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ABSTRACT
 
 

 Neural recording devices are a therapeutic and diagnostic option for central nervous 

system (CNS) diseases and a vital component of neuroscience research.  However, poor 

functional longevity is a major hurdle facing this broad class of devices.  Decreases in 

functionality are associated, in part, with the foreign body response (FBR) surrounding chronically 

implanted recording devices; which includes chronic inflammation, astrogliosis, blood-brain 

barrier (BBB) leakiness, and neuronal cell death.  Two potential areas for intervention were 

explored including the initial hemorrhage that results from device insertion and the 

neuroinflammatory sequela.  Researchers have shown that cellular interactions with extracellular 

matrix (ECM) are able to affect both of these aspects of the FBR.  The central hypothesis driving 

this work is that ECM coatings which target the initial hemorrhage, should decrease the FBR.  

This was investigated by coating silicon microelectrode arrays (MEAs) with ECM and implanting 

them into motor cortex of rats.  Two ECM coatings were investigated, including the xenogeneic 

clinically-used Avitene Microfibrillar Collagen Hemostat and allogeneic astrocyte-derived ECM.  

Results show that the allogeneic astrocyte-derived ECM decreased astrogliosis within the 

recording zone at the 8-week time point.  This decrease in astrogliosis may improve device 

functionality, as indicated by previous studies that correlated recording metrics to histology.  

Interestingly, the xenogeneic Avitene coating increased IgG within the recording zone at the 8-

week time point.  Collectively, these results show that ECM coatings with different genetic 

backgrounds and compositions are able to differentially affect specific aspects of the FBR.  To 

broaden the knowledge on the FBR to neural recording devices, the FBR of headstage 

components used to anchor CNS devices to the skull was analyzed.  Results showed that the 

FBR to fixation screws and fixation anchoring adhesive illicit a chronic FBR that has all of the 

hallmarks described for MEAs implanted in brain tissue.  Moreover, results show evidence of 

persistent neuroinflammation below a variety of fixation screws including chronic macrophage 
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activation, demyelination, and neural tissue loss.  Understanding the FBR of fixation techniques, 

which is common to a wide variety of CNS devices, may improve the biocompatibility of existing 

devices and provide a reference for future biologically-informed device designs. 
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CHAPTER 1
 
 

INTRODUCTION 
 
 
 This introduction establishes the background necessary to understand the studies that 

follow including a discussion of the pathogenesis and prevalence of central nervous system 

(CNS) injuries and diseases, their treatment with chronically implanted devices, the limitations 

and concerns associated with those devices with a special focus on the foreign body response 

(FBR), and previous efforts to mitigate the FBR in brain tissue.  Special emphasis is placed on 

silicon microelectrode arrays (MEAs) as this was the model system used in the experimental 

aspects of the dissertation.  This also included associated components used to anchor such 

device to the skull, hemorrhage in the brain due to device implantation, immunomodulatory 

potential of ECM, and the influence of neuroinflammation on global brain function.  Finally, 

section 1.9 introduces the rationale, hypotheses, and results for this dissertation as a whole. 

 
1.1  CNS Diseases and Injuries 

 Diseases and injuries to the CNS, which includes the brain and spinal cord, are currently 

some of the most debilitating conditions for patients and healthcare systems as a whole.  Due to 

the wide array of CNS diseases and injuries, an accurate measure of the collective prevalence 

and economic burden is not available.  However, some of the most common diseases and 

injuries are detailed below to establish a point of reference for the impact of the experimental 

work that follows. 

 
1.1.1  Neurodegenerative diseases 

 Neurodegenerative diseases (NDD) make up a large subset of CNS diseases, especially 

in the elderly population.  Alzheimer disease is the most common NDD and cause of dementia in 

the United States (US).  Alzheimer disease results from plaques and neurofibrillary tangles, that 
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are similar to implanted devices or foreign bodies, in the cerebral cortex which are associated 

with synaptic dysfunction, neuronal degeneration, and progressive cognitive decline [1].  In 2015, 

the prevalence of Alzheimer disease in the US was approximately 5.1 million people and the 

estimated economic burden (health care, long-term care, hospice) is expected to reach $226 

billion for Alzheimer disease and other types of dementia [2].  Parkinson disease is the second 

most common NDD.  Parkinson disease results from the death of dopamine-producing neurons in 

the pars compacta of the substantia nigra [3].  The symptoms are characterized by the unilateral 

onset of resting tremor in combination with varying degrees of rigidity and bradykinesia.  As of 

2010, the prevalence of Parkinson disease is approximately 630,000 people in the US with a 

projected economic burden exceeding $14.4 billion [4].  Lastly, a third NDD which is less 

prevalent but has a profound effect on the health individuals is amyotrophic lateral sclerosis 

(ALS), also known as Lou Gehrig Disease.  ALS results from axonal denervation and neuronal 

cell death in lower motor neurons in the brainstem and spinal cord as well as the upper motor 

neurons in the motor cortex.  This leads to muscle atrophy and weakness, fasciculations, and 

spasticity [5].  In 2012, there were 12,187 individuals identified as suffering from ALS in the US 

with a majority of individuals dying within 2-5 years following symptom onset [6].  The prevalence 

and economic burden of all NDDs is expected to scale with the ever-increasing elderly 

population, which is compounded by the baby boomer population who will all be 65 years of age 

or older by 2029 (approximately 20% of the total US population) [7]. 

 
1.1.2  Hydrocephalus 

 Hydrocephalus is a disease that most often affects infants and children.  It is defined as 

an active distension of the ventricular system of the brain resulting from inadequate passage of 

cerebrospinal fluid (CSF) from its point of production within the cerebral ventricles to its point of 

absorption into the systemic circulation [8].  The consequence of this inadequate passage in 

infants is often an increase in head circumference that is accompanied by severe cognitive or 

motor dysfunction.  Hydrocephalus may also develop in adults following brain injury.  The 

prevalence of hydrocephalus has not been regularly assessed, however, one report estimates 

that there were 39,904 pediatric hospital admissions related to hydrocephalus based on data in 
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2003, which accounted for healthcare costs of approximately $2 billion [9]. 

 
1.1.3  Stroke and aneurysm 

 Stroke is the leading cause of long-term CNS-related disability in the US.  A stroke is a 

disruption of the vasculature and the subsequent lack of perfusion in downstream brain tissue, 

which leads to a loss of neural tissue and its associated function.  The two forms of stroke include 

ischemic, caused by arterial obstruction, and hemorrhagic, caused by vascular rupture.  As of 

2015, approximately 6.6 million people over 20 years of age have had a stroke in the US.  In 

2013, the estimated direct and indirect cost of stroke was $33.6 billion [10].  Analogous concerns 

to hemorrhagic stroke are brain aneurysms.  An aneurysm is a ballooning or bulging of 

vasculature and can potentially lead to a hemorrhagic stroke, however, a majority do not rupture.  

Between 2002 and 2010, there were 54,589 admissions for unruptured intracerebral aneurysms 

[11]. 

 
1.1.4  Traumatic brain injury and spinal cord injury 

 Traumatic brain injury (TBI) occurs when any external force creates damage to brain 

tissue or causes neural dysfunction.  The most common cause of TBI is motor vehicle accidents.  

Due to the varying levels of TBI (mild, moderate, and severe), there are a wide range of physical 

and psychological symptoms.  As of 2005, the estimated prevalence of TBI was 3.32 million 

people in the US and the estimated economic burden of TBI in 2013 was approximately $78.1 

billion [12].  Spinal cord injury (SCI) is another form of injury to the CNS, specific to the spinal 

cord.  Similar to TBI, the most common cause of SCI is motor vehicle accidents [13].  Individuals 

with SCI experience a partial or complete loss of motor function in lower extremities depending on 

the location of the injury.  In 2012, the estimated prevalence of SCI was 236,000-327,000, with an 

associated economic burden of $9.7 billion [12]. 

 All indices of prevalence and economic burden presented in this section were based on 

estimates available in literature.  It should be noted that these examples are not exhaustive and 

estimates of prevalence and economic burden vary between various academic studies as well as 

dedicated health organizations, which may use different methods for reaching their estimates. 
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1.2  Therapeutic Implants for CNS Diseases and Injuries 

 A number of therapeutic strategies have been developed to address the diseases and 

injuries listed in section 1.1.  One of the most common strategies, along with pharmaceutical 

intervention, is medical device implantation.  The medical devices detailed below range from 

clinically utilized to investigational. 

 
1.2.1  Deep brain stimulators 

 Deep brain stimulators (DBS) are a successful therapeutic brain implanted device, which 

become particularly beneficial for patients that suffer from Parkinson disease and essential tremor 

where it is able to significantly decrease tremor severity.  DBS has been beneficial for modulating 

several other neurological conditions including pain, epilepsy, addiction, and depression [14-16].  

The device includes an implantable pulse generator and stimulating electrode array consisting of 

several platinum-iridium contacts [17].  This electrode is considered a macroelectrode given its 

size (0.06 cm2).  Experimental findings from Magariños-Ascone et al. suggest that the therapeutic 

benefit for Parkinson disease is a result of DBS’ high frequency stimulation suppressing the 

action potentials of subthalamic neurons [18].  However, the specific mechanisms of action for 

DBS are still poorly understood.  Regardless, the clinical benefit has overshadowed these 

unknowns and led to DBS’ increasing adoption as a therapeutic device, with the DBS market 

projected to increase yearly at 8.9% (compound annually) between 2014 and 2020 [19]. 

 
1.2.2  Cell encapsulation and drug elution implants 

 Another device which has been proposed as a therapeutic for Parkinson disease is 

cellular encapsulation devices.  In one set of studies, encapsulated dopamine-secreting PC12 

cells were able to elicit functional recovery in Parkinsonian rats (6-OHDA hydrobromide lesion in 

substantia nigra) as determined by quantification of rotational behavior [20, 21].  The cell 

encapsulation approach has been postulated for a large variety of CNS diseases, with some 

approaches reaching clinical trials.  However, while clinical trials have shown that cell 

encapsulation devices are relatively safe, their clinical progress has been hindered due to low 

efficacy [22].  Along the same lines as cell encapsulation devices, drug releasing implants also 
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aim to modulate the neural environment with various soluble factors, and have been investigated 

for NDDs and brain cancer [23, 24].  One of the most clinically successful examples are 

carmustine wafers (bis-chloroethylnitrosourea, Gliadel®) used in the treatment of patients with 

malignant gliomas and other intracranial malignancies [24]. 

 
1.2.3  Hydrocephalic shunts 

 Shunts, or intraventricular catheters, have proven efficacious for the treatment of 

hydrocephalus.  Alleviation of elevated CSF pressure is achieved through a silicon elastomer 

catheter implanted in the ventricular space and draining into the peritoneal cavity.  The passage 

of CSF is controlled with an inline siphon-preventing backflow, or a flow control device, which has 

seen a considerable amount of development over the past two decades.  The most notable 

design improvement is the advent of adjustable pressure valves which can be set following 

implantation [25]. 

 
1.2.4  Aneurysm clips and endovascular coils 

 Aneurysm clips or endovascular coils are the two device options for individuals who have 

a ruptured aneurysm.  This clipping or coiling is intended to limit the risk of a subsequent rupture 

and hemorrhage.  Clips are typically made of titanium whereas the detachable coils are mostly 

platinum.  Some newer coil designs are integrating polymers and thrombogenic agents to 

promote clotting inside the aneurysm [26, 27].  Coiling is the most recently developed of the two 

options and has shown better outcomes in comparison to surgical clipping.  In a clinical study, 

which focused on subarachnoid hemorrhage as a result of aneurysm, coiling significantly 

decreased the risk of re-hemorrhage as compared to clipping [28].  Another major advantage of 

coiling is that a craniotomy is not required which improves patient recovery time. 

 
1.2.5  Microelectrode arrays 

 Microelectrode arrays (MEAs) are used for high resolution stimulation and recording from 

neuronal cell bodies or cell clusters.  They are an emerging technology used in the treatment of 

NDDs, Stroke, TBI, and SCI [16].  The most powerful form of stimulation and recording occurs at 

the cellular level.  Specific to recording, single-unit action potentials (APs) acquired from 
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intracortical microelectrodes provide the highest neural signal resolution.  Other modes of 

recording including electroencephalography (EEG), electrocorticography (ECoG), and local field 

potentials (LFP) have many potential benefits and have been reviewed extensively [29-32].  

However, unlike the intracortical microelectrodes needed for single-unit APs, the requisite devices 

for these other modalities do not penetrate brain tissue.  Additionally, these other modalities have 

a lower potential for recording resolution and do not experience the same in vivo complications as 

intracortical microelectrodes.  For these reasons, devices that do not penetrate the brain are not a 

focus of this dissertation.  For measuring single-unit APs the most common devices are 

microwires or microfabricated silicon microelectrode arrays. 

 Microwires are historically the most utilized device for single-unit AP recordings [29].  To 

the best of my knowledge, their use currently is limited to neurophysiology research.  These wires 

are commonly 30-50 μm in diameter (after insulation) with the electrical conduit being a pure 

metal (tungsten or gold) or an alloy (stainless steel or platinum/iridium).  Typical materials used to 

electrically insulate the wire include polyimide, poly-para-xylylene (Parylene), or 

polytetrafluoroethylene (Teflon) [33].  Some labs fabricate microwires into arrays in-house, which 

enables a high degree of customization and affordability.  The Nicolelis Lab (Duke University) 

detailed some of the advantages of customization such as contour mapping and specificity of tip 

geometry [34].  There are also a number of commercial options which have more recently allowed 

for higher levels of customization, with the added benefit of guaranteed device tolerances 

(electrode length, impedance, etc.).  An example is Tucker-Davis Technologies (Alachua, FL) 

who have a web applet that allows neurophysiology researchers to design custom microelectrode 

arrays [35]. 

 Microfabricated silicon MEAs are a commercially available neural recording device 

option.  The high cost, inaccessibility of equipment, and advanced techniques required for their 

fabrication restrict the in-house customization afforded to microwire arrays.  However, similar to 

commercial microwire arrays, highly customizable silicon arrays are available from manufacturers 

in two-dimensional and three-dimensional configurations. 

 Two-dimensional or planar silicon arrays are most associated with the University of 
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Michigan, where their development has been extensive and led to the company Neuro-Nexus.  

To the best of my knowledge, their use currently is limited to neurophysiology research.  These 

planar devices may be single or multishanked and are made through photolithography processes 

similar to semiconductors and microelectromechanical systems.  In brief, the microfabrication 

process begins with a silicon substrate which is boron-doped and etched (deep-reactive ion etch) 

to define the MEAs profile.  The processed silicon shank is then functionalized with metallic 

deposition of gold, platinum, or iridium oxide recording and stimulating sites depending on 

intended application.  The probe is then separated from the silicon wafer and the shanks are 

insulated via a low-pressure chemical vapor deposition.  Several organic materials have been 

investigated for final packaging including polyimide and Parylene.  All dimensions are 

lithographically controlled with tolerances well below 1 μm [36]. 

 Three-dimensional silicon arrays are most associated with the University of Utah, where 

their development has been extensive and are now marketed by the company Blackrock 

Technologies, Inc., located near the University of Utah.  To the best of my knowledge and 

according to the National Institutes of Health (NIH, clinicaltrials.gov) these are the only cortically 

implanted MEA approved by the Food and Drug Administration (FDA) for use in human clinical 

trials, with the patient condition limited to tetraplegia, spinal cord injury, and brainstem stroke.  

The microfabrication of the UEA is quite different in nature to the lithography methods used for 

the 2D MEAs.  First, a silicon block is processed via thermomitigation which dopes the silicon with 

aluminum creating tracts of highly conductive p+ silicon.  A micro-sawing technique followed by 

etching creates high aspect ratio individual shanks.  Each shank is electrically isolated from one 

another at the base as a result of the regionalized p+ silicon being encased in nonconductive n-

type silicon.  Each shank tip is then sputtered with iridium oxide (originally platinum was used) 

and insulated with Parylene-C (originally polyimide was used) [37].  This design of the UEA is 

roughly the same in 2015 as it was in 1990 when fabricated by Dr. Richard Normann’s lab [38, 

39].  Some of the most promising design modifications to the UEA are variable shank length 

(Utah Slanted Electrode Array) and the packaging of a wireless telemetry system on the UEA’s 

base [40]. 
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 Sensory loss and limb amputation are two injuries not specific to CNS tissue but could 

benefit from stimulating and recording microelectrodes.  Individuals suffering from sensory loss 

could benefit from stimulation of a specific brain region, thus bypassing the defunct sensory cells 

or pathway [41].  Example diseases include blindness or deafness, which may result from injury 

or degeneration of peripheral sensory cells or pathway. 

 One disease that exemplifies this scenario is macular degeneration which results from 

degradation of the central portion of vision due to photoreceptor inhibition or death.  These 

photoreceptors are then unable to provide stimulation to brain’s visual cortex, which results in 

large scale reorganization of visual processing [42].  Macular degeneration is currently the 

leading cause of blindness in the developed world.  In addition, whole limb amputees could also 

benefit from recording MEAs implanted in the motor cortex, thus enabling control of high 

resolution robotic prostheses.  In 2006 Hochberg et al. provided the proof-of-principle 

experiments for human control of robotic apparatuses when a tetraplegic patient was able to 

control a computer mouse and robotic hand with a UEA implanted in motor cortex [43]. 

 
1.3  Limitations and Concerns of Current 

 
and Investigational Devices 

 
 Of the device classes discussed in section 1.2, all have limitations in efficacy or safety 

concerns [22, 44-49].  One broad concern is infection, as with all surgical procedures and 

implanted devices [50].  While infections are problematic everywhere in the body, they can be 

particularly difficult to treat in the brain.  One study looked at the effect of prophylaxis, an 

antibiotic, on patients with meningitis (infection of the tissue surrounding the brain).  Of the 6243 

patients with craniotomies (no device insertion), it was shown that prophylaxis did not significantly 

decrease meningitis, even though it significantly decreased the infection rate of the dermal 

incision site [51].  One way that hydrocephalic shunt technology has combated infection is with 

impregnated antibiotics, which have been shown to decrease the incidence of shunt-related 

infections [52].  While infection is a uniform concern for all devices, other device-specific concerns 

including intracortical hemorrhage, shunt occlusion, recording device reliability, and deep-brain 

stimulation efficacy, all contribute to poor functional longevity.  Two devices that have been 
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especially troubled by poor functional longevity are hydrocephalic shunts in clinical use and 

cortically-implanted recording MEAs in research, which has inhibited their clinical use. 

 
1.3.1  Failure of hydrocephalic shunts 

 In a study on hydrocephalic shunts which tracked 64 patients, ages ranged from days old 

to adolescence, it was shown that 84.5% of patients required at least one shunt revision surgery 

and 4.7% of patients required 10 or more revision surgeries [53].  The most prevalent cause was 

catheter occlusion, which accounted for 42% of all failures.  Other common causes of failure were 

catheter disconnection (11%) and infection (9%).  More than half of shunt failures and revisions 

occur within the first year.  Following these acute failures, revisions were still required at time 

points beyond 15 years for some patients.  Of all the revisions, 65.5% required replacement of 

the brain implanted proximal catheter.  Proximal catheter occlusion occurs when tissue 

encapsulates the perforated catheter tip and invades the lumen of catheter through the drainage 

holes [54].  This tissue encapsulation and lumen infiltration is driven by various reactive cell types 

(inflammatory and glial) [45, 55]. 

 
1.3.2  Failure of recording microelectrode arrays 

 A majority of the knowledge about shunt failure has been obtained through clinical 

observations, explanted device analysis, and in vitro material analysis.  Conversely, the majority 

of knowledge about chronic recording MEA failure has been obtained from animal experiments.  

This results from the neuroscience communities’ extensive use of recording MEAs as a basic 

research tool.  To date they have only been used in a limited number of clinical trials, due to a 

lack of device reliability and longevity [56].  In various in vivo neural recording studies using 

various species (rat, guinea pig, cat, nonhuman primate, and human) all have shown that 

recording quality fluctuates unpredictably and decreases over time [49, 57-65]. 

 A retrospective study which exemplifies many of the concerns with recording MEAs was 

put together by the Donoghue group covering two decades of neural recording experiments in 

nonhuman primates (NHP).  It represents one of the most comprehensive failure analyses 

conducted to date in nonhuman primates [49].  The studies used the UEA described in section 
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1.2, with a common set of measures to evaluate recording performance failure.  Overall, 78 UEAs 

were implanted in 27 NHPs with failures grouped into acute or chronic and sorted based on 

failure type within the four categories which included material, mechanical, biological, and 

unknown mechanisms.  The mean recording duration was 387 days (range of 0 to 2104 days) 

with a majority of the recording failures occurring within the first year of implantation.  Acute 

mechanical failures were most prevalent at acute time points 48%, and macroscopic biological 

response (meningeal encapsulation) led to 53% of all chronic failures.  One aspect of the 

mechanical and material failures that was not considered in these categories was the influence of 

biological factors.  For instance, headstage loosening was grouped under mechanical failure, 

however, it was noted that a major factor of the failure was the tissue response to the headstage 

material.  Another example was the failure of insulating material, which may be influenced to the 

corrosive nature of physiological environment [66, 67].  An area of failure that was not extensively 

investigated in this study was those induced by tissue responses on the cellular level. 

 A recent study focused on the FBR as it relates to single unit recording quality and 

longevity using a 16-shank (4 x 4) UEA implanted in rats.  Results showed that a lesion/cavity 

formed below the implanted UEA, near the center of the implant. Single unit recording 

performance of microelectrodes in the center of the electrode array performed significantly worse 

than those located at the edge of the array.  The reduction of recording performance in the center 

of the UEA was associated with elevated FBR, astrogliosis, and blood-brain barrier (BBB) 

leakiness [68].  Lastly, given that applied sciences tend to outpace the progress of basic sciences 

(biology, physics, etc.), it is reasonable to believe that improvements in device design and 

manufacturing will limit mechanical and material failures, thus increasing the likelihood that 

biological failures will dominate in the future [69]. 

 While hydrocephalic shunts and recording MEAs have drastically different therapeutic 

applications, there are similarities between their failure modes.  First, the majority of failures for 

both occur within the first year following implantation.  Second, revision of the device usually 

requires removal or replacement.  Finally, a majority of failures for shunts (acute and chronic time 

points) and for MEAs (chronic time points) are attributed to the FBR.  Additionally, enhanced 
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astrocyte reactivity and cell attachment to the device is a common failure mode for both types of 

devices [45, 68].  For these reasons, understanding and reducing the FBR in brain tissue has 

been the primary focus of many studies seeking to improve the biocompatibility of this class of 

devices [70-77]. 

 
1.4  The Foreign Body Response to Implanted Devices 

 There are a number of differences in the CNS FBR compared to other tissues such as 

loose connective tissue or bone.  For brevity, this section will focus on the FBR to chronically 

implanted devices in brain tissue.  The relationship between the CNS and non-CNS tissue 

response has been detailed in several reviews [78, 79].  The tissue response in the CNS can be 

roughly classified into four phases:  hemostasis, inflammation, proliferation, and remodeling [78].  

The divisions between these phases are not stringently demarcated and it is important to 

recognize that the tissue response is a continuum.  The moment of injury is the first aspect of the 

response to consider as it leads to mechanical damage of cells and their resulting apoptosis, 

necrosis, or inflammatory activation.  Injury severity has influence on the scale of the four 

following phases [80, 81]. 

 
1.4.1  CNS hemostasis 

 Hemostasis is the first phase of the tissue response following injury or the implantation of 

a biomedical device.  It is the process of stopping the initial hemorrhage, which is facilitated 

through activation of the coagulation cascade and formation of a blood clot, in which platelets 

play crucial role.  The process of hemostasis begins immediately following breakage of 

vasculature, and can last for several hours depending on the severity of the insult.  Hemorrhage 

can be pronounced in brain tissue due to its dense vascularization and is accompanied by 

neuronal death caused by nutrient deprivation, activation of the complement cascade, activation 

of neutrophils, and macrophages [82, 83].  Dense vascularization, detailed in Fig. 1.1, is required 

to maintain the metabolic activity of neural tissue [84]. 

 The initial hemorrhage is the major complication in stroke, ruptured aneurysms, and 

traumatic brain injury.  For larger penetrating implants, DBS and shunts, vasculature networks are 
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approached with great caution during insertion due to the dangers of hemorrhage [85].  Few 

studies have examined the hemorrhage that results from the implantation of MEAs but it is 

commonly indicated as a concern [56, 86-89].  Given this dissertations focus, a more detailed 

background on hemorrhage and hemostasis is reviewed in section 1.6. 

 
1.4.2  Neuroinflammation 

 Following injury or the implantation of a biomedical device, inflammation is initiated during 

the process of hemostasis and continues for variable lengths of time depending on the severity of 

the injury or the indwelling period of the implant [90].  This process is directed by neutrophils 

initially, and then by macrophages, which are influenced by signaling molecules that result from 

cellular damage or from various phases of the hemostasis process (e.g., platelet degranulation) 

[91].  The first inflammatory cells to respond are neutrophils, which flood into the extracellular 

space during vessel rupture.  They are also recruited from the surrounding intact vasculature 

through binding to various intravascular adhesion receptors, activated following injury, and 

intravascular rolling that facilitates extravasation through the endothelial wall [92].  Neutrophils at 

the wound site release proteolytic enzymes and reactive oxygen species during the phagocytosis 

and degradation of damaged tissue or at the surface of the foreign body (biomedical device) [93].  

Following the initial influx of neutrophils, they undergo apoptosis after several days and are 

phagocytized by activated macrophages [94].  From that point on the inflammatory process is 

mostly dictated by extravasation of circulating monocytes, which then differentiate into 

macrophages and activation of tissue-specific macrophages called microglia (discussed in detail 

below).  Unlike neutrophils which undergo apoptosis, macrophages traffic in and out of the wound 

to remove necrotic and foreign debris [95].  This clean up continues at the current level until the 

blood-brain barrier (BBB) is restored.  In the absence of a foreign body, once the BBB is restored 

the trafficking of monocytes to the wound site is inhibited by down regulation endothelial cell 

selectins [96].   

 Another factor which potentially plays a large role in these initial events is complement 

activation.  Complement activation evolved to removed pathogens and microbes through various 

pathways (classical, lectin, alternative) [97].  Complement activation is important for implanted 
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devices as it has been shown that artificial surfaces activate the complement system in vitro and 

in vivo [98, 99]. 

 Other reactive cell types in neural tissue include tissue-resident macrophages (microglia), 

mast cells, and astrocytes.  Microglia cells are the tissue-resident macrophage of the brain [100].  

They are derived from the yolk sac unlike other circulating monocytes and blood-borne 

macrophages which originate from the bone marrow [101].  In an effort to delineate the role of 

tissue-resident and blood-borne macrophages some approaches use chimera mice, where the 

bone marrow is irradiated and replaced with labeled bone marrow.  These experiments show that 

yolk-sac derived microglia may have a larger role in debris clearance at the acute time points (0-4 

d) as compared to blood-borne macrophages [102].  Conversely, another study with a similar 

mouse model showed that blood-derived macrophages dominate the chronic biotic/abiotic 

interface of an implanted device [103].  However, these approaches do not account for the 

population of bone-marrow derived macrophages that infiltrate and reside in the CNS.  To 

address this, a recent approach used genetic markers to label bone marrow derived cells (via 

HOXB8).  This genetic approach has shown that even in the healthy brain there is a distributed 

population of bone-marrow derived tissue-resident macrophages, which accounts for 

approximately 40% of all brain tissue-resident macrophages [104]. 

 Mast cells, another tissue-resident inflammatory cell type, are most associated with their 

role in anaphylaxis.  They are mostly present in the perivascular space in the brain and in the 

meninges surrounding the brain.  Mast cell activation during neural injury and neuroinflammation 

is hypothesized as a contributing factor to neuronal death following injury, especially due to their 

release of vasoactive mediators and other soluble factors during degranulation [105]. 

 Astrocytes, while most associated with scarring in the injured brain, can also secrete 

proinflammatory cytokines and contribute to neuroinflammation [106].  The inflammatory phase is 

essentially resolved when all damaged/necrotic tissue is removed and the presence of 

proinflammatory macrophages ceases at the site of injury.  Macrophages are not limited to a 

proinflammatory phenotype, their phenotypes exist across a wide spectrum and some contribute 

to the next phase, proliferation [107]. 
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1.4.3  CNS proliferation 

 Proliferation is the next phase of the tissue response in the CNS and is sometimes 

denoted as the repair phase.  The cells most associated with this phase in the CNS are 

astrocytes.  Following injury, astrocytes encircle the injury site which is occupied by neutrophils 

and macrophages.  This astrocyte response is often denoted as astrogliosis, where astrocytes 

develop a hypertrophic cytoskeletal morphology that is believed to develop a barrier around the 

injury site.  At chronic time points this response is denoted as the glial scar.  The degree of 

astrogliosis and glial scarring is related to the initial amount of hemorrhage and tissue damage 

[108].  The glial scar is a particular focus of intervention for SCI patients.  Following injury in the 

spinal cord, the glial scar formation and secretion of inhibitory proteins (e.g., chondroitin sulfate 

proteoglycan or CSPG) prevents axonal regeneration, thus limiting functional recovery [109].  

Similar to neuronal outgrowth inhibition in the spinal cord, cortical neurons cannot transverse the 

glial scar due to these inhibitory molecules.  While this is detrimental for regeneration, strictly 

eliminating astrogliosis is not an option as it has also been shown to be protective.  This 

protective nature was show in a study that looked at the tissue response in the spinal cord when 

reactive astrocytes were selectively deleted in transgenic mice by administration of viral agent 

ganciclovir, which showed that reactive astrocytes are required for wound healing, protected 

neuron, and oligodendrocyte function, and preserved motor function in mild or moderate SCI 

[110]. 

 Unlike other cells involved in CNS injury, differentiated neurons established in the 

cerebral cortex are unable to proliferate and retract their processes or die as a result of the high 

levels of inflammation [76, 111, 112]. 

 
1.4.4  CNS remodeling 

 Remodeling, like neuronal proliferation, is limited in the CNS as compared to peripheral 

tissues.  One reason is the chronic nature of the glial scar, which does not resolve and remains 

above background at chronic time points [76, 77].  When an area of damage is large a CSF filled 

cavity often develops that is encapsulated by hypertrophic astrocytes [113].  The lack of neural 

remodeling and reconstruction is a critical limitation for diseases such as stroke and 
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neurodegenerative diseases, which has prompted interventions that range from growth factor to 

stem cell delivery to promote functional recovery [113, 114].  Additionally, this means that 

iatrogenic injury must be minimized to preserve as much of the natural architecture as possible. 

 
1.4.5  The foreign body response 

 The tissue response detailed above is relevant to a transient injury, however, when a 

device is chronically left indwelling, there is a deviation from this process known as the foreign 

body response (FBR).  The FBR is observed around all chronically implanted biomedical devices, 

materials or research tools including those devices introduced in section 1.2, [44-46, 76, 115].  In 

an effort to understand and improve biocompatibility, FBR to recording MEAs (Fig. 1.2) has been 

an area of considerable focus in recent years.  For this reason, and given the focus of this 

dissertation, the FBR description below focuses on the FBR surrounding intracortical MEAs.  The 

first notable difference in the FBR is that it does not resolve.  A layer of activated, phagocytic 

macrophages is observed adjacent to the interface over the entire indwelling period irrespective 

of the type of device, its material makeup or the species studied.  The response has been called 

frustrated phagocytosis, which eventually leads the fusion of macrophages and the formation of 

multinucleated, foreign body giant cells (FBGC) at the biotic abiotic interface [116-118].  Our lab 

has previously shown that on explanted brain implants these activated proinflammatory 

macrophages release a number of proinflammatory cytokines including monocyte chemotactic 

protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) [76].  A more recent study showed 

the presence of multinucleated FBGCs on the base of a chronically implanted UEA in rat cortex 

[68].  The surface adherent macrophages are believed to be a driving force behind the FBR as 

they secrete a wide array of cytokines, chemokines, and effector molecules which affect tissue 

remodeling and may damage surrounding neural tissue [111, 118-122]. 

 Immediately beyond the macrophage layer is a layer of hypertrophic astrocytes.  Similar 

to the glial scar that forms following injury, the astroglial scar associated with device interfaces 

does not resolve and is known to secrete proinflammatory cytokines [106, 123].  Associated with 

this persistent inflammation is a leaky blood-brain barrier (BBB) as identified by plasma proteins 

that are present in the brain parenchyma throughout the indwelling period [124, 125].  This sets 
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up a recurring loop as plasma proteins can induce inflammation in the brain and inflammation, in 

turn, causes BBB leakage due to monocyte recruitment [126, 127]. 

 Neurons are highly susceptible to mechanical damage as well as changes (ionic, 

osmotic, metabolic, effector molecules, etc.) in the complex extracellular milieu [128-131].  Most 

researchers have reported a loss of neuronal cell bodies and their processes adjacent to the 

electrode-tissue interface [76, 132].  Furthermore, altered excitability in the tissue surrounding the 

device may also influence recording MEA functionality [76, 133].  This is particularly problematic 

for the advancement of neural recording devices, as single unit AP measurements require a 

distance of less than 140 μm between the electrode and adjacent neuronal cell bodies [134, 135].  

Following these observations, a leading theory to improve the long term efficacy of recording 

devices is to decrease the FBR [68, 132, 136, 137]. 

 The brain’s FBR is the most common focus for improving the chronic single unit recording 

of cortically implanted MEAs.  However, most of the devices detailed in section 1.2 require 

supporting components that exist outside of the cranial vault which require anchorage to the skull 

and must transverse several layers of noncortical tissue.   

 One example of noncortical tissue that significantly influences the functional longevity of 

recording MEAs is the meningeal layers.  The meninges include the dura, arachnoid, and pia 

maters.  Although these layers exist inside of the cranial vault and support neural function, they 

are mostly composed of fibroblasts and fibrous collagen, unlike the brain [138].  As noted in 

section 1.3, a failure mechanism of cortically-implanted UEAs is fibrous encapsulation by 

meningeal layers, which are originally removed above the implantation site and grow back.  This 

thick fibroblast driven encapsulation can cause the MEA to be completely isolated from all neural 

tissue [49, 63, 139, 140].  Lastly, an issue which is seldom discussed as a biological problem in 

literature is the failure and dislodgment of headstage components [49, 58].  Headstage 

dislodgement is often categorized as a mechanical failure, even though the etiology is partially 

biological due to animal grooming but can also occur due to osteolysis surrounding bone screws 

which results in bone screw loosening.  Additionally, the influence of these components on the 

underlying neural tissue was previously unknown, but is addressed in section 1.9 and Chapter 3. 
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1.5  Previous Efforts to Minimize the FBR to CNS Implants 
 
 Improved biocompatibility is the ultimate goal of studies that seek to minimize the FBR.  

Towards this end, a number of studies have focused on systemic pharmaceutical intervention, 

local drug elution, modification to the device geometry, and surface coatings.  The majority of the 

techniques are directed towards recording MEAs to establish the contemporary work for the 

model system used in this dissertation. 

 
1.5.1  Systemic pharmaceutical administration 

 Systemic pharmaceutical interventions have focused on the inflammatory response to 

cortical implants [141, 142].  One investigation analyzed the influence of systemic anti-

inflammatory treatment on MEA recording function by orally administering minocycline, a 

tetracycline antibiotic.  The rationale for using minocycline, a tetracycline antibiotic, is its 

neuroprotective effects when administered following CNS injury or for neurodegenerative 

diseases.  While the exact mechanism of this neuroprotection is unknown, it has been postulated 

that the root cause is inhibition of microglia activation and excitotoxicity [143].  Their results 

showed that the minocycline treated group had a higher signal-to-noise ratio, more functional 

recording channels, and a lower area of astrocyte (GFAP) immunolabeling [144].  Drawbacks of 

this approach were the limited time points and that minocycline is not a viable chronic solution 

due to side effects.  Regardless, the experiment indicates a relationship between the FBR, 

specifically astrogliosis, and functional performance. 

 
1.5.2  Local drug and small molecule elution 

 Local drug elution is another technique which builds off of the concept of influencing the 

FBR through anti-inflammatory agents or growth factors but avoids the systemic complications.  A 

number of studies have investigated elution of dexamethasone (DEX) as a means to decrease 

the FBR [145, 146].  The rationale for using dexamethasone, an anti-inflammatory glucocorticoid 

hormone, is based on studies using systemic injections which decreased astrogliosis around CNS 

implants [141].  The mechanism of action for this decrease in astrogliosis is attributed to 

dexamethasone’s immunosuppressant/anti-inflammatory properties.  However, systemic 
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administration has a number of dangerous side effects, thus prompting its incorporation into a 

coating for elution [147].  A study from the Bellamkonda lab showed that MEAs with DEX eluting 

coatings significantly decreases astrogliosis (GFAP) at both 1 and 4 weeks.  However, while 

inflammation was significantly decreased at 1 week, the benefit was lost at 4 weeks [148].  

Another study on DEX elution focused on electrical impedance and showed that impedance did 

not increase within the first 2 weeks surrounding DEX eluting coating, as compared to uncoated 

controls which approximately tripled [149].  Other small molecules eluted from the interface 

include alpha-melanocyte stimulating hormone (α-MSH) and Interleukin-1 receptor antagonist (IL-

1ra) that both act as anti-inflammatory agents, and nerve growth factor (NGF) that would 

supposedly influence neurite growth and neuronal survival [150-152].  One problem with the drug 

elution approach is the finite supply and lifespan of the eluted drug.  A different proposed method 

to circumvent this and provide unlimited local drug elution is the integration of drug infusion 

cannula into 2D planar MEA [153].  For injuries to the spinal cord a great deal of work has 

focused on altering the glial scar to be permissive for neuronal regeneration.  These techniques 

include injectable hydrogels which target either the degradation or alteration of CSPG sulfation or 

cellular grafts which promote axonal growth via neurotrophic factors [154-157].  Additionally, the 

implantation of scaffolds to instruct neuronal pathfinding via growth factors or genetic 

manipulation has been investigated [158, 159]. 

 
1.5.3  Device geometry and constitutive modification 

 Device geometry and constitutive property modification includes alterations of shank size, 

spacing, inclusion of barbs to maintain position and organization (i.e., braided microwires), and 

device stiffness [34, 160-162].  There are two primary rationales for modifying the architecture 

and constitutive properties of MEAs.  The first rationale is based on surface-adherent 

macrophages, which secrete factors that shape the FBR, being influenced by device geometry 

and permeability that facilitate clearance of proinflammatory cytokines [76, 136, 163].  The 

second rationale is based on notion that mechanical mismatch between the stiff device and soft 

neural tissue continuously damages tissue at the biotic-abiotic interface due to micromotion [164, 

165].  The influence of surface area was investigated by creating a lattice designed electrode with 
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openings along the shank [163].  The important feature of this lattice design was that it maintains 

the same penetrating profile as a solid MEA, which resulted in an equivalent iatrogenic injury.  

The FBR around the lattice MEA was significantly less, with macrophage activation (CD68) and 

BBB leakiness (IgG) being significantly less than solid controls and neuronal density (NeuN) 

being significantly higher than solid controls.  A proposed source of this improvement was the 

decreased amount of surface adherent macrophages (due to less surface area) and an increase 

in the clearance of proinflammatory factors secreted by the surface adherent macrophages.  

Interestingly, the level of astrogliosis was not influenced at chronic time points.  Along with other 

studies which look at the time course of astrogliosis, this indicates that the acute factors are 

influential in the chronic astrogliosis [73]. 

 A concept related to surface area and increased cytokine clearance is that of interfacial 

permeability [136].  To test this, a 400 μm thick hydrogel (alginate) coating was applied to a MEA 

and compared to uncoated controls.  Results showed that even though this coating had a larger 

surface area than an uncoated control, the level of macrophage activation (CD68), astrogliosis 

(GFAP), and BBB leakiness (IgG) was significantly less and neuronal density (NeuN) was 

significantly higher than solid controls.  Another aspect of the hydrogel coating to consider is its 

pliable nature.  Low modulus MEAs are proposed by several groups as means to limit the 

mechanical mismatch between the stiff device and compliant brain tissue [164-166].  However, 

dissecting the relationship between permeability and mechanical mismatch has been challenging 

due to the innate permeability of compliant materials.  Recent and future material science 

developments in nanoporous materials (i.e., silicon and gold) should allow for a better 

understanding of the relationship between permeability, surface area, and device modulus [167, 

168]. 

 
1.5.4  Synthetic polymer and protein coatings 

 Lastly, device surface coatings composed of either synthetic polymer or proteins have 

been investigated for their influence on the FBR [169-171].  The approach of many of these 

coatings is unclear as they list vague mechanisms of action or rationales which are not 

biologically-centric.  One study on synthetic insulator, Parylene-C, does list a rationale of reducing 
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microglia cell attachment [73, 121].  In this study on the electrode insulator Parylene-C, which 

facilitates significantly less cell attachment than bare glass in vitro, there was no influence on the 

FBR.  This contributes to the view that an inert coating does not alter the FBR.  Alternatively, a 

number of groups have investigated bioactive single protein coatings which were not designed for 

elution, but are tethered to the interface.  These include neural adhesion molecule L1 and 

CDPGYIGSR peptide (facilitate cell adhesion and neurite extension), gelatin (acts a degradable 

support), and IL-1ra (binds inflammatory molecules) [172-176].  In one study laminin-1 

(polyanion) was coated onto the surface of a MEA via a layer-by-layer (LbL) deposition with 

polyethyleneimine (PEI, polycation) with the general rationale of promoting tissue integration 

[177].  Compared to uncoated controls, the LbL laminin-1/PEI coating significantly increased 

macrophage activation (CD68) at 24 h, no difference at 1 week, and a significantly decreased 

macrophage activation at 4 weeks.  Astrogliosis (GFAP) surrounding this coating was no different 

than controls at 24 hr and 1 week, however, it was significantly decreased at the 4-week time 

point.  There was no observed difference in the neuronal density. 

 These strategies have had mixed results in regards to their influence on the FBR.  The 

vast majority have focused on the inflammatory and proliferative process, with a few focusing on 

neurotropism and cell adhesion.  The similar nature of the above quantification approaches most 

likely originates from the referencing of the qualitative Szarowski 2003 and quantitative Biran 

2005 publications [76, 178].  For these previous studies, the typical indwelling endpoints range 

from 1 week to 16 weeks, and cohort sizes range from 4-9 animals.  While inflammation was a 

common target for strategies discuss in this section, none of these approaches specifically 

addressed the first instigator of inflammation, the initial hemorrhage. 

 
1.6  Hemorrhage and Hemostasis in the CNS: 

 
Background for Hemostatic ECM Coatings 

 
 Cerebrovascular damage occurs during the insertion of any device into the brain.  The 

resulting hemorrhage is evident following the acute insertion of a MEA into human cortical tissue, 

as shown in Fig. 1.3.  Hemostatic mechanisms stabilize the hemorrhage and limit neuronal cell 

death [82].  During hemostasis, platelets play many critical roles following their adhesion, 
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activation, and aggregation.  Platelets form the primary hemostatic plug and undergo 

degranulation; releasing factors which directly accelerate the coagulation cascade [179].  The 

initial adhesion and subsequent activation of platelets is induced by specific binding motifs 

located on extracellular matrix (ECM) proteins, which compose the vascular basement 

membrane.  Of these proteins, collagen and laminin are known to initiate adhesion and activation 

through the platelet glycoprotein VI receptor pathway [180, 181].  Collagen, the most abundant 

protein in the ECM, specifically induces platelet activation through the recognition of Gly-Pro-Hyp 

peptide sequence [182].  Laminin, via integrin α6β1, supports extensive platelet spreading and 

specifically stimulates the formation of filopodia and lamellipodia [183].  Other ECM proteins 

known to aid in platelet adhesion are fibronectin and vitronectin [184].   

 In the clinical setting, collagen powders and sponges have served as the gold standard 

for managing bleeding.  In vitro studies using clinically-available topical hemostatic agents 

indicate that noncrosslinked collagen is the most effective mechanical inducer (no thrombin) of 

hemostasis when compared to gelatin and cellulose [185].  To leverage these hemostatic 

abilities, investigational endovascular coils have been coated with ECM proteins to promote 

coagulation of blood inside of an aneurysm [27].  Cumulatively, these studies indicate that 

mimicking the heterogeneous protein composition and available binding motifs of the vascular 

basement membrane would be an effective strategy for accelerating hemostasis. 

 
1.7  The Role of ECM in Immunomodulation and CNS Wound Healing: 

 
Background for Immunomodulatory ECM Coatings 

 
 Acellular tissue engineering scaffolds composed of ECM proteins have demonstrated an 

ability to direct the tissue response towards a proregenerative phenotype.  This, in part, is  

attributed to the immunomodulatory abilities of ECM.  Brown et al. showed that implanted 

biologically-derived meshes induce a higher ratio of alternatively activated, proregenerative 

macrophages to classically activated, proinflammatory macrophages.  The initial ratio of 

proregenerative to proinflammatory macrophages was correlated to differences in chronic tissue 

remodeling [186].  Furthermore, acellular ECM constructs are able to induce a higher ratio of 

proregenerative macrophages in comparison to cellular constructs; even autologous cellular 
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constructs resulted in a dominant proinflammatory macrophage response [187].  When ECM was 

used as a coating for subdermal implants, the degree of fibrosis was significantly decreased 180 

days post implantation [188]. 

 Modulating macrophage phenotype and their secreted factors may be especially 

beneficial in the CNS since proinflammatory macrophages are neurotoxic and proregenerative 

macrophages promote axonal regeneration and dendritic pruning [189-191].  Injection of a 

hydrogel ECM in the CNS following traumatic brain injury was able to attenuate local damage 

[192].  Additionally, studies have shown that nonsoluble factors, such as ECM proteins, secreted 

from cells alter the morphology and inflammatory processes of CNS tissue-resident macrophages 

[193-196].  Taken together, these studies indicate that ECM may improve the tissue remodeling 

following CNS injury through immunomodulation. 

 
1.8  Fixation and Neuroinflammation of Chronic CNS Devices: 

 
Background for Headstage FBR Analysis 

 
 As mentioned in section 1.4.5, devices implanted in the CNS require anchorage to other 

tissues in order to perform their intended function.  This is especially true for in vivo animal 

studies due to animal interactions or specific grooming behaviors, which might loosen or remove 

the device.  For the most part, all investigational devices in section 1.2 are fixed to the skull with 

similar techniques (Fig. 1.4). 

 
1.8.1  Fixation techniques for chronic CNS devices 

 These techniques include anchorage to screws attached to the skull, and encapsulation 

of the screws and transcutaneous connector in a cement or adhesive to form a headstage [58, 

70, 197, 198].  One reason for this similarity in device anchorage is, especially in recording 

devices, the comparable size and design of the electrical connectors.  The standard nature of the 

connectors is an important aspect as it allows a group to easily connect several different types of 

recording devices to the same testing or recording apparatus [70].  The size of the animal dictates 

the number of implants and the corresponding size of the headstage [198].  For example, the size 

of the nonhuman primate (NHP) brain and skull enables the use of larger MEAs as well as a 
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larger pedestal and  screws for anchorage [49].  The NHP skull is also significantly thicker, which 

allows for better thread engagement between the screw and bone.  Conversely, in rodents, 

headstage fabrication is limited to the use of screws and adhesive encapsulation to anchor the 

MEA to the skull [60, 68, 197, 199-202].  Similar screw and adhesive encapsulation techniques 

are used experimentally for deep brain stimulators, hydrocephalic shunts, optogenetic fiber optic 

probes, microdialysis probes, push-pull cannulas, tubing for drug infusion, and cranial windows 

used in advanced microscopy studies [119, 139, 203-206].  The skulls of rodents are much 

thinner and vary with age, which limits the strength of screw fixation in comparison to NHPs.  

Furthermore, the primary device component (recording or stimulating MEA, optogenetic probe, 

microdialysis cannula, etc.) makes up a small percentage of the entire implanted surface area. 

 While significant attention has been directed to studying the FBR to MEAs implanted in 

cortex, little attention has been directed to studying the FBR associated with the other headstage 

components that are used to secure MEAs to the skull during chronic use.  Fixation screws (Fig. 

1.5) are of special interest as they generally penetrate the skull to make contact the meninges 

and the underlying brain tissue. 

 
1.8.2  Neuroinflammation and neural function 

 Emerging evidence on neuroinflammation and its impact on opening the BBB, decline in 

neurogenesis, and reductions in cognitive function suggest that the scientific community should 

consider the headstage and its associated components an integral part of the MEA [203, 207, 

208].  One group employed a cortically-implanted electrode and cannula to directly stimulate 

neuroinflammation via lipopolysaccharide (LPS) infusion, and showed that the treatment 

decreased hippocampal neurogenesis [208].  Moreover, other groups have shown that chronic 

inflammation outside the CNS has detrimental effects on neurogenesis [207, 209, 210] as well as 

on neural connectivity [211].  One study mapped the widespread macrophage and glial activation 

using autoradiography of [3H]PK11195 in the rat brain accompanying the use of a deep brain 

stimulator (DBS).  The DBS was fixed to the skull with multiple screws and acrylic dental cement.  

The results showed widespread and persistent neuroinflammation over an 8-week indwelling 

period that was accompanied by cognitive deficits, as determined by an object recognition test 



 24 

 

[203].  Studies which have looked at the impact of a craniotomy alone showed neuroinflammation 

notion that inflammation resulting from an indwelling device or surgical procedure, either located 

and functional deficits 2 weeks following surgery [212, 213].  Together, such studies support the 

notion that inflammation, within the brain or systemically, can impact global brain function and not 

just at the environment surrounding the implanted MEA.  In an effort to improve the 

biocompatibility of the device as a whole, an understanding of FBR to all of the components of the 

device may be required to maximize biocompatibility. 

 
1.9  Introduction to This Dissertation 

 
 CNS implanted devices are an important therapeutic option for CNS diseases and a vital 

investigative tool used in basic neuroscience research.  However, poor functional longevity has 

limited its impact in research and in clinical medicine.  It is currently held within the scientific 

community that the decreases in single unit recording function is associated, in part, with the 

foreign body response (FBR) that surrounds implanted devices; which includes persistent 

inflammation, astrogliosis, BBB leakiness, demyelination, and neuronal cell death.  Two potential 

areas for intervention are in limiting the initial hemorrhage that results from device insertion and 

the subsequent neuroinflammatory sequela.  As already discussed, cellular interactions with 

extracellular matrix (ECM) have been shown to promote hemostasis and possess 

immunomodulatory properties.  The central hypothesis driving this work was that ECM coatings 

which target initial hemorrhage and aspects of neuroinflammation will decrease the FBR at 

chronic time points.  This was investigated by coating silicon MEAs with ECM proteins and 

implanting them into the cortex of Sprague-Dawley rats.  The approach was identical to that used 

in previous studies from our lab that investigated device geometry modifications and hydrogel 

coatings [136, 163], and was similar to other studies who have investigated the foreign body 

response (FBR) to MEAs implanted in the rat CNS [73, 136, 145, 148, 150-152, 169-173, 175-

177, 214-222]. 

 First, based on the rationale of promoting hemostasis (section 1.6), it was hypothesized 

that a coating developed from a FDA-approved neurosurgical hemostatic agent, Avitene™ 

Microfibrillar Collagen Hemostat (MCH), would decrease aspects of the FBR including 
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inflammation, astrogliosis, BBB leakiness, and neuronal death over the chronic time point.  In 

vitro assays on Avitene coatings confirmed its hemostatic properties, but showed no 

immunomodulatory potential using a microglial activation assay in vitro.  Quantitative 

immunohistochemistry of the FBR to chronic implanted Avitene coated MEAs showed that there 

was a significant increase in IgG within the recording zone.  Additionally, there was no significant 

influence on CD68, GFAP, or NeuN density compared to uncoated controls.  To the best of my 

knowledge the Avitene coating is the first protein coating applied to a recording MEA that did not 

result in a significant decrease in any of the classic FBR hallmarks.  Interestingly, the increase in 

IgG may indicate an enhancement of late phase neuroinflammation or possibly an unresolved 

provisional matrix. 

 Second, based on the rationale of using a hemostatic agent that also possesses 

immunomodulatory properties (section 1.7), it was hypothesized that a coating developed from an 

allogeneic tissue-specific ECM would decrease the FBR including inflammation, astrogliosis, BBB 

leakiness, and neuronal death over the chronic time point.  The ECM for this coating was derived 

from allogenic astrocytes harvested from the cortex of postnatal Sprague-Dawley rats.  In vitro 

assays showed that astrocyte-derived ECM possessed hemostatic properties similar to Avitene, 

and, unlike the Avitene coating, showed an ability to reduce the activation of microglial in an in 

vitro assay.  It was found that the astrocyte-derived ECM coating, decreased the amount of GFAP 

within the recording zone compared to uncoated controls but found no additional benefits of its 

use on reducing other aspects of the FBR.  This decrease in astrogliosis may improve device 

functionality, as previous studies have shown that elevated astrogliosis is associated with poor 

single unit recording performance [45, 55, 60, 68, 124]. 

 Collectively, the results of these studies show that ECM coatings with different genetic 

background and compositions are able to differentially affect specific aspects of the FBR 

surrounding single-shank, silicon MEAs.  Given the relationship between the Avitene MCH and 

the astrocyte ECM coatings, their methods and results have been combined to present one body 

of work in Chapter 2. 

 The third study presented in this dissertation focuses on the FBR to CNS devices as a 
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whole.  While the electrode-tissue interface has been studied extensively, the FBR to other 

essential headstage components was unknown.  In this study the central hypothesis was that 

headstage components used to anchor microelectrode arrays to the rodent skull contribute to the 

neuroinflammatory burden.  To address this, a retrospective analysis that included 38 rats 

implanted with neural recording devices correlated screw locations with FBR in underlying cortical 

tissue.  Results showed that, macroscopic damage associated with the headstage components 

occurs beneath 86% of bone fixation screws and characterized the associated FBR on the 

cellular and molecular levels.  The impact of understanding how fixation techniques, common for 

a wide variety of neurological studies, influence the cerebral cortex and provide a reference for 

future biologically-informed device design.  The results shown in Chapter 3 are compounded by 

emerging data on device-related neuroinflammation and the subsequent decline in neurogenesis 

and cognitive function [203, 207, 208]. 

 In summary, the dissertation as a whole endeavors to first, decrease the known 

detrimental aspects of implanted CNS devices through biologically-inspired coatings, and second, 

further the field’s understanding of the FBR to device components to provide a foundation for 

future biologically-inspired designs.
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Fig. 1.1.  Vasculature of the rodent brain.  (A) SEM image of vascular corrosion cast of 
whole mouse brain with the olfactory bulb on the right side.  Visible are the ascending 
middle cerebral artery of the right cortex (black arrow) and the venous drainage at the 
surface [223].  (B-D) Histological reconstruction and vectorization of neurovasculature 
networks in mouse brain.  (B) Top view of reconstructed pial arteriolar and venular 
networks that feed and drain the (C) penetrating arteriole and venules, respectively.  These 
penetrating vessels supply and drain the dense subsurface microvasculature which is (D) 
organized into different communities throughout the depth and breadth of the cortex. 
(A) Reprinted by permission from John Wiley and Sons: Microscopy Research and 
Technique, T. Krucker, A. Lang, E. P. Meyer, New polyurethane-based material for vascular 
corrosion casting with improved physical and imaging characteristics, Microsc. Res. Tech. 
69 (2006) 138-147. http://dx.doi.org/10.1002/jemt.20263. [223], Copyright 2006.  (B-D) 
Reprinted by permission from Macmillan Publishers Ltd (Nature Publishing Group): Nature 
Neuroscience, P. Blinder, P. S. Tsai, J. P. Kaufhold, P. M. Knutsen, H. Suhl, D. Kleinfeld, 
The cortical angiome: an interconnected vascular network with noncolumnar patterns of 
blood flow, Nat. Neurosci. 16 (2013) 889-897. http://dx.doi.org/10.1038/nn.3426. [224], 
Copyright 2013.  

http://www.ncbi.nlm.nih.gov/pubmed/16456839
http://www.ncbi.nlm.nih.gov/pubmed/23749145


 28 

 

 
 
Fig. 1.2.  Stereotypical FBR in the rodent brain.  Biomarker immunoreactivity and 
quantification using cell-type-specific markers at the microelectrode–brain tissue 
interface.  (A) Representative images collected from two adjacent sections of an animal 
with a 4-week microelectrode implant illustrate the general appearance of the foreign body 
response characterized by inflammatory (ED1) and astrocytic (GFAP) cell phenotypes 
adjacent to the implant interface.  The area of inflammation and intense astrocyte 
reactivity contains a reduced number of NeuN+ neuronal bodies and a loss of 
neurofilament (NF) density.  The position of the microelectrode is illustrated by the orange 
oval (drawn to scale) at the left of each image.  (B) Quantitative line profile intensity 
analysis of ED1 (blue line), GFAP (black line), and neurofilament (red line).  Mean pixel 
intensity per distance point for 2-week (top row) and 4-week (bottom row) time points for 
stab wounds (left column) and chronic microelectrodes (right column).  The average 
standard error of the mean around each data point ranged from 4% to 14% of the mean 
value.  Note that the GFAP response does not return to background levels at 4 weeks 
following a transient stab wound injury. 
Reprinted by permission from Elsevier: Biomaterials, R. Biran, D. C. Martin, P. A. Tresco, 
Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon 
microelectrode arrays, Exp. Neurol. 195 (2005) 115-126. 
http://dx.doi.org/10.1016/j.expneurol.2005.04.020. [76], Copyright 2005.  

http://www.ncbi.nlm.nih.gov/pubmed/16045910
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Fig. 1.3.  Acute hemorrhagic response to cortically implanted MEAs.  Gross specimens of 
human temporal lobe implantations and scanning micrographs of the surface of the UEA 
after acute implantation in human brain.  (A) Placement of an electrode array in temporal 
cortex.  (B) Hemorrhages in electrode tracks following array removal.  (C-D) Horizontal 
section showing blood in the electrode tracks and petechial hemorrhages (white arrows 
and box) located below the tip of the electrodes.  (E-F) Scanning electron micrograph of a 
MEA tip shows red blood cells adherent to the surface.  Scale bars A, B, C and D = 2 mm. 
Reprinted by permission from Frontiers: Frontiers in Neuroengineering in accordance with 
open-access article terms, E. Fernandez, B. Greger, P. A. House, I. Aranda, C. Botella, J. 
Albisua, et al., Acute human brain responses to intracortical microelectrode arrays: 
challenges and future prospects, Front. Neuroeng. 7 (2014) 24. 
http://dx.doi.org/10.3389/fneng.2014.00024. [56], Copyright 2014.  

http://www.ncbi.nlm.nih.gov/pubmed/25100989/
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Fig. 1.4.  Representative headstages for various CNS experiments in rodents including (A) 
cannulation and fiberoptic light delivery for optogenetics, (B) cranial windows for in vivo 
cellular and molecular imaging, and (C-D) MEAs for recording and stimulation of single 
neurons or neuronal clusters.  While the implanted devices have dramatically different 
investigational uses, the techniques to secure them are essentially the same. 
(A) Adapted by permission from Macmillan Publishers Ltd (Nature Publishing Group): 
Nature Protocols, J. G. McCall, T. I. Kim, G. Shin, X. Huang, Y. H. Jung, R. Al-Hasani, et al., 
Fabrication and application of flexible, multimodal light-emitting devices for wireless 
optogenetics, Nat. Protoc. 8 (2013) 2413-2428. http://dx.doi.org/10.1038/nprot.2013.158. 
[204], Copyright 2013.  (B) Adapted by permission from Macmillan Publishers Ltd (Nature 
Publishing Group): Journal of Cerebral Blood Flow & Metabolism, A. Y. Shih, J. D. Driscoll, 
P. J. Drew, N. Nishimura, C. B. Schaffer, D. Kleinfeld, Two-photon microscopy as a tool to 
study blood flow and neurovascular coupling in the rodent brain, J. Cereb. Blood Flow 
Metab. 32 (2012) 1277-1309. http://dx.doi.org/10.1038/jcbfm.2011.196. [206], Copyright 2012.  

http://www.ncbi.nlm.nih.gov/pubmed/24202555/
http://www.ncbi.nlm.nih.gov/pubmed/22293983
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Fig. 1.5.  Representative stainless steel anchorage screws used for headstage fabrication 
in rodents include a (A) self-tapping bone screw (#19010-00, 1.17 mm diameter, 18/8 grade 
SS, Fine Science Tools (FST), Foster City, CA) and (B) blunt machine screw (#B-MX-172-3, 
1.85 mm diameter, 18/8 grade SS, Small Parts Inc., Miami Lakes, FL).  Scale bar 1 mm. 



  

 

CHAPTER 2
 
 

A COMPARISON OF THE BRAIN TISSUE FBR TO 
 

ECM PROTEIN COATED AND UNCOATED 
 

SILICON MICROELECTRODES 
 
 
 The format of this chapter is based on the Biomaterials journal.  Authors of the prepared 

manuscript include Robert S. Oakes, Michael D. Polei, Dr. John L. Skousen, Dr. Michael B. 

Christensen, and Dr. Patrick A. Tresco. 

 
2.1  Introduction 

 
 The foreign body response (FBR) negatively impacts the biocompatibility of various 

devices chronically implanted in the brain, including hydrocephalic shunts, deep brain stimulation 

electrodes, and intracortical recording microelectrode arrays (MEAs) [44, 45, 49].  Several efforts 

have targeted the inflammatory sequela of the FBR with bioactive agents, either delivered locally 

or systemically [141, 144, 148, 215].  This inflammatory sequela is initiated by bleeding that 

occurs following device insertion [225].  In particular, plasma proteins including complement and 

immunoglobulins activate macrophages and initiate the downstream events involved in wound 

healing and the FBR [226, 227].  For over a century, it has been known that products of 

hemorrhage elicit a phagocytic response [228].  In particular, plasma proteins including 

complement and coagulation components activate macrophages and initiate the downstream 

events involved in wound healing and the FBR [226, 227].  A recent report using two-photon in 

vivo imaging in neural tissue showed that serum protein leakage through the blood-brain barrier 

(BBB) induced a rapid inflammatory reaction which was correlated with areas of axonal damage 

and reactive oxygen species release [129].  Furthermore, the plasma protein fibrinogen has been 

shown to specifically activate astrocytes and drive the glial scar through modulation of TGF-β 

availability [229].  Several studies have shown that both the size and type of damaged 
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vasculature has a significant influence on the degree of damaged neural tissue [230].  These 

effects of hemorrhage on the health of surrounding brain tissue is a major concern [82], which 

applies to all implanted devices irrespective of the type of implant, species studied, or 

implantation method [88, 178] 

 To the best of my knowledge, no one has investigated the use of extracellular matrix 

(ECM), which naturally regulates hemorrhage, as a coating to see if promoting hemostasis can 

modulate the FBR to devices implanted in the CNS.  Additionally, emerging evidence indicates 

that ECM from a number of sources is able to modulate macrophage activity towards a 

proregenerative phenotype [231, 232].  Therefore, an ECM surface coating that promotes 

hemostasis and modulates macrophage activity may lower the FBR, and by definition improve 

device biocompatibility.  To address this hypothesis, we chose to study the effect of a coating 

developed from Avitene™, a FDA-approved absorbable microfibrillar collagen hemostat (MCH) 

derived from bovine dermis [185, 233].  Additionally, we choose to investigate an ECM derived in 

vitro from rat cortical astrocytes.  The influence of these two ECM coatings on the FBR hallmarks 

was immunohistochemically quantified surrounding a single-shank silicon MEA implanted in 

Sprague-Dawley rat motor cortex, which has been used as a model system for such studies [73, 

76, 103, 125, 132, 136].  Moreover, the presented work seeks to address the FBR, which has 

been identified as an obstacle to the widespread clinical use of intracortical recording MEAs [49, 

68, 74, 124]. 

 
2.2  Methods 

 
2.2.1  Allogeneic astrocyte ECM derivation 

 Cell-specific ECM was derived from primary rat astrocytes as previously described [234].  

First, open-celled polymeric foams were fabricated by dissolving pellets of medical grade 

polyurethane (PU) elastomer (Tecoflex SG-80, Thermedics, Woburn, MA) in dimethylacetamide 

(DMAC) (1:10 w/v) overnight at 60°C [234-236].  A poloxamer solution (Pluronic 10R5, BASF, 

Germany) is then added to the dissolved PU (1:2 v/v) and thoroughly mixed.  The solution is then 

cooled to its cloud point at 46°C, and pipetted it into polyoxymethylene (Delrin) molds.  The 

solution and molds are then rapidly cooled through surface contact in a dry-ice/ethanol bath to 
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induce a phase inversion.  The molded, phase-inverted solution is then precipitated in DI H2O 

overnight.  Following precipitation, the resulting foams are removed from the molds, rinsed with 

multiple washes of DI H2O, frozen to -80°C, and lyophilized.  Lyophilized foams are sectioned into 

strips (30 mm x 10 mm x 2 mm) and attached to biaxially-oriented polyethylene terephthalate 

(Mylar) mounts using a medical grade, UV curable adhesive (MD 1180-M, Dymax, Torrington, 

CT).  Mounted foams were sterilized using ethylene oxide (EtO).  Following EtO sterilization 

foams are soaked in 70% ethanol for 20 min to promote wetting followed by rinsing in sterile DI 

H2O.  To promote cellular attachment, foams are incubated in a fibronectin (FN) solution (20 

μg/mL in PBS) overnight. 

 Following FN incubation, PU substrates were seeded with primary astrocytes, harvested 

from Sprague-Dawley rat pups as previously described, at two million cells/cm3 [237].  Astrocyte 

seeded substrates were cultured for 3 weeks in DMEM F12 supplemented with 10% fetal bovine 

serum (FBS), with media exchanged every 2 to 3 days. 

 Following culture, samples were rinsed in DI H2O and frozen to -80°C.  PU removal was 

performed as described previously with samples being soaked in the solvent DMAC for 72 h.  The 

solvent was exchanged 7 times during the 72-hr period, 3 times on the first day and then twice 

daily thereafter. 

 The extracted material (Fig. 2.1) was then processed with decellularization techniques as 

previously described [234, 238].  First, samples were immersed in hypotonic Tris-Hcl buffer (10 

mM, pH 8.0) with 0.1% EDTA and 10 KIU/mL aprotinin (Sigma) for 1-2 hr at room temperature 

(RT) to disrupt integrin-ECM interactions and deactivate proteases that were released due to cell 

lysis.  Second, samples were immersed in Tris-Hcl buffer containing 0.1% SDS (10 mM, pH 8.0) 

on a rocker at 100 rpm at RT overnight to remove lipids.  Third, samples were rinsed in PBS (3 

times, 30 min each), then immersed in Tri-Hcl buffer (50 mM, pH 7.5) containing ribonuclease (1 

U/mL, Sigma) and deoxyribonuclease (50 U/mL, Sigma) on a rocker at 37°C for 3 hr to remove 

nuclear material.  Samples are then rinsed again in PBS on a rocker (3 times, 30 min each).  To 

assess the effectiveness of the decellularization process, samples were stained with DAPI (4',6-

Diamidino-2-Phenylindole, Dihydrochloride, Life Technologies, Carlsbad, CA, 10 μM) and 
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immunolabeled for the astrocyte cytoskeletal component GFAP (DAKO, Carpinteria, CA, 2.9 

μg/mL).  Following PU removal and decellularization steps, the remaining material was rinsed  

7 times in DI H2O, frozen, and lyophilized. 

 
2.2.2  Proteomic characterization of astrocyte-derived extracellular matrix 

 The ECM of the FDA-approved Avitene MCH has been extensively characterized and is 

composed primarily of type-1 collagen, which is essential for blood clotting [185, 233].  To identify 

extracellular matrix components in the astrocyte-derived ECM with similar properties, samples 

were analyzed with tandem mass spectroscopy (MS/MS) using similar methods as described 

previously [234].  In brief, the cell derived material sample was washed with 50 mM ammonium 

bicarbonate, denatured (Protease Max, Promega, Madison, WI) for 30 min at room temperature, 

trypsin (20 ng/µl) digested overnight at 37°C, and purified (Ziptip, Milipore, Billerica, MA).  The 

MS/MS analysis was performed by the University of Utah Mass Spectroscopy & Proteomic Core 

Facility using a hybrid mass spectrometer (LTQ-FT, Thermo Scientific, Waltham, MA).  Primary 

peptide molecular mass spectra were acquired by Fourier transform ion cyclotron resonance.  

The sequencing of individual peptide spectra was performed by collision-induced dissociation in 

the linear ion trap.  Sample proteins were identified by comparison of MS/MS measured peptide 

sequences to a trypsin-cut specific protein database (Mascot version 2.2.1, Matrix Science Inc., 

Boston, MA). 

 In addition, samples of the ECMs, Avitene and astrocyte-derived, were analyzed using 

indirect immunohistochemistry for fibronectin (CFN; Sigma, St. Louis, MO, 14 μg/mL), laminin 

(LN; Sigma, St. Louis, MO, 1.38 μg/mL) and chondroitin sulfate (CS-56; Sigma, St. Louis, MO, 

3.2 μg/mL).  In brief, antibodies were diluted in a detergent-free blocking solution consisting of 4% 

(v/v) goat serum (Invitrogen, Carlsbad, CA) and 0.1% (w/v) sodium azide in PBS.  Free-floating 

material samples were batch treated for 1 hr in a detergent-free blocking solution at room 

temperature, followed by incubation with primary antibodies overnight at 4°C.  After 3 washes in 

PBS to remove excess antibody (1 h/rinse), appropriate fluorescently labeled secondary 

antibodies (Molecular Probes, Eugene, OR) were applied in block for 1 hr at room temperature, 

followed by three washes in PBS (1 h/rinse).  Fluorescent images were captured with a Coolsnap 
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digital camera on a Nikon Eclipse E600 microscope.  Immunoreactivity was compared to no 

primary controls to confirm specificity. 

 
2.2.3  Nanoscale morphological assessment of adsorbed Avitene MCH 

 Transmission electron microscopy (TEM) images were obtained using a FEI Tecnai T12 

microscope (FEI, Hillsboro, OR) operating at 120 kV.  To prepare TEM samples, 10 μL of Avitene 

in DI H2O was adsorbed onto the surface for 1 min, excess fluid was removed with blotting paper.  

Next, 10 μL of 2% uranyl acetate solution was applied to the adsorbed Avitene to stain the 

sample on a copper grid covered with a thin carbon film.  The sample was then dehydrated 

overnight at room temperature (RT). 

 
2.2.4  Extracellular matrix coating solution  

 Both Avitene, microfibrillar collagen purified from bovine corium (dermis) and sterile 

processed [239], and astrocyte-derived ECM were suspended in 0.25 M acetic acid solution 

(sequencing-grade aldehyde-free BP1185, Fisher Scientific Company, Ottawa, Ontario) at a 

concentration of 1 mg/mL in a 50 mL conical tube and stirred at room temperature for 24 h.  A 

nylon 70 μm cell strainer was used to remove large aggregates of material.  All processing steps 

utilized sterile reagents and were performed in a sterile environment. 

 
2.2.5  Lee-White clotting time assessment 

 Human blood drawn into 105 mM sodium citrate solution (1 mL citrate / 9 mL blood) was 

transferred to a 37°C water bath until testing.  100 μL of the suspended Avitene or astrocyte-

derived ECM was pipetted against the inner wall of a 1.5 mL conical centrifuge tube and dried 

under sterile nitrogen flow.  Citrated blood was added (450 μL) to coated and uncoated control 

tubes.  Then 50 μL of 100 mM CaCl2 was added to the tube, which signified the start of the 

clotting time measurement.  Vials were incubated in water bath and tilted every 30 seconds until 

the blood formed a solid clot that remained adhered to inverted tube.  The time until this clot 

formation was recorded for all groups and repeated for accuracy.  Data sets were normalized to 

the longest time-point and expressed as percent relative clotting time. 
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2.2.6  In vitro microglial activation assay 

 Microglial activation was assessed as previously described [121, 195].  Avitene and 

astrocyte-derived ECM suspensions were used to coat 12 mm glass coverslips by adding 50 μL 

to the coverslip surface, allowing them to air dry in a sterile hood, and rinsing them in sterile 1x 

PBS for 45 min in an incubator.  Primary P2 rat microglia were then seeded on control glass 

coverslips or ECM coated samples in a 24-well plate at a density of 8,000 cells/cm2 in 

DMEM/F12 supplemented with 10% FBS.  Microglia morphology was assessed with indirect 

immunohistochemistry for CD68 (ED-1, AbD Serotec, Raleigh, NC, 0.25 μg/mL) and IBA1 

(WAKO, Richmond, VA, 0.5 μg/mL) then counterstained with DAPI (4',6-Diamidino-2-

Phenylindole, Dihydrochloride, Life Technologies, Carlsbad, CA, 10 μM).  Using a 20x objective 

IBA1+ microglia cells were morphologically classified as either ramified or amoeboid as 

previously described [195].  In brief, Ramified cells had 2+ branches that were equal to at least 

0.5 diameter of cell body.  If only 2 branches were present then at least 1 branch had to be 

ramified.  Each field of view was considered a sample (n = 8 for uncoated controls, n = 11 for 

Avitene coated, and n = 12 astrocyte-derived ECM coated).  Cohort means were calculated as a 

percentage of cells that were ramified.  Astrocyte-derived ECM coatings were also seeded with 

primary dorsal root ganglion cells (DRGs) at a density of 20,000 cells/cm2 to assess neuronal 

viability and neurite extension with Calcein AM and NeuroFilament 160 (NF 160), respectively. 

 
2.2.7  Microelectrode arrays 

 Planar 300 μm wide silicon MEAs, identical to those used previously [136, 163], were 

supplied by the Professor Ken Wise, Center for Wireless Integrated Microsystems, at the 

University of Michigan.  To facilitate handling, MEAs were attached to a 0.25 mm diameter 

stainless steel wire with a medical-grade solvent-free ultraviolet-light (UV) curable acrylated 

urethane adhesive (MD-1187-M, Dymax, Torrington, CT).  The MEAs were cleaned by immersion 

in 70% ethanol followed by several rinses in sterile DI water.  Following cleaning, the MEAs were 

sterilized with ethylene oxide (EtO) in the University Hospital Surgical Processing Department 

and were allowed to outgas for at least 48 hr prior to implantation or sterile coating.  Sterile 

packets containing the MEAs remained sealed until the time of implantation or were only opened 
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within the sterile environment (biosafety level 2 hood) for coating application. 

 
2.2.8  Microelectrode array extracellular matrix coatings 

 In order to coat batches of substrates in a reproducible manner a custom dip coating 

apparatus was designed with controlled actuation for optimized insertion and retraction speeds.  

A sterile-filtered, nitrogen jet was used as an air knife to maintain coating uniformity.  Batches of 

planar single-shank silicon MEAs were coated with ECM suspensions.  For both coatings, 10 

insertion and retraction cycles were used.  Following the coating process each MEA was rinsed 

with sterile ultrapure water to neutralize the surface.  The coated devices were then allowed to air 

dry sealed within the sterile environment and remained in that condition until implantation. 

 
2.2.9  Animal surgery 

 All procedures involving animals were approved by the University of Utah Institutional 

Animal Care and Use Committee (IACUC) and similar to those described previously [75, 76, 136, 

163].  Briefly, male Sprague-Dawley rats (10 week old ± 2 weeks, 350 g ± 50 g) were 

anesthetized via inhalation of vaporized 5% isoflurane/oxygen to induce anesthesia and then 

maintained at 2.5% isoflurane/oxygen during the procedure.  During the procedure, animal body 

temperature was regulated (ATC1000, World Precision Instruments, Sarasota, FL).  After 

reaching a full level of anesthesia as assessed by lack of response to a tail/toe pinch, the 

animal’s head was shaved, and the scalp was disinfected with 70% isopropanol and betadine.  

Animals were then transferred to a stereotaxic frame, and a midline incision extending the length 

of the skull was made.  The skin was retracted and the fascia was removed with a scalpel blade.  

The exposed skull was then thoroughly dried with cotton tipped applicators.  A craniotomy was 

then cut with a pneumatically-driven burr under sterile PBS irrigation, with the center of the hole 

positioned above the right hemisphere motor cortex at 0.2 mm rostral of Bregma, and 3 mm 

lateral to Bregma.  Using a stereomicroscope, the exposed Dura was then opened with a 25 G 

needle and deflected to the side to expose the cortical surface.  A custom fabricated polyurethane 

(ST-1085 A/B, BJB Enterprises, Inc., Tustin, CA) grommet was positioned into the craniotomy to 

maintain electrode position over the chronic time point.  The electrode was stereotactically 
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positioned over the affixed grommet’s annular opening.  The electrode was lowered into cortical 

tissue to a depth of 2 mm and UV-curable adhesive was used to bond the electrode to the 

grommet (Fig. 2.2).  A UV lamp (50W, Dymax) was used to cure the UV curable adhesive.  

Following these procedures, the skin was closed over the fixed electrode with suture (Vicryl Plus, 

Ethicon, Somerville, NJ).  An antibiotic ointment, Neosporin (Johnson & Johnson, New 

Brunswick, NJ), was applied to the closed incision.  The animals were allowed to recover in 

individual cages under observation.  Sutures were monitored and those which were not removed 

by the animal during normal grooming were removed after approximately 2 weeks [68].  Each 

animal received a single implant in the right motor cortex that was either coated with ECM or an 

uncoated control. 

 
2.2.10  Euthanasia and tissue preparation 

 Animals were deeply anesthetized with 5% isoflurane and transcardially perfused with 

PBS followed by 4% paraformaldehyde in PBS.  For astrocyte-derived ECM coated and its 

control cohort, microelectrodes were carefully dissected from brain tissue using microdissection 

forceps under stereoscopic observation.  Immunolabeling and imaging of the MEA surface 

showed little cell adhesion (data not shown).  For Avitene coated MEAs and its control cohort, 

MEAs were left in brain tissue.  Retrieved brains were postfixed with 4% paraformaldehyde for 24 

hr at 4°C.  Brains were then equilibrated in 30% sucrose.  Following equilibration, brains were 

embedded in Tissue Freezing Medium (Triangle Biomedical Sciences, Durham, NC), serially 

sectioned in the horizontal plane (tangent to the cortical surface and perpendicular to the 

electrode tract) at 30 μm thickness with a cryostat (Leica Microsystems, Bannockburn, IL). 

 
2.2.11  Histology 

 Tissue sections from Avitene- and astrocyte-derived ECM coating cohorts were 

processed in batch with sections from uncoated control cohorts.  Horizontal sections were 

processed using indirect immunohistochemistry and primary antibodies against CD68 (ED-1, AbD 

Serotec, Raleigh, NC, 0.25 μg/mL) to assess activated microglia/macrophages; GFAP (DAKO, 

Carpinteria, CA, 2.9 μg/mL) to localize intermediate filaments of astrocytes; rat IgG (Southern 
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Biotech, Birmingham, AL, 0.5 μg/mL) as an indicator of BBB permeability; and NeuN 

(Chemicon/Millipore, Billerica, MA, 2.0 μg/mL) to label neuronal cell bodies [72, 136, 190].  

Antibodies were diluted in a blocking solution consisting of 4% (v/v) goat serum (Invitrogen, 

Carlsbad, CA), 0.5% (v/v) Triton-X 100, and 0.1% (w/v) sodium azide.  Free-floating (0.5 mL 

solution in 24-well plates) tissue sections were batch treated for 1 hr in blocking solution at room 

temperature, followed by incubation with primary antibodies for 18 hr at room temperature.  After 

3 washes in PBS at room temperature to remove excess antibody (1 h/wash), appropriate 

fluorescently labeled secondary antibodies (Invitrogen, Carlsbad, CA) were applied in block for 18 

hr at room temperature, followed by 3 washes in PBS (1 h/wash).  During the secondary antibody 

incubation, sections were isolated from light to prevent photobleaching.  All sections were also 

counterstained with DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride, Life Technologies, 

Carlsbad, CA, 10 μM) to identify cell nuclei.  Tissue sections were mounted on microscope slides 

with Fluormount-G (Southern Biotech, Birmingham, AL) and cover-slipped [72]. 

 
2.2.12  Quantitative image analyses 

 Fluorescent images of tissue sections from layers IV-VI of the cortex were captured in 

batch with a Coolsnap digital camera on an Eclipse E600 microscope (Nikon) with a 10x air 

objective, using identical exposure times between coated and uncoated control MEAs.  Imaging 

conditions were optimized for each immunomarker.  All fluorescent images were light-field 

corrected [5].  The staining intensity for each immunomarker was quantified using a custom 

LabView-based image analysis program (National Instruments, Austin, TX) as previously 

described [72, 73, 136, 163, 240].  In brief, fluorescent intensity as a function of distance from the 

implant site was extracted using an array of line profiles spanning the implant site.  At each point 

along the lines, an anti-alias pixel extraction algorithm was used to derive the pixel intensity of the 

line profile arrays in each section.  The intensity profiles for a given immunomarker from each 

layer, IV-VI, were normalized to background levels.  In order to quantify changes in neuronal cell 

body distribution, the numbers of NeuN/DAPI+ cells were manually counted in discrete bins every 

50 μm from the device interface.  The number of neuronal nuclei per bin were then divided by the 

bin area to determine the average neuronal nuclear density as an estimate of the number of 
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neuronal cell bodies surrounding the device.  Neuronal density was then normalized to 

background levels.  Representative images were taken on a confocal microscope (Fluoview 

FV1000, Olympus America Inc., Center Valley, PA) with either a 10x air or 60x water immersion 

objective.  Representative images were arithmetically chosen from animals which best 

represented the cohort means. 

 
2.2.13  Statistics 

 For the Lee-White clotting time and the microglia activation assay, cohorts were 

compared using one-way ANOVAs and Tukey post-hoc analysis by means of an SPSS software 

package (IBM, Somers NY), with p < 0.05 considered as a significant difference.  All data are 

mean and standard error of the mean. 

 For the quantitative image analysis, to minimize variability and develop a more accurate 

cohort mean, discrete points were compared against each other as a function of distance from 

the biotic/abiotic interface with an outlier analysis (1.5 * interquartile range).  Outlying points were 

automatically removed.  The outlier analysis was run three consecutive times on each cohort’s 

rostral and caudal profiles.  In some cases the automatic outlier removal resulted in an animal 

being removed from the cohort, which is reflected in the quantification figure legends.  Following 

outlier removal, section profiles were averaged to obtain an average intensity profile for a given 

animal.  The average intensity profile for a given animal was then averaged with other animal 

profiles receiving the same type of implant to obtain an average intensity profile for each cohort.  

The average area under the curve of each cohort's intensity profile for each immunomarker as 

well as the average neuronal nuclear density at 50 mm intervals from the device interface 

compared uncoated controls with each ECM coated cohort, Avitene n = 7 and astrocyte-derived 

ECM n = 6, using a Student’s t-test with p < 0.05 considered as a significant difference.  All data 

are mean and standard error of the mean. 
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2.3  Results 
 
2.3.1  Characterization of ECM 

 The Avitene MCH Flour was white and cotton- or powder-like in appearance and had an 

innate cohesiveness that aided manipulation (Fig. 2.3).  Similar to Avitene and ECM derived from 

other sources, the ECM derived from astrocytes was a white, insoluble, solid biomaterial (Fig. 

2.4).  Following decellularization no cell nuclei or cytoskeletal structures were found within the 

astrocyte-derived ECM.  Furthermore, all ECM components investigated with 

immunohistochemistry and MS/MS remained following decellularization. 

 Purification of the microfibrillar collagen in Avitene is detailed in several patents.  The 

general process includes enzymatic-treatment (elastases, ficin, etc.) of sliced bovine dermis, 

alkaline borohydride washes, and a 1% salt solution to remove impurities, and finally precipitated 

by increasing the pH results in a purified collagen [241, 242].  Proteomic analysis of the astrocyte-

derived ECM with MS/MS (Table 2.1) identified a variety of extracellular proteoglycans and 

glycoproteins.  Example proteins and their influence on wound healing are described in Table 2.1.  

Astrocyte-derived ECM samples were processed using indirect immunocytochemistry for various 

ECM components found in the CNS.  The astrocyte-derived ECM was immunoreactive for 

antibodies against fibronectin, laminin, and chondroitin sulfate gycosoaminoglycans (CS GAGs).  

Representative fluorescent images of these ECM components found in astrocyte-derived material 

are shown in Fig. 2.4B-D.  Avitene coatings on the other hand showed no specific 

immunoreactivity for the same antibody fibronectin, laminin, and chondroitin sulfate 

gycosoaminoglycans (CS GAGs), but were immunoreactive for antibodies against collagen type I. 

 Lee-White clotting time was assessed for each of the coatings in 1.5 mL plastic conical 

tubes.  Both the Avitene and astrocyte-derived ECM coatings had a significantly shorter time-to-

clot, as compared with uncoated controls (Fig. 2.5A-B).  There was no difference in the clotting 

time between the 2 ECM coatings. 

 
2.3.2  In vitro microglial activation assay 

 The phenotype of microglia cultured on glass, Avitene, and astrocyte-derived ECM was 

quantified following Iba-1 immunolabeling.  Fig. 2.5C-D shows the representative microglial 
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morphology when cultured on glass and astrocyte-derived ECM coatings in the presence of 

serum.  Similar to studies examining microglial morphology on fixed astrocyte monolayers, a 

significant number of microglia cultured on the astrocyte-derived ECM coating showed a more 

ramified, resting phenotype (Fig. 2.5D) than those cultured on glass.  There were few ramified 

microglia on the Avitene coating, which was not statistically different than uncoated controls. 

 Cytocompatibilty studies also showed the astrocyte-derived ECM to be nontoxic and 

adhesive to primary CNS cells.  NF160 immunolabeling of P1 rat primary DRGs cultivated for 

48 hr on astrocyte-derived ECM showed facilitation of neurite outgrowth (data not shown).  

Furthermore, Calcein AM viability staining of the DRGs showed no signs that the astrocyte-

derived ECM was cytotoxic (data not shown). 

 
2.3.3  Coating morphology and uniformity 

 Compared to uncoated controls both the Avitene and astrocyte-derived ECM coating 

were evident under stereoscopic microscopy following 10 cycles of dip coating (Fig. 2.6).  

Nitrogen jets aided in the uniformity of the coating, in their absence the coating appeared 

heterogeneous and thicker near the tip due to droplet formation.  Immunolabeling of collagen type 

I following Avitene dip coating showed evidence of collagen microfibrils interwoven on the 300 μm 

wide MEA faces (Fig. 2.6D-E).  The thickness of the coating visualized by stereomicroscopy 

appeared less than 1 μm on average.  There was no evident change in either of the coatings 

dimensions when hydrated. 

 
2.3.4  Immunohistological quantification of the foreign body response 

 GFAP was greatest along the 300 μm face of the planar silicon MEA, as opposed to the 

12 μm edges.  In comparison to uncoated controls, quantitative image analysis (Fig. 2.7) showed 

a significant reduction in GFAP immunoreactivity surrounding astrocyte-derived ECM coated 

MEAs within the presumptive recording zone.  There was no significant difference in GFAP 

immunoreactivity between uncoated controls and Avitene coated MEAs.  Higher magnification 

images (Fig. 2.8) indicated that astrocyte intermediate filaments appeared similar in thickness 

and distribution to those in astrocytes located in normal cortex when compared to either uncoated 
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or Avitene coated MEAs.  This was particularly pronounced when viewed by eye using 

stereoscopic magnification. 

 In comparison to uncoated controls, quantitative image analysis (Fig. 2.9) showed a 

significant increase in IgG immunoreactivity surrounding the Avitene coated MEA within the 

presumptive recording zone.  There was no significant difference in IgG immunoreactivity 

between uncoated controls and astrocyte-derived ECM coated MEAs.  Additionally, although IgG 

immunoreactivity was elevated surrounding all implants it was rarely symmetrically distributed  

around the electrode in horizontal sections and was higher surrounding blood vessels. 

   In horizontal sections, CD68 immunoreactivity was observed surrounding all implants.  

CD68 immunoreactivity returned to background levels beyond 100 μm for all cohorts.  In 

comparison to uncoated controls, there was (Fig. 2.10) no significant difference in CD68 

immunoreactivity surrounding astrocyte-derived ECM coated or Avitene coated MEAs. 

 In comparison to uncoated controls, there was no significant difference in the spatial 

distribution of NeuN immunoreactivity between the cohorts (Fig. 2.11). 

 
2.4  Discussion 

 
 Using a simple model system, it was shown that an allogeneic ECM coating developed 

from rat cortical astrocytes in vitro, with hemostatic and immunomodulatory properties, was 

sufficient to lower astrogliosis surrounding a planar silicon MEA 8 weeks after implantation.  In 

contrast, it was shown that a xenogenic hemostatic coating developed from FDA-approved 

Avitene™ MCH was not sufficient to lower any aspect of the FBR 8 weeks after implantation. 

 GFAP labels the cytoskeleton of astrocytes and is used as a marker of astrocyte 

hypertrophy and astrogliosis.  It has been frequently used as a biomarker of tissue reactivity [76].  

In this study, a significant decrease was observed in the spatial distribution and intensity of GFAP 

immunoreactivity surrounding the astrocyte-derived ECM coated as MEAs compared to uncoated 

or Avitene™ coated MEAs (Fig. 2.7).  The difference was particularly striking when viewed by eye 

with a binocular, stereomicroscope where the thickness of the majority of astrocyte intermediate 

filaments near the astrocyte-derived ECM coated interface more closely resembled that observed 

in unimplanted cortex at the same cortical level.  The mechanism driving this difference likely 
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occurred acutely as the level of gliosis surrounding similar devices does not progress following 

the first 2 weeks of implantation and is observed at chronic time points following stab wound 

injuries in which the MEA was retrieved immediately following insertion [73, 76].  In cases of stab 

wounds made with a device or resulting from surgery or trauma the neuroinflammatory 

biomarkers (CD68, IgG) eventually resolve, while the astroglial scar remains [243]. 

 IgG is an antibody present in blood and generally is not present in the extracellular space 

of brain tissue due to the blood brain barrier (BBB), which restricts its presence to the vascular 

lumen except in cases of neuroinflammation, following injury or surrounding chronically implanted 

biomedical devices.  BBB leakiness, a hallmark of neuroinflammation, is signaled by the presence 

of IgG immunoreactivity in the extracellular space of brain tissue [124].  An unexpected finding in 

the current study was that the immunoreactivity for IgG was elevated surrounding the Avitene™ 

coated MEAs compared to the other cohorts.  Given the presence of phagocytic macrophages in 

the acute phase of the FBR it is doubtful that the increased IgG represents a remnant from the 

initial hemorrhage that followed implantation.  Studies on provisional matrix formation and its 

turnover suggest that it would be removed by 8 weeks [244].  Given the small quantity of material 

used for coating it also seems unlikely that the original ECM coatings would persist over the 8-

week indwelling period [245].  It is, therefore, unclear why the observed IgG surrounding the 

Avitene™ coated implants was more compared to the other cohorts. 

 CD68 labels a lysosomal-associated membrane glycoprotein in macrophages and in 

tissue specific macrophages like microglia.  CD68 is upregulated in areas of neuroinflammation, 

thus, it is commonly used as an indicator of macrophage/microglial activation [76, 132].  Neither 

the Avitene™ nor the astrocyte-derived ECM coatings had an influence on CD68 compared to 

uncoated controls.  This suggests that neither coating was effective in modulating late stage or 

chronic inflammatory sequela of the FBR.  A possible explanation for this could be that such 

protein-based coatings were degraded soon after implantation and only have an impact on early 

phase downstream events like astrogliosis. 

 NeuN labels the nucleus of neurons and can be used to quantify the density of neurons.  

Similar to the CD68 results, neither the Avitene™ nor the astrocyte-derived ECM coatings had an 
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influence on NeuN spatial density compared to uncoated controls.  The loss of neuronal cell 

bodies was similar to previous reports from our lab and others that show a decrease of 

approximately 50% within the recording zone, which did not change over time for simple single-

shank devices that cause a minimal penetrating injury [73, 136, 163].  One caveat of neuronal 

density is that it is not necessarily an indicator of neuronal activity.  Neuron excitability is 

influenced by changes in the ionic balance of the extracellular milieu which is disturbed BBB 

leakiness.  Thus, while neuronal density may have been similar after use of the ECM coatings the 

increase in BBB leakiness surrounding the Avitene™ coated MEA may affect recording 

performance [73, 130].  It will be interesting to see how such coatings influence neuronal density 

and macrophage activation in the FBR of more clinically relevant higher density multi-shank 

MEAs, such as the UEA, where the amount of vascular damage following implantation is orders 

of magnitude greater than that caused by single-shank MEA designs. 

 The decrease in astrogliosis surrounding the astrocyte-derived ECM is perhaps the most 

important observation from this study.  This is important as the level of astrogliosis has been 

correlated with single unit recording performance [68].  Thus, the impact of a decrease in GFAP 

surrounding astrocyte-derived ECM coatings may potentially increase the functional longevity of 

devices implanted in the brain.  Interestingly, a prior study from our group using an identical 

uncoated control and model system showed that by reducing surface area with a lattice 

architecture, which maintained the same penetration profile and initial injury, there was a 

reduction in chronic macrophage activation, BBB leakiness, and an increase in neuronal density 

at 8 weeks [163].  However, the decrease in surface area had no influence on the degree of 

astrogliosis at 8 weeks.  Combining results from the ECM coating study with those from the 

surface area study, given their identical controls and analysis technique, indicates a divergent 

pathway in the development of the FBR where constitutive properties, such as surface area, have 

a more prominent impact on the chronic levels of macrophage activation, BBB leakiness, and 

neuronal density while bioactive coatings, such as the astrocyte-derived ECM, have a more 

prominent impact on the chronic level of astrogliosis. 

 The results and deductions from this study agree with reports of other groups which have 
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shown that anti-inflammatory drug eluting and single protein coatings are able to influence GFAP 

intensity [148, 175-177].  One unique difference, to the best of my knowledge, is the Avitene™ 

coating being the first protein coating applied to a recording MEA that did not show a significant 

decrease in any biomarker associated with the FBR. 

 An area for future consideration is the extensive implantation induced injury, as 

demonstrated by a stab wound model, observed following implantation of the Utah Electrode 

Array (UEA), a high density, multi-shank silicon MEA.  Implantation induces a prominent lesion 

with extensive tissue loss that looks like an inverted pyramid with the largest area of the lesion 

occurring below the base of the UEA [68].  Lesions of this nature, which resemble lesions from 

stroke injury are not observed following stab wounds with single-shank, silicon MEAs likely due to 

their small penetrating profile and the lesser amount of vasculature damage following 

implantation.  It would therefore be interesting to see whether such hemostatic coatings would 

lower the lesion volume that accompanies the implantation of a higher density MEA. 

 Another future question to investigate at greater depth is why the two ECM coatings 

performed differently.  The hemostatic ability of Avitene™ is well documented in research and 

clinically [185, 233].  Immunohistochemical and proteomic analysis of the astrocyte-derived ECM 

revealed a number of proteins which have varying influences on biological processes.  The 

collagens identified, VI and XII, both possess hemostatic potential, which likely is the source of 

the hemostatic ability observed in the clotting assays (Fig. 2) [180].  While both of the ECM 

coatings examined here had equivalent hemostatic properties only the allogeneic astrocyte-

derived hemostat showed influence in the microglial activation assay (Fig. 2C-E).  An unknown is 

what specific contribution the astrocyte-derived ECM’s species- and tissue-specificity may have 

had, as both characteristics have been indicated as contributors to tissue-appropriate remodeling 

[246, 247].  This is compounded by the antiscarring and anti-inflammatory aspects of the 

astrocyte-derived ECM proteins found in the proteomic analysis and detailed in Table 2.1.  

Importantly, previous studies have shown that each of the identified ECM components are found 

in brain tissue and are produced by astrocytes [248-250].  This suggests that such coatings may 

have decreased the neuroinflammatory components of the FBR, however, this influence may be 
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limited to the acute inflammatory phase. 

 
2.5  Conclusions 

 
 The results of this study show that ECM coatings derived from different genetic 

backgrounds differentially affect the FBR to single-shank, silicon MEAs.  From a general 

biomedical device perspective, this study provides the first evidence that an allogeneic in vitro 

cell-derived ECM coating is able to decrease the degree of astrogliosis surrounding a chronically 

implanted single-shank MEA, presumably due to immunomodulatory effects on acute microglial 

activation.  In concert with previous work on constitutive modification, results support the concept 

of divergent pathways within the FBR and decreasing the overall FBR to further improve 

biocompatibility will require a multifaceted approach. 
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Fig. 2.1.  Cell-derived biomaterial process schematic.  (A) Representative SEM of sacrificial 
PU scaffold.  Scale bar 1 mm.  The cell-derived material is develop through seeding cells 
onto the (B) porous PU scaffold.  This dissertation’s cell type of focus was primary rat 
astrocytes which (C) expand and secrete proteins within the pores of the PU scaffold.  The 
PU scaffold is then degraded with multiple rinses of DMAC which results in (D) a cell-
derived material which is then further processed with detergent and enzymatic 
decellularization techniques and/or lyophilized.  (B-D) For scale, scaffold width is 2 mm. 
(A) Adapted by permission from Elsevier: Biomaterials, K. Webb, W. Li, R. W. Hitchcock, R. 
M. Smeal, S. D. Gray, P. A. Tresco, Comparison of human fibroblast ECM-related gene 
expression on elastic three-dimensional substrates relative to two-dimensional films of the 
same material, Biomaterials 24 (2003) 4681-4690. http://dx.doi.org/10.1016/s0142-
9612(03)00368-5. [251], Copyright 2015. 
 
 

 

Fig. 2.2  Rat cortical implantation schematic.  (A) Side profile CAD drawing of a mid-
sagittal section of rat head showing approximate location of implanted silicon MEA and 
anchoring (B) polyurethane grommet.  All MEAs were lowered stereotactically to a 
controlled depth of 2 mm below the surface of the cortex, and attached to a soft 
polyurethane grommet (orange) using a UV-curable adhesive (cyan) as shown.  (C) Top 
view of stereotactic implantation position (+) in the right motor cortex at coordinates +0.2 
mm Bregma, 3 mm lateral, and 2 mm depth. 
(A) Adapted by permission from Elsevier: Biomaterials, B. D. Winslow, P. A. Tresco, 
Quantitative analysis of the tissue response to chronically implanted microwire electrodes 
in rat cortex, Biomaterials 31 (2010) 1558-1567. 
http://dx.doi.org/10.1016/j.biomaterials.2009.11.049. [72], Copyright 2010.  

http://www.ncbi.nlm.nih.gov/pubmed/12951011
http://www.ncbi.nlm.nih.gov/pubmed/12951011
http://www.ncbi.nlm.nih.gov/pubmed/19963267
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Fig. 2.3.  Avitene MCH Flour dry macroscopic appearance, suspension, and TEM 
characterization.  (A) Dry, sterile, Avitene™ MCH Flour.  (B) Avitene suspended in 0.25 M at 
1 mg/mL following stirring at room temperature for 24 hr and filtering with a nylon 70 μm 
cell strainer.  (C) TEM image of Avitene morphology, displaying characteristic periodicity 
natural collagen due to the triple-helix structure.  Scale bar 0.5 μm.  TEM image courtesy of 
Dr. Boi Hoa San in Dr. Michael Yu’s lab at the University of Utah. 
 
 

 
 
Fig. 2.4.  Astrocyte-derived ECM scaffold and immunolabeled proteins.  (A) Representative 
light micrograph of an astrocyte ECM scaffold after dissolution of the synthetic 
polyurethane foam and lyophilization.  Scale bar 2 mm.  Immunohistochemical labeling of 
astrocyte secreted ECM proteins (B) fibronectin, (C) laminin, and (D) chondroitin sulfate 
proteoglycan found in the astrocyte ECM.  Scale bar 100 μm.  
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Fig. 2.5.  In vitro hemostatic and immunomodulatory characterization of ECM.  Average 
Lee-White clotting time for (A) recalcified, citrated-whole blood placed in control 
centrifuge tubes or tubes coated with Avitene or astrocyte-derived ECM.  (B) Both ECM 
coatings showed a similar ability to promote blood clotting compared to the uncoated 
control.  (*) denotes significant difference with p<0.05, compared to uncoated control.  
Cytocompatibility studies showed the cell-derived material to be nontoxic to primary CNS 
cells.  Representative P1 rat primary microglial morphology cultured on (C) uncoated 
glass or (D) an astrocyte-derived ECM coating.  Scale bar 25 μm.  (E) Quantification of 
microglia morphology on uncoated glass, Avitene and astrocyte-derived ECM coated 
coverslips, shown as percent ramified.  Ramified cells had 2+ branches that were equal to 
at least 0.5 diameter of cell body.  If only 2 branches were present then at least 1 branch 
had to be ramified.  Coverslips coated with astrocyte-derived ECM had a significantly 
increased percentage of ramified microglia on the surface.  (**) denotes significant 
difference with p < 0.05, compared to uncoated control and Avitene coated.  Data shown 
as mean and standard error of the mean. 
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Fig. 2.6.  Dip coating apparatus with astrocyte-derived ECM and Avitene coated MEAs.  
MEAs were dip coated in a (A) sterile environment containing a pneumatic dip coater, 
sterile filter nitrogen jets (to aid in layer adsorption and uniformity), and a protein 
suspension composed of Avitene Microfibrillar Collagen Hemostat or astrocyte-derived 
ECM.  (B) A cleaned and sterilized silicon MEA.  (C) Stereoscopic light micrograph of an 
astrocyte-derived ECM coated MEA.  (D) Avitene coated MEA immunolabeled for collagen 
type I.  Scale bar 100 μm.  (E) A high magnification image of Avitene coated MEA 
immunolabeled for collagen type I.  Scale bar 10 μm. 
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Fig. 2.7.  Representative images of in vivo GFAP immunoreactivity and quantification. 
(A and B) Representative images of horizontal sections showing immunoreactivity for 
GFAP (astrocytes) surrounding (A) uncoated MEAs as compared with (B) Avitene coated 
MEAs.  (C and D) Representative GFAP immunoreactivity surrounding (C) uncoated MEAs 
as compared with (D) astrocyte-derived ECM coated MEAs.  Scale bar 100 μm.  (E and F) 
Average immunofluorescent profiles comparing uncoated and coated cohorts.  (G and H) 
GFAP immunofluorescence binned as a function of distance from the biotic/abiotic 
interface in 50 μm bins from 0 to 400 μm.  (G) No significant differences were observed 
between uncoated controls and Avitene coated MEAs.  8-week time point, n = 6.  (H) 
Compared to uncoated controls, MEAs coated with astrocyte-derived ECM had 
significantly reduced GFAP immunoreactivity within the presumptive recording zone (first 
50 μm from the interface).  8-week time point, n = 5.  (*) denotes significant difference with 
p < 0.05.  Data shown as mean and standard error of the mean. 
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Fig. 2.8.  Representative GFAP immunoreactivity at high magnification.  GFAP 
immunolabeling observed in (A) background tissue (contralateral to implant), (B) at an 
uncoated interface, and (C) at an astrocyte ECM coated interface.  (A) GFAP 
immunolabeling of a background astrocyte.  Astrocyte end feet (white arrows) wrapping a 
blood vessel in the bottom portion of the image.  (B) The intensity of GFAP 
immunoreactivity adjacent to an uncoated control interface is exponentially higher than 
background levels.  (C) The intensity of GFAP immunoreactivity adjacent to an astrocyte 
ECM coated interface is higher than background but significantly lower than uncoated 
controls.  All sections were batch stained, imaged and processed with identical settings 
and were from animals that arithmetically represented the mean cohort response (8-week 
time point).  Scale bar 10 μm. 
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Fig. 2.9.  Representative images of in vivo IgG immunoreactivity and quantification. 
(A and B) Representative images of horizontal sections showing immunoreactivity for IgG 
(blood products in brain parenchyma) surrounding (A) uncoated MEAs as compared with 
(B) Avitene coated.  (C and D) Representative IgG immunoreactivity surrounding (C) 
uncoated MEAs as compared with (D) astrocyte-derived ECM coated MEAs.  Scale bar 100 
μm.  (E and F) Average immunofluorescent profiles comparing uncoated and coated 
cohorts.  (G and H) IgG immunofluorescence binned as a function of distance from the 
biotic/abiotic interface in 50 μm bins from 0 to 400 μm.  (G) Compared to uncoated 
controls, MEAs coated with Avitene had significantly increased IgG immunoreactivity 
within the presumptive recording zone (first 50 μm from the interface).  8-week time point, 
n = 6.  (H) No significant differences were observed between uncoated controls and 
astrocyte ECM coated MEAs.  8-week time point, n = 5.  (*) denotes significant difference 
with p < 0.005.  Data shown as mean and standard error of the mean. 
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Fig. 2.10.  Representative images of in vivo CD68 immunoreactivity and quantification. 
(A and B) Representative images of horizontal sections showing immunoreactivity for 
CD68 (activated macrophages) surrounding (A) uncoated MEAs as compared with (B) 
Avitene coated MEAs.  (C and D) Representative CD68 immunoreactivity surrounding (C) 
uncoated MEAs as compared with (D) astrocyte-derived ECM coated MEAs.  Scale bar 100 
μm.  (E and H) CD68 average immunofluorescent profiles for each cohort and 
immunofluorescence binned as a function of distance from the biotic/abiotic interface in 
50 μm bins from 0 to 100 μm.  No significant differences were observed between uncoated 
controls and astrocyte ECM or Avitene coated microelectrodes.  8-week time point, n = 5 
for all cohorts.  Data shown as mean and standard error of the mean. 
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Fig. 2.11.  Representative images of in vivo NeuN immunoreactivity and quantification. 
(A and B) Representative images of horizontal sections showing immunoreactivity for 
NeuN (neuronal nuclei) surrounding (A) uncoated MEAs as compared with (B) Avitene 
coated.  (C and D) Representative NeuN immunoreactivity surrounding (C) uncoated MEAs 
as compared with (D) astrocyte-derived ECM coated MEAs.  Scale bar 100 μm.  (E-F) NeuN 
density for each cohort binned as a function of distance from the biotic/abiotic interface in 
50 μm bins from 0 to 400 μm.  No significant differences were observed between uncoated 
controls and (E) astrocyte coated MEAs.  Similarly, no significant differences were 
observed between uncoated controls and astrocyte-derived ECM coated MEAs.  8-week 
time point, n = 5 for all cohorts.  Data shown as mean and standard error of the mean.  
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Table 2.1.  Example proteins found in astrocyte-derived ECM with MS/MS in addition to 
those identified with IHC (Fig. 2.4). 
 
Component Description and Role(s) In Wound Healing Refs 
Collagen VI A beaded filament forming collagen that promotes 

platelet adhesion and thrombosis under low shear 
conditions.  Binding site for Von Willebrand factor. 

[180, 252, 253] 

Collagen XII A fibril associated proteoglycan important for 
proper matrix assembly and mechanotransduction.  
Also promotes platelet adhesion and thrombosis 
under low shear conditions. 

[180, 254] 

Tenascin N and W Promotes neurite outgrowth and pathfinding.  
Regulates inflammatory cell migration and activity.  
Promotes glial proliferation and differentiation. 

[255, 256] 

Perlecan A basement membrane-specific heparan sulfate 
proteoglycan participating in the blood brain 
barrier.  Also promotes tissue regeneration by 
activating various growth factors. 

[257-259] 

Thromobospondin-1 An adhesive glycoprotein that promotes platelet 
adhesion.  Binds to fibrinogen, fibronectin, laminin, 
and various collagens.  Inhibiting neoangiogenesis.  
Major activator of TGFβ-1. 

[260-262] 

Fetuin-A Plasma-binding protein that is heavily expressed 
during early brain development.  Plays anti-
inflammatory and neuroprotective roles in a variety 
of neurodegenerative disease and injury models.  
Fetuin can bind TGF-β1 and prevent TGF-β1-
mediated signaling and fibrosis. 

[250, 263, 264] 

Neural Cell Adhesion 
Molecule (NCAM) 1 

Cell-cell and Cell-matrix adhesion protein involved 
in CNS development, synaptic plasticity, and 
regeneration following ischemic injury. 

[265-268] 



  

 

CHAPTER 3
 
 

THE FOREIGN BODY RESPONSE TO HEADSTAGE 
 

COMPONENTS USED FOR DEVICE FIXATION 
 

IN CHRONIC CNS STUDIES IN RATS 
 
 
 The format of this chapter is based on the Biomaterials journal.  Authors of the prepared 

manuscript include Robert S. Oakes, Dr. Michael B. Christensen, and Dr. Patrick A. Tresco. 

 
3.1  Introduction 

 
 Neural recording devices that utilize cortically-implanted microelectrode arrays (MEAs) 

have become an invaluable tool for extending the understanding of neural circuitry [134, 269, 270].  

In clinically relevant applications, cortically-implanted recording MEAs enable volitional control of 

various brain-machine interfaces (i.e., computer or robotic limb) with high resolution [43, 271].  

However, variable functional reliability and inconsistent longevity are major hurdles that have 

limited the clinical translation of this promising technology [49, 60, 144, 272].  These shortcomings 

have, at least in part, been attributed to the foreign body response (FBR) at the electrode-brain 

tissue interface.  The primary characteristics of which include persistent macrophage activation, 

astrogliosis, decreases in neuronal density, and BBB leakiness [76, 124, 132, 199].  To improve 

the biocompatibility of this type of device it is necessary to understand the causes of the FBR and 

to minimize its influence on recording performance [124, 136, 137]. 

 While significant attention has been directed towards studying the FBR to different types 

of MEAs [70, 73], little attention has been directed to studying the FBR associated with the 

components used to secure such devices to the skull during chronic use, which include adhesives, 

acrylic cements and bone screws [58, 70, 197, 198].  Bone screws are of particular interest as they 

can penetrate the skull and make contact with the meninges and/or brain tissue. 

In this study, using immunohistochemical approaches the FBR to various components used to 
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anchor recording devices to the rat skull was analyzed over a long indwelling period.  The results 

indicate that headstage components add to the neuroinflammatory burden of such devices and 

may affect brain function at sites millimeters away from the implanted electrode. 

 
3.2  Methods 

 
3.2.1  Microelectrodes and headstage components 

 Several types of MEA fixation approaches were analyzed.  Two types were in situ 

fabricated, and consisted of stainless steel self-tapping bone screws (#19010-00, 1.17 mm 

diameter, 18/8 grade SS, Fine Science Tools (FST), Foster City, CA), Kwik-Cast silicon elastomer 

(World Precision Instruments, Sarasota, FL), and either a medical-grade solvent-free ultraviolet-

light (UV) curable acrylated urethane adhesive (MD-1187-M, Dymax, Torrington, CT) or a 

traditional two part acrylic cement.  Another headstage type used a shear-resistant precast 

polyurethane elastomer (ST-1085 A/B, BJB Enterprises, Inc., Tustin, CA), Kwik-Cast silicon 

elastomer, and larger stainless steel screws (#B-MX-172-3, 1.85 mm diameter, 18/8 grade SS, 

Small Parts Inc., Miami Lakes, FL).  All components were cleaned and sterilized with 70% 

isopropyl alcohol prior to implantation.  Two types of recording devices were used including a 4 x 

4 Utah Electrode Array (Blackrock Microsystems, Salt Lake City, UT) consisting of sixteen boron-

doped silicon tapered shanks (1000 μm length, ~80 μm base thickness, 400 μm interelectrode 

spacing) or a lattice style or solid style Michigan planar array, also made of silicon.  The recording 

devices were sterilized with ethylene oxide (EtO) by the University Hospital Surgical Processing 

Department and were allowed to outgas for at least 48 hr prior to implantation.  Sterile packets 

containing the recording devices remained sealed until the time of implantation. 

 
3.2.2  Animal surgery 

 All procedures involving animals were conducted in accordance with the University of 

Utah Institutional Animal Care and Use Committee (IACUC).  Adult male Sprague Dawley rats 

(young:  10 weeks old ± 2 weeks and 325g ± 75g, n = 19; and older adult: 75 weeks old ± 2 

weeks and 850g ± 75g, n = 19) were anesthetized via inhalation of vaporized 5% 

isoflurane/oxygen to induce anesthesia and then maintained at 2.5% isoflurane/oxygen during the 
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procedure.  During the procedure, animal body temperature was regulated (ATC1000, World 

Precision Instruments, Sarasota, FL).  After reaching a full level of anesthesia as assessed by 

lack of response to a tail/toe pinch, the animal’s head was shaved, and the scalp was disinfected 

with 70% isopropanol and butadiene.  Animals were then transferred to a stereotaxic frame, and 

a midline incision extending the length of the skull was made.  The skin was retracted and the 

fascia was removed with a scalpel blade.  The exposed skull was then thoroughly dried with 

cotton tipped applicators.  Pilot holes for screws were made using a pneumatically-driven 

diamond micro burr.  Screws are then turned into the skull with a handheld screw driver.  For the 

in situ fabricated headstage (Fig. 3.1), four screws were placed in the parietal bone near the 

temporal ridge [198].  Two of the screws were placed contralateral to the electrode with the other 

two being placed ipsilateral, one anterior and one posterior to the planned electrode position.  A 

craniotomy was then cut with a pneumatically-driven burr under sterile PBS irrigation, with the 

center of the hole positioned above the right hemisphere motor cortex at 0.2 mm forward of 

Bregma, and 3 mm lateral to Bregma.  To measure skull thickness the bone that was removed 

was rinsed with PBS and measured with calipers.  Using a stereomicroscope, the exposed Dura 

was then opened with a 25G needle and deflected to the side to expose the cortical surface.  The 

electrode was stereotactically positioned over the craniotomy.  The MEA was lowered into cortical 

tissue, Kwik-Cast was then applied to cover the implanted MEA and fill the craniotomy level with 

the skull surface.  For the in situ fabricated headstage, UV-curable adhesive or traditional acrylic 

cement was used to encapsulate the electrical connector and screws.  A UV lamp (50W, Dymax) 

was used to cure the UV curable adhesive during the deposition process, while the acrylic 

cement was allowed to air dry and cure.  For the prefabricated headstage, MEA positioning and 

implantation was the same as described with the exception that only two screws were used to 

secure the headstage through pilot holes in the prefabricated polyurethane headstage.  No UV-

curable adhesive or cement solvent was used with these implants.  The two screw locations were 

in the parietal bones contralateral and posterior to the electrode, respectively.  Following these 

procedures, the skin was closed as needed around the headstage with suture, leaving the 

electrical connector percutaneously exposed.  An antibiotic ointment, Neosporin (Johnson & 
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Johnson, New Brunswick, NJ), was applied around the headstage and sutures.  The animals 

were allowed to recover in individual cages under observation.  When sutures were required they 

were removed approximately a week after surgery [68]. 

 
3.2.3  Euthanasia and tissue preparation 

 Animals were deeply anesthetized with 5% isoflurane and transcardially perfused with 

PBS followed by 4% paraformaldehyde in PBS.  Following perfusion fixation, intact neural 

interfaces (the headstage, bone screws, and wires attached to the skull) and brains were carefully 

dissected from tissue using microdissection forceps.  Retrieved brains were postfixed with 4% 

paraformaldehyde for 24 hr at 4°C.  Brains were then equilibrated in 30% sucrose.  Following 

equilibration, brains were embedded in Tissue Freezing Medium (Triangle Biomedical Sciences, 

Durham, NC), serially sectioned in the horizontal or coronal plane at 30 μm thickness with a 

cryostat (Leica Microsystems, Bannockburn, IL). 

 
3.2.4  Immunohistological explanted device surface analyses 

 Explanted tissue and components including the skull, headstage, bone screws, wires, 

and MEAs were imaged (SMZ800 stereoscope, Nikon Instruments Inc., Melville, NY; Coolsnap 

digital camera, Protometrics, Tucson, AZ; VHX-5000, Keyence, Itasca, IL) then immunolabeled 

with CD68 (ED-1, AbD Serotec, Raleigh, NC, 0.25 μg/mL) and IBA1 (WAKO, Richmond, VA, 0.5 

μg/mL), then counterstained with DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride, Life 

Technologies, Carlsbad, CA, 10 μM) to evaluate the presence of surface-adherent, activated 

macrophages as previously described [73].  In brief, antibodies were diluted in a blocking solution 

consisting of 4% (v/v) goat serum (Invitrogen, Carlsbad, CA), 0.5% (v/v) Triton-X 100, and 0.1% 

(w/v) sodium azide.  Components were first incubated with blocking solution for 1 hr then with 

primary antibody for 18 hr at room temperature.  They were then washed with PBS three times at 

room temperature to remove excess antibody (1 hr / wash).  Then appropriate fluorescently 

labeled secondary antibodies were applied in block for 4 hr at room temperature, followed by 

three washes in PBS (1 hr / wash).  Devices were imaged on a   confocal microscope (Olympus 

Fluoview FV1000, Olympus America Inc., Center Valley, PA) using a 5x air or 40x water objective 
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then lightfield corrected [121]. 

 
3.2.5  Immunohistological tissue analyses 

 Prior to sectioning, photographs were taken of the cortical surface of whole perfused 

brains.  Serial sections were processed using indirect immunohistochemistry for CD68 (ED-1, 

AbD Serotec, Raleigh, NC, 0.25 μg/mL) to assess activated microglia/macrophages; IBA1 

(WAKO, Richmond, VA, 0.5 μg/mL) for microglial morphology and spatial distribution; GFAP 

(DAKO, Carpinteria, CA, 2.9 μg/mL) for astrocytes; NeuN (Chemicon/Millipore, Billerica, MA, 2.0 

μg/mL) for neuronal nuclei; MAP-2 (AP20, Chemicon/Millipore, 1.0 μg/mL) for dendrites; NF200 

(Sigma, St. Louis, MO, 8.0 μg/mL) for axons; RIP (NS-1, Chemicon/Millipore, 0.25 μg/mL) for 

myelination; rat IgG (Southern Biotech, Birmingham, AL, 0.5 μg/mL) for serum proteins in the 

brain parenchyma; and Lycopersicon Esculentum (Tomato) Lectin (Vector Laboratories, 

Burlingame, CA, 4.0 μg/mL), which labels vasculature and macrophages [72, 136, 190].  The 

same blocking solution used for explant analysis was used to dilute antibodies for tissue analysis.  

Free-floating (0.5 mL solution in 24-well plates) tissue sections were batch treated for 1 hr in 

blocking solution at room temperature, followed by incubation with primary antibodies for 18 hr at 

room temperature.  After three washes in PBS at room temperature to remove excess antibody (1 

hr / wash), appropriate fluorescently labeled secondary antibodies were applied in block for 18 hr 

at room temperature, followed by three washes in PBS (1 hr / wash).  All sections were also 

counterstained with DAPI (4',6-Diamidino-2-Phenylindole, Dihydroch loride, Life Technologies, 

Carlsbad, CA, 10 μM) to identify cell nuclei.  Tissue sections were mounted on microscope slides 

with Fluormount-G (Southern Biotech, Birmingham, AL) and cover-slipped.  Fluorescent images 

of tissue sections from the cortex were imaged on a confocal microscope using a 20x air 

objective, lightfield corrected, then stitched together in Photoshop to create a larger field of view 

[72].  Select sections were analyzed on a phase contrast microscope (Nikon Eclipse E600) using 

a 40x oil objective to identify hemosiderin-laden macrophages. 
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3.3  Results 
 
3.3.1  Retrieved device components were covered with adherent phagocytic macrophages 

 A representative MEA recording headstage and bone screw are shown in Fig. 3.1.  Under 

light microscopy retrieved device components, headstage adhesive and screws, contained an 

adherent layer of material of cellular origin indicated by DAPI+ staining of cell nuclei.  The 

adherent cells were almost exclusively immunopositive for CD68 and IBA1 (Fig. 3.2 and Fig. 3.3), 

indicating that they were activated macrophages.  A large difference in skull thickness was 

observed between young (10 weeks old, 325 g) and older (75 weeks old, 850 g) adult rats in the 

bone located above the motor cortex.  The younger adult rodent’s skull measured 560 μm and 

the older adult rodent’s skull measured 1170 μm.  In all animals the area of skull identified as the 

temporal ridge, which is prominent in laboratory rats, was observed as the thickest area of skull 

suitable for screw fixation. 

 
3.3.2  The foreign body response to screws in adjacent cortical tissue 

3.3.2.1  Macroscopic analysis and correlation of response to screw position 

 Every animal (n = 38) exhibited at least one area of the cortex, which showed a response 

associated with an implanted screw (Fig. 3.4A).  These cortical surface responses were visible in 

the perfused whole brain without magnification (Fig. 3.4).  The response was noticeable 

underneath 98 of the 114 (86%) screws and was circular and often concave in appearance.  

Unlike the rest of the perfused brain, the cortical surface underneath screws was darker and 

brownish in color, presumably due to blood products that were not cleared following perfusion 

and fixation.  These darker areas were evident over the entire indwelling period.  Following tissue 

processing and sectioning, light microscopy confirmed that these areas were associated with 

hemosiderin-laden macrophages and inflammation associated angiogenesis (data not shown).  

Regardless of headstage type, screw type, or animal age there was no apparent difference in the 

occurrence of such cortical responses underneath screws that penetrated the rat skull. 
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3.3.2.2  Analysis of cortical tissue response 

 Horizontal and coronal tissue sections showed increased CD68+ and IBA1+ 

immunoreactivity in cortical tissue underneath bone screws (Fig. 3.5B-C and 3.6B-C).  CD68+ 

macrophages adjacent to the interface had an amoeboid morphology, as compared to tissue 

further away.  Surrounding the area of CD68+ / IBA1+ cells was an enhanced immunolabeling of 

GFAP (Fig. 3.6E).  Coronal sections showed that increased GFAP immunolabeling could extend, 

in some cases, through the entire depth of the cortex (Fig. 3.6A).  Sections immunolabeled for 

IgG showed a gradient of intensity that declined as a function of distance from the center of mass 

of the adjacent screw (Fig. 3.5B-C and 3.6C).  Immunolabeled horizontal sections showed loss of 

neural tissue, which included a loss of neuronal nuclei (NeuN) and disruption of neural 

architecture (MAP-2, NF200 and RIP) (Fig. 3.7).  Immunolabeling with Tomato Lectin (TL) 

showed a disrupted vascular network, associated with the area of neural tissue loss (data not 

shown). 

 
3.4  Discussion 

 
 The results of this study show that various components commonly used to anchor 

recording and other biomedical devices to the rat skull for basic neuroscience and preclinical 

translational studies result in a FBR in adjacent brain tissue.  These components are collectively 

referred to as the headstage.  Results showed that any component, below the rat skull, was 

covered with a layer of CD68+ / IBA1+ macrophages.  This included the adhesives and cements, 

regardless of whether they were fabricated in situ or precast prior to implantation, as well as bone 

screws, irrespective of their design.  Furthermore, bone screws that penetrated the skull resulted 

in a FBR in the underlying cortical tissue, which had all of the FBR hallmarks as described for 

MEAs implanted in cortical tissue regardless of the depth of penetration. 

 Persistent macrophage activation was similar to that observed adjacent to penetrating 

cortical MEAs with the largest amount of CD68+ immunoreactivity residing immediately 

underneath the screw that was distributed in a pattern that reflected the overlying device 

geometry [76].  The extent of astrogliosis also appeared similar in spatial distribution and intensity 

to previous reports for penetrating MEAs, where astrocyte hypertrophy surrounded areas of 
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CD68+ immunoreactivity [73, 273, 274].  Similar to previous studies on penetrating MEAs, there 

were cells located within the area of the FBR that were DAPI+ but did not possess either 

macrophage or astrocyte biomarkers [73, 163].  Due to the proximity of the screws to meningeal 

tissue, it is plausible that these cells were meningeal fibroblasts, which may contribute to device 

encapsulation through extracellular matrix deposition [72, 75, 275].  Alternatively, they may have 

been neural progenitors attracted by soluble factor secretion from the activated macrophages 

[276]. 

 Evidence of larger scale neuroinflammation and neural tissue loss including elimination of 

neuronal cell bodies, processes, and myelination were also observed [76].  The response was 

similar to that described after focal brain injury or in multiple sclerosis, which have been shown to 

disrupt neuronal circuitry and lead to neural damage of varying scale [230, 277, 278].  These 

focal areas of neuroinflammatory-related damage were generally circular in appearance as 

viewed in horizontal sections and varied in both size and depth.  It is possible they resulted either 

from the initial injury associated with the drilling of pilot holes or screw insertion.  However, the 

presence of macrophages and inflammatory biomarkers weeks to months after screw insertion 

suggests that at least part of the observed response was due to the FBR associated 

neuroinflammatory sequela, as its resolution would have been expected if it was only associated 

with the initial injury [230, 277]. 

 We also observed BBB leakiness, which appeared as a gradient of IgG immunoreactivity 

that dissipated with increasing distance from the screw center of mass [124, 125, 279-281].  It is 

important to note that the figures provided in this study generally only show the tissue response to 

a single screw.  However, the collective inflammatory response to multiple screws and the other 

headstage components likely added to the neuroinflammatory burden of the implanted MEA, and 

may influence recording performance and/or brain function at sites other than the site of the 

penetrating MEA. 

 These results strongly suggest that headstage components are contributing factors to the 

overall neuroinflammatory burden of chronic recording devices, or other skull affixed biomedical 

devices, which has implications for mental health beyond the electrode-brain tissue interface.  
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This idea is supported by a broader set of studies that show the negative impact of regional and 

systemic inflammation on neurogenesis and cognitive function. 

 For example, it has been shown that proinflammatory cytokines released from 

macrophages can have neurophysiological effects at sites distant from the site of their release 

[282].  In a recent study, autoradiography was used to map macrophage and glial activation in the 

rat brain accompanying a deep brain stimulator (DBS) fixed to the skull with multiple screws and 

acrylic dental cement.  The results showed widespread and persistent neuroinflammation over an 

8-week indwelling period that was accompanied by cognitive deficits, as determined by an object 

recognition test [203].  

 Direct comparisons may be made with the contralateral hemisphere, which is a common 

imaging control for background and normal tissue immunofluorescent intensity in CNS studies 

[59-61, 68, 76, 86, 141, 144, 151, 178, 192, 214, 283-288].  A more stringent control would use 

sections from age-matched uninjured rat brains to establish the innate biomarker distribution in 

the utilized model system.  Some important anatomical features that are typically labelled by the 

biomarker panel at a heightened intensity in uninjured tissue include the glia limitans (GFAP, IgG) 

at the cortical surface, the corpus callosum where white matter tracts cross the midline (GFAP), 

and poorly perfused vasculature (IgG) [89, 289-291].  The IHC quantification process uses 

sections from the cortical regions V and VI as they are the thickest layers and have a fairly 

uniform cellular distribution [292]. 

 Other groups have established the connection between inflammation, neurogenesis, and 

changes in cognition.  One group employed a cortically-implanted electrode and cannula to 

directly stimulate neuroinflammation via lipopolysaccharide (LPS) infusion, and showed that the 

treatment decreased hippocampal neurogenesis [208].  Moreover, other groups have shown that 

inflammatory stimulation outside the CNS has detrimental effects on neurogenesis [207, 209, 

210] as well as on neural connectivity [211].  Together such studies support the notion that 

inflammation either located within the brain or systemically can impact neurogenesis and impair 

cognition. 

 In support of this work’s findings and their importance to larger and more clinically 
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relevant animal models, a recent publication identified headstage failure as a concern in 

nonhuman primate models, an experimental approach, which utilizes higher quality titanium 

mounts and bone screws in an animal that has a thicker skull [49].  In the current study, screw 

penetration depth was not controlled.  A review of the literature suggests that this is a variable 

that is not specifically controlled by any means in any study.  Moreover, screws are often used as 

electrical grounds or reference points for implanted recording devices, in which case they are 

intentionally implanted in cortical tissue [60].  Regardless of penetration depth, a high percentage 

of the screws used in this study (86%) elicited a FBR response in cortical tissue that resulted in 

loss of neural tissue and persistent inflammation.  Together, the results indicate that headstage 

components, especially bone screws, can contribute to the overall neuroinflammatory burden of 

biomedical devices that are anchored to the skull. 

 One suggestion for improved fixation would be the use of older adult rats that have 

thicker skulls, which facilitates better screw fixation.  A difference in skull thickness was observed 

across the two age groups with the skull thickness varying from 560 μm for the younger cohort of 

adult rodents to 1170 μm for the older animals, which is supported by the published results of an 

earlier study [293].  The thread spacing or pitch of a commonly used self-tapping bone screw for 

MEA headstage fixation measures approximately 400 μm (Fig. 3.8A).  If placed perpendicular to 

the skull bone of a young, 325g adult rat, only 1.4 screw threads would interface with the bone 

(Fig. 3.8B).  In contrast, 2.9 screw threads would interface with the bone of an older adult rat skull 

if placed in the same manner (Fig. 3.8C).  The common self-tapping bone screw has a tapered 

tip, which measures approximately 580 μm in length that does not provide any anchorage benefit.  

Thus, when used in either case it is impossible to obtain adequate fixation without the bone screw 

tip penetrating beneath the skull bone if the screw is placed in the flat part of the skull (Fig. 3.8B-

C).  An additional concern for headstage fixation is the consequence of skull growth and 

expansion resulting from normal development during chronic studies.  This issue is similar to 

clinical concerns regarding the use of metal plates for pediatric craniofacial surgery [294]. 

 Another suggestion for improvement is to ensure that the screws are located in the 

temporal ridge, the thickest area of the skull, and placed at an angle as shown in Fig. 3.8D.  The 
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temporal ridges are a prominent feature on the margins of the rat skull, which may facilitate better 

fixation and bury the tapered tip inside the skull bone, thus limiting contact with cortical tissue 

[295, 296]. 

 The broader impact of these findings can be extended to a number of other implantable 

research tools and medical devices for CNS applications.  These include not only neural 

recording devices, but deep brain stimulators, hydrocephalic shunts, optogenetic fiber optic 

probes, microdialysis probes, push-pull cannulas, tubing for drug infusion, and cranial windows 

used in advanced microscopy studies.  Many of these approaches rely on screws and adhesives 

to anchor such devices to the skull [198].  These results suggest that innovative approaches for 

device fixation to the skull could be broadly beneficial to several research and medical fields. 

 
3.5  Conclusions 

 
 Through an immunohistological analysis of headstage components and adjacent cortical 

tissue from 38 implanted rats, it was found that headstage components used to anchor neural 

recording devices elicit a FBR in adjacent brain tissue, characterized by neural tissue loss, 

persistent inflammation, astrogliosis, and BBB leakinesss, which adds to the neuroinflammatory 

burden beyond the electrode-brain tissue interface.  The broader impact of such device related 

persistent neuroinflammation is a possible influence on neural plasticity, neurogenesis, and 

cognition that should be considered as the use of these devices is contemplated for clinical 

application.  Future neural interface designs would benefit from a more holistic perspective that 

seeks to reduce neuroinflammatory footprint of the entire biomedical device. 
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Fig. 3.1.  MEA headstage and self-tapping fixation screw skull penetration.  (A) 16 channel 
Omnetics wired UEA anchored to the skull with an in situ fabricated headstage for chronic 
neural recording.  (B) Top view on headstage with bone screws visible through the 
polymer headstage used to anchor the implant and encapsulate the electrical connector 
and wires.  (C) Underside and top view (inset) of a bone screw implanted in the skull along 
the temporal ridge.  The conically shaped screw tip generally penetrates the skull as the 
threads do not begin until the screw diameter becomes constant, as seen in the inset.  
Scale bar for A is 10mm.  Scale bars for B are 1mm, respectively. 
 
 

 

Fig. 3.2.  Immunohistological surface analysis of blunt machine screw showed that all 
implanted surfaces were covered in (A) a layer of biological material that was (B) 
immunopositive for activated surface adherent macrophages (CD68).  
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Fig. 3.3.  Explanted device immunohistological surface analysis.  Representative in situ 
fabricated headstage used for chronic neural recordings.  (A) Top view on headstage with 
bone screws visible through the polymer headstage used to anchor the implant and 
encapsulate the electrical connector and wires.  (B) Underside and top view (inset) of a 
bone screw implanted in the skull along the temporal ridge.  The conically shaped screw 
tip generally penetrates the skull as the threads do not begin until the scre0w diameter 
becomes constant, as seen in the inset.  Scale bar for A is 10mm.  Scale bars for B are 
1mm, respectively. 
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Fig. 3.4.  Macroscopic remodeling (circled) of the cortex adjacent to fixation screws.  
These areas were crater-like in appearance and mimic the screw tip geometry.  The 
occurrence of macroscopic remodeling was equally associated with self-tapping and blunt 
machine screws, with an overall occurrence of 86%. 
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Fig. 3.5  Immunolabeling of inflammatory biomarkers in cortical tissue adjacent to screw 
location (coronal plane).  Representative images of cortical tissue response 12 weeks after 
implantation.  (A) Surface view of perfused rat brain showing two screw locations (white 
arrows) and the sectioning plane (dashed line) of the tissue section shown in (B) and (C), 
which shows immunoreactivity against IgG (serum proteins; blue) showing BBB leakiness, 
CD68+ immunoreactivity (green) showing activated macrophages, and IBA1+ (red) 
showing macrophages.  (C) Magnified area in left hemisphere of B indicated with an 
asterisk showing magnified IgG immunoreactivity and activated macrophages (CD68+ / 
IBA1+) where the screw penetrated the skull.  (D) Magnified area in right hemisphere of B 
showing absence of CD68 immunoreactivity in the contralateral hemisphere equidistance 
from other screw location.  Scale bars for A-B, 1mm.  Scale bars for C-D, 100 μm. 
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Fig. 3.6.  Astrogliosis in cortical tissue adjacent to screw location (coronal plane) and 
upregulation of inflammatory biomarkers (horizontal plane).  Representative sections 
showing FBR biomarker distribution under a bone screw 12 weeks after implantation.  (A) 
A coronal tissue section taken adjacent to the section indicated in Fig. 3 showing 
increased GFAP+ immunoreactivity in the cortical column under the center of a bone 
screw in the left hemisphere.  Note the absence of GFAP in the contralateral hemisphere 
indicating that the reactivity dissipates as one moves away from the inflammatory 
stimulus.  Scale bar is 500 μm.  (Lower panels) Representative horizontal sections in 
cortex approximately at level indicated by dashed line in A showing the distribution of 
FBR biomarkers adjacent to a bone screw 12 weeks after implantation.  In all sections (B-
E), one can observe a circular area of neural tissue loss.  At the margin of the cavity there 
is an increase in IBA1+ immunoreactivity (B, green) that overlaps with a region of CD68+ 
immunoreactivity (C, red) and IgG+ immunoreactivity (C, blue) indicating the relationship 
between persistent inflammation and BBB leakiness.  At the margin of tissue loss and 
surrounding the activated macrophages was an area of enhanced GFAP+ 
immunoreactivity (D, green) indicating glial scar formation in the underlying cortex.  Scale 
bar is 500 μm.  
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Fig. 3.7.  Loss of cytoarchitectural and neurovascular networks (NeuN, NF200, RIP and TL) 
in cortical tissue adjacent to screw positon (horizontal).  Representative immunolabeling 
of various cellular and molecular FBR biomarkers adjacent to a bone screw 12 weeks after 
implantation.  Within the area of tissue loss there is an elimination of E) NeuN+ bodies, F-
G) NF200+/RIP+ myelinated axons, and H) TL+ vasculature.  TL also stains macrophages, 
exemplified by an increase in immunoreactivity at the tissue loss margin.  Scale bar is 500 
μm. 
 
 

 

Fig. 3.8.  Scaled drawing of a self-tapping bone screw penetrating the skull of young (10 
week old) and aged (75 week old) adult rats.  Screw dimensions which may influence 
fixation and the amount of screw penetration include the major diameter (Ø), pitch, taper 
length, screw angle and location.  An additional factor is skull thickness, which is 
influenced by age and location.  The thickness of the young adult rat skull (outlined in 
black, 560 μm) is less than half of the older adult rat skull (outlined in red, 1170 μm), based 
on craniotomy measurements.  The thickest area of skull suitable for screw fixation is the 
temporal ridge, a prominent anatomical feature found in laboratory rats, regardless of age.  
Drawing perspective is normal to the coronal plane. 



  

 

CHAPTER 4
 
 

CONCLUSIONS AND FUTURE WORK 
 
 

4.1  Conclusions 
 
 The list below encompass the conclusions from this dissertation in its entirety and lays 

the foundation for the future directions and approaches addressed in section 4.2. 

 
4.1.1  ECM protein coatings 

 We hypothesized that ECM coatings which target initial hemorrhage should decrease 

aspects of the FBR by limiting the amount of hemorrhage, which is the initial trigger for 

inflammation and is neurotoxic. 

 Collectively, the results in Chapter 2 show that ECM coatings with different genetic 

backgrounds and compositions are able to differentially affect specific aspects of the FBR 

surrounding single-shank, silicon MEAs. 

 Silicon MEAs were coated with ECM through an adsorption dip-coating technique with 

either xenogeneic Avitene Microfibrillar Collagen Hemostat or allogeneic astrocyte ECM 

derived from an in vitro process. 

 In vitro hemostatic assays showed that the Avitene and astrocyte-derived ECM were both 

equally able to promote coagulation.  Furthermore, in vitro immunomodulatory assays 

showed that only the astrocyte-derived ECM coating had an influence on microglia 

phenotype, when compared to bare glass. 

 Using GFAP as an indicator, the astrocyte-derived ECM coatings decreased the degree 

of astrogliosis within the recording zone as compared to uncoated controls.  Conversely, 

there was no difference in GFAP surrounding the Avitene coated MEAs and uncoated 

controls.  This differential is most likely due to an immunomodulatory influence given the 
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equivalent hemostatic ability of both xenogenic Avitene and the allogeneic astrocyte-

derived ECM. 

 Using IgG as an indicator, the Avitene coated microelectrodes significantly increased the 

amount of blood products within the recording zone as compared to uncoated controls.  

This indicates a potential increase late phase neuroinflammatory sequela surrounding 

Avitene coated MEAs.  Conversely, there was no difference between the astrocyte-

derived ECM and uncoated controls. 

 Using CD68 and NeuN as indicators, neither the Avitene nor the astrocyte ECM coated 

microelectrodes had an influence on the intensity or spatial distribution of macrophage 

activation and neuronal density, respectively. 

 From these studies on ECM coatings there are a number of outstanding questions.  

Results showed that there was no beneficial influence of the hemostatic ECM coatings on CD68, 

IgG, and NeuN when using a single-shank MEA model, the most common for FBR studies.  

However, the influence of hemostatic ECM coatings on a different model system, such as a multi-

shank MEA, with larger amount of injury and initial vascular damage is unknown.  A surprising 

discovery was the increase in IgG adjacent to the Avitene coating.  This result raises questions 

about the fate of ECM coatings following 8 weeks in vivo.  In section 2.4 it was discussed that the 

existence of these coatings at 8 weeks would be unlikely, but the ultimate fate of the ECM 

coatings is unknown and worthy of future investigation.  One remaining question about the 

astrocyte-derived ECM coating is the decrease in GFAP, which may have been promoted by 

modulated macrophage activation.  However, it is unknown if this difference is attributed to 

allogeneic nature, tissue-specificity, cell-specificity, or derivation process used for the ECM 

harvest.  Finally, while the focus of this work was centered on biomaterial development and the 

FBR, for this work to influence the clinical translation of recording MEAs the influence on 

recording ability would need to be assessed.  Based on the results, a cell-derived ECM coating 

would be the best candidate for this purpose if using a single-shank recording MEA. 
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4.1.2  FBR to headstage components 

 We found that the FBR to fixation screws and fixation anchoring adhesive illicit a chronic 

FBR that has all of the hallmarks described for MEAs implanted in brain tissue. 

 Screws which penetrated the cranium could elicit increases in astrogliosis throughout the 

depth of the cerebral cortex.  This increase in GFAP is evident when compared with the 

contralateral hemisphere. 

 We found evidence of persistent neuroinflammation below a variety of fixation screws 

including chronic macrophage activation, demyelination, and neural tissue loss.  Both 

self-tapping and blunt machine screws exhibited this reaction. 

 The FBR of fixation techniques, which is common to a wide variety of CNS devices, may 

improve the biocompatibility of existing devices and provide a reference for future 

biologically-informed device designs. 

 From these studies on the headstage FBR there are a number of outstanding questions.  

Based on studies in the literature a relationship can be developed between the FBR and the 

widespread neuroinflammatory burden.  However, a direct correlation of IHC biomarkers and 

autoradiography markers, such as PK11195, or other indicators of systemic inflammation may be 

useful for directing the biomaterials and device design fields.  From a design perspective a 

strategy such as decreasing the surface area of the headstage may lower its neuroinflammatory 

burden, but a comprehensive design and evaluation process that identifies and tests strategies to 

maximize device fixation while minimizing the neuroinflammatory burden is lacking in the 

literature.  For proper evaluation, both of these outstanding questions would most likely require a 

dedicated study that allows for exclusion of the cortically implanted device and a sole focus on 

headstage development. 

 
4.2  Future Directions and Approaches 

 
 A number of future directions and approaches can be based on the results and 

conclusions presented in this dissertation.  Sections 4.2.1-4.2.6 focus on the ECM coatings 

presented in Chapter 2 and sections 4.2.7-4.2.8 focus on device fixation presented in Chapter 3. 
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4.2.1  In vitro mechanistic studies of ECM coatings 

 The first rational direction to develop a better understanding of the ECM coatings 

influence on the FBR is through in vitro mechanistic studies.  These studies would provide 

insights on specific cellular interactions with the ECM coated interfaces in a controlled in vitro 

setting. 

 To advance knowledge on the hemostatic potential of ECM a number of strategies could 

be used to better understand platelet interactions as they are an important moderator of 

coagulation.  One of the most powerful techniques is parallel plate perfusion, which allows for the 

perfusion of whole blood or platelet rich plasma at a controlled perfusion speed and associated 

shear force.  The level of shear may prove important for future studies given the composition of 

the astrocyte-derived ECM, which contained collagen type VI and type XII.  These collagen types 

facilitate platelet adhesion at low shear rates, but not high shear rates.  Conversely, collagen type 

I-III are able to facilitate platelet adhesion and activation at higher shear rates [180].  A potential 

experimental design for a first study on platelet interactions would be to flow platelet rich plasma 

over uncoated controls, Avitene coated, and astrocyte-derived ECM coated with a range of shear 

rates (i.e., 300, 800, and 2000 s-1) [182, 297].  The dynamic platelet interactions with the surface 

may be viewed in real-time with differential interference contrast microscopy or post processed 

with Giemsa staining following glutaraldehyde fixation and methanol dehydration.  Other 

techniques to analyze platelet activation include the quantification of soluble factor release.  For 

example, adenosine triphosphate release is quantifiable through surface-immobilization of firefly 

luciferase or β-thromboglobulin release is quantifiable through an enzyme-linked immunosorbent 

assay (ELISA) [179, 298, 299]. 

 Results from Chapter 2 show that ECM coatings derived from astrocytes in vitro is able to 

modulate macrophage activation in vitro.  This result is based on a single test, additional assays 

which build on this and provide a better understanding of the ECM’s influence on inflammation 

may provide insights on the differential response seen in the GFAP (Fig. 2.7 and 2.8) and IgG 

(Fig. 2.9) results surrounding ECM coatings.  While the influence of the Avitene and astrocyte-

derived ECM coatings on macrophage phenotype in vitro was assessed, the macrophages’ 
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secretion profiles are unknown on these coatings.  The use of an ELISA or mass spectroscopy on 

macrophage secreted media and quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) on cell lysate would inform us on which proteins, cytokines, and chemokines are 

being secreted or genetically upregulated, respectively [121, 300].  Additionally, derivation of 

macrophages from other tissue sources, such as bone marrow, may prove useful for comparative 

analysis with our previous results on microglia harvested from rat pup cerebral cortices.  Findings 

from this comparison would contribute to the growing body of research seeking to understand 

microglia’s role in the CNS injury [102, 103, 301]. 

 
4.2.2  In Vivo mechanistic studies of ECM coatings 

 The second rational path to direct the understanding of the ECM protein coatings is in 

vivo mechanistic studies.  These studies would build on knowledge acquired during the in vitro 

studies and the in vivo results from Chapter 2 to provide insights on the ECM coatings influence 

on the acute tissue response and the longevity of the ECM coatings. 

 Shorter time points would be the first in vivo study to build on the results presented in this 

dissertation.  Two specific time points of interest would be 48 hr and 2 weeks.  These time points, 

especially 48 hr, are commonly used in the fields of TBI and stroke to assess hemorrhage 

formation, and thus would provide a better understanding of the ECM coatings in vivo hemostatic 

performance [302, 303].  Also, it is known from previous studies that the glial scar surrounding a 

similar device does not change after 2 weeks [73].  Therefore, analysis of inflammatory and 

astrocyte biomarkers surrounding astrocyte-derived ECM may answer if the decrease in GFAP at 

8 weeks is attributed to acute immunomodulation or a specific interaction with astrocytes. 

 A second in vivo study would be the prelabeling of coated proteins with a marker which 

can be later detected in tissue.  This could provide insights on the activity of surface adherent 

macrophages (Fig. 4.1) and possibly be used to track their migration following interaction with the 

device interface.  Care must be taken in this step to minimize the alterations to the protein 

function.  Potential labeling techniques would include fluorophore conjugation to the proteins, 

which would be the simplest through an amine-fluorophore conjugation with either the Avitene or 

the astrocyte-derived ECM coating.  This step could be integrated prior or during the coating 
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deposition.  However, fluorophores are hydrophobic which could have influence on the FBR as 

the adsorption of labelled proteins would be affected, thus requiring a fluorophore only coating for 

control [304].  A different labeling technique which has been previously used to assess ECM 

scaffold degradation would be the radiolabeling of the proteins [245].  An advantage of this 

technique is the limited influence on the natural ECM architecture.  One experimental approach 

involves supplementing the source animal with 14C-proline, which integrates within the native 

triple helix of fibrous collagen.  This would be unfeasible for ECMs where there is no control the 

development, such as Avitene, but may be possible for the cell-derived ECMs developed in vitro.  

A potential path for post developmental radiolabeling of ECM could use an amine conjugation to 

integrate the radiolabeled element [305, 306].  If radiolabeling is accomplished, the quantity of 

material in tissue sections could be quantified at various time points with liquid scintillation 

counting (LSC) [307, 308].  To better determine the spatial distribution it may be possible to 

isolate micrometer size regions of tissue with laser capture microdissection (LCM) [309].  LCM 

and radio-iodination have not been previously combined in this manner, but similar approaches 

indicate that labeled protein sensitivity would be adequate for quantification [310]. 

 Lastly, gene delivery techniques could enable a number of studies on in vivo 

mechanisms.  First, it could enable labeling of cells at the interface through viral transduction of 

GFP [311].  Along with these GFP, other genes encoding the knock-in of anti-inflammatory 

molecules or knockdown of proinflammatory molecules could be delivered [312, 313].  One 

example showed transduction of IL-10 in cells (mostly macrophages) surrounding an implanted 

polymer scaffold which decreased leukocyte trafficking by 50% relative to controls at 7 days post-

implantation [314].  This would be a powerful way to interrogate inflammation’s influence on the 

chronic FBR surrounding CNS implants.  One of the most important parts of this approach is to 

ensure efficient cellular transduction.  Techniques where delivery of the vector is rapid (e.g., 

injection) have experienced poor gene transduction.  However, prolonged delivery via 

immobilizing the viral vectors within a degradable substrate, such as PLGA, improves the efficacy 

of gene delivery [315].  For MEAs, this could be done by linking PLGA to the surface either as a 

coating or as an aggregate of nanoparticles.  While the translatable nature of genetic engineering 
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is uncertain, these techniques may allow the field to ask the next phase of questions that will 

improve clinical efficacy of CNS devices. 

 
4.2.3  Investigate new FBR biomarkers and quantification approaches 

 To better understand the FBR surrounding brain implanted devices, it may prove 

beneficial to expanded immunohistochemical quantification in the future with novel biomarkers, 

higher magnification quantification, and emerging techniques. 

 Various studies indicate a heterogeneity of macrophage phenotypes.  Within this dogma, 

macrophages have mostly been classified as M1 (proinflammatory) or M2 (proregenerative).  

However, it is well-recognized now that this view is incomplete as the phenotypes of 

macrophages in vivo are much more variable than the induced phenotypes observed in vitro due 

to supplementation of LPS and various interleukins [316, 317].  Still, these techniques have 

pushed the field to recognize new biomarkers for quantifying cell phenotype.  Two differential 

biomarkers that seem promising from these macrophage phenotypic studies are arginase and 

iNOS which may be detected through immunolabeling, similar to the protocols used in Chapters 2 

and 3 [190].  These two markers are promising because they originate from a diverging pathway 

which is based on competitive metabolization of the same substrate, L-arginine.  The products of 

iNOS metabolism of L-arginine are inflammation and tissue damage (NO and L-citrulline).  

Conversely, arginase metabolism of L-arginine results in ECM production and cell proliferation (L-

proline and polyamines) [317, 318]. 

 Laser capture microdissection of tissue could also be combined with qRT-PCR to map 

the genetic upregulation of various biomarkers surrounding the uncoated and ECM coated 

interfaces.  This could be a beneficial supplement to quantitative IHC used to describe the FBR.  

This technique has been used to profile sections from multiple intracortical MEA studies [120, 

124], which indicated an increase in various matrix metalloproteases (MMP), including 

gelatinases MMP-2 and MMP-9, which are potent drives of inflammation and are associated with 

BBB permeability [319].  Adoption of this approach may be especially useful for comparing the 

neuroinflammatory profile of the FBR surrounding uncoated controls and ECM coated MEAs.  

However, a number of pitfalls have been identified with qRT-PCR, including poor correlation 
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between mRNA and protein abundance, which should to be considered prior to technique 

adoption [320]. 

 
4.2.4  Influence ECM derivation process and cell/species origin of the ECM protein coatings 

 For the derivation of ECM in vitro an area of improvement is the design and need for 

sacrificial scaffolds.  An alternate scaffold fabrication technique, electrospinning of polymer 

nanofibers, would provide a higher degree of tortuosity within the scaffold than the porous PU 

scaffolds and may further promote the degree of molecular crowding and ECM accumulation (Fig. 

4.2A-B) [321].  However, a better route may be to eliminate the sacrificial scaffold all together.  

One means to do this would be electrospinning of a nanofiber protein scaffold, similar to those 

fabricated with solubilized collagen suspended in 1,1,1,3,3,3-hexafluoro-2-propanol [322, 323].  

This initial electrospun protein scaffold could then serve as the substrate and be enriched by in 

vitro cell proliferation and ECM accumulation.  Furthermore, it was shown in our lab that 

derivation of ECM is possible from decellularized cell sheets (Fig. 4.2C) [324].  These alternate 

cell-derived harvesting techniques may be useful for delineating what influence the harvesting 

technique has on differences observed surrounding the ECM coatings. 

 The results within Chapter 2 are the first FBR response to an allogeneic cell-type specific 

ECM coating, and indicate that ECM origin and composition have an influence on the FBR.  A 

next step is to use ECM proteins derived from different cellular origins or with more specific 

protein composition to delineate the role of cell-, tissue-, and species-specificity. 

 One advantage of the cell-derived ECM is that it originates from a specific cell type in a 

controlled environment.  This has proven useful for deriving ECM from cells of various potential 

such as mesenchymal stem cells and from different tissues such as the dermis [234, 236].  In 

relation to its influence on the FBR, it limits the ability to isolate the effect of a specific protein on 

the FBR.  Although, isolating a single protein for the coating would obscure the possibility that a 

heterogeneous protein composition may be required for the observed benefit or deficit.  Some 

single proteins that may prove useful, but have not been investigated in vivo, are biglycan, 

decorin, lumican, or homologous proteins, which have been shown to modulate TGFβ1 signaling 

and may have more influence on the FBR. 
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 A potentially interesting experiment would be the assessment of a proinflammatory 

protein coating, using proteins such as IL-1β, IL-6, MCP-1, or RANTES.  The inflammatory 

chemoattractant protein RANTES could be one option and has been investigated in vivo through 

subdermal injections and showed upregulation in the activation of eosinophils, mast cells, 

lymphocytes, macrophages, and basophils [325].  Given that attempts to decrease the chronic 

inflammation at the electrode-tissue interface have had limited influence, the rationale for this 

experiment would be to better understand the influence of acute inflammation on the other 

aspects of the FBR, and to ask if an increased acute inflammatory response leads to an elevated 

or equivalent chronic inflammatory response and FBR, when compared to uncoated controls.  

The approach for this experimental concept would most likely require analysis of several coatings 

with various concentrations of the proinflammatory stimulus to understand the thresholds of 

proinflammatory delivery. 

 
4.2.5  Determine ECM coating’s influence on a clinical device with an increased FBR 

 The model device for the presented work, a silicon single-shank MEA, was chosen based 

on its use historically to understand the FBR.  A potential path forward to address multiple facets 

of the FBR would include coating a lattice designed MEA as indicated in our previous work [163].  

Surrounding the lattice, there was a decrease in inflammation (CD68), BBB permeability (IgG), 

and an increase in neuronal density (NeuN).  However, the lattice architecture did not decrease 

the level of astrogliosis (GFAP).  The allogeneic astrocyte-derived ECM coating, on the other 

hand, was able to influence the level of astrogliosis while not having an influence on the other 

aspects of the FBR.  Thus, combining the lattice architecture and ECM coating may prove 

synergistic and minimize multiple aspects of the FBR (Fig. 4.3). 

 Yet, as indicated to in section 1.3.2, these single-shank silicon MEAs create a fairly small 

degree of damage in comparison to multi-shank MEAs, such as the UEA.  From one perspective, 

a multi-shank model may provide a different result as it is essentially increasing the signal-to-

noise ratio of the IHC quantification, with the signal being the level of biomarker immunoreactivity 

adjacent to the interface and the noise being the level in background tissue.  Furthermore, this 

larger injury is characterized by a prominent lesion and tissue loss occurring below the base (Fig 
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4.4).  This larger injury may originate from the loss of vasculature perfusion redundancy in the 

brain, which is relatively robust when a focal area of vascular is ruptured.  However, more 

widespread instances of damage may result in loss of this redundant vascular perfusion and a 

larger area of damage [35].  Thus, it is reasonable to believe that a hemostatic coating maybe 

have a different response in this model system due to increased biological interactions.  This 

larger injury has been quantified in terms of cavity volume as defined by a prismoidal formula and 

immunofluorescence of biomarkers within the first 100 μm of the outermost electrodes [27].  Due 

to the lesion this quantification approach, unlike the one used for single-shank MEAs, is unable to 

assess the reaction around each shank of the UEA due to the irregularities of the cavity.  Given 

that the only influence on the FBR was observed within 50 μm of the single-shank MEAs, it may 

be necessary to revise these previous quantification approaches to more specifically analyze the 

reaction to the individual electrode shanks. 

 
4.2.6  Incorporate recording techniques to assess functional correlations 

 Ultimately one of the most important future experiments for the presented work and any 

technique that alters the FBR is the integration of a functional assessment.  This could be done 

with a functionalized single-shank MEA.  However, given that the UEA is one of the most utilized 

recording devices, it would be logical to integrate recording into the section 4.2.5.  A majority of 

the recording data with UEAs originates from primates.  However, its adoption in rats may grow 

with use of smaller 4 x 4 UEAs as detailed in a recent report from our lab [68].  The metrics most 

often associated with recording performance are signal-to-noise ratio (how high is the recording 

signal compared to background noise), driven channels (how many electrode sites are able to 

detect single unit APs), electrode impedance (the ability of current to flow under a driving voltage, 

typically 1 kHz), and recording longevity (for what length of time are single unit APs detectable) 

[49, 58, 61, 68, 70, 326].  The experimental protocol for recording would follow similar studies 

[68], and employ a Cerebus or Cereplex recording data acquisition system supplied by Blackrock 

Technologies Inc. and equipped with Plexon Offline Sorter software to quantify the signal-to-noise 

ratio, driven channels, and recording longevity as described above.  Additionally, with the 

compatible Cereplex A amplifier the impedance of each electrode in the UEA can be quantified 
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and would add to the results from previous work which did not assess impedance.  Impedance 

has been suggested as a correlate to cell reactivity and astrogliosis surrounding the MEA 

interface, thus it is believed that the allogeneic astrocyte-derived ECM coating would improve this 

recording metric [327, 328]. 

 
4.2.7  Influence of headstage on systemic inflammation and neurogenesis 

 A few techniques which would be interesting to expand our understanding of the 

headstage FBR include the cytokine analysis from blood draws at acute and chronic time points, 

assessment of neurogenesis, cognitive function, and other techniques to assess 

neuroinflammation.  Ideally these experiments would be done with the headstage alone as a 

control.  One potential technique uses autoradiography of [3H]PK11195, which labels a 

benzodiazepine receptor, to quantify microglia and astrocyte reactivity [329].  One study which 

used this technique to show the neuroinflammatory burden of DBS implants in rats controlled for 

the influence of the surgery with a surgical sham, however, failed to assess the influence of the 

screws and dental acrylic used to affix the DBS to the skull by implanting only a headstage [203]. 

 Assessment of neurogenesis and cognitive ability could be performed in tandem with 

other techniques through hippocampal evaluation determined by the proportion of 

Bromodeoxyuridine-positive (BrdU+) proliferative cells that co-express the early neuronal marker 

doublecortin (Dcx) and an animal memory exercise such as object recognition test [207].  Using 

this technique with a number of different headstage designs, and the absence of an intracortical 

implant for control, it would be possible to better determine the neuroinflammatory burden of the 

headstage alone and guide the field on which approach might least influence brain health. 

 Incorporation of a device development and commercialization phases in a NIH 

SBIR/STTR or technology development grant (such as those distributed at the state level for 

technology commercialization) would strengthen the funding potential and ultimate impact of the 

work by providing for a more comprehensive analysis and development phases, with analyses 

from Chapter 3 partially serving as developmental design parameters.  In this way, understanding 

the FBR to headstage components plays into the larger issue of improved headstage 

components and improved surgical methods for small animal studies. 
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4.2.8  Design of universal small animal skull fixation device or technique 

 A purpose of Chapter 3 is to serve as a stepping stone for biologically-informed device 

design.  Design of a novel fixation techniques for rodents and other small animals would benefit a 

number of fields.  Some criteria that need to be considered for this new fixation technique are 

detailed below. 

 Fixation strength is a primary concern as any new methodology needs to ensure that it 

will not compromise the study.  Furthermore, it should endeavor to provide a level of 

fixation that decreases the fixation failures of current designs.  This strong fixation is 

needed to compensate for animals manipulation of transcutaneous components as well 

as their natural grooming patterns.  Headstage designs for larger animals use titanium 

components to promote osseointegration due to the titanium oxide-bone interactions 

[330].  The use of these materials have yet to translate to rodent CNS experiments as the 

common materials still used are stainless steel screws and dental acrylic. 

 Size and surface area of the headstage should be minimized without compromising 

anchorage.  Eliminating the screws and management of skull penetration is one of the 

largest challenges in regard to fixation.  Additionally, a new device or technique would 

need to account for the innate variability of skull shape and thickness within species, as 

well as interspecies (rat, mouse, guinea pig).  Since the skull size and shape changes 

over the lifespan of animals, another consideration would need to be the age of the 

animals at implant and the intended study length. 

 Modularity of the technique or headstage device would be needed for adoption by 

multiple fields.  In rodents the most common craniotomy location for access to the cranial 

vault is in the parietal plate, thus the design would need to maintain this area of 

accessibility. 

 Ease of use and cost would also play a large role in the adoption of the techniques or 

fixation device.  Most importantly the ease of use would help promote repeatable fixation 

and limit surgeon related variability. 

 From these criteria and considering the headstages used in larger animal models, the 
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most direct path forward would be a titanium plate and screw headstage designed for the rodent 

skull (Fig. 4.5 and 4.6).  An added benefit of titanium would be the possibility of sintering or 

creating pores on the baseplate surface (Fig. 4.5B) to further promote osseointegration.  Levering 

the osseointegration advantage may allow for a decrease in the screws required and the total 

implanted surface area.  Fabrication of such devices would be feasible within the laboratory 

setting through the use of laser etching techniques which could be used for developing the 

baseplate profile as well as creating the porous surface on the base of the plate.  Laser etching 

has shown an ability for high tolerance cutting of titanium within an inert gas environment [331], 

and studies indicate a laser textured pore size of 200 μm would be optimal for promoting 

osseointegration of the baseplate with the rodent skull [332]. 
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Fig. 4.1.  Surface adherent macrophages on single-shank and multi-shank MEAs.  (A) 
Single-shank planar MEA under lightfield illumination.  Scale bar 50 μm.  (B-C) The same 
location on an explanted single-shank MEA showing a layer of activated macrophages 
(MAC-1+ / CD68+).  (D) Multi-shank MEA (16-channel UEA) under lightfield illumination.  
Zoom box indicates similar location from (E) an explanted MEA showing a layer of 
activated macrophages (IBA-1+ / CD68+). 
(A-C) Adapted by permission from Elsevier: Biomaterials, R. Biran, D. C. Martin, P. A. 
Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted 
silicon microelectrode arrays, Exp. Neurol. 195 (2005) 115-126. 
http://dx.doi.org/10.1016/j.expneurol.2005.04.020. [76], Copyright 2005.  (D-E) Adapted by 
permission from Elsevier: Biomaterials, N. F. Nolta, M. B. Christensen, P. D. Crane, J. L. 
Skousen, P. A. Tresco, BBB leakage, astrogliosis, and tissue loss correlate with silicon 
microelectrode array recording performance, Biomaterials 53 (2015) 753-762. 
http://dx.doi.org/10.1016/j.biomaterials.2015.02.081. [68], Copyright 2015.  

http://www.ncbi.nlm.nih.gov/pubmed/16045910
http://www.ncbi.nlm.nih.gov/pubmed/25890770
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Fig. 4.2.  Electrospun polyurethane scaffolds and astrocyte-derived ECM cell sheet.  (A) An 
anisotropic PU scaffold deposited on a conductive spinning mandrel.  (B) A grid patterned 
PU scaffold deposited on a stationary conductive wire mesh.  (C) Decellularized astrocyte-
derived ECM sheet similar to those fabricated by Meng et al. [324].  The picture sheet 
(white arrow) retracted from the edge but remained adherent to the coverslip during 
detergent and enzymatic decellularization steps.  These sheets were robust enough to 
wrap a single-shank planar MEA.  However, the innate tension of the sheet caused the 
silicon MEAs to bend upon drying. 
 
 

 

Fig. 4.3.  Single-shank lattice geometry silicon MEA coated with astrocyte-derived ECM.  
(A) Uncoated control lattice MEA compared with (B) an astrocyte-derived ECM coated 
MEA.  In previous studies the lattice geometry showed a lower level of inflammation and 
BBB permeability, however did not decrease the level of astrocyte reactivity [163].  
Combining this approach of device geometry modification and the ECM coating, may 
prove synergistic for decreasing multiple aspects of the FBR.  
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Fig. 4.4.  Lesion size at various cortical depths resulting from multi-shank MEA 
implantation.  Representative horizontal sections from an animal sacrificed at 4 weeks 
showing cell nuclei (DAPI, blue), axons (NF200, yellow), activated macrophages 
(CD68/IBA-1 colocalization, green), BBB leakage (IgG, red), and astrocyte cytoskeleton 
(GFAP, cyan).  Sections from three different depths are shown including -500 μm, -1000 
μm, and -1500 μm.  Hypercellular, CD68+, IBA-1+, IgG+, NF200- areas of damaged neural 
tissue were most evident superficial cortex(-500 μm), while microelectrodes apart from the 
tissue loss areas had an FBR typical of single-shank MEAs.  In deeper cortex (-1000 μm 
and -1500 μm), the tissue loss area was smaller.  Scale bar 500 μm. 
Reprinted by permission from Elsevier: Biomaterials, N. F. Nolta, M. B. Christensen, P. D. 
Crane, J. L. Skousen, P. A. Tresco, BBB leakage, astrogliosis, and tissue loss correlate 
with silicon microelectrode array recording performance, Biomaterials 53 (2015) 753-762. 
http://dx.doi.org/10.1016/j.biomaterials.2015.02.081. [68], Copyright 2015.  

http://www.ncbi.nlm.nih.gov/pubmed/25890770
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Fig. 4.5.  Theoretical titanium headstage mount for fixation of electrical connector in 
rodents.  (A) Top view of headstage securement design showing the integration of 
countersunk screw holes to minimize the vertical profile.  Inner edge has been designed to 
retain a single Omnetics electrical connector, however may be easily adapted to integrate 
a cannula or cranial window.  (B) Bottom view of possible design showing a porous 
titanium base to support osseointegration and mechanical interlocking with the skull 
bone, similar to protocols used for orthopedic devices [333].  Additionally, one of the most 
important aspects would be the screw in plate design which limits the potential skull 
penetration.  The proposed design has a 600 μm penetration limit, detailed in Fig. 4.6, 
which corresponds to the approximate skull thickness of a 10 week old Sprague-Dawley 
rat.  
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Fig. 4.6.  Dimensions of theoretical titanium headstage mount pictured in Fig. 4.5.  CAD 
and drawing output was performed in Solidworks. 
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