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ABSTRACT 
 

 
The U.S. finishes in the bottom fifth of industrialized nations in math achievement, 

based on the Program for International Student Assessment (PISA) scores. The National 

Assessment of Educational Progress (NAEP) classifies almost 10% of U.S. students as low 

achieving, and students with disabilities score particularly poorly on such assessments. 

Experts describe U.S. students as lacking conceptual understanding and requiring remedial 

instruction in math. When implemented across multiple grade and ability levels, math 

instruction incorporating a concrete-representational-abstract (CRA) sequence has increased 

math achievement. Writing To Learn Math (WTLM) is a strategy proven through research to 

improve students’ conceptual understanding through writing. CRA and WTLM have similar 

cognitive foundations, yet no studies have evaluated a combination of CRA and WTLM. 

Combining CRA and WTLM has the potential to address the challenges of adjusting to the 

national Common Core standards and assessments, which include improving conceptual 

understanding and writing across all content areas. This unique combination of interventions 

could offer promising results for effective curriculum development and remedial instruction.  

This study included three ninth-grade students from a suburban school who are 

below state proficiency levels in math, and employed a single-subject across-participants 

design to investigate the following research questions: (1) What is the effect of implementing 

a concrete-representational-abstract (CRA) instructional sequence incorporating writing to 

learn math strategies on students with disabilities’ proficiency in solving rate of change 
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problems, and (2) Do students with disabilities find WTLM math and a CRA instructional 

sequence to be socially acceptable?   

 Results indicated that the CRA + Writing intervention may be effective in improving 

students’ with disabilities understanding of rate of change. All 3 students improved their 

scores on the math items of the rate of change probes, and maintained these improvements 

on maintenance assessments administered between 1 and 7 weeks following the completion 

of the intervention. Two of the 3 students also displayed moderate improvements in their 

scores on the writing items of the rate of change probes. The findings of this study provide 

multiple implications for both research and practice, as well as several directions for future 

research.  
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CHAPTER 1 

 

REVIEW OF THE LITERATURE 

 

 Despite governmental reforms geared towards improving the educational outcomes 

of students in public education in the United States, such as the No Child Left Behind Act 

and the Individuals with Disabilities Education Act, evidence indicates low performance in 

mathematics nationwide (Maccini et al., 2007). The U.S. ranks 26th out of the 34 most 

industrialized nations in math achievement, according to data obtained from a test 

administered by the Organization for Economic Cooperation and Development, the 

Program for International Student Assessment (PISA) (Ryan, 2013). Based on the 2013 

results of the National Assessment of Educational Progress (NAEP), 39% of eighth-graders 

are proficient in mathematics (National Center for Education Statistics [NCES], 2013), and 

only 26% of students in 12th-grade were identified as proficient on the 2011 NAEP (Schmidt 

& Burroughs, 2013). Additionally, 21% of eighth-graders are below even a basic level of 

proficiency (NCES, 2013). There are also severe discrepancies in math achievement between 

specific subpopulations in the U.S., including students with disabilities, English Language 

Learners (ELLs), students from low socioeconomic backgrounds, and students of color 

(Bryant, 2005; Butler et al., 2003; Jitendra & Star, 2011; Maccini, Mulcahy, & Wilson, 2007; 

Schmidt & Burroughs, 2013). 

 Students with disabilities are among the lowest achieving subpopulations in the U.S., 
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with only 8% of eighth-graders with disabilities at or above proficiency and 65% below even 

a basic level of math understanding (NCES, 2013). Approximately 25% of students with 

disabilities can count with one to one correspondence to 10, and only 4-8% of this 

population can perform basic math computations (addition, subtraction, multiplication, and 

division) to solve applied problems (Saunders, Bethune, Spooner, & Browder, 2013).   About 

5-8% of students in the United States have learning disabilities in math (Bryant, 2005; Fuchs 

et al., 2008; Jitendra & Star, 2011; Judge & Watson, 2011). Students identified with a learning 

disability in mathematics consistently have low rates of achievement, with 95% ranking in 

the lowest 25th percentile on standardized assessments throughout all grade levels (Gersten et 

al., 2012; Judge & Watson, 2011). Recent research demonstrates, however, that students with 

moderate and even severe disabilities can learn grade level content when instructed on basic 

numeracy (Saunders, Bethune, Spooner, & Browder, 2013).  

 Two main contributors to lower math performance have been isolated: 1) inadequate 

remedial instruction for students who are behind, and 2) a disconnect between the 

conceptual and algorithmic components of mathematics that results from algorithmic 

components being taught in isolation instead of as part of a complete conceptual package 

(Bryant, 2005). Research has demonstrated inadequate special education instruction in 

mathematics across all settings (Hammrich, 2001). In self-contained and resource settings for 

students with mild to moderate disabilities, there is a strong emphasis on basic skills, 

remediation, and fact drilling (Hord & Bouck, 2012). These approaches leave little time and 

resources to dedicate to even intermediate-level mathematics instruction, and often leave out 

conceptual connections that may help struggling learners gain a better grasp on the concepts 

(Bryant, 2005; Hammrich, 2001). 

 The results of a recent metaanalysis of mathematics instruction for students with 
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disabilities indicate that the following mathematics instructional components result in 

significant positive effects: explicit instruction, heuristics, visual representations, student 

verbalizations of their problem-solving processes, teachers providing specific and ongoing 

feedback, and cross-age tutoring (Gersten, Chard et al., 2009). The only two strategies for 

which significant positive effects were not present were peer-assisted learning within a class 

and student feedback with goal setting (Gersten, Chard et al., 2009). Gersten, Chard et al. 

(2009) indicate that the two strategies with both practical and statistical significance from 

their study are explicit instruction and the use of heuristics. Additionally, the Institute for 

Education Sciences recommends that educators follow eight practices when intervening to 

improve the mathematics performance of students who struggle: universally screen students 

in mathematics; focus on whole numbers in grades K-5 and rational numbers in grades 4-8; 

provide explicit and systematic instruction that includes modeling, verbalization, guided 

practice, review, and feedback; provide instruction on solving word problems; include visual 

representations of mathematics; include approximately 10 minutes of instruction on basic 

fact retrieval per intervention session; frequently monitor the progress of students receiving 

interventions; and incorporate motivational strategies for students receiving interventions 

(Gersten, Beckmann et al., 2009). Based on these research recommendations, it is clear that 

educators must focus on providing explicit instruction, developing students’ conceptual 

understanding of mathematics through the use of visual representations, and also provide 

frequent opportunities for students to build fluency with basic mathematics skills. These 

goals may seem difficult to achieve, based on limitations of time and resources often found 

in schools. 

 Mathematics education and interventions must be approached with the same sense 

of urgency as reading is approached to effectively address students’ learning difficulties 
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(Fuchs et al., 2008). Proficiency in mathematics is essential for success in not only academics, 

but also daily living (Hodge, Riccomini, Buford, & Herbst, 2006). Math problem-solving is a 

necessary prerequisite skill for students to perform well in other courses, such as chemistry 

and physics. Math is also vital for individuals to know how to use public transportation, 

shop for food and other essential items, and manage personal finances. While the National 

Council for Teaching Mathematics (NCTM) has emphasized changes in the teaching of 

mathematics to provide more of a balance between algorithmic, skills-based instruction and 

applied inquiry-based learning, there is a lack of research on mathematics instruction and 

intervention for struggling learners (Bryant, 2005). As our world becomes more 

technologically advanced, students will need to have stronger applied mathematical problem-

solving skills and technological literacy in order to access information and opportunities 

(Fuchs et al., 2008). For example, mathematical problem-solving skills are vital for success in 

many careers, including careers in science, finance, and construction. Students who have 

proficient mathematical problem-solving skills have more options available to them 

following high school than students who lack proficiency in math problem-solving skills.  

  It is important to address low math achievement because math knowledge is a 

gateway to not only higher education, but also career success and economic rights (National 

Mathematics Advisory Panel (NMAP), 2008; Rasmussen et al., 2011). Recently, many states 

have increased high school mathematics requirements, based on the need for students to 

achieve college and career readiness by the time they graduate, as well as ties between higher 

mathematics achievement and college success (Rasmussen et al., 2011). Underperformance 

in mathematics results in lower confidence, less equity in employment, and fewer 

opportunities in society (Bell & Norwood, 2010; Fullerton, 1995; Fuchs et al., 2008). Each of 

these implications is exacerbated for groups of students who consistently perform at 
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disproportionately lower levels in mathematics, including students with disabilities and from 

diverse backgrounds (Bryant, 2005; Butler et al., 2003; Maccini et al., 2007). With a 

significant proportion of workers expected to retire from science, technology, and 

engineering fields within the upcoming three decades, it is essential that this inadequacy be 

addressed in order for the U.S. to maintain its current economic standing (NMAP, 2008).  It 

is especially important to address math achievement, and find efficient and effective 

methods that can be used to raise the math achievement of secondary students with 

disabilities in the current climate of public education in the U.S.  

 

The Emergence of the Common Core State Standards 
 

The National Governors Association (NGA) and Council of Chief State School 

Officers (CCSSO) established the Common Core State Standards Initiative (CCSSI) in 2009 

to create academic expectations that would not only advance educational achievement in the 

U.S., but also decrease variability in indicators of academic proficiency across states 

(Dingman, Teuscher, Newton, & Kasmer, 2013). A final report of the standards, created by 

state representatives, content area experts, and educators, was released in 2010. As of March 

2013, 45 states, four territories, the District of Columbia, and the U.S. Department of 

Defense Education Activity have adopted the Common Core Standards (Dingman et al., 

2013). The broad adoption of these standards dramatically shifts how math education is 

approached in the U.S., creating a need for new research aligned with the key elements of 

the Common Core Standards.  
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Key Changes Made in the Common Core  

The Common Core State Standards for Mathematics (CCSSM) change how math is 

taught in four main ways: (a) the grade level at which math content is taught; (b) the number 

of grade levels certain topics span; (c) shifts in emphasis on certain math topics; and (d) the 

addition of Standards for Mathematical Practice (SMP), which emphasize problem-solving 

across the standards (Dingman et al., 2013; National Governors Association Center for Best 

Practices & Council of Chief State School Officers, 2012). The shift in embedding math 

reasoning throughout all standards and grade levels, as well as the push for assessments to 

evaluate deeper levels of student understanding, will provide challenges for teachers (Alberti, 

2013; Dingman et al., 2013; Rothman, 2012b). Research is needed to help determine 

effective ways to incorporate the SMP and prepare students to demonstrate the knowledge 

required on new assessments. Due to greater emphasis on certain math concepts in the 

CCSSM, it is important that researchers determine effective methods of teaching high 

priority topics.  

 

Changes in Concepts Taught at Each Grade Level 

In order to be ready to master higher level algebra by the time students complete 

high school, students must be exposed to math concepts that are critical foundations for 

algebra at earlier grades. The CCSSM attempt to fulfill this need by changing the grade level 

at which certain math concepts are taught. When compared with previous state standards, 

the CCSSM move foundational concepts, including basic computation facts and operations 

with fractions to earlier grade levels. One of the biggest changes occurs with addition and 

subtraction of fractions, which are moved to earlier grades for 40 out of 42 states whose 

standards were compared to the CCSSM (Dingman et al., 2013; National Governors 
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Association Center for Best Practices & Council of Chief State School Officers, 2012). 

Shifting essential concepts to lower grades may provide students with a stronger foundation 

for algebra, as it allows teachers to provide more in depth instruction on concepts, and 

builds in more time for students to practice and master these skills (Dingman et al., 2013; 

Schmidt & Borroughs, 2013). 

 

Changes in the Number of Grade Levels Topics Span 

A second change that is made with implementation of the CCSSM is the number of 

grade levels certain math topics range. This change is primarily influenced by the goal of 

reducing the number of standards taught at each grade level in order to provide more in 

depth focus on the math content included within each standard (Schmidt & Houang, 2012). 

When compared with previous state standards, the CCSSM increase the number of grade 

levels in which addition, subtraction, multiplication, and division of whole numbers are 

addressed by an average of two grade levels (Dingman et al., 2013; National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2012). The 

number of grade levels at which some concepts are taught are also decreased. One of the 

main concepts receiving decreased grade level coverage is addition and subtraction of 

fractions, for which the majority of states allotted at least three grade levels. The CCSSM 

reduce coverage of addition and subtraction of fractions to two grade levels (Dingman et al., 

2013; National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2012). In sum, the changes regarding the number of grade levels topics span 

made in the CCSSM aim to increase focus on important math concepts in order to provide a 

more solid foundation for higher level math.  
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Shifts in Emphasis on Certain Math Concepts 

The third main change identified with the switch to CCSSM is a change in emphasis 

on specific math concepts (National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2012). Dingman et al. (2013) discuss this change 

occurring in two main ways. First, when compared to some states’ standards, the CCSSM 

decreases the overall emphasis on specific math concepts such as patterning and 

measurement. Additionally, the CCSSM moves the emphasis on some concepts, such as 

statistics and measurement, to higher grade levels. The second way changes in emphasis 

occur is through increasing emphasis on certain topics, both overall as well as within specific 

grade levels. Algebra is the main math concept that receives additional emphasis under the 

CCSSM, which is consistent with the National Mathematics Advisory Panel’s call for 

students to master algebra by the end of high school (NMAP, 2008). Rate of change, or 

slope, is one algebraic concept that is heavily emphasized in the CCSSM. Rate of change is 

first introduced in seventh-grade, and spans all five of the high school domain areas in the 

CCSSM, which include algebra, functions, modeling, geometry, and statistics and probability 

(National Governors Association Center for Best Practice & Council of Chief State School 

Officers, 2012b). Specific math concepts, including working with mathematical properties 

and relationships between operations, both of which are foundations for algebra, also have 

increased emphasis under the CCSSM (Dingman et al., 2013).  

 

The Standards for Mathematical Practice (SMP) 

The final, and perhaps most noticeable change from previous state standards and the 

CCSSM is the addition of the SMP, which emphasize approaches towards thinking 

mathematically across all grade levels (National Governors Association Center for Best 
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Practices & Council of Chief State School Officers, 2012; Schifter & Granofsky, 2012). Prior 

to the CCSSM, concepts captured within the SMP, such as reasoning and problem-solving, 

were isolated to specific grade levels.  The incorporation of eight standards for mathematical 

practice therefore represents a big shift in math standards (Dingman et al., 2013). The SMP 

outline the following expectations for how students interact with mathematics:  

Make sense of problems and persevere in solving them….Reason abstractly and  
quantitatively….Construct viable arguments and critique the reasoning of others…. 

 Model with mathematics…. Use appropriate tools strategically…. Attend to 
 precision….Look for and make use of structure…. Look for and express regularity 
 in repeated reasoning. (National Governors Association Center for Best Practices & 
 Council of Chief State School Officers, 2012, Standards for Mathematical Practice, 
 paras. 3-10) 

 
Each of the SMP focuses on students developing and being able to express conceptual 

understanding of math, as well as higher level mathematical thinking. New assessments 

aligned to the CCSSM relate directly to the SMP, as portions of these exams require students 

to solve open-ended problems and explain their reasoning (Dingman, et al., 2013; Hakuta, 

Santos, & Fang, 2013; NMAP, 2008; Rothman, 2012b). By embedding the SMP within 

specific content standards, teachers may be able to help their students build new ways of 

thinking mathematically that can help students successfully approach unique and complex 

problems.  

 

Common Core and U.S. Math Achievement   

 Early research conducted on the CCSSM indicates that the changes likely place the 

U.S. on the right track to advance mathematics education. When compared with the 

standards of eight top scoring nations on the Third International Mathematics and Science 

Study (TIMSS), the CCSSM ranked well on the three criteria identified as being indicators of 

math achievement (Schmidt & Houang, 2012). The top eight scoring countries on the 1995 
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TIMSS included Singpore, Japan, Korea, Hong Kong, Flemish Belgium, and the Czech 

Republic (NMAP, 2008). Curriculum analysis conducted following the TIMSS indicates that 

criteria separating the top scoring nations from low scoring nations are focus, rigor, and 

coherence (Schmidt & Houang, 2012). Focus refers to the number of standards taught at 

each grade level. Nations with a greater degree of focus in their curriculum (i.e., fewer topics 

taught per grade level) tended to score higher on the TIMSS than nations with less focus 

(Schmidt & Houang, 2012). Nations with curricula that had a higher degree of rigor, 

referring to high expectations and high-level content, also scored better on the TIMSS. 

Coherence is indicated by standards that advance sequentially and hierarchically between 

grade levels in a logical way. Nations with a greater degree of coherence also scored better 

on the TIMSS than those with less coherence (Schmidt & Houang, 2012).  

 The development of the CCSSM took into account the characteristics of rigor, 

coherence, and focus, which are reflected in each of the four main changes previously 

discussed (Schifter & Granofsky, 2012; Schmidt & Houang, 2012). When compared to the 

standards from the top eight scoring nations on the TIMSS, the CCSSM have a high degree 

of similarity, which increases the likelihood of test score improvement (Schmidt & Houang, 

2012). Despite this promising early research, educators will likely face difficulties switching 

over to the CCSSM (NCTM, 2013; Rothman, 2012a; Schifter & Granofsky, 2012; Schmidt & 

Burroughs, 2013).  

 

Common Core and Instructional Practice  

 While initial evidence indicates that the Common Core State Standards set U.S. math 

education on the right course (Rothman, 2012a; Schmidt & Houang, 2012), teachers will 

need assistance with teaching to these standards, especially in regards to preparing students 
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to explain their math reasoning on assessments (Dingman et al., 2013; Hakuta, Santos & 

Fang, 2013; NMAP, 2008; Rothman, 2012b). First, educators may struggle with the 

transition to assessments that are aligned with the changes in the CCSSM (Alberti, 2013; 

NCTM, 2013). Additionally, educators will likely struggle with determining how to 

effectively integrate the SMP into their everyday teaching practices (Alberti, 2013; Schmidt & 

Burroughs, 2013). The CCSSM reflect a higher degree of rigor than found in past standards 

(Dingman et al., 2013). Assessments will be accordingly aligned to the increased rigor of the 

CCSSM. In order to advance student understanding to meet the new demands of the 

CCSSM, educators will need to focus on improving students’ conceptual understanding, 

procedural skill and fluency, and applied knowledge (Alberti, 2013). This may present 

challenges if educators are not familiar with many of the changes in grade level content and 

emphasis made in the CCSSM (Dingman et al., 2013; Schmidt & Burroughs, 2013).  

 It is essential that researchers and those responsible for preparing teachers invest in 

developing effective strategies for teaching content with increased emphasis, such as algebra. 

Interventions that emphasize connections between concrete, representational, and abstract 

mathematical concepts may be effective in improving the algebraic computation skills of 

students with disabilities (Bryant, 2005; Shayer & Adhami, 2007), which is particularly 

important because the CCSSM emphasizes proficient understanding of algebra for all 

students (Witzel, 2005). It is equally important that energy be invested in developing 

effective and efficient methods to teach math content moved to lower grades, as well as 

math content that will receive attention in fewer grade levels. The shorter window for 

students to master an understanding of these concepts before they have to apply them to 

new problems and higher level mathematics necessitates that conceptual understanding be 

prioritized (Dingman et al., 2013).  



12 

 

 The SMP will also provide a challenge for educators, as integrating these practices 

into everyday teaching may prove difficult for those who are less familiar with teaching the 

conceptual elements that underlie math procedures. Teachers must also be provided with 

training and support to understand the practices that are not as traditionally tied to 

mathematics content, such as the ability to construct viable arguments and critique the 

reasoning of others, which students are expected to demonstrate through their responses to 

open ended items on assessments aligned to the CCSSM (Dingman et al., 2013; Marzano, 

2012). Researchers should focus on finding efficient, effective, and socially acceptable 

methods to implement the SMP in conjunction with math content. This is perhaps most 

important with math content that has been prioritized by the CCSSM, such as algebra, 

because the SMP could provide an impetus for increased conceptual understanding of 

algebra concepts. Greater conceptual understanding of algebra concepts is important for 

students to be able to answer new CCSSM assessment questions probing for deeper and 

more complex understanding of content. Strategies that provide students with conceptual 

understanding of math content have the potential to assist students with this transition. The 

following section will detail one such strategy, the Concrete-Representational-Abstract 

(CRA) instructional sequence, and the current research base supporting the use of the CRA 

instructional sequence with students with disabilities.   

 

CRA Instructional Sequence in Mathematics Interventions 

One point of controversy within mathematics education relates to whether inquiry-

based instruction should be prioritized over explicit instruction (Cole & Washburn-Moses, 

2010). Inquiry-based instruction typically occurs in general education settings, and involves 

students approaching novel problems to generate ideas for how to solve the problems prior 
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to being introduced to algorithms or being taught how to approach the problems explicitly, 

as is typical with explicit instruction (Jitendra, 2013). The goals of inquiry-based instruction 

include generating mathematical discussions, as well as building connections between real life 

and math concepts (Jitendra, 2013). While some research indicates the effectiveness of 

inquiry-based instruction in mathematics, research conducted with students with disabilities 

indicates that explicit instruction is more effective than inquiry-based methods (Gersten, 

Chard et al., 2009; Jitendra, 2013). Students with disabilities may struggle with inquiry-based 

instruction due to their unique struggles with working and long-term memory, 

metacognition, processing speed, and difficulties with math computation and procedural 

skills (Jitendra, 2013; Shin & Bryant, 2015). One method to achieve the goals of inquiry-

based instruction while using explicit instruction is to teach mathematics using concrete and 

pictorial representations.  

Researchers have demonstrated through cognitive learning theories that people learn 

via a progression of concrete depictions to pictorial representations to abstract expressions 

of any given concept (Bell & Bell, 1985; Bruner, 1973). The CRA instructional sequence is 

based on this cognitive foundation, providing students with a structure to build conceptual 

understanding of even highly advanced math content. The concrete phase involves physical 

depictions of math concepts, the pictorial representation phase incorporates drawing 

diagrams and pictures to represent math concepts, and the abstract phase displays math 

concepts using numbers and formulas. For example, when CRA is used to teach students 

how to solve algebraic equations, the concrete phase may involve the use of differently sized 

tiles to represent variables and numbers, the representational phase may involve drawing 

diagrams to depict these tiles, and the abstract phase involves writing out and solving 

algebraic equations with variables, numerals, and math symbols (as typically taught). The 
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CRA instructional sequence has been studied with students with and without disabilities in 

grades 2 through 9, and has been used to effectively teach concepts including basic math 

facts such as addition, subtraction, and multiplication, as well as fractions, word problems, 

and algebra (Butler et al., 2003; Flores, 2010; Manl, Miller, & Kennedy, 2012; Miller & 

Kaffar, 2011; Morin & Miller, 1998; Strickland & Maccini, 2012; Witzel, 2005; Witzel et al., 

2003). In each of these studies, students’ math scores improved significantly, and these 

improvements were maintained and applied to novel problems even 6 weeks following the 

interventions (Flores, 2010; Strickland & Maccini, 2012), suggesting the promise of the CRA 

approach.  

 

The CRA Instructional Sequence With Elementary Level Content 

Researchers have demonstrated the potential effectiveness of the CRA instructional 

sequence in elementary schools in improving students’ understanding and use of a variety of 

mathematics concepts. The majority of studies implemented at the elementary school level 

have been with students with disabilities or with students who have difficulty with math 

concepts (Flores, 2009; Flores, 2010; Flores, Hinton, & Schweck, 2014; Flores, Hinton, & 

Strozier, 2014; Mancl, Miller, & Kennedy, 2012; Miller & Kaffar, 2001). Miller and Kaffar 

(2011) implemented a study during a summer program for students with math difficulties to 

determine the effectiveness of the CRA instructional sequence on improving the ability of 24 

second-grade students to solve problems involving addition with regrouping. After receiving 

16 CRA sequenced lessons, the students in the experimental group scored higher on 

curriculum-based measures and pre- and posttests than those in the comparison group 

(Miller & Kaffar, 2011). Students in the experimental group specifically scored higher than 

students in the comparison group on both computation and fluency measures, and 
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performed similarly to the comparison group on word problems (Miller & Kaffar, 2011). 

The generalizability of Miller and Kaffar’s study was limited because it involved a sample of 

convenience. While there were no significant differences in math scores between the groups 

prior to the intervention, both groups of students were selected from students enrolled in a 

summer program for students with math difficulties (Miller & Kaffar, 2011).   

A study by Flores (2009) indicated that the CRA instructional sequence may be an 

effective approach for improving third-grade Latino students’ fluency in computing 

subtraction problems with regrouping in the tens place. Flores implemented 10 CRA 

sequenced lessons with 6 low performing students, 4 of whom qualified for special 

education services. The first three lessons implemented focused on the concrete phase of 

instruction, the next three focused on the representational phase, the seventh lesson 

included instruction in a mnemonic device, and the last three lessons focused on the abstract 

phase. Through her study, Flores demonstrated a functional relation between the CRA 

instructional sequence and the number of correct digits by students scored on 2-minute 

probes incorporating problems that required subtraction with regrouping (Flores, 2009). 

Flores developed the probes used for this study, based on Beck, Conrad, and Anderson’s 

Basic Skill Builders (1999) (as cited in Flores, 2010). All 6 participants showed substantial 

improvements in their computation skills (Flores, 2009) following participation in 10 CRA 

sequenced lessons. One limitation of Flores’ study is the small group of students, so the 

results cannot be generalized to the broader population. More research is needed with 

students whose skills vary to provide more evidence for the effectiveness of the CRA 

instructional sequence.  

Flores (2010) replicated and extended her research on the use of the CRA 

instructional sequence to improve students’ abilities to solve subtraction problems involving 
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regrouping in the tens and hundreds places. In this study, Flores implemented the CRA 

instructional sequence using a multiple-probe across-participants design with 6 third-grade 

participants, 5 of whom were Hispanic and 1 of whom was African American. All 6 students 

were identified as low performing in mathematics, but none had been referred for special 

education evaluation. Flores (2010) used the same materials and followed the same 

instructional and assessment procedures as done in her 2009 study, with the addition of 

subtraction problems involving regrouping in the tens and hundreds place, rather than just in 

the tens place. All 6 participants again showed significant improvements in their scores on 

the subtraction probes, and maintained their improvements 6 weeks following intervention. 

A functional relation between CRA instruction and subtraction with regrouping was 

demonstrated across all students (Flores, 2010). Flores indicated that additional research 

should be conducted on CRA for subtraction with regrouping to determine the generality of 

the intervention, as well as across concepts and grades to determine the efficacy of the 

instructional procedure as an intervention.  

Mancl, Miller, and Kennedy (2012) also implemented a study to assess the 

effectiveness of the CRA instructional sequence for solving problems involving subtraction 

with regrouping. Their study used a multiple-probe across-participants design with 5 fourth-

and fifth-grade students with disabilities. The researchers evaluated the effectiveness of the 

CRA instructional sequence and explicit instruction using students’ scores on researcher 

developed probes. Results indicated that all 5 students were able to achieve at least 80% 

mastery of each of the 11 lessons delivered as part of the intervention. Mancl et al. (2012) 

established a functional relation between the CRA instructional sequence and students’ 

scores on probes involving subtraction with regrouping. The Mancl et al. (2012) study was 

limited because it was implemented only with students receiving services in a resource 
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classroom.  

Flores, Hinton, and Strozier (2014) evaluated the CRA instructional sequence, with 

the addition of the Strategic Instruction Model (SIM) on the mathematics performance of 

three low-performing third-grade students. This study involved a multiple-probe across-

behaviors design, in which each student participated in baseline and intervention phases for 

three mathematical skills: subtraction with regrouping in the ones place, subtraction with 

regrouping in the ones and tens places, one-digit multiplication with regrouping, and two-

digit multiplication with regrouping. Students progressed between the phases after they 

reached the criterion of 30 correct digits on a progress monitoring probe for each skill. For 

each mathematical skill taught, the instructional sequence was the same as previous Flores’ 

studies (2009, 2010), with the addition of the incorporation of SIM, which involved explicit 

instruction with an emphasis on procedural knowledge. The instructional sequence involved 

three concrete lessons, three representational lessons, a mnemonic device taught in the 

seventh lesson, and the last three lessons at the abstract phase. Two of the participants 

demonstrated a functional relation between the CRA-SIM intervention and their math 

performance for three of the phases, and 1 of the participants demonstrated a functional 

relation between the CRA-SIM intervention and his math performance for four of the 

phases. The authors recommended that additional research be conducted on CRA-SIM to 

replicate these effects and to extend CRA-SIM to teaching higher level skills.  

Flores, Hinton, and Schweck (2014) implemented a study to evaluate whether there 

was a functional relation between CRA-SIM and the computation performance of students 

with disabilities on solving multiplication problems that involved regrouping. In this study, 

Flores and colleagues used a multiple-probe design with 4 fourth- and fifth-grade students, 

all of whom were identified as having a Specific Learning Disability (SLD). The instructional 
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sequence was similar to the previous studies implemented by Flores (2009), Flores (2010), 

and Flores, Hinton, and Strozier (2014), with the additional incorporation of SIM. 

Additionally, the concepts taught in the Flores, Hinton, and Schweck (2014) study involved 

teaching two digit multiplication problems that required regrouping. The results of this study 

provided evidence of a functional relation between the use of CRA-SIM and the 

performance of students with SLD on solving two-digit multiplication problems involving 

regrouping. All of the students maintained their scores in maintenance probes administered 

1-4 weeks following instruction, and performed at levels higher than baseline on 

generalization probes (which involved problems with a three-digit multiplicand and two-digit 

multiplier) administered 2 weeks following maintenance. One interesting finding to note is 

that students did not show an immediate improvement in scores during intervention. 

However, Flores and colleagues pointed out that fluency in computation is developed over 

time, rather than immediately. The researchers recommended that future research be 

conducted on the CRA instructional sequence to demonstrate its efficacy with other 

populations of students, as well as additional math concepts.  

 

CRA Instructional Sequence with Secondary Level Content 

 The CRA instructional sequence may also be effective for teaching both remedial 

and advanced concepts to secondary students with and without disabilities who struggle with 

math concepts (Butler et al., 2003; Morin & Miller, 1998; Strickland & Maccini, 2012; Witzel, 

2005; Witzel, Mercer, & Miller, 2003). Morin and Miller (1998) demonstrated that the CRA 

instructional sequence can be an effective approach for teaching multiplication facts and 

associated word problems to seventh-grade students with moderate to severe disabilities. In 

their study, they implemented the CRA instructional sequence for 21 lessons with 3 students 
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identified for special education services under the category of mental retardation (MR) using 

a single-subject design. Students were assessed prior to and following the intervention, as 

well as daily during the baseline and intervention phases (Morin & Miller, 1998). During the 

baseline phase of the study, a special education teacher provided instruction using traditional 

third-grade materials. Morin and Miller used four measures in this study: the baseline probes 

and pre- and posttests from Multiplication Facts 0 to 81, as well as researcher developed 

daily lesson sheets. They found that each student improved substantially based on a 

comparison of the participants’ pre- and posttest scores. One student improved his/her 

ability to solve multiplication computation and word problems by 20%, another by 40%, and 

the 3rd by 70%. Morin and Miller (1998) were able to establish functional relation between 

the CRA instructional sequence and students’ scores on multiplication and word problem 

tasks. This study demonstrated that students with more significant academic needs can 

benefit from the CRA instructional sequence (Morin & Miller, 1998). Morin and Miller 

discussed two main limitations. First, the authors pointed out that the results of this study 

were not generalizable to a broader population since their study was implemented with only 

3 seventh-graders. Additionally, Morin and Miller did not compare the CRA instructional 

sequence to other math interventions or strategies.  

 

CRA Instructional Sequence and Fraction Concepts 

Butler et al. (2003) conducted a study with students with mild to moderate disabilities 

in grades 6-8 to determine if there were differences in the pre- and posttest scores for 

students exposed to the CRA instructional sequence or Representational Abstract (RA) 

mathematics instruction pertaining to fraction concepts. Twenty-four students were exposed 

to 10 lessons involving the RA sequence, while 26 students were exposed to 10 lessons 
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involving the CRA instructional sequence. The posttests of an additional 65 students in 

general education mathematics classrooms were compared to determine what mathematical 

concepts “typical” same age peers were able to master (Butler et al., 2003). The measures 

used by Butler et al. included pre- and posttests composed of three subtests from the 

Brigance Comprehensive Inventory of Basic Skills-Revised (CIBS-R) (Brigance, 1999) (as 

cited in Butler et al., 2003) and two additional researcher designed subtests. The students in 

the CRA instructional sequence group were exposed to concrete depictions and 

manipulative devices in the first three lessons, followed by another three lessons utilizing 

representational drawings, and the last four lessons focused on working with the 

mathematical concepts in an abstract algorithm (Butler et al., 2003). A paired samples t test 

indicated that students in both the RA and CRA instructional sequence groups improved on 

all outcome measures and a MANCOVA indicated that the students in the CRA 

instructional sequence group had significantly higher posttest scores when compared with 

the RA group. A MANOVA comparing both the RA and CRA instructional sequence 

groups to the group of typical peers found that the students in the intervention groups were 

able to master approximately the same amount of content at the same level as their peers in 

general education (Butler et al., 2003). The results of this study indicated that the CRA 

instructional sequence is effective in improving the mathematic performance of middle 

school students with disabilities. Butler et al. indicated that some of the main limitations of 

this study included the short time frame of implementation, a lack of follow-up data, and 

that the results of the intervention could not be generalized to students with disabilities other 

than learning disabilities.  
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CRA Instructional Sequence and Algebra 

 Witzel (2005) conducted a study comparing the pre- and posttest scores of sixth- and 

seventh-grade students with and without learning disabilities receiving traditional abstract 

mathematics instruction with those receiving a CRA instructional sequence in mathematics 

to determine the effects of the CRA instructional sequence on students’ ability to solve linear 

algebraic functions. Witzel developed the assessments used for this intervention and had 

them reviewed by experts to ensure they were appropriate and aligned with the content 

involved in the intervention. The intervention focused on teaching 5 math skills in 19 

lessons (Witzel, 2005). For the 108 students in the CRA instructional sequence group, the 1st 

day of instruction for each concept focused on concrete depictions and models, the 2nd day 

incorporated pictorial representations, and the 3rd and 4th days connected these concepts to 

abstract algorithms. The 123 students in the control group received traditional abstract 

instruction for all class sessions. Results indicated that both groups showed significant 

improvement between pre- and posttests. Students in the CRA instructional sequence group 

outperformed the students in the abstract group on the posttest, as demonstrated by a 

statistically significant difference between scores per instructional group (Witzel, 2005). This 

indicates that the CRA instructional sequence was successful in improving the students’ 

ability to solve algebra problems. The results of this study also indicated that the CRA 

instructional sequence was effective in improving the performance of students with low, 

medium, and high mathematical abilities. One of the limitations of this study was that, based 

on the high standard deviations of the results for both the RA and CRA groups, neither 

strategy had an immediate effect for all students. This finding could be due to students being 

at different levels of readiness for algebra. Currently, algebra performance is typically 

predicted by arithmetic skill. However, due to the complexities of algebra, as well as the 
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many different thought processes required for algebra, basing students’ readiness for algebra 

solely on their arithmetic skill may not be accurate. Witzel recommended that additional 

research be conducted to evaluate student variables that could affect performance in algebra. 

 Witzel, Mercer, and Miller (2003) conducted a similar study comparing the pre- and 

posttest outcomes of sixth- and seventh-grade students between groups receiving traditional 

abstract instruction and a CRA instructional sequence. All of the students who participated 

in the Witzel et al. study were either low performers in math or students receiving special 

education services. Witzel et al. defined low-performing math students as those who were 

described by their teachers as having below average performance in math class, scored below 

the 50th percentile in math on statewide achievement tests, and were from low socio-

economic backgrounds. Each group of students participated in 19 lessons designed to 

instruct students how to simplify and solve algebraic equations with variables on both sides 

of the equal sign. The experimental group received a CRA sequence of instruction, while the 

control group received only abstract instruction. Witzel and his colleagues again developed 

the pre- and post assessments used in this study based on the curriculum and had experts 

review the assessments (Witzel et al., 2003). This study followed the same design as the 

Witzel (2005) study and demonstrated larger, statistically significant differences between pre- 

and posttest scores for both groups. The 34 students in the CRA instructional sequence 

group outperformed the 34 students in the traditional abstract condition and had fewer 

computation errors on the posttest, although the differences between the CRA and abstract 

groups were not statistically significant on the posttest. The CRA instructional sequence 

group also outperformed the traditional abstract group on a follow-up test 3 weeks after the 

conclusion of the intervention (Witzel et al., 2003). The results of this study indicated that 

students exposed to the CRA instructional sequence improved their mathematics 
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performance at a greater rate than those exposed to traditional abstract instruction. Witzel et 

al. pointed out two main limitations of this study. First, the assessment used was not 

externally validated, and may have been too difficult, based on teacher feedback. 

Additionally, the 19 lessons implemented in this study followed a sequence of instruction 

typically found in algebra textbooks. While the sequence of instruction has been found to 

affect students’ performance, little scientific research has assessed the sequence of algebra 

instruction found in most textbooks. Therefore, a poor sequence of instruction could 

contribute to students’ scoring low in math.  

 The CRA instructional sequence has also been effective in teaching eighth- and 

ninth-grade students with learning disabilities more advanced algebra content, specifically 

how to multiply linear algebraic expressions within the context of area problems (Strickland 

& Maccini, 2012). In their multiple-probe design across participants study, Strickland and 

Maccini (2012) integrated the concrete, representational, and abstract phases of instruction, 

rather than isolating each phase into different lessons. All of the assessments used in this 

study were designed by the researchers and reviewed by experts. The domain probes were 

designed to assess all objectives in the instructional unit. The lesson probes were developed 

to assess objectives of individual lessons, and were administered at the end of each lesson. A 

final measure, a transfer probe, was developed to assess students’ performance on novel 

problems, and included three tasks that synthesized the concepts taught during the 

intervention. Strickland and Maccini assessed students’ performance on the three domain 

probes administered prior to the intervention, following the intervention, and 3 to 6 weeks 

after the intervention. In addition, Strickland and Maccini also assessed students at the end 

of each lesson using lesson probes. A final transfer probe was also administered to 

determine how readily students were able to transfer the knowledge learned during the 
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intervention to unique prompts. The 3 participants in their study showed immediate 

improvements following the three 40-minute intervention lessons, and 2 of the 3 correctly 

solved over 95% of items on a maintenance measure administered 3 and 6 weeks following 

the intervention (Strickland & Maccini, 2012). Additionally, 1 student scored 83% on an 

assessment item administered to assess the degree to which students were able to transfer 

the strategies learned in the intervention to novel problems (Strickland & Maccini, 2012). 

The other two students scored 67% and 50% on the transfer item, which still reflects a 

promising degree of transfer (Strickland & Maccini, 2012). All 3 of the students also found 

the intervention to be socially acceptable, based on their responses on Likert scale questions 

and open-ended questions on a questionnaire developed by the researchers (Strickland & 

Maccini, 2012). All of the students indicated that the CRA instructional sequence was 

helpful, the intervention was enjoyable and fun, and they would recommend it to other 

students (Strickland & Maccini, 2012). The authors suggested that using an integrated CRA 

instruction sequence could be one method of differentiation used in classes in which general 

and special education students receive instruction in an inclusive setting (Strickland & 

Maccini, 2012). The authors discussed a few key limitations of their study. First, because the 

study included only three participants who received individualized instruction, more research 

is needed to establish external validity. Additionally, the study was limited in that it addressed 

only one math concept and was conducted with individual students as opposed to a group 

setting (Strickland & Maccini, 2012).  
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Summary of CRA Instructional Sequence Research 

 The preceding studies demonstrated that the CRA instructional sequence may be 

effective in teaching students with and without disabilities who struggle with math concepts 

(Butler et al., 2003; Flores, 2009; Flores, 2010; Flores, Hinton, & Schweck, 2014; Flores, 

Hinton, & Strozier, 2014; Mancl, Miller, & Kennedy, 2012; Miller & Kaffar, 2011; Morin & 

Miller, 1998; Strickland & Maccini, 2012; Witzel, 2005; Witzel, Mercer, & Miller, 2003). In 

particular, the CRA instructional sequence has been a promising practice for teaching high 

level content, such as algebra (Strickland & Maccini, 2012; Witzel, 2005; Witzel, Mercer, & 

Miller, 2003). The successes of the CRA instructional sequence in teaching algebra concepts 

to students with disabilities demonstrated promising future directions for this strategy, as the 

CCSSM prioritize algebra readiness for all students (National Governors Association Center 

for Best Practices and Council of Chief State School Officers, 2012). The next section will 

detail how the CRA instructional sequence could specifically align with the CCSSM.  

 

CRA Instructional Sequence and Common Core 

 The research conducted thus far on the CRA instructional sequence indicated that it 

may be a promising strategy to help students with disabilities adapt to the rigorous CCSSM 

(Flores, Hinton, & Schweck, 2014; Flores, Hinton, & Strozier, 2014). The primary challenges 

students will face in adapting to the CCSSM are solving complex, novel problems on 

assessments aligned with the CCSSM, and also demonstrating more conceptual 

understanding. Two of the main areas of difficulty students face in mathematics currently 

include overreliance on formulas, as well as a lack of conceptual understanding (Alberti, 

2013; NCTM, 2013; NMAP, 2008; Shifter & Granofsky, 2012). The CRA instructional 

sequence has the potential to address these areas of need because it provides a strategy that 
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students can use independently on assessments, even if they forget a formula, because the 

CRA instructional sequence is rooted in conceptual understanding of math content (Flores, 

Hinton, & Schweck, 2014; Flores, Hinton, & Strozier, 2014; Mancl, Miller, & Kennedy, 

2012; Miller & Kaffer, 2011; Strickland & Maccini, 2012; Strom, 2012). The CRA 

instructional sequence also incorporates multiple representations and provides students with 

a method to model with mathematics, reason abstractly and quantitatively, and look for and 

make use of structure, all of which are reflected in the SMP (National Governors 

Association Center for Best Practices and Council of Chief State School Officers, 2012; 

Strickland & Maccini, 2012). Additional research should be conducted to determine the 

effectiveness of the CRA instructional sequence in the context of CCSSM implementation. 

Currently, there is evidence that students struggle with transitioning between the 

representational and abstract phases in the CRA sequence of instruction (Strickland & 

Maccini, 2012), demonstrating a need for research to determine if there are strategies that 

can be combined with the CRA instructional sequence to improve students’ ability to 

transition between these phases. One strategy that has the potential to assist students with 

developing this skill is writing to learn mathematics, which will be detailed in the following 

section.  

 
 

Writing as a Vehicle for Learning 
 

The concept of writing to learn (WTL) developed from cognitive theories 

demonstrating that writing is a unique linguistic practice that provides individuals with an 

opportunity for inner dialogue, allowing them to engage in self-reflection, further explore 

and understand the world, and solve problems (Emig, 1977; Klein & Yu, 2013; Lindemann, 

1987; Vygotzsky, 1962). Additionally, writing is both a process and a product (Vygotsky, 
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1962). Writing can both be used to process and learn material, and serve as a permanent 

product through which to assess students’ understanding. As evidenced by several 

metaanalyses of writing to learn studies, writing may be a promising intervention for 

improving content area knowledge ranging from psychology, literature, social studies, 

science, to math (Bangert-Drowns, Hurley, & Wilkinson, 2004; Graham, McKeown, 

Kiuhara, & Harris, 2012; Klein & Yu, 2013). The success of WTL strategies has been 

evidenced from prekindergarten to higher education levels, and is likely due to the unique 

features of writing that promote intensive and varied avenues for learners to engage more 

intimately with the material (Emig, 1977). Two main reasons have been proposed for why 

writing is an effective strategy for learning. First, writing about concepts learned is a unique 

form of communication that allows students to access a higher level of thinking. 

Additionally, writing is a form of self-discovery and reflection that helps increase student 

understanding (Lindemann, 1987; Vygotzky, 1962).  

Writing is an effective mechanism to help students learn because it provides a 

structure to communicate information. The act of communicating via writing is different 

than talking because writing requires that the writer provide any necessary context or 

background essential for understanding, whereas a speaker could rely on visual and social 

cues (Emig, 1977; Hebert, Gillespie, & Graham, 2013; Lindemann, 1987; Vygotsky, 1962). 

This means that writers must provide maximal detail (i.e., precise word choice, clear 

elaboration of ideas through the use of examples, etc.) to clearly communicate the context to 

their intended audience.  Writing aims to communicate understanding of a subject to 

someone, and a writer only has words to convey his/her meaning (Emig, 1977; Lindemann, 

1987). In order to convey their understanding, writers have to necessarily detach themselves 

from the actual content or situation to be able to represent it in their own words (Vygotsky, 
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1962). This level of abstraction necessitates a higher level of understanding regarding the 

concepts being written about (see Gillespie, Graham, Kiuhara, & Hebert, 2014).  

Writing also helps students learn because it is a form of self-discovery and reflection. 

The process of writing involves moving fluidly between thought and word, which requires 

constant reflection. Throughout this process, students are able to connect ideas to one 

another, which allows for further development of relationships between concepts (Emig, 

1977; Vygotsky, 1962). Writing helps people understand the world and themselves. 

Especially within specific career fields that have particular jargon and vocabulary, writing can 

help students master unique vocabulary and discourse. This mastery provides them with 

increased opportunities to access careers and college (Lindemann, 1987). As a product, 

writing also allows the learner to demonstrate and communicate his or her understanding of 

concepts. Therefore, writing is a productive process that helps students learn, and results in a 

product that is useful for students to communicate their understanding.  

 

Writing to Learn Research 

Writing to learn has been studied extensively for over 30 years, and metaanalyses of 

WTL studies demonstrate overall positive effects (Bangert-Drowns et al., 2004; Graham & 

Hebert, 2011). In a review of 50 WTL studies, Bangert-Drowns et al. (2004) found that 

WTL had small but positive effects on school achievement (average weighted effect size for 

WTL studies overall was 0.17 standard deviations), and Graham and Hebert (2011) reported 

that WTL studies improved reading comprehension in their review of 95 studies (average 

weighted effect sizes for each research question of the study were 0.22, 0.35, and 0.37). 

Bangert-Drowns et al. found that writing involving reflection on current knowledge, 

confusion, and the learning process was more effective than personal writing. The two meta-
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analyses had slightly different findings regarding for which school level WTL was most 

effective. Bangert-Drowns et al. found that WTL had significant, but lower, effects in grades 

6-8 than elementary or high school levels, whereas Graham and Hebert found that the 

highest effect sizes were at the middle school level, followed by high school. Based on these 

conflicting results, studies incorporating WTL activities especially at the secondary level, are 

necessary to further determine which types of writing are most effective, as well as for which 

subjects writing to learn provides the most benefit (Klein & Yu, 2013).  

 

Writing to Learn Mathematics 

Educational theorists began to consider the potential benefits of using writing to 

improve math understanding in the early 1980s, in part due to the emerging success of 

writing as a vehicle to learn reading and other content areas, as well as to address frustrations 

with the inadequacy of basic skills instruction in U.S. public education (Bell & Bell, 1985). 

Writing may particularly assist students in becoming more proficient in math due to parallels 

between the cognitive functions of writing and problem-solving (Bell & Bell, 1985; 

Lindemann, 1987; Wallas, 1926). Both writing and math require students to engage with 

multiple representations of concepts; writing requires transferring between spoken, written, 

and read information, while math necessitates connecting symbolic, numeric, and linguistic 

representations. Due to the high level of abstraction found in both math and writing, 

combining these content areas may provide students with additional methods to engage with 

the material more fluently (Bell & Bell, 1985). Whereas specific approaches to writing to 

learn math (WTLM) vary, all typically involve students writing about their experiences with 

math. For example, students may write in math journals to discuss their feelings towards 

math, if they are improving, and/or what they find confusing. Students could also write to 
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plan out how to approach solving a problem, to reflect on how they solved a problem, or to 

construct an argument in defense of their answer. Studies have suggested rubric criteria with 

which to assess WTLM, including the use of appropriate mathematical language, use of 

specific examples, the inclusion of mathematical representations as support for ideas, and 

the use of appropriate mathematical notation (Stonewater, 2002). Additionally, it is 

recommended that distinctions be made in the quality of mathematical writing based on 

whether the writing summarizes (i.e., reports steps completed to solve the problem), or 

presents dialogue about mathematics (i.e., poses critical questions, analyzes, and makes 

connections between math concepts; Craig, 2011). 

 

The Connection Between Writing and Problem-Solving 

 The specific processes in math problem-solving and writing fall in the planning 

stages undertaken when composing a piece of writing or approaching and solving a problem 

(Lindemann, 1987). The root of these cognitive similarities lies in how humans approach all 

problem-solving attempts, which was originally outlined by Wallas in The Art of Thought 

(1926) (as cited in Bell & Bell, 1985). Wallas identified four steps involved in solving any 

problems: preparation, incubation, illumination, and verification. Preparation involves 

defining the problem at hand, incubation describes the process of reflecting on the problem 

and considering multiple ways of approaching it, illumination refers to the stage at which a 

strategy is employed to solve the problem, and verification is the final stage of the process in 

which the solution is tested (Bell & Bell, 1985; Wallas, 1926).  This process takes the specific 

form in the math context of determining what information a math problem is asking for, 

setting up the problem and considering how to solve it, engaging in the calculations to solve 

the problem, and checking the answer. For writing, the process is seen in the stages of 
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selecting a topic, determining what to say about the topic and outlining the written response, 

writing a draft, and revising the written product (Bell & Bell, 1985). Using WTLM can 

therefore be successful for skills in both content areas, as “their underlying processes are so 

very similar, practice in one area can reinforce competency in both by strengthening the 

student’s critical thinking ability” (Bell & Bell, 1985, p. 213).  

 

Research on Writing to Learn Mathematics 

 Researchers have investigated WTLM with a variety of grade levels and math 

content, both to gain insight into students’ understanding of math concepts (Craig, 2011; 

Gopen & Smith, 1990; Stonewater, 2002; Waywood, 1994), as well as to measure changes in 

math performance due to writing (Albert, 2000; Bell & Bell, 1985; Evans, 1984; Kostos & 

Shin, 2010; Porter & Masingila, 2000). The majority of studies showed positive results 

relating to students’ math assessment scores, confidence and feelings towards math, and 

abilities to express mathematical thinking through writing (Akkus & Hand, 2011; Albert, 

2000; Bell & Bell, 1985; Craig, 2011; Evans, 1984; Gopen & Smith, 1990; Kosko & Norton, 

2012; Kostos & Shin, 2010; Kroll & Halaby, 1997; Miller & England, 1989; Porter & 

Masingila, 2002; Stonewater, 2002; Waywood, 1994). In addition to the studies on WTLM 

that have been published, numerous research articles discussed the theoretical concepts of 

WTLM and provided support to educators attempting to implement it in their classrooms 

(Baxter, Woodward, Olson, & Robyns, 2002; Bosse & Faulconer, 2008; Burns, 2004; Burns 

& Silby, 2001; Countryman, 1993; Flores & Brittain, 2003; Goldsby & Cozza, 2002; 

McIntosh & Draper, 2001; Miller, 1991; O’Connel et al., 2005; Rider-Bertrand, 2012; Ryan, 

Filero, Cheland, & Zambo, 1996). To date, all of the studies on WTLM have been 

implemented with students in general education settings. In light of the promising research 
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base on WTLM, additional research is needed to explore the wide-ranging potential benefits 

of WTLM, including its potential use in interventions with students with disabilities. 

 

Research on Using Writing to Gain Insight Into Student Understanding 

 Much of the research on WTLM pertains to analyzing students’ writing to gain 

insight regarding how students think about various math concepts. Waywood (1994) 

implemented a qualitative study to analyze how questioning operated in students’ 

mathematical writing. Waywood used an exegetical method of analysis to determine the 

extent to which questioning in math journals can be used to create learner profiles. 

Exegetical analysis “aims to understand the meaning of a text by a sensitive reading and 

analysis of the inter-relatedness of the parts to the whole” (Waywood, 1994, p. 327). 

Waywood evaluated written math responses of 3 10th-grade students in an all-girls’ high 

school that implemented writing in mathematics as part of its curriculum across all grade 

levels. Through interviews with students and evaluation of their writing in math, Waywood 

determined that students who had a higher level of sophistication in writing, as evidenced by 

the use of specific math vocabulary and accurate descriptions of concepts, also scored higher 

in math. Waywood also found that writing in math was favored positively by students, about 

which he concluded, “journals, as a learning tool, address the needs of the person to reflect 

on and integrate their experience of schooling in mathematics” (Waywood, 1994, p. 339). 

Waywood also analyzed one student’s writing in ninth-grade and then in 11th-grade, to get a 

sense of how journal writing, questioning, and mathematical thinking changed over the 

course of 3 years. Waywood found this particular student’s questioning grew in complexity 

over time, which provided additional evidence for the correlation between writing and the 

development of mathematical thinking. Waywood’s study demonstrated that writing can also 
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provide a valuable method to witness students’ cognitive processes in solving math problems 

and therefore gain more information about students’ math understanding. Although 

Waywood’s study provided promising results for the power of WTLM, it lacked 

experimental control, as many factors other than journal writing could have contributed to 

the improvements in students’ questioning and math scores on assessments. Additionally, 

Waywood’s study was implemented with a specific population of students in general 

education, so it did not provide insight regarding whether math journals could provide 

similar benefits to students with disabilities.  

 

Writing to Learn in Calculus 

Researchers have used writing to develop further understanding of students’ thinking 

in calculus (Craig, 2011; Gopen & Smith, 1990; Kosko & Norton, 2012; Porter & Masingila, 

2000; Stonewater, 2002). Kosko and Norton (2012) conducted a study to determine if 

preservice teachers could engage in written communication with high school calculus 

students that would demonstrate the high school students’ understanding of the SMP found 

in the new CCSSM. Kosko and Norton paired 27 preservice mathematics teachers with one 

precalculus student each. The preservice teachers and the students wrote six letters to one 

another about discrete mathematics. Kosko and Norton found, through external review of 

the letters, that the majority of the preservice teachers were able to get students to use 

representation (i.e., diagrams) or communication (i.e., written descriptions)- based SMP, but 

rarely both (Kosko & Norton, 2012). While representation and communication are both 

viewed as parts of the problem-solving process, typically students are most comfortable with 

one or the other. Kosko and Norton concluded from their study that math teachers should 

encourage students to use both math representation and written communication, as “using 
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both processes in conjunction . . . may help students make connections between two 

processes that appear to be often separated” (Kosko & Norton, 2012, p. 347). Additionally, 

Kosko and Norton identified letter writing as a potentially effective strategy to link written 

and representational math expression. Kosko and Norton’s study was limited, as it was a 

case study implemented only with general education students, and did not involve the 

assessment of math achievement.  

 Craig (2011), Gopen and Smith (1990), and Stonewater (2002) conducted studies 

with college-level calculus students to determine criteria that indicate higher levels of 

mathematical understanding in students’ writing. In each of these studies, the authors 

concluded that WTLM improves students’ math problem-solving ability, as indicated by 

students’ written responses and test performance (Craig, 2011; Gopen & Smith, 1990; 

Stonewater, 2002). Additionally, each author found that students who used correct and 

specific math terminology and vocabulary, relevant examples to illustrate concepts, and 

multiple modes of representation to convey their ideas performed better than students 

whose responses did not include these traits (Craig, 2011; Gopen & Smith, 1990; Stonewater, 

2002). These findings are helpful in establishing key criteria to use when evaluating students’ 

writing in WTLM.  

 The research on WTLM discussed thus far (Craig, 2011; Gopen & Smith, 1990; 

Kosko & Norton, 2012; Stonewater, 2002; Waywood, 1994) demonstrated that writing may 

be an effective mechanism to gain insight into students’ understanding, which may provide 

educators with valuable information to use when planning and implementing instruction. 

Although the previous studies did not explicitly evaluate the changes in students’ math 

performance as a result of writing, several studies have assessed changes in students’ math 

outcomes, which will be discussed in the following section.  
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Research Measuring Change in Math Performance Related to Writing Tasks 

 While the majority of studies on WTLM have focused on higher level math content 

generally taught at the high school or postsecondary level, the few studies conducted with 

elementary school students to teach basic math concepts have provided initial evidence of 

the effectiveness of WTLM (Evans, 1984; Kostos & Shin, 2010). Kostos and Shin (2010) 

conducted a mixed methodology action research project with 16 students in second grade to 

determine if math journals improved students’ ability to communicate mathematically. 

Students were assessed prior to and following a 5-week unit on problem-solving and 

patterns using a math assessment obtained from a state’s department of education (Kostos & 

Shin, 2010). The math journals, which were written in approximately three times per week, 

were also assessed using the Saxon Math Teacher Rubric for Scoring Performance Tasks (Larson, 

2008; as cited in Kostos & Shin). This rubric evaluated students’ responses for processes and 

strategies expressed, for level of knowledge and skills understanding, and for communication 

and representation (Kostos & Shin, 2010). As additional sources of data, Kostos and Shin 

interviewed the students and completed teacher-researcher reflection journals. Kostos and 

Shin found that the majority of students improved their math thinking, math 

communication, and increased their use of math vocabulary. Additionally, math journals 

were found to be an effective assessment tool that provided teachers with valuable insight 

regarding students’ understanding of math concepts (Kostos & Shin, 2010). Although 

Kostos and Shin conducted this study with students who were not receiving special 

education services, this study suggested that even very young students, who may have 

rudimentary writing skills, may benefit from WTLM. This study was limited, in that it was 

conducted only with one classroom of students and one teacher-researcher. Additionally, the 

results did not connect mathematical communication to general math computation, so it is 
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unknown the extent to which writing helped students improve their mathematical 

computation (Kostos & Shin, 2010).  

 Evans (1984) conducted a quasi-experimental group study, using her fifth-grade 

classroom composed of 22 general education students as a treatment group and another 

fifth-grade classroom composed of 6 gifted students and 17 general education students as a 

comparison group, to determine if writing improved students’ understanding of 

multiplication and geometry concepts. Evans used three main types of writing in her study, 

including prompts in which students had to explain how to solve problems, writing about 

the definitions of math vocabulary, and writing to explain and correct errors made. Evans 

found that even though the pretest scores of her students were lower than those of the 

control group, her students had higher scores than the control group on the teacher-

designed end of unit tests for both multiplication and geometry. Statistical analyses were not 

run for the differences in pretest scores between groups, the change in scores from pre- to 

posttest within each group, or the differences in posttest scores between groups, so it is 

unknown whether these differences were statistically significant. While lacking experimental 

control and methodological rigor, Evans’ study suggested that WTLM may help average 

fifth-grade students make significant gains in foundational concepts.  

 

Writing to Learn in Secondary Math 

 WTLM researchers at the secondary level have focused on general problem-solving 

and math abilities (Albert, 2000; Bell & Bell, 1985; Waywood, 1994), algebra (Akkus & 

Hand, 2011; Miller & England, 1989), precalculus (Kosko & Norton, 2012), and calculus 

(Craig, 2011; Gopen & Smith, 1990; Porter & Masingila, 2002; Stonewater, 2002). Bell and 

Bell (1985) conducted a pilot study incorporating a group design with ninth-grade students 
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in general math to determine if WTLM improves students’ math proficiency. The 

experimental group of 18 students in this study received traditional math instruction with the 

addition of a structured expository writing component. The writing incorporated into the 

intervention involved students writing about the math processes used to solve problems, as 

well as writing other problems and problem contexts (Bell & Bell, 1985). The 20 students in 

the comparison group received traditional math methods. Results indicated that the 

experimental group scored significantly higher than the comparison group on the posttest 

following the 4-week WTLM intervention. Through their pilot study, Bell and Bell 

demonstrated that WTLM can improve students’ problem-solving, likely because 

“exposition allows them to become more aware of their thinking processes and more 

conscious of the choices they are making as they carry out the computation and analysis 

involved in solving math problems” (Bell & Bell, 1985, p. 220). Bell and Bell’s study was 

limited in that it was conducted with a small group of students in general education math, so 

their results cannot be generalized to students with disabilities or broader populations. 

 Albert (2000) conducted an interpretative case study with seventh-grade students to 

explore the evolution of thought processes during a 14-week study. Albert implemented an 

instructional strategy involving group discussions and individual writing in math, as well as 

group evaluation of solutions. Albert’s study included 7 seventh-grade students in a 

treatment group and three comparison groups. Albert analyzed students’ completion of 

math problems and writing samples. Additionally, she asked the students questions about 

their attitudes towards math during semistructured group interviews. The interviews and 

writing samples involved students’ solving math problems, describing math problems in 

their own words, and explaining their reasoning. Albert found that the instructional 

strategies implemented for the intervention, which included WTLM, improved students’ 
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understanding of problem-solving and performance on problems, as well as their attitudes 

towards math, at higher levels than the control groups. Writing allowed students to reflect 

on their understanding and thought processes in a structured manner. This practice allowed 

students to develop a deeper level of understanding of fundamental math concepts rather 

than relying on formulas (Albert, 2000). Albert’s study suggested that WTLM may improve 

students’ math understanding, but is limited because it was implemented with only a limited 

selection of general education students. Albert’s study also did not include analysis of 

students’ scores or responses prior to the implementation of the intervention, so it is 

unknown to what extent the instructional methods employed were responsible for 

improvements in math understanding.  

 

Writing to Learn Versus Discussion-Based Activities in Calculus 

 WTLM researchers have primarily focused on calculus in higher education settings, 

and their studies have usually involved evaluating students’ written responses to determine 

criteria that indicate level of mathematical understanding (Craig, 2011; Gopen & Smith, 

1990; Stonewater, 2002). One exception is a study conducted by Porter and Masingila (2000) 

to determine whether students gained similar benefit from writing as they did from 

discussion. Porter and Masingila’s study incorporated a qualitative group design, in which 

they analyzed and compared students’ errors and responses on four course exams based on 

their membership in two separate sections of an introductory university calculus course. The 

same instructor taught each section of the course, but one section received WTLM activities, 

whereas the comparison section received identical instruction without writing assignments. 

The experimental (WTLM) group was composed of 15 students, whereas the comparison 

group was composed of 18 students. Both sections focused on the same concepts and 
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procedures, but the section receiving WTLM were given in and out of class writing 

assignments focused on explaining course ideas, discussing the relationship between course 

concepts, and writing their thoughts about concepts and procedures of the course. Over the 

span of one semester, Porter and Masingila analyzed and categorized the responses and 

errors students made on each exam, and compared the two groups to determine if there was 

a correlation between WTLM and performance on exams. Porter and Masingila found that 

there were not significant differences between the class section that used WTLM practices 

and the section that used discussion based methods. They concluded that the real benefit 

that has been found in WTLM studies may have more to do with getting students to deeply 

and critically engage in the math material at a level that allows them to communicate their 

thinking with others (Porter & Masingila, 2000). This study’s conflicting evidence 

necessitates additional research be conducted on WTLM principles.  

 

Writing to Learn Mathematics and Common Core 

 Further research is needed on WTLM in light of the implementation of the CCSSM 

and SMP because WTLM may have unique features that provide assistance in transitioning 

to the common core standards, as well as addressing the challenges faced in mathematics in 

the U.S. currently. First, the assessments aligned with the new CCSSM require that students 

be able to express their reasoning for how they solved problems, as well as justify their 

solutions in writing (Bosse & Faulconer, 2008; Kostos & Shin, 2010). These assessments will 

likely be difficult for the majority of U.S. students, due to having historically demonstrated 

specific challenges with conceptual understanding and problem-solving (Alberti, 2013; 

NCTM, 2013; NMAP, 2008; Shifter & Granofsky, 2012). Students who are overly reliant on 

formulas often lack conceptual understanding, which makes it very difficult to describe the 
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processes used in solving problems, or to justify why they know their answer is correct 

(Strickland & Maccini, 2012; Strom, 2012). WTLM could provide a solution to these 

struggles, as it explicitly provides a structure for students to explain their understanding 

conceptually (Bosse & Faulconer, 2008; Kostos & Shin, 2010).  

 WTLM may also provide teachers with a strategy to facilitate efficient 

implementation of the SMP in their teaching. Teachers and students view WTLM favorably 

(Akkus & Hand, 2010; Miller & England, 1989) and writing has been demonstrated to tie 

directly to the SMP (Kosko & Norton, 2012). Teachers may struggle with finding ways to 

implement the SMP in their teaching naturally and consistently (Schifter & Granofsky, 2012). 

WTLM ties directly to the SMP expectations of constructing viable arguments and critiquing 

the reasoning of others, as well as attending to precision (National Governors Association 

Center for Best Practices and Council of Chief State School Officers, 2012). Additional 

research should be conducted to determine if WTLM can be implemented in an effective 

and efficient manner to integrate the SMP into the teaching of mathematics at multiple grade 

and content levels. Research is also needed to determine if WTLM can be implemented 

successfully with students with disabilities, especially since WTLM has never been studied 

with this population. Implementing WTL in conjunction with math instructional strategies 

geared towards improving conceptual understanding may provide an efficient and effective 

process to improve students’ overall math achievement, in particular with complex algebra 

concepts that are traditionally taught with primarily abstract methods, such as rate of change. 

The following section will discuss the importance of rate of change and provide an overview 

of the research conducted thus far on rate of change.    
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Rate of Change and Students With Disabilities 

 While more resources and attention have been dedicated to math education research 

recently, there is a severe lack of research on effective instructional and remedial strategies 

for teaching students at the secondary level, especially strategies specific to low-performing 

groups, such as students with disabilities (Butler, Miller, Crehan, Babbitt, & Pierce, 2003; 

Graham & Hebert, 2011; Saunders, Bethune, Spooner, & Browder, 2013; Strickland & 

Maccini, 2012; Witzel, Mercer, & Miller, 2003). Early intervention, while important, is not 

adequate to address the challenges of teaching older students advanced math content. 

Algebraic proficiency is increasingly vital for students to graduate from high school, attend 

higher education, and access jobs ranging from manufacturing to science, technology, and 

engineering career fields (Bell & Norwood, 2010; Fuchs et al., 2008; Fullerton, 1995; NMAP, 

2008; Schmidt & Burroughs, 2013). Given the current trend for students in lower grades in 

the U.S. to perform at higher levels of relative proficiency than older students (NCES, 2013; 

Schmidt & Burroughs, 2013) it is essential that strategies for teaching algebra content to 

older students be developed and researched to improve student achievement. This need is 

amplified with implementation of the CCSSM, which will likely pose difficulties for students 

with disabilities because they prioritize conceptual understanding and are more rigorous 

(Dingman et al., 2013; Saunders et al., 2013). While students with disabilities struggle in 

many areas of math taught in the CCSSM, rate of change is particularly important because it 

is an algebraic concept that is emphasized heavily in the secondary core of the CCSSM 

(National Governors Association Center for Best Practice & Council of Chief State School 

Officers, 2012b).  
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Importance of Rate of Change  

 Rate of change is the concept of a unit per unit change in quantities (Bezuidenhout, 

1998), and is described by a ratio comparing two different, numeric measurable quantities 

(Herbert & Pierce, 2012). For example, rate of change is often computed for problems that 

involve finding the average miles per hour given a set of speeds and times. Rate of change is 

often referred to as slope in the context of graphing linear equations, and is usually taught as 

the change in y over the change in x. Rate of change is a key area to target for secondary 

level intervention, as it is a concept that spans all five of the high school domain areas in the 

CCSSM, which include algebra, functions, modeling, geometry, and statistics and probability 

(National Governors Association Center for Best Practice & Council of Chief State School 

Officers, 2012b). Rate of change is a concept that is first introduced in algebra as slope with 

linear equations, but continues and is extended in higher level mathematics in functions, 

limits, and derivatives (Teuscher & Reys, 2012). Rate of change is a concept that is found in 

calculus, engineering, and physics. Therefore, students with disabilities who struggle with 

rate of change may be impacted in negative ways in other content areas, such as science. 

Additionally, rate of change is particularly important for students with disabilities to 

understand because it is a concept that is important for everyday life and personal choices. 

Knowledge of rate of change can help individuals with functional skills, such as accurately 

reading a map, calculating interest on a loan, or selecting a phone plan (Hebert & Pierce, 

2012). Recent surveys reveal that over half of the adults in the U.S. lack this understanding 

(Herbert & Pierce, 2011; NMAP, 2008; Piper, Marchand-Martella, & Martella, 2010). This 

poses serious risks for individuals’ economic independence as well as for U.S. global 

economic standing (NMAP, 2008).    
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Research on Rate of Change 

Rate of change is an area of mathematics that poses many difficulties for students, 

both with and without disabilities (Adjiage & Pluvinage, 2007; Herbert & Pierce, 2012). Only 

12% of eighth-grade students were able to solve problems comparing rates of change on the 

NAEP in 1996 (Jitendra et al., 2009). Despite the importance and wide applicability of rate 

of change, there is little research on this topic. The majority of research conducted thus far 

on rate of change has focused on analyzing students’ understanding of the concepts of rate 

of change, slope, and steepness (Hattikudor et al., 2012; Herbert & Pierce, 2007; Herbert & 

Pierce, 2012; Stump, 2001; Teuscher & Reys, 2012; Teuscher, Reys, Evitts, & Heinz, 2010; 

Wilhelm & Confrey, 2003). Two quasi-experimental studies have compared students’ 

understanding of rate of change concepts based on students’ participation in single content 

or integrated pathway curricula (Teuscher et al., 2010; Teuscher & Reys, 2012). Just two 

experimental studies have assessed the effects of instructional strategies on students’ 

performance on rate of change assessments (Kramarski & Mevarech, 2003; Kramarski, 

2004). To date, no studies on rate of change have been implemented with students with 

disabilities. The difficulties students with disabilities may have with rate of change problems, 

and the effects of interventions targeting students’ with disabilities understanding of rate of 

change, are therefore currently unknown.  

 

Rate of Change Research at the College Level 

 Researchers studying rate of change concepts have primarily focused on college level 

students and their understanding of rate of change concepts in the context of advanced math 

content, such as calculus or physics (Bezuidenhout, 1998; Christensen & Thompson, 2012; 

Orton, 1984; Van Dyke & White, 2004). These researchers have discovered that even 
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advanced level students struggle with the concept of rate of change, often due to conceptual 

misunderstandings or a lack of conceptual knowledge (Bezuidenhout, 1998; Christensen & 

Thompson, 2012; Orton, 1984; Van Dyke & White, 2004). The fact that advanced level 

students struggle with rate of change is important to note, as it provides evidence of the 

need for more effective methods of instruction for rate of change concepts at the high 

school level.  

 

Rate of Change Research in the Context of Precalculus 

 Conceptual knowledge of rate of change is a foundational skill needed for calculus. 

Based on this connection, many researchers have assessed students’ understanding of rate of 

change concepts in precalculus, in part to guide teachers in how to better prepare students 

for calculus and teach concepts in calculus to reduce confusion (Herbert & Pierce, 2007; 

Herbert & Pierce, 2012; Stump, 2001; Teuscher et al., 2010; Teuscher & Reys, 2012). 

Herbert and Pierce (2012) conducted a qualitative study with 20 10th-grade Australian 

students to assess their understanding of rate of change. Herbert and Pierce interviewed the 

students using computer simulations of real-world contexts involving rate, such as when a 

window shade partially covering a square or an abnormally shaped window is raised or 

lowered. An additional real-world context involved comparing the rates of two figures that 

were walking. Students were shown a diagram depicting the real-world context, as well as a 

graph and table, and asked to describe how the rate was changing. Students’ responses 

ranged from those that revealed very little understanding of mathematical concepts of rate 

(i.e., students described rate referring to quality as opposed to numeric value), elementary 

understanding (i.e., rate associated with numeric value), and more nuanced conceptual 

understanding (i.e., rate as a relationship between quantities; Herbert & Pierce, 2012). Based 
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on their research, Herbert and Pierce discovered four critical aspects of rate of change that 

may address students’ gaps of knowledge about the concept. These four aspects include the 

following: (a) rate as a relationship between changes in two quantities, (b) rate as a 

relationship between changes in two quantities that may vary, (c) rate as a numerical 

relationship between changes in two quantities that may vary, and (d) rate as a numerical 

relationship between changes in two quantities that may vary and is applicable to any context 

(Herbert & Pierce, 2012). Herbert and Pierce suggested that these critical aspects be used to 

evaluate existing approaches to teaching rate of change. One limitation of this study was that 

student level variables (i.e., current math class, gender, etc.) that may have affected students’ 

understanding of rate of change concepts were not taken into account. Additionally, the 

study did not make any attempts to change students’ understanding of rate of change, but 

was instead conducted to gain information regarding students’ understanding of rate of 

change.  

 Herbert and Pierce (2007) conducted a similar qualitative study analyzing students’ 

use of gestures to explain their understanding of rate of change. Herbert and Pierce (2007) 

video-recorded interviews with 25 10th-grade students who were given the task of describing 

the rate of change in the real-world context of a window shade, as described in Herbert and 

Pierce’s (2012) study. Students’ responses were viewed several times, and their use of specific 

gestures was coded. The results of this analysis indicated that students had a good 

understanding of the basic concept of rate of change, but were not always able to put this 

understanding into words (Herbert & Pierce, 2007). Herbert and Pierce (2007) found that 

gestures helped students describe their reasoning, but that most students were unable to link 

graphic and numeric representations to rate of change. Additionally, Herbert and Pierce 

(2007) found that very few students had an understanding of variable rate of change, which 
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was depicted by an abnormally shaped window. Herbert and Pierce (2007) suggested that 

teachers incorporate the use of gestures in their teaching to help students understand more 

of the conceptual aspects of rate of change, and also to be able to gain more information 

about students’ understanding. This study was limited in that it only assessed average 

students’ understanding of rate of change, and did not evaluate the influence of student-level 

variables or instruction to change understanding.  

 Stump (2001) interviewed 22 precalculus students in high school to analyze their 

understanding of slope as a measure of rate of change. In her qualitative study, Stump asked 

students a series of questions about problems in multiple contexts, which included pictures, 

models, or graphs. The problems included contexts of steepness and ski ramps, percent 

grade of ramps, a bicycle experiment measuring wheel rotations, the cost of tickets for a 

junior class dance, growth rates related to height, and descriptions of slope (Stump, 2001). 

Students’ audio-recorded answers were evaluated and coded. Stump’s analysis of the 

students’ responses revealed that students struggle with connecting the concept of slope to 

steepness, appropriately using the slope of a line to measure rate of change in real-world 

contexts, graphic representations of slope, understanding slope as a ratio, and proportional 

reasoning related to rate of change. These findings demonstrate that students had several 

gaps in their knowledge of the concepts of, and relationships between, slope, rate of change, 

and steepness (Stump, 2001). Stump’s study was limited, in that it did not assess why these 

gaps of understanding might be occurring. Future research should focus on determining 

ways to address students’ conceptual misunderstandings of slope, rate of change, and 

steepness.  
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Influence of Curricula Pathways on Students’ Understanding  

of Rate of Change  

 Teuscher et al. (2010) conducted a quasi-experimental study to determine if the 

curricula path students had been involved in throughout high school influenced their 

understanding of rate of change concepts at the beginning of an AP calculus course. In their 

study, 134 students that had been involved in traditional, single-topic curricula (i.e., wherein 

students’ typical course route is algebra, geometry, algebra II, precalculus), as well as 57 

students who had been involved in integrated curricula (i.e., secondary I, secondary II, etc.), 

were given a piecewise function task adapted from a released AP Calculus exam item 

(Teuscher et al., 2010). A piecewise function is characterized by its multiple segments, each 

with a different rate of change. Students’ open-ended responses were evaluated using a 

rubric developed and reviewed by mathematicians and math educators. Teuscher et al. found 

that all of the students had confusion and misconceptions about the concepts of rate of 

change, slope, and steepness, in particular with understanding the meaning and importance 

of the sign (positive or negative) of slope. Curricular path of the students did not impact 

students’ understanding of these concepts (Teuscher et al., 2010). Limitations of this study 

include unequal group sizes, a lack of statistical analysis, and a lack of experimental control. 

Future research should focus on more rigorous methodology to determine the effects of 

different curricular paths on students’ understanding of rate of change concepts.  

 Teuscher and Reys (2012) conducted a similar quasi-experimental study to compare 

students who had participated in an integrated curricula approach and those who had 

participated in a traditional, single-topic curricula approach on their performance on calculus 

readiness topics, rate of change items, open-ended rate of change items, and errors 

committed on rate of change items. Teuscher and Reys’ study included 4 10th-grade students, 
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28 11th-grade students, and 161 12th-grade students at the beginning of an Advanced 

Placement Calculus course. Of the participants, 136 had participated in a traditional curricula 

approach, while 57 had participated in an integrated curricula approach. Students were given 

assessments involving a Piecewise Function Task and a Filling the Tank Task, which were 

both open-ended, and their responses were evaluated and compared (Teuscher & Reys, 

2012). The Filling a Tank Task provided students with a context of filling a tank of water 

with a hose. The rate of change in the Filling a Tank Task was variable because the hose was 

turned off and on and involved different water pressures. Results indicated that there were 

no significant differences in performance between groups (F = 3.54, p = 0.063), which 

suggests that students from different curricula approaches performed similarly on the tasks 

(Teuscher & Reys, 2012). By analyzing students’ responses and errors, Teuscher and Reys 

concluded that students had difficulty calculating, explaining, representing, and interpreting 

nonconstant rates of change. Additionally, less than half (47%) of all students involved in the 

study answered the rate of change items on the assessment correctly (Teuscher & Reys, 

2012). Teuscher and Reys’ study was limited, as it did not have experimental control, did not 

have a control group, and also included unequal group sizes. Additional research should 

focus on determining effective methods to approach students’ misunderstandings of rate of 

change concepts.  

 

Rate of Change Research in the Context of Algebra and Pre-Algebra 

 Researchers have also assessed students’ understanding of rate of change concepts in 

algebra and pre-algebra (Hattikudor et al., 2012; Wilhelm & Confrey, 2003), as well as 

studied the effects of instructional approaches on students’ performance on rate of change 

assessments (Kramarski, 2004; Kramarski & Mevarech, 2003). Wilhelm and Confrey (2003) 
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interviewed four algebra students (grade not specified) in a qualitative study assessing 

students’ abilities to relate rate of change concepts in the context of motion to the context of 

money. In their study, Wilhelm and Confrey presented students with computer simulations 

of rate of change depicted in a bank account, as well as person’s speed measured by a 

motion detector. After having the students calculate and describe the rate of change in each 

of these contexts, Wilhelm and Confrey asked the students to represent the rate of change 

concept shown in the motion context using the computer simulation program for the money 

context. One of the students was able to correctly solve the rate of change problems in both 

the motion and money contexts, but was unable to accurately describe how to depict the 

motion context using the money context (Wilhelm & Confrey, 2003). Another student was 

able to accurately find and explain rate of change in the context of motion, but not money. 

This participant was unable to demonstrate how the motion context could be modeled using 

the computer simulation program for the money context (Wilhelm & Confrey, 2003). The 

remaining 2 students each demonstrated incomplete understanding of rate of change in 

singular contexts; 1 student struggled with the money context, while the other struggled with 

both the motion and the money context. However, both of these students were able to 

describe how the concept of rate of change was similar between the money and motion 

context, and model the motion context using the computer simulation program for money 

(Wilhelm & Confrey, 2003). Wilhelm and Confrey concluded that rate of change is a 

complex concept that many students struggle with, due to a lack of conceptual 

understanding of rate of change in real-world contexts. One of the limitations of this study 

was that participants were selected to be interviewed primarily due to their good attendance 

records and on-task behavior during the unit on linear equations (Wilhelm & Confrey, 2003). 

This participant selection methodology likely prevented Wilhelm and Confrey from 
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obtaining a sample with a range of math skills. Additional research should focus on assessing 

the rate of change understanding of low performing students and students with disabilities. 

 Students ’  understanding o f  rate  o f  change and the y - intercept .  Hattikudor et al. 

(2012) conducted a quasi-experimental study evaluating sixth-, seventh-, and eighth-grade 

students’ understanding of slope and y-intercept, based on their responses on two graph 

construction items on a written assessment. Hattikudor et al. were interested in comparing 

the performance of sixth-, seventh-, and eighth-grade students to be able to look at students’ 

intuitions regarding slope and y-intercept prior to receiving instruction on these concepts 

(sixth-grade), as well as to analyze how instruction alters students’ performance (seventh- 

and eighth-grade). Participants included 59 sixth-graders, 65 seventh-graders, and 56 eighth-

graders (Hattikudor et al., 2012). Hattikudor et al. found that there was a significant 

difference based on grade level, as well as based on whether students were provided with 

quantitative or qualitative (nonnumerical) information for the graph, and regarding whether 

students were able to better graph slope or the y-intercept. These results indicate that as 

students got older, they had more correct answers, that students were better able to solve 

problems involving quantitative as opposed to qualitative information, and that students had 

more difficulty graphing the y-intercept than they did slope. One of the main limitations of 

this study was that the assessment may not have been sensitive enough to provide accurate 

analysis as it only included two assessment items. Hattikudor et al. suggested that future 

research be conducted to determine better ways to instruct students in graphing, with a focus 

on the y-intercept and understanding qualitative contexts.  

 Research on instruct ional  methods and rate  o f  change per formance .  Only two 

studies have involved manipulation of variables to evaluate the effects of different strategies 

on students’ performance on rate of change concepts (Kramarski, 2004; Kramarski & 
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Mevarech, 2003). Kramarski and Mevarech (2003) conducted a pre/post group study with 

384 eighth-grade students to evaluate the effects of four instructional methods on students’ 

performance on linear graph concepts, including rate of change. Primarily, Kramarski and 

Mevarech sought to improve students’ understanding of linear graphs during a 2-week (10 

lesson) unit of instruction. The unit included the concepts of slope, y-intercept, and rate of 

change in both quantitative and qualitative contexts, as well as graphing algebraic equations 

(Kramarski & Mevarech, 2003). The instructional context prior to implementation of the 

experimental conditions was the same across all classrooms, and consisted of heterogeneous 

math classes (by ability) that met five times per week. For the linear graphing unit, each class 

used the same textbook and supplementary materials to learn strategies of graph 

interpretation (tables, graphs, verbal explanations, formulas, procedural steps; Kramarski & 

Mevarech, 2003). The four conditions included in the study were distributed equally across 

12 randomly selected classrooms in four schools that were demographically similar 

(Kramarski & Mevarech, 2003). The four conditions included cooperative learning combined 

with strategy instruction, individualized learning combined with strategy instruction, 

cooperative learning without strategy instruction, and individualized learning without 

strategy instruction (Kramarski & Mevarech, 2003). The strategy instruction conditions 

involved students being trained and prompted to use a strategy involving comprehension 

questions. Students were provided with an acronym for these comprehension questions, 

DATA, which stood for “Describe the x-axis and the y-axis; Address the units and the 

ranges of each axis; Tell the Trend(s) of the graph or parts of the graph; and Analyze specific 

points” (Kramarski & Mevarech, 2003, p. 286). The cooperative learning condition involved 

students working in groups of four, which included 1 high achieving student, 1 low 

achieving student, and 2 average students. In these groups, students took turns leading the 
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group in solving a problem. Each student read a problem out loud and tried to solve it. He 

or she explained it to his/her group, and if there was not a consensus among the group 

members regarding the answer, the students discussed the problem to come to an agreement 

(Kramarski & Mevarech). In the condition that consisted of both strategy instruction and 

cooperative learning, the DATA acronym was used to guide problem-solving and discussion. 

In the individual strategy instruction, students wrote their responses to the DATA prompts. 

The individual condition that did not include strategy instruction or cooperative learning 

served as a control group, in which students worked on problems individually without the 

DATA prompts.  

 Kramarski and Mevarech (2003) used a 36-item assessment to analyze students’ 

graph interpretation and construction. Kramarski and Mevarech, using ANOVAs, 

determined that there was a significant difference in posttest scores based on condition. The 

cooperative learning combined with strategy instruction condition was the highest 

performing condition, followed by the individual condition combined with strategy 

instruction. The cooperative learning and individual groups were the lowest performing and 

significant differences were not found between the two nonstrategy instruction groups 

(Kramarski & Mevarech, 2003). Kramarski and Mevarech’s findings demonstrated that 

students’ performance on linear equation tasks may improve with the incorporation of 

cooperative learning and strategy instruction. However, Kramarski and Mevarech cautioned 

that methods for cooperative learning and strategy instruction vary, so the results are not 

generalizable to strategies that were not included in their research. Additional research 

should be conducted to evaluate other methods incorporating similar components as those 

researched by Kramarski and Mevarech.  

 Kramarski (2004) implemented a similar pre/post mixed methods group study to 
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gain further information about characteristics that distinguished cooperative learning with 

strategy instruction from cooperative learning without strategy instruction. In this study, 

Kramarski compared two conditions: strategy instruction combined with cooperative 

learning, and cooperative learning alone. The two conditions were distributed evenly across 

six randomly selected eighth-grade classrooms with a total of 196 students (Kramarski, 

2004). The researcher used the same DATA metacognitive strategy, as well as the same 

cooperative learning structures, described in the Kramarski and Mevarech (2003) study. 

Using the same 36-item graphing assessment as in the Kramarski and Mevarech (2003) 

study, Kramarski evaluated students’ scores on that math assessment prior to and following 

a 2-week (10 lesson) unit on linear graphing, and also analyzed mathematical discourse that 

occurred among the groups. The researcher observed 24 small groups, which were randomly 

selected and evenly distributed across the six participating classrooms. Within each 

observation, Kramarski evaluated students’ metacognitive behaviors, based on criteria that 

included the overall group interaction level, and individual behaviors. The individual 

behaviors evaluated included being off-task, working individually, providing/receiving 

technical help, providing/receiving the final answer with no elaboration, and 

providing/receiving elaborated explanations.  

 The results of ANOVAs indicated that both groups performed significantly better 

on the posttests, and that the condition involving both strategy instruction and cooperative 

learning outperformed the condition that included cooperative learning alone (Kramarski, 

2004). Observation results indicated that the students involved in the condition with strategy 

instruction and cooperative learning had higher levels of group interaction, while students in 

the cooperative learning alone condition had higher rates of individual behaviors. Students in 

the condition with strategy instruction and cooperative learning also provided/received more 
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elaborated explanations than the students in the cooperative learning alone condition, who 

provided/received technical help without elaboration more frequently (Kramarski, 2004). 

The results of the ANOVAs and observation data, when considered together, indicate that 

students’ performance on linear graphing tasks may benefit from the incorporation of 

strategy instruction in a cooperative learning context. The main limitation of Kramarski’s 

(2004) study is similar to that of Kramarski and Mevarech’s (2003) study, in that its results 

are not generalizable to all strategy instruction or cooperative learning structures since there 

is variability in these methods. While the authors described this as an explicit limitation of 

their study, it is important to note that this limitation applies more broadly to the field’s use 

of the terms “strategy instruction” and “cooperative learning” to refer to a wide range of 

interventions. Kramarski (2004) suggested that additional research be conducted to 

determine if incorporating instructional practices to help students model and visualize 

graphing concepts helps reduce errors with graph construction.  

 

Summary of the Research on Rate of Change 

 Research conducted thus far on rate of change demonstrates that rate of change 

concepts, including slope and steepness, are areas of difficulty for students from sixth-grade 

through college (Bezuidenhout, 1998; Christensen & Thompson, 2012; Orton, 1984; 

Hattikudor et al., 2012; Herbert & Pierce, 2007; Herbert & Pierce, 2012; Stump, 2001; 

Teuscher, Reys, Evitts, & Heinz, 2010; Teuscher & Reys, 2012; Van Dyke & White, 2004; 

Wilhelm & Confrey, 2003). Additionally, integrated versus traditional curricula approaches 

do not minimize students’ difficulties with the concepts (Teuscher et al., 2010; Teuscher & 

Reys, 2012). In particular, students struggle with relating and differentiating the concepts of 

rate of change, slope, and steepness from one another (Stump, 2001; Teuscher et al., 2010; 
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Teuscher & Reys, 2012; Wilhelm & Confrey, 2003), and with understanding the meaning and 

importance of the sign of slope (Teuscher et al., 2010; Teuscher & Reys, 2012). Students also 

struggle with interpreting and representing qualitative graphing contexts (Hattikudor et al., 

2012), as well as nonlinear rate of change contexts (Herbert & Pierce, 2007; Teuscher & 

Reys, 2012). Research conducted on the influence of strategy instruction and cooperative 

learning demonstrated that methods incorporating structured reflection on linear graphing 

problems may improve students’ performance on interpreting and constructing graphs, 

including rate of change problems (Kramarski & Mevarech, 2003; Kramarski, 2004). An 

approach incorporating writing to learn and a CRA instructional sequence is consistent with 

the research recommendations on rate of change, which call for further evaluation of 

additional strategies involving representation and strategy instruction. Given the absence of 

research on rate of change with students with disabilities, as well as the lack of research 

applying CRA to rate of change problems, evaluating the effects of an intervention 

comprised of writing to learn strategies and a CRA instructional sequence on the math 

performance of students with disabilities would provide a significant contribution to the 

research literature.  

 

Rationale for the Proposed Study 

The implementation of the CCSSM has the potential to advance math education in 

the U.S. and correct some of the current rates of failure for students with disabilities due to 

its increase in focus, coherence, and rigor, as well as its emphasis on conceptual 

understanding. However, the CCSSM will be difficult for both teachers and students due to 

its increases in rigor, as well as the requirement for students to be able to explain and justify 

their reasoning on assessments, both of which necessitate conceptual understanding and 
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writing skills. Overall, WTLM has been shown to be effective in improving students’ 

performance in math, as well as their ability to express their mathematical thinking in 

writing. The CRA instructional sequence has been shown to be effective in improving 

students’ with disabilities performance in mathematics, specifically with rate of change 

concepts, because it builds students conceptual understanding. The CRA instructional 

sequence teaches students how to think about math concepts strategically, rather than relying 

on easily forgotten formulas. Therefore, the purpose of this study is to determine whether an 

intervention involving the CRA instructional sequence and WTLM principles improves 

students’ with disabilities proficiency in solving rate of change problems.  

Implementing the CRA instructional sequence with WTLM elements may help 

facilitate a deeper level of math understanding and extend students’ learning beyond 

manipulating mathematical symbols and formulas. Both the CRA instructional sequence and 

WTLM approaches are premised on cognitive foundations that pinpoint the importance of 

multiple representations and methods of expression in gaining conceptual understanding of 

math concepts. While the CRA instructional sequence focuses on providing students with a 

method to break down and understand math concepts, WTLM helps students internalize 

and express their understanding of these concepts. Therefore, an intervention that 

incorporates both the CRA instructional sequence and WTLM could provide students with 

disabilities with the skills necessary to meet the rigorous demands of the CCSSM and 

assessments. Achieving higher levels of conceptual understanding of foundational math 

topics has the potential to unlock access to many college and career opportunities currently 

inaccessible to students with disabilities. It is therefore important to assess the effectiveness 

of a combination of these methods in teaching math concepts to students with disabilities in 

math to determine their potential instructional and/or remedial use.  
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Research Questions  

1. What is the effect of implementing a concrete-representational-abstract (CRA) 

instructional sequence incorporating writing to learn math strategies on students’  

with disabilities proficiency in solving rate of change problems? 

2. Do students with disabilities find WTLM math and a CRA instructional sequence 

to be socially acceptable?



 

 

 

 

 

CHAPTER 2 

 

METHODS 

 

 The purpose of this study is to determine if a functional relationship exists between 

the use of a rate of change intervention incorporating the CRA instructional sequence and 

WTLM and students’ accuracy on a rate of change assessment. A multiple-probe design 

across participants was used for this study, as this design allows for the examination of the 

effects of the intervention on students’ scores on math and writing measures.  

 

Research Questions 

1. What is the effect of implementing a concrete-representational-abstract (CRA)  

instructional sequence incorporating writing to learn math strategies on students with  

disabilities’ proficiency in solving rate of change problems? 

2. Do students with disabilities find WTLM and a CRA instructional sequence to be 

socially acceptable?   

 

Setting 

 The study was conducted in a large, suburban public high school in the 

intermountain west of the United States. There were approximately 33,714 students enrolled 

in this district, 4% (1,436) of whom were classified as English Language Learners, and 11% 
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(3,873) as students with Individualized Education Plans (IEPs; National Center for 

Education Statistics [NCES], 2014). The student body at the high school consisted of 

approximately 1,828 students, 90% of whom identify as White, non-Hispanic, 5% as 

Hispanic, and 4% as Asian/Pacific Islander. Students identifying as American Indian/ 

Alaska Native, Black, or of two or more races accounted for less than 2% of the school 

population collectively (NCES, 2014). Approximately 16% of the students attending this 

school were eligible for free or reduced meals (NCES, 2004).  

 The school site was scheduled on a trimester calendar, in which students attended 

five 66-minute classes per day for 12 weeks. Students receiving special education services 

identified as needing intensive supports in mathematics received their primary mathematics 

instruction in either a resource setting taught by special educator, with class sizes ranging 

from 6-10 students, or inclusive general education classrooms that were typically cotaught by 

a general education and a special educator. The majority of the students who received this 

level of special education supports for mathematics qualified for special education services 

under the categories of specific learning disability, other health impairment, 

emotional/behavior disturbance, or visual impairment.  

 

Participants 

Selection Criteria and Procedures 

Participants were selected using a three-stage screening process.  For the first gate, 

students were eligible for inclusion in this study if they were identified to receive special 

education services, and were recommended by their special education math teacher as being 

in need of additional instructional support for rate of change concepts. Students qualifying 

for special education services under the categories of Other Health Impairment, Autism, 
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Specific Learning Disability, and Emotional and Behavior Disturbance were considered as 

potential participants. 

Second, to be eligible for participation in the proposed study, participants had to 

score at or below the 25th percentile on the Basic Concepts component of the KeyMath-3 

(Connolly, 2007) assessment and be able to write a complete sentence. Students whose 

scores on the Basic Concepts components of the KeyMath-3 assessment were above the 25th 

percentile were not eligible to participate in this study, based on these students likely not 

being in need of the targeted instruction included in the intervention.  

Third, students completed one rate of change assessment developed by the 

researcher. Students who earned less than 70% of the available points on the assessment 

were eligible for inclusion in the study. A score of 70% on the rate of change assessment 

would indicate that the student was able to graph a function with variable rate of change, as 

well as find the average rate of change, with minimal errors. Students with scores of 70% or 

higher were not likely to be in need of this intervention, because the intervention specifically 

targeted finding the average rate of change. Students scoring 70% or above on the 

researcher-developed rate of change assessment were also unlikely to show significant 

growth due to entering the study with a relatively high level of rate of change knowledge and 

were therefore excluded from the study.  

 

Selected Participants 

 Four participants met the criteria for selection, including parental consent and 

student assent. All 4 students were in ninth-grade, received special education services for 

math, and were enrolled in Secondary 1 math courses aligned with the CCSSM. Each student 

received their math education in a general education setting (3 students were in a cotaught 
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class, and 1 student was in a general education class that was not cotaught), and was enrolled 

in a special education study skills class. The special education study skills class was taught by 

a special education teacher, and provided students with an opportunity to work on 

homework, meet with teachers, or access individual assistance as needed for any of their 

classes. Students participated in baseline, intervention, and maintenance sessions during their 

study skills class.  

 

Sara 

 Sara was a 14-year-old ninth-grade Caucasian female receiving special education 

services under the classification of Other Health Impairment. Sara received special education 

services for Language Arts and Math. During the first and second trimesters of the academic 

year, Sara was in a cotaught Secondary 1 Math class. She did not have a math class during 

third trimester. Sara scored 71 points on the Basic Concepts section of KeyMath-3, which 

equates to a grade equivalent of approximately 2.9 and the 3rd percentile. Sara earned 20 

points on the Spontaneous Writing portion of the TOWL-4, which equates to a composite 

index of 100 (average), and the 50th percentile. On the rate of change assessment, Sara 

received 4 points (14%) on the math items and 9 points (25%) on the writing items. Sara 

stopped coming to school at the end of January, and chose to withdraw from school in 

March and complete her high-school coursework online. As a result, Sara did not complete 

the final lesson of the intervention, the final intervention assessment, maintenance 

assessments, or the social validity questionnaire.  
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Toby 

 Toby was a 14-year-old ninth-grade Caucasian male who received special education 

services under the classification of Specific Learning Disability. In addition to receiving 

special education services for math, Toby also received services for Language Arts. Toby was 

in the same cotaught Secondary 1 Math class as Sara for the first and second trimesters of 

the school year. He did not have math during the third trimester. On the Basic Concepts 

component of the KeyMath-3 assessment, Toby scored 77 points, which is a grade equivalent 

of approximately 4.4, and equates to the 6th percentile. On the TOWL-4, Toby scored 19 

points on the Spontaneous Writing portion, which equates to the 45th percentile and reflects 

a composite score of 98 (average). On the rate of change assessment, Toby did not score 

points on any of the math or writing items.  

 

Jason 

 Jason was a 15-year-old ninth-grade Hispanic male receiving special education 

services under the classification of Autism. Jason received special education services for 

Math and Language Arts. Jason was in the same cotaught Secondary 1 Math class as Sara and 

Toby during the first trimester. He did not have math during the second trimester. During 

the third trimester, Jason was in a cotaught Secondary 1 Math class taught by the same 

special and general educators that he had during first trimester. During the second and third 

trimesters, Jason did not have a study skills class. As a result, he participated in intervention 

and maintenance sessions during an elective class (e.g., basketball, school store) each 

trimester. Jason scored 71 points on the Basic Concepts portion of the KeyMath-3 

assessment, which equates to the 3rd percentile and approximately a 3.3 grade equivalent. On 

the Spontaneous Writing portion of the TOWL-4 assessment, Jason scored 19 points, which 
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equates to the 45th percentile and a composite index of 98 (average). Jason did not earn any 

points on the math items of the rate of change assessment. He earned 2 points (5%) on the 

writing items of the rate of change assessment.  

 

Abigail 

 Abigail was a 15-year-old ninth-grade Caucasian female who received services under 

the classification of Specific Learning Disability. She received services only for math. During 

the first trimester, Abigail was in an inclusive Secondary 1 Math class that was not cotaught. 

She did not have math during the second trimester. During the third trimester, she was in 

the same cotaught Secondary 1 Math class as Jason. On the Basic Concepts portion of the 

KeyMath-3 assessment, Abigail earned 80 points, which equates to the 9th percentile and an 

approximate grade equivalent of 4.5. On the Spontaneous Writing portion of the TOWL-4, 

Abigail scored 29 points, placing her in the 96% percentile with a composite score of greater 

than 130 (very superior). On the rate of change assessment, Abigail earned 4 points (14%) 

on the math items and 5 points (14%) on the writing items.  

 

Measures  

Screening Measures 

Math Screening Measure 

KeyMath-3 is a norm-referenced diagnostic assessment that is used to measure 

students’ knowledge of mathematical concepts and skills (Connolly, 2007). The assessment is 

appropriate for use with students aged 4 years and 6 months to 21 years functioning at grade 

levels K-12. Statistical analyses have demonstrated KeyMath-3 to have adequate internal-

consistency reliability, alternate-form reliability, and test-retest reliability (Connolly, 2007). 
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KeyMath-3 has also been assessed for content and construct validity (Connolly, 2007). The 

KeyMath-3 assessment has a high degree of reliability and validity for students with and 

without disabilities, making it appropriate to use for participant identification.  

The test includes 10 subtests covering basic concepts, operations, and applications 

(Connolly, 2007). The subtests include numeration, algebra, geometry, measurement, data 

analysis and probability, mental computation and estimation, addition and subtraction, 

multiplication and division, as well as foundations of problem-solving and applied problem-

solving (Connolly, 2007, p. 3). The items on the KeyMath-3 assessment are aligned with the 

National Council of Teachers of Mathematics (NCTM) Principles and Standards for School 

Mathematics (NCTM, 2000; as cited in Connolly, 2007, p. 1), as well as the state standards for 

the state in which this study was conducted. For the purposes of participant identification in 

this study, students completed the subtests that make up the Basic Concepts component of 

the KeyMath-3 assessment. These subtests include numeration, algebra, geometry, 

measurement, and data analysis and probability (Connolly, 2007). Scores on the KeyMath-3 

assessment are reported as raw scores that are then converted into scaled scores. Percentile 

ranks for each grade level or age equivalent are then determined based on the scaled scores. 

For this study, students’ scores are reported as scaled scores and percentile ranks. Participant 

eligibility was determined based on the students’ percentile rank.   

 

Writing Screening Measure 

TOWL-4 is a norm-referenced test of written language used to identify students in 

need of writing supports, identify students’ strengths and needs in writing, and as a 

measurement tool in writing research (Hammill & Larsen, 2009). The TOWL-4 is 

appropriate for use with students aged 9 years old through 17 years and 11 months old 



 

 

65 

(Hammill & Larsen, 2009). Four different measures of reliability have been evaluated for the 

TOWL-4, all of which demonstrate that the TOWL-4 has high reliability. The TOWL-4 has 

been assessed for internal consistency, alternate-form reliability, test-retest reliability, and 

reliability of scoring procedures. The TOWL-4 has also been assessed for content-

description validity, criterion-prediction validity, and construct-identification validity 

(Hammill & Larsen, 2009). The results of these analyses demonstrate that the TOWL-4 is a 

reliable and valid measure of writing that can be used to effectively assess students’ writing 

performance. 

There are two test forms of equal difficulty of the TOWL-4, which allows for 

students’ writing to be assessed with the TOWL-4 twice. The three aspects of writing 

(conventional, linguistic, and conceptual) included in the TOWL-4 are represented in two 

assessment formats (Hammill & Larsen, 2009). The Contrived writing format primarily 

measures students’ spelling, punctuation, and word usage, whereas the Spontaneous writing 

format measures students’ functional writing ability through their construction of passages 

(Hammill & Larsen, 2009). There are 7 subtests for both the Contrived and the Spontaneous 

test formats, which include vocabulary, spelling, punctuation, logical sentences, sentence 

combining, contextual conventions, and story composition (Hammill & Larsen, 2009, p. 5). 

For the purposes of gathering information on their initial writing abilities, students 

completed only the Spontaneous writing component of the assessment. The Spontaneous 

writing component includes two areas of evaluation, one for contextual conventions and one 

for story composition (Hammill & Larsen, 2009). The scores for each of the two areas of 

evaluation are reported as raw scores, which are then converted into scaled scores that are 

matched with percentile ranks based on grade level or age equivalency. For this study, 

students’ scaled scores and percentile ranks are reported. Students were eligible to participate 
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in this study if they could write at least one complete sentence.   

 

Dependent Variable Measures 

I created a pool of 20 assessments to measure growth in solving rate of change 

problems for use during the baseline and intervention phases of the study (see Appendix A 

for full set of assessments). I developed the assessments based on tasks and tests found 

through the Mathematics Assessment Resource Service (MARS; Mathematics Assessment 

Resource Service, University of Nottingham, 2007-2012). The MARS has compiled and 

drafted various tasks and tests in line with the Common Core State Standards for 

Mathematics (CCSSM), based on proposed assessments for the CCSSM (Mathematics 

Assessment Resource Service, University of Nottingham, 2007-2012).  

The format of the MARS assessments and tasks primarily consists of applied 

problems in which students respond to multiple questions regarding a specific mathematical 

context that could be encountered in everyday life (Mathematics Assessment Resource 

Service, University of Nottingham, 2007-2012). Included within these questions are prompts 

for students to justify and/or explain the processes used in calculating the answers. I 

modeled the rate of change assessments on these assessments to ensure that the measures 

were consistent with the demands of the upcoming CCSSM assessments.  

A math expert reviewed the assessments to ensure they were of equal difficulty, 

sensitive to change, and appropriate for use with ninth-grade students with disabilities. The 

assessments were revised based on her feedback. Revisions were made to constrain the 

complexity of math tasks, in part to increase the likelihood that the different forms of the 

assessment were equal difficulty, and that the assessment tested concepts taught in the 

intervention, rather than assessing students’ basic math skills. Revisions included limiting the 
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number of digits of values in problems, eliminating decimals, and using basic fractions. 

Specifically, the values provided in problems were no longer than two digits, although 

answers could include three digit values. Similarly, none of the values provided in the 

problems included decimals, but answers could include decimals. Unit fractions (i.e., ¼, ½, 

3/5, etc.) were used to reduce errors made due to difficulties students had with fraction 

concepts. Expert review of researcher-designed assessments has been used to demonstrate 

validity of assessments in similar studies, largely due to the lack of research validated math 

progress monitoring measures for use with older students (Strickland & Maccini, 2012; 

Witzel, 2005; Witzel, Mercer, & Miller, 2003). The assessments covered the objectives of the 

intervention (which pertain to being able to solve rate of change problems using equations, 

graphs, or tables) and were of equal difficulty to allow for sensitivity to change in student 

performance.   

There were two components of the rate of change assessment, an applied math 

computation component and a written constructed response component. The applied math 

computation component of the rate of change assessment was worth a total of 28 points and 

involved students completing five problems. Two problems involved students finding the 

slope of a line from a graph. On each assessment, one of these problems involved a line 

going through the origin (0,0) of a graph, and one that did not go through the origin. 

Additionally, one of the graphed lines had a negative slope and one had a positive slope. The 

order of which of these problems went first was randomized, and an equal number of lines 

that went through the origin were positive and negative. The next two problems asked 

students to find the missing value (one missing x and one missing y per assessment) when 

provided with the slope and a context. For each assessment, one of these questions included 

a fraction and one included a y-intercept. The order of these problems was also randomized.  
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The final math item involved answering multiple questions about a variable rate of 

change contextual problem. For example, students were presented with the following 

problem:  

A motorcyclist leaves Salt Lake City at 10:00 am and travels for an hour at 30 miles 
 per hour, then for an hour at 60 miles per hour. The motorcyclist stops for lunch for 
 30 minutes, then travels for 3 hours at 45 miles per hour.  

 
Students were then directed to make a table and graph depicting the times and distances 

traveled at each stage of the journey, calculate the average speed for the whole journey, find 

how far from Salt Lake City the motorcyclist had traveled by 2:30 pm, and determine when 

the motorcyclist was approximately 110 miles from Salt Lake City.  

 Each assessment followed the same format, consisting of students finding the slope 

of a graphed line for the first two problems, determining the missing value of two constant 

rate of change problems, and for the variable rate of change problem, completing a table and 

graph and calculating the average rate of change. Students received 2 points for finding the 

slope of a line from a graph for each of two problems, 2 points for finding the missing y 

value in a missing value problem, and 2 points for finding the missing x value in a missing 

value problem. For the variable rate of change problem, students received 2 points for 

graphing each phase of the problem correctly, for a total of 8 points. Students also received 

2 points for correctly inputting the values for each phase in a table, for an additional 8 

points. Students received 2 points for finding the average rate of change. See Table 1 for an 

example of how the applied math computation component of each assessment was scored.  

The second component of the rate of change assessment was the written constructed 

response component, which measured students’ ability to express mathematical reasoning 

and explanations through writing. Scores from this component served as a secondary 

dependent variable for this study. The written constructed response component was also 
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reviewed by a math expert and revised based on feedback. The written constructed response 

component consisted of 4 open-ended prompts worth 9 points each. Two written 

constructed response items on each assessment required students to provide explanations 

for their answers, and two items required students to provide justifications for their answers. 

Students responded to the following two questions based on one of the constant rate 

missing value problems: (1) “Describe in writing the process you used to solve the problem 

above”; (2) “Explain how you know your answer makes sense. Provide an example to 

support your reasoning.” For the variable rate of change problems similar to the one 

referenced above, students responded to the following prompts and questions: (1) “Explain 

the steps you used to determine the average speed for the whole journey”; and (2) “How do 

you know your answer is correct?” Each of the students’ four written constructed responses 

on each assessment were evaluated based on whether they were factually correct (3 pts), 

included appropriate and specific mathematical language (3 pts; e.g., added, divided, rate of 

change, etc.), and either used appropriate labels and specific quantities (3 pts; for explanation 

type questions) or data and/or warrants to support their justifications (3 pts; for justification 

type questions). For each of the criteria, students received 0 points for an answer that was 

not proficient, 1 point for an answer that showed some emerging skills, 2 points for an 

answer that was approaching proficiency, or 3 points for an answer that was proficient (see 

Tables 2 and 3 for more detailed scoring rubrics). A total of 9 points could be earned for 

each of the 4 written constructed response prompts, totaling to 36 points per assessment. 

See Table 2 for an example of how explanatory written constructed response items were 

scored, and Table 3 for an example of how justification written constructed response items 

were scored.  

Each student received two overall scores on each assessment, each of which were 
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reported as points and percentage of points earned. For the applied mathematics 

computation components, students’ scores were summarized as a percentage calculated by 

dividing the number of points earned on the math prompts by the number of points 

possible for the math prompts. The total points earned for the applied math computation 

component on each assessment were graphed and used as the primary dependent variable in 

this study. For the written constructed response component, students’ scores were also 

summarized as a percentage, calculated by dividing the number of points earned for the 

written responses by the total number of points possible for the written responses. The total 

points earned for the written responses on each assessment were graphed as well. 

Throughout the course of the study, I administered 12-15 rate of change assessments to each 

student. When administering the assessments, I read the questions out loud to the student to 

prevent the risk of reading difficulties influencing scores on the rate of change assessments. 

Administration of each assessment took approximately 10-30 minutes. 

 

Social Validity Questionnaires 

To evaluate the second research question, whether students with disabilities found 

the rate of change intervention to be socially acceptable, participating students completed a 

social validity questionnaire, which was modified from the Children’s Intervention Rating 

Profile (CIRP; Arra & Bahr, 2005; see Appendix B). The CIRP has been used in previous 

studies to evaluate the social validity of math interventions (Arra & Bahr, 2005). The social 

validity questionnaire assessed the appropriateness of the intervention, as well as its 

perceived effectiveness.  

The questionnaire included six items to be rated from 1-6 on a Likert scale (1 

indicating strongly disagree, 6 indicating strongly agree). The items were as follows: (1) using 
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POD!, cubes and diagrams is a helpful way to teach math; (2) using POD!, cubes and 

diagrams to teach math is too hard; (3) using POD!, cubes and diagrams to teach math may 

be hard for other students; (4) there are better ways to teach math to students than using 

POD!, cubes and diagrams, (5) using POD!, cubes and diagrams is a good way to teach 

math to other students; (6) I like using POD!, cubes and diagrams to learn math; and (7) I 

think that using POD!, cubes and diagrams to teach math will help students do better in 

school.  Students’ social validity questionnaire responses were measured using the 

questionnaires as permanent products. The mean, median, and range of responses were 

reported per item as well as for the questionnaire overall. Each of these values were reported 

per student and for the overall sample of students participating in the intervention.  

 

Design 

 A multiple-probe design across participants was used in this study to determine if a 

functional relationship existed between the use of a rate of change intervention 

incorporating the CRA instructional sequence and WTLM and students’ total points of 

correct math and writing responses on a rate of change assessment. A multiple-probe design 

was the most appropriate to use for this study because it was expected that the baseline data 

would likely remain stable and not increase without exposure to instruction or intervention 

on solving rate of change problems. Using a multiple-probe design helps prevent 

complications that arise within multiple-baseline studies related to extended baseline or 

intervention phases, such as diminishing intervention effects due to participant boredom 

with content, or concerns with delaying a potentially helpful intervention (Johnston, 2011). 

Additionally, as this intervention pertained to academic knowledge/ skill acquisition, a 

reversal design would not have been appropriate because it was unlikely that a return to 
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baseline phase would result in any substantial decrement in skills (Johnston, 2011). A 

multiple-probe design allows for a functional relation to be established between the rate of 

change intervention and students’ total points of correct math and written responses because 

the design can demonstrate behavior change at least three different points in time (Johnston, 

2011).  

 This study began with each of the 4 participants completing a rate of change 

assessment. Then, baseline assessments were administered at least two times per week with 

Sara until the data were stable, and for at least 3 points. Baseline assessments were also 

administered at least two times per week with Toby until Sara began intervention. Upon the 

intervention phase starting for Sara, Toby and Jason each completed an additional baseline 

rate of change assessment. Intervention assessments were administered for each participant 

in the session immediately following the completion of Lessons 2, 4, 6, and 7.  Baseline 

assessment administration for Toby and Jason aligned with intervention assessment 

administration for Sara, until each participant began intervention. Decisions about phase 

changes were made based on students’ response to intervention corresponding with the 

primary dependent variable, students’ total points of correct math responses on a rate of 

change assessment. A response to intervention was defined as a score on an intervention 

assessment that was at least 10% above the student’s median baseline score. Once Sara 

demonstrated a response to intervention, and Toby’s baseline data were stable, he began 

intervention. This pattern of assessment was repeated for Jason and Abigail. Abigail was 

added as a study participant later than the other 3 students. Her baseline data did not begin 

until each of the other participants had begun intervention. The intervention phase for each 

participant lasted until they completed the seventh lesson and fourth intervention 

assessment.  At that point, each participant moved into the maintenance phase, which 
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consisted of completing one maintenance assessment per week for up to 6 weeks.  

 

Procedures 

Participant Selection 

As the researcher, I met with the main school contact person, a special education 

math teacher, to discuss the teacher's recommendations for students whom she believed 

were a good fit for the rate of change intervention. I sent home consent letters to the parents 

of the students referred to the intervention by the teacher. Parents had a 2-week period to 

contact me with any questions and return the signed consent forms. One week after the 

consent letters were sent home, I made follow-up phone calls to parents who had not 

returned the consent letters. In the follow-up phone calls, I reminded the parent of the 

study, and asked if they needed any additional information about the study and the study 

procedures. I communicated to the parents that the study was completely 

voluntary. Students whose parents provided informed consent were then given the 

opportunity to assent to participate in the study. During the assent process, I provided each 

participant with an assent letter, explained the purpose and procedures of the study, as well 

as potential risk and benefit to the student. I conducted the assent process individually with 

each student. Students who assented to participate were assigned a pseudonym to maintain 

confidentiality. They were then given the KeyMath-3 and TOWL-4 writing assessments, as 

well as one of the researcher-developed rate of change assessments. I administered each of 

these assessments in a quiet, private setting. The KeyMath-3 assessment required a 60-90 

minute block of time, and the TOWL-4 assessment required a 30-minute block of time. The 

rate of change assessment required approximately 10-30 minutes. To minimize any potential 

frustration, students completed only one assessment during each assessment session. 
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 Assessments were administered during a block of time determined to be the least 

intrusive to the student’s schedule (e.g., during a study skills class period, before or after 

school, or during a nonacademic content class such as Physical Education). I scored and 

evaluated each student’s assessments to determine which students met the inclusion criteria 

for the study. 

 

Rate of Change Intervention Implementation  

File Reviews 

After the participant enrollment process, I conducted file reviews of the students 

who assented (and parents consented) to participate in the study to gather demographic 

information. To complete the file reviews, I reviewed the information in the students' school 

and special education files to determine information regarding students' levels of 

performance (as indicated by their Individualized Education Plans), assessment scores (on 

the Utah CRT as well as norm-referenced and standardized measures), and disability 

category. While collecting demographic information, I started the baseline phase of the 

study.  

 
Baseline 

 Prior to administering any baseline assessments, I randomized the set of 20 rate of 

change assessments. Each participant received the same order of assessments across baseline 

and intervention phases. To control for any potential variability between forms, each student 

took the same form of the assessment on the same day. This meant that some forms of the 

assessment were skipped to allow for alignment between participants. If a participant was 

absent on the day for which an assessment was scheduled, the student completed the 
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scheduled assessment form as soon as they returned. If the student was absent for more than 

one week, then the next form in the set was administered.  

 During the baseline phase, I administered two rate of change assessments per week 

for Sara and initially for Toby. Once Sara began intervention, I administered baseline rate of 

change assessments for Toby and Jason on the same days Sara was given intervention 

assessments. Due to Abigail beginning the baseline phase later than the other participants, 

she completed at least two baseline assessments per week. During the baseline phase, 

students participated in the traditional instruction provided in their math classes, and 

completed baseline assessments in a one-on-one setting with me. Each of the selected 

participants received math instruction in inclusive math classes in the general education 

setting, each of which were cotaught by general and special education teachers. Abigail did 

not have a math class during second trimester, when her baseline phase began. Traditional 

instruction in the math class was aligned with the CCSSM and district curriculum map. The 

concepts of rate of change and variable rate of change were covered in the school’s math 

curriculum during the first trimester, which is also when all participants had a math class. 

The special education teacher provided supplementary support and accommodations for 

each of the students as needed. The accommodations that were most often employed 

included reductions in the number of problems students were required to complete, 

extended time, and individual assistance with concepts in study skills classes or after school. 

The primary teaching method the special and general education teachers employed in their 

classroom was explicit instruction, with some lessons incorporating hands-on activities.  

 
Rate of Change Intervention 

Once the baseline data were stable, as indicated by the last 3-5 assessments of the 

phase having within 10% variability of the mean of the baseline (O’Neill, McDonnell, 
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Billingsley, & Jenson, 2011), the intervention phase began for Sara. The intervention phase 

for each participant continued until each of the seven intervention lessons were completed. 

The intervention phase of the study consisted of students participating in lessons delivered 

by me in a one on one setting. Students were pulled out of their special education study skills 

class or elective classes (if they did not have a study skills class) to participate in the 

intervention phase of the study. Due to the multiple-probe design, each student started the 

intervention phase at different points in time. Each student was exposed to the same seven 

core intervention lessons, in the same order, to reduce the risk of conflicting variables.   

Some students also completed review lessons, based on their scores on the math 

portion of the assessments during intervention. Review lesson 1 was administered if a 

student did not demonstrate an increase of at least 10% above the median of their baseline 

scores by the second intervention assessment. Review lesson 1 was administered between 

lessons 4 and 5. Review lesson 2 was administered if a student demonstrated either a 

decrease or a plateau in scores on their third intervention assessment. Review Lesson 2 was 

administered between Lessons 6 and 7.  

Content o f  intervent ion l essons.  The content of the lessons included in this 

intervention addressed two standards from the Secondary I core of the CCSSM (National 

Governors Association Center for Best Practice, & Council of Chief State School Officers, 

2012b). These standards include F.IF.4, which focuses on students’ knowledge of key 

components of graphs and tables related to quantities, and F.IF.6, which consists of 

students’ ability to find the average rate of change of a function using a variety of methods 

(National Governors Association Center for Best Practice, & Council of Chief State School 

Officers, 2012b). Appendix D includes a more detailed description of the intervention 

objectives. The lessons for this intervention were organized into two main units, each of 



 

 

77 

which targeted one of the aforementioned standards. Please refer to Appendix E for a full 

unit plan of the intervention lessons as well as Appendix F for the individual detailed lesson 

plans.  

The first two lessons covered standard F.IF.4, and focused on the foundations of 

graphing and basic knowledge of linear equations (National Governors Association Center 

for Best Practice, & Council of Chief State School Officers, 2012b). In lesson 1, I focused 

on students’ ability to identify the slope and y-intercept of linear equations, identify and 

match graphed linear equations with their contexts and tables, as well as review the different 

types of slope (positive, negative, zero and undefined). In lesson 2, I taught students how to 

graph one- and two-step equations when provided with contextual linear equation problems. 

In lesson 3, I taught students to find missing values in constant rate of change problems. 

Lesson 3 also provided students with more opportunities to practice skills and concepts 

covered in the first two lessons.  

The second unit of the intervention addressed calculating the average rate of change 

of a function with a variable rate of change, which is covered in standard F.IF.6 (National 

Governors Association Center for Best Practice, & Council of Chief State School Officers, 

2012b). Lesson 4, the first lesson in this unit, connected the concepts on constant and 

average rate of change by having students find the constant rate of change from contextual 

linear equation problems. Lessons 5, 6, and 7 each covered the same objective and involved 

students finding the average rate of change of a function with a variable rate of change, as 

well as depicting the problem using a graph and table. In each lesson, particular emphasis 

was given to students’ explaining how and why the rate changes throughout the problem. 

The primary difference between lessons 5, 6, and 7 was the level of difficulty. In lesson 5, 

students worked with problems involving two or three rate phases. For example, a problem 
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with two rate phases could consist of a description of a motorcycle traveling for 3 hours at 

30 miles per hour, then 2 hours at 40 miles per hour. In lesson 6, students worked with 

problems involving three or four rate phases. In lesson 7, students worked with problems 

involving four rate phases. Lessons 6 and 7 also incorporated the student providing more 

detailed explanations of how and why the rate changed throughout the problem.  

In addition to the core seven lessons, there were two review lessons. The first review 

lesson was administered between lessons 2 and 3, based on whether students had shown at 

least a 10% increase in scores during intervention compared to the median of their baseline 

assessments. The objectives addressed in the first review lesson included identification of the 

slope of a linear equation from a graphed line, as well as solving and graphing one and two 

step linear equations when provided with a context. Both of these objectives align with 

standard F.IF.4. The second review lesson occurred between lessons 6 and 7, and was 

administered if students either showed a decrease or plateau in scores on their third 

intervention assessment. The second review lesson focused on identifying the slope of a 

linear equation from a graph, solving one and two step equations when provided with a 

context (standard F.IF.4), and finding the average rate of change of a function with a 

variable rate of change (standard F.IF.6).  

Instruct ional  de l ivery .   The rate of change intervention consisted of 7 core lessons 

on rate of change and 2 review lessons that were administered based on individual students’ 

needs. Instruction was delivered at least 3 of the 5 days each week during a 20-40 minute 

block of time, based on student availability. I worked with students during their study skills 

class. The priority of the study skills class was for students to complete other course work, 

get help with content with which they were struggling, or make up tests. Therefore, I was 

limited in the amount of time I worked with students each week to accommodate their needs 
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to complete other coursework, homework, or meet with teachers during the study skills 

class. Each lesson (with the exception of lesson 1) began with an explicit review of material 

covered in previous lessons. After the introductory review, each lesson followed the format 

of explicit teacher modeling and explanation of the lesson’s objectives, guided practice in 

which the student practiced completing tasks/problems pertaining to the lesson’s objectives, 

and individual practice in which the student individually completed tasks/problems related 

to the lesson’s objectives. For example, in a lesson focusing on teaching the student how to 

classify slope, the direct instruction component of the lesson consisted of me explaining the 

definitions and differences between positive, negative, zero, and undefined slope, using 

concrete objects and diagrams. While I explained these concepts, the student filled in a 

graphic organizer for vocabulary. After the guided practice, the student and I completed two 

activities. The first activity involved the student pointing to graphs to correctly identify 

positive, negative, zero, and undefined slope. Second, the student completed a matching 

activity that involved correctly matching a graphed equation, completed table, written 

equation, and contextual problem for a total of four problems. The representations of each 

problem (graph, equation, table, context) were shown on cards that the student placed 

together to form a problem with all four of its representations. I provided additional 

explanations, corrective feedback, and praise as appropriate throughout the activities. The 

independent practice entailed the student independently answering 2 questions. For each 

question, the student was provided with one representation of a problem (graph, equation, 

table, context) and was asked to complete the missing representations. In addition, the 

student also classified the slope in each of the problems as positive, negative, zero, or 

undefined. The final step in each lesson involved the student completing an exit slip, which 

consisted of one or two problems aligned with the lesson objectives for that lesson. The 
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student completed the exit slip problems independently, which allowed me to gather data on 

an ongoing basis to help tailor each lesson to the specific needs of each student. I went over 

the exit slip with the student at the beginning of the following lesson. I reviewed or retaught 

concepts the student was struggling with, and provided praise and encouragement for 

concepts for which the student demonstrated growth.   

Each lesson incorporated the CRA instructional sequence. An integrated approach to 

CRA was used for this study, rather than isolating the concrete, representational, and 

abstract levels of the sequence to specific lessons. The CRA integration strategy, which has 

been used in previous studies focused on improving the math skills of students in eighth- 

and ninth-grades, provides a more flexible way to incorporate concrete and representational 

depictions of secondary math concepts (Strickland & Maccini, 2012). I taught the lesson 

concepts using concrete manipulatives (i.e., blocks), representations (i.e., pictures/diagrams) 

and abstract depictions of the concepts (i.e., formulas). During the guided practice, I assisted 

the student in using each of these methods (C-R-A) to gain an understanding of the lesson 

concepts. During the individual practice, the student was allowed to independently solve 

problems related to that lesson’s material using any or all of the CRA methods. For example, 

if the lesson involved finding the missing value in a linear equation, the independent practice 

would also involve the student finding the missing value in a linear equation. The concrete 

manipulatives used for this study consisted of interlocking centimeter cubes, which could be 

stacked and lined up to represent various rate of change concepts. The representational 

strategies used included drawings of the cubes, diagrams of the stages in rate of change 

problems, as well as supplementary diagrams used to address gaps in students’ understanding 

of foundational concepts (e.g., fraction bars to help understand what fractional rates meant 

conceptually).  



 

 

81 

In addition to the CRA instructional sequence, I discussed the lesson content with 

the student, focusing on encouraging the student to explain his/her reasoning. To include 

WTLM principles, the guided practice and individual practice each included at least one 

writing prompt asking the student to explain how he/she solved the problem/completed the 

task, and why he/she knows his/her answer is correct. I taught the student a specific writing 

strategy, the POD!, which stands for Propose, Outline, Defend. The ! component of the 

POD! prompted students to check their work using four main steps: re-read the problem, 

check to make sure the problem is set up correctly, check calculations, and check for any 

common mistakes. The POD! strategy was taught alongside the math concepts, and a 

POD! graphic organizer was completed throughout the majority of the problems in each 

lesson.  

The POD! math writing heuristic consisted of three main components that 

prompted students to write explanations of their math problem-solving processes. The first 

step of the POD! asked students to Propose the problem. In this step, students wrote down 

what they are asked in the math problem at hand, and listed the information that they were 

provided with in the problem. The second step prompted students to Outline how they 

would solve the problem. In this step, students wrote down steps for how they would solve 

the problem. The final step of the POD! math writing heuristic had students Describe and 

Defend their answer. In this final step, students first used words to describe the process used 

to solve the problem, and then explained how they knew their answer made sense, using 

pictures or an example for support. I provided the student with a POD! graphic organizer 

(See Appendix C) to assist him/her in completing the writing prompts. Through the use of 

the POD! writing heuristic, I aimed to help students improve their abilities to write 

mathematical explanations and justifications, as well as work through math problems. The 
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explicit reviews at the beginning of each lesson incorporated memorization strategies to help 

students remember the components of the POD! strategy and how to use them to work 

through problems. Students were asked to complete a POD! graphic organizer for at least 

one of the problems on each exit slip as well, which allowed me to evaluate students’ use of 

the strategy and their mathematical writing.  

Behavior management sys tem. I explicitly defined and taught each student the 

behavior I expected students to display during each intervention or assessment session. The 

three behavioral expectations were the following: (a) Be respectful; (b) Follow directions; 

and (c) Be a persistent problem solver. Be respectful was defined as keeping hands, feet and 

other objects to yourself, as well as using appropriate language free of put-down or 

derogatory comments. Follow directions was defined as the student doing what they were 

told to do the first time they were told to do so. Be a persistent problem solver was defined 

as the student trying their best on each problem, and attempting all problems in each lesson 

or assessment. Students’ appropriate behavior was reinforced using a token economy system. 

Students were able to earn a maximum of 2 points per each of the three expectations each 

day. Students could cash in their points every two weeks for small tangible or consumable 

items (e.g., granola bars, pencils, etc.).  

Intervent ion data co l l e c t ion.  I administered rate of change assessments during the 

sessions immediately following the completion of Lessons 2, 4, 6, and 7 for each student. 

Intervention assessment administration followed the same procedures previously described 

for baseline assessment administration. On days the assessments were administered, students 

were pulled out of their study skills or elective class as they typically were for intervention 

instruction, but students completed assessments rather than participating in intervention 

lessons. I administered the assessments, reading the prompts aloud in a quiet and controlled 
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environment. I then scanned and emailed the completed assessments to the graduate student 

designated to score assessments. The graduate student scored the math and writing portions 

of each assessment and emailed completed scoring rubrics back to me. I then graphed the 

total points students earned for both math and writing sections on each assessment to have 

an ongoing record of how students were responding to the intervention. While the rate of 

change assessments included points for math and writing, these two components of the 

assessments were scored and graphed independently to allow me to evaluate the effects of 

the intervention on students’ writing and math performance. Social Validity data were 

collected for each participant following completion of the final intervention assessment. 

Each student completed the CIRP during the block of time they typically were pulled out of 

their math class to participate in the intervention lessons and assessments. To provide 

descriptive information, the amount of time per intervention session, as well as per lesson 

was recorded for each student. This information was further analyzed to determine the 

average lesson length per participant and across participants, as well as the average session 

length per participant and across participants.  

 

Maintenance 

Each student completed one maintenance rate of change assessment per week 

between 1 and 7 weeks following the completion of the fourth intervention assessment. Rate 

of change assessment administration during maintenance followed the same administration 

procedures described for intervention assessment administration.  Students’ percent of 

correct math and writing responses were evaluated and graphed for maintenance. If a 

student’s maintenance scores on the math portion of the rate of change assessments fell 

below the median score of their intervention math scores by the third maintenance 
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assessment, students completed a Booster Lesson that reviewed key concepts of the 

intervention. Booster Lessons were completed following the same procedures described 

above for intervention lessons.  

 
Data analysis 

Data were analyzed throughout the study on an ongoing basis to allow me to make 

adjustments to the intervention as necessary. Data analysis that occurred throughout the 

study provided me with information regarding when to make phase changes. Decisions 

regarding phase changes were made based on progress of the primary dependent variable, 

students’ total points on the math items of the rate of change assessment. Once the 

intervention was completed, I analyzed all of the participant data. Graphs of the data were 

visually inspected to determine the effects of the intervention on the students’ total points 

for correct math and writing responses on the rate of change assessments. The results of the 

social validity questionnaires were calculated and reported for each participant (using 

pseudonyms), as well as for each of the items included within the questionnaire.  

 
Treatment Integrity Procedures 

Fidel i ty  o f  l esson implementat ion.  I collected treatment integrity data for 100% of 

the lessons administered by completing a checklist of key components of lesson procedures, 

which were determined individually for each lesson. The key components included on each 

checklist were assessed as either present or not present within the lesson, and I completed 

each checklist as I administered each lesson. The minimum acceptable percentage of fidelity 

of implementation was 95%. This minimum percentage is consistent with the fidelity 

reported in the CRA research base, which ranges from averaging between 98-100% per 

study (Butler et al., 2003; Flores, 2009; Mancl, Miller, & Kennedy, 2012; Miller & Kaffar, 
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2001; Morin & Miller, 1998; Strickland & Maccini, 2012). 

 Interrater  agreement on f ide l i ty  o f  l esson implementat ion.  An undergraduate 

student was selected to complete interobserver agreement (IOA) on fidelity of lesson 

implementation for at least 30% of all lessons administered. Prior to completing IOA on any 

of the lessons, I trained the undergraduate student using recordings of sample lessons. The 

undergraduate student and I each completed fidelity checklists for three lessons, which we 

then compared for agreement. Agreement during training was 100%. Lessons for which 

IOA was assessed were then randomly selected and evenly distributed across participants 

and lessons. To complete IOA, the undergraduate student listened to audio recordings of 

selected lessons. I audio recorded all lessons administered with each student, and was blind 

to which lessons were selected for IOA on fidelity of lesson implementation. The 

undergraduate student completed the corresponding lesson fidelity checklist for each 

selected lesson. After IOA was assessed for each of the selected lessons, the undergraduate 

student provided the completed lesson fidelity checklists to me, and I calculated the overall 

percentage of agreement. I calculated the overall percentage of agreement by dividing the 

total number of agreements by the total number of agreements plus disagreements.  

 Fidel i ty  o f  assessment adminis trat ion.  To evaluate the fidelity of assessment 

administration for baseline, intervention, and maintenance assessments, I completed 

assessment fidelity checklists for 100% of the administered assessments as I administered 

each assessment. The assessment fidelity checklist included procedural elements of 

assessment administration, including reading scripted directions before administering each 

assessment, reading each question aloud to each student, and providing only appropriate 

clarifications or prompts in response to student questions (see Table 4).  

 Interrater  agreement on f ide l i ty  o f  assessment administrat ion.  A second 
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undergraduate student was selected to complete IOA on fidelity of assessment 

administration. Prior to completing IOA on any assessments, I trained the undergraduate 

student using recordings of sample assessment administration sessions. The undergraduate 

student and I independently completed assessment fidelity checklists, then compared our 

agreement. Agreement on the fidelity of the practice assessments was 100%. I then randomly 

selected 30% of the assessments for IOA. The assessments were randomly selected and 

evenly distributed across phases and participants. I audio recorded 100% of the assessments 

administered to each participant in each phase. The undergraduate student listened to audio 

recordings of each of the selected assessments and completed an assessment fidelity 

checklist for each one. The undergraduate student provided the completed assessment 

fidelity checklists to me, and I calculated agreement by dividing the total number of 

agreements by the total number of agreements plus disagreements.  

 

Assessment Integrity Procedures 

 Assessment scor ing procedures .  To prevent the risk of my bias influencing 

assessment scoring, a graduate student scored 100% of the baseline, intervention, and 

maintenance assessments. I trained the graduate student in scoring procedures, using the 

previously described rubrics and sample assessments. The graduate student and I scored four 

assessments together, to provide opportunities to discuss any disagreements in scoring. The 

graduate student and I then independently scored another four assessments, and then I 

evaluated our agreement by dividing number of agreements by number of agreements plus 

disagreements. The graduate student and I continued this process until at least 95% 

agreement was achieved for scoring the math component of the assessments, and at least 

90% agreement was achieved for scoring the writing components of the assessments. By the 
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end of one 3-hour training session, agreement on scores on the math component of the 

assessment was 98% and agreement on scores on the writing component of the assessment 

was 90%.  

 After each assessment was administered, I scanned and emailed the assessment to 

the graduate student. The graduate student used the previously described rubrics to score the 

math and writing components of each assessment, and returned the completed rubrics to 

me, and I then recorded and graphed the scores.  

 Interrater  agreement on scor ing o f  assessments . To provide interrater agreement on 

the scoring or assessments, I scored at least 50% of the assessments administered. I 

randomly selected assessments for which to evaluate IOA, and evenly distributed these 

assessments across participants and phases. After scoring each of the selected assessments, I 

compared my scores with those of the graduate student and calculated agreement by dividing 

the total number of agreements by the total number of agreements plus disagreements. The 

minimum acceptable percentage of agreements in scoring was 90% for the math 

components of the assessments. If agreement percentages fell below 90%, I provided a 

refresher training session on scoring procedures. Within the CRA research base, the range of 

interrater agreement in scoring of dependent measures is 93-100% (Butler et al., 2003; 

Flores, 2009; Mancl, Miller, & Kennedy, 2012; Miller & Kaffar, 2001; Morin & Miller, 1998; 

Strickland & Maccini, 2012). In this study, interrater agreement was calculated separately for 

the applied math computation and the written constructed response components of the rate 

of change assessments. Within the WTLM research base, no intervention studies have 

reported interrater reliability procedures or results. Conducting interrater agreement on 

written responses is valuable because writing is more subjective, and therefore could be 

more prone to lower percentages of agreement. While agreement is typically high for CRA 
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studies (Butler et al., 2003; Flores, 2009; Mancl, Miller, & Kennedy, 2012; Miller & Kaffar, 

2001; Morin & Miller, 1998; Strickland & Maccini, 2012), it is expected that agreement on 

the writing portion of the rate of change assessments used in this study might be slightly 

lower, due to writing being more subjective than math.  
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Table 1. Scoring Rubric for Applied Math Computation Problems on Rate of Change Assessments 

Problem/Task Not Proficient Emerging Proficient 
M.1: Find the slope of the line from a graph. The student must correctly identify 
the correct numerical value of the slope, as well as the correct sign (+ or -) of the 
slope.  0 

1- flipped slope (x/y 
instead of y/x) 

1- correct value with 
incorrect sign 

2 

M.2: Find the slope of the line from a graph. The student must correctly identify 
the correct numerical value of the slope, as well as the correct sign (+ or -) of the 
slope. 0 

1- flipped slope (x/y 
instead of y/x) 

1- correct value with 
incorrect sign 

2 

M.3: Answer the missing value question: The student must determine the correct x 
or y value for the missing value question (ex: How many more cars would she need 
to wash to earn $50 total?; how much money would she have total if she washed 5 
more cars?) 

0 

1- elements of correct 
process (ex: table with 

most phases correct), but 
incorrect final answer 

2 

M.4: Answer the missing value question: The student must determine the correct x 
or y value for the missing value question (ex: How many more cars would she need 
to wash to earn $50 total?; how much money would she have total if she washed 5 
more cars?) 

0 

1- elements of correct 
process (ex: table with 

most phases correct), but 
incorrect final answer 

2 

M.5: Label Graph: Student must correctly label the x and y-axis with what each 
represents in the problem (ex: time on the x-axis and distance on the y-axis) (1 pt).  

0 0.5 for only x or only y 
correct 

1 

M.5: Number Graph: Student must correctly number the x and y axes 
*Must be consistent on each axis (i.e. by 5’s; not by 2’s for half the axis, then by 5’s), 
and appropriate for the values in the problem (i.e, go up high enough). 

0 0.5 for only x or only y 
correct 

1 

M.5: Input values in the table: *The x values must be in the correct order in relationship to each other & the problem, but do not need to correspond 
to the y values (same criteria applies to the y values). *The student may receive points for the correct values if they provide a range for x or y values, if 
the end point of the range matches the correct value.  
M.5: Input the correct x value for the first phase in the problem 
 0  1 

M.5: Input the correct x value for the second phase in the problem 
 

0  1 

M.5: Input the correct x value for the third phase in the problem 
 

0  1 

M.5: Input the correct x value for the fourth phase in the problem 0  1 
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Table 1. (Continued) 

 
Problem/Task Not Proficient Emerging Proficient 
M.5: Input the correct y value for the first phase in the problem 
 0  1 

M.5: Input the correct y value for the second phase in the problem 
 

0  1 

M.5: Input the correct y value for the third phase in the problem 
 

0  1 

M.5: Input the correct y value for the fourth phase in the problem 
 

0  1 

M.5: Graph each phase in the graph: *If axes are numbered incorrectly, student may receive points for graphing if they correctly graph the values 
shown on their table (if their table values are correct).  
M.5: Graph 1 coordinate point indicating the first phase  
 0  1 

M.5: Graph 1 coordinate point indicating the second phase 
 

0  1 

M.5: Graph 1 coordinate point indicating the third phase 
 

0  1 

M.5: Graph 1 coordinate point indicating the fourth phase 
 

0  1 

M.5: Connect (0,0) to the point indicating the first phase  
0  1 

M.5: Connect the points indicating the first and second phases  
 0  1 

M.5: Connect the points indicating the second and third phases  
 

0  1 

M.5: Connect the points indicating the third and fourth phases  
 

0  1 

M.6: Calculate the average rate of change: Find the correct value for average rate of 
change.*1.5 points if answer is incorrect due to rounding; work must be shown  0 1- correct process used, but 

calculation error made 2 

Points  Percentage Total Score:  
 /28  
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Table 2. Scoring Rubric for Explanation Constructed Responses on Rate of Change Assessments 

Writing Prompts:  W.1 Describe in writing the process you used to solve the problem above. 
W.3 Explain the steps you used to determine…. 

Type of Writing Prompt Explanation 
Description of Criteria Not Proficient (0) Emerging (1) Approaching (2) Proficient (3) 

Accuracy: 
Provides an accurate and 
appropriate description of 
mathematical procedures/ 
process used. The process 
described is an effective method to 
determine the correct answer (i.e. 
the process described is 
mathematically sound, ex: two 
times two equals four). 

No attempt; or, attempt made 
demonstrates lack of 
understanding of how to 
solve the problem (ex: I 
found the distances and 
times; I did the math) 

Student provides a 
description of an accurate 
process (incomplete or 
complete), but includes the 
incorrect answer (ex: I 
divided 26 by 2 and the result 
was 12), OR provides an 
incomplete (didn’t include all 
steps) explanation with the 
correct answer (ex: I added 14 
+ 14 = 28).   

Student provides accurate, 
but general explanation, and 
provides the correct answer. 
A general explanation means 
the explanation is incomplete 
(i.e., missing 1 or more steps). 
Ex: I set up the equation and 
solved it; I used the table. 

Student accurately describes 
all steps involved in finding 
the correct answer (complete 
process) and provides correct 
answer. Ex: I set up the 
equation and solved it by 
dividing 14 by ½.   

Math Vocab: 
Uses appropriate and specific 
mathematical language, including 
precise vocabulary. 

No attempt; or, attempt made 
does not include 
mathematical language (ex: I 
thought about the numbers).  

Student uses 1 precise math 
vocabulary word. (ex: add, 
subtract, divide, average, etc.) 

Student uses 2 precise math 
vocabulary words (ex: add, 
subtract, divide, average, etc.) 

Student provides explanation 
with at least 3 precise math 
vocabulary words (ex: add, 
subtract, divide, average, etc.) 

Labels & Quantities:  
Student’s explanation includes 
appropriate labels and specific 
reference to quantities.  

No attempt; or, attempt made 
does not provide labels, units, 
or quantities. Or, attempt 
made includes labels or units, 
but references specific, but 
any inaccurate quantities (ex: 
“I multiple 3 and 6”, but 3 
and 6 are not in the problem).  

Refers to specific and 
accurate quantities, but lacks 
reference to labels or units 
(ex: I divided 14 by 1/2). 

Includes labels or units, but 
doesn’t refer to specific 
quantities (ex: I added the 
miles and then the hours). 

Includes all correct labels or 
units, and refers to specific 
and accurate quantities (ex: I 
divided 14 by ½ to determine 
how many slices of bread per 
14 tablespoons of peanut 
butter).  

Notes: 1) Student must include at least one sentence in writing in response to these questions (operations & symbols must be in writing, 
but numbers can be written as numerals). They can use math computation as support, but must have more than just math computation 
work shown to receive any points on any category. 2) No points may be awarded in any category for verbatim repeats of the problem (ex: 
student restates the problem on M.3, but does not provide any additional information).  
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Table 3. Scoring Rubric for Explanation Constructed Responses on Rate of Change Assessments 

 
Writing Prompts:  W.2 Explain how you know your answer makes sense. Provide an example to support your reasoning.   

W.4 How do you know your answer is correct? Provide an example to support your reasoning. 
Type of Writing Prompt Justification  

Description of Criteria Not Proficient (0) Emerging (1) Approaching (2) Proficient (3) 
Accuracy: 
Provides an accurate and 
appropriate justification that is 
mathematically sound (ex: I 
know my answer is correct 
because Jerry will use twice as 
many slices as tablespoons of 
peanut butter if he has ½ 
tablespoon per slice).  

No attempt; or, attempt made 
demonstrates lack of 
understanding of why the 
problem is correct, or if it is 
correct (ex: I know my answer 
is correct because I did the 
math) 

Student provides a justification 
that lacks specific reference to 
the problem (ex: because I 
added and divided correctly) 
OR student provides an 
accurate justification but 
provides the incorrect answer.  

Student provides correct 
answer and justification, but 
does not include enough detail 
to confirm student 
understanding (ex: I know my 
method works because I am 
using a table) 

Provides correct answer and 
accurate and appropriate 
justification with detailed 
explanation (ex: I know my 
method works because the 
table helps me keep track of 
my work; the graph, story 
problem, and table match) 

Math Vocab: 
Uses appropriate and specific 
mathematical language, 
including precise vocabulary. 

No attempt; or attempt does 
not include mathematical 
language (ex: I am not sure, 
but the graph is right) 

Student uses 1 precise math 
vocabulary word. (ex: add, 
subtract, divide, average, etc.) 

Student uses 2 precise math 
vocabulary words (ex: add, 
subtract, divide, average, etc.) 

Student provides explanation 
with at least 3 precise math 
vocabulary words (ex: add, 
subtract, divide, average, etc.) 

Support: 
Provides 
data/warrants/reasoning to 
support their justification. 

No attempt; or, attempt made 
does not provide specific 
details or examples to support 
their answer; or, attempt made 
includes an example that does 
not support their 
reasoning/answer (I’m not 
sure about my method; I just 
know it is right) 

Describes partial justification, 
or provides the answer in the 
context of the problem (ex: In 
four years the lake decreases 1 
ft. So it would take 48 years 
for the lake to dry up); OR 
student provides partial 
accurate justification with 
incorrect answer (ex: I know 
my answer is right because half 
of 12 is 5). 

Provides correct answer and 
describes complete 
justification, including specific 
operations and numbers (ex: 
20 divided into groups of 4 is 
5. Thus in 25 minutes the 
plane will descend 20 ft.) 

Provides correct answer and 
complete justification. Uses 
specific examples from the 
problem or logical reasoning in  
defense of the answer (ex: 
dividing the total distances 
traveled by the total amount of 
time passed includes what 
occurred at each phase. 
Average rate of change tells 
generally how long it would 
take to get from A to B 

Notes: 1) Student must include at least one sentence in writing in response to these questions (operations & symbols must be in writing, 
but numbers can be written as numerals). They can use math computation as support, but must have more than just math computation 
work shown to receive any points on any category. 2) No points may be awarded in any category for verbatim repeats of the problem (ex: 
student restates the problem on M.3, but does not provide any additional information).



93 

 

Table 4. Assessment Fidelity Checklist for Rate of Change Assessments 

Date of Rate of Change Probe  
administration:                         _____________ 
Time Started: ________ Time Ended: _______ 

# of 
Components 

Apparent 

Total # of 
Components 

Fidelity 
Score 
(%) 

Name of Participant: ____________________ Name of Assessor: ________________ 

Component Apparent 
(yes) 

Not 
Apparent 

(no) 

Not 
applicable 

(na) 
Assessor reads the directions for the rate of 
change probe out loud. 

   

Assessor provides student with a calculator & 
explains that they may use the calculator on any 
of the test questions if they would like to. 

   

Assessor reads each of the prompts in the rate of change probe out loud (check that each of 
the prompts listed below is read out loud):  
Reads out loud: M.1. What is the slope of the 
line below? 

   

Reads out loud: M.2. What is the slope of the 
line below? 

   

Reads out loud: M.3. (problems vary).     
Reads out loud: W.1. Describe in writing the 
process you used to solve the problem above.  

   

Reads out loud: W.2. Explain how you know 
your answer makes sense. Provide an example to 
support your reasoning. 

   

Reads out loud: M.4. (problems vary).    
Reads out loud: M.5. (problems vary).    
Reads out loud: M.6. (problems vary).    
Reads out loud: W.3. Explain the steps you used. 
. .  

   

Reads out loud: W.4. How do you know your 
answer is correct? 

   

Responses/Clarifications to Student Questions 
Assessor provides clarifications that do not give 
away the answer or how to find it.  
Examples of appropriate clarifications include- re-
reading the prompt, simplifying vocabulary in 
the prompt, or prompting the student to think 
back to the lessons.  
 
Inappropriate clarifications include any explanation 
of the steps that students need to complete in 
the problem, explanations of what slope or rate 
of change is, or providing example written 
responses.  

  NA if the 
student does 
not ask any 
questions 



 

 

 

 

CHAPTER 3 

 

RESULTS 

 

Fidelity Results 

Lesson Fidelity 

 As the intervention instructor, I helped ensure fidelity of intervention 

implementation by completing a checklist of essential lesson components. As I taught each 

lesson, I indicated whether each component of the lesson occurred or did not occur. I 

followed these procedures for 100% of the lessons administered. For all lessons and 

participants, I was able to mark 100% of essential lesson components as occurring.  

 In addition to completing fidelity checklists, I also audio-recorded each lesson. To 

ensure that I implemented the intervention as intended, a research assistant who was also a 

student at the university completed interrater reliability checks for lesson fidelity. The 

research assistant listened to 48% (12 out of 25 total lessons) of the lesson recordings and 

completed the fidelity checklists. The research assistant first randomly selected the lessons 

for which to complete interrater reliability checks. This procedure was followed to help 

prevent biases from influencing the selection of lessons for interrater reliability. The research 

assistant ensured that selected lessons were evenly distributed across participants. For each 

lesson, the research assistant checked off each component as he heard them on the 

recording, indicating whether the component occurred or did not occur. Agreement was 
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calculated by dividing the total number of agreements by the total number of agreements 

plus disagreements. Interrater reliability ranged from 98% to 100% agreement, with an 

average agreement of 99.71%.  

 I also self-monitored assessment fidelity for 100% of the assessments I administered. 

As I administered each assessment, I checked off components of an assessment fidelity 

checklist as being present, not present, or not applicable (e.g., if students did not ask any 

questions, the item regarding providing only appropriate responses to student questions 

would not be applicable). The assessment fidelity checklist included procedural elements of 

assessment administration, including reading scripted directions before administering each 

assessment, reading each question aloud to each student, and providing only appropriate 

clarifications or prompts in response to student questions, if applicable (see Table 4). All 

assessments were administered with 100% fidelity across all participants. A second research 

assistant who was also a student at the university completed interrater reliability for 

assessment fidelity. Interrater reliability was completed for 43.75% (18 out of 41 total 

assessments) of assessments administered, and was randomly selected across phases and 

participants. There was 100% agreement on the assessments for which interrater reliability 

was assessed.  

 

Interrater Reliability  

 To help reduce potential bias in scoring, a third research assistant (RA) who was a 

graduate student at the university completed 100% of the assessment scoring. The (RA) was 

blind to the purpose and phases of the study. Prior to the beginning of the study, I trained 

the research assistant in scoring procedures. The RA and I scored four practice assessments 

together, to provide opportunities to discuss any disagreements in scoring. The research 
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assistant and I then independently scored another set of practice assessments I evaluated our 

agreement on these assessments by dividing number of agreements by number of 

agreements plus disagreements. The research assistant and I continued this process until at 

least 95% agreement was achieved for scoring the students’ total points of correct math 

responses, and 90% agreement was achieved for scoring the students’ total points of correct 

writing responses. By the end of one 3-hour training session, average agreement for students’ 

total points of correct math responses on the rate of change assessment was 98% (range 91-

100%) and average agreement for students’ total points of correct writing responses was 

90% (range 75-100%). I completed interrater reliability checks by scoring 51% (21 of 41 total 

assessments) of the assessments, randomly selected and evenly distributed across participants 

and phases, which exceeds recommended professional standards of 20-30% (McDonnell & 

Heathfield, 2011). For students’ total points of correct math responses on the rate of change 

assessments, agreement ranged from between 82.6% to 100%, with an average of 96.8%. 

For the students’ total points of correct writing responses on the rate of change assessments, 

agreement ranged from between 25% to 100%, with an average of 87.9%.  

 

Effects of the Intervention  

The primary dependent variable for this study was students’ total points of correct 

math scores on rate of change assessments (math scores). The secondary dependent variable 

was students’ total points of correct writing responses on rate of change assessments (writing 

scores). Descriptive data for each dependent variable and each phase (baseline, intervention, 

and maintenance) are presented in Tables 5 and 6. Visual analysis of the graphed data was 

conducted within phases, across phases, and across participants. Visual analysis within 

phases and participants included an evaluation of trend, variability, level, immediacy of 
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change, and magnitude (White & O’Neill, 2011). To determine if a positive, negative, or no 

trend existed within each phase of the data, ordinary least square (OLS) trend lines were 

calculated for each phase for each participant. A positive slope indicated increases in math 

scores, a slope of 0 indicated no change in math scores, and a negative slope indicated a 

decrease in math scores. Across participants, visual analysis was conducted to evaluate the 

consistency of data patterns. Data were also compared vertically across participants. Figure 1 

presents the graphs of students’ total points of correct math responses on rate of change 

assessments and Figure 2 presents the graphs of students’ total points of correct writing 

responses on rate of change assessments.  

 

Math Scores on Rate of Change Assessments  

Baseline 

Descr ipt ive  resul ts .  Each participant completed between four and seven baseline 

assessments. As described in Chapter 2, Abigail began the baseline phase later than Toby 

and Jason. During baseline, students’ math scores ranged from 0-7 points, with an average 

mean of 2.18 points and average median of 2 points (refer to Table 5 for individual 

participant data).  

Visual analys is  resul ts .  Visual analyses of students’ math scores on baseline rate of 

change assessments were first conducted within each phase for each participant. Toby’s 

scores were at a very low level, as he scored 0 on all baseline assessments. Jason’s scores also 

reflected a low level, with a mean of 1 points and range of 0-2 points. Abigail’s baseline 

scores were at a slightly higher level, with a mean of 4.43 points and range of 3-7 points. 

Regarding trend and variability, Toby’s baseline data had a slope of 0, as he had math scores 

of 0 on all baseline assessments and his scores remained stable throughout baseline. Jason’s 
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math scores on the baseline assessments showed a decreasing trend with low variability with 

a range of 2 points (slope = - 0.006), and Abigail’s baseline assessments showed a slightly 

greater decreasing trend (slope = - 0.027) but higher variability.  

Across participants, baseline math scores were fairly consistent. Toby and Jason had 

similar results in terms of trend, variability and levels. Abigail also had similar results for 

trend, but showed higher variability (range of 3-7 points) and higher levels (mean of 4.43 

points). Vertical analysis across participants showed that Toby and Jason had similar scores 

at the same point in time when both were in baseline. It was not possible to conduct a 

vertical analysis that included Abigail when looking solely at the baseline phase, as Abigail 

began baseline later than Toby and Jason.  

 

Intervention  

 Descr ipt ive  resul ts .  During intervention, students’ math scores ranged from 2-18 

points, with an average mean of 6.71 points and average median of 4.5 points (see Table 5). 

Consistent with the procedures described in Chapter 2, each participant began intervention 

after displaying low and stable points of correct math responses on baseline rate of change 

assessments, and after the previous participant demonstrated a response to intervention (i.e., 

at least a 10% increase in math scores on intervention rate of change assessments compared 

to the median of math scores on baseline rate of change assessments). Based on the 

preestablished phase change criteria, Abigail was scheduled to begin intervention after 

Jason’s math scores on intervention rate of change assessments were at least 10% above the 

median of his math scores on baseline rate of change assessments. Jason scored 

approximately 7% above the median of his baseline math scores on his first intervention 

assessment, but had a decrease of 1 point on his second intervention assessment. The 
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decision was made to begin Abigail’s intervention phase at that point, due to evidence of a 

decreasing trend in her baseline math scores and concerns regarding the time left in the 

school year. 

 Each student completed four assessments during the intervention phase, and 

received instruction on lessons 1-7. Toby, Jason, and Abigail all received instruction on at 

least one review lesson. Review lesson 1 was administered after lesson 4 if a student had not 

demonstrated an improvement of at least 10% above the median of their baseline math 

scores by the second intervention assessment. Review lesson 2 was administered after lesson 

6 if a student had a decrease or plateau in math scores on their third intervention assessment.   

 Toby received instruction on Review Lesson 2, due to a decrease in math scores on 

his third intervention assessment. Jason received instruction on Review Lesson 1 because his 

math scores had improved by less than 10% over his median baseline score by the second 

intervention assessment. Abigail received instruction on Review Lesson 1 because she had 

demonstrated an improvement of less than 10% above the median of baseline math scores 

by the second intervention assessment. She also received instruction on Review Lesson 2, 

due to a decrease in math scores on her third intervention assessment. Table 7 summarizes 

the treatment dose, an indicator of treatment intensity (Codding & Lane, 2015) per 

participant. On average, students received instruction for 849.3 minutes over 34.3 sessions. 

Sessions were conducted on average of 2.31 times per week.  

 Visual analys is  resul ts .  Within the intervention phase, increasing trends were 

visible for all three students’ math scores. Jason demonstrated the highest trend (slope 

=0.24) in math scores, followed by Abigail (slope =0.11). Toby’s intervention math scores 

had a more modest, but still increasing trend (slope =0.09). As anticipated, the level of 

intervention math scores for each participant remained relatively low for the first three 
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intervention assessments. Toby had the lowest level of math scores during intervention 

(mean= 5 points), Jason had slightly higher math scores during intervention (mean=6.75 

points), and Abigail had the highest math scores during intervention (mean=8.37 points). All 

3 participants had fairly low variability in intervention math scores, with the exception of 

large increases between the third and fourth intervention assessments. Toby’s scores ranged 

from 2 points to 11 points, Jason’s intervention math scores ranged from 2 points to 17 

points, and Abigail’s intervention math scores ranged from 3.5 points to 18 points.  

 All 3 participants showed an immediacy of effect between baseline and intervention. 

Both Toby and Jason received 3 points on the first intervention assessments, compared with 

scores of 0 on their final baseline assessments. Abigail’s first intervention score was 6 points, 

while her final baseline score was 3 points. Abigail’s scores showed consistent variability 

during baseline her math score on the first intervention assessment was above the median of 

her baseline scores, which was 4 points. The magnitude of change in math scores between 

baseline and intervention was determined by comparing means of each phase (see Table 5). 

Jason had the largest increase in math scores (5.75 points), followed by Toby (5 points), and 

Abigail (3.94 points). These increases in means for each participant reflect relatively small 

changes in magnitude, as math scores on the rate of change assessments were out of 28 total 

points. However, when the median baseline scores are compared with students’ highest 

intervention math scores, improvements ranged between 11 and 16 points. 

 The patterns of data across participants during intervention were fairly consistent. 

First, all 3 participants had increasing trends during intervention. This is in contrast to trends 

in baseline, which were decreasing for all 3 participants. Each participant had the greatest 

increase in math scores between the third and fourth intervention assessments, which were 

administered after lessons 6 and 7, respectively. Vertical analysis across participants shows 
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that students for whom the independent variable (the CRA + W intervention) was not 

manipulated did not have improvements in their baseline scores, while at the same point in 

time students for whom the independent variable was manipulated did have improvements 

in their intervention scores. This vertical analysis provides additional evidence that the CRA 

+ W intervention may have influenced students’ improvements in scores during 

intervention.   

 

Maintenance 

 Descr ipt ive  resul ts .  Students completed between one and six maintenance 

assessments 1 to 7 weeks following the end of the intervention. During maintenance, 

students’ math scores ranged from 1-26 points with an average mean of 11.7 points and 

average median of 11 points. Booster lessons were administered during the maintenance 

phase if students’ maintenance math scores fell below the median of their intervention 

scores. Toby received instruction on a Booster Lesson because his third maintenance math 

score fell below the median of his intervention scores.  

 Visual analys is  resul ts .  There were mixed results regarding trend within the 

maintenance phase. Toby’s math scores on maintenance assessments reflected an increasing 

trend (slope = 0.1831). Jason’s math scores on maintenance assessments demonstrated a 

decreasing trend (slope = -0.2634). It was not possible to calculate slope for Abigail’s 

maintenance phase, due to her completion of only one maintenance assessment. There was 

not time for Abigail to complete additional maintenance assessments because the school year 

ended. All 3 students maintained higher levels of scores during maintenance when compared 

with both baseline and intervention. Toby’s mean score during maintenance was 4 points, 

Jason’s mean score during maintenance was 17.16 points, and Abigail’s score on her only 
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maintenance assessment was 26 points. Variability during maintenance was comparable to 

variability during intervention. During intervention, Toby’s scores had a range of 9 points 

and Jason’s scores had a range of 15 points. During maintenance, Toby’s scores had less 

variability, with a range of 7 points, and Jason’s range remained at 15 points.  

 Jason and Abigail had immediate increases in scores between the intervention and 

maintenance phases. Toby showed an immediate decrease in scores on his first maintenance 

assessment, receiving 1 point. Jason demonstrated an increase in scores on his first 

maintenance assessment, receiving 22 points. On her maintenance assessment, Abigail 

received 26 points, which is also an immediate increase in scores compared to her final 

intervention assessment. The magnitude of change in math scores (see Table 5 for a 

comparison of means) between intervention and maintenance was large for Jason and 

Abigail. Toby’s mean maintenance score (4 points) was 1 point lower than his mean 

intervention score (5 points). Across participants, the patterns of math score data between 

intervention and maintenance were not very consistent. Toby’s maintenance math scores 

started low and gradually increased, whereas Jason’s maintenance math scores started high 

and gradually decreased.  

  

Writing Responses on Rate of Change Assessments  

Baseline  

 Descr ipt ive  resul ts .  Students’ baseline writing scores ranged from 0-13 points, with 

an average mean of 3 points and average median of 1.5 points. Individual participant data are 

reported in Table 6.  

 Visual analys is  resul ts .  Regarding trend, Toby’s baseline data had a slope of 0, as 

he had writing scores of 0 on all baseline assessments. Jason and Abigail displayed decreasing 
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trends during baseline. The slope of Jason’s writing scores on baseline assessments was 

mostly flat, but slightly decreasing (slope = -0.004). The slope of Abigail’s writing scores on 

baseline assessments was also slightly decreasing (slope = -0.041). All 3 participants had 

relatively low levels of writing scores during baseline. Out of 36 points total, the mean of 

Jason’s writing scores was 1 point and the mean of Abigail’s writing scores was 4.43 points 

(see Table 6 for a comparison of means). Toby’s scores, all 0 points, remained stable 

throughout baseline. Jason’s scores had low variability (ranged between 1 and 2 points). 

Abigail’s writing scores were highly variable, ranging from 2 to 13 points. 

Across participants, baseline data were fairly consistent. Toby and Jason had similar 

results in terms of trend, variability and levels. Abigail also had similar results for trend, but 

showed higher variability and higher levels. Vertical analysis across participants showed that 

Toby and Jason had similar scores at the same point in time when both were in baseline. It 

was not possible to conduct a vertical analysis that included Abigail when looking solely at 

the baseline phase, as Abigail began baseline later than Toby and Jason.  

 

Intervention  

 Descr ipt ive  resul ts .  Students’ intervention writing scores ranged from 0-11 points, 

with an average mean of 3.2 points and average median of 3 points. Data for individual 

participants are reported in Table 6.  

 Visual analys is  resul ts .  Within the intervention phase, all 3 students had increasing 

trends for their writing scores. Abigail had the highest slope (slope = 0.0944), followed by 

Jason (slope = 0.0306). Toby showed evidence of a slightly increasing trend (slope = 

0.0105). Levels of writing scores during intervention remained low (see Table 6 for 

intervention means). Toby and Jason each had mean writing scores during intervention of 
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1.75 points, and Abigail had a mean writing score during intervention of 6.25 points. Jason 

and Toby had low variability in writing scores during intervention, with Toby’s writing 

scores ranging between 0 and 4 points, and Jason’s ranging from 0 to 3 points. Abigail’s 

writing scores during intervention were more variable, ranging between 3 and 11 points.  

 Toby was the only participant to show a clear immediate increase in scores between 

baseline and intervention, with his first writing score of 3 points, compared to his writing 

scores of 0 points on all baseline assessments. Jason’s first intervention writing score was 2 

points, compared to his final baseline writing score of 1 point. Abigail’s first intervention 

writing score was 3 points. While this was above her final baseline writing score of 2 points, 

it was below the median of her baseline writing scores, which was 5 points. In terms of 

magnitude, there were very slight improvements in level of performance for each participant 

between baseline and intervention, ranging between increases of 0.75 points to 1.8 points 

(see Table 6 for a comparison of means). 

 Writing scores across participants during intervention were consistent between Toby 

and Jason, but not Abigail. Toby and Jason both showed low levels with some variability. 

Abigail’s writing scores steadily increased throughout intervention. Vertical analysis across 

participants and phases provides mixed results. Jason had stable and low scores in baseline at 

the same point in time that Toby had increases in intervention scores. However, Abigail 

showed increases in baseline scores at the same point in time that Jason had increases in 

intervention scores. Additionally, while Toby and Jason were in intervention and Abigail 

remained in baseline, all 3 students had decreases in scores at the same point in time. 

Therefore, the visual analysis of data between and within participants does not conclusively 

demonstrate that improvements made between baseline and intervention can be attributed 

to the intervention. 
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Maintenance 

Descr ipt ive  resul ts .  Students’ maintenance writing scores ranged from between 0-18 

points, with an average mean of 4.4 points and average median of 4 points. 

Visual analys is  resul ts .  Regarding trend of writing scores within the maintenance 

phase, Toby had a decreasing trend (slope = -0.0269), Jason had a slightly increasing trend 

(slope = 0.0088), and it was not possible to calculate slope for Abigail’s maintenance phase, 

as she only completed one maintenance assessment. Levels of participants’ writing scores 

during maintenance were low relative to the number of points available on the assessments 

for Jason and Toby, but higher for Abigail. The mean of Toby’s maintenance writing scores 

was 3 points and the mean of Jason’s maintenance writing scores was 4.5 points. Abigail’s 

writing score on the one maintenance assessment she completed was relatively high (18 

points). Compared to intervention, Toby’s writing scores were less variable during 

maintenance, ranging from 0 to 4 points. Jason’s writing scores on maintenance assessments 

were more variable than they were during intervention, ranging from 1 to 7 points.  

Immediate increases in writing scores between the intervention and maintenance 

phases were only visible for Abigail. Toby and Jason both had decreases in writing scores on 

their first maintenance assessment. Regarding magnitude, all 3 students also showed an 

increase in writing scores between baseline and maintenance, as well as intervention and 

maintenance phases (see Table 6 for a comparison of means between phases). Between 

baseline and maintenance phases, participants’ writing scores improved by between 3 and 

13.57 points, and between intervention and maintenance phases, participants’ writing scores 

improved by between 1.25 and 11.75 points. Patterns of data during the maintenance phase 

were consistent for Toby and Jason. Both Toby and Jason had initial decreases in writing 

scores on their first maintenance assessments, variable writing scores that were above 
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baseline and intervention levels on the second through fifth maintenance assessments, and a 

decrease in writing scores on their final maintenance assessments. Abigail’s writing scores on 

her only maintenance assessment did not reflect same pattern as Toby and Jason’s scores, as 

her writing scores increased instead of decreasing.  

 

Social Validity Results  

Table 8 reports the results on the modified Children’s Intervention Rating Profile 

(Arra & Bahr, 2005). Overall, students felt positively toward the intervention. Each of the 7 

items was rated on a 1-6 Likert-type scale, with 1 indicating strongly disagree and 6 

indicating strongly agree. On average, the students indicated that using POD!, cubes and 

diagrams was a helpful way to teach math (median = 5), that using POD!, cubes and 

diagrams to teach math was a good way to teach math to other students (median = 4), that 

they liked using POD!, cubes and diagrams to learn math (median = 4), and that they felt 

that using POD!, cubes and diagrams to teach math would help students do better in 

school (median = 5). However, students also indicated that using POD!, cubes and 

diagrams to teach math is too hard (median = 3), that using POD!, cubes and diagrams to 

teach math may be hard for other students (median = 5), and that they felt there were better 

ways to teach math to students other than using POD!, cubes and diagrams (median = 4). 
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Figure 1. Students’ Total Points of Correct Math Responses on Rate of Change Assessments 
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Figure 2. Students’ Points of Correct Writing Responses on Rate of Change Assessments 
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Table 5. Descriptive Data For Students’ Total Points of Correct Math Responses on Rate of Change Assessments 

 
 Baseline Intervention Maintenance 
 Mean Median Range Mean Median Range Mean Median Range 

Toby 0.00 0.00 0.00 5.00 3.50 
 

2.00-11.00 
 

 4.00  4.00 1.00-8.00 

Jason 
 

1.00 1.00 0.00-2.00 6.75 4.00 2.00-17.00 17.16 15.50 11.00-26.00 

Abigail 
 

4.43 4.00 3.00-7.00 8.37 6.00 3.50-18.00 26.00 26.00 --- 

Total 
 

2.18 2.00 0.00-7.00 6.71 4.50 2.00-18.00 11.77 11.00 1.00-26.00 
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Table 6. Descriptive Data For Students’ Total Points of Correct Writing Responses on Rate of Change Assessments 

 
 Baseline Intervention Maintenance 
 Mean Median Range Mean Median Range Mean Median Range 

Toby 
 

0.00 0.00  0.00 1.75 1.50 0.00-4.00  3.00  3.00 0.00-4.00 

Jason 
 

1.00 1.00 1.00-2.00 1.75 2.00 0.00-3.00  4.50  4.50 1.00-7.00 

Abigail 
 

4.40 5.00 2.00-13.00 6.25 5.50 3.00-11.00 18.00 18.00 --- 

Total 
 

3.00 1.50 0.00-13.00 3.20 3.00 0.00-11.00  4.40  4.00 0.00-18.00 
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Table 7. Treatment Intensity Per Participant 

 
 Lesson 

1 

Lesson  

2 

Lesson  

3 

Lesson  

4 

Lesson  

5 

Lesson  

6 

Lesson  

7 

Review  

1 

Review  

2 

Total 

 M D M D M D M D M D M D M D M D M D M D 

Toby 73 2 118 4 119 5 106 4 126 7 118 6 107 3 NA NA 88 3 855 34 

Jason 52 2 99 3 138 5 92 3 107 4 93 3 53 2 90 3 NA NA 724 25 

Abigail 73 2 103 3 148 8 122 6 139 6 85 5 85 2 115 7 99 5 969 44 

Average 66 2 107 3.3 135 6 107 4.3 124 5.6 98.6 4.6 81.6 2.3 102.5 5 93.5 4 849.3 34.3 

Note: M indicates minutes and D indicates Days.  
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Table 8. Social Validity Results Per Question 

 Responses 
Survey Questions Toby Jason Abigail Median 

1. Using POD!, cubes and diagrams is a helpful way to teach 
math 5 3 5 5 
2. Using POD!, cubes and diagrams to teach math is a good way 
to teach math to other students 4 3 6 4 
3. I like using POD!, cubes and diagrams to learn math 4 4 5 4 
4. I think that using POD!, cubes and diagrams to teach math will 
help students do better in school 5 4 5 5 
5. Using POD!, cubes and diagrams to teach math is too hard 3 4 2 3 
6. Using POD!, cubes and diagrams to teach math may be hard 
for other students 4 5 5 5 
7. There are better ways to teach math to students than using 
POD!, cubes and diagrams 4 5 3 4 
Note: Likert scale range of 1-6, with 1 indicating strongly disagree and 6 indicating strongly agree.  
 
 

 



 

 

 

 

CHAPTER 4 

 

DISCUSSION 

  

Summary of Results 

 

 The purpose of this study was to determine if a functional relationship exists 

between the use of a rate of change intervention incorporating the CRA instructional 

sequence and WTLM and students’ accuracy on a rate of change assessment. The primary 

dependent variable was students’ total points of correct math scores on rate of change 

assessments (math scores), and the secondary dependent variable was students’ total points 

of correct writing scores on rate of change assessments (writing scores). Students’ math and 

writing scores on the rate of change assessments in this study provided valuable information 

regarding concepts students struggled with related to rate of change and writing, as well as 

concepts for which students made significant improvements.  

 

Evidence of a Functional Relation Between the CRA + W  

Intervention and Math Scores 

 The first research question asked what the effect of implementing a concrete-

representational-abstract (CRA) instructional sequence incorporating writing to learn math 

strategies was on students with disabilities’ proficiency in solving rate of change problems. 

Toby, Jason, and Abigail had increasing trends in math scores during intervention, had 
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higher levels of math scores during intervention than baseline, and did not have substantial 

variability in math scores during intervention.  

 Typically, one sign of effective interventions is immediacy of effects aligned with the 

start of the intervention. Only Toby demonstrated an immediate and substantial 

improvement in math scores between baseline and intervention. Jason and Abigail 

demonstrated more gradual improvements. However, since this intervention involved 

acquisition of an academic skill, it was expected that improvement would be gradual as 

opposed to immediate. Previous research on CRA has also noted a lack of immediacy of 

effects (Flores, Hinton, & Schweck, 2014; Witzel, 2005). A study conducted by Flores, 

Hinton, and Schweck (2014) on the use of CRA to improve students’ multiplication with 

regrouping also found a delayed effect. However, the authors indicated that this delay in 

improvement was balanced by the development of fluency and generalization (Flores, 

Hinton, & Schweck, 2014). The results of this study are similar, as the participants were able 

to maintain higher rates of performance compared to baseline even 6 weeks following the 

intervention. The concepts covered throughout the seven intervention lessons also built 

upon one another. The concepts covered in lessons 1-4 were foundational to those covered 

in lessons 5-7. Therefore, it was anticipated that students would improve gradually because 

the lessons covered concepts that gradually increased in complexity.  

 An additional consideration is that the assessments used to evaluate student progress 

throughout the intervention assessed all of the intervention objectives. When students took 

the first and second intervention assessments, they had only been exposed to approximately 

half of the intervention objectives. The objectives covered in Lessons 5-7 accounted for 

approximately 64% of the points available on the rate of change assessments. As anticipated, 

Toby, Jason, and Abigail showed the biggest increases in math scores on the fourth 
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intervention assessment, which occurred after students had had exposure to all lesson 

concepts, as well as multiple opportunities to practice them.  

All 3 students had increases in magnitude of math scores between baseline and 

intervention. Toby’s mean math scores improved by 5 points between baseline and 

intervention, Jason’s mean math scores improved by 5.75 points between baseline and 

intervention, and Abigail’s mean math scores improved by 3.94 points between baseline and 

intervention. The overall level of performance for each participant during intervention was 

relatively low compared to the total number of points available on the math portion of the 

assessment (26 points). However, the assessment was constructed to be challenging, in part 

because it covered a broad range of skills. It was therefore difficult for students to achieve 26 

points.  

All 3 participants had fairly consistent patterns of data during intervention for math 

scores related to trend, level, variability, immediacy of effects, and magnitude. Abigail had 

the highest amount of variability in her baseline and intervention data, and also had the 

highest scores on average during baseline, which could have contributed to the variability. A 

student who had some proficiency with the skills assessed would be expected to have more 

fluctuation in scores versus a student who scored 0 points on the assessments. Consistency 

of data patterns across participants provides evidence that changes in students’ math scores 

can be attributed at least in part to the CRA+W intervention.  Additionally, based on vertical 

analysis across participants, students who remained in baseline did not show improvements 

in math scores at the same point in time that students in intervention showed improvements 

in math scores. This is an important finding, as it provides evidence that the intervention 

may have influenced improvements in math scores.  

All 3 students maintained higher mean math scores during maintenance when 
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compared with baseline and intervention, although maintenance math scores tended to be 

lower than the math scores on the final intervention assessment. The average mean across 

participants during baseline was 2.18 points, compared with 6.71 points during intervention 

and 11.77 points during maintenance (see Table 5 for individual participant means). A slight 

decrease in maintenance scores was expected, as the maintenance assessments occurred 

between 1 and 7 weeks following the end of the intervention, and it is documented that 

students with disabilities often struggle with long-term memory and retaining skills learned 

(Shin & Bryant, 2015). In this study, students’ average scores were actually higher during 

maintenance than in intervention. This could be because the average intervention scores 

were influenced by early intervention assessments, for which students scored lower. The 

maintenance phase, in contrast, occurred after students had been exposed to and practiced 

all skills covered in the rate of change assessments. Therefore, student may have continued 

to improve throughout the maintenance phase. While these results are mixed, the trends in 

the data are promising for further development of both the CRA + W intervention and 

math and writing assessments.  

 

Difficult Math Concepts for Students With Disabilities 

Consistent with previous research on students’ understanding of rate of change, the 

students in this study had difficulty understanding the concept and importance of the sign of 

slope (Stump, 2001; Teuscher, Reys, Evitts, & Heinz, 2010), as well as depicting variable rate 

of change (Herbert & Pierce, 2007; Teuscher & Reys, 2012). These findings are of particular 

interest, as they demonstrate areas of difficulty that students with and without disabilities 

may have in common, since previous research on rate of change has only included students 

without disabilities. 
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 There were also concepts the students in this study struggled with that have not been 

documented in research on rate of change. The students struggled with constant rate of 

change problems in which the rate was expressed as a fraction. This difficulty may have been 

influenced by previous findings that show that students’ with disabilities struggle with 

fractions (Fuchs et al., 2013). Students also struggled with skills related to number sense, 

including counting the slope of a graphed line and determining the scale to use for graphs. 

These findings are consistent with research indicating that students with disabilities have 

particular difficulty with number sense (Shin & Bryant, 2015). One common error that most 

of the students made was starting their count at 1 versus 0. Determining the scale to use for 

the graphs was also challenging for students. This skill involved students consistently 

numbering the graph to include the full range of x and y values. All four students were 

unfamiliar with how to set up the scale of the graph, despite having been exposed to linear 

equations and graphing prior to the intervention and in earlier grades. This area of difficulty 

may indicate that more time be spent instructing students in how to correctly set up graphs 

based on the specific values in a problem.  

 

Areas of Improvement for Students’ Math Scores 

 While the results of this study reveal several areas of difficulty in solving rate of 

change problems as well as students’ use of writing to explain or justify their answers, they 

also demonstrate several areas in which students improved. While the students initially 

struggled with identifying and understanding the sign of slope, as well as finding the slope of 

a graphed line, they made significant improvements with these skills. This may have been 

due to the use of concrete manipulatives to help build students’ understanding of the sign of 

slope, as well as the frequent review that occurred of each of these concepts. Review of 



 

 

118 

finding slope of a line from a graph was incorporated into the beginning of most of the 

lessons, as students demonstrated this as an area of need. A second area of improvement 

was in solving constant rate of change problems. During baseline, Toby and Jason did not 

solve any constant rate of change problems correctly, and Abigail solved problems with 

approximately 33% accuracy. Following intervention, each student improved in this skill area 

by an average increase of 40%.  Third, Jason and Abigail demonstrated significant 

improvements in representing variable rate of change problems in tables and graphs, as well 

as calculating the average rate of change for these problems. Toby demonstrated moderate 

improvements in this area. While Jason followed the correct process to calculate the average 

rate of change for these problems, he often made calculation errors that affected whether he 

found the correct average rate of change. Toby did not improve in his ability to graph 

variable rate of change problems, but did improve in his ability to depict these problems in a 

table. These results indicate that direct instruction incorporating CRA + W may help 

students specifically develop the skills of identifying the slope of a graphed line, solving 

constant rate of change problems, and representing variable rate of change problems using 

tables or graphs.  

  

Evidence of a Functional Relation Between the CRA + W and Writing Scores  

 A secondary dependent variable evaluated in this study was students’ writing scores. 

All 3 participants had increasing trends in writing scores during intervention with low 

variability, but the level of each participant’s scores remained very low. The writing portion 

of the rate of change assessment was very rigorous. In order to achieve a perfect score of 36 

points on the writing portion of the assessments, students had to provide a thorough, 

mathematically correct answer that included at least three specific math vocabulary words, as 
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well as one concrete example to support their explanation or justification on each of the 

three writing prompts. Toby and Jason had moderate increases in their writing scores 

between baseline and intervention, and maintained these improvements up to 6 weeks 

following the intervention.  Only Toby demonstrated a clear immediate increase in writing 

scores between baseline and intervention. Jason and Abigail did have small increases in mean 

scores across phases. One interesting finding is that students continued to improve in their 

writing scores during maintenance, despite having only slight improvements between 

baseline and intervention. 

 There were less consistent data patterns for writing scores than for math scores. 

Toby and Jason had similar patterns, which included some variability, low levels, and very 

small positive trends in intervention writing scores. Abigail had less variability, higher levels, 

and a stronger positive trend in writing scores during intervention. These data indicate that 

the intervention may result in larger gains when implemented with students who have higher 

writing scores on the rate of change assessments initially. Additionally, Abigail also had the 

highest math scores during baseline, and the patterns of her writing scores were closely 

aligned with those of her math scores. Abigail’s results are similar to those observed by 

Waywood in his 1994 study of 10th-grade students’ writing in math, in which he found that 

students who used specific math vocabulary and accurate descriptions of concepts also had 

higher math scores. Overall, due to the inconsistency in writing scores, it is difficult to 

conclude that a functional relationship exists between the CRA + W intervention on 

students’ writing scores on rate of change assessments.  
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Difficult Writing Concepts for Students With Disabilities  

 The particular difficulties students experienced with the writing on the rate of change 

assessments were consistent with previous WTLM research and rate of change. Similar to 

studies on the rate of change performance of students without disabilities, students had 

difficulty using examples and specific information to support their explanations and 

justifications of their problem-solving processes (Herbert & Pierce, 2007). All 3 participants 

struggled with explaining how they knew their answers were correct, especially for variable 

rate of change problems (Teuscher & Reys, 2012), and had the smallest increases in scores 

on the category of the rubric related to providing support for justifications of their answers. 

These findings indicate that students with disabilities struggle with expressing their 

understanding of rate of change in writing in addition to struggling with understanding rate 

of change conceptually. One reason students may have struggled with expressing their 

mathematical ideas in writing is due to having limited knowledge of how to plan, organize 

and compose a paragraph (Santangelo, 2014), especially for the purpose of explaining 

mathematical concepts. While this is a common area of difficulty, teaching students 

strategies to use for planning, revising, and editing their writing is one of the most effective 

methods to help students improve their writing (Graham & Perin, 2007). Additionally, 

providing data, warrants, and support are often skills learned through explicit writing 

instruction. Secondary teachers, especially those who teach science or math courses, often do 

not spend much time explicitly teaching writing, typically do not teach writing using 

research-based strategies, and view themselves as being unprepared to teach writing 

(Kiuhara, Graham, & Hawken, 2009).   Students were not receiving explicit writing 

instruction during their math classes, and it is unknown whether they were receiving explicit 

writing instruction during their language arts classes. It is possible that students may have 
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increased their writing scores more significantly had they been provided with more research-

based explicit writing instruction as part of their primary classroom instruction.  

 

Areas of Improvement for Students’ Writing Scores 

 An area of improvement in students’ writing scores was in the students’ use of 

specific math vocabulary in their written explanations and justifications. During baseline, 

students often left the writing questions blank, or included very limited information. All 3 

participants’ writing scores increased the most on the category of the rubric related to the 

use of specific math vocabulary. Students may have made the most improvements in their 

writing scores on this area of the rubric because including specific math vocabulary words in 

written explanations or justifications is a lower level skill than providing warrants and 

reasoning to support the correctness of their answer. This finding demonstrates that whereas 

the results of the intervention on writing performance were inconclusive, students improved 

their use of specific math vocabulary during the intervention. It is interesting that students 

continued to improve in their use of specific math vocabulary during maintenance. It is 

possible that students continued to improve as a result of opportunities to practice using the 

terminology during instruction.  

 

Social Validity  

 Students rated the social acceptability of the CRA +W intervention favorably. The 

medians of each item of the CIRP indicated that students overall felt that the intervention 

was a helpful way to learn math, was a good method to use with other students, that they 

liked the intervention, and that they felt it would help other students do better in school. 

These results are promising, as they demonstrate that students viewed the intervention 
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positively, and felt that it might help them not only in math, but also more broadly in school.  

Students also indicated that they felt the intervention was hard, might be difficult for other 

students, and that they felt there were better ways to teach math to students other than the 

intervention. It is difficult to determine whether the high ratings of agreement (medians of 3-

5) on the difficulty of the intervention were influenced by the difficulty of the math content, 

as opposed to the strategies being used to learn the math content. Although students 

demonstrated proficiency in using the POD! and representations of the problems, the 

lessons, especially those that addressed the objectives of variable and average rate of change, 

were challenging for the students.  

  

Contribution to the Research  

 While the results of this study are inconclusive, they are promising for future 

research in the area of interventions targeting higher level math skills conducted with 

students with disabilities at the secondary level. In particular, the results of this study provide 

insight into areas in need of further curriculum and assessment development. Further 

research is needed to show clear functional effects and extend the research base on CRA + 

W.  

 This is an innovative study that applies CRA to the math concept of rate of change. 

As such, this study contributes to the research base on the use of CRA with students with 

disabilities in secondary math contexts (Strickland & Maccini, 2012; Witzel, 2005; Witzel, 

Mercer & Miller, 2003). This study also adds to the research base on an integrated approach 

to CRA, in which concrete, representational, and abstract depictions of the concepts are 

used more fluidly than found with traditional CRA (Strickland & Maccini, 2012). The results 

of this study demonstrate that students’ math scores on the rate of change assessments 
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improved following the CRA+W intervention. These results are therefore consistent with 

those of other CRA studies conducted with middle and high school students (Butler et al., 

2003; Strickland & Maccini, 2012; Witzel, 2005; Witzel et al., 2003). Additionally, this study 

adds to the research base by including maintenance assessments up to 7 weeks following the 

end of the intervention. Many of the previous studies on CRA did not include maintenance 

data, and those that did typically assessed maintenance for 4 weeks or less after the 

conclusion of the intervention (Flores, 2009; Flores, Hinton, & Schweck, 2014; Witzel et al., 

2003). One exception to this is the study conducted by Strickland and Maccini (2012), in 

which maintenance data were collected 3 to 6 weeks following the intervention. While 

additional research is needed to determine whether students’ learning generalizes to other 

areas, maintenance data are important to help determine the extent to which students’ retain 

the information taught during the intervention.  

 It is unknown the degree to which the WTLM strategies, as opposed to CRA, 

influenced the students’ improvements in solving rate of change problems. The primary 

conclusion that can be drawn is that students’ performance on rate of change problems 

improved after receiving the CRA + W intervention. It is possible that writing contributed 

to students’ improvements in math performance, as this finding has been indicated by 

previous research on WTLM (Albert, 2000; Bell & Bell, 1985; Kostos & Shin, 2010), but 

additional research is necessary to draw any conclusions in this area.   

 While the results of this study are inconclusive regarding the influence of students’ 

writing on learning rate of change concepts, they provide justification for further 

investigating the role writing may play as a learning activity in math. Very few studies have 

been conducted to evaluate the extent to which WTLM effects specific constructs of writing 

in math (i.e., specific mathematical vocabulary, the use of examples to support reasoning, 
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accurate explanations of concepts, etc.). In their study of second-grade students’ writing in 

math, Kostos and Shin (2010) used a rubric to score students’ writing based on the 

expression of processes and strategies, level of knowledge and skills for understanding, and 

communication and representation of math concepts. They found that students’ improved in 

their use of specific math vocabulary, as well as their ability to communicate about strategies 

and processes.  

 The results of the current study extend those of Kostos and Shin (2010) by 

providing information about the influence of writing on students’ use of specific math 

vocabulary, as well as their explanations and justifications of math processes, in the context 

of ninth-grade students with disabilities. Consistent with the findings of Kostos and Shin 

(2010), the students in this study improved most in regards to the number of math 

vocabulary words used throughout the intervention. More research is needed in this area to 

determine the extent to which WTLM activities may help students more accurately express 

their understanding of math concepts, especially in light of CCSSM aligned assessments that 

include questions requiring students to explain and justify their reasoning.   

 

Implications for Practice 

 There are four main implications for practice that stem from this study. First, the 

results of this study support the use of instructional strategies and interventions that build 

both conceptual and procedural knowledge. Several researchers indicate the importance of 

teaching conceptual and procedural skills in mathematics (Flores, Hinton, & Schweck, 2014; 

Flores, Hinton, & Strozier, 2014; Fuchs et al., 2012; Gersten et al., 2009; Strickland & 

Maccini, 2012). Students with disabilities in particular may struggle with developing both 

conceptual and procedural skills, and should be supported with specific strategies (Fuchs et 
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al., 2012). The intervention addressed in this study incorporated the POD! strategy to help 

students learn both procedural and conceptual skills. Procedural skills were addressed 

through the outline and describe steps in the POD!, while conceptual skills were addressed 

through the defend step. CRA served as a mechanism for students to represent rate of 

change concepts visually through using centimeter cubes and diagrams, which may have 

improved their conceptual understanding. The improvements students made in their math 

scores on the rate of change assessments add to the research base supporting the use of 

CRA to help students build both conceptual and procedural knowledge (Flores, Hinton, & 

Schweck, 2014; Flores, Hinton, & Strozier, 2014; Strickland & Maccini, 2012). Specifically, 

the results of this study demonstrate the potential benefits of using CRA to teach higher 

level math concepts. 

Second, the results support current recommendations regarding effective strategies 

for teaching math to students with disabilities in secondary contexts, including the use of 

visual representations, concrete manipulatives, explicit instruction, and the incorporation of 

basic skills practice (Gersten et al., 2009). The results of this study showed students’ math 

scores improved following the CRA+W intervention. This finding may support the 

recommendation that visual representations be incorporated in secondary math instruction 

to help students gain conceptual understanding (Gersten et al., 2009), and indicate that CRA 

+ W may be one effective strategy to implement this recommendation. Researchers also 

recommend that concrete manipulatives be used sparingly, primarily to expedite students’ 

making connections to algorithms (Gersten et al., 2009). An integrated CRA approach may 

provide a way to more flexibly and expeditiously use concrete manipulatives in the sequence 

of instruction (Strickland & Maccini, 2012), as lessons incorporate the different 

representations (concrete, visual, algorithmic) as needed. In this study, students showed a 



 

 

126 

preference for using visual representations and diagrams, although initial exposure to 

concrete manipulatives was provided when each concept was introduced. The results of this 

study, in combination with research recommendations, indicate that teachers should 

consider using integrated CRA to teach secondary math concepts.  

 The results of this study are also consistent with research recommending the use of 

explicit, systematic instruction (Flores, Hinton, & Schweck, 2014; Flores, Hinton, & Strozier, 

2014; Gersten et al., 2009; Strickland & Maccini, 2012), as well as the incorporation of a 

variety of instructional methods (Gersten et al., 2009; Mulcahy et al., 2014). Explicit 

instruction includes “providing models of proficient problem-solving, verbalization of 

thought processes, guided practice, corrective feedback, and frequent cumulative review” 

(Gersten et al., 2009, p. 21). Additionally, Mulcahy et al. (2014) recommend that a variety of 

methods be included in math interventions, including mnemonics, manipulatives, and real-

world contexts. The CRA + W intervention addresses all of these features. The results of 

this study provide some evidence that explicit instruction can incorporate opportunities for 

students to engage deeply with math content, through depicting mathematical information 

using concrete and visual representations, writing about problem-solving processes, and 

through the use of mnemonic strategies such as the POD!.  

 The results of this study, including the findings regarding the challenges students had 

with basic skills (i.e., graphing, number sense, fractions) throughout the intervention, provide 

evidence in support of research recommending the incorporation of basic skills into grade 

level content interventions. Gersten et al. (2009) recommended that at least 10 minutes of 

each intervention session incorporate building fluency and retrieval of arithmetic facts. While 

this was not done explicitly with the CRA + W intervention, students did practice fluency 

and retrieval of arithmetic facts throughout the intervention. For example, when students 
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created diagrams to depict constant rate of change problems, they practiced multiplication 

facts because they had to count up by a certain number to complete the diagram. The 

improvements students made on solving constant rate of change problems may have been 

related to gaining more practice with arithmetic facts.  

 In light of the results of this study, as well as the priority the Common Core State 

Standards for Mathematics (CCSSM) practice standards place on students being able to 

describe and justify their reasoning, it is recommended that math teachers build in 

opportunities to embed writing activities in their instruction. Specifically, students should 

write to make sense of problems and explain their reasoning. The POD! strategy in this 

intervention provided students with such a structure for writing in math. Consistent with 

theories about the role writing plays in learning, the POD! strategy in this intervention 

provided students with a structure to constantly reflect on their thinking while solving math 

problems, with the intent that students would build connections between concepts (Emig, 

1977; Vygotsky, 1962). While the results of this study are inconclusive regarding the 

influence of the writing component of the intervention on improvements in math or writing 

scores, practitioners are encouraged to provide students with structured opportunities for 

writing strategically in mathematics.  

 In addition to supporting current research recommendations regarding effective 

strategies for teaching mathematics to students with disabilities, as well as incorporating 

writing in mathematics, the results of this study suggest the importance of effectively 

preparing preservice special education math teachers. In particular, preservice special 

education teachers should be provided with training on how to use each of the 

recommendations suggested by Gersten et al. (2009) in their training or certification 

programs. Additionally, because many students with disabilities receive their math 
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instruction in inclusive settings, it is important that preservice general education teachers also 

be exposed to strategies that are effective for teaching students with disabilities mathematics 

(DeSimone & Parmar, 2006).   

 In addition to effectively preparing preservice special education math teachers, 

current special education math teachers should also be supported in their endeavors to 

incorporate research-based recommendations for teaching math to students with disabilities, 

as well as for incorporating writing in the teaching of mathematics. Professional 

development opportunities should be provided to current special and general education 

math teachers to help them learn practical strategies and interventions, such as CRA and the 

POD! strategy. Additionally, professional development in mathematics should model use 

of the strategies being recommended, and involve active learning strategies to be most 

effective (DeSimone, Porter, Garet, Yoon, & Birman, 2002).   

 One final implication for practice relates to the amount of time allocated for 

interventions at the secondary level. Secondary settings often do not have very much 

flexibility within students’ daily schedules. Students are required to take core classes, and 

with the emphasis on high stakes testing, elective classes are often reduced. In this study, 

students participated in the intervention during a study skills class. However, they often 

needed class time to make up work missed due to absences, or get extra help from teachers. 

Gersten et al. (2009) found that of the studies incorporating math fact fluency, those with 

significant results typically involved intervention sessions ranging from 15-40 minutes in 

length that met three times per week for 12-18 weeks. While these studies were conducted in 

elementary school contexts, it is likely that effective interventions in secondary settings 

would require as much or more time, given what we know about how students learn, as well 

as the particular complexity of secondary math content. While more research needs to be 
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conducted in this area, one implication for practice that can be drawn at this time is the need 

for more flexibility in students’ schedules at the secondary level to allow them to receive 

targeted interventions, without falling behind in core content classes. 

 

Limitations 

 While the results of this study are promising, there are several limitations that should 

be taken into account when interpreting the results. First, it should be noted that this 

intervention was conducted with three students at one high school. Therefore, the results 

cannot be generalized to other contexts, and more research is needed to improve external 

validity. Second, the intervention also did not evaluate the degree to which the skills students 

learned transferred to success in their math classes. Additional research should be conducted 

to evaluate the extent to which increased proficiency in solving rate of change problems 

influenced students’ performance in other content areas, such as math and science.  

The time required for the intervention was difficult to incorporate into students’ 

schedules. At the school where this study was implemented, students had five classes each 

day. The participants in the study each had a study skills class, in addition to their other 

classes. While the study skills class did not have any assignments students were required to 

complete, the students did have between three to four other core content classes that 

involved many assignments and challenging content. Students often needed the time in the 

study skills class to get help on assignments, finish exams, and complete homework or make-

up assignments. As a result, the length of intervention sessions varied greatly, and typically 

occurred between two and three times per week. On average, the intervention required 34.3 

sessions, and the average length per session was 22.02 minutes (see Table 7). The range of 

days required for the intervention was 26-44 days, and the range of the length of 
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intervention sessions was 7-72 minutes. It is possible that differences in the length of each 

intervention session, as well as the frequency of sessions per week, may have influenced 

students’ results. Treatment intensity is a relatively new area of research in the context of 

special education interventions, but there is emerging evidence that treatment intensity may 

have an effect on the effectiveness of an intervention (Codding & Lane, 2015). It is possible 

that an increase in treatment intensity for the CRA+W intervention may have resulted in 

larger improvements in math and writing scores between baseline and intervention.  

An additional limitation regarding student schedules was that students did not have 

math every trimester, and had math during different points of the study. All 3 participants 

had math during the first trimester, which is also when rate of change and variable rate of 

change were covered in the school’s math curriculum. Students varied in terms of when they 

had their math class in relationship to the phases of the study, which introduces a 

confounding variable. Toby had math during all of the baseline phase and most of 

intervention phase but not during the maintenance phase. Jason had math during the 

baseline and maintenance phases, but not during the intervention phase. Abigail did not have 

math during the baseline phase or the first third of the intervention phase, but did have math 

during the remainder of the intervention and maintenance phases. Based on the differences 

in when students were enrolled in a math class compared with the phases of this study, the 

extent to which instruction in their math class may have influenced their math scores during 

baseline, intervention, or maintenance phases is unknown. Future research should focus on 

implementing the CRA+W intervention in schools in which students take a full year of math 

to help eliminate the potential of this confounding variable.  

There is currently a lack of research validated curriculum-based assessments, 

particularly for secondary level content. This study included review of assessments by a math 
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expert, as well as pilot testing of the assessments to help reduce variability in difficulty 

between the assessments, and ensure that the assessment items were clear. However, without 

specific research on the measures’ validity and reliability, it is unknown whether variability in 

student math scores is due to the intervention, student factors, or flaws with the assessments 

themselves. Future research should incorporate the use of valid and reliable assessments to 

evaluate the results of the CRA + W intervention.  

 

Directions for Future Research 

Research on CRA + W 

 Research on CRA in secondary settings with secondary math concepts is still 

emerging, but is promising (Strickland & Maccini, 2012; Witzel, 2005; Witzel, et al., 2003). 

Research has demonstrated that CRA is effective in improving students’ performance on 

solving linear algebraic equations, simplifying and solving algebraic equations, and 

multiplying linear algebraic expressions in area problems (Strickland & Maccini, 2012; Witzel, 

2005; Witzel et al., 2003). Future research should focus on replicating the results of this 

study, as well as investigating the effects of CRA + W on more advanced secondary math 

concepts, including solving systems of equations, geometry concepts, and statistics. 

Additionally, future research should investigate whether CRA + W is an effective 

intervention approach for helping secondary students gain fluency with math concepts 

foundational for success in higher level mathematics, such as fractions, ratios, and 

proportions. In particular, future research should investigate whether CRA + W is an 

effective intervention approach for helping students build understanding of prerequisite 

skills needed to learn rate of change, such as numeracy, graphing, as well as modeling and 

solving algebraic equations. More research is also needed to evaluate the social validity of 
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secondary math interventions, and to determine if the degree of difficulty of the math 

content addressed in secondary math interventions influences students’ views of the 

interventions.  

This study incorporated the use of the CRA + W intervention to address two main 

objectives. Lessons 1-4 of the intervention addressed constant rate of change, while lessons 

5-7 addressed variable and average rate of change. One reason why students did not show 

immediate intervention effects may be due to the inclusion of both objectives on the rate of 

change assessments, especially since the variable rate of change objective accounted for the 

majority of points available on the assessments. It is possible that splitting the intervention 

into two separate interventions, one for constant rate of change and one for variable rate of 

change, may result in more immediate and significant effects. Future research should 

evaluate the effects of a CRA + W intervention on constant rate of change, separate from 

variable rate of change. Assessments specific to each objective may be more sensitive to 

changes in student performance.  

Most of the research on CRA has been implemented in small group or individual 

settings. The results of this study indicate that students with disabilities may have similar 

difficulties related to rate of change concepts compared with students without disabilities. 

Future research should evaluate whether CRA + W is an effective instructional approach in 

inclusive secondary math classes. In particular, an integrated CRA sequence may be effective 

in inclusive secondary math classes because it provides opportunities to differentiate content 

through the use of concrete manipulatives, visual representations, and algorithms (Flores, 

Hinton, & Schweck, 2014). Future research should therefore evaluate the use of CRA + W 

in inclusive settings, and its outcomes for both students with and without disabilities.  

As the principal investigator, I implemented instruction and administered 
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assessments in this study. This is consistent with the many of the other research conducted 

on CRA (Flores, 2009; Flores, Hinton, & Schweck, 2014; Flores, Hinton, & Strozier, 2014; 

Strickland & Maccini, 2012). It is important that teachers be trained to effectively implement 

and evaluate the effects of academic interventions, to ensure sustainability of these practices. 

Future research should focus on training both special and general educators to use the CRA 

+ W intervention, evaluation of teacher implementation of the CRA + W intervention, and 

evaluation of student results in response to the intervention.   

 

Research on Math Measures 

One of the main limitations within CRA research is the lack of research validated 

math measures designed to address specific math skills (Flores, Hinton, & Strozier, 2012). 

This is an area needed to not only improve the strength of CRA research, but also the ability 

of teachers to progress monitor and make data-based decisions to guide the instructional 

programming for their students. In particular, there is a need for research validated progress-

monitoring measures for higher level math concepts, including algebra, geometry, 

trigonometry, and statistics.  Future research should focus on developing and evaluating 

progress-monitoring measures for these specific math skills. Research should also focus on 

the use of CRA in the context of school-wide Response to Intervention (RtI) systems 

(Strickland & Maccini, 2012), but the application of CRA in RtI will be limited until there are 

effective progress monitoring measures developed, as one of the key features of RtI is data-

based decision making.  
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Conclusion 

  Success in mathematics, particularly algebra, is important for access to 

postsecondary education and employment (Bell & Norwood, 2010; Fullerton, 1995; Fuchs et 

al., 2008). Students with disabilities are often not successful in mathematics, particularly at 

the secondary level (Bryant, 2005; Butler et al., 2003; Maccini, Mulcahy, & Wilson, 2007). 

Additionally, the recent adoption of the CCSSM by the majority of states increases the rigor 

and focus on conceptual understanding in mathematics (Dingman et al., 2013). This study 

adds to the emerging research base on strategies to effectively improve students’ with 

disabilities procedural and conceptual understanding and performance in mathematics. This 

study evaluated the effects of a CRA + W intervention on students’ with disabilities total 

points of correct math responses on rate of change assessments. The results indicate that the 

CRA + W intervention may be effective in improving students’ with disabilities 

understanding of rate of change. Further research is needed to determine the effectiveness of 

the CRA + W intervention on improving student performance in writing, as well as other 

secondary math concepts.  
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RATE OF CHANGE ASSESSMENTS 
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A.  
 

M.1. What is the slope of the line below? _____ 
 

 
 
  

M. 2. What is the slope of the line below? ______ 
 

 
 

 

 
 
Solve the problems below. Show all of your work.  
 
M.3 It takes Artemis 4 minutes to do each math problem on her 
homework. She has already worked for 10 minutes. She has 12 
problems left. At this rate, what is the total amount of time it will 
take Artemis to finish all of her homework? 
_________ 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
M.4 Jerry likes to eat peanut butter on toast. He uses a ½ 
tablespoon of peanut butter on each slice of toast. If a jar of 
peanut butter has 16 tablespoons of peanut butter in it, how 
many slices of toast with peanut butter can Jerry have per jar?  
 _______ 
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M.5. A motorcycle leaves Salt Lake City at 10:00 am and travels 
for an hour at 30 miles per hour, then for an hour at 60 miles per 
hour. The motorcyclist stops for lunch for 2 hours, then travels 
for 3 hours at 45 miles per hour.  
Make a table and graph showing the times and distances traveled 
at each stage of the journey. Show all of your work, and number 
and label the graph.  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  

 Table:  
 
 
 
 
 
 

M.6. What is the average speed for the whole journey?______ 
 
 
 
 
 
 
W.3. Explain  the steps you used to determine the average speed 
for the whole journey.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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B.  
 

M.1. What is the slope of the line below? _____ 
 

 
 
 

M. 2. What is the slope of the line below? ______ 
 

 
 
 

Solve the problems below. Show all of your work.  
 
M.3 The water level of a lake decreases by ¼ foot per year during 
a drought. How many years of drought will it take for all 16 feet 
of the water in the lake to dry up? ______ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Joshua is in a pie-eating contest. He eats 2 pies per minute. 
He has already eaten 3 pies and there are 4 minutes left. At this 
rate, how many pies will he eat altogether during the contest? 
_________ 
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M.5. A car left Provo at 11 am and traveled for two hours at 45 
miles per hour, then for an hour at 50 miles per hour. The car 
stopped to go to a national park for one hour, then traveled for 
two hours at 55 miles per hour.  
 
Make a table and graph showing the times and distances traveled 
at each stage of the journey. Show all of your work, and number 
and label the graph.  
        

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 
 

M.6. What is the average speed for the whole journey?______ 
 
 
 
 
 
W.3. Explain  the steps you used to determine the average speed 
for the whole journey.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
 
W.4. How do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
 
 
 
 
C.  
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M.1. What is the slope of the line below? _____ 

 

 
 
 

 
M. 2. What is the slope of the line below? ______ 

 
 

 
 

Solve the problems below. Show all of your work.  
 
M.3 Max runs at a rate of 4 miles per hour. He has already run 
for 8 miles today. He plans to run for 2 more hours today. At this 
rate, how many total miles will he run today? _________ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Jerry is painting fences. He paints 2/5 fences per hour. At 
this rate, how many hours will it take Jerry to paint 10 
fences?_______ 
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M.5. Jeff is taking a road trip. He drives for 3 hours at a rate of 60 
miles per hour, then for 2 hours at a rate of 40 miles per hour. 
Jeff stops to eat lunch for 1 hour, then drives for 1 hour at a rate 
of 30 miles per hour. 
 
Make a table and graph showing the times and distances traveled 
at each stage of the journey. Show all of your work, and number 
and label the graph.  
        

  
 
 
 

 Table:  
 
 
 
 
 

M.6. What is the average speed for the whole journey?______ 
 
 
 
 
 
W.3. Explain  the steps you used to determine the average speed 
for the whole journey.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
 
 
 
 
 



 

!

142 

D.  
 
M.1. What is the slope of the line below? _____ 
 

 

 
 

 
M. 2. What is the slope of the line below? ______ 

 

 
 

Solve the problems below. Show all of your work.  
 
M.3 Sandra donates 1/5 of every dollar she earns to the food 
bank. At this rate, how much money does she need to earn to be 
able to donate $12?  _________ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Tina earns $5 for every car she washes. She already  
earned $15 this week. She plans to wash 7 more cars this week. 
At this rate, how much total money will she earn washing cars 
this week? _________ 
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M.5. A family owns a yogurt company. They produce yogurt in 
one-cup containers. One worker, Abby, is responsible for filling 
the tubs of yogurt. She comes to work at 9 am and fills containers 
at a rate of 12 containers per hour for three hours. For one hour, 
she fills containers at a rate of 10 containers per hour. She then 
takes a one hour lunch break. When she comes back from lunch, 
she fills containers at a rate of 20 containers per hour for two 
hours. 
 
Make a table and graph showing the times and containers filled at 
each stage of the Abby’s workday. 
Show all of your work, and number and label the graph.  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 

M.6. What is the average rate Abby fills containers at for the 
workday?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average rate 
for the workday.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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E.  
 
M.1. What is the slope of the line below? _____ 

 
 

 
 
M. 2. What is the slope of the line below? ______ 

 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Jeremiah runs at a pace of 3 miles per hour. Jeremiah has 
already run 6 miles this week. Jeremiah plans to run for 4 more 
hours this week. At this rate, how many total miles will Jeremiah 
run this week? _________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
M.4 Joey earns tips at a rate of ½ dollars per root beer float he 
makes. At this rate, how many floats does he need to make to 
earn $12 in tips? ________ 
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M.5. Joe is filling an Olympic size swimming pool with a hose 
that doesn’t have good water pressure. Joe fills the pool for three 
hours at a rate of 60 gallons per hour, then for two hours at a rate 
of 30 gallons per hour. Joe shuts off the hose for an hour to see if 
he can make the water pressure return to normal. He then fills 
the pool at a rate of 40 gallons per hour for four hours. 
 
Make a table and graph showing the times and gallons at each 
stage of the filling process. 
Show all of your work, and number and label the graph.  

 
 
 
 
 
 
 
 
  
 
 
 
 

 Table:  
 
 
 
 

M.6. What is the average rate of the filling process?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average 
gallons per hour. 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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F.  
 
M.1. What is the slope of the line below? _____ 

 

 
 

 
M. 2. What is the slope of the line below? ______ 

 

 
 
 

Solve the problems below. Show all of your work.  
 
M.3 Carrie works at a coffee shop. She earns tips at a rate of ¾ 
dollars per drink she makes. At this rate, how many drinks would 
she need to make to earn $6 in tips? _________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Andrew can mow 2 lawns per hour. He has already mowed 4 
lawns this week. He plans to mow lawns for 5 more hours this 
week. At this rate, how many total lawns will Andrew mow this 
week? _______ 
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M.5. A car leaves Moab at 7 am and travels for three hours at 70 
miles per hour, then for an hour at 50 miles per hour. The car 
stops for two hours, then continues for four hours at 75 miles 
per hour. 
 
Make a table and graph showing the times and distances traveled 
at each stage of the journey. Show all of your work, and number 
and label the graph.  
        

  
 
 
 
 

 Table:  
 
 
 
 
 

M.6. What is the average speed for the whole journey?______ 
 
 
 
W.3. Explain  the steps you used to determine the average speed 
for the whole journey.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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G.  
 
M.1. What is the slope of the line below? _____ 

 

 
 
 

 
M. 2. What is the slope of the line below? ______ 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Andrea makes soap to sell at the farmers market. She sells 
each bar of soap for $5. She has already made $20 today. If she 
sells 7 more bars of soap today at this price, how much total 
money will she have made today?_________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Sarah has a credit card debt of $40. She pays off the credit 
card at a rate of 4/5 dollars per week. At this rate, how many 
weeks will it take her to pay off the full $40 she owes on her 
credit card?  ______ 
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M.5. Tina has a job picking berries. She gets to work at 7 am and 
picks berries for 2 hours at a rate of 6 baskets per hour. She then 
picks berries at a rate of 8 baskets per hour for 3 hours. She takes 
a lunch break for 1 hour. Then she picks berries at a rate of 5 
baskets per hour for 1 hour. 
 
Make a table and graph showing the times and number of berry 
baskets picked for each stage of Tina’s workday. Show all of your 
work, and number and label the graph.  
        

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 

M.6. What is the average rate of berry picking for Tina’s 
workday? _____ 
 
 
 
W.3. Explain  the steps you used to determine the average 
number of baskets picked for the workday.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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H.  
 
M.1. What is the slope of the line below? _____ 

 
 

 
 
M. 2. What is the slope of the line below? ______ 

 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 A tree grows ¼ inch per year. At this rate, how many years 
will it take for the tree to be 12 inches tall? _________ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Harriet earns $8 per hour for baby-sitting. She has already 
earned $16 this week for baby-sitting. She plans to baby-sit for 6 
more hours this week. How much total money will she earn for 
baby-sitting this week?  _______ 
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M.5. A bicyclist left Ogden at 8 AM and traveled at a rate of 20 
miles per hour for 3 hours, then took a break for 1 hour. The 
bicyclist then traveled for 2 hours at a rate of 30 miles per hour, 
and then 1 hour at a rate of 35 miles per hour.  
 
 
Make a table and graph showing the times and distances traveled 
at each stage of the bike ride. Show all of your work, and number 
and label the graph.  
        

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 

M.6. What is the average speed for the whole bike ride?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average speed 
for the whole bike ride.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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I.  
 
M.1. What is the slope of the line below? _____ 

 
 

 
 
M. 2. What is the slope of t he line below? ______ 

 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Sam earns $3 for every dog she walks. She already earned $9 
this week. She plans to walk 8 more dogs this week. At this rate, 
how much total money would she earn this week? _________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Jordy reads at a rate of 2/3 pages per minute. At this rate, 
how many minutes will it take her to read 18 pages?________ 
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M.5. Steven wants to take a hot bath, but doesn’t have a very 
good water heater. Steven fills his bathtub for 8 minutes at a rate 
of 2 gallons per minute, and then turns off the water for 5 
minutes to let it get hot. He turns the water back on and fills the 
bathtub at a rate of 3 gallons per minute for 5 minutes, and then 
at a rate of 2 gallons per minute for 4 minutes.  
 
 
Make a table and graph showing the times and gallons at each 
stage of filling process. Show all of your work, and number and 
label the graph.  

 
 
 
 
 
 
 
 
  
 
 
 
 

 Table:  
 
 
 

M.6. What is the average rate for the filling process?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average 
gallons per minute.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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J. 
 
M.1. What is the slope of the line below? _____ 

 
 
 

 
M. 2. What is the slope of the line below? ______ 

 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 A tree grows at a rate of 1/3 inches per month. At this rate, 
how many months will it take for the tree to be 12 inches tall? 
_____ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 James can bike at a rate of 6 miles per hour. James has 
already biked 12 miles of a trail. At this rate, James needs to bike 
for 4 more hours to finish the trail. How many total miles long is 
the trail?_________ 
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M.5. Mike works at a juice bottling factory. He arrives at work at 
10 am and fills bottles of juice at a rate of 80 bottles per hour for 
the first 3 hours of his shift. He then takes a 1 hour lunch break. 
When he returns from break, he fills bottles at a rate of 60 bottles 
per hour for 2 hours, and then at a rate of 90 bottles per hour for 
1 hour.  
 
Make a table and graph showing the times and bottles filled at 
each stage of Mike’s workday. Show all of your work, and 
number and label the graph.  

 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate Mike fills bottles at for the 
workday?______ 
 
 
 
W.3. Explain  the steps you used to determine the average rate 
for the workday.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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K.  
 
M.1. What is the slope of the line below? _____ 

 

 
 

 
M. 2. What is the slope of the line below? ______ 

 
 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Samantha can run at a rate of 6 miles per hour. She has 
already run 3 miles this week. She plans to run for 3 more hours 
this week. At this rate, how many total miles will she run this 
week?_________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
M.4 The water level in a dog’s water dish decreases by ½ inch per 
hour on a hot day. How many hours will it take for the dog’s dish 
to be empty if it is 6 inches deep at the start of the day?_______ 
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M.5. Heidi invests $60 in a savings account. Heidi earns $2 per 
month in interest for the first 6 months, no interest for the next 4 
months, $3 per month in interest for the following 3 months, and 
$5 per month in interest for 9 months. 
 
Make a table and graph showing the times and amount of interest 
earned at each stage of the account.  
Show all of your work, and number and label the graph.  
        
  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate of interest earned during the whole 
time period described?_____ 
 
 
 
 
W.3. Explain  the steps you used to determine the average 
amount of interest earned.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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L.  
 
M.1. What is the slope of the line below? _____ 

 
 
 

 
 
M. 2. What is the slope of the line below? ______ 
 

 
 

 
Solve the problems below. Show all of your work.  
 
M.3 A drone descends at a rate of 4/5 feet per minute when 
preparing for landing. How many minutes will it take a drone to 
descend a total of 20 feet? ______ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Mark can skateboard at a pace of 9 miles per hour. He has 
already skateboarded for 5 miles this week. He plans to 
skateboard for 2 more hours this week. At this rate, how many 
total miles will he skateboard this week?_________ 
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M.5. Jami is filling a swimming pool with water. She fills the pool 
for 3 hours at a rate of 30 gallons per hour. She then turns off the 
water when she goes to lunch for 1 hour. When she gets back, 
she fills the pool for 4 hours at a rate of 50 gallons per hour, and 
then for 1 hour at a rate of 40 gallons per hour.  
 
Make a table and graph showing the times and gallons at each 
stage of filling process. Show all of your work, and number and 
label the graph.  
        

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 

M.6. What is the average rate for the filling process?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average 
gallons per hour.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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M.  
 
M.1. What is the slope of the line below? _____ 
 

 
 
 

 
M. 2. What is the slope of the line below? ______ 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Dale earns $2 for every dog he walks. He already earned $8 
this week. He plans to walk 6 more dogs this week. At this rate, 
how much total money will he earn this week? _________ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 John is trying to save money for a vacation. If he saves ¼ of 
every dollar he earns, how much money will he have to earn to 
save a total of $24? ______ 
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M.5. Amy works at a toy block factory. Amy is responsible for 
filling boxes with blocks. She comes to work at 8 am and fills 
boxes at a rate of 7 boxes per hour for 4 hours. She then takes an 
hour lunch break. When she comes back to work she fills boxes 
at a rate of 9 boxes per hour for 3 hours and then 6 boxes per 
hour for 1 hour.  
 
 
Make a table and graph showing the times and boxes filled at 
each stage of Amy’s workday.  Show all of your work, and 
number and label the graph.  

 
 
 
 
 
 
 
 
  
 
 
 
 

 Table:  
 
 

M.6. What is the average rate Amy fills boxes at for the 
workday?______ 
 
 
 
W.3. Explain  the steps you used to determine the average rate 
for the workday.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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N. 
 
M.1. What is the slope of the line below? _____ 
  

 
 

 
M. 2. What is the slope of the line below? ______ 

 

 
 
 

Solve the problems below. Show all of your work.  
 
M.3 Danny is making trail mix. ¾ of the mix is peanuts. Danny 
has 6 cups of peanuts. At this rate, how many total cups of trail 
mix can Danny make?  
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Joe spends $3 to buy a snack every day. He has already spent 
$6 on snacks this week. Joe plans to buy 4 more $3 snacks this 
week. At this rate, how much total money will Joe spend on 
snacks this week?  
_________ 
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M.5. Sandy earns $5 per month in interest on her savings account 
for the first 12 months, then $0 interest per month for the next 3 
months, $8 per month in interest for the next 9 months, and $10 
per month in interest for the next 12 months. 
 
Make a table and graph showing the times and amount of interest 
earned at each stage of the account. Show all of your work, and 
number and label the graph.  
        
  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate of interest earned during the whole 
time period described?______ 
 
 
 
W.3. Explain  the steps you used to determine the average 
amount of interest earned.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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O. 
 
M.1. What is the slope of the line below? _____ 

 

 
 

 
M. 2. What is the slope of the line below? ______ 
 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Melinda swims 3 laps per minute. She has already swum 20 
laps today. She plans to swim for 40 more minutes today. At this 
rate, how many total laps will she swim today?_________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 During the spring, the snow in the mountains melts at a rate 
of 2/3 inches per day. How many days will it take for 36 inches 
of snow to melt?________ 
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M.5. Henry is filling his horse’s water tank using an unreliable 
hose. Henry fills the tank for 30 minutes at a rate of 3 gallons per 
minute. He then takes a 15-minute break to feed his animals. 
When he returns, he fills the tank for 15 minutes at a rate of 5 
gallons per minute, and then for 10 minutes at a rate of 1 gallon 
per minute. 
 
Make a table and graph showing the times and gallons at each 
stage of filling process. Show all of your work, and number and 
label the graph.  
        

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate for the filling process?______ 
 
 
 
W.3. Explain  the steps you used to determine the average 
gallons per minute.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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P. 
 
M.1. What is the slope of the line below? _____ 
 

 
 

 
M. 2. What is the slope of the line below? ______ 
 

 

 
 

Solve the problems below. Show all of your work.  
 
M.3 Jacky is filling a fish tank. She fills the fish tank at a rate of ¾ 
gallons per minute. She needs the tank to be 9 gallons full. At this 
rate, how many minutes will she need to fill the tank for? 
________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Mark earns $2 in tips for every sandwich he makes at work. 
He has already made $8 today. Mark plans on making 10 more 
sandwiches today. At this rate, how much total money in tips will 
Mark earn today? _________ 
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M.5. Andy makes bricks at a brick factory. He starts work at 7 
am. He makes bricks at a rate of 15 bricks per hour for the first 2 
hours, then takes a break for 1 hour. He then makes bricks at a 
rate of 30 bricks per hour for 1 hour, and then at a rate of 20 
bricks per hour for 3 hours.   
 
Make a table and graph showing the times and bricks made at 
each stage of Andy’s workday. Show all of your work, and 
number and label the graph.  
        

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 

M.6. What is the average rate Any makes bricks at per hour for 
the workday?______ 
 
 
 
W.3. Explain  the steps you used to determine the average rate 
for the workday.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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Q. 
 
M.1. What is the slope of the line below? _____ 

 
 

 
 

 
M. 2. What is the slope of the line below? ______ 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Jack runs at a pace of 4 miles per hour. He has already run 6 
miles this week. He plans to run for 4 more hours this week. At 
this pace, how many total miles will he run this week?_________ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Melanie is making cookies. She uses 4/5 cups of flour per 
each batch. She plans on using 8 cups of flour. At this rate, how 
many batches of cookies can she make?______ 
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M.5. Jerry has a loan that charges $5 per month in interest for the 
first 12 months, no interest while Jerry is in school for 9 months, 
$1 per month for the 12 months following his graduation from 
school, and $2 per month for the next 18 months. 
 
Make a table and graph showing the times and amount of interest 
charged at each stage of the loan.  
Show all of your work, and number and label the graph.  
        

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 
 
 

M.6. What is the average rate of interest charged during the 
whole time period described?______ 
 
 
 
 
W.3. Explain  the steps you used to determine the average 
amount of interest charged.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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R. 
 
M.1. What is the slope of the line below? _____ 

 
 

 
 
M. 2. What is the slope of the line below? ______ 

 

 
 
 

Solve the problems below. Show all of your work.  
 
M.3 James is an artist. He completes paintings at a rate of 1/5 per 
hour. At this rate, how many hours will it take him to complete 
10 paintings? _______ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Andrea earns $4 for every newspaper she delivers. She 
already earned $36 delivering papers this week. Andrea plans to 
deliver 20 more papers this week. At this rate, how much total 
money would she earn this week?_________ 
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M.5. Shawna is making a homemade shark tank. She starts filling 
the tank at 7 am and fills it at rate of 24 gallons per hour for 2 
hours. She then stops filling the tank for 1 hour to make sure 
there are no leaks. She then starts filling the tank at a rate of 36 
gallons per hour for 3 hours, and then at a rate of 12 gallons per 
hour for 1 hour. 
 
Make a table and graph showing the times and gallons at each 
stage of filling process. Show all of your work, and number and 
label the graph.  
        

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate for the filling process?______ 
 
 
 
W.3. Explain  the steps you used to determine the average 
gallons per hour.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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S. 
 
M.1. What is the slope of the line below? _____ 

 
 

 
 
M. 2. What is the slope of the line below? ______ 
 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 Susan works for 9 hours each day. She has already worked 
for 18 hours this week. She is scheduled to work for 5 more days 
this week. At this rate, how many total hours will Susan work this 
week? ______ 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 A bathtub drains at a rate of 1/3 inches per minute. How 
many minutes will it take to drain the bathtub if it is 12 inches 
full?_______ 
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M.5. Sam gets a credit card that charges $1 per month in interest 
for the first 2 months, then no interest for the next 10 months. 
The card company then charges $3 per month in interest for the 
next 6 months, and $4 per month in interest for the next 12 
months.   
 
Make a table and graph showing the times and amount of interest 
charged at each stage of the credit card account.  
Show all of your work, and number and label the graph.  
        

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 
 

M.6. What is the average rate of interest charged during the 
whole time period described?______ 
 
 
 
W.3. Explain  the steps you used to determine the average 
amount of interest charged.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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T. 
 
M.1. What is the slope of the line below? _____ 

 

 
 

 
M. 2. What is the slope of the line below? ______ 
 

 
 

 

Solve the problems below. Show all of your work.  
 
M.3 It rains 2/5 inches per month in New Mexico. At this rate, 
how many months will it take to rain a total of 4 inches?  
_______ 
 
 
 
W.1. Describe in writing the process  you used to solve the 
problem above.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
W.2. Explain  how you know your answer makes sense. Provide 
an example to support your reasoning.  
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
M.4 Some hikers climb down a mountain at a rate of 5 miles per 
hour. They have already climbed down 3 miles. They have 2 more 
hours left of their hike. At this rate, how many total miles is the 
hike down the mountain? _________ 
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M.5. Nancy invests $20 in a savings account. Nancy earns $4 per 
month in interest for the first 8 months, then no interest for the 
next 4 months. After that, Nancy earns $6 per month in interest 
for the next 12 months, and then $8 per month in interest for the 
next 12 months.    
 
 
 
 
Make a table and graph showing the times and amount of interest 
earned at each stage of the account. 
Show all of your work, and number and label the graph.  
        

  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table:  
 
 

M.6. What is the average rate of interest earned during the whole 
time period described?______ 
 
 
 
W.3. Explain  the steps you used to determine the average 
amount of interest earned.  
 
___________________________________________________
___________________________________________________
___________________________________________________ 
 
 
 
W.4. How  do you know your answer is correct? Provide an 
example to support your reasoning. 
 
___________________________________________________
___________________________________________________
___________________________________________________ 
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Student’s Intervention Rating Profile 
 

Directions: Please answer the following questions using a scale ranging from 1 (Strongly 
Disagree) to 6 (Strongly Agree).  
 
1. Using POD! , cubes and diagrams is a helpful way to teach math.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
2. Using POD! , cubes and diagrams to teach math is too hard.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
3. Using POD! , cubes and diagrams to teach math may be hard for other students.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
4. There are better ways to teach math to students than using POD! , cubes and 
diagrams. 

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
5. Using POD! , cubes and diagrams to teach math is a good way to teach math to 
other students.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
6. I like using POD! , cubes and diagrams to learn math.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

 
7. I think that using POD! , cubes and diagrams to teach math will help students do 
better in school.  

1 2 3 4 5 6 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 
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Lesson Plans 
Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                            Lesson: 1         Name:
 Date: 
Core Standard:  
(F.IF.4) SWBAT correctly 
identify and interpret key 
features of graphs and tables 
in terms of the quantities (key 
features include: intercepts; 
intervals where function is 
increasing, decreasing, 
positive, negative; relative 
maximums and minimums; 
symmetries; end behavior; 
and periodicity). 

Instructional Objective:  
SWBAT identify, locate and graph 
coordinate pairs. 
SWBAT identify and locate y 
intercepts.  
SWBAT identify and graph linear 
equations using completed tables (ex: 
students will match completed tables 
of linear equations with their graphs; 
students will graph linear equations 
from points provided on tables).  
SWBAT classify the slope of a linear 
equation as positive or negative from 
a graph. 
 

Content (concepts, 
information, skills, new 
vocab, etc.): 
X-axis 
Y-axis 
Coordinate pair 
Coordinate plane 
Y-intercept 
Slope 
     Positive  
     Negative 
     Undefined 
     Zero 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Colored pencils 
POD graphic organizers 
(4 copies) 
Ruler 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Slope, equation, table, 
context cards for 
sorting/matching 
Lesson 1 packet (2 copies) 
Lesson 1 exit slip  

Outline of Lesson:  
1. Today we are going to review some important graphing reminders. Graphing is an important skill for the upcoming lessons in 
our unit together, so I need to make sure that you understand how to do it. Why else might it be important to know the 
foundations of graphing? 
 
2. Another important concept we are going to review is slope. Have you heard of slope before? We are going to talk about the 
different ways we can describe slope, and how we can find out what the slope of a line is today.  
 
3. Something else we are going to be doing in all of the lessons with me is working on writing explanations for our math problems, 
using this graphic organizer (refer to POD !graphic organizer).  
4. Today we are going to fill this out together as we go through the lesson.  
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5. Pass out the POD! graphic organizers and lesson 1 packets. 
 
6-10. Let’s review some of the vocabulary that is important for graphing points. For each of the terms listed above, I will say a 
definition, have the student repeat the definition, have the student write down a definition in their own words on a guided notes 
sheet in their lesson 1 packet, and have the student draw an example of the term on the guided notes sheet in their lesson 1 packet.  
 
       Coordinate plane 
       x-axis 
       y-axis 
      Coordinate pair 
      y-intercept 
 
11. So, another new word for today’s lesson is slope. When have you heard that word before, in school or outside of school? Good. 
The definition of slope that we are going to use today is that slope describes how steep a straight line is. Write down a definition of 
slope in your own words on the second page of your lesson 1 packet.   
 
12. We are going to describe the slope of lines today. There are four main words we are going to use to describe slope; positive, 
negative, undefined, and zero. 
 
13. The first way we can describe slope is “positive”. Let’s look at one of your stacking cubes problems from yesterday. Stack cubes 
to represent a problem with positive slope. In this problem, how do our stacks of blocks change from tower to tower? Student 
responds: they increase by 2. Good. So we are adding on to the towers as we move to the right. This shows us a positive slope 
because the towers increase as we add towers.  
14. The definition of a positive slope is that the line increases as we move to the right. If we think about this with our x and y axis, 
the definition of positive slope is that the y values increase as the x values increase.  
15. Write down a definition for positive slope on your lesson 2 packet.  
 
16. Draw an example of a line with positive slope on your lesson 2 packet.  
17. The next way we can describe slope is “negative”. Make a prediction/hypothesis about what you think negative slope might 
mean. Show what a line with negative slope would look like using the stacking cubes. In this stacking cube problem, how do our 
stacks change as we add towers? Do they increase or decrease. Response: decrease. Good. How many were they decreasing by? 
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Response: (varies). Good. So this shows negative slope because the towers decrease as we add towers.  
 
18. The definition of negative slope is that the line decreases as we move to the right. If we think about this on an x y axis 
(coordinate plane), the definition of negative slope is that the y values decrease as we move to the right.  
19. Write down a definition of negative slope.  
20. Draw an example of a line with negative slope.  
21. The next way we can describe slope is as having “zero slope”. I am going to show you a stacking cubes problem that shows 
zero slope. Show three stacks of cubes that have the same number of cubes in each stack. Do the stacks change from tower to 
tower? Response: No. Good. This means there is zero change, so we would describe this slope as zero slope.  
22. The formal definition of zero slope is that zero slope refers to lines that have the same y value for all x values. Lines with zero 
slope are also called horizontal lines. You can remember horizontal because it is like the horizon.  
23. Write a definition for zero slope.  
24. Draw an example of a line with zero slope.  
 
25. There is one last type of slope. I want you to watch me build this stack tower. I start stacking cubes taller and taller. I am only 
going to have one tower. Can I describe what the change is between towers if I only have one? Students respond. I cannot describe 
the change between towers if I only have one tower because I don’t know what the other towers look like. This means that my 
slope is “undefined”.  
26. The definition of undefined slope is that lines with the same x value for all y values have undefined slope. Lines with undefined 
slope are also called vertical lines. You can think of undefined slope as infinite slope- the slope is so steep that we can’t actually tell 
what it is.  
27. Write down a definition of undefined slope 
28. Draw an example of a line with undefined slope.  
 
29. For the next part of the lesson, we are going to identify slope from an equation. What is the equation (y=3x +2)? Good. Slope 
is the number that is in front of x. The formula y=mx + b is the formula for a linear equation, which we are going to talk more 
about in lesson 2. If slope is always the number in front of x, what letter stands for slope? Good.  
 
30. We are going to also identify slope from graphed lines. Slope can be described as the rise over the run. Let’s look at this 
graphed line. So, for this graphed line, you first identify two coordinate pairs. Then, you count how many you move up to the 
second point from the first point, and how many over you move from the first point to the second point. You write this as y/x.  
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31. Explain the card sorting game. This card game is based on what is called the rule of 4. The rule of 4 refers to having 4 different 
representations for linear equations- the equation, its graph, a table, and context that describes the relationship. You have a set of 
cards that is all mixed up. You will need to match the cards so that you have four cards that go together. In each of these sets of 
four, you will have a table, equation, graphed equation, and context that need to describe the same thing. After you have 
determined which cards go together, classify the slope of each line in your stack as positive, negative, zero, or undefined.  
  
32. We are going to fill out a POD! as we do the first problem in the card sort. P- propose the problem: the question we are 
answering is: “How do you know that the four representations match?”.  
33. What information are you given? 
34. O- outline the steps you will use to solve the problem 
35. Model how to match the cards.  
36. D- Describe and defend you answer; use words to describe the process you used to solve the problem.  
37. Explain how you know your answer makes sense. Provide pictures or an example for support.   
 
38-41. Check: Let’s check our work. We want to make sure that we re-read the problem, set up the problem correctly, check our 
calculations, and make sure we didn’t make any common mistakes.  
 
42-43. Prompt the student to complete the card sort. I will provide corrective feedback and assistance as needed. 
 
44-45. Prompt the student to complete lesson 2 practice problems, which involve making concrete depictions of positive and 
negative slope, then drawing those representations on their paper, completing a table, and graphing them. I will provide corrective 
feedback and assistance as needed. 
 
46-49. Awesome job! Let’s review. Draw an example of what positive slope looks like. Now show me what negative slope looks 
like. Now show me what undefined slope looks like. And show me what zero slope looks like. Great job! Tomorrow we will work 
more with linear equations so we can learn more about why being able to identify slope is useful. 
 
50. I want you to fill out this exit ticket independently. The exit ticket has five problems. For three problems, the student will draw 
an example of the type of slope described. For two problems, the student will identify the slope of a graphed line.  
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Adaptations/Modifications: 
Large grid graphs 
Rulers for helping students 
keep track of their place on 
the graphs.  
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 
 

Reinforcement Procedures: 
Verbal praise. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days.  

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lesson #1 (ex: when I 
graph this point, I 
remember that negative 
numbers mean I move 
down if it is a y-
coordinate).  
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Subject: CRA &WTLM Intervention  Grade level:  Secondary 1                           Lesson: 2       
 Name: Date: 
Core Standard:  
(F.IF.4) SWBAT correctly 
identify and interpret key 
features of graphs and tables 
in terms of the quantities (key 
features include: intercepts; 
intervals where function is 
increasing, decreasing, 
positive, negative; relative 
maximums and minimums; 
symmetries; end behavior; 
and periodicity). 

Instructional Objective:  
SWBAT graph one and two-step 
equations when provided with a 
context. 

Content (concepts, 
information, skills, new 
vocab, etc.): 
  

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD graphic organizer 
(4 copies) 
Frayer models  
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Lesson 2 packet (2 
copies) 
Lesson 2 exit slip  

Lesson Outline: 
1. Today we are going to learn about representing real life situations with linear equations. Once we know how to use linear 
equations to represent different situations, we can use math to help us solve real life problems. Yesterday we learned about the 
features of linear equations (like y-intercept, x-intercept, etc.). We also learned about different ways we can describe slope.   
 
2-5. Let’s review. What is a linear equation? Good. What is the x intercept? What is the y intercept? What is slope?  
6. Hand student the review sheet. 
7-11. We also want to review the different ways we can describe slope. Draw an example of a line with positive slope. Draw an 
example of a line with negative slope. Draw an example of a line with undefined slope. Look at the graphed line. What is the slope 
of that line? 
 
12. Review what POD ! stands for.  
13. Hand the student the lesson 2 packet.  
14. Now that we have reviewed some information about graphing and slope, let’s talk about modeling real world contexts with 
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equations. The first thing we need to know before we can model real world contexts with equations is the formula for a linear 
equation, y=mx+b. In this equation, m= slope and b=y-intercept. Y and x are variables that stand for different values in the 
problem. 
 
15. Read through the example problem. Amy is trying to save money so she can buy a gift for her sister. She saves ¾ of the amount 
of money she earns from mowing lawns. How much money would she need to earn to be able to save $30?  
 
16. POD !: P-propose the problem; what are you asked?  
17. POD!: What information are you given?  
18. In this problem, x stands for the amount of money Amy earns. Y stands for money because it is the amount that changes based 
on how much money Amy earns. M is the slope, which shows the amount of money saved per the amount of money earned. We 
know that we want to find out how much money she needs to earn to be able to save a total of $30.  
19. So, in this problem we are trying to find x, the amount of money earned.  
20. Write an equation showing the example problem. $30=3/4x 
21. How can we show what this means using the blocks we have? I will discuss suggestions made by the student. Then, I will show 
them how to model the context with the stacking cubes.  
22. POD!: O- outline the steps you will use to solve the problem. Write an equation, fill in the table, graph the equation, plug in 
$30 for y.  
 
23. Now let’s fill in a table for the Amy problem. I will model how to determine what x and y stand for, then how to fill in the table 
for the values in the problem, connecting to the stacking cubes. 
 
24. Next, let’s graph the information in the Amy problem. I will model how to label and number the x and y axes, then how to 
graph using the information we have in the table. 
 
25. Now we are going to figure out the answer to the question in the problem- how much money does Amy need to earn to be able 
to save $30? 
 
26. POD!: D- Describe and defend you answer; use words to describe the process you used to solve the problem.  
27: POD!: Explain how you know your answer makes sense. Provide pictures or an example for support.   
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28-31. Check: Let’s check our work. We want to make sure that we re-read the problem, set up the problem correctly, check our 
calculations, and make sure we didn’t make any common mistakes.  
 
32. Now we are going to do one more problem together. This is practice problem #1. For every book Joe reads, he earns $2. He 
starts with $10 in his piggy bank. How much total money will Joe earn from reading books if he reads 5 more books? 
 
33. POD!: Propose the problem: What are you asked? How much total money will Joe earn from reading books if he reads 5 
more books? 
34. POD!: Propose the problem: What information are you given? X=books, y= money, m=2, plugging in 5 for x.  
35. POD !: O- outline the steps you will use to solve the problem. Model it with cubes, Write an equation, fill in the table, graph 
it, then plug in 5 for x and solve the equation.  
36. Model the problem using cubes.  
37. Let’s write an equation for it. I will provide corrective feedback & listen to the student’s suggestions.  
 
38. Now let’s fill in a table for the problem. What variable will the x stand for? What variable will the y stand for? What values 
should we put in for x? What values should we put in for y? I will assist the student with completing the table.  
 
39. The next thing we have to do is graph the problem. What are you going to label your x axis as? What are you going to label your 
y axis as? What is the biggest number we need to go up to for the y-axis? So, should we count by 1s, 2s, 5s, 10s, ….? What is the 
biggest number we need to go up to for the x-axis? So, should we count by 1s, 2s, 5s, 10s. . . .? I will assist the student & provide 
corrective feedback as they set up their graph.  
 
Now, let’s graph the coordinate pairs from your table. I will provide corrective feedback and/or assistance as needed.  
 
40. POD!: D- Describe and defend you answer; use words to describe the process you used to solve the problem.  
41. POD!: Explain how you know your answer makes sense. Provide pictures or an example for support.   
 
41-45. Check: Let’s check our work. We want to make sure that we re-read the problem, set up the problem correctly, check our 
calculations, and make sure we didn’t make any common mistakes.  
 
46-47. Nice job so far. Now I want you to work on practice problem #2 on your own. Let me know if you need help with any of 
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the steps. I will provide corrective feedback, answer questions, and assist as needed. 
  
48-50.  Awesome job with the real world problems! Let’s review. What is the formula for a linear equation? What does the m stand 
for? What does the b stand for?  Good. Tomorrow we will learn/ review the Rule of 4.  
 
51. I want you to fill out this exit ticket independently. The exit ticket has 1 problem similar to what we worked on today so you 
can test yourself to see what you learned.   
 
Adaptations/Modifications: 
Graph paper for drawing 
stacking cubes problems. 
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. 
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 
 
 
 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 1.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lesson #2 (ex: have 
student describe the slope 
in the stacking cube 
problems they complete 
in lesson 2).  
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Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                           Lesson: 3        
Name: Date: 
Core Standard:  
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval 

Instructional Objective:  
a. SWBAT represent linear and 
exponential equations using stacking 
cubes (w/sequentially stacked cubes ex: 
1,2,3,4).  
SWBAT identify the rate of change 
using stacking cubes/ Cuisenaire rods or 
pictures of stacking cubes/ Cuisenaire 
rods. 
b. SWBAT find missing values in a 
pattern represented by stacking cubes or 
Cuisenaire rods, or pictures of stacking 
cubes/ Cuisenaire rods (ex: how many 
cubes would be in the 8th tower?). 

Content (concepts, 
information, skills, new 
vocab, etc.): 
Rate of change 
 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD ! graphic 
organizer (4 copies) 
Frayer model 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Cuisenaire rods 
Lesson 3 packet (2 
copies) 
Lesson 3 exit slip 

Lesson Outline: 
1. In the two lessons we have had so far, we have talked about real life contexts that we can use linear equations to describe, 
features of linear equations, and how to describe slope. Today we are going to deepen our understanding of linear equations by 
working with patterns.  
 
2. Hand student the review sheet.  
3. Review the steps for the POD! by having the student fill in what the steps are on the review sheet.  
4. I will provide the student with corrective feedback and assistance as necessary as they work on the POD ! review.  
 
5. Review how to represent and solve real life problems using linear equations by prompting the student to complete the problem 
on the review sheet: Drew is running a race. He runs at a pace of 5 miles per hour. He has already run 10 miles. How much longer 
will it take Drew to run the whole race if the race is 20 miles long total?  
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6. I will provide the student with corrective feedback and assistance as necessary as they work on the review problem.  
 
7. Hand the student the lesson 3 packet.  
8-10. Show a pattern on blocks that go in a series like this (1,3,5,7). Demonstrate how to model this problem using stacking cubes, 
and drawing out the stacking cubes. Think aloud: I notice that the stacks of cubes get bigger in each tower. I wonder if they change 
by the same amount each time. Count to show that they do. Each tower increases by two cubes. My first tower has 1 cube in it. So, 
if I have 1 + … I wonder what I can add to make it so I am always going to get the correct number of cubes in a tower. For the 
second tower, I would have to add 2, for the third tower I would have to add 4, for the fourth tower, I would have to add 6. Each 
tower increases by 2. So I wonder if I add 2p + 1 if that will make it so that I always have the correct number in a tower. P stands 
for the number of the tower in my sequence. So the second tower would be 2 (1) + 1 = 3. Show for the other towers too.  
 
11. With the rule of 4, we want to show this problem multiple ways. Let’s make a table to show the number of tower and how 
many cubes it has.  
 
12. Let’s also graph the pattern. (Model how to graph the pattern we have, connecting with the equation). Where does my line cross 
the y axis? And what is that called? Good.  
 
13. We can tell that the slope of this pattern is 2 because each tower increases by 2.  
14. We can also tell that the y-intercept of the pattern is 1, because the line crosses the y-axis at 1.  
15. When we look at the cubes, the graph, and the table, how else can we describe the slope and the y-intercept?  
 
16. We can describe this equation as having a constant of 2, because it always increases by 2. This is a linear equation. There is also 
another kind of equation called an exponential equation. Do you know what an exponent is? Here is an example of an exponential 
equation y= 2 ^(x +1). Let’s figure out what this pattern would look like. I would fill in the chart and show the student how to do 
so by plugging in values to the equation. Let’s compare this equation to our linear equation. They look very similar when they are in 
their equation form, but what can we tell is different between them?  
17. The student and I will discuss differences between the two equations. Exponential equations change by a factor of 2, instead of 
a constant of 2. So, this is like we are multiplying instead of adding. For the lessons that we work on together, we will just be 
dealing with linear equations, but you might come across exponential equations in class or on tests.  
 
18. Now let’s look at a problem that is a real world linear equation. Lisa is collecting coins. She has 2 coins in her collection to start 
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(before she starts collecting any coins). She plans on adding coins at a rate of 3/5 coins per day. Let’s draw towers of stacked cubes 
to show how many coins Lisa would have collected in 25 more days. Draw a tower for each week. Good. How many coins are in 
Lisa’s first tower? Response: 2. Good.  
 
19. What does x stand for in this problem?  
20. What does y stand for in this problem? 
 
21. POD !: P- propose the problem; what are you asked? (This is a missing y problem- we need to find the number of coins after 
6 weeks).  
22. POD!: P- What information are you given?  3/5 coins per day (m), starting with 2 coins (b). We need to plug in 25 days (x).  
23. POD !: O- outline the steps you will use to solve the problem: write an equation, fill in a table, graph the equation. Plug in 
x=25 to check my work.  
 
24. Write an equation: By how much do her towers change every 5 days? Response: 3. So, what rule could we use to show how 
many coins Lisa has after however many weeks if she sticks with collecting 3 coins every 5 days? Students work, then show T = 
3/5p + 2. Good. 
 
25. Fill in the table: Let’s complete a table for the Lisa problem.  
26. Now let’s make a graph for the Lisa problem. 
27. State the answer.  
 
28. POD !: D- Describe & defend you answer. Use words to describe the process you used to solve the problem.  
29. POD!: D- describe & defend your answer. Explain how you know your answer makes sense. Provide pictures or an example 
for support.  
 
30-33: Check: I re-read the problem, I set up the problem correctly, I checked my calculations, I didn’t make any common 
mistakes.  
 
34-35: Now I want you to work on practice problem #2 on your own. Let me know if you need help with any of the steps. I will 
provide corrective feedback, answer questions, and assist as needed. 
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36. Work on practice problem 1 with the student. For this problem, the student will roll a di to first determine the number of cubes 
in the first tower (y-intercept). The first problem will be a missing x problem.  
 
37. They will roll a second di determine the number that each tower will change by (slope).  
38. I will help the student make up a context for the values they rolled.  
39. What does x stand for in this problem?  
40. What does y stand for in this problem? 
 
41. POD !: P- propose the problem; what are you asked?  
42. POD!: P-What information are you given?  
43. POD !: O- outline the steps you will use to solve the problem: write an equation, fill in a table, graph the equation.  
 
44. Write an equation: By how much do the towers change? So, what would our equation be?  
45. Fill in the table: Let’s complete a table for the problem.  
46. Now let’s make a graph for the problem. 
47. State the answer.  
 
48. POD ! : D-describe & defend your answer. Use words to describe the process you used to solve the problem.  
49. POD!: D-describe & defend your answer. Explain how you know your answer makes sense. Provide pictures or an example 
for support.  
50-53: Check: I re-read the problem, I set up the problem correctly, I checked my calculations, I didn’t make any common 
mistakes. 
 
54. I will prompt the student to work on the second practice problem independently. The second practice follows the same 
sequence as the first practice problem, but is a missing y problem. 
55. I will provide the student with corrective feedback and assistance as necessary.  
56. Review key concepts that the student has struggled with throughout this lesson and/or the previous two lessons.  
 
57. Awesome job! I want you to fill out this exit ticket independently. The exit ticket will consist of 1 rate of change problem for 
which the student will have to identify the slope and y-intercept, write an equation, fill in the table, and complete a graph.   



 

!
! ! ! !

198 

Adaptations/Modifications: 
Graph paper for drawing 
stacking cubes problems. 
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. 
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 
 
 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 2.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lesson 3.  
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Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                           Lesson: 4       
 Name: Date: 
Core Standard:  
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval  
 

Instructional Objective:  
a. SWBAT represent linear and 
exponential equations using stacking 
cubes (w/ pairs of towers w/missing 
towers- ex: 3rd & 12th towers).  
b. SWBAT identify the rate of change 
using stacking cube/ Cuisenaire rod 
representations, or pictures of stacking 
cubes/Cuisenaire rods. Stacking cube 
problems that involve two towers of cubes that 
have a certain number of towers separating 
them; i.e. the 6th and 12th towers. 
c. SWBAT express the rate of change 
determined from stacking cube/ 
Cuiseniare rods representations (or 
pictures) symbolically (ex: write an 
equation to express the pattern & 
identify slope in the equation). " 
Connect to slope formula 

Content (concepts, 
information, skills, new 
vocab, etc.): 
Slope formula 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD graphic organizer 
(4 copies) 
Frayer model 
Unifix cubes/ base 10 
blocks 
Cuisenaire rods 
Individual dry erase 
boards 
Lesson 4 packet (2 
copies) 
Lesson 4 exit slip 

Lesson Outline: 
1. Sometimes in rate of change problems you will not have all of the towers. We saw some examples of this yesterday. It is very 
common that you often will only have two of the towers, and they might be separated by a lot of towers in between them (ex: on 
tests, etc.). We are going to practice solving this type of problem today. This is one of the most important skills as we move on to 
solving rate of change problems and real world context function problems. 
 
2. Hand the student the review sheet.  
3. Review the steps for the POD! by having the student fill in what the steps are on the review sheet.  
4. I will provide the student with corrective feedback and assistance as necessary as they work on the POD ! review.  
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5. Review how to represent and solve real life problems using linear equations by prompting the student to complete the problem 
on the review sheet: Sara drinks water at a rate of 4/5 ounces per hour. Her water bottle holds 20 ounces of water. At this rate, 
how many hours will it take for Sara to drink all of her water bottle? 
 
6. I will provide the student with corrective feedback and assistance as necessary as they work on the review problem.  
7. Hand the student the lesson 4 packet.  
8. Review the use of cubes and diagrams to show linear equations, tables, and graphs (reference review problem).  
 
9. Today we are going to work with towers that are bigger, and each our series is only going to show two towers that are in the 
series, but there will be missing towers in between the ones you are provided with.  
 
10. Complete the POD! with the student for example problem 1: P- propose the problem; what are you asked? 
11. Complete the POD! with the student for example problem 1: P-propose the problem; what information are you given? 
12. Complete the POD! with the student for example problem 1: O-outline the steps you will use to solve the problem.  
13. Fill in the steps for how to find slope from two points on the guided notes portion of the packet.  
 
14. Model how to find the slope from two known points, using concrete manipulatives OR representations (using ex. problem 1).  
15. Model how to complete a table with only two known points, using concrete manipulatives OR representations (ex. problem 1). 
16. Model how to complete a graph with only two known points (example problem 1). 
17. Model how to write an equation with only two known points (example problem 1).   
 
18. Complete the POD! with the student for example problem 1; D- describe & defend you answer; use words to describe the 
process you used to find the answer. ? 
19. Explain how you know your answer makes sense. Provide pictures or an example for support.  
20. Check: prompt the student to fill in the four check steps.  
21. Check: complete the first check step with the student; re-read the problem. 
22. Check: complete the second check step with the student; set up the problem correctly.  
23. Check: complete the third check step with the student; check calculations.  
24. Check: complete the fourth check step with the student; check for common mistakes.  
 
25. Work on practice problem 1 together; POD!: P- propose the problem; what are you asked? 
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26. Work on practice problem 1 together; POD!: P-propose the problem; what information are you given? 
27. Work on practice problem 1 together: POD!: O-outline the steps you will use to solve the problem.  
28-31. Work on practice problem 1 together: find the rate of change from two known points, complete a table, graph the problem, 
write an equation.  
32. Complete POD! with the student: D-describe & defend you answer; Use words to describe the process you used to solve the 
problem.  
33. Complete POD! with the student: D-describe & defined your answer: explain how you know your answer makes sense. 
Provide pictures or an example for support.  
34. Prompt the student to check their work.  
35. Provide corrective feedback and assistance as necessary. 
36. Prompt the student to write down one way they checked their work.  
37. Provide corrective feedback and assistance as necessary. 
38. Prompt the student to work on practice problem 2 independently.  
39. Provide corrective feedback and assistance as needed while student works on problem 2 independently.  
40. Write the slope formula on the board and talk about why/how what we worked on with the towers connects to the slope 
formula. 
41. Awesome job! I want you to fill out this exit ticket independently. The exit ticket has one stacking cube problem. You need to 
find the rate of change for the problem, complete a table, complete a graph, and write an equation.  
Adaptations/Modifications: 
Graph paper for drawing 
stacking cubes problems. 
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. 
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 3.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lesson 4.  
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Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                           Lesson: 5        
Name: Date: 
Core Standard:  
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval 

Instructional Objective:  
a. SWBAT find the average rate of 
change of a function with variable rate 
of change.  
b. SWBAT interpret how and why the 
rate changes throughout the problem. 

Content (concepts, 
information, skills, new 
vocab, etc.): 
Variable rate of change 
Average rate of change 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD graphic organizer 
(4 copies) 
Frayer model 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Lesson 5 packet (2 
copies) 
Lesson 5 exit slip  

Lesson Outline: 
 
1. We have been working with problems involving problems that have one constant rate of change. We are going to start working 
with problems that have multiple parts that can each have different rates of change. Many circumstances in life are like this, and can 
be described as having a variable, as opposed to constant, rate of change. Variable rate of change problems are important to know 
how to work with, because they are common in every day life (examples: car trips, interest, etc.).  
 
2. Hand student review sheet.  
3. Review the steps for the POD! by having the student fill in what the steps are on the review sheet.  
4. I will provide the student with corrective feedback and assistance as necessary as they work on the POD ! review.  
5. Let’s review how to find the slope, or rate of change, when we only know two points by working on this review problem: Alexis 
ran a 20 mile race. She ran 8 miles in the first 2 hours, and finished all 20 miles in 5 hours. How many miles per hour did she run, 
assuming that she ran at a constant rate? 
6. I will provide the student with corrective feedback and assistance as necessary as they work on the review problem.  
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7. Hand lesson 5 packet to the student.  
8. What does constant rate of change mean? (review definition) 
9. Prompt student to write down definition of constant rate of change on their lesson 5 packet.  
10. What do you think a variable rate of change means? Provide definition.  
11. Prompt student to write down definition of variable rate of change on their lesson 5 packet. 
 
12. Now we are going to work on a variable rate of change problem. (Read problem out loud): Joe left SLC at 9 am and drove for 3 
hours at a rate of 60 miles per hour. He then stopped for lunch for 1 hour. After lunch, he drove for 2 hours at a rate of 45 miles 
per hour. On average, how many miles per hour did Joe drive during his trip? 
 
13. Complete POD! with student: P-propose the problem. What are you asked? 
14. Complete POD! with student: P-propose the problem. What information are you given? 
15. Complete POD! with student: O-outline the steps to solve the problem.  
 
16. Fill in steps on guided notes in lesson 5 packet for the main five steps of finding the average rate of change (just the main steps, 
not the sub-components of each of the steps).  
17. Model an example variable rate of change problem using concrete manipulatives.  
18. Explain to the student that we aren’t going to write a linear equation for variable rate of change problems, because linear 
equations depict problems that have a constant rate of change.  
19. Model how to find the average rate of change of a variable rate of change problem using manipulatives.  
20. Fill in steps on guided notes in lesson 5 packet on how to fill in a table for a variable rate of change problem.  
21. Model how to fill in a table for a variable rate of change problem  
22. Fill in the steps on the guided notes in lesson 5 packet on how to complete a graph for a variable rate of change problem.  
23. Model how to complete a graph for a variable rate of change problem.  
24. Fill in the steps on the guided notes in the lesson 5 packet on how to find the average rate of change of a variable rate of change 
problem.  
25. Model how to find the average rate of change of a variable rate of change problem. 
 
26. Complete POD! with the student: D- describe & defend you answer; use words to describe the process you used to solve the 
problem. 
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27. Complete POD! with the student: D- describe & defend your answer. Explain how you know your answer makes sense. 
Provide pictures or an example for support.  
 
  
28. Check: review what the four check steps are, and have the student fill them in on their packet.  
29. Check: complete the first check step with the student: re-read the problem. 
30. Check: complete the second check step with the student: set up the problem correctly. 
31. Check: complete the third check step with the student: check calculations.  
32. Check: complete the fourth check step with the student: check for any common mistakes. 
 
33. Read practice problem 1 out loud: Mary works at a fruit canning factory. She arrives at work at 8 am and fills cans at a rate of 8 
cans per hour for the first 4 hours. She then takes a lunch break for 1 hour. After lunch, she fills cans at a rate of 6 cans per hour 
for 3 hours. On average, how many cans does Mary fill per hour during her work day?  
 
34. Prompt student to complete POD!- P- propose the problem (parts 1 and 2).  
35. Provide the student with assistance and corrective feedback as needed.  
36. Prompt student to complete POD!- O-outline the steps to solve the problem.  
37. Provide the student with assistance and corrective feedback as needed.  
 
38-40. Work on practice problem 1 together: complete the table, graph the problem, and find the average rate of change. 
 
41. Prompt the student to complete POD!-D- describe & defend your answer; use words to describe the process you used to 
solve the problem/  
42. Provide the student with assistance and corrective feedback as needed. 
43. Prompt the student to complete POD! D- describe & defend your answer; Explain how you know your answer makes sense. 
Provide pictures or an example for support.  
44. Provide the student with assistance and corrective feedback as needed. 
 
45. Prompt the student to complete the first check step: re-read the problem. 
46. Prompt the student to complete the second check step: set up the problem correctly. 
47. Prompt the student to complete the third check step: check calculations. 
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48. Prompt the student to complete the fourth check step: check for common mistakes. 
49. Provide corrective feedback and assistance as needed on the check steps.  
 
50. Prompt student to work on practice problem 2 independently. 
51. Provide corrective feedback & assistance as needed while student works on practice problem 2.  
 
52. Review the difference between constant and variable rate of change. 
 
53. Prompt student to fill out exit slip independently.  
 
Adaptations/Modifications: 
Graph paper. 
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. 
Problems can be adapted 
based on difficulty also (ex: 2 
pieces in the function instead 
of 3). Adaptations 
/modifications will be 
determined based on specific 
students’ IEPs 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 4.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit ticket in 
lesson 5.  
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Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                           Lesson: 6        
Name: Date: 
Core Standard:  
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval 

Instructional Objective: a. SWBAT 
find the average rate of change of a 
function w/ a variable rate of change.  
b. SWBAT interpret how and why the 
rate changes throughout the problem. 
 
Variable rate of change problems with 3-
4 phases.  

Content (concepts, 
information, skills, new 
vocab, etc.): 
 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD graphic organizer 
(4 copies) 
Frayer model 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Lesson 6 packet (2 
copies) 
Lesson 6 exit slip 

Lesson Outline: 
1. Today we are going to work with finding the average rate of change of a function with a  variable rate of change. We will also 
focus on how to describe how and why the rate changes throughout the problem. It is important to be able to describe this, 
because doing so will help us understand what is happening in the problem.  
 
2. Hand the student the review sheet.  
3. Let’s review some of the information we have talked about so far. Write each of the answers for what we talk about on your 
review sheet. First, What is the difference between constant rate of change and variable rate of change? 
4. Sketch an example of variable rate of change on the graph.  
5. What does POD! stand for? 
6. What can you do to check your work? 
 
7. Now, complete the review problem: Marcus runs at a rate of 2/3 miles per hour. At this rate, how many hours would it take him 
to run 4 miles? 



 

!
! ! ! !

207 

8. I will provide corrective feedback and assistance as needed for the review problems. 
 
9. Hand the student the lesson 6 packet.  
10. Work on example problem 1 together; read the problem out loud to the student: Joe just got a credit card. For the first 3 
months, he is charged $3 in interest per month. For the next 6 months, he isn’t charged any interest per month ($0). For the next 2 
months, he is charged $5 in interest per month. For the following month, he is charged $2 per month. On average, how much 
interest is Joe charged each month?  
 
11. Prompt the student to use POD! to start solving the problem by filling in the P portion of the POD!.  
12. Provide corrective feedback and assistance as necessary. 
 
13. Prompt the student to fill in the O portion of the POD!, focusing on the steps that we covered for solving variable rate of 
change problems in lesson 5.  
14. Provide corrective feedback and assistance as necessary.  
 
15. Work with the student to complete a table for the problem. 
16. Work with the student to graph the problem. 
17. Work with the student to find the average rate of change for the problem. 
18. Model a description of how and why the rate changes during the problem. Let’s talk about how and why the rate is changing 
over time in this problem. The student and I will talk about each phase of the problem and describe the rate in terms of steepness 
of the line (rate of change), as well as what is happening overall between the phases. 
19. I will prompt the student to write down an explanation of how and why the rate is changing over time in the problem on their 
lesson 6 packet. 
20. Prompt the student to complete the D portion of the POD!.  
21. Provide corrective feedback and assistance as necessary.  
22. Prompt the student to complete the ! portion of the POD! 
23. Provide corrective feedback and assistance as necessary.  
24. Work on practice problem 1 together: read the problem out loud to the student: Sam is filling a pool with water. She fills the 
pool for 2 hours at a rate of 15 gallons per hour. Then, she fills the pool for 3 hours at a rate of 30 gallons per hour. She takes a 1 
hour lunch break, then fills the pool for 4 hours at a rate of 20 gallons per hour. What is the average amount of gallons per hour 
Sam fills the pool with during her workday?  
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25. Prompt the student to complete both portions of the P section of the POD!.  
26. Provide corrective feedback and assistance as needed. 
27. Prompt the student to complete the O portion of the POD!.  
28. Provide corrective feedback and assistance as needed.  
29. Work on practice problem 1 together: complete the table. 
30. Work on practice problem 1 together: graph the problem. 
31. Work on practice problem 1 together: find the average rate of change.  
32. Prompt the student to complete the D section of the POD!: How do you know your answer is correct? 
33. Complete D section of the POD! together: How and why does the rate change throughout the problem?  
34. Prompt the student to complete the ! portion of the POD!.  
35. Prompt student to work on practice problem 2 independently.  
36. Provide corrective feedback & assistance as needed while student works on practice problem 2.  
37. Review: How do you find the average rate of change in a variable rate of change problem?  
38. Awesome job! I want you to fill out this exit ticket independently. The exit ticket has one problem for the student to complete. 
The problem will involve a context similar to what we discussed during the lesson. The student will have to find the average rate of 
change, find a missing value, and explain how and why the rate is changing. The student will have to complete the rule of 4 by 
filling in missing components.  
Adaptations/Modifications: 
Graph paper  
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. Can 
adapt/modify based on 
difficulty of problems as well.  
Adaptations/modifications 
will be determined based on 
specific students’ IEPs. 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 5.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Emphasize how to find 
the average rate of 
change of a variable rate 
of change function; focus 
on 4 phases     
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Subject: CRA &WTLM  Intervention Grade level:  Secondary 1                           Lesson: 7        
Name: Date: 
Core Standard:  
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval 

Instructional Objective: a. SWBAT 
find the average rate of change of a 
function with variable rate of change.  
b. SWBAT interpret how and why the 
rate changes throughout the problem. 
 
*problems with 4 phase changes 

Content (concepts, 
information, skills, new 
vocab, etc.): 
 

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
Guided notes 
POD graphic organizer 
(4 copies) 
Frayer model 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Lesson 7 packet (2 
copies) 
Lesson 7 exit slip  

Lesson Outline: 
1. Today we will practice finding the average rate of change for variable rate of change problems. This is the third day we are 
covering this material, so the problems today will be a little harder, but I am also looking for you to really master these concepts.  
 
2. Hand student review sheet.  
3. Before we work on the variable rate of change problems, we are going to review some things we have been working on. Write 
the answers to each of these questions on your review sheet. First, explain the steps you use to find the average rate of change.  
4. Provide corrective feedback and assistance as needed.  
 
5. What does POD! stand for? 
6. Provide corrective feedback and assistance as needed. 
7. What can you do to check your work? 
8. Provide corrective feedback and assistance as needed. 
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9. Now let’s review a constant rate of change problem. Read problem out loud to student. Cesar wants to save $77 from working 
this summer. He has already saved $21. He plans to save $7 per week. How much total money will he save if he saves money for 8 
more weeks? 
10. Provide corrective feedback and assistance as needed. 
11. Hand the lesson 7 packet to the student.  
12. Prompt the student to solve a variable rate of change problem. Solving the problem involves finding the average rate of change 
for a variable rate of change problem, inputting the values in the problem into a table, and graphing the problem.  
13. Ask the student to present an argument to justify why their answer is correct.  
14. Provide corrective feedback for any components of the problem the student got incorrect (if needed).  
 
15-17. Complete a practice problem with the student to review how to fill in the table, complete the graph, and find the average 
rate of change for the variable rate of change problem.  
 
18. Prompt the student to work on practice problem 1 independently. The practice problem involves the student solving a variable 
rate of change problem that involves 4 phases. For the problem, the student must complete a table and graph, as well as find the 
average rate of change. The student will also fill in the POD! graphic organizer as they solve the problem.  
 
19. Provide corrective feedback and assistance as needed while student works on practice problem 1.  
20. Prompt the student to justify how they know their answer is correct.  
21. Review the process and tips used to find the average rate of change of a variable rate of change problem.  
 
22. Awesome job! I want you to fill out this exit ticket independently. The exit ticket has one problem for the student to complete. 
The problem will involve a context similar to what we discussed during the lesson. The student will have to find the average rate of 
change, fill in the table and graph, and explain how and why the rate is changing.    
Adaptations/Modifications: 
Graph paper for drawing 
stacking cubes problems. 
Unifix cubes instead of base 
10 blocks for students with 
any motor difficulties. Can 
adapt/modify based on 

Reinforcement Procedures: 
Verbal praise for correct responses 
& on-task behavior. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 

Assessments 
Pre: Scores on baseline 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson. 
Student’s scores on exit slip 
from lesson 6.  

Follow-up Activities: 
Tell the student that this 
is our last day together 
learning material as a 
group, and that the next 
class I will have them fill 
out some information for 
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difficulty of problems as well.  
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 

point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days. 

During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

me about what they 
thought about this unit 
and our time together.    
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Subject: CRA & WTLM Intervention   Grade level: Secondary 1                Review lesson 1 
Core Standard:  
(F.IF.4) SWBAT correctly 
identify and interpret key 
features of graphs and tables 
in terms of the quantities (key 
features include: intercepts; 
intervals where function is 
increasing, decreasing, 
positive, negative; relative 
maximums and minimums; 
symmetries; end behavior; 
and periodicity). 

Instructional Objective:  
SWBAT identify the slope of a linear 
equation from a graph. 
SWBAT solve and graph one and two 
step equations when provided with a 
context. 

Content (concepts, 
information, skills, new 
vocab, etc.): 
Slope 
     Positive  
     Negative 
     Undefined 
     Zero 
Y-intercept  

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
POD graphic organizers 
(4 copies) 
Ruler 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Booster Lesson 1 packet 
(2 copies) 
Booster Lesson 1 exit slip  

Outline of Lesson:  
1. Today we are going to review some of the concepts we have been working on. We have gone over a lot so far, but I want to 
make sure we take time to review since all of the information we have covered is important to remember.  
2. Hand student the booster lesson 1 packet.  
3. One thing we have been using and that we will use during this lesson is POD!. What does POD! stand for? 
4. One of the first concepts we worked with was slope. How can we define slope? 
5. What are the four ways we can classify slope? 
6. Let’s practice identifying slope from a graph. We will work on the first problem together.  
7. What are some common mistakes you might make on finding slope from a graph?  
8. How can you prevent those mistakes? 
9. Now I want you to work on the next 3 problems on your own.  
10. I will provide corrective feedback and assistance as needed.   
11. Nice job. The other big skill we have been working on is solving real life problems by modeling them using linear equations. 
Let’s work on one of these problems. Read problem out loud to student: Jackson spends ½ of the money he earns. How much 
money would he earn if he spent $32? 
12. Complete POD! with the student: P-propose the problem; What are you asked? 
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13. Complete POD! with the student: P-propose the problem; What information are you given? 
14. Complete POD! with the student: O-outline the steps you will use to solve the problem.  
15. Help the student write an equation for the problem.  
16. Help the student complete a table for the problem. 
17. Help the student complete the graph for the problem. 
18. Help the student find the answer to the problem.  
19. Complete POD! with the student: D-describe & defend your answer: Use words to describe the process you used to solve the 
problem.  
20. Complete POD! with the student: D-describe & defend your answer: Explain how you know your answer makes sense. 
Provide pictures or an example for support.  
21. Ask student what the check steps are. 
22. Complete check step 1 with the student: re-read the problem. 
23. Complete check step 2 with the student: set up the problem correctly.  
24. Complete check step 3 with the student: check calculations.  
25. Complete check step 4 with the student: check for common mistakes.  
26. Prompt student to work on practice problem 2 on their own.  
27. Provide student with corrective feedback and assistance as needed.  
28. Complete practice problem #3 with the student. Read the problem out loud. Jeremiah is filling a fish tank at a rate of 2/3 
gallons per minute. The tank is already 3 gallons full. For how many more minutes will Jeremiah need to fill the tank for it to be 15 
gallons full total?  
29. Complete POD! with the student: P-propose the problem; What are you asked? 
30. Complete POD! with the student: P-propose the problem; What information are you given? 
31. Complete POD! with the student: O-outline the steps you will use to solve the problem.  
32. Help the student write an equation for the problem.  
33. Help the student complete a table for the problem. 
34. Help the student complete the graph for the problem. 
35. Help the student find the answer to the problem.  
36. Complete POD! with the student: D-describe & defend your answer: Use words to describe the process you used to solve the 
problem.  
37. Complete POD! with the student: D-describe & defend your answer: Explain how you know your answer makes sense. 
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Provide pictures or an example for support.  
38. Ask student what the check steps are. 
39. Complete check step 1 with the student: re-read the problem. 
40. Complete check step 2 with the student: set up the problem correctly.  
41. Complete check step 3 with the student: check calculations.  
42. Complete check step 4 with the student: check for common mistakes.  
43. Prompt student to work on practice problem #4 on their own.  
44. Provide student with corrective feedback and assistance as needed.  
45. Review: What are some common mistakes you have seen with finding slope from a graph? 
46. How can you prevent some of these mistakes?  
47. What are some common mistakes you have seen with solving linear equation context problems? 
48. How can you prevent some of these mistakes? 
49. Prompt student to work on exit slip. The exit slip consists of 2 slope from graphed line problems, and 2 contextual linear 
equation problems for the student to solve (write an equation, complete a table, graph, and find the answer).  
Adaptations/Modifications: 
Large grid graphs 
Rulers for helping students 
keep track of their place on 
the graphs.  
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 
 
 
 

Reinforcement Procedures: 
Verbal praise. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days.  

Assessments 
Pre: Scores on intervention 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson; 
scores on exit slips from 
lessons 1-4.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lessons #1-4 (ex: when I 
graph this point, I 
remember that negative 
numbers mean I move 
down if it is a y-
coordinate), or on 
intervention assessments.   
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Subject: CRA & WTLM Intervention   Grade level: Secondary 1                Review lesson 2 
Core Standard:  
(F.IF.4) SWBAT correctly 
identify and interpret key 
features of graphs and tables 
in terms of the quantities (key 
features include: intercepts; 
intervals where function is 
increasing, decreasing, 
positive, negative; relative 
maximums and minimums; 
symmetries; end behavior; 
and periodicity). 
 
(F.IF.6) SWBAT calculate and 
interpret the average rate of 
change of a function 
(presented symbolically or as 
a table) over a specified 
interval 

Instructional Objective:  
SWBAT identify the slope of a linear 
equation from a graph. 
SWBAT solve and graph one and two 
step equations when provided with a 
context. 
 
SWBAT find the average rate of 
change of a function w/ a variable 
rate of change.  
 

Content (concepts, 
information, skills, new 
vocab, etc.): 
Slope 
     Positive  
     Negative 
     Undefined 
     Zero 
Y-intercept  
Constant rate of change 
Variable rate of change  

Instructional Materials 
Needed: 
Graph paper (coordinate 
grid pre-made) 
POD graphic organizers 
(4 copies) 
Ruler 
Unifix cubes/ base 10 
blocks 
Individual dry erase 
boards 
Booster Lesson 2 packet 
(2 copies) 
Booster Lesson 2 exit slip  

Outline of Lesson:  
1. Today we are going to review some of the concepts we have been working on. We have gone over a lot so far, but I want to 
make sure we take time to review since all of the information we have covered is important to remember.  
2. Hand student the booster lesson 2 packet.  
3. One thing we have been using and that we will use during this lesson is POD!. What does POD! stand for? 
4. One of the first concepts we worked with was slope. What are the four ways we can classify slope? 
5. Let’s practice identifying slope from a graph. Describe how you would find the slope of the line on this graph.  
6. Provide assistance and corrective feedback as needed. 
7. Prompt student to find the slope of a line on a second graph.   
8. I will provide corrective feedback and assistance as needed.   
9. Nice job. Another concept we have been working with is constant versus variable rate of change. Can you describe the difference 
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between constant and variable rate of change? 
10. I will provide corrective feedback and assistance as needed.  
11. Let’s work on a problem with a constant rate of change. Read problem out loud to student: Sara is filling a fish tank at a rate of 
¾ gallons per minute. The tank is already 3 gallons full. At this rate, for how many more minutes does Sara need to fill the tank for 
it to be 6 gallons full total? 
12. Complete POD! with the student: P-propose the problem; What are you asked? 
13. Complete POD! with the student: P-propose the problem; What information are you given? 
14. Complete POD! with the student: O-outline the steps you will use to solve the problem.  
15. Help the student write an equation for the problem.  
16. Help the student complete a table for the problem. 
17. Help the student complete the graph for the problem. 
18. Help the student find the answer to the problem.  
19. Complete POD! with the student: D-describe & defend your answer: Use words to describe the process you used to solve the 
problem.  
20. Complete POD! with the student: D-describe & defend your answer: Explain how you know your answer makes sense. 
Provide pictures or an example for support.  
21. Ask student what the check steps are. 
22. Complete check step 1 with the student: re-read the problem. 
23. Complete check step 2 with the student: set up the problem correctly.  
24. Complete check step 3 with the student: check calculations.  
25. Complete check step 4 with the student: check for common mistakes.  
26. Prompt student to work on practice problem #2 on their own.  
27. Provide student with corrective feedback and assistance as needed.  
28. Now let’s work on a variable rate of change problem. Read the problem out loud to the student: Andrew has a credit card that 
charges $1 per month in interest the first 3 months. He is then charged $0 in interest per month for the next 3 months, and $2 in 
interest per month for the following 6 months. For the next 3 months, he is charged $3 in interest. On average, how much interest 
is Andrew charged each month?  
29. Complete POD! with the student: P-propose the problem; What are you asked? 
30. Complete POD! with the student: P-propose the problem; What information are you given? 
31. Complete POD! with the student: O-outline the steps you will use to solve the problem.  
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32. Help the student complete a table for the problem. 
33. Help the student complete the graph for the problem. 
34. Help the student find the answer to the problem.  
35. Complete POD! with the student: D-describe & defend your answer: Use words to describe the process you used to solve the 
problem.  
36. Complete POD! with the student: D-describe & defend your answer: Explain how you know your answer makes sense. 
Provide pictures or an example for support.  
37. Ask student what the check steps are. 
38. Complete check step 1 with the student: re-read the problem. 
39. Complete check step 2 with the student: set up the problem correctly.  
40. Complete check step 3 with the student: check calculations.  
41. Complete check step 4 with the student: check for common mistakes.  
42. Review: What are some common mistakes you have seen with solving variable rate of change problems? 
43. How can you prevent some of these mistakes?  
44. Prompt student to work on exit slip. The exit slip consists of 1 slope from graphed line problem, 1 contextual linear equation 
problem for the student to solve (write an equation, complete a table, graph, and find the answer), and 1 variable rate of change 
problem for the student to solve (complete a table, graph, and find the average rate of change).  
Adaptations/Modifications: 
Large grid graphs 
Rulers for helping students 
keep track of their place on 
the graphs.  
Rest of 
adaptations/modifications 
will be determined based on 
specific students’ IEPs. 
 
 
 
 

Reinforcement Procedures: 
Verbal praise. 
Students will earn points on daily 
cards for following directs, being 
respectful, and being persistent 
problem solvers. I will tally the 
point and tell them how many they 
earned at the end of each day. 
Students will cash in points on 
assessment days.  

Assessments 
Pre: Scores on intervention 
probes; student’s responses to 
checks for understanding in 
the rationale of the lesson; 
scores on exit slips from 
lessons 1-6.  
During: Responses to checks 
for understanding; I will 
observe their work during 
guided practice & provide 
corrective feedback as well.  
Post: Exit slip  

Follow-up Activities: 
Spiral in prompts for any 
common errors I see 
based on exit tickets in 
lessons #1-6 (ex: when I 
graph this point, I 
remember that negative 
numbers mean I move 
down if it is a y-
coordinate), or on 
intervention assessments.   
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