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ABSTRACT 

 

    Despite their many uses, fine clay particles such as kaolinite are a nuisance 

in management of tailings in various industries such as the oil sands and phosphate 

processing industry. The effective flocculation, sedimentation, and consolidation of 

these fine particles are a major challenge. In industries, polymers are added to 

tailings suspension to facilitate formation and eventual sedimentation of flocs. The 

structure of floc and the water entrapped within the floc determine floc behavior 

and settling characteristics. The quantification of water entrapped within the 

kaolinite flocs has not been reported before. The information on kaolinite floc size 

and shape is also limited due to the challenges in experimental procedures for these 

delicate structures.  

    In this thesis research, operating conditions for kaolinite flocculation were 

determined and a suitable polymer was chosen by settling experiments.  Further 

investigation of the floc formed was done in suspended state as well as in 

sedimented state. The flocs were analyzed for their size, shape, water content, and 

microstructure. A pool of analytical techniques like the Particle Vision & 

Measurement (PVM), Dynamic Image Analysis (DIA), Scanning Electron Microscopy 

(SEM), High Resolution X-ray Microtomography (HRXMT), and image processing 

software like Fiji, Medical Image Processing Analysis & Visualization (MIPAV), and 

Drishti were used. The analysis of suspended flocs by PVM and DIA revealed a mean  

floc	 size	of	 about	225	µm	 for	high	molecular	weight,	 5%	anionic	polyacrylamide-	



 iv 

induced flocs. The low molecular weight, 70% cationic polymer-induced flocs were 

found to be smaller in size (145 µm). DIA was used to analyze the flocs at different 

solid concentration. It was found that the increase in solid concentration leads to 

increase in floc size. Floc circularity was also analyzed by using both these methods. 

Most flocs were irregular in shape with circularity ranging between 0.2-0.3. 

However, the circularity results from both these methods do not agree well due to 

the difference in methods of detection and different definitions used for 

circularity/sphericity. 

      Major contribution of this thesis work includes development of a new 

technique for water content and size analysis of sedimented kaolinite flocs. The 

sediment bed was segmented into about 13 thousand individual flocs and each floc 

was analyzed for its size and water content. The results suggest a normal 

distribution of water content for these flocs, with mean water content of 53.9% and 

standard deviation of 11.8%.  About 98% of the flocs have water content in the range 

30-80%. The size analysis revealed that about 90% of the flocs are less than 1.5 mm 

in size. The water content was found to decrease with increase in size of the floc. 

The flocs were found to be fairly irregular, with sphericity values around 0.1. The 

floc shape analysis was also done but limited to 10 flocs. 

       In addition to macroscopic analysis of individual flocs, flocs were also 

analyzed for their microstructure. Visualization of floc microstructure and polymer 

chain was done with the help of SEM. Microstructures of up to 10 µm in size were 

revealed along with the web formed by polymer chain.
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CHAPTER 1 

 
 

 INTRODUCTION 
 

1.1 Kaolinite Structure and Surface Charge 
 
  Kaolinite belongs to the phyllosilicate family of clay minerals. It is one of the 

most important clay minerals and has wide-ranging applications. In the paper 

industry, kaolinite is used both as filler and as a coating for paper sheet. Other 

industries where kaolinite is widely used include the ceramic industry, sanitary ware, 

insulators and refractories (Grim, 1953; Lagaly and Bergaya, 2013; Murray, 1991, 

2000; Van Olphen, 1977). On calcination of kaolinite, special products are produced 

with excellent dielectric properties, which are used as a filler in electrical wire 

coatings. Economic lightweight ceramic proppants (additives for drilling fluids and 

products for oil well cementing) have been produced from calcined kaolin clay used 

for increased gas and oil production (Lemieux and Rumpf, 1991). Despite its many 

uses, kaolinite clay is a nuisance in the process of tailings management of oil sands, 

phosphate rocks and other mineral resources.  

  Kaolinite primary particles are white or nearly white, soft, platy and 

chemically inert. They are almost hexagonal in shape and less than a µm in size. Figure 

1.1 shows a Transmission Electron Microscopy image of a 600 nm kaolinite primary 

particle taken at the Nanofab facility, University of Utah. Kaolinite has a low swelling 

capacity and low cation exchange capacity (1-15 meq/100g). (Lyklema, 1995; Olphen, 

1963).                                                                                              
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              Figure 1.1: TEM image of kaolinite primary particle, about 600 nm in size.  
              As is evident, most of these particles have a hexagonal shape.  
 

Phyllosilicate minerals are composed of two types of sheets, namely a silica 

tetrahedral sheet and an alumina or magnesia octahedral sheet. The phyllosilicates 

can be classified as bilayer phyllosilicates (1:1 type) or trilayer phyllosilicates (2:1 

type) depending on the ratio of silica and alumina/magnesia sheets. The crystal 

structure of these two types of phyllosilicates is illustrated in Figure 1.2. The kaolin 

group belongs to the bilayer or 1:1 type phyllosilicates (see Figure 1.2 A) and consists 

of alternating layers on silica tetrahedral and alumina octahedral. The spacing 

between two repeating kaolinite bilayers is about 0.72 nm. The double sheets are 

bonded to each other by hydrogen bonds (involving OH of the octahedral sheet and 

oxygens of the adjacent silica sheet) and van der Waal forces. The solution kaolinite 

has a rigid crystal structure that cannot be swollen by changing pH or ionic strength. 

Trilayer (2:1) phyllosilicates include the groups of talc, illite, muscovite, smectite, and  
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Figure 1.2: Crystal structures of bilayer phyllosilicate (A), trilayer phyllosilicate (B). 
The white circles represent oxygen atoms, the blue circles represent hydroxyl 
groups, the yellow circles represent silicon atoms, and the cross (x) represents 
aluminum or magnesium atoms.  
 
 
chlorite. Sometimes, isomorphous substitution of the clay minerals can happen and 

give rise to layer charge. The layer charge is the charge deficiency on the 2:1 layer due 

to substitutions in the tetrahedral sheet, octahedral sheet, or in both sheets. The layer 

charge of illite is ~0.75, and the layer charge of smectite is 0.2–0.6 (Bergaya et al., 

2011). The existence of the layer charge for the phyllosilicate layers accounts for the 

accommodation of interlayer cations to balance the layer charge (K+, Na+, NH4 +, 

etc.). The lower the layer charge is, the easier for the interlayer cations to exchange 

with cations in solution (Van Olphen, 1977). The 1:1 bilayer structure gives rise to 

three distinct surfaces for kaolinite particle: the silica face surface, the alumina face 

surface, and the edge surface. The three different surfaces of kaolinite are illustrated 

(A) (B) 
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in Figure 1.3. Yin et al. reported the wettability of the two basal planes of kaolinite. It 

was found that the silica face of kaolinite particles is more hydrophobic than the 

alumina face. This result was confirmed by molecular dynamic simulation as well 

(Yin, 2012).  The AFM charge characterization for all the three surfaces of kaolinite 

has been done recently at the University of Utah (Gupta and Miller, 2010; Liu, 2015). 

Gupta and Miller reported the point of zero charge (PZC) of the alumina face surface 

of kaolinite to be between pH 6 and 8, and the PZC  of the silica face surface to be 

below pH 4 (Gupta and Miller, 2010). In their study, individual kaolinite particles 

were ordered on substrates, and the prepared surfaces were confirmed by Atomic 

Force Microscopy (AFM) measurements to be the silica face and alumina face 

respectively. Until recent years, limited research has been reported on the kaolinite 

edge surface. The point of zero charge (PZC) of kaolinite edge surface was estimated  

 

           
 
    Figure 1.3: Crystal structure of kaolinite illustrating the three different surfaces.           
    Red: Oxygen; Yellow: Silicon; Purple: Aluminum; White: Hydrogen. 
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to be pH 4.5 by Gupta et al. Recently, Liu et al. prepared well-ordered kaolinite edge 

surfaces in an epoxy resin sandwich structure that had layered kaolinite particles in 

the center of the epoxy resin sandwich. The surface charge of the kaolinite edge 

surfaces was established from AFM surface forces measurement using a super sharp 

silicon tip. The PZC of the kaolinite edge surface was determined to be below 4, which 

they believed that lower isomorphous substitution in the silica tetrahedral layer 

accounted for the lower PZC (Liu et al., 2014).  At pH below 6, the alumina face is 

positively charged whereas the silica face and edge surfaces are negatively charged. 

(Gupta, 2011). Now we know that the different surfaces of kaolinite exhibit different 

charges at different pH as shown in Figure 1.4. Electrostatic attractive forces are in 

play due to the presence of both positively and negatively charged surfaces in the 

system and this can lead to formation of kaolinite clusters.  

 
1.2 Kaolinite Particle Aggregation 

The clay colloidal stability in suspension depends on the mode and extent of 

particle association in suspension. In the dispersed state, the kaolinite particles can 

be considered as colloidal particles subjected to Brownian motion. These colloidal 

particles make collisions at different rates (Yu and Somasundaran, 1997). The modes 

of particle interaction can be governed by van der Waals force, electrical double layer 

force, hydrophobic force, hydration force, etc. At higher pH values, these colloids of 

kaolinite particles form a fairly stable suspension as the electrostatic repulsive force 

between the negatively charged surfaces prevents aggregation of colliding particles. 

The effect of other forces on the system is almost negligible. At lower pH, the 

anisotropic nature of surface charge renders the colloidal system highly unstable. The  
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Figure 1.4: Surface potential variation of three different surfaces of kaolinite with         
pH as determined from AFM surface force measurement (Gupta and Miller, 2010; Liu 
and Miller, 2014). 
 

presence of oppositely charged surfaces promotes aggregation between the colliding 

particles leading to the formation of kaolinite clusters. These kaolinite particles 

become associated with edge-to-edge, edge-to-face, or face-to-face interactions giving 

rise to a cardhouse type structure as suggested by researchers (Kie, 1954; Van 

Olphen, 1977). The cardhouse structure of kaolinite clusters has been described using 

a dynamic coarse grain simulation model as shown in Figure 1.5 (Liu et al., 2015).  

  The formation of kaolinite clusters in aqueous solution has been studied by 

many researchers over the past few years. The kaolinite clusters formed in aqueous  

solution are about 10 µm in size; further increase in the size of aggregates can be 

obtained by the addition of coagulants or flocculants or both. Addition of polymer-                    
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Figure 1.5: Snapshot from the dynamic simulation of kaolinite cluster formation  
 at pH 5 (Jing Liu, 2015). Simulation time was 10 ns.  
 

  
based flocculants leads to further aggregation and ‘flocs’ are formed. Polyacrylamide-

based polymers (PAMs) are generally used as flocculants for tailings containing 

kaolinite and other clays. The kaolinite flocs formed on addition of PAM are expected 

to vary in size, shape, and water content, depending on the conditions of floc 

formation but their size, shape, and water content has not received much attention 

due to difficulty in experimental analyses.   

1.3 Research Motivation 

The oil sands mining and extraction processes in Canada produce large 

volumes of tailings that are a mixture of mainly water, clay, sand, chemicals, and 
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bitumen. Kaolinite constitutes about 50-60% of the total clay content. This tailings 

slurry is approximately 55% solids (82% sand and 18% fines < 44 μm) and is 

deposited into tailings ponds where sand settles faster to form beaches. Some fines 

are trapped within the sand matrix of the beaches. However, the remaining thin slurry 

of fines and water (8% solids) is stored in settling basins where the solids settle 

gradually to form a densified zone of fine tailings at depth. Released water is recycled 

back to the processing plant. After a few years, the fines settle to 30 to 35% by weight 

and are referred to as mature fine tailings (MFT). Further consolidation of the MFT is 

expected to take centuries (Chalatumyk et al., 2002). 

In another example, most of the phosphate deposits in central Florida contain 

about 10% clay minerals, making the recovery of the phosphate minerals extremely 

difficult. After phosphate recovery, the tailings, which might contain 30–50% clay, are 

discarded. It usually takes 3–5 years for sedimentation and consolidation to reach 50–

60% solids, requiring a lot of land to be used for tailing disposal (Zhang and Bogan 

1995). As of today, 30-40% of the mined lands are being used as clay settling areas. 

           Therefore, land reclamation and water recirculation are big challenges for 

operation involving clays such as kaolinite. Dealing with these tailings has significant 

economic and environmental impacts. The effective flocculation, sedimentation, and 

consolidation of these fine particles are a major challenge. The tailings settling rate 

depends on floc size, entrapped water, and surface properties which can be modified 

by variations in the pH, salinity, and addition of flocculants (Cabrera et al., 2009). 

There have been discussions about the importance of particle size in gravity 

separation of clays (Lawler, 1986; O’Melia, 1998). The shape of floc is supposed to 



                                                                                                                                                                                             

 

9 

effect the collision efficiency and settling rates (Jiang and Logan, 1991; Johnson et al., 

1996; Li et al., 1997; Wiesner, 1992). The settling of flocs is also effected by the water 

entrapped inside the floc (Hendricks 2016). Therefore, the characterization of floc 

size, shape, and entrapped water content on addition of suitable polymer will be 

helpful in understanding and influencing the tailings settling rate, sedimentation, and 

consolidation.    

 
1.4 Objectives 

 
     Although different aspects of kaolinite flocculation have been studied before 

(Alagha et al., 2013, 2016; Kim and Palamino, 2009; Mpofu et al., 2004; Nasser and 

James, 2007; Taylor et al., 2002; Yu et al., 2006; Zbik et al., 2008; Zhu et al., 2009), the 

floc structure for in-situ conditions and the floc structure in sediment have not been 

compared in previous studies. Not much is known about the 3D characteristics of 

flocculated kaolinite sediment, such as the water content of individual flocs present 

in the sediment. 

          Polymer flocculants have been used in industry for many years to achieve 

effective flocculation and sedimentation. In this thesis research, the settling 

characteristics of polymer-induced flocs are compared for different experimental 

conditions and a few conditions were selected for further more detailed experiments. 

Further characterization of the flocs formed was done using a pool of analytical 

techniques. The flocs were analyzed for size, shape, and microstructure. 

           In summary, the major objective of this research is to study the multiscale 

features of polyacrylamide induced kaolinite flocs using both 2D and 3D 

characterization methods. These features include size, shape, and water content. 
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Analytical tools including Particle Vision Measurement, Dynamic Particle Analyzer, 

FESEM, WETSEM capsules, and HRXMT are used for characterization of the floc 

structure. Using the FESEM, the floc fabric was studied and the micro-sized floc 

nodules were identified in the web created by polymer chains. Using High-Resolution 

X-ray Microtomography (HRXMT), three-dimensional characterization of the 

sediment was done and a technique was developed to calculate the water content of 

each floc present in the sediment. 

          In most tailings management cases involving clays such as kaolinite, 

aggregation is necessary prior to its removal by solid-liquid separation processes. 

Influencing the size, mass, surface area, and number concentration of particles 

substantially affects their removal by gravity sedimentation and deposition in 

packed-bed filters (Lawler, 1986; O’Melia, 1998).  In addition to size, particle shape 

affects the behavior of aggregated particles, particularly with regard to collision 

efficiency (Jiang and Logan, 1991; Wiesner 1992) and settling rates (Johnson et al., 

1996; Li et al., 1997). The particle size and solids weight percentage in the slimes 

determine the settling characteristics and amount of flocculant required to settle the 

slimes. 

         The amount of water contained in the flocs is directly influenced by the size of 

the flocs (Winterwerp and Van Kesteren, 2004) and the rate at which flocculation 

occurs (Mietta, 2010). The water content of the flocs also influences the settling and 

self-weight consolidation (Hendricks, 2016). Previously, techniques like the NMR 

have been used to study the water content in different clays (Fan and Somasundaran, 

1999). The analysis of water content for kaolinite flocs is yet to be reported. In this 
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research, a novel method was developed for determination of water content of 

sediment flocs using High-Resolution X-ray Microtomography. The X-ray attenuation 

coefficient for kaolinite was determined and used to analyze the water content in the 

flocs. Also, size and shape characterization was done for selected flocs. The method 

developed can be used to determine the relative distribution of water in flocs and 

channels at different conditions.   

 
                                                            1.5 Thesis Organization 
 
           The introduction (Chapter 1) includes discussion about kaolinite surface 

charge and particle aggregation followed by research motivation and objectives. 

           Chapter 2 considers the mechanism of flocculation mechanism and results 

from settling experiments. The effect of polymer addition on settling of kaolinite 

suspension was studied. Parameters including polymer type, polymer dosage, pH, 

and mixing conditions were varied and their effect on kaolinite settling are reported.  

          The characterization of kaolinite floc structure was done using in-situ and ex-

situ techniques. The results of structure analysis using Particle Vision Microscope 

(PVM) and Dynamic Laser Diffraction are presented in Chapter 3.  The size and shape 

characterization was done using both techniques and the results are discussed in this 

chapter. 

          Chapter 4 deals with 3D characterization of the sediment. Using the High- 

Resolution X-ray Microtomography and image processing techniques, a method for 

water content analysis of kaolinite flocs was developed. Individual flocs are identified 

and analyzed for size and water content. Also, the surface area and volume are 

calculated for selected flocs.  
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The floc fabric and structure was further studied using the Scanning Electron 

Microscope (SEM). The flocs were analyzed using a wet cell as well as using a 

cryogenic sample preparation method. The results from both methods are discussed 

in Chapter 5. 
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CHAPTER 2 

 
 

SIGNIFICANCE OF OPERATING CONDITIONS ON KAOLINITE SETTLING 
 
 

2.1 Introduction 
 

      Kaolinite primary particles stay dispersed at higher pH due to electrostatic 

repulsive forces between negatively charged surfaces but show some aggregation and 

cluster formation at lower pH due to the presence of opposite charges at the particle 

surfaces. The particle associations can be of edge-face type or face-face type 

association. The structure of clusters arising from particle interactions is considered 

to be a manifestation of the interplay of the electrostatic force and the van der Waals 

force (Mitchell and Soga 1976; Van Olphen 1977; Palomino and Santamarina 2005). 

These clusters form a card-house type structure and are about 10 µm in size. The 

presence of polyvalent cations in small amount leads to shrinkage of the electrical 

double layer. The shrinkage of the electrical double layer brings the particles 

sufficiently close for interparticle or cationic bridging to occur and in turn leads to an 

increase in aggregate size (Labille et al., 2005). 

        In mineral processing operations, particularly tailings disposal, the addition 

of flocculants is done to obtain larger sized aggregates and hence faster settling rate. 

Flocculation can be understood as a physical or a mechanical process in which the 

clusters and/or primary particles are joined together to form bodies of significantly 

greater size and mass called flocs. This flocculation can be achieved by adding high 



                                                                                                                                                                                             

 

14 

molecular weight, water-soluble organic polymers of appropriate charge densities to 

the suspensions. Interaction of particles, or particle clusters, with the polymers leads 

to aggregation of clusters, the size of the aggregate increases and, in this way, 

sedimentation is facilitated. It is very important to gently mix the flocculating agent 

at a slow speed so that small clusters can easily grow and agglomerate into large flocs, 

and finally settle at a satisfactory rate. The whole process is extremely sensitive to 

operating variables. The settling velocity of flocs, and the structure of flocs formed 

can be easily influenced by change in any of the operating variables. The importance 

of operating variables will be discussed in subsequent sections of this chapter.  

         In this work, the effect of polymer flocculants on kaolinite suspensions is 

studied without the addition of any other coagulants such as polyvalent cations for 

charge neutralization as the addition of coagulant would influence the surface charge 

on kaolinite surfaces and hence affect the flocculation characteristics. The scope of 

this thesis research is limited to the study of polymer-induced flocculation 

characteristics of kaolinite particles.  

         In this chapter, results from a series of settling tests for polymer-induced 

kaolinite flocculation will be considered. The objective of these settling tests is to 

identify preferred conditions for each operating parameter. These conditions have 

been used as a basis for further characterization experiments to describe the size, 

shape, and structure of kaolinite flocs.  No claim is made that the conditions used for 

further experiments are the optimized conditions, as the continuous interactive effect 

between different operating parameters has not been considered. To establish the 

interactive effect of different variables, response surface methodology (RSM) should 
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be used for design of experiments (DOE). RSM is an effective tool for building a 

multivariable equation and finding their optimal values (Triveni et al., 2001; Yang et 

al., 2009). In the case of kaolinite flocculation, it can be employed to optimize the 

conditions of flocculation process and to investigate the interactive effects of 

experimental factors like dosage, pH, and mixing speed. However, this method can 

only optimize one output feature of the system. For example, we can optimize the 

settling rate but not the supernatant clarity at the same time.  

 
2.2 Mechanism of Kaolinite Flocculation 

           Understanding the mechanism of clay flocculation has been of interest to 

various researchers for many years (Alagha et al., 2013, 2016; Gregory and Guibai, 

1991; Hogg, 1999; Michaels and Bolger, 1962; Nasser and James, 2006, 2009; 

Ruehrwein and Ward, 1952).  

Polymer adsorption on a clay particle surface alters the surface properties of 

the particle such as surface charge and hence interparticle forces between particles 

(Theng, 1979). Flocculation of fine particles is a dynamic process and may occur by 

polymer bridging, charge compensation or neutralization, polymer–particle surface 

complex formation and depletion flocculation, or by a combination of these 

mechanisms (Theng, 1979). Of these, bridging and charge neutralization are the 

commonly encountered mechanisms in the flocculation and dewatering of kaolinite 

dispersions using high molecular weight (>106) nonionic polymers or 

polyelectrolytes (Besra et al., 2002).  

         Bridging flocculation occurs as a result of adsorption, via hydrogen bonding, 

of individual polymer chains onto two or more particles simultaneously, forming 
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molecular bridges between the adjoining particles in the floc. Nonionic polymers and 

also polyelectrolytes may exhibit this kind of flocculation mechanism (Hogg 1999, 

2000). Pefferkorn (1995) discussed interactions between nonionic polyacrylamide 

and kaolinite in aqueous suspensions in terms of amide-hydroxyl H-bonding. Theng 

in his book, ‘Formation and properties of clay-polymer complexes’, discusses in detail 

the conditions required for interparticle bridging to take place. For an interparticle 

bridge to take place, it is required that the polymer be adsorbed by two particles at 

the same time. For charged particles, the polymer chain must be able to span the 

distance of closest interparticle approach (dc), which is assumed to be about twice the 

double layer thickness (1/) (Gregory, 1988). In this regard, the presence of a small 

amount of electrolyte is helpful in bringing the particles sufficiently close for 

interparticle bridging to occur in aqueous dispersions (Labille et al., 2005). The 

presence of electrolytes also enhances bridging by Polymer-Cation-Clay bridging 

(Laird, 1997). This type of bridging increases with increase in valency of the cation, 

e.g., Al3+ will give more bridging than Na+. Linear chain polymers have better chances 

for flocculation than branched chain polymers of the same molecular weight as linear 

chain polymers have better chances of spanning the interparticle distance of closest 

approach and do not create steric hindrance as expected for branched chain 

polymers.  

       The rate of flocculation depends on five rate processes that occur more or less 

simultaneously (Gregory, 1988). These include mixing of polymer with solid particles, 

adsorption of polymer at the particle surfaces, rearrangement of adsorbed polymer 

to an appropriate configuration, collision of particles with adsorbed polymer to form 
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flocs, and aggregate break-up. After the initial rearrangement is complete, efficiency 

of flocculation mainly depends on how many of the collisions lead to interparticle 

bridging. For best results, the polymer should cover sufficient surface of the clay, but 

interparticle bridging is hindered if most of the clay surface is covered by the polymer. 

The probability of bridge formation is proportional to the fraction of surface covered 

by the polymer, θ, and also the fraction of surface uncovered by the polymer, (1- θ). 

The collision efficiency, E, can be written as: 

 

E = θ (1 – θ) ………………………………………………………………   (1) 

 

The idea about probability of bridging was introduced and formulated in a 

series of papers by Mer and Smellie (1962), and Mer and Healy (1963, 1966). Besra 

et al. (2002) reported that the maximum rate of polyacrylamide induced flocculation 

for kaolinite suspensions occurs when θ = 0.5.  

              On the other hand, charge neutralization is a major mechanism for flocculation 

when significant particle surface sites are of opposite charge. The charge 

neutralization phenomenon is relatively simple and flocs produced by this method 

are expected to be smaller in size but stronger.  

           Sometimes, if the polymer chain is not long enough, the polymer chain can 

adsorb on the charged surface in “patches” (Theng, 1979). Flocculation then occurs 

by electrostatic attraction between the positively charged patches on one particle and 

unpatched negatively charged surface on another particle. A less common mechanism 

of flocculation is depletion flocculation, which occurs in situations where free non- 

adsorbing polymer molecules present in the dispersion are excluded from the space 
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between two approaching particles due to their large size. The resulting osmotic 

pressure forces the particles to flocculate (Hunter, 1981) 

         In this study, we have used polyacrylamides of different molecular weights 

and charge densities. Polyacrylamide is an important water-soluble commercial 

polymer, it is cost efficient, and can be produced in any ionic form. It has been in wide 

use by industry since its discovery in the 1970s (Bikales, 1973). Its chemical structure 

is illustrated in Figure 2.1.  

               The charge density can be varied by amount of substitutions of the acryl and 

amide groups. Polyacrylamides interact with clay surfaces via polymer bridging, 

charge neutralization, complex formation between clay particles and polymer 

molecules, or a combination of these phenomena (Deng et al., 2006; Laird, 1997; Lee  

et al., 1991; Mpofu et al., 2003; Ophlen, 1977; Pefferkorn, 1995). The polymer 

molecule can be adsorbed onto clay particles acting like a bridge between two or  

 

 

Figure 2.1: Partially hydrolyzed polyacrylamide. 
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more particles. The aluminol group (Al-OH) on the edge site can bond with the 

carbonyl oxygen of PAM by hydrogen bonding. The uncharged sites on the siloxane 

face may have hydrophobic interactions with the hydrophobic backbone (CH2- CH2) 

of the PAM. There is also a possibility of ion-dipole interaction between the 

exchangeable cations on the clay surface and the carbonyl oxygen of the PAM. Clay-

cation-polymer bridging can take place. In the case of cationic polymers, electrostatic 

attraction is a dominant flocculation mechanism (Kim and Palamino, 2009). Recently, 

some qualitative analysis of polymer adsorption on different surfaces on kaolinite has 

been done using the quartz crystal microbalance (Alagha et al., 2013, 2016). It was 

concluded that the anionic polyacrylamide adsorbs on the alumina basal face by weak 

electrostatic interaction and hydrogen bonding.  

 
                                                      2.3 Materials and Methods 
 

2.3.1 Kaolinite 
  

            Acid washed K2 500 kaolinite (U.S.) obtained from Fisher inc. was used in this 

study. The size analysis of primary particles was done using Dynamic Light Scattering 

(DLS) manufactured by Wyatt technologies. DLS utilizes the time-dependent 

fluctuations of scattered intensity, which arise from Brownian motion, in order to 

determine the diffusion constant. The hydrodynamic radius Rh is then calculated 

directly as described in DLS theory. Details about DLS theory and other working 

principles are described in literature (Berne and Pecora, 1976). Kaolinite suspension 

at pH 8.8 containing 0.1% solids was used. About 1 ml sample was put in a cuvette 

and the system was sonicated for about 10 seconds. The cuvette was then inserted in 
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the DLS system and the size analysis was done. Two peaks were observed during the 

analysis, at about 100 nm and at 600 nm (Figure 2.2).  

 
2.3.2 Polymer Flocculants 

 

       Floc screening tests were performed at Pocock industrial, Salt Lake City to 

examine the differences in flocculation properties for a wide range of polymers and 

to select a few polymers for further study of kaolinite flocculation. Flocculant 

screening, selection, and optimization is part of the services offered by Pocock 

industrial. Floc screening was based on visual observation of the settling and floc 

properties after adding polymer solution to the kaolinite suspension.  

About 50 ml of 4% kaolinite solution was used for each experiment and the 

different polymers at a concentration of 0.1g/l were added. The testing was done at 

three different pH: pH 8, pH 5.6, and pH 4.4. The settling characteristics, supernatant  

 

 

 

 

 

 

 

Figure  

. Th.m  
Figure 2.2: Size analysis of kaolinite primary particles using DLS. The kaolinite 
suspension at pH 8.8 and solid concentration 0.1% was analyzed. 
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clarity, and structure of floc formed were observed visually and for each condition, 

polymers were ranked based on their combined performance in these three aspects.  

The method developed by Pocock industrial does not give quantitative information 

about settling characteristics and floc properties but it is a time-efficient way to 

compare the effect of polymers qualitatively. This type of method is very useful for 

unknown samples and helps in selecting a few polymers from wide range of polymers 

available. About 12 different polymers were used in the testing; these polymers were 

polyacrylamide-based and varied in charge density and molecular weight. The 

cationic polymers were of lower molecular weight than the anionic polymers. The 

kaolinite suspension at high pH was identified as the most challenging sample; very 

few polymers gave good settling characteristics. For suspensions at low pH, and 

natural pH, almost all the polymers worked; a few of them gave better results than 

the others. It was observed that the supernatant clarity got worse as the charge 

density on anionic polymers increased, so anionic polymers with low charge density 

were recommended for further experiments. Cationic polymers with high charge 

density and lower molecular weight gave contrasting results to the anionic polymers 

and were included in the study to look at the differences in floc properties. Based on 

the floc screen test results, the following polymers were selected and used for initial 

experimentation (Table 2.1).  

 
2.3.3 Sample Preparation 

 
             The Fisher K2 500 Kaolinite was added to deionized water to prepare 100 ml 

of 2% w/v suspension. The suspension was stirred for 60 minutes and sonicated for  
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Table 2.1: List of polymers selected for further experiments. 

 

20 minutes. The pH was altered by adding KOH or HCl and the suspension was 

allowed to equilibrate for 30 minutes while being stirred. The ionic strength was kept 

less than 2mM for all the samples. The final pH was noted in each case.  

             Polymer solution used in the settling test was added at 0.1 g/l concentrations. 

The solid polymer particles in powder form were added to DI water and a stock 

solution with polymer concentration 1g/l was prepared. The solution was allowed to 

equilibrate while being stirred for 8 hours at 400 rpm. Right before addition to the 

kaolinite suspension, some of the polymer was diluted to 0.1g/l and then added to the 

suspension. Fresh stock solution was prepared every week as the polymer solution 

showed some aging if stored for longer durations. The aging was evident by change 

in viscosity and/or a change in color to off-white. The stock solution was always 

stored at lower temperatures. Polyacrylamide-based polymers take different times to 

hydrolyze and age depending on their molecular weights. The time-dependent aging 

of aqueous solutions formed from a number of anionic flocculants was established by 

Commercial name Charge density Molecular weight Manufacturer 

AF 308 40% anionic 12-14 million Hychem 

AF 303 5% anionic 12-14 million Hychem 

NF 301 Nil 12-14 million Hychem 

CP 913 70% cationic  5 million Hychem 
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comparing their activities with a standard kaolin slurry (Owen et al., 2002). Keeping 

these facts and the associated literature in mind, the polymer solutions were not used 

before 24 hours of aging or after 5 days of aging for all the polymers used.  

 
2.3.4 Procedure for Sedimentation Experiments 

 
            During initial experiments, few operating conditions were varied to see the 

effect of its change on the settling velocity. The procedure is described below using 

one such set of operating conditions. 

            100 ml kaolinite suspension at pH 5.5 was transferred to a calibrated 

measuring cylinder. Polymer solution was added to the kaolinite suspension drop by 

drop. The polymer solution was added at a concentration of 200-ppm dry weight 

solids. The suspension was being continuously stirred during polymer addition. The 

total stirring time was 60 seconds. After 60 seconds, the stirring was switched off and 

the readings at sediment-suspension interface were taken. The polymer-induced 

kaolinite flocculation gave quicker settling as compared to kaolinite suspension with 

no polymer added, as illustrated in Figure 2.3. Adjustments were made for the volume 

of the magnetic stirrer in final reading. Readings were taken at short intervals for the 

first few minutes and then at longer intervals until a total time of 60 minutes had 

elapsed. The readings were also observed after standing overnight. It was observed 

that three distinct layers developed: the sediment layer, the suspension layer, and the 

clear supernatant layer. The sediment volume did not show significant change. Using 

a calibration tape, the volume readings (ml) on the measuring cylinder were 

converted to height readings (cm) and data were reported as suspension-sediment 

interface height vs. time for first 60 minutes. 
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              Figure 2.3: Comparison of kaolinite suspension settling after 60 second.  
        (A) High mol. wt. 5% anionic polymer used as flocculant; (B) no flocculant used. 
             
 

2.4 Results and Discussion 
 

              The effect of polymer type, polymer dosage, pH, and mixing conditions on 

kaolinite settling characteristics was studied. In effluent treatment, the settling rate 

or the final sediment volume are the most important properties of the flocculated 

system. For water recovery and reuse, the supernatant clarity becomes the most 

important criteria. It is clear from these examples that different properties of the 

flocculated systems can be the determining criterion in different processes. Different 

properties of the flocculating system reveal different information about the polymer-

kaolinite interaction. The settling rate is a measure of floc size as well as 

compressibility of the flocs and floc network in later stages. The supernatant clarity 

is a measure of size distribution of flocs and size-based capture of particles and flocs 

by the polymer. The sediment volume is an indication of not only floc size and 

structure but also of adsorbed polymer layers (Somasundaran, 1984). 
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2.4.1 Effect of Polymer Type 
 

           The effect of polymer addition on the settling of kaolinite suspension is shown 

in Figure 2.4. The length of suspension in column was 18.5 cm initially. The sediment-

suspension interface was tracked and their change with time was reported. 

It was observed that the anionic polymers provided faster sedimentation and 

resulted in smaller final sediment volume than the cationic polymers. These results 

agree with some of the previous work reported. The use of high molecular weight 

anionic PAM in flocculating negatively charged particles has the advantage of being 

 
 

 
 
Figure 2.4: Effect of polymer addition of kaolinite settling at 2% solids, 200-ppm 
polymer dosage, and pH 5.5.  
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more effective than cationic polymers by increasing settling rate (Somasundaran and 

Mougdil, 1988). The faster settling rate could be due to the formation of larger sized 

flocs in case of anionic polymers; this was verified by size analysis of flocs reported 

in the next chapter. 

          As we know, interparticle bridging is the dominant mechanism for flocculation 

in the case of high molecular weight anionic polymer and charge neutralization 

dominates when a cationic site is present on the polymer chain. Also, polymer 

molecule expansion arising from charge repulsion in the case of anionic polymers 

produces loops and tails, which leads to the formation of large open-structure flocs 

(Nasser and James, 2006).  

          The charge density of the anionic polymer did not seem to have a huge effect 

on settling; the 5% anionic polymer and 40% anionic polymer gave almost the same 

settling characteristics. It was also noticed that the high molecular weight non-ionic 

polymer gave better settling than the low weight cationic polymer. The results clearly 

suggests that the effect of molecular weight is more significant than the charge 

density. It has been established by many researchers that flocculation and settling is 

dependent on both the polymer charge density and molecular weight. Yoon and Deng 

(2004) considered that the initial flocculation ability of the polymer is closely related 

to the molecular weight, but the reflocculation ability is more dominated by the 

charge density of the polymer.  

            The supernatant clarity was observed to be better in the case of the cationic 

polymer as compared to the anionic polymer. As mentioned in the previous section, 

supernatant clarity is a measure of size distribution of flocs and size-based capture 
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particles and clusters by the polymer. Poor supernatant clarity in the case of the 

anionic polymer suggests the incapability of high weight anionic polymers in 

capturing ultrafine kaolinite particles. At finer particle size, the surface potential 

effect is expected to dominate the interparticle interactions. It has been shown that 

finer size clay particles are more responsive to electric field (Shang, 1997). Poor 

supernatant clarity in case of anionic polymer hints at variation of surface potential 

with size of kaolinite primary particles. Preliminary experiments at the University of 

Utah have indicated dependence of surface charge on size of kaolinite particles. It is 

possible that the finer kaolinite particles carry more negative surface potential and 

the electrostatic repulsion with the anionic chain dominates other interactions, thus 

hindering their flocculation. However, in case of cationic polymer, negative surface 

potential would help in flocculation by charge neutralization, thus giving a clear 

supernatant.                    

 
2.4.2. Effect of Polymer Dosage 

 
               It was observed that the dosage has an effect on initial settling rate, final 

sediment volume, and the total time required to attain that sediment volume; results 

are shown in Figure 2.5. The settling rate increased and final sediment volume 

decreased on increasing the polymer dosage up to 100 ppm. Beyond 100 ppm, the 

increase in polymer dosage led to decrease in the time needed to attain the minimum 

volume. The optimum dosage of polyacrylamide polymers for kaolinite flocculation 

has been to be in similar ranges by previous researchers (Kingsley, 2008).  

A similar settling test was done using CP 913 and it was found that the 

sediment volume decreased until 200 ppm polymer dosage. Beyond 200 ppm, 
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Figure 2.5: Effect of high mol. wt. 5% anionic polymer dosage on kaolinite settling. 
The solution pH is 5.5, solids content is 2%. 
 
 
increase in polymer dosage helped the system attain minimum sediment volume 

quickly.  

        The difference in optimum dosage for the two polymers is expected due to the 

difference in their molecular weights and hence chain length. Even though the 

cationic polymer is able to flocculate kaolinite particles by charge neutralization, 

bridging is limited due to smaller chain length. Consequently, the optimum dosage 

required for CP913 is higher than that for AF303. All these experiments were 

conducted at pH ~ 5.5. The optimum dosage is expected to be different for different 

pH values. 
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             The floc properties are expected to be different in size, density, and strength 

based on the dosage of polymer used due to the difference in extent of adsorption. At 

lower pH, the increase in anionic polyacrylamide dosage increases the strength of 

flocs formed due to higher adsorption capacity (Taylor et al., 2002). In our 

experiments, it was observed that at a very low polymer dosage of about 50ppm, the 

flocs broke under their own weight if left standing for over 24 hours. To get relatively 

stronger flocs at low pH, a dosage of 200-250 ppm was used for further experiments. 

For example in the case of HRXMT characterization (Chapter 4), floc dosage was 

increased further as a stabilized sediment was needed to obtain high fidelity images. 

Using lower polymer dosage led to some degree of floc breakage and consequent 

movement which interferes with the HRXMT characterization of the sediment, as will 

be discussed in subsequent chapters. 

            Here, it should be noted that in the case of polyacrylamides copolymers, the 

dosage required is highly dependent on the “age” of the polymer. The optimum 

dosage at its peak activity time could be significantly lower than at other times (Owen 

et al., 2002). For these experiments, the effect of aging is considered to be negligible 

from 24 hours up to 5 days after preparation of the polymer solution. 

 
2.4.3 Effect of pH 

The settling characteristics for AF 303-induced flocculation were compared at 

three different pH values and the results are shown in Figure 2.6. Polymer dosage of 

200 ppm was used for all these experiments. It was observed that the lower pH gave 

better settling characteristics than at the higher pH. It took longer time for the high 

pH sample to attain a stable volume; the final volume was found to be higher at  
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Figure 2.6: Effect of pH on kaolinite settling at 2% solid content, 200-ppm dosage of 
high mol. wt. 5% anionic polymer. 
 
 
pH 8.4 as compared to the final volume at pH 5.5 and pH 4.2. 

           At higher pH since the particles are well dispersed and the whole system is 

negatively charged, it takes a longer time to form flocs, the flocs formed are smaller 

in size, and they settle slowly. A similar trend for effect of pH on clay settling in 

presence of synthetic anionic polymers has been reported in the past (Taylor et al., 

2002; Kim et al., 2013). 

	The	overall	kinetics	at	high	pH	varies	 from	overall	kinetics	at	 low	pH	due	 to	

difference	in	polymer	conformation	as	well	as	difference	in	kaolinite	surface	charges.	

In	case	of	high	pH,	all	three	kaolinite	surfaces	are	negatively	charged	and	therefore	
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the electrostatic repulsion exists, which indicates low rate of flocculation capacity. It 

has also been suggested in previous research that the conformation of the polymer 

chain changes with pH, which influences the interaction of polymer with kaolinite 

particles. The dissociation of carboxyl group in polyacrylamide is supposed to 

increase with pH (Graveling et al., 1997). This leads to extended chain at high pH due 

to an increase in repulsion due to the high number of charged sites (Tjipangandjara 

and Somasundaran, 1992). Taylor (2002) observed that the extended chain 

contributes to the final density and strength of the flocs. He suggested that even 

though the floc size is smaller at high pH, the floc strength and density is higher. 

2.4.4 Effect of Mixing Conditions 

              The mixing speed and time were also varied to see the effect on settling and 

sediment volume. Insuffiecient agitation does not allow formation of flocs and 

excessive agitation of a flocculating suspension causes floc breakage. This has an 

adverse effect on flocculation efficiency as the smaller flocs formed have a lower 

settling rate. Even though floc breakage leads to exposure of fresh particle surfaces to 

polymer adsorption, thereby resulting in increased adsorption capacity of the 

flocculant, the flocs do not reform efficiently as the excess adsorbed polymer causes 

repulsion. This suggests that optimum dosage for a polymer only holds at a particular 

degree of agitation. Although the mixing conditions did not effect the settling rate 

much, the sediment texture showed marked difference. At low mixing speed and time, 

the sediment was partially present as fine powder due to lack of flocculation (Figure 

2.7). At around 400 rpm and 60 seconds mixing time, sediment has a uniform texture 
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                       Figure 2.7: Nonuniform texture of sediment formed 
                      due to insufficient agitation. 
 

and bigger aggregates were visible. On increasing the mixing speed or time, the 

delicate flocs got broken and sedimented as finer aggregates.  Based on qualitative 

analysis of sediment texture, 400 rpm and 60 seconds mixing was selected for further 

experiments. 

 
2.5 Summary 

         In this chapter, settling tests for polymer-induced kaolinite flocs have been 

done to identify preferred conditions for few operating parameters.  The operating 

parameters that were varied are polymer type, suspension pH, polymer dosage, and 

mixing speed.  
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        It was concluded that high molecular weight anionic polymers give faster 

settling rate and lower sediment volume than low molecular weight cationic polymer. 

Similar observations have been reported in the past (Somasundaran and Mougdil, 

1988). The faster settling rate could be due to the formation of larger flocs in case of 

anionic polymers; this hypothesis was verified by size analysis of flocs reported in 

next chapter. Also, the charge density of the anionic polymer did not seem to have a 

huge effect on settling; the 5% anionic polymer and 40% anionic polymer gave almost 

the same settling characteristics. It was also noticed that the high molecular weight 

non-ionic polymer gave better settling than the low weight cationic polymer. The 

results clearly suggest that the effect of molecular weight is more significant than that 

of charge density. It has been established by many researchers that flocculation and 

settling is dependent on both the polymer charge density and molecular weight. Yoon 

and Deng (2004) considered that the initial flocculation ability of the polymer is 

closely related to the molecular weight, but the reflocculation ability is more 

dominated by the charge density of the polymer.  

          The supernatant clarity was found to be better in case of cationic polymer. 

Supernatant clarity is a measure of size distribution of flocs and size-based capture of 

particles and clusters by the the polymer. Poor supernatant clarity in the case of the 

anionic polymer suggests the incapability of high weight anionic polymers in 

capturing ultrafine kaolinite particles. Preliminary experiments at the University of 

Utah have indicated dependence of surface potential on size of kaolinite particles. It 

is possible that the finer kaolinite particles carry more negative surface potential and 

the electrostatic repulsion with the anionic chain dominates other interactions, thus 
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hindering their flocculation. However, in case of cationic polymer, negative surface 

potential would help in flocculation by charge neutralization, thus giving a clear 

supernatant.  

        The optimum dosage for high mol. wt., 5% anionic PAM was found to be 

around 100 ppm at pH 5.5. Kingsley (2008) has reported similar optimum dosage for 

anionic PAMs. In case of low mol. wt., cationic PAM, higher polymer dosage of about 

200 ppm was required to flocculate the suspension at similar conditions. The 

difference in optimum dosage for the two polymers is expected due to the difference 

in their molecular weights and hence chain length. Bridging flocculation is limited in 

case of cationic polymer due to shorter chain length. The optimum dosage is expected 

to be different at different pH and “age” of the polymer. The aging time of polymers 

determines their activity.  The optimum dosage at its peak activity time could be 

significantly lower than at other times (Owen et al., 2002). For experiments 

conducted in this chapter, the effect of aging is considered negligible from 24 hours 

up to 5 days after preparation of the polymer solution. 

      Settling characteristics were compared at different pH using high mol. wt., 

anionic PAM and it was observed that the lower pH suspension gave better settling 

all characteristics than higher pH suspension at the same conditions. At higher pH 

since the surfaces of kaolinite are negatively charged, it takes a longer time to 

aggregate these particles into flocs. In addition, the flocs formed are smaller and they 

settle slowly. A similar trend for effect of pH on kaolinite settling in presence of 

synthetic anionic polymers has been reported in the past (Kim et al., 2013; Taylor et 

al., 2002). The overall kinetics at high pH varies from overall kinetics at low pH due 
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to the difference in kaolinite surface charges as well as difference in polymer 

conformation. It has been suggested in previous research that the conformation of the 

polymer chain changes with pH; for example, the dissociation of carboxyl group in 

polyacrylamide is supposed to increase with pH (Graveling et al., 1997). Such factors 

influence the interaction of polymer with kaolinite particles and hence the settling 

characteristics are different at different pH. 

             The mixing speed and time were also varied to see the effect on settling and 

sediment volume. Insufficient agitation does not allow formation of flocs and 

excessive agitation of a flocculating suspension causes floc breakage. Although the 

mixing conditions did not effect the settling a lot, the sediment texture was influenced 

by change in mixing conditions. At low mixing speed and time, the sediment was 

partially present as fine powder due to lack of flocculation. At around 400 rpm and 

60 seconds mixing time, the sediment has uniform texture and bigger aggregates 

were visible. On increasing the mixing speed or time, the delicate flocs got broken and 

sedimented as finer aggregates. 
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CHAPTER 3 

 
 

SIZE AND SHAPE OF SUSPENDED FLOCS 
 
 

3.1 Introduction 
 

     Extensive research (Chaiwong and Nuntiya, 2008; McFarlane et al., 2005; 

Mpofu et al. 2003, 2004; Nasser and James, 2007, 2009; Oliveira and Rubio, 2012; 

Zbik et al., 2008; Zhou et al., 2004) has been conducted on the relationship between 

floc properties and slurry settling and sedimentation/dewatering. For sedimentation, 

larger and compact flocs are required whereas in flotation operations, floc wetting 

characteristics and strength are important (Liang et al., 2015). It is very important to 

comprehensively understand the floc properties so as to know whether the flocs are 

proper for the particular purposes. In addition to other properties, such as strength 

and compactness, floc size and shape are very important in determining settling and 

dewatering of suspensions. Floc size and floc shape can influence the slurry rheology 

(Liu and Peng, 2014) and the interaction between flocs and bubbles (Forbes, 2011).  

Floc size substantially effects particle removal by sedimentation and filtration. Floc 

shape affects the behavior of aggregated particles, particularly with regard to 

collision efficiency and settling rates. Large and compact flocs are wanted both for 

tailings sedimentation/consolidation and for water recovery (Lemanowicz et al., 

2011; Mpofu et al., 2003, 2004; Sabah and Erkan, 2006; Wang et al., 2011).    

Kaolinite floc size has received considerable attention from the scientific 

community in recent years (Chaiwong and Nuntiya, 2008; Li et al., 2006; Nasser and 
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James, 2006, 2007; Yu et al., 2006; Zhu et al., 2009, and others) but kaolinite floc shape 

has received less attention. Most of these studies include ex-situ characterization of 

flocs by various types of particle size analyzers or by empirical methods. Of course, 

flocs usually form from suspensions and they can be destroyed during handling when 

they are sampled or poured from one container to another. Imaging is considered to 

be the most direct and accurate method for studying floc size and shape. For floc 

analysis, microscope, dynamic image analysis (DIA), and particle vision measurement 

(PVM) are most frequently used (Liang et al., 2015). In this phase of the research, 

kaolinite flocs have been studied by using both PVM and DIA.  

 
3.2 Particle Vision & Measurement (PVM) 

 
3.2.1 Equipment Principles 

 
              PVM is often used for in-situ determination of particle features in suspension 

(Greaves et al., 2008; Liang et al., 2015; Liu and Peng, 2014; Nasser and Salhi, 2015; 

Qi et al., 2015). In this study PVM has been used to observe in-situ flocculation of 

kaolinite particles. A significant advantage of PVM over DIA is that inconsistency of 

flow conditions for the primary system in the measurement cell is diminished. Video 

of around the 1000μ X 1000μ region of the slurry can be captured using a digital 

camera, so the images recorded at any time can be analyzed. However, this technique 

suffers from the low resolution for particles/flocs aggregates smaller than 20 µm 

(Greaves et al., 2008).  Using this method, the fully formed flocs could be imaged, but 

the resolution was not good for observing the primary particles and intermediate 

states of flocculation. Meanwhile, compared with the in-situ technique Focused Beam 

Reflectance Measurement (FBRM), PVM gives better results in the dilute solutions 
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having around 0.5% solid concentration (Senaputra et al., 2014). 

            The PVM probe is shown in Figure 3.1. A sapphire window is present at the 

probe tip and houses the illumination lenses and imaging lenses. Image acquisition 

begins at the probe tip with the help of illumination lenses consisting of six pulsed 

laser diodes and image lens as we can see in Figure 3.2. At any given time, we can use 

one or more of these lenses to get the best illumination for imaging as required. A 

camera is present inside the probe which captures images. The focal plane of the 

imaging lens can be adjusted easily by turning the micrometer knob present at the 

head. When the focus is on the probe’s window surface, it is optimal for viewing the 

smaller particles. The micrometer is turned clockwise to move the focal point of the 

probe further into the suspension; this condition is ideal for imaging the larger 

particles.  

 
3.2.2 Sample Preparation and Procedure 

 
              A 1% w/v kaolinite solution was prepared in a 500 ml beaker. The sample was 

stirred for 2 hours and sonicated for 30 minutes. The pH of the suspension was noted 

 

    

Figure 3.1: Particle Vision & Measurement probe (source: Mettler Toledo PVM 
manual). 
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            Figure 3.2: Arrangement of illuminating and imaging lens on probe tip  
            (source: Mettler Toledo PVM manual). 
 
 
to be 5.8. The beaker was kept on a magnetic stirrer. The PVM probe was clamped 

vertically and the clamp height was adjusted such that the probe tip is around the 250 

ml mark in the kaolinite suspension. The magnetic stirrer was turned on at 400 rpm 

and 0.1 g/l polymer solution was added to the suspension drop by drop until the 

polymer dosage was 200 ppm. Image acquisition was started while the polymer was 

being added and was continued till 60 seconds after polymer addition. During this 

time, a low rpm of 150 was maintained in order to minimize blurriness in images 

captured. For the initial few seconds of flocculation, cloud-like structures were 

visible. After a few seconds, some flocs came into focus, but there was a rapid change 

going on in the floc structure. Towards the end of 30 seconds, the flocs visible were 

more stable; the images captured after this duration were used for analysis.  

3.2.3 Image Processing Tools 

   Although care was taken to exclude blurriness due to the continuous mixing 

and dynamic nature of the whole process, many of the images had a certain extent of 
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blurriness. To remove this blurriness and to carve out the floc boundaries, various 

image-processing techniques from ImageJ/Fiji were used. 

             A combination of Gaussian blur, thresholding, level sets segmentation, and 

erosion function was used to process these images. Blur function replaces each pixel 

with average intensity of pixel plus neighbor pixels. A matrix of 3X3, 5X5, or 7X7 is 

generally chosen for calculating the average intensity value. In Gaussian blur function, 

the weighted average is used instead of average. Smoothing is performed by using the 

Gaussian function for the entire matrix. The Gaussian function variation is depicted 

using a 5X5 matrix in Figure 3.3. The intensity values for the blurred image were then 

subtracted from intensity values for the original image to remove some of the 

background blurriness. 

Using the threshold function, we can interactively set lower and upper 

threshold values, thus segmenting grayscale images into features of interest and non- 

interest. This function can be used on 8-bit type image and is a simple and an efficient 

 

                                      

                                   Figure 3.3: Gaussian function variation for a 5X5 matrix. 
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segmentation tool.  

          Thresholding worked well to remove some of the unwanted background but 

was not enough to remove the blurriness at floc boundaries. A few segmentation 

techniques were tried including the trainable weka segmentation. Finally, level sets 

segmentation gave good result for removing this blurriness at the floc boundaries. 

This method is based on partial differential equations and uses them for progressive 

evaluation of the differences among neighboring pixels to find object boundaries. Fast 

marching and active contour methods are the two types of algorithms available. A 

“seed point” is introduced in the image; this point grows in region as the algorithm 

runs. While growing the region, it constantly calculates the difference of the current 

selection to the newly added pixels and stops if it exceeds a preselected gray value 

difference. In order to get satisfactory results from the algorithm, the gray value 

threshold, distance threshold, level set weight values, and level set convergence 

criteria should be optimized. The AND function is applied on the original image and 

level sets output to get the final segmented image, an example of use of level sets has 

been illustrated in Figure 3.4. This function was used as many times as required on 

different flocs until the final image was free from blurriness. 

           The level sets function removes most of the blurriness but a few small 

protrusions were still left. These were removed by using the erosion function. Erosion 

function is one of the morphological filters available in Fiji software and is related to 

Minkowski subtraction. It replaces each pixel with the minimum intensity value in the 

neighborhood. With binary images, it removes pixels from the edges of black objects. 

The radius and element type should be chosen carefully, the radius determines the  
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Figure 3.4: Stepwise illustration of how LEVEL SETS segmentation (Fiji plugin) 
works. 

 
in which it is going to look.  
 
 

3.3 Dynamic Image Analysis (DIA) 

3.3.1 Equipment Principles 

         Dynamic Image Analysis (DIA) involves imaging a flow of moving particles. It 

is both similar to, as well as different from, traditional laser diffraction (LD) in 

detection principle. In both systems, an adaptable beam expansion unit creates a 

parallel beam of light. This beam of light is directed at the measuring zone of the 

dispersed system. In the LD system, a Fourier lens transforms the diffracted light to a 

diffraction pattern, which is recorded by a multi-element photo detector. In a DIA 

system, imaging lens and imaging sensors are present instead of Fourier lens and 

multi-element detector, respectively. Using these imaging lenses, the full amplitude 

and phase distribution of the diffraction pattern is back-transformed to a real image, 

which is recorded by the image sensor. A comparison of optical set-up for both 

techniques is shown in Figure 3.5. QICPIC DIA apparatus (Sympatec Inc., Clausthal-

Zellerfeld, Germany) was used in the current study. This system combines the basic 
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Figure 3.5: Set-up of QICPIC image analysis (left) and HELOS laser diffraction sensor 
(right). (Source: Sympatec website & user manual). 
 

concepts of a powerful disperser with DIA. The QICPIC uses rear illumination with a 

visible pulsed light source, the flash rate of the light source is adjustable from 1 to 500 

Hz, and is synchronized with the high-speed camera. A well-dispersed particle flow is 

led through the image plane. Due to the dispersion, the transportation fluid separates 

the particles from each other and overlapping of particles is avoided. As the particles 

move across the image plane, attention is paid to a possible motion blur. Special 

pulsed light source with an exposure time of less than 1 ns is used, this gives a motion 

blur of less than 100 nm for particles moving with velocity of 100  m/s. 100 nm is less 

than the smallest pixel size of 1 µm and hence invisible for the camera. So this method 

gives well-defined particle boundaries.  

          The camera and the light source are able to operate at any speed from 0 to 450 

frames per second (fps); very high particle counts are acquired in a short time. With 

100 particles per frame and 450 frames per second, over 1 million particles can be 

acquired in 25 seconds. In order to detect the edges of the particle precisely, the 

particle flow is imaged in transmission using a special imaging objective, which only 
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transmits light rays to the camera, which are nearly parallel to the optical axis. In 

combination with a parallel illumination, even highly transparent particles are 

imaged 'black', as long as their diffraction index differs from the surrounding fluid 

and so their light is deflected. Different objectives mounted on a carrousel allow for 

the selection a specific measuring range by software.  

        Finally, a high-speed CMOS camera with 1024x1024, i.e., 1 Mega pixel is used. 

In combination with a built-in signal processing unit of highest performance and a 

1.25 Gigabit-link, all image data can be processed and stored in the database of the PC 

in real time even at 450 fps. 

           To measure the particle size in SI length units, the DIA system is calibrated 

with a certified standard scale. The effective magnification of the imaging lens and the 

size of the sensor are measured and are thus traceable back to the standard meter. To 

measure the particle size in SI length units, the wavelength of the light, the scale of 

the detector, and the exact focal length of the system must be known. 

               The LIXELL dispersion system was used as the dispersing unit. Its basic 

construction comprises an open loop flow cell with inlet and outlet connector. 

Cuvettes with different optical path lengths are available; the location of cuvette 

position is controlled along the optical axis by the software. This function ensures 

auto-focus so that we get a very sharp image. It has sample inlets on the front as well 

as on the top. Either one or both of the inlets can be used.  

 
3.3.2 Sample Preparation  

 
1% kaolinite solution of 50 ml volume was prepared in DI water. Flocs were 

prepared by adding 0.1 g/l polymer at a dosage of 200 ppm. The flocs formed were 
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gently transferred to a 500 ml beaker, which was filled with DI water. The objective 

here was to get a very dilute suspension, so that the particles do not overlap while 

moving across the image plane. The suspension had to be stirred gently during 

experimentation to keep the flocs from settling. 

               Various methods of presampling were tried before it was possible to get 

reproducible size distribution data. First of all, a couple of 50 ml leur lock syringes 

were used with the front sample inlets in parallel for sample delivery (the 

arrangement is shown in Figure 3.6). Sample was filled in one of the syringes and the 

other syringe was used to suck the sample back and forth. This way it was ensured 

that the fluid flow is maintained. However, when three consecutive experiments were 

done, it was noticed that the average floc size decreased continuously, suggesting that 

the flocs were being sheared. It is possible that the flocs were sheared by being 

subjected to continuous pressure difference inside and outside the syringe. Since the 

method is still in the development stage, the difference in results could have been due 

 

                  

             Figure 3.6: Sample delivery using two leur lock syringes in parallel. 
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to problems in sample preparation, incorrect operating conditions, etc. We needed at 

least two identical runs to be confident about the results. 

Next, we tried using one of the inlets on top and one of the inlets in front, 

creating a perpendicular arrangement (Figure 3.7). The sample was pushed in from 

the top inlet and back and forth motion of the sample was maintained by using the 

syringe at the front inlet. In this arrangement, the force applied on syringes was 

relatively less as the flocs were falling under gravity during a portion of the flow. This 

method worked better, but the suction force from one syringe was still enough to 

break the flocs as we could not get reproducible floc size distributions.  

A large amount of diluted kaolin suspension (around 500 ml) was placed in a  

beaker siphoned to the LIXELL input. The volume of sample was about ten times 

larger than in the leur lock syringes and there was no need for recirculation of the 

sample. The suspension was gently stirred manually while the sample was flowing 

inside the tubing. The beaker was replenished with water if the solid concentration 

increased due to continuous settling of flocs. It should be noted here that increasing 

the stirring speed in order to keep the flocs from settling is not recommended, as it 

might break the flocs. The sample collected at the front outlet was run a second and 

third time. The data for first and second runs showed good reproducibility. However,  

												It	was	 evident	 that	 the	 flocs	 are	 extremely	delicate	 and	any	kind	of	 external	

force	would	break	them;	the	best	option	was	 to	 let	them	fall	 freely	under	gravity.	A	

siphon	system	was	created	and	joined	to	one	of	the	inlets	on	top	(Figure	3.8).	One	of	

the	front	holes	was	used	as	outlet	and	the	out-coming	suspension	was	collected	(not	

shown	in	figure).	
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                       Figure 3.7: Sample delivery using two leur lock syringes in 
                       perpendicular arrangement. 
 

 

 

                     

                    Figure 3.8: Sample delivery system using siphon system.   
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the third time, there was some floc breakage. Even though minimum external force 

was applied in this arrangement, it is possible that repeated handling and flow led to 

breakage of some flocs. But it was established that with extreme care, the QICPIC 

analyzer can be used to get the size distribution of kaolinite flocs. To make the process 

more consistent, a light magnetic stirrer should be used at low rpm for delivering the 

suspension into the LIXELL system.   

 
3.4. Results and Discussion 

 
3.4.1. Size and Shape of Flocs Revealed by PVM 

 
            Some of the images obtained using the PVM were relatively free of blurriness 

and did not require a lot of processing, but most of the images had to be processed in 

order to get useful data out of them. A few examples of before and after image 

processing are presented in Figure 3.9.  

 

   

Figure 3.9: Comparison of original image (a) and final image (b) for images 1 and 2. 
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For better representation and comparison, RGB labeling and numbering of 

flocs was done (an example is shown in Figure 3.10).  Comparison of flocs formed 

using high mol. wt. anionic PAM and low mol. wt. cationic PAM was done. Five images 

from both data sets (high mol. wt. anionic PAM and low mol. wt. cationic PAM) were 

selected for analysis. The images were processed and analyzed for size and shape 

using the biovoxxel plugin available with Fiji. An example of a processed image is 

shown in Figure 3.11. Only the flocs, which were completely in the frame, were 

considered in the analysis. The floc circularity was measured to get information about 

the shape of the floc. In general, the flocs formed using high mol. wt. anionic PAM were 

found to be larger and more irregular than the flocs formed using low mol. wt. cationic 

PAM.  

                                                       

                       

                      Figure 3.10: Comparison of original and final image using  
                    RGB labeling and floc numbering. 
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Figure 3.11: Flocs formed using high mol. wt. anionic PAM (A) as and low mol. wt. 
cationic PAM (B) as flocculants at pH 5.8 and polymer dosage 200 ppm. The solid  
concentration was 1%.  
 
 

Floc size and circularity is compared in Table 3.1. The larger size of high mol. 

wt. anionic PAM-induced flocs could be attributed to higher bridging capacity of high 

mol. wt. anionic PAM as compared to low mol. wt. cationic PAM. Also, the difference 

in floc size explains the difference in settling rate for flocs formed using these two 

polymers up to some extent.  

Various measurements are regarded as the representative characterization of 

floc size. The equivalent circle diameter is a commonly used method of size 

representation. It is an accurate measurement of size of spherical particles. However, 

due to the highly irregular shape of the flocs, equivalent equivalent diameter would 

not be a true representative of floc size. A simple measure of floc size is the floc longest 

dimension also known as maximum ferret diameter.  

For PVM size analysis data, the maximum ferret diameter has been reported  
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 Table 3.1: Size and shape comparison of flocs formed using AF 303 and CP 913. 

   
 

as the floc size. For biovoxxel plugin, circularity of floc, C, is defined as:  

 

C = 4π 
𝐴

𝑃2    ………………………………………………………………………. (3.1) 

 

 
where A and P are the projected area and perimeter of the floc, respectively. 

          Although the size and shape analysis of polymer-induced kaolinite flocs using 

PVM has not been reported yet, researchers have found that cationic polymer gives 

smaller flocs compared to the anionic flocs (Nasser and James, 2006) using an 

empirical settling equation developed by Michales and Bolgers (1962) for size 

calculation. In this work, we have been able to validate their conclusions by using 

experimental methods. The results show some difference in floc circularity and 

indicate that the anionic polymer flocs are slightly more irregular than the cationic 

polymer flocs.  

Polymer used Average floc size 

(µm) 

Maximum floc size 

(µm) 

Average floc 

circularity 

AF 303 

(High mol. wt. anionic PAM) 

223 528 0.26 

CP 913 

(Low mol. wt. cationic PAM) 

145 241 0.34 
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3.4.2 Size and shape of Flocs Revealed by DIA 
 

          Dynamic Image Analysis is a relatively new technique for size and shape 

analysis of particles. Since this technique had not been used previously with a delicate 

sample like kaolinite flocs before, the development of the experimental method was 

very important. Also, the significance of data collected was our prime concern.  

      The experiment was repeated a few times for the same sample to be sure of 

the results obtained. Initially, the data was not reproducible for consecutive runs. This 

was partly due to breakage of flocs in handling and partly due to high concentration 

of solid which led to overlap of particles. These factors were adjusted over a few 

experiments until an arrangement was found that gave reproducible results in two 

consecutive runs; the size distributions from two runs are compared in Figure 3.12.  

 

 
 
Figure 3.12: Cumulative size distribution comparison for two consecutive runs.  
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For these runs, same sample, i.e., kaolinite suspension flocculated with high 

mol. wt. anionic PAM at pH 5.8 was used. The solid content was 0.5% and the particle 

size reported is the equivalent sphere diameter. Figure 3.12 shows that the 

consecutive runs give reproducible results. Hence it was established that with 

extreme care the QICPIC analyzer could be used to get the size distribution of 

kaolinite flocs. However, extreme care should be taken to avoid floc breakage.  

After getting a good signal and satisfactory reproducibility, more tests were 

conducted by using different solids concentration. The effect of solids concentration  

on the size distribution was studied using suspensions of three solid contents: 1%, 

4%, 8%. A snapshot from an ongoing signal test is shown in Figure 3.13. The particles 

could be seen moving across the image plane; here we can see how dilute the 

suspension needs to be in order to get good signal. The size and shape details for the 

 

    

              Figure 3.13: Snapshot from QICPIC signal test for 1% solid concentration. 
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highlighted particles are shown on the left. Using this technique, the size and shape 

data for each of the flocs can be stored in picture gallery. These data can be retrieved 

and used for analysis after the run is completed. Over a million flocs were analyzed 

for each sample. The cumulative size distribution was determined for each solid 

concentration and the results are compared Figure 3.14. Floc size represented here is 

the maximum ferret diameter of flocs. The flocs had well-distributed size data as 

expected.  If all the flocs were to have similar size, they would settle at once, giving a 

clear supernatant and sediment boundary. It was observed that the size of flocs 

increased with an increase in solid concentration. Similar observations regarding the 

effect of solid concentration on floc size have been reported in the past (Michaels and 

 

 
 
Figure 3.14: Comparison of cumulative size distribution for samples having three 
different    solid content. The samples were prepared by flocculation of 1% solids 
kaolinite suspension using 200 ppm high mol. wt. anionic PAM at pH 5.8. The floc 
size reported is ferret maximum diameter.  
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Bolger, 1962). At higher solid content, the probability of collision of primary particles 

and clusters increase which has a positive effect on flocculation. It is interesting to 

note that the increase in floc size decreased with increase in solid concentration. This 

hints at the existence of a critical solid concentration beyond which the increase in 

solids concentration would not change the floc size distribution a lot.  For QICPIC 

analysis system, sphericity has been defined as:  

 

S = 
𝑃𝐸𝑄𝑃𝐶

𝑃𝑟𝑒𝑎𝑙
   ………………………………………………… (3.2) 

where, PEQPC is the perimeter of equivalent diameter circle, Preal is the projected 

perimeter of the circle. The sphericity of flocs is compared as shown in Figure 3.15. It  

 

 
 
Figure 3.15: Comparison of cumulative distribution of sphericity for samples having 
three different solid content. The samples were prepared by flocculation of 1% solids 
kaolinite suspension using high mol. wt. anionic PAM at pH 5.8.        
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appears that 1% solid concentration flocs, which are smaller in size, are more regular 

in shape. The sphericity is shown to decrease with increase in solid content. The 

legend box displays the number of particles analyzed (#Particles) which was the 

same for both size and sphericity measurement. 

 
3.4.3 Comparison of PVM and DIA Results 

 
     PVM is very useful equipment for in-situ image analysis and size 

characterization. By using PVM the inconsistency of flow conditions for the primary 

system and measurement cell can be diminished to a large extent. PVM is widely used 

in industry in conjunction with FBRM for visualization of real-time processes. But the 

analysis cannot be extended to the entire sample as only a few particles in the field of 

view are imaged at any given time. The results give a good idea about the general size 

and shape range for the flocs, but the numbers cannot be reported for the entire 

sample population. The dynamic image analysis technique can give a lot of 

information for a larger amount of sample in a short time. About a million particles 

can be analyzed for size and shape in a few seconds. These two methods complement 

each other and have their own advantages and disadvantages. 

             It is interesting to see if the PVM results are in agreement with the DIA results. 

Since we have represented the floc size by ferret diameter in both cases, comparisons 

can be drawn. Using PVM, we obtained an average floc size of 223 μ for 1% solids 

kaolinite suspension. We can estimate the mean floc size given by DIA for a 1% 

kaolinite suspension by assuming the size data to be normally distributed, as the 

mean and median are identical for a normal distribution. The median (d50) for the 

data set is around 230 µm, which is fairly close to the mean floc size given by PVM; 
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there is a good co-relation between the two methods of size analysis. 

       The Stokes equation has been described in detail (Stoke, 1851) and is a simple 

way to determine particle size if terminal velocity and particle density are known. 

The settling curves (Figure 2.4) were used to get an estimate of terminal velocity of 

flocs and the floc density was estimated using the water content analysis discussed in 

Chapter 4. It was assumed that these flocs are rigid and spherical in shape; the solid 

concentration has no effect on the settling velocity and on the water content of flocs. 

Laminar flow conditions and no interference between falling floc was assumed. It was 

also assumed that during sedimentation, these flocs attained terminal velocity in first 

120 seconds. The diameter of flocs was found to be 106 micron by this method, it is 

significantly less than the value obtained by the PVM and DIA analysis. This difference 

could be attributed to the various assumptions made about the properties of these 

flocs and their behavior. In the past, attempts have been made to extend Stokes’ law 

to cover nonspherical particles (Andreasen, 1929), to allow for the effect of particle 

concentration upon settling rate (Hawkesley, 1951; Richardson and Zaki, 1954). 

Michaels and Bolger (1962) concluded that for a flocculated suspension, the floc 

rather than the primary particle is the fundamental structural unit in gravity 

sedimentation. In recent years, some work has been done on characterization of 

kaolinite floc size (Nasser and James, 2006, 2009) by using the modified Stokes 

equations developed by Richardson and Zaki, and Michaels and Bolger. However, 

experimental techniques like the PVM and DIA have been used for size 

characterization of suspended kaolinite flocs for the first time in this work.  

It is not possible to do a quantitative comparison for shape analysis using both 
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methods because of the different quantities used to represent shape. In the case of 

PVM, the ratio of projected area and perimeter defines circularity. In the case of DIA, 

“sphericity” is defined by ratio of perimeter of equivalent circle to the real perimeter. 

It is an interesting definition of sphericity as generally sphericity implies volume 

measurement. But the definition used here is based on two-dimensional quantities 

without any consideration of the third dimension. The PVM involves direct imaging 

of flocs, whereas in DIA, the amplitude and phase distribution of the diffraction 

pattern is back-transformed to get a real image. Since the method of detection is 

different for both the techniques, some difference in values of sphericity/circularity 

reported by these techniques is expected. 

     In conclusion, we can say that polymer type and solids concentration have an 

effect on kaolinite floc size and shape. Anionic high weight polymers give larger and 

less circular flocs than cationic low weight polymers. The increase in solids content 

leads to increase in floc size and decrease in floc sphericity.  It appears that the flocs 

grow in such a way that the larger flocs turn out to be more irregular than the smaller 

flocs, irrespective of the operating variables. This was verified by varying two 

conditions, the polymer type and the solids content. It would be interesting to 

investigate which factors dictate floc structure formation during floc growth in a 

kaolinite suspension. 
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CHAPTER 4 

 
 

SIZE AND WATER CONTENT OF SEDIMENTED FLOCS FROM 3D 

IMAGE ANALYSIS USING HRXMT 
 
 

4.1 Introduction 
 

       The size characterization of kaolinite flocs in the suspended state by using 

PVM and DIA was reported in Chapter 3. As the flocs settle, they form a sediment bed 

which contains a network of interconnected flocs and water channels. Size analysis of 

flocs in a sediment bed is challenging due to the problems in segmentation of the 

sediment into individual flocs. 

      The water content of flocs is another important property besides size and 

shape. The amount of water contained in flocs is directly influenced by the size of the 

flocs (Winterwerp and Van Kesteren, 2004) and the rate at which flocculation occurs 

(Mietta, 2010). The water content of the flocs also influences the settling and self-

weight consolidation (Hendriks, 2016). Previously, techniques like the NMR have 

been used to study the water content in different clays (Fan and Somasundaran, 

1999). The analysis of water content for individual kaolinite flocs is yet to be 

reported.  

       In this part of the thesis research, a novel method was developed for 

determination of the water content of sedimented flocs using X-ray microtomography 

and 3D image analysis software. The attenuation coefficients for kaolinite-water 

mixtures was determined at different water contents and used to prepare a 
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calibration curve. This curve was then used to find the composition of kaolinite flocs 

with respect to water content.  The size analysis of the flocs was also accomplished 

and the floc population was divided into four size ranges. The water content variation 

in each size range was reported.  

     The use of X-ray microtomography (XMT) in mineral processing applications 

has increased over the past few years. Its use has been extended to include size, shape, 

texture, exposure, and liberation of multiphase mineral particle populations (Garcia 

et al., 2009; Lin and Miller, 2005, 2009). More recently, the High-resolution X-ray 

microtomography (HRXMT) has been used for 3D particle characterization and 

multiphase particle segmentation and analysis at the University of Utah (Alvaro and 

Lin, 2010; Yan and Lin, 2015). The HRXMT along with image processing and 

visualization tools like imagej, medical image processing, analysis & visualization 

(MIPAV), and drishti which are powerful tools for particle segmentation and 

structure analysis.  

Although HRXMT has been used for studying multiphase solid particles before, 

it has never been used for studying water content of aggregates in a sediment bed. In 

this part of the thesis research, water content and size analysis of kaolinite flocs has 

been done by using the HRXMT and various image processing techniques. The 

kaolinite floc sediment bed was treated as a two-phase system containing water and 

kaolinite and the principles of multiphase particle segmentation were applied to the 

sediment bed to isolate and identify individual flocs. The polymer flocculant is 

present at a very small dosage, hence the system can still be considered to be a two-

phase system. 
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4.2 Materials and methods 

4.2.1 Materials and Sample Preparation 

Fisher 500 kaolinite obtained from Fisher Scientific was used in this study. The 

polymer flocculant used was high weight anionic polyacrylamide with a charge 

density of 5%. The polymer was obtained from Hychem. More details about the 

materials can be found in Chapter 2. 

        Pure water and kaolinite suspensions at different solid content were prepared 

and scanned for calibration. About 50 ml kaolinite suspension with 80% solid content 

was prepared. The suspension was transferred to a 20ml test tube and was allowed 

to settle for about 6 hours. It was scanned using the HRXMT and the scaled CT number 

was found. The process was repeated for four different solid concentrations. Using 

the scaled CT numbers, a calibration curve was plotted for scaled CT number 

variation with water content.  

   The sedimented kaolinite floc was prepared from a 5% w/v kaolinite 

suspension of 80 ml volume. The sample was allowed to stir for 1 hour at 400 rpm 

and sonicate for 20 minutes. The pH of suspension was noted to be 5.8. High mol. wt. 

5% anionic polymer was added to the suspension drop by drop until the polymer 

concentration was 1000 ppm. The mixing was carried out at 500 rpm for 90 seconds 

and the sample was carefully transferred to a 13 ml container (inside diameter ~ 3.5 

cm). The sample was allowed to settle for 24 hours and then scanned using the 

HRXMT machine. The sample Figure 4.1 was scanned in the middle portion. This was 

done to avoid the sheared flocs that might be present in the top and the bottom 

portion.                                                                                                                                   
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                            Figure 4.1: Kaolinite floc sediment before HRXMT scan. 
                           
  

During the HRXMT scan, the sample is well-confined and held by frictional 

forces in a cylindrical container. The sample container as well as the sample inside 

the container should be completely stable in order to get useful data. Any small 

movement will cause reconstruction failure and errors. During the initial scans of 

sedimented kaolinite flocs at low polymer dosage and less mixing, the coalescence 

between kaolinite flocs was affecting the stability of the sediment. The polymer 

dosage, mixing time, and settling time were optimized to get a stable sample. After a 

few attempts, it was possible to get a sample that was stable during the 2 hour scan. 

 
4.2.2 Data Acquisition 

 
4.2.2.1 X-ray Microtomography 
 

 The high-resolution XMT (MicroXCT- 400, Xradia) at the University of Utah 

was used for this study. The basic layout is shown in Figure 4.2. More details about 
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its principles and operation are available in the literature (Hsieh, 2012). The basic 

principle of X-ray microtomography is discussed here.  

The X-ray beam can be considered as a beam of photons.  In vacuum, all X-ray 

photons leaving the source reach the detector. However, when a medium is present 

between the source and the detector, some of the photons interact with the medium 

and not all photons leaving the source reach the detector. As these X-ray photons pass 

through the medium, they are attenuated, or weakened, following the Lambert-Beer’s 

law. According to this law, when a monochromatic beam with energy, Eo , and incident  

photon flux density or intensity, Io , passes through a medium of thickness x, the 

intensity, I , of the emerging beam is given by equation 4.1.  

 

 ……………………………………..   (4.1) 

 

 

 

   
 

        Figure 4.2: Layout of the HRXMT instrument, the Zeiss Micro XCT 400. 

  xEZII 00 ,,exp 
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where, 

  : Linear attenuation coefficient.  

  : Density of the absorber. 

  : Atomic Number. 

The linear attenuation coefficient,  , depends on the energy of the photon, 

and the density and atomic number of the material (medium) placed between the 

source and the detector. As   is dependent on material characteristics, it can be 

used to describe the internal structure of any material kept in between the source and 

detector.     

When the X-ray photons travel across a heterogeneous object, which contains 

materials of different attenuation coefficients, the linear attenuation coefficient is a 

space variant function dependent on the distribution of material in the sample being 

interrogated (Videla, 2006). This difference in attenuation coefficient is exploited for 

3D segmentation of multiphase particles. The scaled CT number is a representative of 

the attenuation coefficient, µ, of material and has been used for this work. Typical CT 

number used in the medical field is given by equation 4.2.  

 

CT number =  
𝜇 (𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) − 𝜇 (𝑤𝑎𝑡𝑒𝑟)

𝜇 (𝑤𝑎𝑡𝑒𝑟)
  x 1000         ……………………………….            (4.2)  

 
 
CT number for air and water is -1000 and 0, respectively. The detection of the photon 

beam is by a 2D detector that acquires a projection, formed by a set of line-integrals 

of the attenuation coefficients of the material. The sample is rotated to get the 

projection at various angles. The output from HRXMT is the back-projected image of 





Z
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the sample which is a 3D spatial reconstruction of the attenuation coefficients based 

on integral linear projections and Fourier transform filtering.  

The volume elements of this image are the voxels which represent cubes of the 

material in the field of view. The size of these voxels depend on the magnification 

used. The value of the attenuation coefficient assigned to each voxel is a material 

property and represents the average value of the material occupying the cubic space. 

A set of transform functions and algorithms are applied to reconstruct the three-

dimensional images of the sample from the projection data, which have been 

described in the literature (Lin and Miller, 2002; Videla, 2006). Figure 4.3 represents 

a schematic of data acquisition and reconstruction process using the HRXMT. 

 
4.2.2.2 Experimental Considerations 

    Experimental considerations are very important to achieve the desired 

results. In this work, the same experimental conditions were used for all the samples 

scanned. It is very crucial to scan the kaolinite floc sediment at the same conditions 

as the samples used for calibration. Change in conditions would make the whole 

analysis pointless as the relationship established between scaled CT number and 

water content during calibration would no longer be valid.  

The difference in attenuation coefficients between various phases of sample 

determines the image quality of the HRXMT scan. The scan conditions for HRXMT 

analysis are determined by the difference in attenuation coefficient of the phases we 

are trying to scan. After the scan, reconstruction of data is also a very important step 

in HRXMT analysis. A detailed discussion on HRXMT scan conditions and 

reconstruction considerations is available elsewhere (Hsieh, 2012). Here, a brief 
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Figure 4.3: Schematic illustration of HRXMT data acquisition and reconstruction        
processes. The data are constructed in 3D as is typically presented as a series of 2D 
slice which is used for further processing. 
 

discussion on the experimental conditions used for the analysis of sedimented 

kaolinite flocs will be done.  

According to Beer’s law (discussed in previous section), the linear attenuation 

coefficient is mainly determined by beam energy, density, and atomic number of 

material. Hence, the X-ray source voltage plays a key role in determination of the 

attenuation coefficient. The Micro XCT 400 system has a polychromatic source, 

having an energy level from 40KV to 150KV. Silica and low-density materials can be 



                                                                                                                                                                                             

 

67 

scanned at 40KV, while copper minerals and molybdenite require a higher energy 

level around 80KV (Hsieh, 2012). For extremely high-density samples, 150 kV is used 

along with long exposure time and a suitable filter, although care is taken to avoid 

overexposure. For our analysis, 60 kV X-ray voltage was used. 

  Exposure time is another decisive factor for the CT scan. Material density and 

elemental composition decides the energy level (voltage), but exposure time 

determines the attenuation coefficient reading for the sample. Exposure time should    

be such that there is enough transmission of the X-ray photons to achieve more than 

3000 counts on the detector, but care should be taken to avoid over-exposure. For 

these experiments, exposure time of 1.5 seconds was used. 

 The five X-ray lenses on the turret are 0.5X, 4X, 10X, 20X, and 40X. Each lens 

has its own magnification scale and resolution. For our analysis, the 0.5X lens was 

used. The reconstructed resolution was about 18.5 µm. Magnification is decided by a 

consideration of mostly resolution, field of view, sample composition, and exposure 

time. The lower magnification means more X-ray photons will be measured on the 

detector, with lower resolution and larger field of view. Higher magnification means  

fewer X-ray photons captured by detector, higher resolution, and a smaller field of  

view.   

Since the X-ray source generates a polychromatic beam, a filter should be used 

to remove the low and high energy X-rays.  Use of a filter decreases the contrast of 

different minerals, but ensures no overexposure error. The cut-off energy is the linear 

attenuation coefficient of the filter material. X-ray photons below the energy level will 

be absorbed, in other words, “filtered” by the material. Here we have used 150 µm 
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glass filter.  

            Image resolution is also an important issue of the HRXMT scan. The maximum 

image resolution does not only rely on the magnification, but also depends on the 

quality and the setting of the detector. The maximum image size that the detectors 

can acquire is 2048x2048 pixels according to the XRadia MicroXCT 400 manual 

specification. For our analysis, we used an image resolution of 1024x1024.  

   Mass attenuation coefficient increases with an increase in X-ray photon travel 

distance. A larger ratio of source-sample distance to sample-detector distance gives 

better image contrast at a high energy level and long exposure times. However, the X-

ray intensity counts are also reduced in this regard. To obtain an image with good 

quality contrast and enough counts of X-ray intensity, a combination of distances and 

exposure time is necessary. For our analysis, source-sample distance and source 

detector distances of 60 mm and 120 mm were used.  The Field Of View (FOV) is 

determined by designed magnification and distance for source and detector. The FOV 

should be chosen such that, the whole sample area is covered in the scan. For our 

analysis, FOV of 19 mm was used.  

 Moving the source and detector forward or backward in a certain range can 

control resolution and field of view. The voxel resolution is a function of the X-ray 

source size, the distance between source and sample, and the detector resolution. In 

our case, the reconstructed voxel resolution was 18.52 µm. 

		The	projection	counts	greatly	affect	the	quality	of	the	reconstructed	image.	In	
	
general,		the		radiograph		set		(projection)		is		collected		and		transformed		using		the	
	
Fourier	Slice	Theorem.	By	using	the	back	projection	method,	the	reconstructed	image	
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can be visualized as a 3D view with linear attenuation coefficients attached as CT 

numbers. The image is displayed by phase contrast based on the grey scale 

established for different materials. For our analysis, a projection count of 1000 was 

used.  

  Using these scan conditions, data were collected in unsigned short (u16) form. 

It basically means that the 16-bit detector was used. The 16-bit detector can identify 

the color depth levels from 0 to 65535 in an unsigned short format. Thus, the 

maximum reading of X-ray intensity can never be over 65535. A CT number can be 

assigned in this range according to the light intensity measured by the detector. 

   After the projections have been acquired from every angle, an application 

called “XMReconstructor” was used for reconstruction purposes. It helps users 

evaluate and determine which variables to vary in order to obtain the best image 

quality, and reduce the artifacts. Center shift and beam hardening are the prime 

concerns during reconstruction. Center shift happens when the field of view is not 

centered on the object and deviates from the center line. To correct this artifact, we 

can adjust the offset distance and acquire a higher quality image. Although filters can 

remove low energy X-ray beams, the dispersed energy levels of X-ray beams cause 

various attenuation coefficients of one specific mineral phase due to the distance 

through which the photon passes. The measured linear attenuation coefficient is 

lower in the center, where the X-ray passing distance is longer, and higher at the edge, 

where the X-ray passing distance is shorter. In other words, the X-ray beam looks 

“Hardened” at a higher energy level in the boundary area. Calibrating the CT number 

profile, or using a software algorithm to remove the artifact, can correct the beam-
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hardening condition.  

The tomography file is based on voxel geometry and is saved in XRM format. 

The XRM file contains information of coordinates, angles, exposure time, source 

voltages, distances, etc. A collection of XRM files is processed with the help of tools 

like XMReconstructor, XMController, and XM3DViewer. Finally, a raw format file 

containing a 3D dataset is obtained which is then used with various image processing 

software for data analysis. Typical scan and reconstruction time for each sample at 

the specified conditions is 2 hours.  

 
4.2.3 Image Processing Tools 

 
4.2.3.1 Feature-based Classification 

        Segmentation is known as the process of separation of an image into objects 

of interest and noninterest. The segmentation process involves two major steps: first, 

the separation of the image in the foreground and background such as thresholding; 

and second, the separation of the foreground as individual particles. In a segmented 

3D image, the elementary elements are no longer voxels but connected sets of voxels 

or regions, which allow analysis of individual particles. 

              Due to the complexity of the floc structure, thresholding is not sufficient to 

obtain the desired result. In this case, feature-based classification was selected for 

separation of background and foreground. Feature-based classification is a machine 

learning method to extract useful features for a specific image processing procedure. 

Feature-based classification is used for selection of important features and image 

segmentation. Trainable weka segmentation (TWS), an ImageJ/Fiji plugin, was used 

as the feature-based classification method for this study. TWS is a versatile tool for 
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image segmentation based on voxel classification. The software has a library of 

methods and a user friendly interface. It combines the image processing toolkit Fiji 

with state-of-the-art machine learning algorithms provided in the latest version of 

data mining and machine learning toolkit Waikato Environment for Knowledge 

Analysis (WEKA). The graphical user interface enables the user to load an image or 

stacks of images and perform automatic segmentation by interactive learning.  

            Trainable weka segmentation considers not only the voxel intensities but also 

a wide range of image features to determine particle boundaries. There are 20 

features used in TWS. A list of features for the “Trainable weka segmentation” (Fiji, 

2015) is shown in Table 4.1. 

               The user selects image features and adds them to different classes. The TWS 

then trains the whole image according to the selection initially provided. Based on the 

segmentation results, more annotation can be added for misrepresented regions and 

retraining of the classifier can be done until satisfactory segmentation results are 

obtained. While training, the algorithm basically extracts image features from 

different aspects of image content, such as voxel statistics, filtering, texture etc. for 

each voxel is calculated. The calculation time for each feature might vary; for example, 

utilization of anisotropic diffusion is time consuming. Also some features are not 

efficient for accurate analysis. 

Based on the image segmentation quality and computation time, Gaussian 

blur, Sobel filter, Hessian, Membrane projections, and Difference of Gaussians were 

selected for training to improve segmentation of the floc particles form the 

background. 
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Table 4.1 List of features of “Trainable weka segmentation” (Fiji 2015) 

Gaussian blur Hessian 
Membrane 

projections 

Anisotropic 

diffusion 
Mean 

Maximum Lipschitz Gabor Laplacian Entropy 

Sobel filter 
Difference of 

Gaussians 
Variance Minimum Median 

Bilateral Neighbors Structure Kuwahara Derivatives 

 

An example of use of TWS for feature-based segmentation is shown in Figure 4.4.  

A stack of 370 images from the middle portion of the scan was used for 

analysis. The output image after TWS was used as a model to train the stack of the 

remaining 369 images used for analysis. 

 

4.2.3.2   Watershed Segmentation Process for 3D Images 
 

In addition to the segmentation of solid phase from background, different 

particles in the solid phase need to be separated from one another. 3D watershed 

segmentation has been developed at the University of Utah for segmentation of 

packed particle beds. The sedimented kaolinite flocs can be treated as a particle bed 

with two different phases. The 3D watershed segmentation method was used with 

binary images for separation of touching flocs. The process involves marker-

controlled watershed segmentation and has been described in detail elsewhere  

(Videla, 2007; Wang, 2016). A simple algorithm of the process developed by these 

researchers is shown in Figure 4.5.  

The key concept behind watershed segmentation is the interpretation of an 

image as a topographic surface with mountains and valleys. If a drop of water falls on  
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Figure 4.4: Illustration of use of trainable weka segmentation on a 2D slice of 
sedimented kaolinite flocs (image on left). As evident from the images, the 
separation of foreground from background was done (image on right). 
 
 
 
 
 

 
 

Figure 4.5:  Algorithm for marker-controlled watershed segmentation 
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such a topographic surface, it follows the steepest path until it reaches a minimum 

point. All sets of points on the surface whose steepest path belongs to the same 

minimum constitutes the catchment basin associated with this minimum. The 

watersheds are known as the zones dividing adjacent catchments basins. This is the 

underlying concept of watershed segmentation. Various processes are done on the 

raw image in order to get a good segmentation. The feature-based classification 

method was used for image preparation. The trainable weka segmentation plugin 

available with Fiji was used for separation of background and foreground. The 

distance transform is an image operation process that converts a binary image with 

feature (white) and no feature (black) elements to a picture where each voxel has an 

intensity value that approximates the Euclidean distance of the voxel itself to the 

nearest nonfeature element. In other words, in a binary image, the distance transform 

operation calculates the distance from each white voxel to the nearest black voxel. 

Figure 4.6 illustrates the use of this function on original image. The most important 

step in complex segmentation applications is    marker extraction. Markers represent 

unique regions of space, which distinguish unique particles. This is very important to 

avoid over segmentation. Image distance transform presents the local maxima values 

somewhere inside the boundaries of the particles. These maxima values can then be 

used as a marker for the position of a particle in the image. Larger markers are 

directly obtained by thresholding the distance-transformed image. For smaller 

markers, H-maxima is defined. Before proceeding with the flooding process, it is 

necessary to label each marker (regional maxima) with a unique number using 

connect component labelling. 
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Figure 4.6: Illustration of distance transform function. Original image (left); image 
after distance tranform (right) 
 
 

In this way, its identification number will differentiate each particle that will 

emerge from those markers from the rest of the particles. 

Next, the process to segment the particle image is carried out using the 

watershed transform or flooding process. In the topographic interpretation stated 

earlier, the complement of the distance transform image is analogous to the 

elevations in topography of a surface with valleys and peaks where the maxima 

distance is the bottom point of the valley.  In this growing method, the valleys are 

flooded with water at a constant rate and during the process, dams are erected when 

two different valleys merge together. The line formed between these two minimum 

or valleys will be the boundary between the two different particles. Figure 4.7 

compares the original image with the segmented image after these steps have been 

followed. Flocs are labelled by using different colors for better visualization. The label 

on each marker was used to separate individual flocs.   
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Figure 4.7: Original image (left); segmented image (right). Segmented flocs are 
represented by different colors. 
 
 

4.2.4 Floc Size and Water Content Analysis 

The kaolinite floc sediment was isolated into individual flocs. Before the 

flooding process, each marker (regional maxima) in the segmented image is labelled 

with a unique number. This serves as an identification number to differentiate each 

floc from rest of the flocs.  

Using the MIPAV software, thresholding can be done to include only a single 

floc in the image. Each floc can be visualized by doing AND operation on original 

image and the isolated floc from watershed segmented image. In the results section, 

images of a few isolated flocs are presented.  

For size and water content analysis, all individual flocs with total volume 

greater than 11 voxels were considered. The equivalent sphere diameter for each floc 

was calculated using the total voxel volume as shown below: 

Total voxel in a floc * Volume of single voxel = Volume of a floc  
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Volume of a floc =   
𝜋𝑑3

6
        ………………………………………….  (4.3)    

     

where, d is the equivalent spherical diameter of the floc.  

The calibration curve for water-kaolinite system was plotted using scaled CT 

numbers for kaolinite suspensions with different water content. The calibration 

curve is shown in Figure 4.8. Using the fitted function, water content of unknown 

samples can be found if we know the scaled CT number for them. 

 The calibration curve establishes a relationship between the rescaled CT 

number and the water content. This equation can be used to find the water content of 

individual flocs by using the average CT number for each floc.  

 

 Figure 4.8: Calibration curve used for water content analysis of flocs. The standard   
deviation for each data point and the line of best fit are displayed. 
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Water content % (Y) = Intercept + Slope * (scaled CT number, X)  

 

𝑌 =  177.65 −  0.07574 ∗  𝑋             ………….…………………………………..               (4.4)  
 
 

   Using this relation, the intensity value (scaled CT number) was converted to 

water content for each voxel. Such a conversion makes the direct visualization of 

water content distribution possible. A 2D slice from the water content raw file is 

shown in Figure 4.9. The intensity value at each voxel in this image gives the water 

content at that voxel. A stack of such images was used to get the water content for 

each voxel. Once the flocs have been isolated, surface area, volume, aspect ratio, and 

sphericity can be calculated for individual flocs by using methods of shape analysis 

 
 

                                  

                        Figure 4.9: Image representing water content 
                        value at each voxel. Dark grey represents lower 
                        water content than light grey. 
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for 3D particles. The shape analysis including these features has been done for 10 

flocs. The details about shape analysis for 3D particles by using XMT can be found in 

literature (Lin and Miller, 2005). 

 
4.3 Results and Discussion 

 
4.3.1 Water Content and Size Distribution of Flocs   

 
            The kaolinite floc sediment was scanned using the same conditions as were 

used for calibration. The floc network was carefully segmented by using the method 

for segmentation of multiphase particles developed previously at the University of 

Utah. A 3-dimensional view of the sediment with isolated flocs before and after 

segmentation is shown in Figure 4.10. By comparison of floc voxel volume with total 

voxel volume, the composition of sediment bed with respect to water was calculated. 

The sediment bed was found to contain 63% inter-aggregate water by volume. For 

this calculation, it was assumed that water channels contain 100% water with no 

solid particles. The total water content was found to be around 80% by volume 

(including both inter-aggregate and intra-aggregate water). 

                           

 

Figure 4.10: Unsegmented sediment bed (left); Sediment bed after segmentation 

(right). Different color represents different flocs in the segmented image. 



                                                                                                                                                                                             

 

80 

         

 

isolated flocs along with their size and water content. The method for calculating the 

size distribution and water content distribution of flocs has been described in 

previous section.  

The segmented bed contains about 13 thousand flocs. Some of the very fine 

flocs were not considered for analysis. A threshold of 11 voxels was applied and flocs 

with volume more than 11 voxels were considered for further analysis. 

Each of the flocs were analyzed for water content using a script based on 

equation 4.4. The results suggest a normal distribution of water content for these 

flocs, with mean water content of 53.9% and standard deviation of 11.8%. The water 

content distribution of flocs is shown in Figure 4.13. 

 

           
Figure 4.11: Flowchart of steps followed in the analysis. 

	
				For	further	analysis,	 individual	flocs	were	isolated	and	analyzed	for	size	and	

water	 content.	 Figure	 4.11	 summarizes	 the	 steps	 followed.	 Figure	 4.12	 shows	 few	
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Fig 4.12: Selected individual flocs with floc size and water content respectively 
in parentheses. The water content increases from pink to green. 

 
 
 

 

Figure 4.13: Water content distribution for kaolinite flocs. The sample was prepared 
at pH 5.8, 5% solids, 1000 ppm of high mol. wt. 5% anionic polymer and allowed to 
settle for 24 hours. 
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Water content class of 50-59% has the maximum number of flocs, 30.3%, and 

about 98% of the flocs have water content in the range 30-80%.  

           

 

noted that this distribution is based on voxel volume and not voxel number. The 

cumulative floc size distribution is shown in Figure 4.14. About 90% of the flocs were 

found to be less than 1.5 mm in size. Around 40% of the flocs had a size range of 0.5-

0.85 mm. The flocs were divided into four size ranges and water content analysis for 

each size range was done. It was observed that the average water content of flocs 

increases with a decrease in floc size. Smaller flocs have more entrapped water than 

the larger flocs. Also, most of the flocs were found to be in the size ranges 0.12-0.85  

 

 

Figure 4.14: Floc size distribution of kaolinite flocs. Equivalent sphere diameter is 

reported as floc size. The sample was prepared at pH 5.8, 5% solids, 1000 ppm of 

high mol. wt. 5% anionic polymer and allowed to settle for 24 hours. 

				Size	 analysis	 of	 flocs	 was	 done	 using	 a	 script	 based	 on	 equation	 4.3.	 The	

equivalent	sphere	diameter	was	calculated	and	reported	as	the	floc	size.	It	should	be	
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mm and 0.85-2 mm. The results are provided as continuous scatter plots in Figure 

4.15. 

       In conclusion, the water content distribution and size analysis was done 

successfully for these flocs. For further investigation of floc structure, the shape 

analysis was done for select flocs.  

 

4.3.2 Shape Analysis of Selected Flocs 

The isolation of individual flocs makes it possible to analyze various features 

of these flocs. The floc shape can be characterized by calculating the floc surface area, 

volume, aspect ratio, and sphericity. These features of 3D particles can be calculated  

 

 

Figure 4.15: Water content distribution of flocs in various floc size ranges. The 
sample was prepared at pH 5.8, 5% solids, 1000 ppm of high mol. wt. 5% anionic 
polymer and allowed to settle for 24 hours.  
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by using the method of shape analysis for 3D particles developed by Lin and Miller 

(2005). Shape analysis was done for 10 flocs and is reported along with water content 

and size in Table 4.2. The floc number given in table is based on the labelling done 

during sediment segmentation and serves as an identifier for individual flocs. 

        The shape analysis was not done for the entire population of 13 thousand flocs 

and the results for 10 individual flocs cannot be extrapolated to include the entire floc 

population. Due to highly irregular shape of these flocs, there were complications in 

finding the surface area of some flocs, especially for the ones with high water content. 

A single floc was sometimes identified as a combination of flocs by the program. 

Manual analysis of each individual floc should be done in case of such irregular and 

porous particles to avoid errors.  

 
Table 4.2: Shape analysis of selected flocs in the sediment bed 
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4.4 Summary 

 
        Kaolinite-water mixtures at different water content were scanned using 

HRXMT to establish the scaled CT number for each sample. The scaled CT number and 

water content for each sample was plotted to obtain a calibration curve. The scaled 

CT number for a sample of unknown water content can be used to get the water 

content for that sample by using this calibration curve.  

        The kaolinite floc sediment bed was scanned using HRXMT and the rescaled 

CT number for each voxel was obtained. The floc network was carefully segmented 

by using the method for segmentation of multiphase particles. Individual kaolinite 

flocs were isolated within the sediment bed. About 13 thousand flocs were identified 

by using this method. Size and water content analysis for each floc was done. The 

results suggest a normal distribution of water content for these flocs, with mean 

water content of 53.9% and standard deviation of 11.8%.  Water content class of 50-

59% has the maximum number of flocs, 30.3%, and about 98% of the flocs have water 

content in the range 30-80%. 

     About 90% of the flocs were found to be less than 1.5 mm in size. Around 40% 

of the flocs had a size range of 0.5-0.85 mm. The flocs were further divided into four 

size ranges and water content analysis for each size range was done. The results are 

provided as continuous scatter plots in Figure 4.15. It was observed that the average 

water content of flocs increases with a decrease in floc size. Smaller flocs have more 

entrapped water than the larger flocs. The size range of sedimented and suspended 

flocs were found to be comparable, but due to difference in sample preparation 

conditions, exact comparisons could not be made. DIA analysis of suspended flocs 
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indicated a mean ferret maximum diameter of 0.74 mm at 4% solids and 1.02 mm at 

8% solids; polymer dosage was 200 ppm. The analysis of sedimented flocs using 

HRXMT indicated a mean equivalent sphere diameter of about 1 mm at 5% solids and 

1000 ppm polymer dosage. Although the flocs have similar size ranges in suspended 

and sedimented state, it is difficult to compare the sizes due to difference in sample 

preparation conditions. 

       Since flocs have been successfully isolated from the sediment bed, it is possible 

to analyze various features of the floc shape including but not limited to surface area, 

volume, aspect ratio, and sphericity. This has been demonstrated by analyzing these 

features for 10 flocs. It should be noted that shape characterization for the entire floc 

population has not been reported and results for 10 flocs should not be generalized 

to represent the entire floc population. 

      The HRXMT procedure developed in this work has allowed not only the 

determination of floc structure but also the water content of individual flocs. The 

procedure developed can be extended for water content and size distribution analysis 

of flocs formed from industrial tailings at different conditions. This would enable us 

to study the effect of different parameters on the water entrapped in individual flocs 

as well as on the size distribution of the floc population. Both size and water content 

of flocs are crucial in determining the settling and self-weight consolidation of flocs. 
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CHAPTER 5 

 
 

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FLOC MICROSTRUCTURE  
 
 

5.1 Introduction 
 
        Various aspects of kaolinite floc structure and rheological properties have 

been studied in detail. Many researchers have tried to verify their results by scanning 

electron microscopy characterization (Kim and Palamino, 2009; Mpofu et al., 2003; 

Zbik et al., 2008). The results from all these studies are interesting and give 

information about floc structure during different stages of sedimentation (Zbik et al., 

2008), the effect of polymer concentration (Kim and Palamino, 2009), and the effect 

of polymer type (Kim and Palamino, 2009; Mpofu et al., 2003). Most of these studies 

focus on the type of primary particle interaction, i.e., edge-edge, egde-face, face-face 

at different conditions. Kim et al. concluded that with an increase in polymer 

concentration, face-face interaction increases giving rise to higher density of flocs. 

They also investigated the effect of polymer type and concluded that cationic 

polymers give more porous flocs than the anionic polymer induced flocs. Mpofu’s 

research suggests that free settling flocs show predominant E-E interaction whereas 

settled flocs show more F-F interaction. Although we have some idea about the 

structure of kaolinite aggregates, we have limited information on the structure of 

polymer chains and how these chains bridge the smaller aggregates and create flocs 

of millimeter size. In this thesis research, an attempt has been made using cryogenic 

SEM to visualize the kaolinite floc microstructure as well as polymer bridges 
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connecting these microstructures. Such visualization will enhance our understanding 

of kaolinite floc formation in presence of polyacrylamide flocculant. This information 

can in turn help in selection of appropriate polymers and operating conditions for 

flocculation.   

   The flocs were visualized in hydrated state by using wet SEM capsules. A 

wetsem capsule (QX-102, QuantomiX Ltd., Israel) allows the SEM imaging of fully 

hydrated kaolinite suspension at high vacuum (Barshack, 2004). Liu et al. (2015) 

have reported the structure of kaolinite clusters in absence of polymer at different pH 

conditions using wet SEM capsules. In this thesis research, polymer-induced kaolinite 

floc structures were visualized in the hydrated state using the wet SEM capsules.  

 
5.2 Materials and Methods 

 
5.2.1 Equipment Principles 

 
       The scanning electron microscopy (SEM) has been widely used for studying 

microstructure of kaolinite aggregates as mentioned in introduction. The SEM has a 

large magnification range, allowing examination of samples at magnifications well 

over 100,000 times. Besides magnification capabilities, SEM is capable of giving large 

depth of field for images, which provides a three-dimensional perspective. Thus, an 

SEM image provides much more information about a specimen’s topography and 

surface structures than light microscopy at the same magnification. The first 

prototype SEM was constructed by Knoll and von Ardenne in Germany, after a series 

of refinements the first commercial SEM became available in 1963.   The SEM can be 

subdivided into a number of components such as the electron optical system, 

specimen stage, electron detector, and vacuum system. An electron optical system is 
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involved in the focusing and control of the electron beam. A specimen stage is needed 

so that the specimen may be inserted and situated relative to the beam. When the 

beam of electron interacts with the sample, more than one type of electrons are 

emitted. The main types are secondary electrons and backscattered electrons. The 

capabilities of the electron detector can vary depending on which emitted beam we 

are interested in detecting.  The emitted beam is collected using a suitable detector 

and processed to generate a signal that is amplified and ultimately displayed on 

viewing and recording monitors. A vacuum system is necessary to remove air 

molecules that might impede the passage of the high energy electrons down the 

column as well as to permit the low energy secondary electrons to travel to the 

detector. Greater details about SEM principles and operation are available in the 

literature (Goldstein and others, 1990). 

        For this work, we have used Sigma 500 FESEM from Ziess and Novanao SEM 

from FEI. The Sigma 500 SEM has a powerful lens system and more efficient detectors 

and vacuum system. More details about both these equipment is available on the 

respective websites of Zeiss and FEI (links provided in reference section).    

 
5.2.2 Materials and Sample Preparation 

 
       The kaolinite used in this study is acid washed K2 500, obtained from Fisher 

scientific. The polymer used is high molecular wt., 5% anionic PAM, obtained from 

Hychem. More details about the materials used are given in section 2.3, Chapter 2. A 

kaolinite suspension (1% w/v) was prepared using DI water. The suspension was 

allowed to stir for 1 hour followed by 20 minutes sonication. The solution pH was 5.7. 

High mol. wt. anionic polymer was added to the suspension at a dosage of 400 ppm 
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and stirring was continued for 60 seconds at 400 rpm. The flocculated suspension 

was then allowed to settle for 1 hour and the top layer of the sediment bed was 

carefully transferred to another container.  

    For wet SEM analysis, about 15 μl of the floc volume was injected into a well-

sealed WETSEM capsule. The sample was separated from the interior of the electron 

microscope by a thin, electron-transparent partition membrane. This membrane is 

strong enough to sustain a 1 atm pressure difference and, in this way, the sample 

inside the capsule can be maintained at atmospheric pressure while the SEM chamber 

reached high vacuum. The electrons coming from the electron gun penetrate a few 

micron into the wet cluster and an SEM image of the cluster structure is obtained. 

Figure 5.1 shows schematic working of the wet SEM capsule. The wet SEM analysis 

was done using the Sigma 500 FESEM: Figure 5.2 shows a snapshot of the wet SEM 

capsule in the specimen chamber of the Sigma 500.  

For cryogenic sample preparation, a few flocs (about 2-3) were carefully 

placed on the conductive carbon tape glued to the metal stub used for SEM imaging. 

The stub was immersed horizontally in a container full of liquid nitrogen with help of 

tweezers. The stub was taken out immediately and imaged at once before the 

devitrification could take place. By using this method, the microfloc structure could  

Wet	SEM	analysis	of	kaolinite	clusters	formed	without	addition	of	polymers	

has	been	reported	previously	by	Liu	et	al.	(2015).	At	pH	4.3,	the	cluster	size	varied	

from1.5	µ	to	0	µ	whereas	at	pH	8,	the	kaolinite	was	found	to	be	in	a	dispersed	state.	

The	wet	 SEM	 analysis	 of	 kaolinite	 flocs	 formed	 after	 addition	 of	 polymer	 has	 not	

been	reported	in	literature.	
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Figure 5.1: Schematic drawing of wet SEM capsule on the stage. 

 
 
 

                             

Figure 5.2: Wet SEM capsule in the specimen chamber 
                             of Sigma 500 FESEM. 
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be visualized; however, visualization of the polymer chain needed optimization with 

respect to a few conditions. After various attempts, it was found that adjustment of 

the sample quantity on the stub, time for which the sample is dipped in liquid nitrogen 

and imaging time were very crucial and determine the image quality for visualization 

of the polymer chain.                

  For visualization of the polymer chain, the sample should be dipped in sample 

for long enough to immobilize the water molecules but not so long that the whole 

sample is frozen and a thick frost layer is formed.  Since a cold stage was not used for 

imaging, the frosted sample started melting after a few seconds inside the sample 

chamber. This is not desired as the melted water led to movement within the sample 

and sample features were not clear. However, if the sample is super cooled to 

immobilize the water and polymer chains, the polymer chains could be seen. It is 

doubtful, even with use of a cold stage, that visualization of polymer chains at such 

low polymer dosage would be possible as frosting could break the delicate polymer 

chains present in the sample. However, visualization of polyacrylamide chain in DI 

water at higher polymer concentration by using the cryogenic method has been 

reported before (Sui et al., 2015). 

The sample was dipped in liquid nitrogen for about 5-10 seconds and imaged 

immediately. If imaging is delayed by more than 2-3 minutes, the water molecules are 

mobilized again and the sample is similar to a wet sample. For visualization of 

polyacrylamide polymer chain in water, a thin sample layer is recommended (Sui et 

al., 2015). Since the amount of polymer in our sample was less and concentration of 

kaolinite was much higher, we could not see the polymer chains by using a very small 
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amount of sample. Larger amounts of sample lead to contamination of the lens. A 

balance is needed to get the desired results. For all cryogenic samples, a very low 

voltage was used (less than 2kV); higher voltage led to charging of the sample. 

 
5.3 Results and Discussion  

 
5.3.1 Floc Structures in Hydrated State Using Wet-SEM capsules 

 

 

 

 
Figure 5.3: Wet SEM analysis of kaolinite floc at pH 5.7. The highlighted 
microfloc is about 77 µm in size. 

The	wet	SEM	analysis	reveals	the	presence	of	aggregates	of	varying	size;	these	

aggregates	range	in	size	from	few	µm	to	about	50	µm.	Some	of	these	aggregates	are	

interconnected	to	 form	larger	aggregates.	Figure	5.3	shows	one	 larger	aggregate	of	

about	77	µm	in	size	made	up	of	smaller	aggregates.	The	aggregate	could	be	considered	
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to be an individual floc (microfloc) within a larger floc (millifloc). 
 

In Figure 5.4, a few primary kaolinite particles can be seen in different 

orintations. Due to the low resolution of the image, not much information about the 

orientation of primary particles could be obtained. For further investigation of the 

microstructure, the cryogenic method was used. 

 
5.3.2 Cryogenic Visualization of Microflocs Including 

 Images of the Polymer Chain 

          By use of cryogenic method, better resolution was obtained and the 

orientation of primaty particles could be seen (Figures 5.5 and 5.6).  

 

            

         Figure 5.4: Wet SEM analysis of kaolinite floc at pH 5.7. The primary particle         
         interactions (as shown in highlighted box) are not clear due to low resolution. 
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Figure 5.5: SEM image of kaolinite microfloc at pH 5.7. The primary particles show 
edge-face interaction (highlighted in yellow) and face-face interaction (highlighted 
in red). 
 
 
 

                    
 
Figure 5.6: High magnification SEM image of kaolinite primary particles within  
the microfloc. Face-face interaction between primary particles is revealed. 
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The microscale investigation of floc by using the cryogenic method reveals that 

microflocs from 0.5 µm to about 10 µm in size are interconnected by polymer chains 

(Figure 5.7). These polymer chains can vary in dimensions as can been seen in these 

images; the thicknees could vary from a few nm to about 80 nm. These polymer chains 

seem to be elastic in nature, capable of changing dimensions based on the force 

exterted from different ends. The smaller microflocs could be attached to the ends of 

a single polymer chain but the larger microflocs were found to be intertwined 

between many chains. It appears that more than one attachment point between the 

larger flocs and the polymer chain is necessary for structural stability.    It was also 

noticed that the chain length between two consecutive microflocs varies a lot, from 

almost continuous microflocs to about 5 µm polymer chain in between flocs. It 

appears that breakage of these delicate chain structures occurs under shear and 

hence the well known sensitivity of floc stability to turbulence level. For different 

polymers, there would be a critical chain length beyond which breakage occurs thus 

restricting the size to which floc grows.   

Here, it should be noted that the varation in polymer chain dimension could 

be due to stacking of fine polymer chains giving rise to thicker chains or due to the 

presence of undissolved polymer chains. The polyacrylamide chain contains both 

positive and negative sites in hydrated state. Depending on the relative orientaion of 

these groups in the polymer chain, there is a chance of aggregation due to 

electrostatic forces. It is also possible that the loss in water due to cryo freezing and 

sublimation leads to collapse of fine poymer network giving rise to thicker polymer 

chains. The polymer chains form close ended web like stuctures, bridging various  
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Figure 5.7: Microstructure of kaolinite floc as revealed by FESEM. The microflocs 
vary in size from 0.5 µm to 10 µm (highlighted in yellow). The microflocs could be 
almost continuous or have a significant length of polymer chain in between adjacent 
microflocs (highlighted in red). 
 
 
microflocs to one another (see Figure 5.8). Due to the limitations of 2-dimensional 

visualization, it is difficult to say to which surface of the kaolinite particle these 

polymer chains attach. It appears that the polymer bridges are formed by attachment 

to both surfaces: the base surface and the edge surface. It is possible that the anionic 

polymer chain attaches to the alumina face which is positively charged at pH 5.8 while 

the interaction of edge surface with the anionic polymer chain is via hydrogen 

bonding. High magnification reveals polymer chain-edge surface attachements with 

some clarity (Figure 5.9). 
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Figure 5.8: Web-like structures formed by polymer chains. These polymer chain       
show a lot of variation in thickness and length. 
 
 
 

            
 
Figure 5.9: Microstcucture of kaolinite floc at higher magnification. Interaction 
between kaolinite edge surface – polymer chain is evident (marked using red 
arrows). 
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CHAPTER 6 

 
 

THESIS SUMMARY AND CONCLUSIONS 
 
 

     In this thesis research, the flocculation of primary kaolinite particles was 

achieved using a suitable polymer and operating conditions. The primary particles 

had a bimodal size distribution with peaks at about 100 nm and 500 nm. These 

submicron kaolinite particles could be aggreated into flocs of about 1 mm in size 

under appropriate conditions of polymer concentration and pH. The structure of 

suspended kaolinite flocs was analyzed in 2D using the Particle Vision & 

Measurement (PVM) and Dynamic Image Analysis (DIA). The structure of sedimented 

kaolinite flocs was also analyzed in 3D using High Resolution X-ray Microtomography 

(HRXMT) and Scanning Electron Microscopy (SEM) as well as image processing 

softwares including fiji, MIPAV, and drishti.  

    The analysis of the suspended flocs by PVM and DIA revealed a mean floc size 

of about 230 µm for the high molecular weight, 5% anionic polyacrylamide-induced 

flocs. The lower molecular weight, 70% cationic polymer-induced flocs were found to 

be smaller in size (mean size 145 µm). DIA was used to analyze the flocs at different 

solids concentration. It was found that an increase in solids concentration leads to an 

increase in floc size from mean size of 230 µm at 1% solids concentration to 740 µm 

at 4% solid concentration and to 1020 µm at 8% solids concentration. Floc circularity 

was also analyzed using both of these methods.  The major objective of this research 

was to do the multiscale analysis of the sedimented kaolinite flocs, a pictorial 
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summary of research is provided (Figure 6.1). A calibration curve was prepared from 

kaolinite-water suspension at different solids concentration. Using HRXMT, a 3D 

image of sedimented kaolinite flocs was constructed. The sediment bed of 3.5 cm 

diameter was segmented by using image processing techniques and about 13 

thousand individual flocs were isolated. These individual flocs were then analyzed for 

size and water content. The results suggest a normal distribution of water content for 

these flocs, with mean water content of 53.9% and standard deviation of 11.8%. 

About 98% of the flocs had a water content in the range of 30-80% by volume (Figure 

4.13, Chapter 4). About 90% of the flocs were found to be in the size range 0.5-2 mm 

(Figure 4.14, Chapter 4). From this 3D analysis, the water compositions of the 

individual flocs were established for the first time and the floc size distribution was 

reported. The mean size of these  

 
 

 

Figure 6.1: Multiscale analysis of kaolinite flocs. The sediment bed (on left) was 
segmented and individual flocs were isolated. One individual floc of about one mm 
size is shown in middle. The water content analysis of individual flocs was done. The 
water content increases from pink to green. The individual floc was further 
investigated for its microsctructure by using SEM and cryo sample preparation to 
indentify kaolinite primary particles and polymer (on right). 
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flocs in sedimented state is comparable to the mean size of flocs in suspended state. 

However, exact comparisons cannot be drawn due to different conditions used for 

sample preparation in both cases. 

            Further investigation of individual flocs was done using FESEM in order to 

understand the floc microstructure. In the SEM analysis, microflocs of varied size 

were revealed. These microflocs appear to be composed of kaolinite clusters and 

were interconnected by polymer bridges which formed a web like structure which 

accounts for floc size and staility. Thus multiscale analysis of flocculated kaolinite is 

reported for the first time (see Figure 6.1). 

          The HRXMT procedure developed in this work has allowed not only the 

determination of floc structure but also the water content of individual kaolinite flocs 

for the first time. The procedure developed can be extended for water content and 

size distribution analysis of flocs formed from industrial tailings at different 

conditions. This would enable us to study the effect of different parameters on the 

water entrapped in individual flocs as well as on the size distribution of the floc 

population. Both size and water content of flocs are crucial in determining the settling 

and self-weight consolidation of flocs. 

   Finally, the use of SEM for visualization of floc microst ructure and polymer  

chain reveals the stabilization of kaolinite microflocs in the web formed by polymer 

chains. The morphology of the polymer chain as well as the interaction between 

microflocs and polymer chain is a key to understanding floc growth and stability.  
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