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ABSTRACT 
 
 

 Crystal structure prediction is an important field of study, both for the 

development of new compounds and materials, and for the advancement of understanding 

crystallization processes. The Modified Genetic Algorithm for Crystal Structure 

Prediction, MGAC, is a software package for structure prediction that has had varying 

success in predicting the structures of many molecules. However, several advancements 

in the field of structure prediction have prompted a revision to the software, both from a 

scientific and technical standpoint.  

 In this dissertation, the evaluation of a new method for energy calculation and 

structural optimization, dispersion corrected density functional theory, is presented, 

along with practical parameterizations for using density functional theory in crystal 

structure prediction. Next, a preliminary implementation of MGAC using density 

functional theory is outlined, including some key changes to the construction of unit cells, 

along with successful prediction results for the molecules glycine and histamine. Finally, 

a new implementation of MGAC is proposed to handle multiple space group prediction 

effectively, with accompanying preliminary prediction results for histamine using the new 

implementation of MGAC, called MGAC2. 
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GLOSSARY OF TERMS 
 
 

CCDC – Cambridge Crystallographic Data Centre 
 
CHARMM – Chemistry at HARvard Molecular Mechanics.  
 
Compute node – A computer server in a computing cluster or supercomputer that 
primarily performs calculations.  
 
Core hour – A measurement of computer resources. One core hour means that a core in a 
CPU is occupied by calculations or other operations for the span of one hour.  
 
Crossover – The mixing of genes in a genetic algorithm, analogous to genetic 
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arbitrary set of unit cell parameters, molecular positions, rotations, and internal flexibility.  
 
GAFF – General Amber Force Field 
 
Generation – All of the individuals in the population in one iteration of a genetic 
algorithm.  
 
Genetic Algorithm (GA) – A population based optimization algorithm that uses natural 
selection and genetic recombination to find global minima. 
 
Glide plane – A compound symmetry operation that combines a reflection with a 
translation along the plane of reflection.  
 
ITC – International Tables of Crystallography 
 
K-P dataset – Karamertzanis-Price dataset 
 
MGAC – Modified Genetic Algorithm for Crystals 
 
MGAC1, MGAC1-CHARMM – The first version of MGAC that relied on the molecular 
mechanics package CHARMM for energy calculations. 
 
MGAC1-QE – An update to MGAC to use the DFT-D based software package Quantum 
Espresso.
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MGAC2 – An updated version of MGAC that improved on several deficiencies of the 
original algorithm and implementation. 
 
MPI – Message Passing Interface, used in parallel computing to establish communication 
between compute nodes.  
 
Mutation – The random modification of the genome of an individual in a genetic 
algorithm. 
 
Polymorphism – A phenomena exhibited by some molecules where different 
crystallization methods result in different three dimensional structures.  
 
Precluster – A step in the MGAC2 algorithm where a representative set of structures is 
generated in the initialization step through the use of clustering techniques.  
 
Pseudopotential – A potential energy function representing the core electrons in plane-
wave based DFT-D. 
 
QE – Quantum Espresso, a plane-wave based DFT-D solver.  
 
Replacement – The set of individuals generated in a new generation in a genetic algorithm. 
 
Roulette wheel – A selection method in genetic algorithms where the fitness of an 
individual is proportional to the probability that individual will be selected for breeding. 
 
Schema – The representation of independent physical parameters as a genome in a genetic 
algorithm.  
 
Screw axis – A compound symmetry operation that combines a rotation with a translation 
along the axis of rotation.  
 
Supercell – A crystal structure comprising more than one unit cell.  
 
Unit cell – The smallest, translatable repeating volume unit in a solid crystalline material.  
 
Volume filter – A filter in MGAC that restricts the candidate structures for optimization 
and evaluation to certain range of volumes based on an estimate of the single molecule 
volume of the crystal structure.  
 
Z – The number of molecules in a unit cell. 
 
Z' – The number of molecules in an asymmetric unit cell. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

 Crystal structure prediction (CSP) is the elucidation of the solid state crystalline 

structure of an arbitrary molecule using nothing but the knowledge of the chemical 

diagram of that molecule and first-principles or semiempirical calculations (Price, 2004; 

Day, 2011). CSP is generally understood to be the prediction of small organic molecules 

and solid state materials, as opposed to the field of protein structure prediction, which 

employs a distinct and separate set of techniques to achieve solutions. As a field, the 

problem of CSP is still quite unresolved (Price, 2013), in part because of the complexity of 

the calculations required, and the lack of suitable first-principles techniques. However, 

the advent of commodity super-computing in the 1990s and the development of several 

new techniques in computational chemistry has made CSP a real possibility.  

The authoritative organization surrounding CSP is the Cambridge Crystallographic Data 

Centre, which periodically organizes blind tests to assess the state of CSP research 

(Motherwell et al., 2002; Day et al., 2005, 2009; Bardwell DA et al., 2011). So far there 

have been six blind tests, starting in 1999 and most recently being concluded in September 

2015 (with results to be published later in the year). At this stage, there are subclasses of 

the CSP problem that are considered to be generally understood, but there remain several 

problems that are nontrivial and unsolved. Among these, the problems of polymorphism 

and flexible molecules remain among the most challenging problems. 

The value of CSP lies in the importance of screening pharmaceutical drugs (Bauer 

et al., 2001; Morissette et al., 2004; Price, 2004; Jones et al., 2006; Issa et al., 
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 2009), explosives (Foltz et al., 1994; Larionov, 1997; Miller and Garroway, 2001; 

Deschamps et al., 2008), and other materials for undesirable properties before costly 

synthesis experiments are performed. A famous and costly example of this is the drug 

Ritonavir, an antiretroviral drug targeted at the human immunodeficiency virus (HIV) 

that exhibited polymorphism after passing clinical trials (Bauer et al., 2001). It was 

discovered that the original formulation of the drug was a metastable polymorph, which 

later converted to a more stable and less soluble form. Designed to be taken orally, the loss 

of solubility impacted the bioavailability of the drug, leading to an eventual recall of the 

drug. Pharmaceutical companies now routinely perform expensive and labor intensive 

polymorph screens as a consequence of this phenomenon. The same problem impacts 

explosives development, since the reactivity of explosive compounds strongly depends on 

space group lattice type. A tool capable of performing consistent, accurate, and 

effective CSP in silico would be invaluable to pharmaceutical developers and 

materials scientists. 

 
Solving the CSP Problem  

The nature of crystallization as a process is only partially understood. Numerous 

experimental techniques for finding optimal crystallization conditions are known, and 

some controllable properties have been elucidated, but ultimately the knowledge 

surrounding crystallization techniques relates to issues of reproducibility, scaling, and 

quality assurance (Nagy et al., 2008). Knowledge of the basic science surrounding 

crystallization processes on the molecular level remains lacking, especially in regards to 

polymorphism and the processes that initiate crystal formation. Some modelling and 

theoretical work has been done in this area, but generally the field is still in its infancy, 

bound by the limitations of current theoretical knowledge and the lack of methods that 

enable the inspection of crystal growth at the molecular level.  
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 Despite these shortcomings, insight can be gained from Levinthal’s paradox, which 

is especially potent when applied to CSP. Although the thought experiment was originally 

based on protein folding, the implications hold true for small organic molecules as well. 

The premise of Levinthal’s paradox is that the number of valid structures a polypeptide 

chain can adopt is enormous, but a protein will adopt no more than a handful of 

conformations in nature (Zwanzig et al., 1992). The adoption of an idealized conformation 

is achieved on a very short time scale (µs - ms), but to sample a large representative 

number of possible conformations randomly would take more time than the life of the 

universe. Consequently, there must be underlying forces that drive the folding process in 

an efficient manner. Applied in the context of small organic molecules, a similar condition 

must hold true; even for small simple molecules, the number of potential crystal structures 

is very high, but the number of naturally or experimentally occurring structures is clearly 

constrained by the energetics of the system. 

Levinthal’s paradox implies that there is a means of calculating a solution that will 

be more efficient than a brute force search. Since crystallization is a dynamic process, 

molecular dynamics (MD) could be used to emulate crystal formation, leading directly to 

a correct solution on the implication that a kinetically desirable path will be taken to the 

solution.  However, due to problems with generating accurate generic force fields 

(discussed later) and the lack of atomic level models of crystal formation, this is probably 

not tenable for small organic molecules at this time. Furthermore, given the timescales of 

crystal formation and the required femtosecond time-step granularity of MD, obtaining 

results would take a significant amount of time such that effectively getting solutions in a 

high throughput way becomes unfeasible, especially when considering polymorphism. 

Moreover, since kinetically or thermodynamic paths could be taken to a solution, multiple 

MD experiments would need to be performed. 

Having ruled out MD simulations as a possibility, the only other viable solution is 
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to take point measurements of the lattice energy of stochastically or procedurally 

generated crystal structures using first principles or semiempirical techniques. Since 

nature tends to the lowest energy state, successfully finding the lowest energy 

configuration for an arbitrary molecule will likely match any experimentally determined 

structures. Based on this key fact, three primary issues with CSP can be elucidated, which 

characterize the problem domain: 

1) The underlying first principles calculations used in CSP must provide an 

accurate energetic ranking of structures. Generally, crystal formation can take 

either a thermodynamically favored or kinetically favored route; however, a 

kinetically favored structure which is not at an energetic minimum may 

possibly convert to a more thermodynamically stable form if the barrier to 

conversion is low enough (as in the famous case of Ritonavir) (Bauer et al., 

2001). Given this fact, as a single metric, lattice energy is the most important 

when considering candidate structures, and by extension, an energy 

calculation with poor accuracy will result in bias towards structures which do 

not reflect nature.  

2) The search space for CSP is very large. A first approximation of the degrees of 

freedom for an arbitrary molecule in a repeating lattice is three times the 

number of atoms in the molecule multiplied by the number of molecules in the 

repeating unit. By simplifying the atomic model so that most atomic positions 

are fixed relative to the position of the molecule in the repeating crystal unit, 

the degrees of freedom can be reduced to approximately 10 degrees of freedom, 

plus additional degrees to account for internal molecule flexibility, but this still 

represents a nontrivial search space. In addition to this, the presence of local 

minima on the energy hypersurface means that Newtonian approximation 

cannot be used to find the global minima, and so global optimization 
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techniques must be used in order to obtain good results (Liberti, 2008). 

3) In relation to the first two issues, many global optimization techniques rely on 

grid based or population based techniques to identify solutions (Bardwell DA 

et al., 2011), which multiplies the amount of calculation work to be performed. 

Other solutions require significant initial setup of force fields, which may also 

require nontrivial human intervention to obtain good results (Neumann, 

2008). Because of these factors, there is strong imperative to automate as much 

of the CSP process as possible, and to eliminate human contribution beyond 

the initial setup of the molecular system. Otherwise, the CSP process becomes 

inefficient.  

Summarizing, a good CSP method produces accurate energetic rankings, 

adequately samples the search space, and is maximally automated. A 

discussion of each of these issues and a summary of techniques currently employed 

follows.  

 
Accuracy in Energetic Calculations 

 Since the fitness of structures is measured solely by energy, the calculations that 

that are performed to assess the quality of candidate structures must be accurate and bias 

free. Since many potential structures will be evaluated, and many of those structures will 

be nonideal, it is important that the contributions of intra and intermolecular forces be 

correctly estimated and balanced (Karamertzanis and Price, 2006). Furthermore, the 

error of such calculations must be small enough that polymorphs can be energetically 

distinguishable (Yu et al., 2005).  

A primary concern is the handling of flexible molecules. For first row atoms, rigid 

molecules are considered a solved problem in CSP (Bazterra et al., 2002a; 

Karamertzanis  C. C., 2005). The interaction model can be largely reduced to the 
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intermolecular potentials for Van der Waals and ionic charges, and dipole moments where 

relevant. However, the introduction of internal degrees of freedom that have similar 

energetics to the intermolecular forces severely complicates the fitness evaluation process. 

This is especially true when using force fields, where the semiempirical assignment of 

constants to torsions generally mischaracterizes the electronic interactions 

(Karamertzanis and Price, 2006). So, a level of theory that incorporates electron level 

calculations is most likely needed for flexible molecules, especially the class of molecule 

typically found in pharmaceutical formulations.  

 Several methods gaining popularity in the recent blind tests are calculations based 

around dispersion corrected density functional theory (DFT-D) (Neumann and Perrin, 

2005; Bardwell DA et al., 2011). DFT-D shows promise in that the calculation quality is 

sufficient to accurately rank flexible molecules, but the calculation time is still low enough 

that full-scale predictions are tenable. Furthermore, several studies suggest that a final re-

ranking step using DFT-D is very effective in correctly ranking structures, regardless of 

the means that those structures were generated (van de Streek and Neumann, 2010; Lund 

et al., 2013). An older but still practical method is ranking and optimization using 

molecular mechanics (MM) methods and force fields. The practicality of MM is a 

consequence of the simplicity of the calculation; compared to first principles methods MM 

is computationally lightweight. The subject of force fields is problematic, however: in 

many cases force fields suffer from bias that result in poor ranking of structures (Kim et 

al., 2009). In other cases, force fields may be hand built through appropriate first-

principles reasoning, but this remains a labor intensive process that requires human 

intervention. There exist several different force fields, most of which are designed to 

handle specific classes of molecules, and so it is tempting to combine multiple force fields 

in a way that maximizes accuracy. However, the decision process on what force fields to 

use in such a method would strongly rely on human expertise, and it would not be practical 
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from a computational standpoint to try to encode this as an expert system. Consequently, 

a general method employing DFT-D or a similar technique will most likely come to 

dominate CSP calculations because of the transferability of such methods to different 

molecular systems.  

 
Sampling the Search Space 

 The shape of the energetic landscape of an arbitrary molecule is generally 

punctuated by numerous local minima. This complicates the global optimization process; 

if Newton’s method could be used to traverse the energy hypersurface effectively then CSP 

would be a solved problem. Because of the nonuniformity of the hypersurface, more 

advanced techniques that sample the energy landscape broadly and capture multiple local 

minima are necessary. In practice, this usually entails increasing degrees of refinement 

where a large sampling of structures is identified and filtered across a multistep process. 

Figure 1.1 shows a pictorial representation of this process. In a first pass CSP refinement, 

a very large population on the scale of 106-108 structures might be filtered using a low cost 

energetic calculation or other mechanism (such as the elimination of structures by 

density), reducing to a final population of 103-104 structures. On the second pass, more 

complex levels of theory and local optimization might be employed to further refine this 

population until a small set of structures (10-100) suitable for in-depth calculations can 

be identified. Typically, at this stage a pharmaceutical developer may take this as a 

representative sample of potential crystal structures, and use that to inform risk-based 

decisions on the potential outcome of a crystal screening and viability. However, an 

underlying risk remains; a global minimum with a narrow energy-potential well may not 

be easily found and is strongly dependent on the search method used (Figure 1.2).  

 The search methods in use for CSP are essentially all based on Monte Carlo 

simulation to a degree. Methods span from Monte Carlo-based simulated annealing, to  
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Figure 1.1: A representation of the refining process that might be used in CSP, with 
relative sizes of structure populations at each step. Initially a large number, possibly 
millions, of structures might be generated. After filtering this might be reduced to a few 
thousand structures, which could then be further refined through local optimization 
techniques to obtain a representative set of structures. This small set, in the tens of 
structures, could be even further refined if needed.  
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Figure 1.2: An example of a narrow energy well scenario. Dots represent the initial 
energies of candidate structures along the energy hypersurface. In a multidimensional 
system there are typically many energy potential wells, with different local minima. 
Depending on the search algorithm used, the left energy well might be oversampled 
relative to the right energy well, as shown above. In both cases, the use of local 
optimization will approximate the true local minima, taking a path represented by the 
small arrows. 
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search via Sobol sequence, to more fundamentally complex methods like genetic or 

evolutionary algorithms (Bardwell et al., 2011). Generally, fully Monte Carlo-based search 

methods suffer from nonuniformity issues, and rely heavily on luck to find a solution 

quickly (Niederreiter, 1988; Morokoff and Caflisch, 1995). Simulated annealing methods 

improve on this substantially, in that local minima can be escaped effectively after local 

optimization. However, given the dimensionality of the crystal search space, it can be 

difficult to effectively choose a directional vector for the annealing process, hence, the 

Monte Carlo aspect of nonuniformity presents itself again. Sobol sequences are excellent 

for overcoming the uniformity issues present in Monte Carlo based sampling, but suffer 

the pitfall of requiring an exponentially increasing number of samples as the 

dimensionality of the system increases (Sobol, 1998). At a first approximation a Sobol 

sequence is only more effective than a grid search method if uniform effective sampling is 

better than a grid, and only if the number of sampling points is less than the grid. Genetic 

algorithms and evolutionary algorithms are promising in the sense that the negative 

effects of Monte Carlo sampling are diminished by the preservation of high-fitness 

structures (Goldberg and Holland, 1988; Falkenauer, 1998). Genetic algorithms suffer 

from a different set of issues, however, in that a high number of samples is typically 

required for a good solution to be found, and are highly sensitive to the fitness function 

used (Holland, 1973; Fitzpatrick and Grefenstette, 1988). Furthermore, the identification 

of a solution is very sensitive to the starting conditions of the GA; a poorly formed initial 

population will exclude valid solutions and make it impossible to predict a structure by 

virtue of gene exclusion (Kim et al., 2009). As a consequence of these issues, the main 

problem with picking a search algorithm is selecting a method that increases the 

probability of finding good and valid solutions without compromising the limits on 

computational effort.  
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Automation Concerns 

 CSP should ideally be as fully automated as possible, especially for the purpose of 

molecule screening. Pharmaceutical development usually includes the testing of several 

hundred or even thousands of molecules for viability, which includes solubility testing and 

polymorph screening. To this end the full automation of CSP is greatly desired. However, 

because of the nature of the problem, significant guesswork is still involved in the 

refinement process. Furthermore, many groups still employ methods that require a fair 

amount of human intervention to produce accurate results, such as in the case of the 

software GRACE, which uses tailor-made, proprietary potentials (Neumann and Perrin, 

2005; Neumann, 2008; Neumann et al., 2008). The elimination of human interaction as 

much as possible is the main barrier to fully automating CSP.  

 In addition to this, software design and incorporation of parallelism is especially 

crucial to the automation process. The development of CSP software to be robust and 

scalable closely mirrors the general needs in scientific computing; as the field moves to 

Exascale computing and increasingly multicore architectures, it is recognized that 

commodity scientific computing is becoming available, and with that increased capacity 

will come greater scientific progress. In addition, the incorporation of graphical processing 

units (GPUS) and other accelerator technologies like many-in-core (MIC) architectures, 

into CSP workflows has significant potential value, if key limitations in the algorithms used 

in CSP and the associated energetic calculations can be overcome. Consequently, CSP is 

well poised to take advantage of increased computing resources, but will only be able to 

do so if CSP can be made “hands-off” (but not necessarily a black box).  

 
The Modified Genetic Algorithm for Crystals (MGAC)  

 One algorithm that is used to solve the problem of CSP is the genetic algorithm 

(GA).  Genetic algorithms use the concepts of survival of the fittest, coupled with genetic 
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inheritance, to solve hard configurational problems (Goldberg and Holland, 1988; 

Falkenauer, 1998). CSP is well suited to this search method because crystal structures can 

be represented with a simple and consistent schema that can be used as a genome. This 

simple representation, coupled with an effectively unbiased means of generating a 

volume-minimized three-dimensional structure, and a high quality way to rank structures 

energetically, effectively enables the use of genetic algorithms. As an important aside, 

genetic algorithms are not necessarily well suited to all problems, primarily because they 

require high multiplicity of fitness evaluations, which may not be tenable depending on 

the complexity of the fitness calculation, as may be the case with first principles 

calculations in CSP. However, results so far have shown that GAs can be successful in 

identifying solutions in CSP, and so further exploration is warranted.  

 The Modified Genetic Algorithm for Clusters and Crystals (called MGAC1 in this 

dissertation) is the software used in the Facelli group to perform CSP (Bazterra et al., 

2002a, 2002b, 2004, 2007; Kim et al., 2009). It was originally designed in the early 2000s 

and has been iteratively updated since then. The genetic algorithm used in MGAC1 can be 

broadly summarized in a few steps (and also shown in Figure 1.3):  

1) A population of individuals is created; each individual represents a crystal 

structure and is wholly defined by a simple schema consisting of crystal 

structure parameters and configurational properties of the molecule and crystal 

system (described in the following section on the MGAC1 Schema).  

2) A three dimensional representation of each structure is generated and then 

filtered by volume, using a method to estimate the likely volume of the true 

structure of the molecule. The filter is discussed in a later section. 

3) All structures that pass the volume filter are structurally optimized and 

evaluated to determine their energy using a suitable computational method.   

4) The structures are ranked, with the highest ranked structure having the lowest  
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Figure 1.3: A graphical outline of the MGAC1 algorithm. In panel A, the MGAC1 schema 
is represented by each of the small boxes, which form a population of candidate 
structures. The fitness of each structure is evaluated in panel B through a three-part 
process, where the schema is transformed into a three-dimensional representation, 
which is volume minimized and filtered based on volume constraints. The structures 
that pass the volume filter are optimized and then evaluated to determine their 
hypothetical energy. The final set of structures is ranked by energy in panel C, with a 
subset being removed from the population. In panel D, the remaining structures are 
crossbred with each other, using a roulette wheel selection method. A subset of the 
structures is also randomly mutated. The newly generated structures form the new 
population to be evaluated, while the old structures only participate in the reranking 
and breeding process. This is repeated until some arbitrary convergence criteria is met.  
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energy. A fraction of poorly ranked structures may be removed at this step if an 

elitism GA model is used. 

5) Crossover and mutation are applied to generate new structures. Crossover 

effectively represents sexual reproduction, whereas mutation represents 

environmentally caused changes to the genome.  

6) The new population is evaluated, effectively repeating all previous steps until a 

convergence criterion is met.  

In the original tests, MGAC1 used CHARMM, a molecular mechanics solver (Brooks et al., 

1983; MacKerell et al., 1998), coupled with the General Amber Force Field (Wang et al., 

2006), to perform optimizations and establish energetic fitness. This is a very efficient 

process; CHARMM is very fast, even in larger systems (>300 atoms). MGAC1 is also 

parallel enabled, using MPI to distribute work across many nodes, relying on a server-

client model to distribute work. Typically, a population size in the range of 30-100 

individuals is used, with 50% replacement each generation under an elitism model. In the 

elitism model, structures are ranked according to energy, and then removed if their rank 

is larger than the population size, effectively eliminating structures with undesirable traits, 

decreasing diversity and increasing average fitness in the population as the number of 

generations increases. Convergence is established when a particular structure or set of 

features comes to dominate the population, which depends on the population size to a 

degree, whereas the loss of diversity depends largely on the replacement.  

 
The MGAC1 Schema 

 In a well-packed crystal lattice, the atomic positions ultimately define the energy 

of the structure. However, because the internal structure of a molecule is more or less 

fixed, then the degrees of freedom can be largely reduced to the dimensions of the crystal 

lattice, the effective symmetry operations present in the lattice, and the positions and 
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rotations of molecules relative to the crystal lattice origin. The only feature not taken into 

account by these properties is the rotation of torsional bonds.  This generalizes to 

approximately 10+n degrees of freedom, where n is the number of torsional bonds. A 

schema of mostly independent parameters is then defined from these parameters 

(Bazterra et al., 2002a):  

1) Symmetry operations; this is a discrete parameter bounded on the 230 

mathematically defined crystallographically valid space groups (Hahn, 2002). 

Historically this has been handled by selecting a subset of space groups that 

are statistically overrepresented among known crystal structures in the CSD 

database (Allen, 2002).  

2) The unit cell angles of the crystal lattice (α, β, γ). These are partially determined 

by the space group, as some lattice types have fixed angle parameters.  

3) Unit cell ratios (rA, rB, rC). These parameters are a new addition to the schema, 

as recent discoveries have shown that a subset of space groups are not 

adequately represented by cell angles alone. This is covered in Chapter 3. 

4) The internal rotation of the molecule relative to the crystal lattice; this can be 

represented by three rotation angles (Φ1, Φ2, Φ3) but ultimately the underlying 

representation is based on an angle-axis formulation.  

5) The fractional position of the molecule within the lattice (xf, yf, zf). Many space 

groups have degenerate fractional positions due to symmetry operations that 

form equivalent subspaces in the lattice. However, the mathematical 

representation of these subspaces is inconsistent, and so this parameter may 

or may not be constrained depending on the space group (Hahn, 2002).  

6) Torsional angles of flexible bonds in the molecule. This is dependent on the 

chemical diagram of the molecule.  

Some additional things to consider as part of the schema are the ranges of acceptable 
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values for different schema elements. In particular, the cell angles of the unit cell are 

constrained, both from the perspective of different space groups, and from a mathematical 

standpoint. The full range of cell angles spans the open interval (0°, 180°), but in actuality, 

the sum of the three cell angles cannot exceed 360 degrees, nor can they violate certain 

properties as defined in Foadi and Evans (2011), otherwise, the unit cell effectively 

becomes “imaginary”. In general, this particular set of rules only applies to triclinic, 

monoclinic, and rhombohedral lattice types, since in other lattices cell angles are typically 

fixed. A further constraint on cell angles deals with the concept of the reduced unit cell: 

many lattice types can have degenerate combinations of unit cell angles, cell lengths, and 

molecule rotations. According to section 9.2 in the ITC handbook (Hahn, 2002), the 

preferred angles for reduced cells are bounded such that all cell angles are between 60 and 

120 degrees; choosing unit cells angles in this range essentially eliminates degeneracy and 

prevents the formation of bizarre unit cells that are extremely thin.  

 
Volume Filtering 

 The volume filter serves to reduce the search space for the GA to a reasonable set 

of structures, which is important both for reducing the number of optimizations, as well 

as having a nontrivial impact on the local optimization process. In general, the reason for 

the volume filtering is to eliminate structures which are mostly empty space, or otherwise 

poorly packed. In such cases, spurious energies can be given which give poor 

representations of the packed solid state, as has been found in the case of glycine. 

Discussed in Chapter 4, the zwitterionic form of glycine is unstable in poorly packed 

configurations and changes protonation state accordingly, but in the solvated or packed 

state, intermolecular forces stabilize the energy substantially (Lund et al., 2015).  

 The filter works by starting with an estimate of the likely single molecule volume 

for the molecule of interest. The model used is the ARH model (Beaucamp et al., 2007), 
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which relies on a semiempirical method to calculate the density of the candidate molecule, 

from which a volume estimate can be given. When applied to a representative population 

of structures, the average error of the model is approximately 2%, with most structures 

within 30% of the expected density. Consequently, any structure that fitcell generates and 

passes to the volume filter, if within a range of +/- 30% of the volume estimate is expected 

to be a valid structure. In practice there may be advantages to expanding beyond a 30% 

threshold, however, as a consequence of using local optimization this is difficult to 

parameterize, because a tightly packed structure may be difficult to optimize.  

 
Practical Considerations for CSP with MGAC 

 All in silico experiments require varying amounts of computing resources. In 

MGAC1 the resources required for predicting molecules are relatively minimal for today's 

computing resources, with computations taking on the order of hours to complete using 

multiple cores. With the introduction of DFT-D based methods, this computational 

requirement increases substantially, by a factor of at least 1,000. For direct comparison, 

the optimization (or minimization) of a molecule the size of histamine using molecular 

mechanics takes a fraction of a second on a single core, whereas using DFT-D on the same 

molecular system takes on the order of 10 min on a 16-core compute node. Since a basic 

requirement of CSP is the evaluation of many structures, it can be expected that using 

DFT-D as the sole energy calculation method will be very costly relative to molecular 

mechanics. 

 For MGAC, experiments are very different in cost depending on the method. A 

typical MGAC1-CHARMM run on Sandy-bridge era compute nodes (E5-2670, 16-core, 2.6 

GHz), comprising 250 generations, with 50% replacement and a population size of 30, 

spanning 14 space groups, could be expected to take around 150 core hours total for a 

molecule the size of histamine. Generally, these calculations are performed in multiples of 
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ten to improve sampling, so for complete search using MGAC1-CHARMM could take up 

to 1500 core hours, for an estimated total of 530,000 structure evaluations. An MGAC1-

QE run on the same hardware and same molecule, however, takes substantially longer. An 

MGAC1-QE run similar to that presented in Chapter 5, with 10 generations, population 

replacement of 3 times the population size, in a single space group, with a population size 

of 90, in a single space group without duplication, takes 40,000 core hours by itself, for at 

most 3000 evaluations. It can be very easily seen that a full prediction using statistical 

sampling of the best 14 space groups, would take a minimum of 560,000 core hours to 

complete using this methodology, which is a substantial amount of resources requiring the 

use of a national supercomputing center to be even feasible. Furthermore, because of poor 

scaling in Quantum Espresso, such a prediction would likely take closer to 1 million core 

hours to complete. Therefore, there is a strong imperative to streamline the MGAC process 

to permit higher quality predictions using DFT-D, while preserving the capability to 

sample multiple space groups and keeping CPU costs lower. 

 
Concluding Remarks 

 The most recently published results from an MGAC1 are from 2008 (Kim et al., 

2009), where a large set of molecules, the Karamertzanis-Price dataset, were used as the 

basis for testing. The K-P dataset is a set of structures designed to represent molecules of 

pharmaceutical interest; it contains a few polymorphs and co-crystals (Karamertzanis and 

Price, 2006). Of the 22 structures tested, 16 matches were found, but the ranking of the 

matches were extremely varied, ranging from 1 to 1162. The results of these experiments 

essentially highlight the issues of using generalized force fields; although in some cases 

high accuracy could be obtained, the sporadic nature of the ranking severely complicated 

the prediction process. Furthermore, several instances of bias were identified that 

prevented the successful prediction of structures. This provides the impetus to use a higher 
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level of theory, as that would presumably correct the bias issues and ranking problems 

presented by using CHARMM and the GAFF. 

In the next chapter, the exploration of using DFT-D as the energy and optimization 

source for MGAC is discussed, demonstrating the successful reranking of datasets from 

the 2008 predictions (Kim et al., 2009) using Quantum Espresso (Giannozzi et al., 2009). 

In Chapter 3, the formulation of a new algorithm for the fitcell routine is discussed, as well 

as the addition of new schema elements to take into account the ratios of unit cell lengths. 

Results based on the successful implementation of this algorithm are presented in Chapter 

4, where the three atmospheric pressure polymorphs of glycine were found in their native 

space groups. Previously unpublished results on the prediction of histamine are presented 

in Chapter 5. In the sixth chapter, the theoretical basis for a new set of space group schema 

elements enabling structures from different space groups to be crossed with each other is 

outlined, along with other important innovations towards crystal structure prediction in 

multiple space groups. Chapter 7 includes a summary of preliminary results for the 

theoretical work presented in Chapter 6.  
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Abstract 

 Previously, it was shown that crystal structure prediction based on genetic 

algorithms coupled with force field methods (called MGAC2) could consistently find 

experimental structures of crystals. However, inaccuracies in the force field potentials 

often resulted in poor energetic ranking of the experimental structure, limiting the 

usefulness of the method. In this work, dispersion corrected density functional theory is  

                                                           
1  Adapted with permission from Cryst. Growth Des., 2013, 13 (5), pp 2181–2189, DOI: 10.1021/cg4002797. 

Copyright 2013 American Chemical Society.  
2 In this chapter, MGAC generally refers to MGAC1, but was published before the inception of the 

MGAC1/MGAC2 notation. For the remainder of this chapter it is left as it was originally published. 
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employed to correct the results of those experiments, using the software package Quantum 

Espresso. Proper running parameters were established for application with MGAC, and it 

is shown here that the variable cell optimization of experimental structures will reproduce 

the experimental structure with high accuracy (RMS < 0.5) for a large set of archetypical 

pharmaceutical compounds. We show that using electronic structure theory-based 

methods greatly enhances the energetic ranking of structures produced by MGAC-

CHARMM, such that the experimental match is found with a high degree of accuracy.  

 
Introduction  

Over the last several decades there has been much effort towards the goal of being 

able to readily and reliably predict, by computational methods alone, the crystal structure 

of a molecule based only on its chemical diagram (Day, 2011, 2012; Kendrick et al., 2011; 

Lehmann, 2011; Price and Price, 2011). The process to do this is shown in Scheme 1. The 

ability to do so has far reaching implications in many areas.  On a basic science level, the 

accomplishment of this goal can lead to an understanding of the principles that control 

crystal growth.  More practically, the ability to successfully predict crystal structures based 

on computation alone will have an impact in many industries, including pharmaceutics, 

agrochemicals, pigments, dyes and explosives. 

The current status of CSP can be evaluated by the performance of the participants 

in the periodic blind tests that have been organized by the Cambridge Crystallographic 

Data Centre (Lommerse et al., 2000; Motherwell et al., 2002; Day et al., 2005, 2009; 

Bardwell DA et al., 2011). There have been five blind tests since 1999, the latest held in 

2011, and we have participated in the last four with our MGAC (Modified Genetic 

Algorithm for Crystals and Clusters) package (Bazterra et al., 2002a, 2002b, 2004, 2007; 

Kim et al., 2009).  MGAC is capable of doing CSP for any space group, any number of 

molecules per asymmetric unit, and is able to deal with conformational flexibility of the  
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Scheme 2.1: Overview of the Crystal Structure Prediction (CSP) process. 



23 
 

 

 
molecule being studied in order to explore the entire crystal energy landscape. The 

generation of trial crystal structures is completed utilizing genetic algorithms but when 

using the current version of MGAC, which relies on the use of the CHARMM (Brooks et 

al., 1983; MacKerell et al., 1998) molecular mechanic program using the Generalized 

Atomic Force Field (GAFF) (Wang et al., 2006) for the energy evaluation of the trial 

structures, the ranking of the structures is not always reliable do to deficiencies of GAFF.   

The results of the last two blind tests showed the advantage of using dispersion 

corrected density functional theory (DFT-D) (Grimme, 2004, 2006; Grimme et al., 2010) 

to both generate a molecule specific tailored force field that is thereafter used to generate 

trial structures and to reorder a subset of the trial structures in search of the lowest energy 

crystal structures (Neumann and Perrin, 2005; Neumann, 2007, 2008; Neumann et al., 

2008; Kendrick et al., 2011).  There have been two other approaches utilizing first 

principle calculations applied to crystal structure prediction of organic crystals recently 

presented in the literature (King et al., 2011; Zhu et al., 2012). These results do lend 

promise to using DFT-D methods to completely replace molecular mechanics as the 

method of choice for the evaluation of the energies of the trial crystal structures in CSP.  

This has been thought to be computationally unfeasible; however, with recent advances in 

computer technology and availability, we believe the time has come to explore this option. 

Quantum Espresso (QE), (Giannozzi et al., 2009) www.quantum-espresso.org,  is 

a set of computer codes to perform electronic structure calculations based on density 

functional theory, plane waves, and pseudopotentials that is capable of calculating the 

energy and performing local optimizations on crystal systems using DFT-D. Its primary 

application is determining the band structure and other properties of semiconductors and 

other solid state materials, but while it can also be used to examine the energies of and 

optimize organic crystal structures, to the authors’ knowledge, no comprehensive study of 

its performance has been reported in the literature. 

http://www.quantum-espresso.org/
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The data set chosen for a comprehensive study of the performance of QE for the 

energy evaluation of organic crystal structures in conjunction with the MGAC generation 

of trial structures is the Karamertzanis and Price (K&P) data set (Karamertzanis and Price, 

2006) which was initially selected as a proxy representation for characteristic molecules 

of pharmaceutical interest and subsequently was used by us to test the reliability of MGAC 

crystal structure predictions (Kim et al., 2009).  This set, shown in Figure 2.1, contains 

molecules which represent a variety of pharmaceutically relevant functional groups, as 

well as five compounds that present experimentally determined polymorphs, and three 

co-crystal systems. In our previous work, we attempted to predict 22 of these structures 

using MGAC, and were successful in obtaining structures for 16. However, in the majority 

of these successful predictions, the rank of the best match was often well outside of the 

expectations of blind test criterion. We attributed this to inaccuracies in the force field, as 

well as bias introduced by CHARMM optimizations.  In five of the six cases where a match 

to the experimental structure was not found, potential failures of the GAFF to properly 

handle the intermolecular interactions were identified. 

In this work, full crystal optimizations of the crystal structures in the K&P data are 

completed using the DFT-D method found within QE. The parameters necessary to 

reproduce experimentally determined structures for each of the K&P molecules without 

trading performance are determined. In addition, QE is used to do full crystal 

optimizations on several MGAC derived initial populations as well as do re-ranking of 

several sets of the lowest energy MGAC-CHARMM structures from previous runs on these 

systems.   

 
Methods 

All calculations were performed using version 5.0.1 of Quantum Espresso using the 

vcrelax option, which allows for optimization of the unit cell parameters along with all  
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Figure 2.1: Molecules in the Karamertzanis and Price (Karamertzanis and Price, 2006) 
data set. Also shown are the CSD Reference codes, the space group, and the important 
dihedrals to consider in the search of the crystal system. 
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atomic coordinates. Calculations were performed on either 12-core nodes (two socket, 6 

core Xeon X5660 processors, 2.8 GHz) with 24 GB RAM or on 8-core nodes (two sockets, 

quad core Xeon E5462 processors, 2.8 GHz) with 16GB RAM.  Calculations were 

performed on a single node, which was found to give the best hardware utilization, except 

in one case where wall time limits imposed in the batch system necessitated the use of two 

nodes.  All calculations to determine run times for the crystal structure optimizations were 

performed on the 12-core nodes.  The QE parameters explored in this study are discussed 

in the next section.   Intermediate processing of input and output files was conducted using 

custom Python scripts. RMS values were computed using the Solid Form Crystal Packing 

Similarity method in Mercury CSD, using 15 molecules for comparison and ignoring 

hydrogen atoms (Chisholm and Motherwell, 2005).  The current version of MGAC which 

uses CHARMM (Brooks et al., 1983; MacKerell et al., 1998) to optimize crystal structures 

was used to generate an initial population of 30 trial crystal structures and the final 

populations used in this study.  

 
Results and Discussion 

 Determination of parameters. A series of preliminary calculations were performed 

on four representative molecules from the K&P data set to determine the optimal 

conditions for the calculations.  The parameters varied, along with the range explored and 

the final parameter chosen for use, are given in Table 2.1.  Along with these parameters, 

different pseudopotentials were explored.  A two-step process of selecting these 

parameters was used.  First, each parameter listed was varied independently.  After 

selecting a subset of values from each range, a grid test was performed for those variable 

ranges to assess if any interdependencies existed between parameters.  The results were 

compared by RMS to the experimental structures and simulation time. 

  Initial calculations determined that ultrasoft pseudopotentials gave better results  



 
 

 

 

Parameter Description Range Final 

conv_thr Minimum error threshold for self-consistency 10-4 to 10-12 10-7 

ecutwfc Kinetic energy cutoff (Ry); ecutrho, the kinetic 
energy cutoff for charge density and potential 
functions, was always 10 times the value of ecutwfc 

30 to 70 55 

forc_conv_thr Force threshold for structural relaxation 10-1 to 10-4 10-2 

etot_conv_thr Energy threshold for structural relaxation 10-2 to 10-6 10-3 

k-points Grid of discrete points used in integration during 
DFT-D calculation 

1x1x1, 2x2x2, 
and 4x4x4 

2x2x2 

 
Table 2.1: Parameters explored to determine the optimal conditions for QE optimizations. 

27 
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than norm conserving ones.  After a search of existing pseudopotentials for use in QE, 

three different ultrasoft pseudopotentials combinations were chosen: (1) the Vanderbilt 

(Vanderbilt, 1990) PBE  (Perdew et al., 1996a, 1996b) pseudopotential (Van-PBE), which 

was available for all elements in the molecules in our test set; (2) a mix of the RRKJUS 

(Rappe et al., 1990) PBE pseudopotential (RRKJUS-PBE), which exists for all elements 

needed for the test set except F and that was used in conjunction with the Van-PBE on the 

F; (3) the Vanderbilt BLYP (Becke, 1988; Lee et al., 1988) pseudopotential (Van-BLYP) 

which does not include the F so the evaluation did not include any of the fluorine 

containing molecular systems of the dataset. 

The results show that the components that most directly affect RMS are the choice 

of pseudopotential, the number of k-points, and the energetic cutoffs (ecutwfc, ecutrho).  

As the choice of the self-consistency threshold (conv_thr) had little effect on the RMS, the 

threshold was set to correspond to an energy of 0.13 J/mol, which should allow 

polymorphs to be energetically distinguished (Yu et al., 2005).  The convergence 

thresholds for vcrelax (forc_conv_thr, etot_conv_thr) were also found to have minimal 

impact on the final RMS, so these terms were set to favor shorter simulation times.  While 

higher energy cutoffs did result in lower RMS values, a cutoff of 55 Ry was chosen as a 

good balance between the RMS and the time for the calculation to complete. 

It was determined that pseudopotentials utilizing the BLYP cross-correlation 

function produce the best RMS values overall. However, as a QE-compatible 

pseudopotentials utilizing BLYP is not available for F, an element commonly used in 

medicinal chemistry for the synthesis of pharmaceutical compounds, the combination of 

the RRKJUS-PBE for C, H N, O, S and Cl along with the Van-PBE for the F was selected, 

as it gave the second best RMS results among the three tested when including molecules 

containing F. 

A grid of 2x2x2 k-points was found sufficient for accurate calculations; lowering 
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this constraint severely decreases the quality of results, whereas increasing grid size 

provides no clear benefit for systems in the volume range we tested. Note that the actual 

number of k-points used in the simulation is adjusted internally by QE to reflect the 

dimensions and symmetries of the unit cell; where the unit cell is not accurately sampled 

by a 2x2x2 grid, the grid is automatically expanded.  

 Optimization of experimental crystal structures.  Once the optimum choice of 

parameters was determined, full local crystal optimizations using the experimental 

structure as starting initial one were performed on each of the systems shown in Figure 

2.1.  The only structure for which the vcrelax calculation was not completed was 

CBMZPN03, an exceptionally large crystal structure with 18 molecules (or 1584 valence 

electrons) in the unit cell.  

The results of these calculations are shown in Table 2.2.  In all cases where the 

simulation completed, QE returned a final structure which gave an RMS < 0.5 Å, with 15 

out of 15 molecules aligned when compared to the experimental structure.  The RMS 

difference between the QE full optimization and the experimental structure ranged from 

0.056 Å to 0.459 Å, with a median RMS of 0.196 Å.  A typical match, using the case of 

NOZKES, is shown in Figure 2.2, on the left.  These results imply that the experimental 

structure is at least close to local minima of the QE energy hyper surface and that for 

unknown structures MGAC-QE most likely will find structures with similar proximity to 

the experimental ones, provided that the GA generates structures in its proximity.  This is 

a strong indication that the MGAC-QE combination could be successful for global 

optimization of crystal structures. 

The simulation time is primarily affected by the number of valence electrons 

(which correspond to the Kohn-Sham states in the DFT method), the number of k-points, 

and the number of vcrelax iterations that are performed.  From a theoretical standpoint, 

simulation time scales linearly with number of electrons when normalizing against vcrelax  
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   Molecule/system info Metrics 

CSD Ref Code Space group Natoms1 no. of e-1 N1 Kpt VC T(Hr) Energy (Ry) Rms2 

ACSALA05 P21/c 84 272 4 4 14 2.6 -239.6195421 0.097 

ACSALA13 P21/c 84 272 4 4 25 4.7 -239.6193637 0.170 

ACYGLY11 P21/c  60 304 4 2 23 1.4 -169.5440140 0.188 

ATUVIU P21212 72 208 4 4 31 3.1 -183.3139758 0.128 

BANGOM01 P21 52 208 2 2 32 2.3 -450.5943046 0.196 

BANGOM02 P212121 104 416 4 2 31 10.6 -450.5914761 0.331 

BZAMID02 P21/c 64 184 4 4 25 2.0 -139.8490878 0.201 

CBMZPN03 R-3 324 1584 18 12 ? Too Complex   

CBMZPN10 P21/n 120 352 4 2 40 9.5 -256.7059809 0.232 

CBMZPN11 P-1 240 704 8 4 31 71.9 -256.7025145 0.182 

CBMZPN12 C2/c 240 704 8 4 34 38.13 -256.7010208 0.219 

CBOHAZ02 P21/c 48 144 4 4 55 1.8 -129.8488205 0.409 

CERNIW P21/n 116 304 4 2 22 3.9 -226.8550397 0.173 

CYACHZ01 P21/c 48 152 4 4 23 1.0 -131.5329627 0.063 

EYOBAV Cc 140 400 4 4 32 7.6 -336.3618078 0.436 

GAHPIO P21/a 88 256 4 4 40 5.9 -228.8603043 0.213 

HAMTIZ P21/n 104 360 4 4 31 11.5 -331.8894879 0.133 

HBIURT10 P212121 52 184 4 1 47 1.4 -184.0473440 0.459 

HISTAN P21 34 88 2 2 33 0.4 -127.2667014 0.260 

HUYYOP P212121 128 328 4 4 36 11.8 -218.1767345 0.270 

IBPRAC01 P21/c 132 324 4 4 24 7.7 -233.3437649 0.206 

JEKNOC11 P21 132 324 4 4 42 14.5 -233.3415498 0.349 

KAMREW P212121 132 384 4 4 17 6.0 -354.6493038 0.056 

KAYTUZ P21/c 96 360 4 4 34 7.4 -227.4160927 0.188 

LEKRIC P212121 156 408 4 4 24 11.0 -339.3602102 0.099 

LEKROI P1 36 102 1 4 30 0.5 -368.3247454 0.132 

NMACEP01 P212121 164 392 4 4 29 18.6 -302.3179367 0.167 

NMACEP02 P212121 164 392 4 4 37 22.4 -302.3254026 0.225 

NOREPH01 P21/c 96 240 4 4 23 4.0 -169.7442352 0.201 

NOZKES P212121 40 104 4 4 19 0.3 -93.7290501 0.134 

PEAMAN01 P21 78 210 2 4 21 2.6 -320.4332603 0.070 

PMACEP01 P21 82 196 2 4 41 5.6 -302.3196545 0.234 

 
Table 2.2:   Summary of QE results for the K&P dataset (Karamertzanis and Price, 
2006). Included is the information on the size of the unit cell and the time for the 
optimization.  The energy reported is that on a per molecule basis and the RMS is based 
on a 15 molecule match with the experimental structure. 

1The number of atoms (Natoms), electrons (no. of e-) and molecules (N) reported are 
per unit cell. 
2The RMS values are for 15 molecule comparisons without hydrogens completed 
using the crystal packing similarity function of Mercury. 
3Times for this structure are for a run using two nodes. 
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Figure 2.2:  Results on NOKZES.  The comparison on left is between the experimental 
and QE optimized structures (blue), whereas that on the right is between the 
experimental and the QE reoptimized MGAC-CHARMM match (green). Note 
orientations are different due to the choice of molecules used in the comparison that is 
made by the comparison program. 
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iterations, but in practice, some variation exists due to differences in convergence times 

for each self-consistent step.  From a technical standpoint, systems with high numbers of 

valence electrons (>300 in our approximation) are probably not within the realm of 

feasible use with CSP on commonly available hardware, due to the large number of 

simulations performed in the search.  

 Test of initial MGAC populations. In order to further test the validity of using QE 

for the energy evaluation in MGAC, we did full crystal optimizations on initial MGAC 

populations of 30 crystal structures of a given space group for three of the K&P molecules, 

namely ATUVIU (P212121), BANGOM01 (P21), and IBRAC01 (P21/c).  Due to the variations 

in the starting structures, the number of iterations needed, the time for the optimization 

varied among the 30 crystal structures for each molecule.  However, in each case the 

average time was not significantly different than the time for the optimization required 

when starting from the experimental structure.  The average run time for the 30 structures 

was 2.1 h for ATUVIU, 2.5 h for BANGOM01 and 7.6 h for IBRAC01.  As expected, the 

diversity of the initial population for each structure was maintained after optimization, 

with a spread of optimized energies between 0.03 and 0.05 Ry (approximately 9 and 15 

kJ/mol).  In every case the optimized experimental structure (Table 2.2) was lower in 

energy that any of the locally optimized structures obtained from the members of this 

initial population.  Figure 2.3 shows the BANGOM01 initial population with the energies 

before and after local optimization, ranked in order of pre-optimization energy.  Note that 

the energies do not decrease in a uniform fashion during optimization; this is highlighted 

by the fact that the structure ranked number 7 in the population is the lowest one after 

local optimization.  This indicates the energy of the structure prior to optimization cannot 

be used as a proxy for the final rank of the optimized structure, and requires that all 

structures to be optimized before rank comparison.  

 Reranking of MGAC-CHARM final populations. Literature precedent shows that  
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Figure 2.3: Energies for the BANGOM01 initial test population relative to the energy 
of the QE optimized experimental structure.  The structures are ranked in order of 
increasing starting energy (blue points), and the best structure after optimization is 
indicated by the black vertical line. The order of the optimized energies (red points) 
does not correspond to the order of the initial single-point energies. 
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the use of molecular mechanics produces unreliable energy rankings.  Therefore, the 

accuracy of the QE energy rankings should be explored.  The final structures of previous 

MGAC-CHARMM runs for NOZKES, KAYTUZ, HBIURT10, and BZAMID02 were re-

optimized using QE.  In all cases, a re-ranking based on the QE final energy after local 

optimization placed the match to the experimental structure as one of the lowest energy 

structures. Table 2.3 summarizes the results obtained, including the number of structures 

re-optimized, the QE optimized ranking of the MGAC-CHARMM match and the RMS with 

respect to the experimental crystal structure for the QE structures. 

 For NOZKES the CHARMM-MGAC results found a match at energy rank 78 with 

an RMS of 0.18 Å.  The first 111 crystal structures predicted by CHARMM-MGAC were re-

optimized by QE and the match was found now to be the lowest energy at 0.000376 Ry 

(0.12 kJ/mol) relative to the energy of the QE optimized experimental structure; this 

structure has an RMS of 0.23 Å relative to the experimental structure (a comparison is 

shown in Figure 2.2, on the right).  It should also be noted that two of these 111 structures, 

CHARMM structures ranked 68 and 74, had unphysical structures, an issue found when 

using CHARMM, and therefore QE calculations were not performed.  The results of the 

QE calculations are shown in the graph in Figure 2.4, where the QE energy of each of the 

111 structures is shown at the first optimization step (blue) and the optimized structure 

(red), with the energies being reported relative to the energy of the QE optimized 

experimental structure.  A comparison of the red and blue lines confirms the single point 

QE energy of the nonoptimized MGAC-CHARMM final structures is insufficient for re-

ranking, in agreement with the analysis in the previous section 

Another way to view the reordering of the CHARMM-MGAC structures upon 

optimization using QE is shown in Figure 2.5 for the KAYTUZ results.  The structure with 

the best match with the experimental one, which was ranked 22 with CHARMM, becomes 

the lowest energy structure after reoptimization using QE.  This lowest energy structure  
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Case 

MGAC-CHARMM 
results QE re-optimization results 

Rank of 
match 

 
RMS 

# of structures 
reoptimized 

Rank of 
match 

 
RMS 

NOZKES 78 0.18 111 1 0.23 
KAYTUZ 22 0.44 51 1 0.42 

BZAMID02 39 0.67 53 3 0.46 
HBIURT10 106 0.32 171 2 0.46 

 
Table 2.3: Results of reranking MGAC-CHARMM lowest energy 

structures using QE optimization. 
 



 
  

 

 

 

Figure 2.4: Results of reoptimization of MGAC-CHARMM NOZKES results with QE. The CHARMM ranking 
is indicated by the x axis scale.  The QE energies are for a single molecule and given relative to the energy of 
the QE optimization of the experimental structure. The gray vertical line marks the MGAC-CHARMM 
match to the experimental structure. 
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Figure 2.5: Reordering based on reoptimization of KAYTUZ MGAC-CHARMM crystal 
structures with QE. The QE column has two fewer entries due to unphysical CHARMM 
structures and one structure that did not converge among the 51 lowest energy 
structures. The blue indicates the match to the experimental structure whereas the red 
indicates the remainder of the top ten lowest QE energy structures. 

 



38 
  

 

 
was found to be at 0.00468 Ry (1.47 kJ/mol) relative to the energy of the QE optimized 

structure.  The unpredictable nature of the reordering is shown by the connection of the 

ten lowest QE structures, shown in red and blue.   

 The remaining two cases tested show similar energy reranking characteristics. In 

the case of HBUIRT10, the structure which matched the known crystal structure was 

ranked 106 by the CHARMM energies, but after QE optimization it became the second 

lowest in energy, with both structures within 10-4 Ry from the QE energy of the 

experimental structure.  

For BZAMID02 the match to the experimental structure was found to be third 

(0.0020 Ry or 0.63 kJ/mol relative to the QE energy of the experimental crystal structure), 

with two different herringbone-like motif structures coming in at lower energy, -7.1×10-5 

Ry (-0.02 kJ/mol) and 0.00014 Ry (0.44 kJ/mol) relative to the QE energy of the 

experimental structure. The three lowest energy BZAMID02 structures display a high level 

of similarity to each other.  Figure 2.6 shows cross-sections of these structures and the 

planar nature of the sub-lattices which results in a herringbone-like motif.  The aromatic 

rings form interlocking pockets at the interface of each planar section (black line) such 

that the orientation of one planar section relative to the other is constrained to rotations 

of 90° or -90°. Furthermore, the orientation of the amides in each planar section relative  

to the other creates an additional parameter to distinguish between potential structures.  

This corresponds to four theoretical structures which should be very energetically similar; 

the top three structures correspond to three of these configurations. We were unable to 

find a structure resembling the fourth configuration in any of our optimized structures, 

and in examining the CDCC database, we were unable to locate any of these configurations 

except for the one corresponding to the experimental structure. The absence of other 

experimental configurations may have two possible explanations: 1) the nature of the 

planar interface may allow for all four configurations to coexist in a single crystal, which  
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Figure 2.6:  Cross sections of the three lowest energy structures from the BZAMID02 
reranking. The black structure is the experimental match, ranked third. Red is an 
inversion of the top ranked structure, and blue is the second ranked structure. The left 
side of each structure is identical in three-dimensions, aside from minor differences in 
unit cell parameters. Symmetry operations with respect to the plane indicated by the 
thin black lines produce the other half of each structure.  
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may be lost due to experimental averaging or during refinement, or 2) the growth of the 

crystal favors one set of configurations.  

 
Conclusions 

These findings are consistent with other work where electronic structure 

optimizations are being used to correctly rank structures produced by force field 

approaches.  We have shown that this method is equally applicable to our GA-based 

method, and that DFT-D optimization can produce high quality structures consistently 

and effectively.  Furthermore, our system can identify and energetically distinguish highly 

similar structures, as seen in the case of BZAMID02 and HBIURT10. We fully expect that 

integration of MGAC and QE will provide a useful tool to the scientific community where 

quality CSP software is not freely available.  
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CHAPTER 3 
 
 

AN IMPROVED METHOD FOR BUILDING CRYSTAL STRUCTURES 
 

FROM GENETIC ALGORITHM BASED SCHEMA IN  
 

CRYSTAL STRUCTURE PREDICTION 
 
 

 A fundamental step in the process of generating structures in the Modified Genetic 

Algorithm for Crystals (MGAC) is the transformation of the genetic schema into a three- 

dimensional structure. This is important for two reasons: 1) The formation of a crystal 

structure from a schema does not have fixed unit cell lengths, which are dependent 

parameters that are constrained by the shape and orientation of the molecules in the unit 

cell (Bazterra et al., 2002a); 2) A volume filter is applied to the population to restrict the 

search space to reasonable structures, and so the volume of the unit cell must be 

minimized as much as possible. The second reason is also important when using Quantum 

Espresso because the cost of a volume minimizing step in QE is much higher than simply 

minimization based on steric hindrance due to the energy and force calculations involved 

in QE minimization. In MGAC1, suboptimal volume optimization was not a problem 

because CHARMM could perform optimization steps very quickly, but in MGAC1-QE, 

when the evaluation method was switched to DFT-D, this was a significant issue due to 

the much longer calculation times. The design of the fitcell routine is also important 

because a poor design can result in undesirable bias, as will be shown later in this chapter. 

Also, as was mentioned in Chapter 1, new parameters were added to the genetic schema 

for MGAC, so the rational for that addition is presented in this chapter. In the course of 

performing predictions with MGAC1-QE on glycine, a peculiar tendency in the structure 
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generation was identified that caused problems with the prediction of Gamma glycine. 

Gamma glycine is in space group P31/P32 (Boldyreva et al., 2003), a space group with a 

primary screw axis, that is, an axis where the rotations of molecules in symmetry 

operations are constrained to rotations about one axis, with translations only occurring 

along that same axis. Careful inspection of the glycine populations showed a tendency to 

favor an elongated primary axis, which was suspicious. Further analysis was performed by 

tightening the volume constraints, and it was confirmed over a population of more than 

100 individuals that there was a strong preference for structures with an elongated 

primary axis, a bias which should not exist. This was shown to be true in P31/P32, as well 

as P21.  

A mathematical analysis of this issue revealed a deficiency in the schema 

formulation with respect to the unit cell lengths.  It is generally true that the unit cell 

lengths are constrained by the shape and orientation of molecules contained within the 

unit cell. However, some space groups need an additional term to take cell length ratios 

into account, an issue which is most effectively demonstrated by comparison of two 

extreme types of cells in P31/P32. In P31/P32 there are two forms of unit cell, the thin 

elongated form and the flat wide form, shown in Figure 3.1. All other cells can be formed 

as an approximate ratio of these two structures. In each unit cell the molecules are labelled 

1, 2, and 3, corresponding to their respective symmetry operations as defined in the ITC 

tables (Hahn, 2002); because the only nontrivial operation is a screw axis rotation, each 

molecule rotates by 2π/3 radians about the central axis, and is translated along the central 

axis by one third of the unit cell length relative to the previous symmetry element. If we 

consider stacking (or occlusion) of molecules along the main screw axis, we see that there 

are two different arrangements of molecules: the elongated unit cell, in which the 

interaction pattern along the primary axis is -1-2-3-1-2-3-, and the flat unit cell, where 

there are three separate stacking patterns along the primary axis of the form -1-1-1-,  
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Figure 3.1: Hypothetical flat (left) and elongated (right) unit cells in space group P31. 
The arrows indicate relative orientations of each molecule, which are represented by 
the spheres. In the side view, extensions of the lattice are represented by dotted circles. 
In the flat form, symmetry equivalent molecules form rods, whereas in the elongated 
form the symmetry equivalent molecules form sheets or planes.  
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-2-2-2-, and -3-3-3-. Taking into account full translational symmetry, the distinguishing 

factor is that symmetry equivalent molecules form planar sheets in the flat form, and rods 

in the elongated form. Because the symmetry elements of the space group constrain 

rotations to only one axis, it is impossible to pick a different set of cell parameters such 

that these two separate unit cells can be represented independently in the absence of a 

term representing the unit cell ratios. The MGAC1 schema coupled with the structure 

generation algorithm (named fitcell) suffers from this deficiency by favoring the elongated 

form.  

Because the addition of new schema elements required modification to the fitcell 

algorithm, fitcell has been rewritten in the more recent versions of MGAC. Furthermore, 

the MGAC1 fitcell was heavily dependent on CHARMM to perform certain operations; this 

dependency needed to be removed to achieve the goal of having MGAC be completely open 

source.  The remainder of this chapter will comprise two sections: in the first, the original 

fitcell in MGAC1 will be described along with some additional issues needed to fully 

understand our methods. In the second section, the new version of fitcell will be described 

in detail, along with potential pitfalls and improvements that could still be implemented 

in the design of the algorithm.  

 
MGAC1 Fitcell 

 The original fitcell algorithm as derived from the MGAC1 source code3 follows: 

1. Prior to the generation of the unit cell, the dihedrals angles are implicitly applied 

and the rotations are performed on the molecules. Symmetry-based rotations are 

also applied to individual molecules where applicable. 

                                                           
3 The original description of the fitcell algorithm was written in Spanish by a former member of the Facelli 

group (V. Bazterra, PhD Dissertation, University of Buenos Aires), so the algorithm is presented here in 
English. Because changes to the algorithm might have been made since the original deposition of the fitcell 
algorithm, the algorithm shown is derived from the implementation in the most recent versions of MGAC1.  
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2. The unit cell parameters are checked and constrained based on the lattice type of 

the respective space group. If the unit cell factor (the component of the volume 

calculation excluding cell lengths) is below 0.1, then it is rejected. The cell lengths 

are set to a very large value, dependent on molecule size. 

3. The molecules are placed in the unit cell and positioned based on the fractional 

symmetry positions, taking into account the position component of the schema. 

Rotations or inversions resulting from symmetry elements of the space group are 

also applied. 

4. Once the molecules are placed, a step-wise scaling process occurs. Through the 

effects of steps 2 and 3, each molecule should be contained in a box that matches 

the lattice shape. The box is scaled until every atom of the molecule is completely 

contained by the box, plus an additional buffer volume defined by the distcell 

parameter. 

5. Once the scaling is complete, the volume of the unit cell is calculated.  

Generally speaking, the majority of the original fitcell was designed well, aside from some 

issues with the order of operations which resulted in some computational inefficiencies. 

Moreover, because MGAC1 was previously successful in making predictions (Bazterra et 

al., 2002a; Kim et al., 2009), it indicates that under the right conditions this algorithm 

worked. However, step 4, the volume minimization step, creates a bias that results in 

problems for a substantial number of searches.  

 Figure 3.2 illustrates the issue caused in this step of the original fitcell. The outer 

box represents the asymmetric unit cell of an arbitrary space group, with the dashed line 

representing the buffer volume around the molecule, and the ellipse representing the 

shape of the molecule. Because the molecule is completely encapsulated in the asymmetric 

unit cell, it naturally excludes a large number of valid structures, including but not limited 

to all molecules that have effective Z’=0.5. Put differently, because the molecule cannot  
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Figure 3.2: The final volume minimization step of the MGAC1 fitcell algorithm. The cell 
lengths of the unit cell are minimized until a thin volume encapsulates each molecule, 
the boundary of which is denoted by the dashed line. In space groups with multiple 
molecules this boundary is established around the asymmetric unit cell. In many 
structures deposited in the CSD database, molecules will cross the unit cell boundary, 
highlighting the disadvantage of using this algorithm, because it unnaturally excludes 
those valid structures.  
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cross the boundary of the unit cell –or– the asymmetric unit, configurations that form 

valid space groups by centering molecules at one of the vertices of the unit cell are excluded 

from the search. A simple cursory inspection of the CSD database (Allen, 2002) further 

reveals that a significant number of crystal structures have this property, and so this is an 

undesirable trait of the original fitcell algorithm.  

A secondary problem is the treatment of volume restriction in this case. Because 

volume restriction must happen before optimization and energy evaluation, it is 

impossible to perform any kind of volume reduction. The presence of the buffer zone, 

although tunable, leads to volume inflation of the unit cells produced by fitcell. Although 

this is technically allowable, it can lead to some issues during optimization. As mentioned 

before, the presence this buffer area will increase the optimization steps required because 

of the increased volume reduction needed, which is especially problematic in Quantum 

Espresso. In QE this can also lead to the “radial fft” error (see source code, Giannozzi et 

al., 2009), which is a problem with volume changes impacting the accuracy of performing 

Fourier transforms on point meshes, requiring troublesome restarts of QE to preserve 

calculation quality. 

 Some additional issues that were present were problems with consistency in 

rotations and dihedral application. In some cases, the orthogonality of rotation matrices 

was not preserved, leading to instances where the shape of the molecule could be skewed. 

In both the cases of dihedrals and rotations, operations were applied somewhat 

inconsistently, in that zeroing operations were not performed consistently to validate the 

operations being output. Also, because these operations were not incorporated in the 

fitcell algorithm efficiently, there were several optimizations identified that could reduce 

workload. The combination of these factors led to problematic bias issues and other 

problems when the integration of QE with MGAC1 was undertaken. The next section 

discusses a number of changes that were implemented in MGAC2 to overcome these 
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issues.  

 
MGAC2 Fitcell  

 The algorithmic steps in the new fitcell are detailed as follows (and shown in Figure 

3.3): 

1. Any previous fitcell operations are undone through the removal of symmetry 

equivalent molecules.  

2. The unit cell lattice type is enforced, with mathematically invalid unit cells 

being rejected as detailed in Foadi and Evans (2011). (Invocation of this check 

before dihedral applications is preferable for optimization reasons).  

3. The center of mass of each molecule is calculated based on atomic positions 

and the coordinates of the molecules are adjusted to be centered about the 

origin in Cartesian space.  

4. For each molecule in the asymmetric unit cell, dihedral modifications and 

rotations are applied. Since the previous configurational state of the molecule 

might be unknown, these steps include a zeroing step to arbitrary angles and 

rotations. The connectivity of each molecule after dihedral modifications is 

tested for violation of steric hindrance before rotations are applied. 

5. The space group operations are collected, and the symmetry based rotations 

are applied to copies of the molecule. Fractional positions based on the  

schema and space group operations are assigned at this point, but they are not 

applied to the actual atomic coordinates. 

6. A supercell of 3 x 3 x 3 unit cells is generated from the symmetrized and rotated 

unit cell. This supercell is given unit cell lengths equal to the ratios of the unit 

cell lengths. 
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Figure 3.3: The MGAC2 fitcell process. In the initial steps the molecule is adjusted so 
the center of mass is at the origin in Cartesian space, followed by adjustment of the 
dihedral angles and rotation of the molecule. Following that, the symmetric copies of 
the molecule are generated and 3 x 3 x 3 supercell is built. The cell lengths of the 
supercell are doubled until there are no inter molecular contacts (represented by the red 
starburst). The cell lengths are then minimized over the range specified by the two cell 
lengths using a binary search until there are no contacts and the change in distance is 
less than 0.125 angstroms.  
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7. The unit cell size is increased by doubling the unit cell lengths until all atoms 

interatomic distance shorter than the combined Van der Waals radii (Bondi, 

1964; Rowland  R., 1996) of both atoms plus some buffer distance (typically 0.1 

angstroms).  

8. Once all molecules are no longer touching each other, the unit cell size is 

decreased using a binary search; the length of the unit cells is decreased or 

increased by half the previous change in length until all molecules are no longer 

touching and the change in all cell lengths is less than 0.125 angstroms.  

The primary difference between this fitcell and the previous version, aside from the 

introduction of ratios, is that the molecular positions are not constrained by the 

asymmetric unit cell, but instead only by steric hindrance between molecules. This allows 

for much improved packing properties and removes the issues presented in the previous 

method. With this new algorithm, most bias issues are removed and unit cells for glycine 

and histamine that were previously unobserved in MGAC1 predictions have been readily 

produced.  

 A second set of improvements is the approach to dihedrals and rotations; 

anywhere a rotation matrix is used in the algorithm, a stabilization method is used to verify 

the orthogonality of the matrix so that skew operations do not happen. Furthermore, the 

application of rotations and dihedrals happens in a logical order so that calculations are 

not duplicated unnecessarily, leading to improved efficiency. A caveat to this is that, 

although the matrices are stabilized, the method used still allows a limited amount of 

numerical drift. However, because of the structural optimization steps performed prior to 

energy evaluation, the effects of this drift are eliminated in the calculation of the final 

energies.  

 Although this new fitcell is improved in many respects, there are new unresolved 

issues that need to be addressed in the new fitcell. In particular, the treatment of co-
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crystals and systems with Z’ > 1 is not handled in an effective manner in this new fitcell 

algorithm. The introduction of extra molecules makes finding efficiently packed structures 

much more difficult and computationally expensive. The essential step that needs to be 

taken in this endeavor is the construction of a globular asymmetric complex of molecules 

based on genome properties. A first approximation to the correct means of achieving this 

follows:  

1. The order of molecular placement is established via arbitrary genome encoding. 

Each molecule is then placed in the globular unit based on that order. 

2. The first molecule is set to its zero rotation and centered about the origin. This is 

the start of the globular unit. 

3. For each successive molecule, dihedrals are applied, and then the molecule is 

rotated according to its internal rotation gene. Then, the molecule is added to the 

globular unit, using the position vector from the molecules gene as a basis for the 

position. The distance between the molecule and globular unit is increased and 

then decreased using the same binary method used to establish optimize volume 

in the main fitcell routine until the distance between the molecule and globular 

unit is optimized.  

4. Once all molecules are placed, the entire globular unit is rotated according to the 

rotation matrix of the first molecule in the unit cell. This unit is then treated as a 

single entity by fitcell.  

The proposed fitcell method, although promising, may or may not escape the issue 

presented in the current fitcell. Particularly troubling is the establishment of molecular 

placement order. It is not clear what the best way to approach this would be, for example, 

if the placement order should be mutable for a given molecular system or not. This is also 

an issue with respect to the use of the position vectors as described in step 3; can position 

vectors be used in the proposed way for both fractional placement in the unit cell and as a 
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relative position vector? These problems will need to be addressed before MGAC2 is ready 

to be used for more complex molecular systems.  

One tempting potential method that was initially explored but abandoned is the 

optimization of unit cell positions and cell ratios. Optimization of both terms has proven 

to be problematic in implementation and effect. Attempts at optimizing molecule 

positions in the unit cell during fitcell produced inconsistent results and were difficult to 

validate as useful initially. Additionally, problems arose in certain space groups where the 

positions of the molecules almost universally collapsed to identical points in space 

regardless of starting position, leading to extreme bias. Optimizing the cell ratios led to a 

different set of problems; although it was still possible to overcome the bias issues of the 

original fitcell while optimizing cell ratios, the optimization process led to flat or elongated 

unit cells depending on the starting ratios. Consequently, the results of these cursory 

studies into positional and ratio optimizations were rejected in favor of allowing the GA to 

handle the optimization of those parameters.  

The fitcell algorithm described in this chapter was validated by the results 

presented in the next two chapters. In Chapter 4, the method was shown to be successful 

in CSP searches for three polymorphs of glycine. Chapter 5 repeats the experiment with 

the flexible molecule histamine, and was also successful in predicting the natural 

structure. 
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Abstract 

 Here we present the results of our unbiased searches of glycine polymorphs 

obtained using the Genetic Algorithms search implemented in Modified Genetic 

Algorithm for Crystals coupled with the local optimization and energy evaluation provided 

by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures 

of a biomedical molecule using solely first principles calculations. We were able to find all 

the ambient pressure stable glycine polymorphs, which are found in the same energetic 

ordering as observed experimentally and the agreement between the experimental and  

                                                           
4 Reprinted from Chemical Physics Letters, 626, pp 20-24, Copyright 2015, with permission from Elsevier. 
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predicted structures is of such accuracy that the two are visually almost indistinguishable.  

 
Introduction   

 More than a decade ago Professor Desiraju published (Desiraju, 1997) a critical 

article identifying crystal structure prediction as one of the most important unsolved 

problems in computational material science and questioned if this problem could ever be 

solved. Since 1997 there has been much effort towards the goal of being able to readily and 

reliably predict, by computational methods alone, the crystal structure of a molecule based 

only on its chemical diagram (Bardwell DA et al., 2011; Kendrick et al., 2011; Lehmann, 

2011; Day, 2012). The process to do this is depicted in Figure 4.1.  

The ability to accomplish this goal has far reaching implications well beyond just 

intellectual curiosity.  On a basic science level, this can lead to an understanding of the 

principles that control crystal growth, by providing accurate information on the crystal 

energetics necessary for any further dynamical model of aggregation.  More practically, 

the ability to successfully predict crystal structures based on computation alone will have 

a significant impact in many industries for which crystal structure and stability plays a 

critical role in product formulation and manufacturing, including pharmaceuticals, 

agrochemicals, pigments, dyes and explosives (Datta and Grant, 2004).  

The current status of crystal structure prediction (CSP) can be evaluated by the 

performance of the participants in the periodic blind tests that have been organized by the 

Cambridge Crystallographic Data Centre (CCDC) (Day et al., 2005, 2009; Bardwell DA et 

al., 2011). The results of the last two blind tests showed the advantage of using dispersion 

corrected density functional theory (DFT-D) (Grimme, 2004, 2006; Grimme et al., 2010) 

to create a tailored molecule specific force field that is used to generate trial structures and 

to reorder a subset of the trial structures in search of the lowest energy crystal structures 

(Neumann and Perrin, 2005; Neumann, 2007, 2008; Neumann et al., 2008; Kendrick et  
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Figure 4.1. Overview of the Crystal Structure Prediction (CSP) process, which attempts 
to predict the structure or structures (when polymorphs exist) of a molecular entity 
based solely in its chemical diagram. The prediction of these structures directly from 
first principles has been identified as one of the greatest challenges remaining in 
computational molecular sciences. 
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al., 2011). The software used in this approach is proprietary.  There has also been an 

attempt to utilize first principle calculations to predict the crystal structure of organic 

crystals (Zhu et al., 2012), in which the authors used a two-step approach optimizing the 

crystal structures with constrained molecular geometries in the initial stages and allowing 

full relaxation in the final stages. In this approach the authors used a combination of open 

source and proprietary software tools for the constrained and fully relaxed optimizations. 

 These results lend promise to using DFT-D methods to completely replace 

molecular mechanics and/or multistep optimization approaches as the method of choice 

for the evaluation of the energies of the trial crystal structures in CSP. To the authors 

knowledge there are no reports of any open source software capable of successfully 

predicting crystal structures of molecules of biomedical interest directly from first 

principles without using either common or tailored potentials as intermediate steps 

and/or multistep optimization strategies. 

It is important to realize that local optimization of plausible crystal structures is 

not a feasible approach for CSP. We have recently demonstrated (Lund et al., 2013), using 

a set of drug like molecules, that local optimization using full DFT-D results in near 

experimental structures only when the starting point is quite close to the experimental 

one. Therefore, global optimization with a reliable and universal energy function is 

necessary for accurate CSP. 

The MGAC (Modified Genetic Algorithm for Crystals) package has been developed 

in our lab over the last decade (Bazterra et al., 2002a, 2002b, 2004, 2007; Kim et al., 

2009).  MGAC is capable of doing CSP for any space group, any number of molecules per 

asymmetric unit, and can take into account the conformational flexibility of the molecule 

both at the local and global optimization levels. This allows an efficient, GA (Genetic 

Algorithms) based, global exploration of the crystal energy landscape.    The previously 

released versions of MGAC relied on the use of the CHARMM (Brooks et al., 1983; 
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MacKerell et al., 1998) molecular mechanics program using the Generalized Atomic Force 

Field (GAFF) (Wang et al., 2006) for the energy evaluation and local minimization of the 

GA trial structures. 

Previously, we used the set of molecules present in the Karamertzanis and Price 

(K&P) paper (Karamertzanis and Price, 2006), to demonstrate the capabilities of the 

MGAC-CHARMM program (Kim et al., 2009). These results demonstrated that the 

implementation of the GA in MGAC was effective and was always able to find the correct 

experimental structures provided that the GAFF potential energy represented the 

experimental energy landscape with sufficient fidelity.  However, the matches to the 

experimental structure ranged from rank 1 to rank 1182 in terms of energy, highlighting 

the second issue with the use of the generic force field, namely the unreliability of the 

energy ranking.   

Our more recent work (Lund et al., 2013) has demonstrated that when using 

Quantum Espresso (QE) to locally optimize the experimental structures in the K&P set the 

calculated local minima structure compares well with the experimental structure in all 32 

of the molecules, with RMS differences ranging from 0.056 to 0.459 Å.  This implies that 

for unknown structures, an approach which couples the use of MGAC with energy 

evaluation using QE will be successful in finding the “true” experimental structures.  

In this article we report the results of our unbiased searches for glycine polymorphs 

obtained using the global GA search implemented in MGAC coupled with local 

optimizations and energetics provided by QE (MGAC1-QE). To our knowledge here we 

demonstrate for the first time that it is possible to predict the crystal structure of a 

molecule of biomedical interest, glycine, using solely first principles calculations (DFT-D) 

of the crystal energetics without using any intermediate steps, such as constructing special 

interatomic potentials, reordering the structures found by the search algorithm and/or 

using multistep search strategies with nonuniform approximations for the energy 
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calculations. The only difference in the calculations presented here and a complete blind 

CSP search is that we only performed searches in the known space groups of each of the 

three stable polymorphs of glycine. 

 
Methods 

Using the existing MGAC framework we have integrated the QE calculation of the 

energy and local optimizations into the framework as well as reworked the way in which 

the initial populations are selected and how the genetic algorithms were implemented 

(MGAC1-QE). A full account of the technical and computational details of the integration 

of QE into the MGAC framework will be presented in detail elsewhere, along with the 

documentation and instructions on how to use the software that we will make available as 

an open source tool.  

Glycine’s biological interest, relatively small size and polymorphic characteristics 

make it a good case to demonstrate the ability of MGAC1-QE to predict the crystal 

structures of biomedical relevant compounds.  Glycine is a precursor to the synthesis of 

proteins, a building block to numerous natural products, and provides the central C2N 

subunit of all purines. It is a relatively small, semi rigid molecule, for which polymorphism 

is well established in the literature. The existence of polymorphism is critical to 

demonstrate the usefulness of MGAC1-QE to successfully predict crystal structures of 

biomedical interest for which the existence of polymorphism is prevalent (Datta and 

Grant, 2004).  

Glycine has three room temperature and atmospheric pressure polymorphs: α-

glycine (P21/c) (Aree and Bürgi, 2012), β-glycine (P21) (Tumanov et al., 2008), and γ-glycine 

(P31/P32) (Boldyreva et al., 2003) (stability order: γ-glycine > α-glycine > β-glycine), as well 

as two high pressure polymorphs, δ-glycine (high pressure of the β-glycine form) 

(Tumanov et al., 2008), and ε-glycine (the high pressure form of the γ-glycine form) 
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(Boldyreva et al., 2005). For the purpose of comparison of our results we used the 

following glycine reference structures from the Cambridge Structural Database (CSD): 

GLYCIN98 for α-glycine (Aree and Bürgi, 2012),  GLYCIN71 for β-glycine (Tumanov et al., 

2008), and GLYCIN33 for γ-glycine (Boldyreva et al., 2003). These three experimental 

structures were locally optimized using the QE vc-relax option, which allows for 

optimization of the unit cell parameters along with all atomic coordinates, with the same 

QE parameters used in our previous work (Lund et al., 2013). In all cases the experimental 

structures converged to local minima in close proximity to the experimental structures.  

The QE energies for these local minima structures are Eα-glycine = -147,662.07 kJ/mol, Eβ-

glycine= -147,659.78 kJ/mol, and Eγ-glycine = -147,663.10 kJ/mol, which reproduce the 

experimental stability order: γ-glycine > α-glycine > β-glycine. 

Following these preliminary tests we conducted unbiased global searches for 

crystal structures in the following space groups, with a number of molecules per unit cell 

given in parenthesis: P21/c (4), P21 (2) and P31 (3). All calculations were performed using a 

population size of 120 individuals, a replacement rate of 1.0 per generation, and the 

searches were run for 50 generations. The probability of an individual being mutated was 

0.01, and the probability of a crossover occurring between two individuals was 1. The 

selection method was a roulette wheel, using linear scaling of the energy, with the lowest 

energy structure having the largest selection probability. The optimization parameters for 

the QE optimization were again identical to those used by Lund et al. (2013) The DFT 

functional used was the Perdew-Burke-Ernzerhof generalized gradient approximation 

(Perdew et al., 1996c).  The dispersion correction method selected was the semiempirical 

D2 method proposed by Grimme as implemented in Quantum Espresso (Grimme, 2006). 

The self-consistency threshold was set to 10-7 Ry and the plane wave cutoff energy was set 

to 55 Ry per the recommendation of the pseudopotentials creators.  The pseudopotentials 

used for glycine were the Rappe-Rabe-Kaxiras-Joannopoulos-Ultrasoft pseudopotentials 
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provided at the QE website, http://www.quantum-espresso.org/. 

Calculations were performed on a LINUX cluster using six 16-core nodes (2 x 8-

core Intel Xeon E5-2670 processors clocked at 2.60 GHz), with 64 GB memory per node 

and Mellanox FDR Infiniband for node interconnectivity. The total number of core hours 

for each run was: α-glycine: 10,238 core hours; β-glycine: 7,174 core hours; and γ-glycine: 

9,518 core hours.  Therefore, the total number of core hours used for these three searches 

was 26,930, which represent a total elapsed time of approximately 12 days. 

 
Results and Discussion 

The results of the analysis of the populations generated by the MGAC-QE runs 

described above are presented in Figure 4.2. This figure presents, as suggested by Price 

(Price, 2009), the distribution of the energies of crystals in the MGAC populations as 

function of their volume. As expected when polymorphism is present, the plot shows a 

great deal of crowding and the volume energy pairs of the different polymorphs are not 

well separated (Price, 2009). This clustering of the three polymorphs reinforces that 

glycine is a challenging case for CSP, and therefore a stringent test for the MGAC-QE 

method. From the figure it is also apparent that the structures found by MGAC-QE (solid 

symbols) for each of the symmetry groups studied here closely match the experimental 

ones (hatched symbols) corresponding to the most stable polymorphs, in the same space 

group. Notably, in some initial generations we observed structures where the protonation 

state of glycine was altered and the non-zwitterionic form was adopted. This is made 

possible by the unconstrained optimization algorithm in QE. These structures were 

typically much higher in energy (by >80 kJ/mol) than structures remaining in the 

zwitterionic form, and were therefore eliminated rapidly from the population. The 

conclusion drawn from this is that one must be careful to identify low energy structures 

where the protonation state (and in general, bonding state) might be altered.  
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Figure 4.2. The distribution of the energies of crystals in the MGAC-QE populations as 
a function of the molecular volume. The crystals structures corresponding to the P21/c, 
P21, and P31 GA runs are represented by squares, circles, and triangles, respectively. The 
hatched markers correspond to the experimental structures and the solid ones to the 
lowest energy structures found by MGAC-QE. 
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In Table 4.1 the crystallographic parameters and the calculated energies of the best 

structures found by MGAC-QE for each of the space groups considered here along with 

the RMS between them and the corresponding experimental structures are given. The 

results in Table 4.1 show an excellent agreement between the MGAC-QE predicted 

structures and the experimental ones; the agreement is apparent in both in the cell 

parameters as well as the RMS difference between the experimental and predicted 

structures. The RMS values can be compared to the RMS values observed when comparing 

different experimental structures of the same polymorphs reported in the CSD; for 

instance, the RMS between α-glycine structures GLYCINE89 and GLYCINE17 is 0.026 Å, 

for β-glycine structures GLYCIN74 and GLYCINE25 is 0.114 Å and for γ-glycine structures 

GLYCIN65 and GLYCIN15 is 0.07 Å.  

 The energies of the MGAC-QE predicted structures follow the experimental 

stability order: E γ-glycine < E α-glycine < E β-glycine, with α-glycine and β-glycine 70 J/mol and 

1,950 J/mol, respectively, less stable than γ-glycine. These values can be compared with 

recent values from the literature34 of 962 J/mol and 1,506  J/mol, respectively, obtained 

using the DFT method plus many body dispersion correction and zero point energy 

corrections (PBeh + MBD +ZPE) (Marom et al., 2013).  

The graphical comparison between the experimental and the best MGAC-QE 

structures is presented in Figs. 4.3-4.5. This comparison does not require additional 

discussion, as it is apparent that the agreement is of such quality that the two structures 

are almost indistinguishable.    

In conclusion, using MGAC-QE we were able to find each of the ambient pressure 

stable polymorphs of glycine when searching in their corresponding space group. The 

match to the experimental structure was the lowest energy structure found in each of the 

three searches. The polymorphs encountered by MGAC-QE are energetically ordered in 

agreement with experimental results and the comparison of the experimental and  



 
  

 

 

Polymorph  SPG Energy  d Cell Parameters e RMS f 

    a b c α β γ  
α-glycine MGAC-QE P21/c -147,663.00 5.0517 11.7146 5.7965 90.0 120.3102 90.0 

0.097 
 Expa   5.0874 11.7817 5.4635 90.0 112.0530 90.0 
           

β-glycine MGAC-QE P21 -147,661.12 5.6840 6.0727 5.0305 90.0 119.8711 90.0 
0.199 

 Expb   5.3880 6.2760 5.0905 90.0 113.1200 90.0 
           

γ-glycine MGAC-QE P31 -147,663.07 6.9166 6.9166 5.4983 90.0 90.0 120.0 
0.087 

 Expc   7.0383 7.0383 5.4813 90.0 90.0 120.0 

 
Table 4.1. Comparison of the energies and geometries of the α-glycine, β-glycine, and γ-glycine structures found by MGAC-QE with 
the reference experimental structures. 

 

 

a  Structure GLYCIN98 (10 K) from (Aree and Bürgi, 2012). 
b  Structure GLYCIN71 (room temperature) from (Tumanov et al., 2008). 
c  Structure GLYCIN33  (room temperature) from (Boldyreva et al., 2003). 
d Energy in kJ/mol for the lowest energy found by MGAC-QE in the corresponding space group. 
e Crystallographic axis in Å, cell angles in degrees. 
f Computed using the Solid Form Crystal Packing Similarity method in Mercury CSD with 15 molecules for comparison and ignoring 
hydrogen atoms (Chisholm and Motherwell, 2005). 
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Figure 4.3.  Comparison of the experimental structure of the α-glycine CSD structure 
GLYCIN98 from (Aree and Bürgi, 2012) (black) with the lowest energy structure found 
by MGAC-QE in the P21/c space group (green). 
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Figure 4.4. Comparison of the experimental structure of the β-glycine CSD structure 
GLYCIN71 from (Tumanov et al., 2008) (black) with the lowest energy structure found 
by MGAC-QE in the P21 space group (blue). 

 



66 
  

 

 
  

Figure 4.5. Comparison of the experimental structure of the γ-glycine CSD structure 
GLYCIN33 from (Boldyreva et al., 2003) (black) with the lowest energy structure found 
by MGAC-QE in the P31 space group (white). 
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predicted structure is of such accuracy that the two are visually almost indistinguishable. 

When the success of MGAC-QE is compared with the results for glycine in Zhu et al. 

(2012), it becomes apparent that allowing the full relaxation of both molecular and crystal 

structural parameters as well as using a single approach for the calculation of the crystal 

energies at all stages of the global optimization is critical for successful CSP. However, 

there is already enough evidence in the literature that current functional and dispersion 

correction lattice energies may not be adequate for all crystals, particularly disordered 

ones, therefore new DFT approaches may be needed to address those systems. 

 The computer times required by the calculations reported here are significant, but 

manageable. Computer times for larger systems will be a significant challenge, but we are 

confident that we will be able to greatly improve performance once we better understand 

the optimal GA parameters like population size, replacement, and number of generations, 

and are able to make use of emerging computer technologies like GPU accelerators. A truly 

blind test of the method, exploring most common space groups and/or using searches in 

P1 with different number of molecules per unit cell is the next goal. The exact search 

strategies will be defined by studies that are underway in our laboratory to establish the 

most efficient search protocols for blind test CSP. The results of this exploration will be 

used to participate in the current sixth CSP blind test, and our results will be presented at 

the 2015 Cambridge Crystallographic Data Centre meeting in the fall of 2015. 

 
Conclusions 

The results presented here show that it is possible to predict the crystal structures 

of molecules of biomedical interest from first principles without using any intermediate 

potentials, energy reordering strategies and/or step wise optimization strategies. With 

these results we believe that we can answer Professor Desiraju’s question with an 

unquestionable yes! Crystal structures can be predicted from first principles and with 



68 
  

 

 
existing computational resources and appropriate optimization of our methods, CSP can 

become a standard tool for material design. 
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CHAPTER 5 
 
 

DEPOSITION OF HISTAMINE PREDICTION RESULTS 
 
 

 Histamine is a small molecule with three degrees of internal freedom which 

participates in a number of important physiological and biological processes (Lopez, 

2002; Haas et al., 2008; Leurs et al., 2009). It is also included in the Karamertzanis-Price 

dataset as an example of a pharmaceutically relevant molecule, and so its use as a molecule 

for validating CSP has been established (Karamertzanis and Price, 2006). In this short 

study, two independent predictions of histamine are presented to establish the predictive 

power of MGAC1-QE, to complement the results of Chapter 4.  

 
Methods 

 Two independent MGAC1-QE runs were performed on histamine in the native 

space group P21 (CSD designation HISTAN) (Bonnet and Ibers, 1973). The parameters for 

the GA were set to a population size of 90, with  replacement three times the size of the 

population at each generation (Lund et al., 2015). The volume constraints were set to 

-50% to 200% of the estimated system volume. The maximum generation cutoff was set 

to 200. The optimization parameters for QE optimization and energy calculations were set 

to the same parameters used in Lund et al.  (2013). For all optimizations, a maximum of 

70 optimization steps were allowed to complete.  

 
Results 

 Both prediction runs were successful in obtaining the correct structure of 

histamine. For unknown reasons the first prediction run experienced an error after the 
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fourth generation, and did not produce any valid structures after that point, however, both 

predictions were able to generate a matching structure within the first two or three 

generations. Importantly, in the other prediction run, which completed ten generations, 

the highest six ranked structures all matched the experimental structure of histamine. 

Volume-energy plots of both prediction runs are presented in Figure 5.1, where the 

expected funnel is clearly shown for both structures. The energies of the best structure 

from runs one and two are -167,063.35 kJ/mol and -167,069.05 kJ/mol, respectively, 

which are in good agreement with the energy calculated from optimizing the known 

experimental structure, which is -167,069.34 kJ/mol. Table 5.1 gives the unit cell 

information for each of best structures and for the experimentally determined histamine 

structure; the agreement of unit cell parameters is very high for the second run, which is 

expected, and the parameters for the first run are also quite good, given the low refinement 

quality. This can be visually verified for both structures in Figure 5.2, which shows an 

alignment of the best structure from each run with the experimentally determined 

histamine.  

 
Conclusion 

 With these results it is apparent that MGAC1-QE is able to predict the structure of 

histamine. This is a marked improvement over MGAC1, which although successful in 

predicting histamine, was unable to directly find the structure of histamine in the native 

space group with Z’=1 in the unit cell. The success of this prediction also supports the 

assertions in Chapter 1 that a higher level of theory is a valid means of calculating energies 

for highly flexible molecules. Generally, this can be interpreted as meaning that when the 

space group is known, MGAC is more than capable of making successful predictions. Given 

this knowledge, the next major problem is to address the problem of handling full blind 

test systems, including multiple space groups. In the next chapter, an exploration of this  
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Figure 5.1: The volume energy plots of the first (top) and second (bottom) MGAC1-QE 
prediction runs. In both graphs the color of the data point indicates the generation that 
the structure evolved. The inverted red triangle represents the lowest energy structure 
in both plots.  
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Structure A (Å) B (Å) C (Å) Beta (deg) Energy (kJ/mol) RMS 

HISTAN 7.249 7.634 5.698 104.96 -167,069.34 - 

Exp 1 7.158 6.803 6.221 103.76 -167,063.35 0.506 

Exp 2 7.219 7.087 5.519 103.58 -167,069.05 0.256 

Table 5.1: Parameters for the predicted structures compared against the experimentally 
determined histamine structure.  HISTAN data is from Bonnet and Ibers (1973). 

Figure 5.2: Alignments of the predicted structures against the experimentally 
determined structures of histamine, with the first (RMS 0.506) and second (RMS 
0.256) predictions on the left and right, respectively.  Grey structures correspond to 
the experimental structure of histamine, while the green structure represents the 
predicted structure. 
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problem area is presented and improvements and additions to the MGAC algorithm are 

given in the design of a new algorithm for CSP, called MGAC2. 

 



 
  

 

 

CHAPTER 6 
 
 

MGAC2: A NEW ALGORITHM FOR CRYSTAL STRUCTURE PREDICTION 
 
 

Abstract 

A new version of the Modified Genetic Algorithm for Crystals is presented in this 

chapter.  The new MGAC algorithm has been enhanced and modernized for use with the 

density functional theory software Quantum Espresso, and to take advantage of modern 

computing architectures. As discussed in Chapters 4 and 5, multiple polymorphs of glycine 

and the experimental structure of histamine, respectively, were successfully predicted 

using MGAC1-QE. Despite the success of those predictions, it became apparent that there 

were several problems with the design of MGAC1-QE that resulted in inefficient use of 

computational resources. Furthermore, it was determined that the genetic algorithm in 

use had never been thoroughly refined because of the relatively low computational cost of 

using CHARMM as a fitness evaluator.  

In this new algorithm presented here (Figure 6.1), these issues are addressed, and 

a new genome representation that eliminates the need for multiple independent searches 

in single space groups is presented.  Several changes to the design and use of genetic 

operators are outlined, and a number of technical changes are discussed. Finally, a 

variable population size strategy for steady state genetic algorithms that will allow for 

much better scalability and use of computation resources is presented.  

 
Introduction 

In 2002 the Facelli group developed the Modified Genetic Algorithm for Crystal 

and Clusters (MGAC) to answer the call to solve the problem of Crystal Structure 
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Figure 6.1: The complete MGAC2 algorithm layout.  The algorithm goes through two 
phases; in the first phase, an initial population of structures is generated through a 
clustering process (left column). Once this population has been generated the 
population is evaluated using Quantum Espresso. In the second phase, a step-wise 
elitism model is used to iteratively refine the population. 
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Prediction (CSP) for small organic molecules. As highlighted in other sections of this 

dissertation, CSP has importance for the pharmaceutical and explosives industries (Datta 

and Grant, 2004; Deschamps et al., 2008), as has been highlighted by the NSF Assistant 

Director for Mathematical and Physical Sciences (Crim, 2014). To date MGAC has been 

used to make predictions on a variety of molecules, and has made predictions as part of 

the periodic blind tests held by the Cambridge Crystallographic Data Centre (CCDC) 

(Bardwell DA et al., 2011). Results have been varied; earlier predictions using MGAC1 

relied on CHARMM and the General Amber Force Field, and had high variability in 

prediction quality, and suffered from bias issues as a consequence of using the GAFF 

universal empirical potential.  

 In Chapter 2 the research investigating the viability of dispersion-corrected density 

functional theory (DFT-D) for use in MGAC was outlined. The tests with Quantum 

Espresso demonstrated that DFT-D was viable for use in calculating structure energies 

and provided a significant improvement over CHARMM and the GAFF. Based on those 

results, a new implementation of MGAC1 using Quantum Espresso, called MGAC1-QE in 

this discussion, was developed. This implementation was used to successfully predict 

multiple polymorphs of glycine, as well as histamine, with excellent quality results (see 

Chapters 4 and 5). The success of these predictions lends credence to the viability of using 

DFT-D as the sole energy calculation method in CSP. 

 Despite the success of those results, it was determined that there were a number of 

overarching issues that would preclude the wide utilization of the current MGAC1 

algorithm. First, although the glycine and histamine predictions were successful, they 

were of limited value because the searches were performed using the a priori knowledge 

of the native space groups for each of the glycine polymorphs and histamine. In MGAC1 

the protocol for predicting structures relied on sampling the 14 most common space 

groups among known crystal structures as characterized, in the CCDC Crystal Structure 
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Database (Allen, 2002). This statistical reliance would have been deficient in a true blind 

test of glycine, as the Gamma polymorph is in space group P31/P32 (Boldyreva et al., 2003), 

which is not counted among the 14 most common space groups. Since there are 230 space 

groups, an individual search in all possible space groups is computationally not feasible, 

so being able to search all space groups effectively became a high priority for the MGAC 

research effort. Furthermore, several technical deficiencies were identified in MGAC1-QE 

that needed to be addressed. In particular, MGAC1 was never designed to handle long 

running calculations like those performed when using QE, which require substantially 

more computing time and resources compared to the original CHARMM-based method, 

and a revision to the restart mechanism to handle intermediate QE optimizations was 

deemed necessary. MGAC was also designed prior to the advent of commodity multi-core 

computing hardware, meaning a number of subtasks in the MGAC algorithm could be 

handled much more efficiently by taking advantage of these architectures. Starting in 2015 

the development of a new algorithm was commenced, to be eventually used in a completely 

new version of MGAC (hereafter referred to as MGAC2), which would be designed to 

address the above issues, and to incorporate innovations to improve the efficiency of the 

MGAC structure predictions. The following sections address each of these topics.  

 
Multiple Space Group Schema 

 A primary concern when designing a genetic algorithm schema is finding the 

minimum number of degrees of freedom that can be used to represent the phenotype of 

interest. The MGAC1-QE schema for a single molecule in the unit cell has approximately 

12+n schema elements, comprising six elements for the unit cell angles and ratios, six 

elements for the rotation and position of the molecule in the unit cell, and n elements one 

for each flexible torsion angle in the molecule. A final term exists to represent the space 

group, but in MGAC1 this was not implemented as a crossable schema element. Using this 
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term by itself is impossible because there are 230 crystallographic space groups to sample, 

which would require a very large population size to properly represent this large search 

space. At a minimum, at least 20 individuals would be required from each space groups, 

leading to population sizes in the thousands, which is computationally untenable when 

using QE.  

One initial idea considered was to eliminate the use of higher order space groups 

altogether, solely using variable numbers of molecules in the P1 space group (Z'=1, 2, 3, 4, 

6, 8, etc.), with each molecule possessing its own individual schema. Some initial tests 

using MGAC1-QE to investigate this approach proved to be highly problematic, however, 

as it quickly became apparent that even for three or four molecule cases, constructing valid 

crystal structures was difficult to handle for the genetic algorithm. The reason for this is 

that by eliminating space groups from the basic representation of the schema, the genetic 

algorithm was responsible not only for finding volume and energy minimized solutions, 

but also for solving the basic symmetry operations of each space group. Framed 

differently, the addition of each new molecule to the crystal system would add 6+n new 

degrees of freedom (for the position, rotation, and internal flexibilities of the molecule). 

Ultimately, this is a waste of computational resources, so a more sophisticated method 

was required.  

Being faced with this difficulty, a thorough examination of the 230 crystallographic 

space groups was commenced by studying the International Tables of Crystallography 

(ITC handbook) (Hahn, 2002), which is considered the authoritative manual on space 

group mathematics. Section 4.3 of the ITC handbook organizes the space group symbols 

based on their underlying mathematical features, as well a number of extended symbol 

types that deal with degenerate cell settings. A full discussion of this section is out of the 

scope of this dissertation, but it is important to note that the tables are organized in logical 

sections that lend themselves well to a genetic algorithm schema. In the ITC handbook 
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space groups are first ordered by lattice system (e.g., triclinic, monoclinic, tetrahedral), 

and then by fundamental point group. A full discussion of crystallographic group theory 

can be found elsewhere (Tinkham, 2003), but essentially, whereas there are infinite point 

groups, only a subset of 32 point groups are valid when considering translational 

symmetry. These can be further reduced to 12 point group classes and 5 axis numbers, of 

which almost every combination is valid.  

Besides the crystallographic point groups, there are also other features that 

distinguish the different space groups within each class. A prominent feature is the face 

centering type of the space group, which deals with the placement of lattice points in the 

unit cell. There are five fundamental face centerings, which combine with different lattice 

types to form 14 different Bravais lattices. Importantly (and unlike the crystallographic 

point groups), there are significant exclusions in the lattice type/face centering 

combinations. For example, in monoclinic lattices, only primitive (P) and base-centered 

(A/B/C) types are allowed, whereas in orthorhombic lattices in addition to the primitive 

and base-centered types, body- and face-centered types (I and F, respectively) are also 

allowed. Additional crystallographic features also serve to distinguish groups from each 

other; the presence of glide plane and screw axis elements are highly important features 

that are possible in certain point groups that could potentially be used, and an operator 

for axis order that essentially represents handedness in relevant space groups is also 

present.  These final three terms, however, are highly dependent on the lattice type and 

are not distributed in any consistent fashion. Summarizing the space group elements 

identified as potential schema elements: 

1. Point group classes (7+5 options):  

Cn, Cnv, Cnh, Sn, Dn, Dnd, Dnh + T, Th, O, Td, Oh 

2. Axis numbers (5 options): n(axis)=1,2,3,4,6 

3. Face centerings (5 options): P, A/B/C, I, F, R 
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4. Axis order (inconsistent options) 

5. Glide plane operations (inconsistent options) 

6. Screw axis operations (inconsistent options) 

These features of the system of crystallographic space groups provide a basis that can be 

used for designing a new schema for multiple space groups. Furthermore, the use of this 

basis results in a maximum of six degrees of freedom that are able to represent all possible 

space groups with a much smaller population. 

In the design of the MGAC2 schema, all six elements are used, but the axis order, 

glide and screw operations are condensed into a single element, leading to a total of four 

parameters in the GA to represent the symmetry group. Since every combination of point 

group class and axis number, with the exception of D4d and D6d, form crystallographically 

valid point groups, these elements are excellent for use in the GA schema. The other four 

elements, however, do not map consistently between the different point groups. Of the 

elements 3-6, only face centering is given a unique GA schema element, because almost 

all point groups have multiple face-centerings. The remaining three are rolled into a single 

parameter, which is a variable expression gene that maps differently based on point group 

and face centering. This means that different subclasses of point group and face centerings 

will have variable groupings. For example, C2h in the P-centering has four possible space 

groups, whereas D4h in the P-centering group has seventeen possible space groups.  

It is quite reasonable to assume that this implementation will result in bias issues, 

and make some space groups more difficult to access by virtue of the imbalance between 

space group types. However, this problem is superseded by the statistical distribution of 

space groups as deposited in the CSD, which is also highly uneven (Allen, 2002): 

1. P21/c and P-1 space groups dominate almost 75% of all known crystal 

structures  

2. Point class Cnh (mostly P21/c) comprises 47% of all known crystal structures, 
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followed by Sn (25%, mostly P-1), with the remaining point group classes 

comprising 3-8% each.  

3. Axis order n=2 comprises 93% of all structures, while remaining axes are 

1-2% each.  

4. Groups T, Th, O, Td, Oh comprise <0.5% of all structures. 

5. Most face centerings are P (85%), followed by A/B/C (11.5%), with F, I, R 

being 1-2% each. 

Because of this unequal distribution, the fact that subclasses are not evenly distributed is 

much less of a problem than would be otherwise. It also provides an impetus for excluding 

some space groups and providing a boost to certain subtypes. A very easy target are the 

high order tetrahedral and octahedral space groups; because these are very complex space 

groups having many symmetry elements (24-196) and because they are so under 

represented, it is quite logical to have the capability to exclude them from the GA schema. 

Bias favoring axis order n = 2 can also be built into the algorithm, as well as minor 

favoritism for Cnh. By manipulating the distribution of genomic parameters, the 

exploration of different space groups can favor those space groups with high presence in 

the CSD, but care must be taken not to bias too heavily in favor of those space groups at 

the expense of the others. 

As an additional restriction on the GA schema, MGAC2 also needs to be capable of 

limiting space groups based on the number of symmetry elements. The reason for this is 

because QE scales quadratically with system size: as an example, a space group with four 

symmetry elements will take sixteen times as long to complete a single point energy 

calculation relative to a space group with one symmetry element. This quadratic scaling is 

extremely problematic for space groups with eight or more symmetry elements, which 

comprise more than 70% of all space groups, because it creates a serious imbalance in the 
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potential calculation time between two differing space groups. 5 This sets a practical limit 

on what space groups can be searched, but the capability to search all space groups needs 

to be implemented. This is especially true if new methods are developed which permit the 

search of higher order space groups at lower cost than QE are developed in the future, or 

if the use of computational accelerators can be made effective with QE.  

 In initial tests of this schema some issues presented themselves.  MGAC2 was 

originally conceived to use a population of structures in a mixed pool of space groups with 

a reasonably high population size (n = 300). However, this was deemed impractical fairly 

quickly, because of the complexity of generating higher order space groups. The observed 

behavior of the mixed space group population is that simple space groups, especially P1 

and P-1, come to dominate the population very quickly. In low order space groups, the unit 

cell can be minimized very easily to approximate the shape of one or two molecules. For 

higher order space groups, the position of the molecule in the unit cell is more likely to 

impact the volume minimization process due to inversion symmetry elements, which are 

more prevalent in higher symmetries. This makes it fundamentally more difficult to 

generate valid structures in the high order space groups, leading to significant bias 

towards low order space groups in a mixed space group population. 

To prevent this, an approach was adopted where different space groups are sorted 

into individual bins, to prevent the premature loss of space group diversity. Essentially, 

this is a bookkeeping trick, where the best structures from each space group are 

maintained and crossed, but not all space groups are considered at all times. In order to 

reduce computational burden, only the top 10-15 space groups participate in crossing 

operations, along with a random population to permit continued searching in all space 

                                                           
5   Among the 230 space groups, 58 space groups have less than eight symmetry elements, 63 space 

groups have eight elements, and the remaining 109 space groups have more than eight elements. In a true 
blind test prediction, space groups up to and including eight element groups need to be considered to 
realistically cover the search space; going beyond eight elements is constrained only by the availability of 
computing resources (Hahn, 2002).  
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groups. After evaluation of the candidate structures and sorting, the bins are sorted by the 

energy of the lowest structure in each bin, potentially leading to drastic reordering of bins 

and allowing space groups that are disfavored early in the search to take higher precedence 

later. A potential disadvantage of this method is that different subpopulations will not be 

refined at equal rates, but this is outweighed by the advantages of being able to search all 

space groups simultaneously,  

An important point about using binned space groups is that the crossing algorithm 

requires some careful design. Since no predictions can be made about the refinement 

process, it cannot be determined if crossing two partially refined populations with 

different space groups will be able to produce a set of structures with enough diversity to 

properly sample other space groups. By this reasoning, it makes no difference whether or 

not structures are crossed with a refined population or a random population. So, in this 

algorithm, refined populations of different space groups are not crossed with each other, 

but are crossed with a randomly generated population at each generation. This preserves 

diversity in the population, and enables superior searching of the energy hypersurface, 

and from a practical standpoint drastically simplifies the implementation of the algorithm. 

This point is discussed in more detail in the next section.  

 
Genetic Algorithm Refinements 

There are three fundamental conditions that need to be fulfilled in a GA based CSP 

method: 1) the refinement process must converge on a solution, 2) the process cannot 

converge too quickly on a solution to avoid selection of a local minimum over a global 

minimum, and 3) the starting population must be sufficiently unbiased so that the global 

minimum is not excluded from the search, and the crossing operations designed so that 

the global minimum is accessible. Condition 1 is satisfied by using an elitism based 

strategy; from the previous successful predictions with MGAC-QE, it is known that an 
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elitism strategy will strongly favor convergence on a solution. In fact, with strong elitism 

a population will converge on a solution with relative ease within 30-50 generations, using 

a population size between 50-100 individuals (Kim et al., 2009; Lund et al., 2015). 

However, elitism by itself can fail conditions 2 and 3. Based on experience with MGAC1, 

in order to successfully obtain a true solution, up to ten independent predictions with 

different random seeds are required because the elitism strategy is highly sensitive to 

starting conditions, and because local minima may be strongly favored due to a lack of 

diversity in initial candidate populations.  

Although there are other methods besides elitism that could be used, the fact that 

the method has worked before, despite the outlined shortcomings, is an indicator that 

elitism is a good overall strategy for CSP. Furthermore, some limited experimentation of 

other methods, such as the classic genetic algorithm (Goldberg and Holland, 1988), 

suggests that elitism remains a superior method for CSP. Consequently, the solutions 

presented here are modifications to the handling of structure generation, filtering, and the 

addition of clustering techniques that enhance the search strategy, while retaining elitism 

as the primary strategy used in MGAC.  

 Crossing methods. The use of different crossing methodologies was investigated. 

In MGAC, the standard method was to generate new structures at a rate of 0.5 times the 

population size, per generation, or 50% replacement. The parent candidates were selected 

by roulette wheel, using linear scaling based on the energies of the structures to establish 

probabilities. In MGAC1-QE, this was adjusted so that new structures were generated at a 

rate of 3 times the population size per generation, which yielded good results for histamine 

and glycine (Chapters 4 and 5). For MGAC2 the full crossing concept was investigated to 

determine if this was more viable in addressing conditions 2 and 3. Full crossing is defined 

as crossing all structures in a population with all other structures in that population. The 

hypothesized value of using a full crossing method over a roulette wheel is that full 
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crossing can potentially search more of the energy hypersurface at each generation. 

Because many potential solutions can be obtained, and because all structures in the 

population are equally represented, identification of a broad range of minima can 

theoretically occur.  

 Although it was hoped that this technique would be useful as a general crossing 

algorithm, it was discovered very quickly that the structure generation using full crossing 

suffers from two separate issues with respect to refined populations. The primary issue 

was completing the evaluation of volume-restricted candidates; after two or three 

generations, with small population sizes between 20-50, the number of solutions that pass 

the volume filter begins to expand quadratically, meaning that in subsequent generations, 

hundreds or thousands of structures could be candidates for QE evaluation. Given the 

computational constraints in using QE as the energy evaluator, this was deemed highly 

untenable given reasonable expectations for computational resources. The second issue 

with full crossing deals with solution convergence when highly similar structures are 

present in the population. Under an elitism model, when similar structures with greater 

than 90% similarity are crossed, they come to dominate the population because all of their 

offspring have similar genes and fitness evaluations, especially if those structures are 

relatively low energy in rankings. Although this is a problem when using the roulette 

wheel, in a full crossing this effect is much more acute because every structure is crossed 

with every structure, thus guaranteeing the production of multiple similar offspring in a 

single generation. The end effect result of this, especially if a low number of crossings have 

occurred, is that the solution converges on a local minimum dominated by the duplicate 

structures. Because of these issues, full crossing is not viable for a general crossing 

algorithm under elitism. 

 On the other hand, because so many potential solutions were found as a result of 

the quadratic expansion, it suggests that the full crossing does meet the hypothesis of a 
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providing a broader search. So, although impractical for convergence under elitism 

because of the computational resources required, the full crossing method has utility, 

particularly in the formation of initial and otherwise nonrefined populations. This is 

especially true for the multiple space group schema, where the initial discovery of 

structures is complicated by the addition of the space group schema elements. For the 

general crossing method, however, a reversion to the roulette wheel was determined to be 

most practical, using the same protocol as in MGAC1-QE. 

 Mutation versus migration. Typically, mutation is used to allow populations to 

escape stagnation, that is, local minima, potentially converging on a superior minimum, 

and broadening the search space.  However, mutation is generally inefficient unless the 

mutation rate is high enough, and it is unclear how often a mutation operation will result 

in a structure that passes the volume filter. An alternative to using mutation is the addition 

of random new structures, which is equivalent to migration in terms of genetic algorithm 

theory. In fact, this was implemented in MGAC1:  if an insufficient number of structures 

generated from crossing were able to pass the volume filter, new structures were generated 

until enough structures passed the filter to complete the population. This process is an 

iterative brute force process, which is inherently inefficient, and does nothing to 

incorporate refined structures into the random generation process. Furthermore, with the 

incorporation of the multiple space group schema, wasted effort from random mutation 

and brute force searches becomes much costlier, because random space group transitions 

will almost certainly result in a structure that cannot pass the volume filter.  

In MGAC2, the appropriate strategy to add diversity to the population is through 

generating a random population at each generation step. This random population is 

individually crossed with the space group sorted populations, and with itself, as illustrated 

in Figure 6.2. Importantly, the crossing method used in the random/random crossing can 

be a full crossing, whereas for the other crossings, a standard roulette wheel should be 



87 
  

 

 
 

 

 

 

 

 

 

 

  

Figure 6.2: The crossing diagram of MGAC2. Three crossing are performed: random 
with random, refined with random, and refined with refined, once per space group. 
This strikes a good balance between convergence and population diversity.  
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used, treating the random population as having a uniform probability distribution. This 

hybridization of crossings fulfills all three conditions for good crossing; strong 

convergence can occur because of the underlying elitism, while the constant introduction 

of unrefined genes via migration prevents early convergence and broadens the sampling 

of the energy hypersurface at all generations.  

 Initial population construction and clustering. A final and important point to be 

considered in the algorithm is the generation of the initial population. Since GAs are highly 

sensitive to starting conditions, some precaution to generate a genetically diverse starting 

population is desirable. Therefore, some means of clustering and structure comparison is 

necessary. In the context of MGAC, a cluster is a set of closely related structures, where 

structure similarity is determined by application of a distance function. A cluster can then 

be represented by the lowest energy structure in that set, or by a singular structure that 

captures the essential properties. However, because MGAC deals with a high complexity 

problem, extreme care must be taken to choose an appropriate clustering algorithm. Since 

this is a genetic algorithm, an effective means of comparing structures is through 

measuring the genetic distance between structures. Essentially, when two structures are 

compared, if they share significant number of genes, then they are considered part of the 

same cluster. However, since most of the GA parameters are actual physical properties, 

the concept of similarity needs to be addressed in terms of distance thresholds. A step is 

defined as a normalized difference between two parameters, where each parameter is 

defined by the physical characteristic of that parameter. For example, when considering 

cell angles, the primary measure is degrees, so the step size might be 10 degrees. Cell 

positon is expressed in fractional coordinates, so the step size might be a unit less 

fractional difference of 0.1. Of each of the parameters, the only one with special 

consideration is the molecular rotation. Since there is no local reference frame for 

molecule rotation, the difference between rotation matrices is measured by calculating the 
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axis-angle rotations of each matrix relative to an arbitrary vector, and then measuring the 

angle difference of both the axis and angle components, taking care to respect singularities 

and axis inversions. Once the parameters have been normalized to generic “steps,” the 

distance between structures can be measured.  

Several methods of measuring distances were explored; for a more comprehensive 

discussion see (Cha and Srihari, 2002). In the interest of simplicity, the standard 

Euclidean, Taxi-Cab, and Chebyshev (or max metric) distances were explored for use in 

the MGAC2 algorithm, for building the initial population, and potentially for intermediate 

structure generation. After some investigation, a hybrid method that uses the Chebyshev 

distance (which only uses the maximum parameter difference) and the average of the 

remaining parameter differences was selected for the distance measure. The justification 

for this choice is that many structures are highly similar in terms of average genetic 

distance, but often there is a single parameter that acts as an outlier, which has a large 

effect on the genetic distance function, but has minimal effects when actually comparing 

the physical structure. This method was also favored over the Euclidean distance, because 

many assertions about this distance measure break down due to the high dimensionality. 

The clustering method used with this distance measure was a hard cutoff method, where 

structures are only considered as being in the same cluster if they are within a maximum 

distance of the first structure in the cluster, as illustrated in Figure 6.3. This clustering 

method was tested by generating a set of approximately 20,000 structures using a small 

clustering cutoff, and then reclustering the set of structures using higher cutoffs to see how 

sensitive the clustering method was. In all cases, the fitcell algorithm was used to limit 

structures to only those that pass the volume filter, meaning that the subset of valid 

structures of the full search space was being explored. Figure 6.4 shows a plot of the 

number of clusters as the cluster cutoff was increased from 1 to 3 steps, as well as the 

number of interconnected regions, or cluster groups. The cluster group is defined as a set 
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Figure 6.3: The inferior clustering method used in the initial implementation, 
represented in two dimensions. The blue cluster was the first to form, while the red 
cluster was second. The structure contained by both the blue and red cluster is 
considered part of the blue cluster because comparison occurs with the blue cluster first 
in the algorithm. A hypothetical new structure (green dot) is outside of both cluster, so 
a new cluster is formed. All three clusters form a group because they are close enough 
together to overlap. In multiple dimensions, this is problematic because connectivity 
between clusters can be established through multiple dimensions.  
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Figure 6.4:  Effects of raising cluster cutoffs. A set of approximately 20,000 clusters 
was generated with a low cutoff of one step. The cutoff was increased to determine if a 
higher cutoff would produce fewer structures, but the decrease in cluster count was 
quite low. The number of interconnected cluster groups decreased significantly by 
using a higher cutoff, but because of the impossibility of evaluating more than 20,000 
structures to sort based on cluster groups this method of clustering was abandoned.  
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of clusters where every cluster in the group touches another cluster, and all clusters can 

be related to the others through that adjacency. Tripling the cutoff distance did not reduce 

the number of clusters significantly, implying that the cluster algorithm is not very 

sensitive to this parameter.  Furthermore, because the number of groups decreased 

substantially, it implies that the set of volume limited structures are highly interconnected 

through the distance function as a consequence of high dimensionality, and possibly that 

all volume limited structures are related to each other. It also clearly demonstrates that 

there is a very large set of possible structures, which although expected, presents the 

difficulty of too many structures to evaluate.   

 A different approach to the clustering algorithm was also explored. Based on the 

previous results, using classic distance measurements effectively fail because of the high 

dimensionality of the system. Instead, for each parameter in the genome, the distance 

between the two structures for that parameter is measured and normalized as before; if 

the distance between those two parameters is below a predetermined threshold, then the 

structure is considered identical for that parameter. The genetic distance is then defined 

as the number of identical parameters divided by the total number of shared parameters; 

a structure with 30% similarity to another structure will have one third of the parameters 

structure is considered identical for that parameter. The genetic distance is then defined 

as the number of identical parameters divided by the total number of shared parameters; 

a structure with 30% similarity to another structure will have one third of the parameters 

within each respective cutoff. Figure 6.5 illustrates the genetic measure using 

alphanumeric strings. For the purposes of the MGAC2 algorithm, a structure is considered 

as being part of the same cluster if it shares more than 30% similarity with another 

structure; if a structure is part of an existing cluster it is rejected, thus guaranteeing that 

no two clusters have more than 30% similarity with each other.  This essentially allows for 

the creation of a wide diversity of structures that permits wide sampling of the energy 
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Figure 6.5:  Measuring the genetic distances between arbitrary strings. The first string 
is compared against the remaining strings; if the letter in one position is the same in 
both strings, then that contributes to the similarity score.  
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hypersurface by maximizing the genomic space sampled in the initial population. A test of 

this algorithm was performed using the same framework as the previous clustering test, 

but using an iterative approach where at each stage new structures were generated and 

clustered. Figure 6.6 shows a plot of the number generations against the number of 

clusters, performed in several different space groups using this final clustering algorithm; 

the data show that this clustering method generates a low number of representative 

structures much more effectively, and that increasing iterations of the clustering 

generations is effectively bounded by the existing clusters. Consequently, this clustering 

algorithm is suitable for use in the MGAC2 algorithm for generating the initial population. 

 
Computational Changes 

 One of the underlying issues with MGAC1 was the parallelization scheme. MGAC1 

was never designed to be used with long-running energy calculation software like QE, and 

it was targeted at systems with low numbers CPU cores, in a fully parallel distributed 

system using MPI. MGAC2 has been redesigned to make use of modern computing 

hardware, which has become highly multicore and substantially more suitable to 

parallelism, in order to properly distribute a number of tasks in parallel that could be 

completed much more efficiently than MGAC1 is capable of. In addition, the adoption of 

the multiple space group schema also prompted some changes to how QE evaluations are 

distributed across computing resources. In MGAC1-QE, since all prediction experiments 

were performed in single space groups, the distribution of resources was straightforward, 

because compute times could be expected to be relatively similar for any individual in the 

population. In MGAC2, because multiple space groups of different sizes will be evaluated 

in the same generation, the scheduling of resources becomes greatly complicated. In 

addition to this, the restart mechanism of the software needed some changes to 

accommodate long running QE jobs. 
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Figure 6.6:  The number of structures generated using the improved measurement 
clustering for an arbitrary sampling of space groups. The number of clusters increases 
very quickly in the first few generations, but reaches an inflection quickly as the genome 
sampling becomes saturated. 
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 Figure 6.7 shows the primary algorithmic changes in MGAC2 to improve 

parallelism and robustness. In MGAC1, the fitcell algorithm, which as discussed in Chapter 

3 is used to minimize the volume of the unit cell, was performed in a coupled fashion with 

the energy evaluation; fitcell would be applied to a structure, and then immediately 

evaluated if it passed the volume filter. This operation was parallel distributed across each 

candidate population, resulting in severe inefficiencies due to the handling of MGAC1 

processes.6  In MGAC2, the fitcell and energy evaluation steps need to be decoupled to 

make better use of parallelism, especially when tens of thousands of structures need to be 

evaluated in forming the initial generation. As shown in Figure 6.7, fitcell is now 

performed independently from the evaluation step, parallel distributed across nodes and 

threads. This allows for much greater efficiency in generating structures and allows for 

more decision making to be made about the quality of structures ahead of time, which is 

important for scheduling work in the evaluation step. As mentioned before, Quantum 

Espresso computation time scales quadratically with system size. Since the multiple space 

group method is a significant part of this design, structures can now take substantially 

different amounts of time to complete. In order to partially normalize compute times, QE 

needs to be distributed across different numbers of cores based on the number of space 

group operations. In MGAC2, this is implemented linearly, so that the number of cores is 

proportional to the number of symmetry operations. Ideally quadratic scaling should be 

used, but for some space groups this becomes prohibitive because sufficient compute 

resources are typically not available for such a high computation cost. In addition to that, 

QE suffers from scaling to higher numbers of cores because of increased communication 

overhead, putting an effective technical limit to the degree to which QE can be parallelized.  

                                                           
6 In MGAC1 active processes were scheduled in a “one process per core” basis, with multiple processes per 

compute node; in MGAC1-QE, this was changed to “one process per compute node”, with each node typically 
having sixteen cores. This means that during the fitcell process, only 1 out of 16 cores was being used; 
because in some instances fitcell was being run repeatedly for a long time (hours) this resulted in some 
glaring inefficiencies.  
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Figure 6.7: Technical changes the parallel distribution of fitcell and optimizations. The 
server process is responsible for all high level genetic algorithm functions, whereas 
clients are responsible for fitcell and optimization functions. In each diagram, arrows 
represent information transactions between nodes. In MGAC1, fitcell and 
optimization/evaluations were performed in sequence on each worker node. In 
MGAC2, each worker node can perform multiple fitcells in parallel, taking advantage 
of the now common multicore architecture found in high performance computing. 
Once all fitcell operations have been performed, the volume minimized structures can 
be sorted and potentially evaluated. During the optimization/evaluation phase, 
intermediate structure information can be sent back to the server process to be saved, 
so that if the prediction run terminates early, the prediction can be restarted with 
minimal loss of work.  
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Importantly, prior to evaluation but after fitcell, the candidate structures are sorted in 

descending order of number of symmetry elements; this makes the scheduling of structure 

evaluations much simpler and more predictable. Incorporated with this change is the 

change to the restart mechanism. The MGAC2 algorithm is designed to permit more 

communication during QE evaluations since optimizations can take a long time, allowing 

partial optimizations to be saved on each increment of the QE optimization. 

 
Steady-State Algorithm  

 One additional algorithmic change for MGAC2 is the implementation of a steady-

state genetic algorithm as an alternative operating mode, complimentary to the step-wise 

mode described above. A steady-state GA removes the concept of discrete generations 

from the GA, and instead continually evolves a population until convergence (i.e., 

stagnation) is achieved. There is precedent for the use of the steady-state GA in similar 

problems in solid-state materials research (Bhattacharya et al., 2013, 2015; Scheffler, 

2014), so the option of using this method is a potentially important innovation for MGAC2. 

Furthermore, a steady-state implementation of MGAC2 would solve the resource 

scheduling problem presented by the multiple space group schema, by allowing for more 

variability in the compute times (although the implementation of scheduling in the step-

wise method would remain in the algorithm design).  

 Figure 6.8 shows a flowchart of the proposed steady-state GA. In this model, the 

processes of structure generation and optimization are decoupled in a desynchronized 

way. The population size is also allowed to be variable in size, instead maintaining two lists 

of structures, for optimized and nonoptimized structures. Each of the two halves of the 

processing algorithm then work independently, with the optimization workers carrying 

most of the heavy workload, while the light worker (left in the figure) handles structure 

management. The removal of the step-wise component primarily solves part of the  
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Figure 6.8: A flowchart for a steady-state GA implementation. In the middle are two 
populations, a nonoptimized and an optimized structure list. These are collections of 
all structures to be potentially evaluated, and those that have already been evaluated. 
On the left side is the structure management workflow, which handles the creation, 
fitcelling, and convergence checking for the algorithm. On the right is the workflow 
which handles the optimization, evaluation, and ranking of the structures in the 
optimized population. The important feature is that this algorithm does not operate in 
a step-wise fashion, but that both workflows continuously integrate new solutions into 
both population lists, guaranteeing a constant flow of work to keep the optimization 
queues full.  
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scheduling issue, where at the end of each generation, there are unused resources as 

optimizations finish at different times and no new work is available to fill the queue. In a 

steady state mode this means that the unpredictability of the structure optimization is 

softened substantially, allowing for new work to be constantly generated and performed 

continuously.  A disadvantage to this method is that it somewhat complicates the structure 

generation; because there is a large variable population, the selection of structures 

becomes problematic because there are so many structures to choose from, it becomes 

more difficult to select structures that meaningfully contribute to the diversity or 

convergence of the population. One way to get around this is to adjust the weighting 

strategy used in the roulette wheel, to balance out poorly ranked structures with highly 

ranked structures in such a way that progress can be made towards convergence, without 

having to rely on the removal of structures.  

 
Conclusion 

 The innovations proposed here greatly enhance the CSP capabilities of MGAC. In 

particular, the advancement of the multiple space group schema overcomes one of the 

largest obstacles in CSP, which is the proper sampling of all space groups. It is expected 

that this will allow for truly blind tests to be performed using MGAC2, which will be a 

major step forward to solving the problem of CSP. A full implementation of MGAC2 will 

hopefully follow soon after the publication of this dissertation. The modernization of 

MGAC will greatly simplify the ability to perform experiments and allow for even more 

scientific improvements to be made, because the tools to perform solid CSP will be 

available. Some future problems to be addressed with MGAC2 are the improvement of the 

fitcell algorithm to include multiple molecular systems. As shown in the recent sixth blind 

test by the CCDC, co-crystals are an important area of research, and particularly important 

to the formulation of many compounds. The improved fitcell discussed in Chapter 3 
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discusses some potential ideas to handle this, but additional features and research will 

need to be performed to implement variable stoichiometries and co-crystal formulations 

in the MGAC algorithm, which represents the next major frontier for CSP. However, it is 

expected that MGAC2 will make great strides towards solving the problem of CSP in the 

near future for single-molecule systems. In the next chapter some results using an 

implementation of MGAC2 will be described. 

 



 
  

 

 

CHAPTER 7 
 
 

DISSEMINATION OF HISTAMINE RESULTS USING  
 

THE MGAC2 ALGORITHM 
 
 

 In the previous chapter, the MGAC2 algorithm was described. Here we report 

limited experimental work performed to validate some key points of the algorithm. In this 

chapter, an implementation of MGAC2 is tested and results are presented on a prediction 

of histamine in the native space group. Some additional findings about volume control are 

also discussed. 

 
Methods 

 A single MGAC2 prediction was performed on histamine in the native space group 

P21, as per the previous validation run using MGAC1-QE, (Bonnet and Ibers, 1973). The 

population size was set to 60, with population replacement set at 2.5 times the population 

size. A cluster similarity of 30% was used for the preclustering stage, with 50 pre-

clustering steps. The volume constraints were set to -30% to +30% of the estimated system 

volume, and then expanded to -30% to +100% on further review. All Quantum Espresso 

parameters were set to the same values used in Lund et al., (2013). All QE optimizations 

and energy calculations were limited to either 70 optimization steps, or a maximum run 

time of one hour.  

 
Results 

 In this prediction two structures were identified after 24 generations that 

correspond to the experimental structure. These two structures are of low quality in  
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comparison to the results presented in Chapter 5, in that the energies and cell parameters 

of the MGAC2 predicted structures do not match precisely with the experimental 

parameters. Table 7.1 shows the cell parameters for histamine and the MGAC2 predicted 

structure. Comparison of the energy values reveals a 11.69 kJ/mol energy difference, 

suggesting a partial optimization towards the true global minimum, or a local minimum 

that is similar to the global minimum. This is reflected also in the cell parameters, where 

differences in cell lengths up to 0.5 angstroms are observed on all three axes. When 

comparing the structures using Mercury, a complete match of 15/15 molecules is not 

obtained for these molecules, instead obtaining 7/15 with RMS=0.622, but visual 

inspection of the structure overlays (Figure 7.1, left) reveals that the structures are 

fundamentally the same barring differences in cell axis lengths. To determine if 

incomplete optimization was the culprit, a final optimization was performed on the best 

structure from the prediction run. The results reveal that the structure was indeed only 

partially optimized. An additional 134 QE optimization steps were required to obtain a 

nearly perfect match, with 15/15 molecules matching with an RMS of 0.251. These results 

are highly comparable to the results obtained using MGAC1-QE, and highlight the 

importance of completely optimizing structures.  

 Notably, the volume energy plot (Figure 7.2) shows a difference in behavior 

between MGAC1-QE and MGAC2. Compared with Figure 5.1, the distribution of structure 

energies in each generation (as highlighted by the coloring of the markers) in MGAC2 is 

much more ordered, with earlier generations having higher energies relative to later 

generations. This is partly due to the preclustering step, which can preclude the generation 

of lower energy structures because of the effects of clustering. On the other hand, because 

the minimization process was truncated in this experiment (due to the one hour time 

limits), the higher degree of ordering might be an artifact of incomplete optimization. On 

the other hand, because the final structures are so strongly clustered at 
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Structure A (Å) B (Å) C (Å) Beta 
(deg) 

Energy 
(kJ/mol) RMS 

HISTAN 7.249 7.634 5.698 104.96 -167,069.34 - 

MGAC2 6.894 8.097 5.160 102.14 -167,057.65 7/15, 0.622 

Full opt 6.989 7.511 5.355 101.92 -167,068.05 15/15, 0.251 

MGAC1-QE 7.219 7.087 5.519 103.58 -167,069.05 15/15, 0.256 

Table 7.1: Cell parameters for the MGAC2 histamine prediction, the fully optimized 
structure from that prediction (Full opt), and from the 10-generation prediction using 
MGAC1-QE from Chapter 5. HISTAN data is from (Bonnet and Ibers, 1973).  
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Figure 7.1: Structure overlays for the best structure obtained from the MGAC2 
prediction run. Green molecules denote the predicted structure while grey indicates 
the reference structure HISTAN. On the left is the final structure as produced by 
MGAC2 (7/15, RMS=0.622), and on the right is the fully optimized version of that 
structure (15/15, RMS=0.251). In the left, note that the alignment is poor and that the 
symmetry equivalent molecules are missing from the alignment. With the fully 
optimized structure all symmetry elements are present, and the alignment between 
molecules is substantially better.  
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Figure 7.2: Volume-energy plot for the MGAC2 histamine run, without final 
optimization. The color of the marker denoting the generation as indicated by the color 
bar on the right. The energy funnel is well defined; note that as the number of 
generations increases, the funnel becomes narrower.  
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the bottom of the energy funnel, there is a strong implication that MGAC2 behaves more 

consistently with structure generation relative to MGAC1-QE, indicating that the 

clustering approach provides a significant improvement to prevent the loss of diversity 

prematurely. 

 As mentioned in the Methods section, the volume constraints were originally set 

very tightly, but then expanded to include a higher maximum range. In some earlier 

testing, the +/- 30% range used produced structures, but failed to converge on a solution 

in a reasonable manner. The fact that expanding this volume tolerance permitted the 

identification of an effectively correct structure highlights the importance of selecting 

proper volume constraints and distance parameters in the unit cell construction. However, 

this is at odds with the need to constrain volumes, since the volume optimization in QE is 

much costlier than using fitcell to optimize the volume. Therefore, more exploration of 

parameterization is needed to find the optimal conditions for volume control of candidate 

structures. 

 A comparison of timings follows. To complete 24 generations, this prediction took 

approximately 50,500 core hours to complete about 3,000 QE evaluations and 10,000 

fitcell minimizations. For comparison, the 10 generation MGAC1-QE run took 

approximately 39,120 core hours to complete 1,845 QE evaluations and an estimated 

4,000 fitcell minimizations. On average this means that MGAC1-QE evaluations took 21.5 

core hours per evaluation, versus MGAC2 which took 16.8 core hours per evaluation, a 4.7 

CPU hour difference. This difference could potentially be problematic, depending on the 

distribution of long optimizations. Therefore, in terms of efficiency of single space group 

tests, MGAC2 is not any more efficient than MGAC1-QE, when comparing time spent on 

evaluations. Any difference between the two algorithms lies strictly in the statistical 

likelihood that a solution is found in a set of predictions, as well as the efficiency difference 

in multiple space group predictions.  
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 The data presented demonstrate the correct implementation of MGAC2 in the 

single space group case. This strongly implies that a full search across all space groups will 

work correctly, because of the bin sorting process that is implemented in MGAC2. 

Consequently, it is expected that in the coming future MGAC2 will be shown to be suitable 

for complete blind test searches using only the chemical diagram of the target molecule. 

This will represent a great achievement for crystal structure prediction. 
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