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ABSTRACT

Carbon fiber-reinforced composite materials have been increasingly used in aerospace

and aeronautics industries due to their superior strength over metals, low fatigue life,

high corrosion resistance, and temperature resistance. Since most damage, such as delam-

inations, manifest inside the composite material, we often cannot detect damage through

visual inspection. As a replacement for visual inspection, ultrasonic guided waves have

been widely researched to remotely detect, locate, and characterize damage in structures

due to their unique capability to travel long distances and inspect inaccessible locations for

damage. Yet the anisotropic nature of composites makes it difficult to identify the velocity

characteristics of the guided waves and utilize them for damage localization.

To address this challenge, we use sparse wavenumber analysis to determine anisotropic

multimodal and dispersive frequency-wavenumber characteristics of guided waves. We

then use these multimodal and dispersive properties to predict how guided waves prop-

agate in the anisotropic plate through sparse wavenumber synthesis. Finally, these pre-

dictions, which form a wave propagation model for the composite, are integrated with

matched field processing, a model-based localization framework, to locate damage on the

composite.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Structural health monitoring is the process of detecting, locating, and characterizing

damage in structures, such as bridges [1], aircrafts [2], and gas pipelines [3]. Damage to

these structures can occur due to earthquakes, fires, or other catastrophic events that may

lead to loss of life and property. Monitoring the health of structures is desired to reduce

maintenance costs through predictive maintenance rather than periodic maintenance [4].

Predictive maintenance avoids removing the parts where there is no defect and hence

reduces the maintenance cost. Structural health monitoring is done by collecting and

monitoring data of a structure over an extended period of time using sensors and then

analyzing the data to identify the health of the structure.

Monitoring aging structures is crucial for detecting and stopping potential problems

before they grow into catastrophic failures. On June 1983, Mianus River Bridge in United

States collapsed due to metal corrosion and deferred maintenance [5]. Aging of the bridge

was also one of the reason for its collapse. Therefore, to ensure the safety of people, it

is important to improve the maintenance of structures, which has become possible due

introduction of structural health monitoring [4].

The process of structural health monitoring consists of mounting sensors on a structure

and collecting and monitoring the data to analyze the health of the structure. Structural

health monitoring also reduces human labor as these sensors monitor the status of the

structure continuously without human intervention. This minimizes the probability of hu-

man error, which might include faults going undetected, and hence improves the reliability

of structures.

Over the last few decades, SHM has been primarily developed to detect damage on

metal structures [6]. Metal structures, such as machine parts of wind turbines, satellites,

and other components are often used beyond their lifetimes [6] and proper maintenance
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and monitoring is required for their further use. Many SHM challenges have been already

solved for metal structures and now focus is on solving the SHM challenges for composite

structures.

In the last decade, composite materials have been increasingly used in the aerospace

and aeronautics industries [7] due to their superior strength over metals [8], low fatigue

life [9], high corrosion resistance [10], and temperature resistance [10]. Composites are

anisotropic in nature. That is, the waves in composites travel with different propagating

speeds in different directions. Unlike in metals, there are not many well-defined wave

propagation models for composites. Therefore, it is difficult to accurately identify how

waves propagate in a composite material. Also, unlike metals, we can often not visually

see damage (e.g., dents) in a composite plate [11]. This leads to difficulty in detecting

damage in composites. Hence, detecting damage in composite structures is exceedingly

important. Damage refers to any undesirable change in the geometric or material prop-

erties of the structure. For composites, defects refer to fiber waviness [12], delamination

(repeated impact/ stress causes the layers to separate) [13], porosity [14], etc. These defects

can occur during manufacturing or in-service operations. As a result, non-destructive

evaluation (NDE) techniques are necessary to accurately detect and locate damage.

There are many non-destructive evaluation modalities. One of the most common is

ultrasonic testing [15]. Among the ultrasonic testing methods, this proposal focuses on

ultrasonic guided waves. Ultrasonic guided waves are waves that are guided by the

structure of the material in which they propagate. These waves are used due to their

sensitivity to material variations, ability to travel long distances in a structure, and unique

capability to travel to inaccessible locations for damage detection. Hence, guided waves

are used to remotely detect, locate, and characterize damage in physical structures [16].

Ultrasonic guided waves are waves that are guided by the structure of the material in

which they propagate. Guided waves have been successfully used to detect and locate

damage in many isotropic metals [16]. More recent work has applied guided waves to

composites as well [17]. Yet, due to the anisotropic nature of many composites, traditional

isotropic signal processing methods fail [18, 19]. This is, in part, generally due to not

knowing the velocity characteristics of guided waves. In this thesis, we will use sparse

wavenumber analysis [15] to determine the frequency-wavenumber (or phase velocity)
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characteristics of the guided waves from small sets of measurements. This approach uses

algorithms from compressive sensing to recover multimodal and dispersive properties

(wavenumbers and complex amplitudes) of guided waves.

We will use these multidimensional multimodal and dispersive properties (known as

dispersion curves) to predict how guided waves propagate in the entire anisotropic plate.

This process is known as sparse wavenumber synthesis [15]. Finally, these predictions

(i.e., a wave propagation model for the composites) are integrated with matched field

processing [20], a model-based localization framework, to locate a transmitter source (e.g.,

a sensor) or a damage. In prior work, sparse wavenumber analysis, sparse wavenumber

synthesis, and matched field processing were used to locate damage in isotropic plates

[17]. We further expand and improve this framework to locate damage in an anisotropic

plate by predicting guided wave behavior at any location in the structure.

1.2 Background
1.2.1 Composites

A composite material is made from combination of different materials with different

physical or chemical properties, which produces a material with characteristics that are far

different from each individual material. A composite material has the advantage of com-

bining a number of properties that are generally not found together in a single material.

A combination of polymer matrix and fiber reinforcement materials is referred to as fiber

reinforced plastic. Carbon fiber reinforced composites are made of layers (i.e., lamina) of

carbon fiber sheets. Each sheet has its own particular mechanical properties. If all the fibers

of a single layer are aligned in a single direction, the material will be stiff parallel to the

fibers, but flexible perpendicular to the fibers. After many of these layers are orientated,

stacked together, and joined with a resin epoxy matrix, we can design a new material with

different mechanical properties.

Composites are light in weight, have high strength (usually in a particular direction),

are corrosion resistant, and can be molded into complicated shapes compared to met-

als. Composite materials are used for many structures, including buildings, bridges, and

structures such as bathtubs and storage tanks [21]. Fiber-reinforced composite materials

typically exhibit anisotropy. That is, some properties of the composite vary depending
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upon which geometric plane they are measured along. This leads to difficulty in predicting

the velocity characteristics of waves traveling in a composite.

Most defects in composites occur under the surface of the composite and are unde-

tectable by visual inspection. Common defects in composites include delamination, fiber

waviness, and porosity. These defects are described in the following subsections.

1.2.1.1 Delamination

Delamination is produced due to repeated impact or stress that causes the layers of

the composite to separate. Delamination happens within the composite structure and is

not visible on the surface. This leads to reflections in the delaminated region and does not

allow the wave energy to leave the delaminated region, causing the waves to be attenuated

traveling in that region [22]. Our method can detect and localize delaminations.

1.2.1.2 Fiber Waviness

Fiber waviness refers to improper orientation of fibers [23]. It occurs during the manu-

facturing of composites. It can be classified into in-plane and out-of-plane fiber waviness.

In in-plane fiber waviness, fibers are misaligned in the direction of the fiber plane [24]. As

a result, guided waves will propagate less efficiently in directions of the fibers and more

efficiently in directions perpendicular to the fibers. In case of out-of-fiber waviness, fibers

are misaligned in directions perpendicular to the direction of the fiber. But this affects the

guided waves in all directions [23]. Fiber waviness leads to a change in anisotropy of the

composite and our model does not incorporate the parameters to detect them.

1.2.1.3 Porosity

Porosity refers to small pores or voids in the matrix of the composite. Voids can in-

clude air bubbles or solvents like chemicals used to clean the surface [100]. Porosity

can be caused due to incorrect parameters like temperature or pressure of resin and can

significantly affect the strength of composites [25]. Porosity leads to a change in velocity

characteristics of the waves [26]. Our model does not incorporate the parameters to detect

porosity.

These defects occur during manufacturing or in-service operations and are not visible

on the surface. As a result, non-destructive evaluation (NDE) and SHM techniques are
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necessary to accurately detect and locate these types of damage.

1.2.2 Ultrasonic Guided Waves

Guided waves are low-frequency stress waves that propagate in a structure, guided by

its boundaries. Guided waves are used in different fields. Rayleigh and Love waves are

guided waves used in geodynamics and seismology [27]. Rayleigh waves are generated

during earthquakes and are used to characterize the interior of the earth, such as to locate

oil deposits [28]. They travel along the surface of solids [29]. Love waves are surface waves

having horizontal motion that is perpendicular to the direction of wave propagation [30].

Guided waves in a plate are called Lamb waves [31]. Lamb waves are guided by the

plate in which they propagate and form interference patterns across the plate’s thickness.

These waves are commonly used in structural health monitoring due to their ability to

travel over long distances with low attenuation. Ultrasonic guided waves allow inspec-

tion of large, complex structures using limited numbers of sensors. An illustration of a

guided wave measurements in a composite is shown in Figure 1.1(a). Lamb waves are

characterized by multimodal (creating multiple wave excitations) and dispersive (distinct

frequency-dependent velocities) wave propagation [16]. These wave modes are typically

divided into two families: symmetric and antisymmetric modes, as shown in 1.1(b). Sym-

metric wave modes vibrate in the direction of plate length, whereas the antisymmetric

wave modes vibrate in direction perpendicular to the plate length. As frequency increases
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Figure 1.1. Illustration of (a) Guided wave between a pair of sensors in a composite plate.
(b) Dispersion curves obtained from solving the Rayleigh-Lamb equation. Asymmetric
wave modes are denoted by A0, A1 and A2. Symmetric wave modes are denoted by S0,
S1 and S2.
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(in Figure 1.1(b)), more wave modes are created at different cut-off frequencies, with each

wave mode traveling with different velocities. Often these velocities are also affected by

environmental factors like temperature. These environmental factors contribute to the

complexity of accurately characterizing guided waves.

1.2.2.1 Guided Wave Localization in Isotropic Structures

Traditional delay-and-sum algorithms are often used to locate damage in isotropic

plates [18]. Fromme [32] applied delay-and-sum to locate defects in a steel plate. Michaels

[33] used the delay-and-sum algorithm to locate notch and corrosion on an aluminum

plate. In delay-and-sum, the received signal is modeled as the delayed replica of the

original transmitted signal x(t).

Specifically, delay-and-sum localization models the signal at the receiver i as [33–35]

yi(t) = x
(

t− D
V

)
(1.1)

where D is the distance between transducer pairs and V is the group velocity of the

dominant wave mode. The residual signals from various transmitter-receiver sensor pairs

are shifted and averaged according to the appropriate spatial rule to construct an image of

the damage [18].

Multi-path effects due to boundaries of the medium make analyzing the wave propa-

gation difficult. Delay-and-sum accounts for these multi-path effects and provides better

resolution in image localization [35].

To implement delay-and sum, the inner product between the expected wave responses

and measured wave responses is computed. Then, their sum is calculated across each

receiver. Enveloped signal responses are typically used to avoid phase error. Enveloped

responses refers to the absolute value of the analytic representation of the responses [35].

The traditional delay-and-sum requires sending an excitation signal to each sensor. The

multi-delay-and-sum imaging algorithm [36] was proposed for damage detection in thin

plate-like structures. Compared to the traditional delay-and-sum, the multi-delay-and-

sum algorithm sends only one excitation signal for each detection.

Another method introduced to locate damage on isotropic structures is time reversal.

Wang [37] proposed a synthetic time reversal method and successfully demonstrated de-

tection of mass bonded on the plate.
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1.2.2.2 Guided Wave Localization in Anisotropic Structures

Delay-and-sum imaging algorithms [34] have also been used for detecting damage in

composites and has been effective for impact damage detection in composites [38]. Qiu

[39] proposed a 2-step algorithm for damage detection and localization. In the first step,

the damage area is identified by a damage index (DI) imaging algorithm. In step 2, the

delay-and-sum algorithm is performed only in the area where damage is identified. The

authors of [39] have shown successful detection of multiple damages in a composite wing

panel.

The damage index refers to the value of the envelope of the baseline-subtracted signal

at a time tij for all transducer paths ij, where i and j refer to a transmitter and receiver,

respectively. The damage detection depends on the first mode reflected wave from the

damage. The DI measurements are made focused on the first reflections from the damage

and to ignore secondary reflections from the boundaries [38].

Time reversal methods are also used to detect damage in composites [40]. In [40], time

reversal was applied to detect delamination in composite plate. For a relative plate of size

60.96 by 60.96 cm, 16 sensors were used, which amounts to 240 different measurements.

This processing is very time consuming and computationally expensive [38].

To reduce the hardware requirements of the time reversal method, a modified time

reversal method is introduced in [41]. This method successfully detected the presence and

severity of impact damage in a composite plate.

1.2.3 Compressive Sensing and Sparsity

Compressive sensing [42, 43] is a signal processing framework that reconstructs a signal

by using the fact that many signals are sparse, or mostly zeros, in nature. If a signal is

sparse, in some basis, compressive sensing allows us to reconstruct or recover a signal

from fewer measurements than traditionally possible.

In some applications, high sampling rate leads to large number of samples. As a result,

data needs to be compressed for storage. The main idea behind compressive sensing is

to directly sample a signal in a compressed form (low sampling rate), rather than first

sampling using the Nyquist rate and then compressing it [44].

The principles of compressive sensing, such as sparsity, convex optimization, etc., are
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used in channel coding to design fast error correcting codes [42], to protect from errors

during transmission [45]. The requirements of compressive sensing are sparsity, which

requires the signal to be sparse in some basis, and incoherence, which is applied through

the isometric property [43].

Sparse recovery methods assume the relationship between the measured data Y and its

sparse representation V are denoted by

Y = ΦV , (1.2)

where Y is an M × Q matrix of measured data and V is an N × Q matrix of the sparse

representation. In most cases, the linear operator Φ is a matrix.

When the matrix Φ is underdetermined, then there exists an infinite number of V

matrices that satisfy the relationship in (1.2). Yet if Y is sparse and Φ satisfies certain

properties such as the restricted isometry property [46], then there exists algorithms that

can uniquely recover V from the measured data Y.

1.2.4 Sparse Wavenumber Analysis

A sparse recovery technique used to recover the frequency-wavenumber representa-

tion, or dispersion curves of the medium, from a set of measured data Y is called sparse

wavenumber analysis [17]. We will be using a sparse wavenumber analysis to extract

sparse representations of an anisotropic medium. Sparse wavenumber analysis recovers

the sparse representation of the medium by considering the frequency-wavenumber rep-

resentation of Lamb waves to be sparse.

In prior work, sparse wavenumber analysis has been used to accurately locate damage

in an isotropic plate [20]. It has also been used to detect damage in pipelines under

changing environmental and operational conditions [47].

For an isotropic plate, a Lamb wave between a transmitter and receiver at distance r

and at angular frequency ω is modeled by

Y(ω, r) = ∑
n

√
1

kn(ω)r
Gn(ω)e−jkn(ω)r, (1.3)

For mode n, kn(ω) signifies the frequency-dependent wavenumber and is represented

by a set of dispersion curves. These dispersion curves are shown in Figure 1.1 (b). The
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dispersion curves of a medium describe how the wavenumber of a mode varies with

frequency. The function Gn(ω) represents how the complex amplitude of the mode varies

with frequency.

This model can be expressed as [14]

Y = ΦV . (1.4)

The M × Q matrix Y represents frequency-domain guided wave data, where Q is the

number of frequencies and M is the number of measurements each corresponding to dis-

tance r. The N × Q matrix V represents wavenumber data where N is the number of

wavenumbers. The M × N matrix Φ represents the relationship between Y and V and is

expressed by

Φ = [(knrm)
−1/2e−jknrm ]mn. (1.5)

The matrix Φ describes how waves propagate within the medium.

In past work, a convex optimization technique known as basis pursuit denoising [48]

was used to recover sparse representations of the medium from the measurements. The

challenges faced in using basis pursuit were its slow implementation and dependency

on a regularization parameter τ, whose value depends on the scenario and is generally

unknown.

We will recover the sparse representation of an anisotropic system by using orthogonal

matching pursuit [49]. In contrast with basis pursuit, orthogonal matching pursuit does

not depend on regularization parameter τ. Also, implementation of orthogonal matching

pursuit is faster than basis pursuit. Orthogonal matching pursuit will be discussed in

detail in Chapter 2.

By using orthogonal matching pursuit, we can obtain the dispersion curve V of the

medium from Y.

1.2.5 Sparse Wavenumber Synthesis

Having obtained the frequency-wavenumber representation V of the medium, we can

now find the Lamb wave response X (r, ω) between any two points in the medium. This is

called sparse wavenumber synthesis. This is done by solving the forward equation (1.4).
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Let the M̂ new distances be represented by r̂1, r̂2,. . . , r̂M̂. Using the dispersion curves V

obtained from sparse wavenumber analysis, we want to estimate X̂. This is implemented

by solving

X̂ = Φ̂V . (1.6)

The matrix Φ̂ has the same form as Φ used in (1.4), but with the new distances r̂1, r̂2,. . . ,

r̂M̂. The matrix X̂ represents the predicted measurements in the medium for each measure-

ment.

1.2.6 Matched Field Processing

Matched field processing (MFP) is a model-based framework that is used to locate a

target/scatterer/defect in a complex propagating environment. It is also referred to as

a generalized beamforming framework [50], as the sensors need not be arranged in any

particular order. MFP has been studied in non-destructive testing [20], seismology [51],

and underwater acoustics [52]. It is also used in underwater acoustics to determine the

unknown range and depth in an ocean environment [52].

We will use data-driven matched field processing [14], which is a framework that

builds a model directly from measured data and then uses this model to locate defects.

It is done by integrating matched field processing with a data-driven model obtained from

sparse wavenumber analysis and sparse wavenumber synthesis.

Matched field processing compares measured baseline-subtracted data with the model

data to localize a target. Measured baseline-subtracted data is obtained by subtracting the

measured data without damage from data with damage. So, measured baseline-subtracted

data refers to data from the transmitting sensor to the scatterer and then to the receiving

sensor. Model data represents the estimated responses from the transmitter to the scatterer

and then to the receiving sensor for M measurements. These M measurements correspond

to a possible scatterer at different locations on the grid.

We integrate sparse wavenumber analysis with a coherent matched field processor and

a sensor domain incoherent matched field processor. In Chapter 3, we apply coherent and

sensor domain incoherent matched field processors to locate a scatterer on the composite

plate.
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1.3 Challenges
Composites are anisotropic in nature. That is, the waves in composites travel with

different propagating speeds in different directions. Unlike in metals, there are not many

well-defined wave propagation models for composites. Guided waves have been success-

fully used to detect and locate damage in many isotropic metals [16]. However, due to the

anisotropic nature of many composites, traditional isotropic signal processing methods fail

[18, 19]. This is partially due to not knowing the velocity characteristics of guided waves.

1.3.1 Solution

In this dissertation, we will use sparse wavenumber analysis [17] to determine the

frequency-wavenumber (or phase velocity) characteristics of the guided waves in anisotropic

composites from small sets of measurements.

There is no well-known closed-form solutions for how anisotropic waves propagate

from a single point. This is because the solution must model an infinite number of possible

wave velocities as a function of frequency and direction. Therefore, we create and use

an approximate model for anisotropy in this thesis. This approach uses algorithms from

compressive sensing to recover multimodal and dispersive properties (wavenumbers and

complex amplitudes) of guided waves.

We use multidimensional multimodal and dispersive properties (which we will also

refer to as dispersion curves) to predict how guided waves propagate in anisotropic plates

through sparse wavenumber synthesis [17].

Finally, these predictions (i.e., a wave propagation model for the composites) are in-

tegrated with matched field processing [50], a model-based localization framework, to

locate a transmitter source (e.g., a sensor) or a damage. We further expand and improve

matched field processing to locate damage in an anisotropic plate by predicting guided

wave behavior at any location in the structure.

1.4 Conclusion and Outline
In the following chapters, we recover the dispersion curves of a several composite

plates and use them to locate damage. In Chapter 2, we derive our sparse wavenumber

analysis and sparse wavenumber synthesis for anisotropic propagation. In Chapter 3, we
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integrate the data-driven matched field processing with the model obtained from sparse

wavenumber analysis and sparse wavenumber synthesis. In Chapter 4, we validate our

model with different composite plates. In Chapter 5, we include future work that can be

done on our model.



CHAPTER 2

SPARSE WAVENUMBER ANALYSIS AND

SYNTHESIS IN COMPOSITES

2.1 Motivation
Detecting and locating damage in a structure relies on the ability to characterize guided

wave behavior accurately. Guided waves exhibit multimodal and dispersive behavior

while propagating in a structure. That is, the waves consist of different wave modes,

with each mode travelling with a frequency-dependent velocity. The velocity of the waves

is also affected by environmental variations. Moreover, the waves may also experience

reflections from the boundaries of the structure. All this leads to difficulty in characterizing

and analyzing guided waves and hence, makes it difficult to detect damage in a structure.

In prior work, sparse wavenumber analysis [17], a signal processing technique, has

been introduced to recover the multimodal and dispersive properties of guided waves.

Sparse wavenumber analysis is based on compressive sensing [42, 43]. Compressive sens-

ing recovers sparse signals (a signal containing mostly zeros) efficiently through the use

of sparse recovery algorithms. We use compressive sensing combined with the fact that

Lamb waves are sparse in the frequency-wavenumber domain to recover the frequency-

wavenumber representation of Lamb waves accurately with a fewer number of sensors

than the traditional methods, such as two-dimensional discrete Fourier Transform (2D-

DFT) [53], various time-domain matching pursuit [54] and time-frequency analysis meth-

ods [55, 56]. The time-domain matching pursuit and time-frequency analysis methods

require only one set of measurements. However, these methods cannot obtain the useful

phase information of the waves as sparse wavenumber analysis does.

In prior work, sparse wavenumber analysis has been applied to isotropic media. In

Section 2.2, we create a sparse wavenumber analysis technique for an anisotropic medium.

We review orthogonal matching pursuit, which we use to solve the Lamb wave inverse
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problem. In Section 2.3, we show how sparse wavenumber synthesis can be used to

successfully predict the wave response between any two points on the plate. In Section 2.4,

we discuss our experimental methodology, where we have used 11 ultrasonic transducers

arranged in a random order across a unidirectional composite plate. In Section 2.5, we

experimentally show that sparse wavenumber analysis accurately recovers the frequency-

wavenumber representation of Lamb waves and predicts the corresponding wave fields.

We show that these predicted responses and the measured responses can achieve cor-

relation coefficients greater than 0.60.

2.2 Sparse Wavenumber Analysis
Anisotropic materials, such as fiber reinforced composites, are difficult to analyze be-

cause Lamb waves in anisotropic media travel with different velocities in different direc-

tions. The typical signal representation between any two sensors in an isotropic medium

is given by

Y(ω, r) = ∑
n

√
1

kn(ω)r
Gn(ω)e−jkn(ω)r, (2.1)

where r is the distance between the two sensors.

The expression in (2.1) states that the wave travels in all directions as a sum of wave

modes with frequency-dependent wavenumber kn(ω) and a single distance r. The frequency-

dependent wavenumber kn(ω) is inversely proportional to phase velocity and therefore

describes the wave speed in all directions across the medium. The complex amplitude of

the mode n is represented by Gn(ω).

Yet, due to direction-dependent velocities in composites, the isotropic signal repre-

sentation is not valid. In fact, while there are analytical solutions for how anisotropic

waves propagate as a plane wave [57], there is no well-known closed-form solutions for

how anisotropic waves propagate from a single point. This is because the solution must

model an infinite number of possible wave velocities as a function of frequency and direc-

tion. Therefore, we create and use an approximate model for anisotrophy in this thesis.

Specifically, sparse wavenumber analysis is performed by characterizing the propagation

direction of waves based on horizontal and vertical wavenumber. We model these waves

according to
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Y(ω, x, y) = ∑
n

Gn(ω)e−j[(kx
n(ω)x)P0+(ky

n(ω)y)P0]
1

P0 , (2.2)

Gn(ω) represents how the complex amplitude of the mode n varies with frequency. Dis-

tance of wave propagation in the horizontal direction and vertical direction is represented

by x and y, respectively. The variables kx
n and ky

n denote the wavenumbers of the waves in

the horizontal and vertical direction, respectively, for a mode n.

While the model only requires the knowledge of two wavenumber functions in orthog-

onal directions, the function actually defines all velocities between those directions. The

velocities are defined by the P0 variable. P0 is a shape factor for a mode n. It describes

the shape of the wave front (the shape of velocity surface). P0 = 2 describes an elliptical

phase velocity of guided waves with reference to the direction of propagation. This can be

shown mathematically. The wavenumber kx
n(ω) and ky

n(ω) of each mode n in (2.2) can be

defined as a function of propagation direction θ and distance x = cos θ and y = sin θ. We

get

k′n(ω, θ) = [(kx
n(ω) cos θ)P0 + (ky

n(ω) sin θ)P0]
1

P0 . (2.3)

The wave propagation model defined in (2.2) assumes that the waves are travelling in an

outward direction with a frequency-dependent phase velocity [58], where phase velocity

vn(ω, θ) = ω/k′n(ω, θ) is represented by

vn(ω, θ) = ω[(kx
n(ω) cos θ)P0 + (ky

n(ω) sin θ)P0]
−1
P0 ]. (2.4)

For P0 = 2, (2.4) gives the equation for an ellipse, where ω[kx
n(ω)]−1 and ω[ky

n(ω)]−1 are

the magnitudes in horizontal and vertical direction, respectively.

By changing P0, the shape of the phase velocity surface changes. As P0 decreases, the

corners of the velocity surface compress inwards and as P0 increases, the corners expand

outwards [20], as seen in Figure 2.1.

Sparse wavenumber analysis assumes the relationship between the measured data Y

and its sparse representation V is [20]

Y = ΦV , (2.5)

The matrix (M × Q) Y represents frequency-domain guided wave data, where Q is

the number of frequencies and M is the number of measurements, with corresponding
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Figure 2.1. Shape of phase velocity surfaces for two different values of P0 (shape factor)
and R (where R = kx

n(ω)

ky
n(ω)

).

distance in horizontal direction x and vertical direction y. The N × Q matrix V represents

wavenumber data where N is the number of wavenumbers. In an anisotropic medium,

the matrix Φ of size M × N represents the relationship between Y and V and is expressed

by

Φ = e−j[(kx
n(ω)x)P0+(ky

n(ω)y)P0]
1

P0 . (2.6)

The matrix Φ describes how waves propagate within the medium. In the next section, we

describe how to recover the sparse matrix V from our data Y.

2.2.1 Sparse Recovery Algorithm: Orthogonal Matching Pursuit

To recover the sparse representation of a signal, we will be using orthogonal matching

pursuit. In past work, a convex optimization technique known as basis pursuit denoising

[48] was used to recover sparse representations of the medium from the measurements.

The challenges faced in using basis pursuit were its slow implementation and dependency

on a regularization parameter τ, whose value depends on the scenario and is generally

unknown.

The sparse recovery algorithm that we will use to recover the sparse representation

of an anisotropic system is orthogonal matching pursuit [49]. In contrast with basis pur-

suit, orthogonal matching pursuit does not depend on regularization parameter τ. Also,

implementation of orthogonal matching pursuit is faster than basis pursuit.

Orthogonal matching pursuit is a greedy, iterative algorithm and is implemented by

performing the following steps.



17

2.2.1.1 Step I

The inner product of ΦHyq finds the best column/atom of matrix Φ that matches the

measured data yq, where 1 ≤ q ≤ Q frequencies.

2.2.1.2 Step II

B← B ∪ arg max
i
|ΦH

i yq| (2.7)

The set B of indices is obtained by finding the index of Φ belonging to the maximum value

of inner product of ΦHyq. That is, B represents a set of indics corresponding to the atoms

of Φ that we use in our algorithm.

2.2.1.3 Step III

Matrix ΦB consists of columns of Φ corresponding to indices defined in B. This best

matching set of columns/atoms is fit to yq in least square sense and is subtracted from yq

such that.

v̂q ← arg min
vq

∥∥∥yq −ΦBvq

∥∥∥2

2
(2.8)

yq ← yq −ΦB v̂q (2.9)

2.2.1.4 Step IV

The above steps are repeated until the desired sparsity (i.e., number of non-zeros val-

ues) is achieved.

2.3 Sparse Wavenumber Synthesis
Having obtained the frequency-wavenumber representation V (also known as the dis-

persion curves) of the medium, we can now find the Lamb wave response X(x, y, ω) be-

tween any two points in the medium. This process is called sparse wavenumber synthesis.

This is done by solving the forward equation (2.5).

Using the dispersion curve V obtained from sparse wavenumber analysis, we want to

estimate X̂. This is implemented by solving

X̂ = Φ̂V. (2.10)
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Φ̂ has the same form as Φ used in (2.6) but with new distances in horizontal directions x̂1,

x̂2,...,x̂M and vertical directions ŷ1, ŷ2,...,ŷM.

2.4 Experimental Methodologies
We test our sparse wavenumber analysis and sparse wavenumber synthesis on a 1.20

m × 1.17 m × 0.002 m carbon-fiber unidirectional composite plate. A unidirectional

composite plate has all of the fibers aligned in one direction. To transmit and receive

Lamb wave signals, we attached eleven PZT transducers randomly across the top surface

of the plate. Sensors are placed randomly on the plate so as to have minimum correlation

between measurements (a requirement of compressive sensing) and also so that no bias

affects the result. The total number of unique measurements obtained is 55, according to
N(N−1)

2 , where N is the number of sensors on the plate.

2.4.1 Data Collection

We collect baseline calibration data without damage on the plate by transmitting and

measuring a 5 µs linear chirp from 50 kHz to 600 kHz between each pair of transducers.

This will result in 55 unique measurements across each pair of sensors. This baseline data

is used to compare with data obtained from the damaged plate.

In Figure 2.2, each square indicates a sensor used to transmit and receive signals and

the bold circle indicates the location of the scatterer. Then, we collect the data again by

placing a scatterer, simulating damage, on the plate. In our experiment, we place a metal

cuboid of size approximately 3.302 cm × 2.794 cm × 1.651 cm on the plate to act as a

scatterer and collected an additional 55 measurements in the same manner. The scatterer

is shown in Figure 2.3. Baseline subtraction is accomplished by subtracting the measured

data without the scatterer from measured data with the scatterer. The remaining data

should consist of only the scattered signal.

2.5 Experimental Results
We tested our methodology with experimental data collected using 11 sensors. In this

section, we demonstrated the results from three different tests.

(1) We recover the dispersion curve in the frequency-wavenumber domain using sparse

wavenumber analysis.
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Figure 2.2. Illustration of unidirectional carbon fiber composite plate used for our experi-
mental setup. Each square represents a transducer and bold circle represents the scatterer
(mass).

Figure 2.3. The scatterer used in the experiments.

(2) We use the dispersion curves obtained to predict the Lamb wave response between

two points on the plate using sparse wavenumber synthesis.

(3) We use dispersion curves to predict the entire wavefield across the plate.

2.5.1 Sparse Wavenumber Analysis

The frequency-wavenumber representation of Lamb waves (dispersion curves) for a

single mode is shown in Figure 2.4. We discretized the horizontal wavenumber space

uniformly across 801 samples and vertical wavenumber space uniformly across 501 sam-

ples. This figure illustrates how the vertical wavenumber ky and horizontal wavenumber

kx, varies as a function of frequency. The horizontal wavenumber, kx, represents waves
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Figure 2.4. Dispersion curve of a unidirectional composite plate recovered using sparse
wavenumber analysis.

traveling in horizontal direction, that is, in the direction perpendicular to the fibers. The

vertical wavenumber kx represents waves traveling in vertical direction, that is, in the

direction parallel to the fibers.

Each non-zero component in Figure 2.4 gives the value of horizontal and vertical wavenum-

ber. The corresponding value at each location gives the amplitude. In the frequency range

of 45 kHz to 50 kHz, the amplitude of the waves is maximum. For 50 kHz frequency, the

horizontal and vertical wave numbers are 680 and 417, respectively. As phase velocity

is inversely proportional to the wave numbers, higher wavenumber denotes slow phase

velocity. Hence, the dispersion curve shows that waves are moving faster in the vertical

direction and slower in horizontal direction.

2.5.2 Sparse Wavenumber Synthesis

Figure 2.5(a) and Figure 2.5(b) show measurements taken from the composite plate at

two different points and compare them with the reconstructed measurements obtained

from sparse wavenumber synthesis. Specifically, sparse wavenumber synthesis is used to

synthesize the signal response between sensor pair (2, 8) and (3, 11). Figure 2.2 shows

the locations and labels of these sensors. Figure 2.5(a) and Figure 2.5(b) show that our

reconstructed signal matches the measured signal response, but not completely. There is

partial overlap between the measured signal and reconstructed signal. The synthesized
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Figure 2.5. The blue signal shows the measured signal and the red one shows the recon-
structed signal using sparse wavenumber synthesis. (a) second sensor as transmitter and
eighth sensor as receiver, (b) third sensor as transmitter and eleventh sensor as receiver
(sensor numbers are specified according Figure 2.2).

measurement between sensor 2 and sensor 8 has a correlation coefficient of around 0.20

with measured signal path, whereas the synthesized measurement between sensor 3 and

sensor 11 has a correlation coefficient of around 0.26 with measured signal. This demon-

strates that our model can be further improved. This partial overlap allows us to locate the

scatterer properly.

Figure 2.5(a) shows an effective S0 mode (at time around 300 ms) and an effective A0

mode (at time around 800 ms). The reconstructed wave appears to fit the A0 mode but

fails to reconstruct the S0 mode properly. This is likely due to the A0 mode being much
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stronger in the data. Figure 2.5(b) shows the effective S0 mode (at time around 250 ms)

and effective A0 mode (at time around 600 ms). The reconstructed wave again appears to

fit the A0 mode but fails to reconstruct the S0 mode. In Figure 2.5, there is a slight shift

between the reconstructed and measured signal. One of the reasons may be due to error

in our model.

2.5.3 Wavefields

The dispersion curves obtained using sparse wavenumber analysis are used to predict

the full wavefields. Figure 2.6 shows the wavefield at 4 different time intervals, starting

from (a) to (d). We observe from Figure 2.6 that the outermost wave propagation is the S0

mode, followed by the A0 mode. Also, the shape of wavefield is mostly elliptical, which

corresponds to the the shape that we obtained using P0 value of 1.8627 in Section 2.2. We

can also see that the major axis of the ellipse is along the plate length, and the minor axis

is along the plate width.

We can observe from the wave fields that waves are propagating faster in the vertical

direction, that is, in the direction along the fibers. Hence, our conclusion in Section 2.5.1 is

validated by the wave fields obtained.

2.6 Conclusion
In this chapter, we have taken advantage of sparse representations to predict the be-

havior of guided waves in a complex environment. We have used sparse wavenumber

analysis to recover dispersion curve of waves in a composite plate and these dispersion

curves closely represent theoretical dispersion curves. Then, we estimated the wave be-

havior in the entire plate medium by using sparse wavenumber synthesis.

We tested our methodology on a unidirectional composite plate with 11 sensors placed

in random locations. We accurately recovered the dispersion curve (frequency-wavenumber

representation) using sparse wavenumber analysis. We then use this representation to

predict Lamb wave response between any two points on the plate.
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Figure 2.6. Wavefields at 4 instances (a) Wavefield at 200 samples, (b) wavefield at 300
samples, (c) wavefield at 350 samples, and (d) wavefield at 400 samples.



CHAPTER 3

DATA-DRIVEN MATCHED FIELD

PROCESSING

3.1 Motivation
Matched field processing is a generalized model-based framework that is used to locate

damage in a complex propagating environment. It has been used in seismology [51], non-

destructive evaluation [20], and underwater acoustics [52]. Due to the multimodal and

dispersive characteristics of guided waves, matched field processing is an attractive tool

to locate damage with guided wave structural health monitoring.

Data-driven matched field processing is a framework that builds multimodal propaga-

tion models of the propagating environment from the measured data and then uses this

model to locate damage in a structure. In prior work [50], data-driven matched field pro-

cessing has been used to detect damage on an aluminum plate. We expand this approach

to locate damage on composite structures by taking into account the anisotropic nature

of composites. We build a model directly from measured data using sparse wavenumber

analysis and sparse wavenumber synthesis. This model is referred to as a sparsity-based

data-driven model [50], as it is built from sparse representations of measured data (which

is recovered using compressive sensing). Finally, this data-driven model is integrated with

matched field processing to locate damage on a structure.

Our method allows us to use all wave modes and dispersion characteristics of guided

waves to detect damage on the composite plate with high accuracy and resolution. We

perform sparse wavenumber analysis using orthogonal matching pursuit [49], which is a

greedy iterative algorithm.

In this chapter, we construct a data-driven model using sparse wavenumber analysis

and sparse wavenumber synthesis and integrate it with matched field processing. We

integrate the data-driven model using a coherent matched field processor [50] and sensor
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domain incoherent matched field processor. We demonstrate the validity of our method-

ology by localizing a scatterer on a unidirectional carbon-fiber and a glass-fiber composite

plate. We compare our data-driven matched field processing with a delay-and-sum-based

approach [35], a commonly used technique in structural health monitoring.

3.2 Data Collection
To implement data-driven matched field processing, we take into account three data

sets: measured data, baseline-subtracted data, and model data. The measured data repre-

sents the wave measurements between each pair of sensors. The baseline-subtracted data

represents the wave measurements between each pair of sensors through the scatterer. The

model data represents the synthesized measurements obtained using sparse wavenumber

synthesis, which predicts what the data will look like if the scatterer is placed at a given

location.

3.2.1 Measured Data

The measured data is represented by a matrix Y of size M×Q , where M is the number

of measurements and Q is the number of discrete frequencies ω1, ω2, ..., ωQ. Each column

of Y represented by

yq = [Y(ωq, 1), . . . , Y(ωq, M)]T + nq, (3.1)

where yq is M× 1 vector and nq is the error due to noise at the ωq frequency. Measured

data represents the signal transmitted and received between each sensor pair with known

measurements m = 1, . . . , M.

3.2.2 Baseline-Subtracted Data

The baseline-subtracted data is represented by a matrix X of size M × Q, where M is

the number of measurements and Q is the number of discrete frequencies ω1, ω2, ..., ωQ.

Each column of X represented by

xq = [X(ωq, 1), . . . , X(ωq, M]T + nq, (3.2)

where xq is a M × 1 vector and nq is the error due to noise at the ωq frequency. The

baseline-subtracted data represents the signal (for 1 ≤ m ≤ M) from the transmitter to the

scatterer and then from the scatterer to the receiving sensor. This is obtained by removing
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the baseline information, that is, by taking the wave measurements without the scatterer

and subtracting them from the wave measurements with the scatterer on the plate.

3.2.3 Model Data

The model data is represented by X̂ of size M × Q, where M is the number of mea-

surements and Q is the number of discrete frequencies ω1, ω2, . . . , ωQ. Each column of X̂

represented by

x̂q = [X̂(ωq, 1, r), . . . , X̂(ωq, M, r)]T, (3.3)

where x̂q is a M × 1 vector at ωq frequency. X̂ represents the estimated responses of X.

The data for measurement m represents guided waves travelling from the transmitting

sensor to the scatterer (at coordinate r = [xs, ys]) and then to the receiving sensor, with

the scatterer placed at a given location. The baseline subtraction process is illustrated in

Figure 3.1 for the isotropic scenario and in Figure 3.2 for the anisotropic scenario.

For the isotropic case, the baseline subtracted signal (Figure 3.1) is modelled by

X̂(ω, m, r) = ∑
n

√
1

kn(ω)r
Gn(ω)e−jkn(ω)(r1,m+r2,m). (3.4)

In contrast with (2.1), this model incorporates both the travel distance from the trans-

mitter to the damage r1,m and the travel distance from the damage to the receiver r2,m.

Our proposed model considers the wave path for each mode from the transmitter to the

scatterer as a separate linear system than the wave path from the scatterer to the receiver.

Therefore, the total wave path length is the combined path length between the transmitter

and the scatterer and the scatterer to the receiver. Equivalently, the corresponding impulse

response for each mode is given by the convolution of the impulse response between

the transmitter and the scatterer with the impulse response between the damage and

the receiver for each mode. Therefore, using the property that convolution in time is

multiplication in frequency, the baseline signal is modelled as (3.4).

For the anisotropic case, the baseline subtracted signal (Figure 3.2) is modelled by

X̂(ω, m) = ∑
n

Gn(ω)e−j[(kx
n(ω)x1,m)

P0+(ky
n(ω)y1,m)

P0]
1

P0 +[(kx
n(ω)x2,m)

P0+(ky
n(ω)y2,m)

P0]
1

P0 . (3.5)

In contrast with (2.2), this model incorporates both the travel distance from the transmitter

to the damage in the horizontal and vertical directions x1,m and y1,m, respectively, and the
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Figure 3.1. Illustration of baseline subtracted data for an isotropic medium

travel distance from the damage to the receiver in the horizontal and vertical directions

x2,m and y2,m, respectively. As the waves in composite travel in different velocities, at an

instance of time, distance travelled in the horizontal direction is different from distance

travelled in the vertical direction. Therefore, we incorporate horizontal and vertical dis-

tances in our model.

Our model proposes that total wave path is the convolution of two systems for each

mode, with one system describing wave path from transmitter to scatterer and the other

system describing wave path from scatterer to receiver. Since the wave path between

two points in an anisotropic medium is modelled by (2.2), our output baseline-subtracted

signal is modelled by (3.5).

3.3 Data-Driven Matched Field Processing
In this section, we implement data-driven matched field processing by integrating the

data-driven model obtained from sparse wavenumber analysis and sparse wavenumber

synthesis with matched field processing. We assume our sensors are placed in a random

order on the plate.

Matched field processing compares measured baseline-subtracted data with the model

data (shown in Figure 3.3) to localize a target. Measured baseline-subtracted data refers to

data from the transmitting sensor to the scatterer and then to the receiving sensor. Model

data represents the estimated responses from the transmitter to the scatterer and then to the
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Figure 3.2. Illustration of baseline subtracted data for an anisotropic medium

Figure 3.3. Illustration of matched field processing. Green circles represent possible
scatterer at different locations on the grid. Blue dotted lines represent the horizontal
and vertical distances from transmitter to possible scatterer and from possible scatterer
to receiver.

receiving sensor for M measurements. These M measurements correspond to a possible

scatterer at one location on the grid. Then, we model these M measurements for each

possible scatterer location.

To obtain the data-driven model, we use sparse wavenumber analysis and sparse wave

number synthesis. Sparse wavenumber analysis uses algorithm from compressive sensing

[44] to recover sparse representation of guided waves in frequency-wavenumber domain
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V. Figure 2.4 illustrates the dispersion curves which are obtained using sparse wavenum-

ber analysis. Then, sparse wavenumber synthesis uses these recovered dispersion curves

V to predict how waves propagate between points on the plate.

3.3.1 The Data-Driven model

Sparse wavenumber analysis recovers the frequency-wavenumber representation of

the medium (or dispersion curves) by orthogonal matching pursuit, a greedy iterative

algorithm. Then, using these recovered frequency-wavenumber representations, we create

data-driven model data of the medium using sparse wavenumber synthesis by solving the

forward equation

x̂q = Φ̂vq, (3.6)

x̂q represents the predicted wave response between any two points in the medium. The

matrix Φ̂ used to create the model is defined as

Φ̂ = [e−j[[(kx
n(ω)x1,m)

P0+(ky
n(ω)y1,m)

P0]
1

P0 +[(kx
n(ω)x2,m)

P0+(ky
n(ω)y2,m)

P0]
1

P0 ]mn. (3.7)

Here, x1,m and x2,m represent the horizontal distance between the scatterer and the trans-

mitter and the horizontal distance between the scatterer and the receiver, respectively.

In the vertical direction, distance between the scatterer and the transmitter and distance

between the scatterer and the receiver is represented by y1,m and y2,m, respectively.

3.3.2 Coherent Matched Field Processor

A coherent matched field processor [59] is a widely used matched field processor. The

coherent matched field processor is represented by the inner product between baseline-

subtracted data X and model data X̂. In this section, we integrate our data-driven model

obtained in (3.6) with the coherent matched field processor.

The output of a matched field processor is an ambiguity surface that represents dis-

cretized locations on the plate with their source localization value. The larger the source

localization value, the more closely matched is the data and model.

Estimated location r̂ of a scatterer is defined as

r̂ = arg max
r

b(r),
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where r is a vector of coordinates. The ambiguity function of a coherent matched field

processor can be obtained by solving the following least-square optimization [20, 59]

r̂ = arg min
r,β

M

∑
m=1

Q

∑
q=1
|X(ωq, m)− βX̂(ωq, m, r)|2. (3.8)

Here, X(ωq, m) represents the measured baseline-subtracted data (data with scatterer mi-

nus the data without scatterer), and X̂(ωq, m, r) represents the model data (obtained from

sparse wavenumber synthesis) for sensor m at frequency q. The variable β is the complex-

valued, unknown amplitude of measured signal.

By solving for β, the coherent matched field processor can be expressed as a maximiza-

tion problem [20], and its ambiguity function is expressed as

b(r) =
|∑M

m=1 ∑Q
q=1 X(ωq, m)X̂(ωq, m, r)|2

∑M
m=1 ∑Q

q=1 |X̂(ωq, m, r)|2
. (3.9)

The coherent matched field processor uses all of the phase information of the signals for

scatterer localization. This creates noisy subbands but gives high resolution.

3.3.3 Sensor Domain Incoherent Matched Field Processor

In this section, we integrate our data driven model in (3.4) with a sensor domain

incoherent matched field processor to localize a scatterer. As defined before, the estimated

location r̂ of a scatterer is given by

r̂ = arg max
r

b(r).

The ambiguity function of a sensor domain incoherent matched field processor can be

obtained by solving the following optimization problem [20, 59].

r̂ = arg min
r,β1,...,βM

M

∑
m=1

Q

∑
q=1
|X(ωq, m)− βmX̂(ωq, m, r)|2. (3.10)

Here, X(ωq, m) represents the measured baseline-subtracted data given in (3.2), and X̂(ωq, m, r)

represents the model data given in (3.3) for sensor m at frequency q. Instead of using a

single constant β, as used in a coherent matched field processor, we use a different value

at each measurement, given by βm.

By solving for βm, a sensor domain incoherent matched field processor can be ex-

pressed as a maximization problem [20], and its ambiguity function is expressed as
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b(r) =
M

∑
m=1

|∑Q
q=1 X(ωq, m)X̂(ωq, m, r)|2

∑Q
q=1 |X̂(ωq, m, r)|2

. (3.11)

The sensor domain incoherent matched field processor takes the phase difference between

the frequencies but ignores the phase difference between sensor pairs to localize a scatterer.

This creates robustness to differences between sensor impulse responses but reduces the

overall resolution.

3.4 Results
The measured baseline-subtracted data and model data is passed through a matched

field processor to localize the scatterer. We use the same experimental setup described in

Chapter 2 and shown in Figure 2.3. The result, or image, from the matched field processor

is known as an ambiguity surface.

3.4.1 Carbon Fiber Composite Plate

For a unidirectional carbon fiber composite plate, the results are as follows. Figure 3.4

illustrates the magnitude of two ambiguity surfaces for two different pairs of sensors.

Large values in the ambiguity surface indicate areas of likely damage.

Figure 3.4(a) illustrates the result for sensors 2 and 8 and Figure 3.4(b) illustrates the

result for sensors 3 and 11, as indicated in Figure 2.2. The bold circle in Figures 3.4 and

3.5 indicates the scatterer. The final ambiguity surfaces are computed using (3.8) and (3.9).

Figure 3.5 (a) illustrates the result with the coherent matched field processor in (3.8). Figure

3.5 (b) illustrates the result with the sensor domain incoherent matched field processor in

(3.9).

The coherent matched field processor takes into account all of the phase information

to localize a scatterer. As a result, this leads to destructive and constructive interference

patterns, as shown in Figure 3.5 (a). This makes the coherent matched field processor

sensitive to errors. Yet the resolution of the coherent matched field processor is high when

compared to the sensor domain incoherent matched field processor, as seen in Figure 3.5.

Figure 3.5 (b) shows a matched field processor in which phase difference between each

sensor pair is not taken into consideration but phase difference across frequencies is used.

As a result, the sensor domain incoherent matched field processor has high robustness to
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Figure 3.4. Damage detection by (a) sensor pair 2 and 8 and (b) sensor pair 3 and 11
(according to sensor orientation given in Figure 2.2).

errors between sensors. We compare our data-driven approach with a commonly used

method for damage detection called delay-and-sum. This technique uses a single mode

model with constant and equal phase and group velocities. The delay-and-sum does not

successfully localize the scatterer on a carbon-fiber composite plate as shown in Figure 3.6.

3.4.2 Glass-Fiber Composite Plate

We tested our algorithm by successfully localizing damage on a 0.635 m × 0.635 cm ×

0.005 m glass-fiber composite plate. Similar to Figure 2.2, Figure 3.7 shows the sensor ori-

entation for 13 sensors on the glass-fiber composite plate, with the bold circle representing

the scatterer (Figure 2.3).

The final ambiguity surfaces for the glass-fiber composite plate are shown in Figure 3.8.

We can observe from the images that the matched field processors locate the scatterer in

the glass-fiber composite plate but there is noise in the image. One of the reasons might be

that our model is not perfect. The delay-and-sum method does not localize the scatterer in

the glass-fiber composite plate, as shown in Figure 3.9.
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Figure 3.5. Illustrates damage detection in unidirectional composite plate. (a) coherent
matched field processor, (b) the sensor domain incoherent matched field processor.

3.5 Conclusion
This chapter showed the implementation of the coherent and the sensor domain in-

coherent data-driven matched field processor to localize a scatterer on a carbon-fiber and

glass-fiber composite plate using experimental data. The sparsity-based data-driven model

is created using sparse wavenumber analysis and sparse wavenumber synthesis as dis-

cussed in Chapter 2. This data-driven model is then integrated with matched field pro-

cessing for localization.

Our data-driven approach localizes the scatterer successfully whereas the delay-and-

sum methods could not localize it. The data-driven matched field processing approach

combines the information about the medium directly from data and hence provides more

accurate localization than the delay-and-sum approach.
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Figure 3.6. Illustrates damage detection in unidirectional composite plate using de-
lay-and-sum. The bold circle represents the scatterer.
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Figure 3.7. Illustration of glass fiber composite plate used for our experimental setup. Each
square represents a transducer and bold circle represents the scatterer (mass).
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Figure 3.8. Illustrates damage detection in glass-fiber composite plate. (a) coherent
matched field processor, (b) the sensor domain incoherent matched field processor.
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Figure 3.9. Illustrates damage detection in glass-fiber composite plate using delay-and–
sum. The bold circle represents the scatterer.



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Summary
In this thesis, we created an approximate model for anisotropy by characterizing the

wave propagation in horizontal and vertical directions. Using orthogonal matching pur-

suit, a compressive sensing algorithm, we recovered the frequency-wavenumber repre-

sentation, or dispersion curves, of guided waves in a composite structure. This process is

called sparse wavenumber analysis.

Using this frequency-wavenumber representation, we generated a data-driven model

of guided wave propagation in an anisotropic medium. This is called sparse wavenumber

synthesis. This data-driven model is integrated with a matched field processor to locate

a damage on a composite structure. The results from our method are more accurate in

damage localization than the traditional delay-and-sum approach.

The methodologies created in this thesis are

1. Sparse wavenumber analysis

We accurately recovered the frequency-wavenumber characteristics, or dispersion

curves, of the guided waves using a compressive sensing algorithm (Chapter 2).

2. Sparse wavenumber synthesis

We generated a sparsity-based data-driven model, which predicts the Lamb wave

response between any two points in the medium (Chapter 2).

3. Coherent data-driven matched field processor

We successfully localized a scatterer on a carbon-fiber and glass-fiber composite plate

(Chapter 3).

4. Sensor domain incoherent data-driven matched field processor
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Sensor domain incoherent data matched field processor provides better resolution

for damage localization than a coherent matched field processor (Chapter 3).

These techniques can detect and locate damage in a carbon-fiber and glass-fiber com-

posite plate. In the following section, we will discuss the future scope of this work.

4.2 Future Work
For our future work, we plan to improve our data-driven model for more accurate

damage localization. Our localization is not perfect. We can observe from Figure 3.8 that

localization has noisy results. One source of error might be reflections from the boundaries

of the plate that are not part of our model in (2.2). Hence, incorporating the removal of

reflections from the data will help in improving the performance of sparse wavenumber

analysis and sparse wavenumber synthesis.

The model can be further tested on different composite plates such as quasi-isotropic

and orthotropic composite plates. A quasi-isotropic composite has isotropic properties in-

plane. Generally, a quasi-isotropic composite has plies oriented at 0◦, 90◦, +45◦, and−45◦.

An orthotropic plate has different properties in three mutually perpendicular directions

having two fold rotational symmetry about an axis.

We can also refine our data-driven matched field processor to localize multiple dam-

ages on the plate.
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