(ηW) ⊂ K,

such that the generators of the ideal sheaves of U′ij are defined over K. Then all the irre-

ducible components of SpecK ×Speck(ηW) Ui are geometrically integral. These components

dominate the generic fiber of pi. Take a variety V with function field K such that the map

SpecK → Speck(ηW) extends to V → W. By generic flatness, we may replace V by a

smaller open set and assume that each irreducible components Uij of V ×W Ui is flat over

V. Note that all Uij dominates Ui, hence also X. Thus, each Uij is a strictly movable family

of d-cycles of X over V (with coefficient 1), and the cycle theoretic fiber over a general

closed point of V is (geometrically) integral, by [15, Théorème 9.7.7] again. Then Zi is

algebraically equivalent to the sum of the cycle theoretic fibers of Uij’s, with Z-coefficient,

over a general closed point of V.

Proposition 4.4.5. An irreducible, strictly movable cycle can be realized as the pushforward of a

multiple of the cycle class of a nef subvariety via a proper, surjective morphism, up to numerical

equivalence.

Proof. From the proof of proposition 4.4.4, we may assume the irreducible, strictly movable

cycle is the cycle theoretic fiber over a closed point of an irreducible, strictly movable

family of (g : U → W), with the fiber of g′ : SuppU → W over a general closed point

of W integral. Using the argument in [10, Remark 2.13] or [21, Proposition I.3.14], we may

assume W is projective. We note that a closed point w ∈ W is nef, hence g
′−1(w) is also

nef, by proposition 2.3.8, and that g
′−1(w) is integral if w is general.

Definition 4.4.6 (Weakly movable cone). Let X be a projective variety over k. We define

the weakly movable cone WMovd(X) ∈ Nd(X) to be the closure of the convex cone generated

by π∗[Z], where π : Y → X is proper, surjective morphism from a projective variety and Z

is a nef subvariety of dimension d in Y.
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We shall compare the movable cone and the weakly movable cone.

Proposition 4.4.7. Let X be a projective variety over k. We have

Movd(X) ⊆WMovd(X).

In particular, WMovd(X) is a full dimensional cone in Nd(X).

Proof. This follows from proposition 4.4.5 and [10, Proposition 3.8].

The following proposition is an analogue of the first statement of [10, Lemma 3.6].

Proposition 4.4.8. Let X′ and X be projective variety over k. Suppose h : X′ → X is a proper

surjective morphism. Then h∗WMovd(X′) ⊆WMovd(X).

Proof. It follows from the definition of the weakly movable cone.

The following theorem is an analogue of [10, Lemma 3.10].

Theorem 4.4.9. Let X be a projective variety over k and let α ∈WMovd(X). Then

1. If β ∈ E f f
1
(X), then β · α ∈ E f f d−1(X).

2. Let H be a big Cartier divisor. If H · α = 0, then α = 0.

3. If β ∈ Ne f 1(X), then β · α ∈WMovd−1(X).

Proof. For (1), we may assume α = π∗[Z], where π : Y → X is a proper, surjective map

and Z a nef subvariety of Y. By projection formula, we have β · π∗[Z] = π∗(π∗β · [Z]).

We know that π∗β is pseudoeffective. By theorem 4.3.1, π∗β · [Z] ∈ E f f d−1(Y). Since

π∗E f f d−1(Y) ⊆ E f f d−1(X), we have β · π∗[Z] ∈ E f f d−1(X).

For (2), we follow Fulger-Lehmann’s argument [10, Proof of Lemma 3.10]. We write

H = A + E, where A is ample and E is effective. By (1), A · α, E · α ∈ E f f d−1(X). In

particular, H · α = 0 implies A · α = 0 [11, Corollary 3.8], which can only happen when

α = 0 [11, Corollary 3.16].

For (3), we may again assume α = π∗[Z], where π : Y → X is a proper, surjective map

and Z a nef subvariety of Y. We also assume d ≥ 2, otherwise the result already follows

from (1). Note that π∗WMovd−1(Y) ⊆ WMovd−1(X) by the definition of weakly movable
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cone. It suffices to show that H · [Z] ∈ WMovd−1(Y), where H is a very ample divisor on

Y. We may assume that H ∩ Z is of dimension d− 1 and is integral [19, Corollaire 6.11]. By

corollary 4.1.6, H ∩ Z is a nef subvariety in Y.

Proposition 4.4.10. Let X be a projective variety of dimension n over k. Then

WMov1(X) = Mov1(X)

Proof. Let π : Y → X be a proper, surjective map, Z ⊂ Y be a nef subvariety of dimension

1. To show that π∗[Z] ∈ Mov1(X), it suffices to show that D ·π∗[Z] = π∗D · [Z] ≥ 0 for any

pseudoeffective divisor on X, since the dual cone of Mov1(X) is the cone of pseudoeffective

divisors [5]. This follows from theorem 4.3.1.

Let us recall Hartshorne’s conjecture A:

Conjecture 4.4.11 ([16, Conjecture 4.4]). Let X be a smooth projective variety, and let Y be a

smooth subvariety with ample normal bundle. Then n[Y] moves in a large algebraic family for

n� 0.

This was disproved by Fulton and Lazarsfeld. They constructed an ample rank 2 vector

bundle on P2, such that any multiple of the zero section in the total space of the vector

bundle does not move.

In view of proposition 4.4.7, theorem 4.4.9 and proposition 4.4.10, it seems reasonable

for us to ask the following

Question 1. Let X be a projective variety of dimension n. Do we have

WMovd(X) = Movd(X),

for 1 ≤ d ≤ n− 1?

If the answer is yes, the cycle class of any nef subvariety of X will lie in the movable

cone. The key point in the question is that we only consider the cycle classes up to numeri-

cal equivalence; the movable cone is also defined to be the closure of the cone generated by

movable cycles. This seems to be one of the weakest possible ways of stating the conjecture

that relates positivity of the normal bundle of subvarieties and their movability. However,

it is possible that the two cones are different in general.
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One might want to study the closure of the convex cone generated by the cycle class of

nef subvarieties of dimension d (in Nd(X)) instead. We now give an example where it is

not of full dimension, when d = dim X− 1.

Lemma 4.4.12 ([26, Corollary 3.4]). Let X be a normal projective variety over k. Let Y ⊂ X be a

nef subscheme of codimension 1. Then Y is a (nef) Cartier divisor.

Proof. Let π : BlYX → X be the blowup of X along Y, with exceptional divisor E. Then

π|E : E → Y is equidimensional of relative dimension 0, by proposition 4.1.1. Therefore,

π is quasi-finite. A proper and quasi-finite morphism is finite, so π is finite and birational,

with X normal. This implies that π is in fact an isomorphism.

Let X be a projective variety of dimension n over k. By [12, Example 19.3.3], the natural

map N1(X)
·[X]−−→ Nn−1(X) is injective. Fulger-Lehmann gave an example [11, Example 2.7]

where N1(X)
·[X]
↪−→ Nn−1(X) is not surjective. We may assume that X is normal in their

example. By the above lemma, the closure of the convex cone generated by the cycle class

of nef subschemes of codimension 1 lies in the subspace N1(X) ( Nn−1(X), hence is not

full dimensional.



CHAPTER 5

NUMERICAL DIMENSION AND LOCALLY

AMPLE CURVES

We showed that the restriction of a pseudoeffective divisor to a nef subvariety is pseu-

doeffective (theorem 4.3.1). In this chapter, we shall study how the numerical dimension

of the classes on the boundary of E f f
1
(X) behave under the restriction ι∗ : E f f

1
(X) →

E f f
1
(Y), assuming Y is locally ample.

Nakayama showed that if H is a smooth ample divisor of a smooth projective variety

X and η ∈ N1(X)R is not big, then κσ(η) ≤ κσ(η|H) [25, Proposition 2.7(5)]. On the

other hand, Ottem showed that if X is a smooth projective variety, Y is a locally complete

intersection subvariety with ample normal bundle and η ∈ N1(X)R satisfies η|Y = 0, then

κσ(η) = 0 [27, Theorem 1]. This was a conjecture due to Peternell [28, Conjecture 4.12].

The following theorem generalizes both of the above results.

Theorem 5.1. Let ι : Y ↪→ X be a locally ample subvariety of codimension r of a projective variety

X. If η ∈ N1(X)R is a pseudoeffective class such that η|Y is not big, then κσ(η) ≤ κσ(η|Y).

From this, we deduce the following result (see theorem 5.3.5). Let Y be a locally ample

subvariety of X and let f : X → Z be a morphism from X to a projective variety Z. If

dim f (Y) < dim Y, then f |Y : Y → Z is surjective, i.e. f (Y) = Z.

One can regard these results as evidence that it is natural to study the notion of locally

ample subvariety.

We now turn our focus to the main application of theorem 5.1.

It seems interesting to ask how the positivity of the normal bundle of a subvariety

influences the positivity of the underlying cycle class of the subvariety. The divisor case

is well-known. For example, ample divisors generate an open cone in N1(X)R, called the

ample cone. The closure of the ample cone is dual to the closure of the cone generated



42

by curves in X (Kleiman). Furthermore, an effective Cartier divisor with ample normal

bundle is big [16, Theorem III.4.2]. In this paper, we want to see whether similar properties

hold for curves. Boucksom, Demailly, Păun and Peternell [5] showed that the closure of the

cone of effective divisors in N1(X)R, called the pseudoeffective cone, is dual to the closure

of the cone generated by strongly movable curves, called the movable cone of curves.

Using this result, one can show that the cycle class of a nef curve (in particular a curve

with nef normal bundle) lies in the movable cone of curves ([7, Theorem 4.1], theorem

4.3.1). By analogy to the divisor case, it is natural to pose the following question: given

a locally ample (resp. ample) curve, does the cycle class of the curve lie in the interior of

the cone of curves (resp. movable cone of curves)? In this dissertation, we give a positive

answer to this question.

Theorem 5.2. Let X be a projective variety and let Y be a locally ample curve in X. Then [Y] ∈

N1(X)R is big, i.e. it lies in the interior of the cone of curves. Furthermore, if Y meets all prime

divisors of X, e.g. Y is ample, then [Y] lies in the interior of the movable cone of curves.

Following an observation of Peternell [28, Conjecture 4.1], Ottem already deduced that

the cycle class of a locally complete intersection curve with ample normal bundle in a

smooth projective variety lies in the interior of the cone of curves ([27, Theorem 2]). Indeed,

if η ∈ N1(X)R is nef and η|Y = 0, then the conjecture says κσ(η) = 0, which forces η = 0.

Theorem 5.2 improves upon Ottem’s result by removing the assumptions that X is smooth

and Y is locally complete intersection. Our proof is different from Ottem’s in the sense that

the theory of q-ample divisors is used here. The use of q-ample divisors also enables us to

obtain the more general statement.

5.1 Numerical dominance
In this section, we prove a basic fact on Nakayama’s notion of numerical dominance

(proposition 5.1.3), which will streamline the argument in the proof of theorem 5.1.

Let us first start by stating the definition of numerical dominance.

Definition 5.1.1. [25, Definition 2.12] Given two classes η1, η2 ∈ N1(X)R. We say that η1

numerically dominates η2 if for any ample divisor A and for any b ∈ R there are t1, t2 > b

such that t1η1 − t2η2 + A is pseudoeffective.
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We say that a class η ∈ N1(X)R numerically dominates a closed subvariety Y of X if on

the blowup π : BlYX → X, π∗η numerically dominates the exceptional divisor E.

Lemma 5.1.2. Let X be a projective variety and let η1, η2 ∈ N1(X)R. Then η1 numerically

dominates η2 if there exists an ample divisor A such that for any b ∈ R there are t1, t2 > b such

that t1η1 − t2η2 + A is pseudoeffective.

Proof. Suppose the hypothesis in the lemma holds. Given an ample divisor A′, choose a

large enough integer a such that aA′ − A is pseudoeffective. Given b > 0, take t1, t2 > ab

such that t1η1 − t2η2 + A is pseudoeffective. Then t1
a η1 − t2

a η2 + A′ = 1
a (t1η1 − t2η2 + A) +

(A′ − 1
a A) is pseudoeffective.

Let us relate the negation of numerical dominance and vanishing of the top cohomol-

ogy group.

Proposition 5.1.3. Let X be a projective variety of dimension n and let Y be a subvariety of X. Let

E be the exceptional divisor on X̃ := BlYX, the blowup of X along Y. Let D be a pseudoeffective

R-Cartier R-divisor on X, written as ∑ aiCi, where ai ∈ R and Ci’s are integral Cartier divisors.

Fix a 2n-Koszul-ample line bundle O(H) on X̃.

If there is some ample integral Cartier divisor A such that A− (n + 1)H and A− (n + 1)H +

eE−∑ ciCi are ample for e, ci ∈ [0, 1] on X̃ and there is some b ∈ R such that

hn(X̃,OX̃(kE−∑btaicπ∗Ci − A)) = 0

for all t ∈ (b,+∞) and for all integer k > b, then D does not numerically dominate Y.

On the other hand, if D does not numerically dominate Y, then for any divisor B, there is b ∈ R

such that

hn(X̃,OX̃(kE−∑btaicπ∗Ci − B)) = 0

for all t ∈ (b,+∞) and for all integer k > b.

Proof. For the first statement, by the hypothesis,

hn(X̃,OX̃(kE−∑btaicπ∗Ci − A + (n + 1)H)⊗OX̃(−(n + 1)H)) = 0

for k, t > b, k ∈ Z. By theorem 2.1.5, kE − ∑btaicπ∗Ci − A + (n + 1)H is (n − 1)-ample

for k, t > b, k ∈ Z. For t1, t2 > b, we can write t2E − t1π∗D − (A − (n + 1)H) =
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(bt2cE− bt1cπ∗D− ε(A− (n + 1)H)) + ((1− ε)(A− (n + 1)H) + {t2}E−∑{t1ai}π∗Ci)

and observe that the first term is (n− 1)-ample and the second term is ample for 0 < ε�

1. It follows that t2E − t1π∗D − (A − (n + 1)H) is (n − 1)-ample for t1, t2 > b. Thus,

t1π∗D − t2E + (A − (n + 1)H) is not pseudoeffective for t1, t2 > b. This proves the first

assertion.

For the second statement, for sufficiently large l, we can embed ωX̃ ↪→ O(lH). We may

also assume that B + lH is ample. By lemma 5.1.2, there is a b such that t1π∗D− t2E + B +

lH is not pseudoeffective for t1, t2 > b. Thus, for k, t > b and k ∈ Z,

hn(X̃,OX̃(kE−∑btaicπ∗Ci − B)) = h0(X̃, ωX̃ ⊗OX̃(∑btaicπ∗Ci − kE + B)) (Duality)

≤ h0(X̃,OX̃(∑btaicπ∗Ci − kE + B + lH)) (ωX̃ ↪→ O(lH))

= 0.

5.2 Proof of theorem 5.1
We are now ready to demonstrate how the notion of numerical dominance comes into

the picture.

Proposition 5.2.1. Let X be a projective variety of dimension n, let Y be a locally ample subvariety

of codimension r of X and let η ∈ N1(X)R be a pseudoeffective class such that η|Y is not big. Then

η does not numerically dominate Y.

Proof. Let X̃ be the blowup of X along Y, with exceptional divisor E. We fix a Koszul-ample

line bundle OX̃(H). Take D = ∑ aiCi to be an R-Cartier R-divisor such that its class equals

to η. Here ai ∈ R and Ci’s are integral Cartier divisors. We fix an integer l > n + 1 such

that (l − (n + 1))H + eE−∑ ciCi is ample for any e, ci ∈ [0, 1].

We would like to prove that for any coherent sheaf F on E, there is k0 such that

hn−1(E,F ⊗OE(kE−∑btaicπ∗Ci − lH)) = 0 (5.1)

for k ≥ k0 and t ≥ 0. It is enough to prove that for the vanishing of cohomology groups on

each of the irreducible components of E. In other words, letting E′ be an irreducible compo-

nent of E, it suffices to prove that there is k′0 such that hn−1(E′,F ⊗OE′(kE−∑btaicπ∗Ci −
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lH)) = 0 for k ≥ k′0 and t ≥ 0. As there is a surjection ⊕O(B) � F , where O(B) is a line

bundle, it suffices to prove the vanishing assuming F is a line bundle O(B). By duality,

hn−1(E′,OE′(kE−∑btaicπ∗Ci + B− lH)) = h0(E′, ωE′ ⊗OE′(−kE+∑btaicπ∗Ci− B+ lH)),

where ωE′ is the dualizing sheaf of E′. We may embed ωE′ ↪→ OE′(jH) for some j by lemma

2.4.3. It suffices to prove that there is k′0 such that

h0(E′,OE′(−kE + ∑btaicπ∗Ci − B + (l + j)H)) = 0 (5.2)

for k ≥ k′0 and t ≥ 0.

As D|Y is not big, −D|Y is (n− r − 1)-almost ample. By proposition 2.1.9, π∗(−D)|E
is also (n− r − 1)-almost ample. Since OE(E) is (r − 1)-ample, we may take k′0 such that

(kE + ∑ eiπ
∗Ci + B− (l + j)H)|E′ is (r− 1)-ample for k ≥ k′0 and ei ∈ [0, 1], thanks to the

openness of the (r− 1)-ample cone (theorem 2.1.7). Thus, for k ≥ k′0 and t ≥ 0,

(kE−∑btaicπ∗Ci + B− (l + j)H)|E′ = ((kE+∑{tai}π∗Ci + B− (l + j)H) +π∗(−tD))|E′

is (r − 1) + (n − r − 1) = (n − 2)-ample, by theorem 2.1.7. Now we have (5.2) by [30,

Theorem 9.1], hence also (5.1).

If we fix t and take k large enough, then hn(X̃,OX̃(kE−∑btaicπ∗Ci − lH))) = 0, since

E is (n− 1)-ample. We tensor the short exact sequence

0→ OX̃(kE)→ OX̃((k + 1)E)→ OE((k + 1)E)→ 0 (5.3)

by OX̃(−∑btaicπ∗Ci − lH), and consider its associated long exact sequence of cohomolo-

gies. We apply (5.1), lettingF to be the structure sheafOE, there is k0 such that hn−1(E,OE(kE−

∑btaicπ∗Ci − lH)) = 0 for k ≥ k0 and t ≥ 0. Therefore,

hn(X̃,OX̃(kE−∑btaicπ∗Ci − lH)) = 0

for k ≥ k0 and t ≥ 0. We may now conclude the proof by applying proposition 5.1.3.

Proposition 5.2.2. Let X be a projective variety and let Y be a subvariety of X. Let D be a pseu-

doeffective R-Cartier R-divisor such that D does not numerically dominate Y. Let π : X̃ → X be

the blowup of X along Y, with exceptional divisor E. Suppose π|E : E → Y is an equidimensional

morphism. Then κσ(D) ≤ κσ(D|Y).
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Proof. We use the same notations as in the proof of the preceding proposition. By proposi-

tion 2.5.4, κσ(D) = κσ(π∗D). It is enough to look at the growth (in t) of h0(X̃,OX̃(∑btaicπ∗Ci +

b1H)), for a large enough integer b1. Since ωX̃ is generically a line bundle, the natural map

OX̃ → ω∨X̃ ⊗ωX̃ is an injection. We have the inequality

h0(X̃,OX̃(∑btaicπ∗Ci + b1H)) ≤ h0(X̃, ω∨X̃ ⊗ωX̃ ⊗OX̃(∑btaicπ∗Ci + b1H))

= hn(X̃, ωX̃ ⊗OX̃(−∑btaicπ∗Ci − b1H)).

There is some surjection ⊕NOX̃(−b2H) � ωX̃. Therefore,

hn(X̃, ωX̃ ⊗OX̃(−∑btaicπ∗Ci − b1H)) ≤ N · hn(X̃,OX̃(−∑btaicπ∗Ci − (b1 + b2)H))

By proposition 5.2.1 and proposition 5.1.3, there is k0 such that

hn(X̃,OX̃(kE−∑btaicπ∗Ci − (b1 + b2)H)) = 0

for k ≥ k0 and t ≥ k0. Tensoring the short exact sequence 5.3 by OX̃(−∑btaicπ∗Ci − (b1 +

b2)H) and considering the associated long exact sequence of cohomologies, we have

hn(X̃,OX̃(−∑btaicπ∗Ci− (b1 + b2)H)) ≤
k0

∑
k=1

hn−1(E,OE(kE−∑btaicπ∗Ci− (b1 + b2)H))

for t ≥ k0.

Note that the restriction of π : X̃ → X to the exceptional divisor π|E : E → Y is an

equidimensional morphism, with fiber dimension equal to r− 1. Thus, Rd(π|E)∗OE(kE−

(b1 + b2)H) = 0 for d > r− 1. Note also that dim Y = n− r, which implies that hd(Y,F ) =

0 for d > n− r and for any coherent sheaf F on Y. We now apply Leray spectral sequence

and the above remarks to see that for 1 ≤ k ≤ k0,

hn−1(E,OE(kE−∑btaicπ∗Ci − (b1 + b2)H))

= hn−r(Y, (Rr−1(π|E)∗OE(kE− (b1 + b2)H))⊗OY(−btaicCi))

= h0(Y, ωY ⊗ (Rr−1(π|E)∗OE(kE− (b1 + b2)H))∨ ⊗OY(btaicCi)) (Duality)

Since (Rr−1(π|E)∗OE(kE − (b1 + b2)H))∨ is reflexive [18, Corollary 1.2] and by lemma

2.4.3, for sufficiently large l, there is an embedding ωY⊗ (Rr−1(π|E)∗OE(kE− (b1 + b2)H))∨

↪→ ⊕NkOY(lH) for 1 ≤ k ≤ k0. We can conclude that h0(X̃,OX̃(∑btaicπ∗Ci + b1H)) ≤

N · (∑k0
k=1 Nk) · h0(Y,OY(btaicCi + lH)) for t� 0. This proves the proposition.
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Proof of theorem 5.1. Combine proposition 5.2.1 and 5.2.2 and note that if Y is locally ample,

then E→ Y is equidimensional (proposition 4.1.1).

5.3 Applications of theorem 5.1
We give two applications of theorem 5.1. The first one is on positivity of cycle classes of

locally ample and ample curves (theorem 5.2); the second one concerns the fact that locally

ample subvarieties cannot be contracted (theorem 5.3.5).

5.3.1 Cycle classes of locally ample curves

Peternell conjectured that if Y is a smooth curve with ample normal bundle in a smooth

projective variety X and η ∈ N1(X) is a pseudoeffective class with η|Y = 0, then κσ(η) = 0

[28, Conjecture 4.12]. Ottem later showed that the conjecture is indeed true [27, Theorem 1].

From there, Peternell observed that the cycle class of a smooth curve with ample normal

bundle lies in the interior of the cone of curves ([28, Conjecture 4.1], [27, Theorem 2]).

Indeed, if η ∈ N1(X)R is nef and η|Y = 0, the conjecture says κσ(η) = 0. But this forces

η = 0. We are able to generalize this result by removing any restrictions on smoothness on

X and Y.

Proposition 5.3.1. [27] Let X be a projective variety. Let η ∈ N1(X)R be a pseudoeffective class.

If κσ(η) = 0 and η is nef, then η = 0.

Proof. It follows from the argument on [27, p. 5]. We include the proof here for the sake of

completeness.

Let H be an ample divisor of X. Note that if we can prove that η|H = 0, it would

imply η = 0. By induction on dimension of X, it suffices to show that κσ(η|H) = 0. Let

D = ∑ aiCi be a pseudoeffective R-Cartier R-divisor such that the numerical class of D is

η. Here ai ∈ R and Ci’s are integral Cartier divisors. By Fujita vanishing theorem, there is

a k1 such that for k ≥ k0,

H1(X,OX(kH + N) = 0,

for any nef divisor N. Take a sufficiently large k1 such that k1H −∑ eiCi is ample, for any

ei ∈ [0, 1]. For t ≥ 0, k1H + ∑btaicCi = tD + (k1H −∑{tai}Ci) is nef. Thus,

H1(X,OX(kH + ∑btaicD) = 0
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for k ≥ k0 + k1. Therefore, we have the surjection

H0(X,OX(∑ctaibD + kH) � H0(H,OH(∑ctaibD + kH)

for k ≥ k0 + k1 and t ≥ 0. Hence κσ(η|H) = 0.

The following theorem generalizes the first half of the main theorem in Ottem’s paper

[27, Theorem 2].

Theorem 5.3.2. Let X be a projective variety. Let Y be a locally ample subvariety of dimension 1

of X. Then the cycle class of Y in N1(X)R is big, i.e. it lies in the interior of the cone of curves,

NE(X).

Proof. Suppose there is some nef class η ∈ N1(X)R such that η|Y = 0. By theorem 5.1,

κσ(η) = 0. We then apply proposition 5.3.1 to conclude that η = 0.

We shall need the following proposition which shows that a pseudoeffective class η ∈

N1(X)R on a smooth projective variety with κσ(η) = 0 is in fact “effective”.

Proposition 5.3.3. [25, Proposition V.2.7] Let X be a smooth projective variety. Let η ∈ N1(X)R

be a pseudoeffective class. If κσ(η) = 0, then there is an R-Cartier R-divisor ∑ aiCi, where ai ∈

R>0 and Ci are prime divisors, such that its numerical class in N1(X)R equals to η.

We are now ready to show that the cycle class of an ample curve lies in the interior of

the movable cone of curves. This strengthens the second half of [27, Theorem 2].

Theorem 5.3.4. Let X be a projective variety and let Y be a locally ample curve in X. Suppose Y

meets all prime divisors of X. Then the cycle class [Y] lies in the interior of the movable cone of

curves. In particular, the cycle class of an ample subvariety of dimension 1 lies in the interior of the

movable cone of curves.

Proof. Note that the second statement follows from the first. Indeed, if Y is an ample curve

in X, then Hn−1(X\Y,F ) = 0 for any coherent sheaf F on X\Y [26, Proposition 5.1]. In

particular, X\Y cannot contain any prime divisor.

Let π : X̃ → X be the blowup of X along Y, let X′
f ′−→ X̃ = BlYX be a resolution of

singularities on X̃ and let f = π ◦ f ′ be the composition. The famous result in [5] says that
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the dual cone of the movable cone of curves is the pseudoeffective cone. We can apply

theorem 4.3.1 to see that [Y] lies in the movable cone of curves. It suffices to show that for

any pseudoeffective class η ∈ N1(X)R such that η · [Y] = 0, then η = 0.

Theorem 5.1 says that κσ( f ∗η) = κσ(η) = 0. As f ∗η is pseudoeffective, it is equal to the

class of an effective R-Cartier R divisor ∑ biBi where bi > 0 and Bi’s are prime divisors by

proposition 5.3.3.

Suppose
⋃

Supp(Bi) ∩ f−1(Y) = ∅. By the projection formula, [η] ≡ ∑ bi f∗[Bi] in

Nn−1(X). But
⋃

Supp f (Bi) ∩ Y = ∅ and the hypothesis imply all Bi’s are exceptional.

Thus [η] = 0 in Nn−1(X) and η = 0 by [11, Example 2.7].

We may assume
⋃

Supp(Bi) ∩ f−1(Y) 6= ∅. Applying the negativity lemma to ∑ biBi

(note that −∑ biBi is clearly f -nef), for any closed point p ∈ f (
⋃

Supp(Bi)), f−1(p) ⊂⋃
Supp(Bi). Take a curve C′ ⊂ f−1(Y) such that f (C′) = Y. By the previous remark,

C′ ∩ ⋃
Supp(Bi) 6= ∅. On the other hand, ∑ biBi · [C′] = f ∗η · [C′] = deg(κ(C) : κ(Y))η ·

[Y] = 0. Therefore, C′ ⊂ ⋃
Supp(Bi) and f−1(Y) ⊂ ⋃

Supp(Bi). Thus, f ′∗(π∗η − εE) is

pseudoeffective for some small ε > 0. But proposition 5.2.1 says that η does not dominate

Y numerically. This gives a contradiction.

5.3.2 Locally ample subvarieties cannot be contracted

In this subsection, we show that, as a consequence of theorem 5.1, a locally ample

subvariety cannot be contracted.

Theorem 5.3.5. Let X be a projective variety and let Y be a locally ample subvariety of X. Suppose

f : X → Z is a morphism from X to a projective variety Z. Then if dim f (Y) < dim Y, then

f |Y : Y → Z is surjective, i.e. f (Y) = Z.

Proof. Let A be an ample divisor on Z. Then dim f (Y) = κσ(A| f (Y)) = κσ( f ∗(A)|Y) <

dim Y. Note that f ∗(A)|Y is not big. By theorem 5.1,

κσ( f ∗(A)) ≤ κσ( f ∗A|Y).

But κσ( f ∗(A)) = dim Z. This forces the equality dim Z = dim f (Y).

Remark 5.3.6. The special case of theorem 5.3.5, where Y is contracted to a point, is observed

by Ottem by an elementary argument [27, Proof of Lemma 12].
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