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ABSTRACT 

 

 

 This thesis describes the development of novel silica and hybrid nanoporous 

membranes. Nanoporous membranes are widely used in various applications. This thesis 

focuses on their potential applications in the energy area, such as fuel cells and lithium 

batteries, and in separations and ultrafiltration. We use silica colloidal spheres and 

polymer-modified silica spheres to prepare the membranes in a time-, cost- and material-

efficient manner.  

 First, we prepared novel silica nanoporous membranes by pressing silica colloidal 

spheres followed by sintering. The pore size, the thickness, and the area of the membrane 

are precisely controlled by experiment parameters. The resulting membranes are 

mechanically and thermally durable, crack-free, and capable of size-selective transport. 

 Next, to demonstrate the utility of the pressed membranes, described above, the 

proton-conductive pore-filled silica colloidal membranes were prepared and the fuel cells 

were constructed using these membranes. We modified these membranes by filling the 

membrane pores with surface-attached proton-conductive polymer brushes and prepared 

membrane-electrode assemblies to test fuel cell performance. We studied the proton 

conductivity and fuel cell performance as a function of the amount of sulfonic groups in 

the membrane. 

 We also prepared and characterized reversible hybrid nanoporous membranes, 

self-assembled from solution containing polymer-modified silica colloidal spheres. Here 



iv 
 

we applied the new concept of noncovalent membranes, where the material is held 

together via noncovalent interactions of polymer brushes. This enables so-called 

reversible assembly of the membranes, in which membrane can be assembled in one 

solvent and dissolved in other. This approach provides advantages in recycling and 

reusing of the material. This work is one of the first of its kind and it opens a whole new 

area of research on reversible membranes made of polymer-modified nanoparticles.  

 Finally, we applied our approach for preparation of both pore-filled and reversible 

self-assembled silica membranes to develop new SPE material for lithium rechargeable 

batteries. We successfully prepared ion-conductive SPE from each of the materials and 

demonstrated the proof-of-concept for these approaches.  

 Overall, in this thesis, we introduce unique approaches where we combine simple 

materials with novel yet easy preparation and modification methods to obtain new 

functional nanoporous membranes with desired properties.  
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CHAPTER 1 

 

 

SILICA NANOPOROUS MEMBRANES 

1.1 Introduction 

 A membrane is a selective barrier whose primary role is to permit the passage of 

certain components and retain certain other components of the mixture.
1,2

 Biological 

membranes act as a selectively permeable barrier within cells, while synthetic 

nanoporous membranes, containing both single and multiple nanopores (pore size in 1-

100 nm range), have attracted attention in fundamental research
3,4,5

 (e.g., for studying the 

transport of small molecules and macromolecules through nanopores
6-8

), and in various 

applications, including separation of biomacromolecules
9
 and pharmaceuticals,

10
 

sensing,
11

 and novel medical devices, such as controlled release
12-15

 and drug delivery 

systems.
16-18

  Most commonly used nanoporous membrane materials are based on 

polymers,
19,20,21

 which have the advantage of good mechanical properties, flexibility, and 

processability.  However, the nanostructure of polymeric membranes is often not well 

defined and well controlled, and their surface is hard to modify.  Therefore, inorganic 

nanoporous materials, such as zeolites,
22,23,24

  silicon nitride,
25,26

 silicon,
27

 silica,
28,29

 

alumina
30,31

 and nanotubes,
32,33

 are attractive alternatives for polymeric nanoporous 

membranes.  Despite the impressive advances in the field of inorganic nanoporous 

membrane materials, several problems remain unsolved.  Many of the inorganic 

nanoporous membranes possess low pore density, which results in low molecular fluxes 
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through these membranes, limiting their usefulness.  Secondly, it is difficult to control the 

pore size in a broad range in these materials.  In addition, many of these membranes 

require specialized methods and equipment for their preparation. 

1.2 Silica Colloidal Membranes 

 Silica colloidal membranes, developed in our group in the past several years, 

provide a simple and powerful approach to self-assembled nanoporous membranes with 

high molecular flux, easily controllable nanopore size in the 5-100 nm range, and, most 

importantly, with facile surface chemistry allowing to achieve controlled ionic and 

molecular transport and ultrafiltration.
3,4,5

 Historically, silica colloidal crystals have been 

developed as templates for preparing photonic materials,
34,35

 energy storage media,
36

 

magnetic materials,
37

 macroporous polymer membranes,
38,39

 and sensors.
40

  Silica 

colloidal crystals comprise a close-packed face-centered cubic (fcc) lattice of amorphous 

nonporous silica spheres of a sub-micrometer diameter (Figure 1.1) with ordered arrays 

of interconnected three-dimensional nanoscale voids.
41

  The preparation of silica spheres 

(Scheme 1.1) is straightforward,
42

 self-assembly of the spheres is well developed,
43

 and 

pore size in the crystals can be readily controlled by selecting the sphere size.  The 

distance from the center of the nanopore projection to the nearest silica sphere surface is 

ca. 15% of the sphere radius.  Because of the three-dimensional nature of the pores, we 

use this projection (Figure 1.1A) as a simplified description of the pore geometry, and the 

distance described above as the nanopore “radius.” 

 The surface silanol groups in colloidal membranes can be directly modified by 

nucleophilic silylation to introduce a variety of functional groups.
44

  Alternatively, silica 

surface can be first modified with 3-aminopropyltriethoxysilane, followed by treatment 
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with organic molecules carrying electrophilic moieties such as acyl chloride, isocyanate, 

isothiocyanate, carboxylic acid, sulfonyl chloride,
45

 or succinimidyl ester.
46

   

 3-Aminopropyltriethoxysilane-treated silica can also be modified with 2-

bromoisobutyrylbromide,
47

 which can serve as atom transfer radical polymerization 

(ATRP) initiator.
48

  This provides the possibility of growing various polymer brushes on 

the silica surface.
49-52 

 An important advantage of colloidal crystals as nanoporous membranes is their 

highly ordered structure, which allows using accurate mathematical descriptions of the 

molecular transport.
53-57

 The effective diffusion coefficient of molecules in the fcc lattice, 

Dcolloid, can be expressed as (ε/τ)Dsol, where Dsol is the diffusivity of molecules in free 

solution, and the void fraction ε (0.26) and the tortuosity τ (~3.0) are intrinsic geometrical 

parameters independent of the size of the silica spheres used to prepare the colloidal 

crystal. An estimate of the molecular flux Jfcc can be obtained using eq 1.1,
53

 where ΔC is 

the concentration gradient and L is the thickness of the membrane: 

Jcolloid = (ΔC/L) × (ε/τ)Dsol     (1.1) 

 Importantly, the diffusive flux of small molecules normal to the (111) plane of a 

semi-infinite colloidal crystal is only ca. 10 times smaller relative to the free solution 

value, independent of the size of the spheres used to assemble the crystal.
55

  Thus, the rate 

of molecular transport remains significant, even when the pore size is reduced to the 

nanoscale to impart molecular transport selectivity.  For a typical Dsol of 10
-5

 cm
2
·s

-1
, L of 

100 µm, and ΔC of 100 mM, Jcolloid is ~10
-8

 mol/cm
2
·s.   

 Previously, the Zharov group reported permselective silica colloidal nanoporous 

membranes in the form of pH-responsive amine-modified colloidal films with controlled 
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transport of positively charged species
58,59

 as well as membranes modified with sulfonic 

acids
60,61

 and spiropyran moieties.
62

  Silica colloidal films modified with chiral selector 

moieties and possessing chiral permselectivity were also reported.
63,64

  Several methods 

for the preparation of silica colloidal membranes, including supported films,
57,58

 

suspended colloidal membranes,
65,66

 and mechanically robust free-standing silica 

membranes
67

 were developed.  Methods were developed to modify the colloidal 

nanopores with polmyers, such as acrylamide,
68

 temperature-responsive poly(N-

isopropylacryl amide), PNIPAAM,
69

 pH- and ion-responsive poly(2-

(dimethylamino)ethyl methacrylate), PDMAEMA,
70,71

 temperature-responsive poly(L-

alanine),
72

 and a small molecule-responsive aptamer.
73

 Finally, proton-conducting silica 

colloidal membranes were prepared by modifying the surface of the nanopores with 

sulfonic groups
61

 and sulfonated polymers.
74

 

1.3 Free-standing Silica Colloidal Membranes 

 Free-standing silica colloidal crystals are generally more practical than supported 

thin films. Earlier Zharov group prepared free-standing silica colloidal crystals by vertical 

deposition from colloidal solution of silica spheres in ethanol.
67

 The resulting crystals 

were sintered in an oven at 1050 ºC for 12 hours. The silica spheres flow at the surface at 

this temperature and after cooling down, they are physically bonded to each other.     

Free-standing silica colloidal membranes are capable of size-selective transport.
75

 The 

average membrane thickness can be controlled by silica concentration. The silica spheres 

in the resulting membranes remain highly-ordered in fcc lattice after thermal treatment 

(Figure 1.2) and the membranes are robust and possess large area (Figure 1.3).  

 Free-standing colloidal membranes were also prepared using gold-coated silica 
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nanospheres, their surface was modified with pH-responsive L-cysteine and methacrylic 

acid, and studies of the ionic and molecular transport through these membranes were 

carried out.
76

 

Free-standing highly-ordered silica colloidal membrane possess several 

advantages; however, there are a few challenges that limit practical applications of silica 

membranes. Controlled area and thickness are desired for some applications.
77

 Ordered 

silica membranes prepared via vertical deposition do not possess uniform thickness 

throughout the membrane: they usually have smaller thickness at the top side of the 

membrane (the side that was on top of the glass slide during the vertical deposition 

process) and the larger thickness at the other side. This problem, which is common for 

vertical deposition, arises from sedimentation of silica spheres during solvent evaporation 

in the vertical deposition process. Sometimes the thicknesses at the top and the bottom 

sides of the membrane differ by a factor of 2. It is also hard to control the area of the 

membrane, since the vertically deposited silica colloidal membranes are prone to 

cracking before the sintering step. This thesis will discuss the development of close-

packed silica colloidal membranes with uniform controlled thickness and area. The 

membranes are prepared by pressing the silica spheres in a die set with further sintering 

in the oven. The resulting membranes are chemically and thermally stable, mechanically 

robust, and are capable of size-selective transport and further modification of pore surface 

with functional polymer brushes.  

1.4 Fuel Cells Membranes 

A fuel cell is a device that converts chemical energy, released from fuel oxidation, 

directly into electrical energy. 



6 

Fuel cells attract increased attention as a promising energy solution for several 

reasons.  

They are generally more efficient compared to combustion engines, have lower 

emission (only water and carbon dioxide), they have a simple design due to the absence 

of any moving parts, are quiet compared to combustion engines, and have a wide variety 

of applications in portable devices, cars, submarines, etc.  

 Different types of fuel cells include proton exchange membrane fuel cells 

(PEMFC), anion exchange membrane fuel cells (AEMFC), solid oxide fuel cells (SOFC), 

and phosphoric acid fuel cells (PAFC), each of them having their advantages, limitations 

and potential applications.
78,79

  Although each fuel cell type operates differently, they are 

all made of similar components such as an anode, cathode, and electrolyte media.  

 The electrolyte membrane that transports positive or negative ions form one 

electrode to another is a key component to complete the circuit in a fuel cell.  PEMFCs 

use proton exchange membranes that transfer protons from the anode, where the fuel is 

oxidized, to the cathode, where oxygen is reduced.  The types of PEMFCs vary 

depending on used fuel; the two major types are hydrogen fuel cells and direct methanol 

fuel cells (DMFC).  One of the roles of the membrane is to prevent mixing of fuel and 

oxidant. Another role is to transport ions, while preventing conduction of electrons, thus 

the membrane should possess high ionic conductivity and no electric conductivity. The 

proton conductivity of the membrane depends on temperature, pressure, type, and 

concentration of ions present in the system.
 80

 The conductivity highly depends on degree 

of hydration.
81,82

 Thus, it is important for the fuel cell membrane to remain hydrated at 

elevated temperatures (>90 ºC). The membrane should also be mechanically and 
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thermally stable. 

 Proton conductivity is one of the most important parameters of proton exchange 

membrane. As a relatively easy and fast experiment, proton conductivity measurements 

are usually performed to estimate membrane’s potential prior to more complicated fuel 

cell experiments.
78

 The proton conductivity is usually measured using electrochemical 

impedance spectroscopy (EIS). Impedance is a measure of the ability of the system to 

resist current, taking into account resistance, capacitance, and inductance, the latter two 

being dependent on frequency. In this experiment, AC voltage is applied at variable 

frequencies and the complex impedance of the system is measured. After a few 

mathematical operations, the bulk resistance R (Ohmic resistance) of the membrane is 

calculated. The proton conductivity of the membrane is calculated as shown in eq 1.2. 

𝜎 =
𝑙

𝑅 𝐴
       (1.2) 

where σ is conductivity (S/cm), l is distance between the two electrodes (cm), and A is 

the cross-sectional area of the membrane (cm
2
). 

 Open-circuit voltage and polarization are key parameters of a fuel cell. To 

measure these parameters, a working fuel cell with cathode, anode, and proton-

conducting membrane is needed. Thus, the membrane-electrode assembly (MEA) is 

constructed, where both electrodes are modified with catalysts (usually Pt or Pt-alloys for 

DMFCs).  The fuel and oxidant are then supplied to the system and the equilibrated 

voltage is recorded. The polarization curves are obtained by scanning the potential 

starting from equilibrated open-circuit voltage value and recording the resulting current.  
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1.5 Polymer Electrolyte Membranes 

 The most commonly used proton-conducting materials are polymer electrolyte 

membranes (PEMs).
78,83

 The industrial standard for PEMs is Nafion® – a material 

developed by DuPont in the 1960s. Nafion consists of perfluorinated backbone with side 

chains having sulfonic end groups (Figure 1.4).  

 The advantages of Nafion are high proton conductivity, chemical stability, and 

relative mechanical stability. However, Nafion also has some important disadvantages, 

such as significant swelling in water, which creates difficulties in fuel cell design and 

performance, as well as lower proton conductivity at high temperatures (> 90 ºC) due to 

water loss, and poor mechanical properties at elevated temperatures. 
84,85,86

 Many analogs 

of Nafion were developed based on perfluorinated polymers containing sulfonic groups, 

such as sulfonated polystyrenes, sulfonated polyarelene ethers, etc. 
87

   

 Polymer electrolyte membranes, just as other membranes in PEMFCs, only 

possess high proton conductivity when they are heavily hydrated. Since most fuel cells 

operate better at high temperatures, the membrane should retain water upon heating. 

Also, polymer membranes in DMFCs swell in presence of methanol and water, which can 

distort the fuel cell assembly. Finally, methanol permeability becomes an issue in 

DMFCs that use polymer membranes.
88

 Thus, nonswelling membranes with reduced 

methanol permeability and high proton conductivity are desirable. 

 Hybrid organic-inorganic composite membranes may meet these requirements. 

89,90,91
 One way to make them is to incorporate inorganic oxide nanoparticles into 

polymer membranes. Hydrophilic nanoparticles help to keep water in the membrane at 

elevated temperature, reduce the methanol permeability,
92,93

 and add mechanical and 
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thermal stability to the material.
91,94

 The most commonly used inorganic particles are 

oxides, such as SiO2, Al2O3, TiO2,
 93,95,96

 as well as clays
97

 and zeolites.
98,99

  

1.6 Pore-filled Silica Colloidal Membranes for Fuel Cells 

 Another approach is to develop a rigid porous scaffold filled with a proton-

conducting material (polymer electrolyte), resulting in formation of proton-conductive 

pathways.
100

 The resulting pore-filled hybrid organic-inorganic membranes meet and 

exceed many performance requirements due to their better mechanical stability and non-

swelling properties.
90,91

 The porous scaffolds in pore-filled membranes can be made of 

polymers
101,102,103,104

 or inorganic materials.
105,106,107,108

  The porous substrate is then 

filled by impregnation with ion-conductive polymers, usually containing sulfonic 

groups.
101-106

  However, in this assembly, the polymer can be washed out from the 

scaffold, causing membrane instability and proton conductivity loss in long term.  To 

stabilize the pore-filled structures, polymers can be cross-linked,
108

 but linking the 

polymer to the surface of scaffold is more reliable.  

 In the Zharov group, this approach was used earlier to prepare pore-filled silica 

colloidal membranes, where the highly-ordered silica colloidal crystal containing a 

continuous network of interconnected mesopores provides a rigid scaffold. The silica 

colloidal membranes were prepared by vertical deposition from colloidal solution 

containing dispersed silica colloidal spheres in ethanol with further sintering at 1050 ºC 

for 12 hours. The resulting membranes are chemically inert, mechanically durable, and 

thermally stable. They provide better water retaining properties due to hydrophilic nature 

of silica. The pore size is controlled and easily varied by changing the silica sphere size.  

 The proton-conducting polymer brushes, containing sulfonic groups: poly(3-
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sulfopropylmethacrylate) (pSPM) or poly(stryrenesulfonic acid) (pSSA) were grown 

from the surface of silica via surface-initiated atom transfer radical polymerization (SI-

ATRP) (Scheme 1.2).
74

 This polymerization method guarantees that polymers will not 

leach out of the nanopores. According to the thermogravimetric analysis (TGA) data, the 

polymer brushes fill the pores completely.
74

 The resulting pore-filled colloidal 

membranes were modified with silver electrodes and the proton conductivity was 

measured using EIS method inside the home-made humidity- and temperature-controlled 

chamber.
74

 

 It was found that the proton conductivity of pore-filled silica colloidal membranes 

is comparable to that of Nafion™ and generally increases with increasing temperature 

(until temperature reaches 90 ºC) and relative humidity.
74

  While the proton conductivity 

observed for this material was quite high, it is still lower than expected based on 

continuous interconnected nanochannels. To further study the proton conductivity in 

pore-filled membranes is important for both the fundamental understanding of proton 

conductivity mechanisms and for the improvement of fuel cell design and performance. 

The silica pore-filled colloidal membranes provide a good model for these studies. The 

rigid silica scaffold does not swell or dissolve in water and methanol, which is a typical 

problem for most highly-sulfonated polymer proton-conductive membranes. At the same 

time, well-established silica surface chemistry allows controlled growing of various 

polymer structures inside the pores to study structure-property relationship for the 

membranes and fuel cells.  

 This dissertation will describe the dependence of proton conductivity of the PEM 

membrane and the performance of methanol fuel cell on the degree of sulfonation of the 
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polymer brushes inside the silica pores. The research on how the proton conductivity 

depends on the amount of sulfonic groups in the system is essential for the fundamental 

understanding of proton conductivity mechanisms and for optimizing the fuel cell design. 

Both highly-ordered and pressed silica colloidal membranes served as rigid matrix for 

further pore-filling with conductive polymer brushes containing various amounts of 

sulfonic groups.  

1.7 Lithium Batteries 

 Lithium rechargeable batteries are used in a wide variety of demanding 

applications, such as electric vehicles, start-light ignition, portable electronics, and 

personal communication. The key components of lithium batteries are the positive 

electrode, the negative electrode, and the electrolyte. The electrolyte is a medium with 

good lithium ion conductivity.
109

  Usually it is a lithium salt, dissolved in an organic 

solvent. However, currently used liquid electrolyte batteries have a number of serious 

disadvantages, such as lack of chemical and electrochemical stability, as well as lack of 

reliability and environmental safety due to possible leaks.
110

  Therefore, the solid polymer 

electrolyte (SPE) has been recognized as a promising material for the production of 

lithium batteries.
111,112

  The required parameters for a successful SPE are high ionic 

conductivity, high transport number for lithium cation, and good mechanical stability.
113

  

Most commonly used SPEs are based on complexes formed between polyethylene oxide 

(PEO) and various lithium salts, usually having noncoordination anion, such as 

perchlorate, tetrafluoroborate, hexafluorophosphate, etc.
114,115

  These systems possess 

good mechanical properties, large redox stability windows, good compatibility with 

cathodes and lithium anode, a very high solvating power, and chain flexibility at elevated 
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temperatures.
116

  However, they possess low conductivity at ambient temperature, very 

low cation transference numbers, and high crystallinity.
117

  There are several approaches 

to increase the lithium conductivity at room temperatures by variation of polymer 

composition, structure, and geometry.
118-122 

 Other approaches propose adding inorganic 

materials or introducing a second phase to the SPE.
123-128

  The challenge is to optimize 

both lithium ion conductivity and mechanical properties of the SPE simultaneously.   

 The ionic conductivity is one of the key parameters of SPE and it can be measured 

using electrochemical impedance spectroscopy (EIS),  as was discussed above for fuel 

cell membranes. The silver mesh is attached to the membrane and serves as electrodes. 

The complex impedance of the membrane is measured, and the ionic conductivity is 

calculated taking into account membrane thickness and area.  

In this dissertation, we will describe a new approach to the preparation of SPEs 

for lithium batteries, where a rigid silica porous scaffold serves as a matrix, while pore-

filling polymer brushes impregnated with a lithium salt are grafted to silica surface and 

are responsible for the ionic conductivity of the SPE.   

1.8 Reversible Membranes 

 As was discussed above, nanoporous membranes are most commonly made of 

polymers, zeolites, inorganic oxides, etc. However, regardless of the material, these 

membranes are formed via irreversible covalent bonds.
129

 Once the membrane is formed, 

it cannot be dissolved or disassembled into initial components. Thus, if the membrane 

clogs due to pore blocking or surface fouling, it requires a time- and money-consuming 

cleaning and regeneration process.  Membranes formed by noncovalent reversible 

assembly of molecular or nanoscale building blocks may address this challenge, which 
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will be useful for membrane fabrication, processing, cleaning, recycling, and reusing.
129

 

 Recently, the assembly of nanoporous membranes using molecular building 

blocks allowing for the preparation of thin supported materials suitable for ultrafiltration 

of nanoparticles was reported.
129

 These membranes, made by reversible self-assembly of 

perylene diimide-based organic molecules, contained a continuous three-dimensional 

network, formed in water/THF, could be dissolved in water/ethanol and possessed a cut-

off of 5 nm.  The membrane preparation process was fast and easy, the material could be 

easily recycled and reused, however, the pore size of such membranes is defined by the 

structure of the molecular building block and thus cannot be easily varied in a broad 

range. 

 Self-assembly of colloidal particles into nanoporous membranes would allow 

combining the advantages of the reversible assembly with easy pore size tunability and 

cheap building blocks.  The challenge in this case is to develop a system that is held 

together by noncovalent interactions strong enough to provide materials that can 

withstand the ultrafiltration conditions. 

 Only gold nanoparticles were used so far to form self-assembled nanoporous 

membranes, either by chemically directed assembly of AuNPs and polyamidoamine 

dendrimers (PAMAM), in which the pore size was controlled by varying the dendrimer 

generation,
130

 or by self-assembly of dodecanethiole-ligated Au nanocrystals,
131,132

 where 

the pore size was controlled by the gold nanoparticles size.  The free-standing 

AuNP/dendrimer membranes were relatively easy to prepare, they were durable and 

capable of size-selective separations and filtration, however, their application is limited 

by high cost and small size of gold nanoparticles.  
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 The silica colloidal spheres, discussed above, could provide a cheap alternative to 

gold nanoparticles. However, only sintered silica colloidal membranes were prepared, 

where silica spheres were attached to each other by covalent bond. The formation of these 

membranes is not reversible. We decided to develop a membrane where silica spheres 

will be held together by other interactions, such as van der Waals and coulombic 

interactions of polymer brushes, grafted on the surface of silica spheres. 

 In this thesis, the reversible formation of two types of nanoporous membranes via 

the self-assembly of silica nanospheres modified with polymer brushes is described.  The 

interactions between entangled polymer brushes of neighboring silica spheres are 

responsible for holding the silica spheres together in the membrane. We developed two 

types of membranes: the first type is stable in organic solvents and can be dissolved in 

water, while the second type is practical in water and can be disassembled in organic 

solvents. In general, this approach allows for the preparation of stable and durable 

reversible nanoporous membranes with controlled pore size. The membranes could be 

both supported and free-standing. The resulting membranes are capable of size-selective 

transport.  

1.9 Thesis Overview 

 This thesis focuses on the preparation of novel silica and hybrid nanoporous 

membranes and demonstration of some of their application.  Chapter 2 describes the 

preparation of silica nanoporous membranes with controlled thickness, area, and pore size 

by pressing silica colloidal spheres followed by thermal sintering. The resulting 

membranes are capable of size-selective transport. Chapter 3 describes the preparation of 

proton-conductive pore-filled silica colloidal membranes and the fuel cells prepared using 
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these membranes. We discuss how the proton conductivity and fuel cell performance 

depends on the number of sulfonic groups in the pore-filling polymer brushes. Chapter 4 

describes the preparation and characterization of reversible nanoporous membranes, 

comprised of polymer-modified silica colloidal spheres. In Chapter 5, our progress in 

development of solid polymer electrolyte material for lithium ion batteries is described. 

Finally, Chapter 6 summarizes the results and outlines the future work.  
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Figure 1.1. SEM images of silica colloidal films prepared on glass from 440 nm diameter 

silica spheres deposited (a) top view (size bar 4 µm); and (b) side view (size bar 2 µm). 

The geometric projection of a pore observed from the (111) plane is outlined in the inset 

in (a).
58

  

 

 

 

Scheme 1.1 Preparation and surface amination of silica spheres. 

 

 

 

Figure 1.2. SEM images of sintered colloidal crystals comprised of 180 nm silica 

spheres: (a). SEM image showing no major cracks over a large area (size bar = 50 µm); 

(b) Magnified image displaying the close-packed fcc lattice (size bar = 2.5 µm).  

 

 

 
Figure 1.3. Photographs of sintered silica colloidal membranes. (a) as-sintered; (b) 

without PTFE washers showing the sintered colloidal membrane in the epoxy; (c) with 

PTFE washers. 
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Figure 1.4. Chemical structure of Nafion® 117 
 

 

 
Scheme 1.2. Modification of silica surface with pSPM and pSSA brushes.

74
  

 

 

  



18 

 1.10 References 

 

1
 Cheryan, M.  Microfiltration and Ultrafiltration Handbook, CRC Press: Boca Raton, 

FL, 1998, pp. 1-28. 

2
 Zeman, L.; Zydney, A.  Microfiltration and Ultrafiltration. Principles and 

Applications, Marcel Dekker: New York, 1996, pp. 1-20. 

3
 Zharov, I.; Khabibullin, A. Surface-Modified Silica Colloidal Crystals: Nanoporous 

Films and Membranes with Controlled Ionic and Molecular Transport. Acc. Chem. 

Res., 2014, 47, 440–449. 

4
 Khabibullin, A.; Zharov, I. Responsive Nanoporous Silica Colloidal Films and 

Membranes. In Intelligent Stimuli Responsive Materials: From Well-Defined 

Nanostructures to Applications, Li, Q, Ed. John Wiley & Sons, Inc.: Hoboken, New 

Jersey, 2013, pp. 265-292.  

5
 Khabibullin, A.; Zharov, I. Silica Colloidal Nanoporous Membranes. In 

Encyclopedia of Membrane Science and Technology, Part II. Membrane Materials, 

Characterization, and Module Design. Hoek, E. M. V., Volodymyr V. Tarabara, V. 

V., Eds. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2013, pp. 797-828. 

6
 Tanev, P. T.; Butruille, J.-R.; Pinnavaia, T. J. Nanoporous Materials. In Chemistry of 

Advanced Materials: An Overview, Interrante, L. V.; Hampden-Smith, M. J., Eds. 

Wiley-VCH: New York, N. Y, 1998, pp. 328-388. 

7
 Davis, M. E. Ordered Porous Materials for Emerging Applications. Nature 2002, 

417, 813–821. 

8
 Bayley, H.; Martin, C. R. Resistive-Pulse Sensing-From Microbes to Molecules. 

Chem. Rev. 2000, 100, 2575–2594. 

9
 van Reis, R.; Zydney, A. Bioprocess Membrane Technology. J. Membr. Sci. 2007, 

297, 16–50. 

10
 Afonso, C. A. M.; Crespo J. G. Recent Advances in Chiral Resolution through 

Membrane-Based Approaches. Angew. Chem. Int. Ed. 2004, 43, 5293–5295. 

11
 Piruska, A.; Gong, M.; Sweedler, J. V.; Bohn, P. W. Nanofluidics in Chemical 

Analysis. Chem. Soc. Rev. 2010, 39, 1060–1072. 

12
 Martina, F.; Walczaka, R.; Boiarskia, A.; Cohena, M.; Westa, T.; Cosentinob, C.; 

Ferrari, M. Tailoring Width of Microfabricated Nanochannels to Solute Size Can Be 

Used to Control Diffusion Kinetics. J. Control. Release 2005, 102, 123–133.  

13
 Orosz, K. E.; Gupta, S.; Hassink, M.; Abdel-Rahman, M.; Moldovan, L.; Davidorf, 

F. H.; Moldovan, N. I. Delivery of Antiangiogenic and Antioxidant Drugs of 

Ophthalmic Interest through a Nanoporous Inorganic Filter. Mol. Vision 2004, 10, 

555–65. 

14
 Kipke, S.; Schmid, G. Nanoporous Alumina Membranes as Diffusion Controlling 

Systems. Adv. Funct. Mater. 2004, 14, 1184–1188.  
 



19 

 

15
 Gong, D.; Yadavalli, V.; Paulose, M.; Pishko, M.; Grimes, C. A. Controlled 

Molecular Release Using Nanoporous Alumina Capsules. Biomed. Microdev. 2003, 

5, 75–80. 

16
 Ziaiea, B.; Baldia, A.; Leia, M.; Guc, Y.; Siegel, R. A. Hard and Soft 

Micromachining for BioMEMS: Review of Techniques and Examples of 

Applications in Microfluidics and Drug Delivery. Adv. Drug Delivery Rev. 2004, 56, 

145–172.  

17
 Santini, J. T., Jr.; Cima, M. J.; Langer, R. A Controlled-Release Microchip. Nature 

1999, 397, 335–338. 

18
 Grayson, A. C. R.; Choi, I. S.; Tyler, B. M.;. Wang, P. P.; Brem, H.; Cima, M. J.; 

Langer, R. Multi-Pulse Drug Delivery from a Resorbable Polymeric Microchip 

Device. Nature Mat. 2003, 2, 767–772. 

19
 Ulbricht, M. Advanced Functional Polymer Membranes. Polymer 2006, 47, 2217–

2262. 

20
 Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Söderlund, H.; Martin, C. R. 

Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations. 

Science 2002, 296, 2198–2201. 

21
 Mansourpanah, Y.; Gheshlaghi, A. Effects of Adding Different Ethanol Amines 

During Membrane Preparation on the Performance and Morphology of Nanoporous 

PES Membranes. J Polym Res. 2012, 19, 1–7. 

22
 Kallus, S.; Condre, J.-M.; Hahn, A.; Golemme, G.; Algieri, C.; Dieudonne, P.; 

Timmins, P.; Ramsay, J. D. F. Colloidal Zeolites and Zeolite Membranes. J. Mat. 

Chem. 2002, 12, 3343–3350. 

23
 Chiang, A. S. T.; Chao, K.-J. Membranes and Films of Zeolite and Zeolite-Like 

Materials. J. Phys. Chem. Solids 2001, 62, 1899–1910. 

24
 Chong Lua. A.; Shen, Y. Influence of Inorganic Fillers on the Structural and 

Transport Properties of Mixed Matrix Membranes. J. Appl. Polym. Sci. 2013, 128, 

4058–4066. 

25
 Yen, B. K.; White, R. L.; Waltman, R. J.; Dai, Q.; Miller, D. C.; Kellock, A. J.; 

Marchon, B.; Kasai, P.H.; Toney, M. F.; York, B. R.; Deng, H.; Xiao, Q.-F.; Raman, 

V. Microstructure and Properties of Ultrathin Amorphous Silicon Nitride Protective 

Coating. J. Vac. Sci. Tech. 2003, A21, 1895–1904. 

26
 Tong, H. D.; Jansen, H. V.; Gadgil, V. J.; Bostan, C. G.; Berenschot, C. G. E.; van 

Rijn, C. J. M.; Elwenspoek, M. Silicon Nitride Nanosieve Membrane. Nano Lett. 

2004, 4, 283-287. 

27
 Striemer, C. C.; Thomas R.; Gaborski, T. R.; McGrath, J. L.; Fauchet, P. M. Charge- 

and Size-Based Separation of Macromolecules Using Ultrathin Silicon Membranes. 

Nature 2007, 445, 749–753. 

28
 Liu, N. G.; Dunphy, D. R.; Atanassov, P.; Bunge, S. D.; Chen, Z.; Lopez, G. P.; 

Boyle, T. J.; Brinker, C. J. Photoregulation of Mass Transport through a 
 



20 

 

Photoresponsive Azobenzene-Modified Nanoporous Membrane. Nano Lett. 2004, 4, 

551–554. 

29
 Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. Mesostructured Hybrid 

Organic–Inorganic Thin Films. J. Mater. Chem. 2005, 15, 3598–3627. 

30
 Toh, C.-S.; Kayes, B. M.; Nemanick, E. J.; Lewis, N. S. Fabrication of Free-Standing 

Nanoscale Alumina Membranes with Controllable Pore Aspect Ratios. Nano Lett. 

2004, 4, 767–770. 

31
 Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; 

Teramae, N. Self-Assembly of a Silica-Surfactant Nanocomposite in a Porous 

Alumina Membrane. Nature Mat. 2004, 3, 337–341. 

32
 Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. 

Aligned Multiwalled Carbon Nanotube Membranes. Science 2004, 303, 62–65. 

33
 Miller, S. A.; Martin, C. R. Redox Modulation of Electroosmotic Flow in a Carbon 

Nanotube Membrane. J. Am. Chem. Soc. 2004, 126, 6226–6227. 

34
 Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, 

C.; Mesequer, F.; Miguez, H.; Mondla, J. P.; Ozin, G. A.; Toader, O.; Van Driel, H. 

M. Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-

Dimensional Bandgap Near 1.5 Micrometres. Nature 2000, 405, 437–440. 

35
 Kubo, S.; Gu, Z.-Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O. Tunable 

Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal 

Structure. J. Am. Chem. Soc. 2004, 126, 8314–8319. 

36
 Stein, A. Advances in Microporous and Mesoporous Solids – Highlights of Recent 

Progress. Adv. Mater. 2003, 15, 763–775. 

37
 Bartlett, P. N.; Ghanem, M. A.; Hallag, E.; De Groot, P.; Zhukov, A. 

Electrochemical Deposition of Macroporous Magnetic Networks Using Colloidal 

Templates. J. Mater. Chem. 2003, 13, 2596–2602. 

38
 Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L. Template-

Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays 

of Voids. J. Am. Chem. Soc. 1999, 121, 11630-11637. 

39
 Park, S. H.; Xia, Y. Macroporous Membranes with Highly Ordered and Three-

Dimensionally Interconnected Spherical Pores. Adv. Mat. 1999, 10, 1045–1048. 

40
 Cassagneau, S.; Caruso, F. Semiconducting Polymer Inverse Opals Prepared by 

Electropolymerization. Adv. Mater. 2002, 14, 34–38. 

41
 Wong, S.; Kitaev, V.; Ozin, G. A. Colloidal Crystal Films: Advances in Universality 

and Perfection. J. Am. Chem. Soc. 2003, 125, 15589–15598. 

42
 Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodispersed Spheres in the 

Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. 

43
 Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-Crystal Colloidal 

Multilayers of Controlled Thickness. Chem. Mater. 1999, 11, 2132–2140. 
 



21 

 

44
 Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N. Engineering Silicon Oxide Surfaces Using 

Self-Assembled Monolayers. Angew Chem Int Ed. 2005, 44, 6282–6304. 

45
 Flink, S.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Functionalization of Self-

Assembled Monolayers on Glass and Oxidized Silicon Wafers by Surface Reactions. 

J. Phys. Org. Chem. 2001, 14, 407–415. 

46
 Kanoh, N.; Kumashiro, S.; Simizu, S.; Kandoh, Y.; Hatakeyama, S.; Tashiro, H.; 

Osada, H. Immobilization of Natural Products on Glass Slides by Using a 

Photoaffinity Reaction and the Detection of Protein–Small-Molecule Interactions. 

Angew. Chem. Int. Ed. 2003, 42, 5584–5587. 

47
 Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 

101, 2921–2990. 

48
 Wang, J.-S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. 

Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox 

Process. Macromolecules 1995, 28, 7901–7910. 

49
 Kong, X.; Kawai, T.; Abe J.; Iyoda, T. Amphiphilic Polymer Brushes Grown From 

The Silicon Surface By Atom Transfer Radical Polymerization. Macromolecules 

2001, 34, 1837–1844. 

50
 Minko, S.; Usov, D.; Goreshnik, E.; Stamm, M. Environment-Adopting Surfaces 

with Reversibly Switchable Morphology. Macromol. Rapid. Commun. 2001, 22, 

206–211. 

51
 Tran, Y.; Auroy, P.; Lee, L.-T. Determination of the Structure of Polyelectrolyte 

Brushes. Macromolecules 1999, 32, 8952–8964. 

52
 Biesalski, M.; Johannsmann, D.; Ruhe, J. Synthesis and Swelling Behavior of a 

Weak Polyacid Brush. J. Chem. Phys. 2002, 117, 4988–4994. 

53
 Cussler, E. L. Diffusion. Mass Transfer in Fluid Systems, 2nd ed.; Cambridge 

University Press, Cambridge, UK, 1997, pp. 169. 

54
 Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: New 

York, 1975. 

55
 Brenner, H.; Edwards, D. A. Macrotransport Processes, Butterworth-Heinemann: 

Boston, 1993. 

56
 Maxwell, J. C. Treatise on Electrochemistry and Magnetism, Vol. 1, 3rd ed.; Oxford 

University Press, Oxford, UK, 1892, pp. 435-449. 

57
 Newton, M. R.; Morey, K. A.; Zhang, Y.; Snow, R. J.; Diwekar, M.; Shi, J.; White, 

H. S. Anisotropic Diffusion in Face-Centered Cubic Opals. Nano Lett. 2004, 4, 875–

880. 

58
 Newton, M. R.; Bohaty, A. K.; White, H. S.; Zharov, I. Chemically Modified Opals 

as Thin Permselective Nanoporous Membranes. J. Am. Chem. Soc. 2005, 127, 7268–

7269. 
 



22 

 

59
 Newton, M. R.; Bohaty, A. K.; Zhang, Y.; White, H. S.; Zharov, I. pH and Ionic 

Strength Controlled Cation Permselectivity in Amine-Modified Nanoporous Opal 

Films. Langmuir 2006, 22, 4429–4432. 

60
 Smith, J. J.; Zharov, I. Ion Transport in Sulfonated Nanoporous Colloidal Films. 

Langmuir 2008, 24, 2650–2654. 

61
 Smith, J. J.; Abbaraju, R, R.; Zharov, I. Proton Transport in Assemblies of Silica 

Colloidal Spheres. J. Mater. Chem. 2008, 18, 5335–5338. 

62
 Bohaty, A. K.; Newton, M. R.; Zharov, I. Light-Controlled Ion Transport through 

Spiropyran-Modified Nanoporous Silica Colloidal Films. J. Porous Mater. 2010, 17, 

465–473. 

63
 Cichelli, J.; Zharov, I. Chiral Selectivity in Surface-Modified Porous Colloidal Films. 

J. Am. Chem. Soc. 2006, 128, 8130–8131. 

64
 Cichelli, J.; Zharov, I. Chiral Permselectivity in Nanoporous Opal Films Surface-

Modified with Chiral Selector Moieties. J. Mater. Chem. 2007, 17, 1870–1875. 

65
 Bohaty, A. K.; Zharov, I. Suspended Self-Assembled Opal Membranes. Langmuir 

2006, 22, 5533–5536. 

66
 Bohaty, A.; Abelow, A. E.; Zharov, I. Nanoporous Silica Colloidal Membranes 

Suspended in Glass. J. Porous Mater. 2011, 18, 297–304. 

67
 Bohaty, A. K.; Smith, J. J.; Zharov, I. Free-Standing Silica Colloidal Nanoporous 

Membranes. Langmuir 2009, 25, 3096–3101. 

68
 Schepelina, O.; Zharov, I. Polymer-Modified Opal Nanopores. Langmuir 2006, 22, 

10523–10527. 

69
 Schepelina, O.; Zharov, I. Poly(N-isopropylacrylamide)-Modified Nanoporous 

Opals. Polym. Prepr. 2007, 48, 455–456. 

70
 Schepelina, O.; Zharov, I. Poly(2-(dimethylamino)ethyl methacrylate)-Modified 

Nanoporous Colloidal Films with pH and Ion Response. Langmuir 2008, 24, 14188–

14194. 

71
 Schepelina, O.; Poth, N.; Zharov, I. pH-Responsive Nanoporous Silica Colloidal 

Membranes. Adv. Funct. Mater. 2010, 20, 1962–1969. 

72
 Abelow, A. E.; Zharov, I. Poly(L-alanine)-Modified Nanoporous Colloidal Films. 

Soft Matter 2009, 5, 457–462. 

73
 Abelow, A. E.; White, R. J.; Plaxco, K. W.; Zharov, I. Nanoporous Silica Colloidal 

Films with Molecular Transport Gated by Aptamers Responsive to Small Molecules. 

Coll. Czech Chem. Commun. 2011, 76, 683–694. 

74
 Smith, J. J.; Zharov, I. Preparation and Proton Conductivity of Self-Assembled 

Sulfonated Polymer-Modified Silica Colloidal Crystals. Chem. Mater. 2009, 21, 

2013–2019. 

75
 Ignacio-de Leon, P. A.; Zharov. I. Size-Selective Transport in Colloidal Nano-Frits. 

Chem. Commun. 2011, 47, 553–555. 
 



23 

 

76
 Ignacio-de Leon, P. A.; Zharov. I. SiO2@Au Core-Shell Nanospheres Self-Assemble 

to Form Colloidal Crystals That Can Be Sintered and Surface Modified to Produce 

pH-Controlled Membranes. Langmuir 2013, 29, 3749–3756. 

77
 Birnbaum, A. J.; Zalalutdinov, M. K.; Wahl, K. J.; Pique, A. Fabrication and 

Response of Laser-Printed Cavity-Sealing Membranes. J. Microelectromech. Syst. 

2011, 20, 436-440. 

78
 Smith, J. J. Sulfonated Nanoporous Colloidal Films and Membranes Ph.D. Thesis, 

University of Utah, Salt Lake City, Utah, USA, 2009.  

79
 Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. 

Rev. 2004, 104, 4245–4269. 

80
 Kreuer, K.; Paddison S;, Spohr E.; Schuster M. Transport in Proton Conductors for 

Fuel Cell Applications: Simulations, Elementary Reactions, and Phenomenology. 

Chem. Rev., 2004, 104, 4637–4678. 

81
 Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative 

Polymer Systems for Proton Exchange Membranes (PEMs). Chem. Rev. 2004, 104, 

4587–4611. 

82
 Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Approaches and Recent Development of 

Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chem. 

Mater. 2003, 15, 4896–4915. 

83
 Gary, F. M. Polymer Electrolytes, Royal Society of Chemistry, Cambridge, 1997. 

84
 Yang, Y.; Holdcroft, S. Synthetic Strategies for Controlling the Morphology of 

Proton Conducting Polymer. Fuel Cells 2005, 5, 171–185. 

85
 Kerres, J. A. Blended and Cross-Linked Ionomer Membranes for Application in 

Membrane Fuel Cells. Fuel Cells 2005, 5, 230–247. 

86
 Hogarth, W. H.; Diniz da Costa, J. C.; Lu, G. Q. Solid Acid Membranes for High 

Temperature (140 °C) Proton Exchange Membrane Fuel Cells. J. Power Sources 

2005, 142, 223–237. 

87
 Hickner, M. A.; Pivovar, B. S. The Chemical and Structural Nature of Proton 

Exchange Membrane Fuel Cell Properties. Fuel Cells 2005, 5, 213–229. 

88
 Yeo, S. C.; Eisenberg, A. Physical Properties and Supermolecular Structure of 

Perfluorinated Ion-Containing (Nafion) Polymers. J. Appl. Polym. Sci. 1977, 21, 

875–898. 

89
 Tripathi, B.; Shahi, K. Recent Progress on Organic-Inorganic Nanocomposite 

Polymer Electrolyte Membranes for Fuel Cell Applications. Prog. Polym. Sci., 2011, 

36, 945–979. 

90
 Valle, K.; Belleville, P.; Pereira, F.; Sanchez, C. Hierarchically Structured 

Transparent Hybrid Membranes by in Situ Growth of Mesostructured Organosilica in 

Host Polymer. Nat. Mater. 2006, 5, 107–111. 

91
 Bhattacharyya, A. J.; Maier, J. Second Phase Effects on the Conductivity of Non-

Aqueous Salt Solutions: “Soggy Sand Electrolytes”. Adv. Mater. 2004, 16, 811–814. 
 



24 

 

92
 Navarra, M.; Materazzi, S.; Panero, S.; Scrosati, B. PVdF-Based Membranes for 

DMFC Applications. J. Electrochem. Soc. 2003, 150, A1528–A1532. 

93
 Satolli, D.; Navarra, M. A.; Panero, S.; Scrosati. B.; Ostrovski, D.; Jacobsson, P.; 

Albinsson, I.; Mellander, B.-E. Macro- and Microscopic Properties of Nonaqueous 

Proton Conducting Membranes Based on PAN. J. Electrochem. Soc. 2003, 150, 

A267–A273. 

94
 Beyazyildirim, S.; Kreuer, K. D.; Schuster, M.; Bhattacharyya, A. J.; Maier, J. 

Heterogeneous Doping of a Weak Covalent Electrolyte: Proton Conductivity 

Enhancement of Imidazole by Admixture of Oxide Particles. Adv.Mater. 2008, 20, 

1274–1278. 

95
 Watanabe, M.; Uchida, H.; Igarashi, H.; Effects of Polymer Electrolyte Membrane's 

Property on Fuel Cell Performances. Macromol. Symp. 2000, 156, 223–230.  

96
 Hamoudi, S.; Kaliaguine, S. Sulfonic Acid-Functionalized Periodic Mesoporous 

Organosilica. Microporous Mesoporous Mater. 2003, 59, 223–230. 

97
 Wang, J.; Merino, J.; Aranda, P.; Galvan, J.-C.; Hitzky-Ruiz, E. Reactive 

Nanocomposites Based on Pillared Clays. J. Mater. Chem. 1999, 161–167. 

98
 Kwak, S.-H.; Yang, T.-H.; Kim, C.-S.; Yoon, K. H. Polymer composite membrane 

incorporated with a hygroscopic material for high-temperature PEMFC. Electrochim. 

Acta 2004, 50, 653–657. 

99
 Tricoli, V.; Nannetti, F. Zeolite–Nafion composites as ion conducting membrane 

materials. Electrochim. Acta 2003, 48, 2625–2633. 

100
 Soler-Illia, G. J. A. A.; Azzaroni, O. Multifunctional Hybrids by Combining Ordered 

Mesoporous Materials and Macromolecular Building Blocks. Chem. Soc. Rev., 2011, 

40, 1107–1150. 

101
 Zhang, H.; Ohashi, H.; Tamaki, T.; Yamaguchi, T. Water Movement in a Solid-State 

Alkaline Fuel Cell Affected by the Anion-Exchange Pore-Filling Membrane 

Properties. J. Phys. Chem. C, 2013, 117, 16791−16801. 

102
 Park, S.-H.; Choi, Y.-W.; Park, J.-S. Characterization of Sulfonated Poly(Styrene-

Co-Pyrrolidone) Pore-Filling Membranes for Fuel Cell Applications. J. Appl. 

Electrochem., 2011, 41, 849–857. 

103
 Jung, H.; Ohashi, H.; Tamak, T.; Yamaguchi, T. Improvement of Thermal-Stability 

of Anion Exchange Membranes for Fuel Cell Applications by Controlling Water 

State. Chem. Lett., 2013, 42, 14–16. 

104
 Yamamoto, D.; Munakata, H.; Kanamura, K. Synthesis and Characterization of 

Composite Membrane with Three-Dimensionally Ordered Macroporous Polyimide 

Matrix for DMFC. J. Electrochem. Soc., 2008, 155, B303–B308. 

105
 Gohil, J. M.; Karamanev, D. G. Novel Pore-Filled Polyelectrolyte Composite 

Membranes for Cathodic Microbial Fuel Cell Application. J. Power Sources, 2013, 

243, 603–610. 
 



25 

 

106
 Kanamura, K.; Mitsui, T.; Munakata, H. Preparation of Composite Membrane 

between a Uniform Porous Silica Matrix and Injected Proton Conductive Gel 

Polymer. Chem. Mater., 2005, 17, 4845–4851. 

107
 Yameen, B.; Kaltbeitzel, A.; Langer, A.; Müller, F.; Gösele, U.; Knoll, W.; Azzaroni, 

O. Highly Proton-Conducting Self-Humidifying Microchannels Generated by 

Copolymer Brushes on a Scaffold. Angew. Chem. Int. Ed., 2009, 48, 3124–3128. 

108
 Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M. Composites of Functional Polymeric 

Hydrogels and Porous Membranes. J. Mater. Chem., 2011, 21, 2783–2811. 

109
 Julien, C. Solid State Batteries. In CRC Handbook of Solid State Electrochemistry; 

Gellings, P. J.; Bouwmeester, H. J. M., Eds.; CRC: Boca Raton, 1997; Chapter 11, 

pp. 371–406. 

110
 Wakihara, M.; Yamamoto, O., Eds. Lithium Batteries, Wiley-VCH: Berlin, New 

York, Chichester, Brisbane, Singapore, Toronto, 1998. 

111
 Einset, A. G.; Wnek, G. E. Polymer Electrolyte Review. In Handbook of Solid State 

Batteries & Capacitors; Munshi, M. Z. A., Ed.; World Scientific: Singapore, New 

Jersey, London, Hong Kong, 1995; Chapter 15, pp. 289–310. 

112
 Wright, P. V. Polymer Electrolytes - the Early Days. Electrochim. Acta 1998, 43, 

1137–1143. 

113
 Fauteux, D.; Massucco, A.; McLin, M.; van Buren, M.; Shi, J. Lithium Polymer 

Electrolyte Rechargeable Battery. Electrochim. Acta 1995, 40, 2185–2190. 

114
 Fenton, B. E.; Parker, J. M.; Wright, P. V. Complexes of Alkali Metal Ions with 

Poly(Ethylene Oxide). Polymer 1973, 14, 589. 

115
 Armand, M. B. Polymer Electrolytes. Annu. Rev. Mater. Sci. 1986, 16, 245–261. 

116
 Stainer, M.; Hardy, L. C.; Whitmore, D. H.; Schriver, D. F. Stoichiometry of 

Formation and Conductivity Response of Amorphous and Crystalline Complexes 

Formed Between Poly(ethylene oxide) and Ammonium Salts:  PEOx•  NH4SCN  and 

 PEOx• NH4SO3CF3. J. Electrochem. Soc. 1984, 131, 784–790. 

117
 Quartarone, E.; Mustarelli, P.; Magistris, A. PEO-Based Composite Polymer 

Electrolytes. Solid State Ionics 1998, 110, 1–14. 

118
 Giles, J. R. M. Electrolytic Conduction in Amorphous Salt Complexed Polyethers. 

Solid State Ionics 1987, 24, 155–167. 

119
 Giles, J. R. M.; Gray, F. M.; McCallum, J. R.; Vincent, C. A. Synthesis and 

Characterization of ABA Block Copolymer-Based Polymer Electrolytes. Polymer 

1987, 28, 1977–1981. 

120
 Sun, J.; McFarlane, D. R.; Forsyth, M. Mechanical Properties of Polyether-

Plasticiser-Salt Systems as Polymer Electrolytes. Solid State Ionics 1996, 85, 137–

141. 

121
 Giles, J. R. M.; Greenhall, M. P. Ionic Conduction in Phosphate Ester-Crosslinked 

Polyethylene Glycols Complexed with Lithium Trifluoromethanesulfonate Polymer 

Comm. 1986, 27, 360-362. 
 



26 

 

122
 Rawsky, G. C.; Fujinami, T.; Shriver, D. F. Aluminosilicate/Polyethylene Glycol 

Copolymers: a New Class of Polyelectrolytes Polym. Mater. Sci. Eng. 1994, 71, 523-

527.  

123
 Meyer, W. H. Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 1998, 10, 

439–448. 

124
 Scrosati, B. Conducting Polymers: Advanced Materials for New Design, 

Rechargeable Lithium Batteries. Polym. Int. 1998, 47, 50–55. 

125
 Angell, C. A.; Xu, K.; Zhang, S.-S.; Videa, M. Variations on the Salt-Polymer 

Electrolyte Theme for Flexible Solid Electrolytes. Solid State Ionics 1996, 86-88, 

17–28. 

126
 Ogata, N.; Sanui, K.; Rikukawa, M.; Yamada, W.; Watanabe, M. Super Ion 

Conducting Polymers For Solid Polymer Electrolytes. Synth. Met. 1995, 69, 521–

524. 

127
 Ardel, G.; Golodnitsky, D.; Peled, E.; Wang, Y.; Bajue, S.; Greenbaum, S. Bulk and 

Interfacial Ionic Conduction in LiI/Al2O3 Mixtures. Solid State Ionics 1998, 113-115, 

477–485. 

128
 Dudney, N. J. Composite Electrolites. In Handbook of Solid State Batteries & 

Capacitors; Munshi, M. Z. A., Ed.; World Scientific: Singapore, New Jersey, 

London, Hong Kong, 1995; Chapter 12, pp. 231–246. 

129
 Krieg, E.; Weissman, H.; Shirman, E.; Shimoni, E.; Rybtchinski B. A Recyclable 

Supramolecular Membrane for Size-Selective Separation of Nanoparticles. Nat. 

Nanotechnol. 2011, 6, 141–146. 

130
 Park, M.-H.; Subramani, C.; Rana, S.; Rotello, V. M. Chemoselective Nanoporous 

Membranes via Chemically Directed Assembly of Nanoparticles and Dendrimers. 

Adv. Mater. 2012, 24, 5862–5866. 

131
 Mueggenburg, K. E.; Lin, X.-M.; Goldsmith, R. H.; Jaeger, H. M. Elastic 

Membranes of Close-Packed Nanoparticle Arrays. Nat. Mater., 2007, 6, 656–660. 

132
 He, J.; Lin, X.-M.; Chan, H.; Vukovic, L.; Kral, P.; Jaeger H. M. Diffusion and 

Filtration Properties of Self-Assembled Gold Nanocrystal Membranes. Nano Lett. 

2011, 11, 2430–2435. 



CHAPTER 2 

 

 

NANOPOROUS MEMBRANES WITH TUNABLE PORE SIZE BY 

PRESSING/SINTERING SILICA COLLOIDAL SPHERES 

2.1 Introduction 

 Over the past decade, nanoporous membranes attracted increasing attention due to 

their potential applications in molecular sorting, separations, and sensing.
1-3

  Several 

methods have been developed for the preparation of nanoporous membranes, including 

lithography,
4
 anodic oxidation of aluminum films,

5
 track etching of polymers,

6
 

surfactant-directed self-assembly,
7
 self-assembly of block-copolymers,

8
 self-assembly 

and polymerization of liquid crystals,
9,10,11

 sol-gel methods,
12,13

 dip-coating,
14

 chemical 

vapor deposition,
15

 and by templating silica colloidal crystals.
16,17

 

 For any emerging membrane preparation technology, commercial translation 

requires both precise control over membrane performance and scalability of the 

membrane preparation process.  Successful membrane preparation processes should 

provide good control over the average pore diameter with a narrow pore diameter 

distribution to enable size exclusion separations.  Presently, depending on the membrane 

material, pore size is controlled by preparation conditions, such as etching conditions in 

ion-track etched membranes and anodized alumina membranes, or predetermined by the 

size of the template used in membrane preparation.
16,17

   

 Inorganic membranes
18

 are particularly attractive in the fields of high temperature 
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gas separation,
19,20

 water treatment,
21

 and as catalytic support and membrane reactors
22

 

due to their mechanical, chemical, and thermal stability.  Most commonly, inorganic 

nanoporous membranes are prepared by anodization of aluminum
5
 and by sol-gel 

methods.
12

  These methods, however, are not very time- and cost-effective. 

 Assembly of silica colloidal spheres provides an alternative efficient approach to 

the preparation of inorganic nanoporous membranes with high thermal and chemical 

stability.  Colloidal particles can be self-assembled into silica colloidal crystals with 

close-packed face-centered cubic (fcc) arrangement of silica spheres and ordered arrays 

of three-dimensional interconnected voids.
23

  The void size in colloidal crystals can be 

easily controlled in the 5-100 nm range by changing the silica sphere diameter.
23

  Earlier, 

we reported
24

 the preparation of robust free-standing 200 μm-thick colloidal membranes 

with approximately 1×1 cm
2
 dimensions and no mechanical defects by sintering silica 

colloidal crystals at 1050 °C.  We also demonstrated
25

 that molecular transport through 

these membranes is size-selective and the selectivity is enhanced by the tortuous path 

diffusing molecules take through the colloidal crystal.  Our results suggested that sintered 

silica colloidal membranes have potential applications in size-selective separations.  In 

addition, we showed that surface modification of colloidal nanopores leads to gated silica 

colloidal membranes.
26

 However, ordered silica colloidal crystals used in the preparation 

of the above membranes are limited in size, which results in smaller area of the 

corresponding membranes.  It is also difficult to obtain silica colloidal crystals of uniform 

thickness by vertical deposition from colloidal suspensions, yet uniform thickness would 

be important for practical applications of nanoporous colloidal membranes.
27

 

 To avoid these drawbacks, we decided to prepare silica colloidal membranes by 
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pressing silica spheres together in a die set.  This would provide uniform membrane 

thickness, while the membrane area would be limited only by the die set dimensions.  

This process would be time-efficient compared to the vertical deposition, which requires 

hours.  Surprisingly, despite these attractive features, to the best of our knowledge, such a 

method has not been described before.  On the other hand, the resulting colloidal 

membranes would possess no crystalline order, thus not containing uniform pores and 

requiring verification of size exclusion behavior. 

In this article, we report the preparation of nanoporous membranes by pressing 

silica spheres with a hydraulic press at 5000 lb followed by sintering at 1050 °C.  We 

studied the diffusion of a dye-labeled dendrimer and of polystyrene nanospheres of 

various diameters through pressed silica colloidal membranes to determined the “cut-off” 

of the membranes and to demonstrate its tunability.  We also performed pore-filling of 

these membranes with a proton-conducting polymer. 

2.2 Experimental Section 

2.2.1 Materials 

 Ammonium hydroxide (28-30% as NH3, EMD Chemicals, Inc.), tetraethyl 

orthosilicate (99.999% metal basis, Alfa Aesar), Polyspherex™ Polystyrene spheres of 25 

nm, 100 nm and 250 nm diameter (Phosphorex Inc), and 3-sulfopropylmethacrylate 

(Aldrich) were used as received.  Deionized water with 18 MΩ resistivity used in all 

experiments was obtained from a Barnstead “E-pure” water purification system.  All 

ethanol used was 200 proof.  
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2.2.2 Instruments 

 Scanning electron microscopy (SEM) images were obtained using a FEI 

Novanano 630 instrument.  Optical microscopy images were obtained using a Nikon 

Eclipse ME600 instrument.  A Branson 1510 sonicator was used for all sonications.  

UV/Vis measurements were performed using an Ocean Optics USB2000 or USB4000 

instrument.  A Clay Adams Compact II Centrifuge (3200 rpm, Becton Dickinson) was 

used for all centrifugations.  A Fisher Scientific Isotemp Programmable Muffle Furnace 

(Model 650) was used for calcination and sintering.   

2.2.3 Preparation of Silica Spheres 

 Silica spheres were prepared according to the previously reported procedure.
24,28

  

All glassware was cleaned with distilled water prior to use.  A batch of silica spheres was 

made by mixing 500 mL of an ethanol solution containing TEOS (51.4 mL, 0.20 mol) 

with 500 mL of ethanol solution containing NH4OH (70.0 mL, 1.1 mol) and water (257 g, 

14.3 mol).  These two solutions were poured simultaneously in a 2 L Erlenmeyer flask 

and vigorously stirred.  The resulting mixture had final concentrations of 0.2 M TEOS, 

1.1 M NH3, and 17.0 M H2O.  After about 30 min of being stirred, the solution became 

cloudy, indicating silica sphere formation.  After 24 h, the silica spheres were centrifuged 

in 15 mL centrifuge tubes (Corning) at 1163g for 15 min.  After all of the spheres were 

collected as pellets at the bottom of the centrifuge tubes, the supernatant was decanted, 

and the silica spheres were purified by repetitive cycle of suspending the spheres in 10 

mL of a solvent by sonication for 15 min, during which the tubes were periodically 

shaken by hand to free any pieces of the pellet stuck to the sides of the tubes, followed by 

centrifugation.  Following solvents were used: water (twice), 25% ethanol in water, 50% 
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ethanol, 75% ethanol, and 100% ethanol (twice).  After the final centrifugation, the 

supernatant was decanted, and the silica spheres were dried in a stream of nitrogen for 12 

h.  Dried spheres were later calcinated by placing them into a Petri dish, breaking all 

large aggregates with spatula, and placing the dish in the oven programmed to heat the 

spheres for 4 h at 600 °C.  The heating rate in the oven was set to 20 °C/min.  SEM 

images of the spheres were taken and the diameters determined from 100 individually 

measured silica spheres in each sample to be 390±10 nm after the calcination. 

 Silica spheres of 220 nm diameter were prepared following the procedure above 

but using different amounts of reagents.  The final concentrations of the reagents were 0.2 

M TEOS (51.4 mL, 0.20 mol), 0.4 M NH3 (26.78 mL, 0.4 mol), and 16.0 M H2O (288 g, 

16.0 mol) in a 1.0 L ethanolic solution.  The reaction mixture was stirred vigorously for 

24 h at room temperature.  SEM images of the spheres were taken and the diameters 

determined from 100 individually measured silica spheres in each sample to be 260±20 

nm and 230±20 nm before and after calcination, respectively. 

 Silica spheres of 70 nm in diameter were prepared and calcinated following the 

reported procedure.
29

  The spheres were synthesized using the following concentrations 

of the reagents TEOS (15.2 ml, 0.12 M final concentration), NH4OH (24.2 mL, 0.80 M 

NH4OH final concentration) in ethanol with total volume of solution being 500 mL.  The 

reaction mixture was stirred vigorously overnight at room temperature.  The spheres were 

collected and washed by ultracentrifugation for 20 min at 4 °C using a gradient series of 

100% water, 50% ethanol, and absolute ethanol (twice).  SEM images of the spheres 

were taken and the diameter determined from 100 individually measured silica spheres to 

be 70±10 nm after the calcination. 
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2.2.4 Preparation of Pressed Silica Colloidal Membranes 

 A stainless steel dry pressing die set (13 mm ID, supplied by iCL, Inc.) was 

loaded with dry silica spheres (all large aggregates were broken using spatula) and placed 

in Carver laboratory hydraulic press.  A pressure of 5000 pounds was applied for 30 

seconds, after which the pressed material was carefully removed from the die set and 

placed into the oven, covered with a small ceramic plate to create even distribution of 

heat and prevent curving, and heated at 1050 °C for 12 h.  The membrane shrunk to 10.5 

mm in diameter after the sintering.  The thickness of the membrane could be varied from 

0.9 to 1.5 mm by the amount of silica spheres used. Silica membranes of 30 mm diameter 

were prepared following the same procedure and using a 30 mm ID stainless steel dry 

pressing die set (Across International, NJ).  Upon sintering at 1050 °C for 24 h, the 

diameter of the pressed membranes decreased to 25 mm.  The photographs of silica 

colloidal membranes are shown in Figure 2.1. 

2.2.5 Mechanical Testing of Pressed Silica Colloidal Membranes 

 We used the four-point bending test to determine the flexural strength of the 

membranes.  This test uses a rectangular beam of the analyzed material supported at two 

points from below (the support span) and bearing a load that makes contact at two points 

above (the loading span).  The load is increased until the beam fractures, and this rupture 

force is used to calculate the flexural strength.  If the loading span is one third of the 

length of the support span, then the flexural strength is calculated as 𝜎 =
𝐹𝐿

𝑏𝑑2
, where σ is 

flexural strength (Pa), F is rupture force (N), L is support length (m), b is beam width 

(m), and d is beam thickness (m).  A test apparatus was constructed with 4 cm in its 

largest dimension (Figure 2.2).  Copper rods 1 mm in diameter were used to form the 
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contact points of the loading and support spans and were mounted on acrylic sheets.  The 

apparatus consisted of two pieces: a base containing the supporting rods and a top 

containing the load contact points.  The base also had rods inserted vertically into the 

corners that aligned with holes in the top piece.  We used a hanging weight that was 

attached to the two ends of the beam that rested across the top of the apparatus to apply 

pressure to the membrane samples.  The membrane test samples were cut to a rectangular 

shape using a carbon dioxide laser.  

2.2.6 Diffusion Measurements  

 Diffusion through the colloidal membranes was measured by placing the circular-

shaped membrane 13 mm in diameter between two connected 1-cm quartz cuvettes.  The 

feed cuvette contained 4.00 mL of diffusing species in water while the receiving cuvette 

contained 4.00 mL of deionized water.  The membrane was placed between two PTFE o-

rings (Small Parts Inc.) to guard against leaking, and the assembly is then secured with a 

clamp.  Epoxy resin was used as an adhesive in this assembly.  Each cuvette was covered 

with Parafilm to prevent solvent evaporation, and the contents of both cuvettes 

continually stirred with a magnetic stir bar to ensure even distribution of diffusing species 

through the cuvette. The concentration of PS beads in feed cuvette was approximately 

10
13

 particles/ml for each PS size.  The receiving cuvette was placed between two fiber 

optic cables and initially blanked.  The flux was monitored by recording the absorbance 

at 546 nm for dye-labeled dendrimers and at 250 nm for polystyrene spheres in the 

receiving cuvette for at least 12 h.  Data points were acquired every 150 s with an initial 

delay of 150 s.  Prior to using a membrane for a new trial, it was immersed in deionized 

water for at least two days and water was replaced occasionally to ensure removal of any 
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remaining probe molecule or particles from the membrane. 

2.3 Results and Discussion 

2.3.1 Preparation and Structure of Pressed Membranes  

 In order to prepare the pressed silica colloidal membranes, we generated Stöber 

silica spheres and calcinated them at 600 °C for 4 h.  Calcination is commonly used to 

prevent crack formation in large-area silica colloidal crystals.
30

  It removes solvents 

(water and ethanol) trapped inside the silica spheres, which causes shrinking of silica 

spheres and increases their density (ca. 2.17 g/cm
3
 compared to ca. 1.97 g/cm

3
 for as-

made silica spheres).
30

 

Calcinated silica spheres were pressed and sintered at 1050 °C, as described in the 

Materials and Methods section above.  The resulting membranes (Figure 2.1) are robust 

and durable, having uniform thickness and fixed circular shape. The thickness was 

measured with digital caliper with 0.01 mm increment.  For approximately 1mm thick 

membranes, the thickness in different spots of the membrane was uniform within the 

caliper resolution. The uniform thickness of the pressed membranes comes from the used 

method – pressing in a circular press die set, where pressure is distributed evenly. The 

overall thickness is precisely controlled by amount of silica spheres loaded into the press 

die set. The membranes could be manipulated, sonicated, sandwiched between plastic or 

metal gaskets, and even dropped from 1 m height without breaking or cracking.  Optical 

microscopy at 50× magnification (Figure 2.3) showed minor cracks on the surface of the 

membranes, which are not seen at the 200× magnification (Figure 2.3).  However, as will 

be discussed below, based on the diffusion measurements, we concluded that the cracks 

do not penetrate the entire thickness of the membrane. 
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 We tested the flexural strength of silica colloidal membranes using the apparatus 

described above, and found it to be 19±6 MPa (2700±800 psi).  This value is ca. 17% of 

the flexural strength of acrylic (17,000 psi) and is about 40% of flexural strength of 

ordered silica colloidal membranes prepared by vertical deposition (49±9 MPa, 

7000±1200 psi).  The latter result is expected as ordered silica colloidal membranes 

contain a close-packed structure with a maximum number of contacts between the silica 

spheres, while pressed membranes are disordered with silica spheres having fewer 

contacts with neighboring spheres, i.e., fewer connection points after sintering, which 

reduces the mechanical strength of the membrane. 

This disordered structure can be seen in the SEM image of the pressed membrane 

(Figure 2.3).  The SEM images of pressed membranes show no visible long- or short-

range order of silica particles in the assembly, thus nanopore size cannot be established 

from silica sphere diameter, unlike in ordered silica colloidal crystal membranes, where 

nanopore size can be calculated using simple geometrical considerations.
31

  For example, 

because the molecular transport through such ordered membranes occurs normal to the 

(111) plane of the fcc-packed structure and diffusing species enter the membrane through 

the concave triangular openings between the adjacent silica spheres, the distance from the 

center of their projection to the surface of the nearest sphere, which is ca. 15% of the 

sphere radius, can be assigned as the “radius” of colloidal nanopores.  In contrast, for 

pressed colloidal membranes, the voids in several locations in SEM image appear to be 

larger than the silica sphere diameter. 

 To further characterize the geometry of pressed silica colloidal membranes, we 

studied the diffusion of the generation-1 dye-labeled PAMAM dendrimer
25

 through the 
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membrane comprised of silica spheres 390 nm in diameter.  We measured the diffusion 

rate (RD) through the membrane of a known thickness (L) and area (S) driven by a known 

concentration gradient (C).  RD was determined by recording the number of moles of the 

dendrimer that diffused through the membrane as a function of time.  Knowing the value 

of RD allowed for the calculation of the molecular flux Jmembr through the membrane 

according to eq 2.1. 

SJR membr    
D

        (2.1) 

Fick’s law for diffusion is shown in eq 2.2. 

membrmembr D

L

C
J     


      (2.2) 

It was used to determine the diffusion coefficient Dmembr of a diffusing dendrimer species 

as it traversed the pressed silica colloidal membrane. 

 We found the diffusion coefficient of 1.4±0.4 × 10
-10

 m
2
/s for the dendrimer.  This 

value is 2.7 times smaller than the diffusion coefficient of this dendrimer in solution 

(3.8±0.1 × 10
-10

 m
2
/s) determined by diffusion NMR.

32
  This Dmembr value reflects the 

effect of the membrane geometry described by void fraction () and tortuosity (τ) and 

related to the diffusion coefficient in solution Dsol as shown in eq 2.3. 

solmembr DD     





      (2.3) 

 Therefore, a smaller Dmembr for pressed membranes compared to Dsol results from 

void fraction for the membrane that is less than unity and its tortuosity that may be more 

than unity.  For the ordered closed-packed colloidal crystal, the void fraction εfcc is 0.26 
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and tortuousity τfcc is 3.0, reducing the Dfcc by the factor of 11.5 compared to Dsol.  In 

contrast, Dmembr for the disordered pressed colloidal membrane is only 2.7 smaller than 

Dsol, which suggests the void fraction is larger than 0.26 and tortuosity is smaller than 

3.0.  Because both values affect Dmembr, it is impossible to calculate them using this value 

alone.  Thus, we calculated the void fraction of the pressed membrane independently, 

based on its volume displacement.  Assuming the pressed silica membrane to be a perfect 

cylinder of known diameter and thickness, we calculated the total volume of the 

membrane.  Using the weight of the membrane and density of silica (2.17 g/cm
3
) and of 

air (1.20 × 10
-3

 g/cm
3
) inside the membrane, we then calculated the void fraction of the 

membrane.  We estimated εmembr to be 0.37, significantly higher than that of the fcc-

packed colloidal crystals.  Based on this value and Dmembr, tortuousity τmembr of the 

pressed membrane is 1.0.  In other words, the transport through the pressed colloidal 

membranes proceeds in a linear path as opposed to the fcc-packed colloidal crystals. 

2.3.2 Size-exclusion of Pressed Silica Colloidal Membranes 

 In order to determine the size cut-off for the transport through pressed colloidal 

membranes, and to establish if the cut-off can be controlled by varying the silica spheres 

diameter, we measured the diffusion of the polystyrene spheres through the pressed 

membranes comprised of silica spheres with different sizes.  A representative plot of flux 

for polystyrene (PS) spheres 25, 100, and 250 nm in diameter through the pressed 

membrane comprised of 390 nm silica spheres (membrane-390) is shown in Figure 2.4A.  

Polystyrene spheres of all three sizes diffuse through the pressed membrane.  The flux of 

25 nm PS spheres is ca. 10 times greater than that for 250 nm PS spheres and ca. 4 times 

greater than that of 100 nm PS, which results from both membrane geometry and the 
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difference in diffusion coefficients of the PS spheres.   The fact that all PS particles 

diffuse through this membrane indicates that membrane-390 possesses the size cut-off 

greater than 250 nm.  This is more than half of the diameter of silica spheres used to 

prepare the membrane.  In contrast, ordered silica colloidal crystals, which possess 

uniform pores with pore “diameter” of ~15% of silica sphere diameter,
25

 would provide a 

size cut-off of 59 nm in the case of 390 silica spheres. 

 Next, we tested the cut-off of pressed silica membranes made of 220 and 70 nm 

silica spheres (membrane-220 and membrane-70, respectively).  The plot of the flux of 

PS spheres through membrane-220 is shown in Figure 2.4B.  No significant diffusion of 

250 nm PS spheres through this membrane was observed, thus 220 nm silica spheres 

upon pressing form colloidal membranes with cut-off of at least 250 nm; however, 

membrane-220 is permeable for both 25 nm and 100 nm PS spheres.  The flux of 25 nm 

PS spheres through the membrane-220 is ca. 5 times greater than flux of 100 nm PS 

spheres, which, taking into account the difference between diffusion coefficients of 25 

nm PS and 100 nm PS (Dsol inversely proportional to particle size), makes the diffusion 

coefficient of 25 nm PS through membrane-220 ca. 25% greater compared to 100 nm PS.  

The flux of 25 nm PS through membrane-220 is almost the same as that through 

membrane-390.  The flux of 100 nm PS spheres through membrane-220 is about 2.5 

times smaller than that for membrane-390.  Membrane-70 is also not permeable for 250 

nm PS spheres, but permeable for 25 nm and 100 nm PS beads (data not shown).  Flux 

values for 25 and 100 nm PS through membrane-70 are almost identical (with flux of 25 

nm PS being 20% greater than that for 100 nm PS) to each other, presumably due to 

sterics rather than diffusion coefficients of PS spheres.  Both values are smaller than 
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those for membrane-220 by the factor of ca. 7 and 1.5, respectively.  Based on these 

observations, we conclude that the cut-off for membrane-70 is greater than 100 nm; 

however, there is a smaller number of pores of that size available than in the other two 

membranes. 

 Thus, pore size in pressed membranes could be larger than actual silica sphere 

size; however, overall pore size still depends on silica sphere size and can be controlled 

by varying the diameter of silica particles.  Pressed membranes can block the diffusion of 

certain particles if smaller silica spheres are used for the preparation of the membranes. 

2.4 Conclusions 

 We demonstrated that robust nanoporous membranes with uniform thickness can 

be prepared by pressing calcinated silica spheres followed by sintering at 1050 °C.  The 

diameter and thickness of the pressed membranes can be controlled by the size of the 

press die and amount of loaded silica spheres, respectively.  The developed procedure is 

easy, fast, and reliable. Comparison of the pressed membranes with the vertically 

deposited membranes is shown in Table 2.1.  

 Although the sphere arrangement in the resulting membranes is disordered and 

their pore size is not uniform, pressed membranes are capable of size-selective transport, 

which was shown by diffusion experiments for polystyrene spheres of different size.  The 

largest polystyrene spheres (250 nm) did not diffuse through the pressed membranes 

comprised of smaller size silica spheres (220 and 70 nm), while 100 nm polystyrene 

spheres showed very small flux through the latter. We also demonstrated that pressed 

silica colloidal membranes can be used as a scaffold for the preparation of pore-filled fuel 

cell membranes.  We filled the pores with sulfonated polymer brushes and measured the 
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proton conductivity of the resulting fuel cell membranes, which was high and comparable 

to that of Nafion™.  

Our present work on pressed sintered colloidal membranes includes the 

modification of the silica surface inside the membrane with organic moieties and polymer 

brushes to improve size-selectivity and introduce other modes of selectivity.  Size- and 

charge-selective separations of biomacromolecules using pressed silica colloidal 

membranes are to be studied as well. 
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Figure 2.1. The photographs of pressed silica colloidal membranes (a) side view of 

pressed sinteres silica colloidal membrane 25 mm in diameter and ~1 mm in thickness; 

(b) front view of 25- and 11 mm-diameter membranes in comparison with a ¢25 coin. 

 

 

 
Figure 2.2. 4-Point bending test apparatus (a) assembled and (b) disassembled. 

 

 

 

Figure 2.3. Images of pressed and sintered membrane comprised of 390 nm silica 

spheres. (a) optical microscopy image with 50× magnification; (b) optical microscopy 

image with 200× magnification; (c) SEM image, scale bar is 3 μm. 
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Figure 2.4. Representative flux plots of PS particles (25 nm PS (-), 100 nm PS (- -), 250 

nm PS (•••)) through pressed silica colloidal membranes comprised of (a) 390 nm silica 

spheres, (b) 220 nm silica spheres. 

 

 

Table 2.1. Comparison of silica colloidal membranes prepared by vertical deposition and 

by pressing. 

 

Parameter\Membrane Vertical deposition Pressing 

Controlled thickness No Yes 

Controlled area No Yes 

Capable of size-selective separation Yes Yes 

Capable of surface modification Yes Yes 

Porosity 26% 37% 

Preparation time, h >24 12 
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CHAPTER 3 

 

 

EFFECT OF SULFONIC GROUP CONTENT IN PORE-FILLED SILICA 

COLLOIDAL MEMBRANES ON THEIR PROTON CONDUCTIVITY 

AND DIRECT METHANOL FUEL CELL PERFORMANCE 

3.1 Introduction 

 Polymer electrolyte fuel cells are attractive alternative power sources for 

stationary, automobile, and portable applications because they provide high energy 

density, low operational temperature, and do not contribute to pollution.
1,2

  The proton 

exchange membrane is the key component of the fuel cell,
3
 as it allows for proton 

transport and separates the fuel and the oxidant.
4,5

  In addition to possessing high proton 

conductivity, it is crucial for a fuel cell membrane to be nonswelling upon exposure to 

methanol and water, to be mechanically and thermally stable, and to remain hydrated at 

elevated temperatures.
6
  Polymer electrolyte membranes (PEMs) that are the most 

commonly separators used in fuel cells do not fully satisfy the above requirements.
7
  

Thus, several alternative approaches to PEMs have been developed in the recent years.  

Often, these approached are based on developing new polymer electrolytes, such as 

sulfonated polystyrenes, polyarylene ethers and thioethers, polyimides and 

polyphosphazenes.
8
  Regardless of the composition, these polymer electrolytes contain 

microphase-separated hydrophilic channels that allow for the proton transport.
5
 

 Another emerging approach to fuel cell membranes is to prepare materials 
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containing robust porous scaffolds filled with proton carriers such as polymer 

electrolytes, which together constitute proton-conducting channels.
9
  The resulting pore-

filled hybrid organic-inorganic membranes meet and exceed many performance 

requirements due to their better mechanical stability and nonswelling properties.
2,10,11

 

 The porous scaffolds in pore-filled membranes have been made of cross-linked 

track-etched polyethylene,
12,13,14

 track-etched polycarbonate,
15

 silica,
16

 photo-

electrochemically etched silicon,
17

 3D-ordered polyimide prepared by colloidal crystal 

templating method,
18

 polysulfone prepared by phase-inversion,
19

 and other materials.
20

  

The porous substrate can be filled by impregnation with ion-conductive polymers, such 

as Asahi polysulfone,
12,14

 sulfonated poly(styrene-vinyl pyrrolidone-divinyl benzene),
13

 

poly(vinyl alcohol),
15

 or poly(acrylamid) containing sulfonic groups.
16,18,19

  However, this 

method may lead to leaching of the polymer and thus membrane instability.  To stabilize 

the pore-filled structures, polymers can be cross-linked,
20

 but grafting them on the pore 

surface appears to be a superior approach.  We used this approach in the preparation of 

novel pore-filled membranes, where the rigid ordered silica colloidal crystal containing a 

continuous network of interconnected mesopores provides mechanical and thermal 

stability, nonswelling, and water retaining properties, while poly(3-

sulfopropylmethacrylate) or poly(stryrenesulfonic acid) brushes grown from the surface 

of silica and filling the pores provide proton conductivity.
21

  We found that the proton 

conductivity of pore-filled silica colloidal membranes is comparable to that of Nafion™ 

and increases with increasing temperature and relative humidity.
21

  Others also utilized 

the surface-grafting approach, for example, in poly(sulfopropylmethacryrlate-

oligo(ethyleneglycol)methacryrlate)-filled porous etched silicon
9,17

 or in poly(2-
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acrylamide-2-methylpropane sulfonic acid)-filled track-etched polycarbonate 

membranes.
22

 

One of the important questions in this area, answering which is essential for the 

fundamental understanding of proton conductivity in polymer electrolyte membranes and 

for their optimization in general, and for pore-filled membranes in particular, is studying 

the dependence of proton conductivity of the membrane and the fuel cell performance on 

the amount of sulfonic groups in the polymer filling the pores. 

 The influence of sulfonation degree on proton conductivity, methanol 

permeability, water uptake, and mechanical properties of proton conductive membranes 

was studied earlier for a few membranes, such as sulfonated poly(ether ketone ketone),
23

 

sulfonated poly(styrene-isobutylene-styrene),
24

 cross-linked fluorinated aromatic 

polyethers containing sulfonic groups,
25

 sulfonated polyimide,
26

 and sulfonated 

poly(styrene-indene-polyvinylidene fluoride).
27

  It was demonstrated
24,26

 that the proton 

conductivity generally increases with increasing degree of sulfonation (DS) and reaches 

its maximum at 75-90%.  One study
25

 showed that the current density of a fuel cell also 

increased with increasing sulfonic group content.  However, high sulfonation degrees of 

the polymer membranes cause high water uptake and methanol permeability, leading to 

swelling and creating difficulties in using such membranes in fuel cells. 

Pore-filled silica membranes do not swell in water, thus allowing systematic 

studies of proton conductivity and fuel cell performance in the entire (0-100%) range of 

sulfonic group content.  Moreover, the preparation of pore-filled silica colloidal 

membranes
21

 by surface-initiated atom transfer radical polymerization (SI-ATRP) allows 

for precise control of the polymer composition and results in unique membrane structures 
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with low molecular weight polymer chains inside the mesopores. 

 To the best of our knowledge, the dependence of their proton conductivity and the 

fuel cell performance on the amount of sulfonic acid groups in the polymer filling the 

pores was only studied by Choi et al.
28

 They used polyolefine porous substrate pore-filled 

with cross-linked polymer containing sulfonic acid groups. It was shown that proton 

conductivity increases linearly with increasing amount of proton conductive polymer. 

However, the studied material is still prone to swelling in water due to the nature of the 

substrate or fuel and the pore-filling cross-linked polymer can leach out of the pores with 

time. Also, more systematic stufy of conductivity as a function of sulfonation degree is 

needed.  

 In this work, the sulfonic group content in the membranes was varied by 

copolymerizing 3-sulfopropylmethacrylate (SPM) and 2-ethoxy-ethylmethacrylate 

(EEMA) in different ratios using SI-ATRP (Figure 3.1) inside the mesopores of silica 

colloidal membranes.  Proton conductivity measurements for the PSPM/PEEMA brush-

filled membranes and open circuit voltage (OCV) and linear polarization measurements 

for the corresponding membrane-electrode assemblies (MEAs) were carried out in order 

to determine their dependence on the sulfonic group content.  To the best of our 

knowledge, this is the first example of an investigation for the dependence of OCV on the 

sulfonic group content in proton conductive membrane.  Methanol uptake for the 

PSPM/PEEMA brush-filled membranes was also measured in order to explain the OCV 

dependence on the sulfonic group content. 
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3.2 Experimental Section 

3.2.1 Instrumentation 

 Dynamic light scattering (NICOMP 380 ZLS) was used to determine the size of 

polymer-modified silica particles.  Scanning electron microscope (Hitachi S300N) and 

tunneling electron microscope (FEI Techna G2 T-12) were used to image unmodified and 

polymer-modified silica particles and pore-filled membranes.  Nuclear magnetic 

resonance NMR (Varian I-500) was used to determine the structure and composition of 

copolymers in solution.  Gel permeation chromatography (AKTA FPLC) was used to 

determine the molecular weight of copolymers in solution.  Thermogravimetric analysis 

of polymer-modified silica particles was performed using TGA Q500 (TA Instruments).  

OCV and linear polarization measurements were carried out using DY-2023 

bipotentiostat (Digi-IVY).  The electrochemical impedance of the samples was measured 

using Princeton Applied Research VersaSTAT. 

3.2.2 Materials 

 3-Sulfopropylmethacrylate, 2,2’-dipyridyl, 2-bromoisobutyryl bromide, 3-

aminopropyl-triethoxysilane were purchased from Sigma-Aldrich and used as received.  

2-Ethoxyethylmethacrylate was purchased from Sigma-Aldrich and passed through Al2O3 

column before use to remove the inhibitor.  Tetraorthosilicate (TEOS) was purchased 

from Alfa Aesar and used as received.  18 MΩ∙cm water was obtained from a Barnsted 

“E-pure” water purification system. 

3.2.3 Copolymerization of EEMA and SPM in Solution 

 Copolymerization of EEMA and SPM (Figure 3.1) was carried out in 12 mL of a 

2:1 (by weight) mixture of degassed methanol and water, containing 2,2’-dipyridyl (1.6 
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mmol, 0,2496 g), CuCl2 (0.12 mmol, 16 mg), CuCl (0.4 mmol, 40 mg), and 2-

bromoisobutyryl bromide (0.1 mmol, 12.3 μL) at room temperature.  The molar ratio of 

the monomers was varied, while the total amount of the monomers was 20 mmol.  After 

24 h, the samples were quenched by exposing it to air and adding cold water, then 

samples were precipitated by excess of DMF or ethanol and repeatedly washed with 

appropriate solvent for removing excess of initial monomers and initiator.  For gel 

permeation chromatography (GPC) analysis, copolymer samples were dissolved in water 

and passed through PD-10 column (SEPHADEX-25) in order to remove low molecular 

weight impurities. 

3.2.4 Preparation of Silica Spheres 

 Silica spheres were prepared according to the previously reported procedure.
29

  

All glassware was cleaned with deionized water prior to use.  A batch of silica spheres 

was made by mixing 500 mL of ethanol solution containing TEOS (51.4 mL, 0.20 mol) 

with 500 mL of ethanol solution containing NH4OH (70.0 mL, 1.1 mol) and water (257 g, 

14.3 mol).  These two solutions were poured simultaneously into a 2 L Erlenmeyer flask 

and vigorously stirred.  The resulting mixture had final concentrations of 0.2 M TEOS, 

1.1 M NH3, and 17.0 M H2O.  After ca. 30 min of stirring, the solution became turbid, 

indicating silica sphere formation.  After 24 h, the silica spheres were centrifuged in 15 

mL centrifuge tubes (Corning) at 1163 g for 15 min.  After all of the spheres were 

collected as pellets at the bottom of the centrifuge tubes, the supernatant was decanted, 

and the silica spheres were purified by repetitive cycle of suspending the spheres in 10 

mL of solvent by sonication for 15 min, during which the tubes were periodically shaken 

by hand to free any pieces of the pellet stuck to the sides of the tubes, followed by 



52 

centrifugation.  The following solvents were used: deionized water (twice), 25% ethanol 

in water, 50% ethanol, 75% ethanol, and pure ethanol (twice).  After the final 

centrifugation, the supernatant was decanted, and the silica spheres were dried in a stream 

of nitrogen for 12 h.  These spheres were calcinated in the oven programmed to heat the 

spheres for 4 h at 600 °C.  The heating rate in the oven was 20 °C/min.  SEM images of 

the spheres were obtained and the diameters determined from 100 individually measured 

silica spheres in each sample to be 394±13 nm after calcination.  A second batch of the 

spheres was prepared using the same precursor concentrations, the silica spheres after 

drying, and calcination for 4 h at 600 °C were 391±37 nm in diameter. 

3.2.5 Modification of Silica Particles with Copolymers  

 Silica spheres were modified with initiator moieties in two steps.  First, silica 

spheres (2 g) were stirred in 20 mL of dry acetonitrile containing 1 mL (4.3 mmol) of 3-

aminopropyltriethoxysilane for 17 h at room temperature.  Amine-modified silica 

particles were collected and rinsed with acetonitrile 4 times by centrifugation.  Next, 

amine-modified spheres were stirred in 100 mL of dichloromethane solution containing 2 

mL of triethylamine (0.15 M solution), 1.6 mL of 2-bromoisobutyrylbromide (0.13 M 

solution), and a catalytic amount of DMAP for 12 h at room temperature.  Initiator-

modified spheres were isolated and rinsed 4 times with dichloromethane by 

centrifugation. 

 The formation of PSPM/PEEMA brushes on the initiator-modified silica spheres 

(1.0 g) was carried out in 12 mL of a 2:1 (by weight) mixture of degassed methanol and 

water, containing 2,2’-dipyridyl (1.6 mmol, 0.25 g), CuCl2 (0.12 mmol, 16 mg), CuCl 

(0.4 mmol, 40 mg), and varying amounts of monomers EEMA and SPM (combined 
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amount of monomers was 20 mmol) at room temperature for 12 h.  After the 

polymerization reaction was quenched with water, the sample was rinsed with water and 

soaked in 1 M HCl for 12 h in order to exchange potassium cations for protons.  Next, the 

sample was rinsed with water to remove excess acid.  A transmission electron 

microscopy (TEM) image of PSPM/PEEMA-modified silica spheres is shown in Figure 

3.2. 

3.2.6 Preparation of Silica Colloidal Membranes  

 Silica colloidal membranes were prepared by vertical deposition of 15 wt% 

ethanol colloidal solutions of calcinated silica spheres onto a glass substrate.
30

  The 

resulting colloidal crystals were 450-700 μm thick and were sintered in a furnace at 1050 

°C for 12 h, becoming very robust and durable after that.  An SEM image of such 

membrane is shown in Figure 3.3. Colloidal membranes were also prepared in a stainless 

steel dry pressing die set (13 mm ID, supplied by ICL), as was described in Chapter 2 of 

this dissertation. 

3.2.7 Pore-filling of Silica Colloidal Membranes  

 Sintered colloidal membranes were rehydroxylated in solution of 

tetrabutylammonium hydroxide of pH=10 at 60 °C for 12 h, then rinsed with large excess 

of water (2×), 1 M nitric acid, methanol (2×), water (2×), and acetonitrile.  

Rehydroxylated membranes were modified with amine groups by placing them into 20 

mL of solution of APTES (4.3 mmol) in dry acetonitrile at room temperature under 

nitrogen atmosphere for 17 h.  After the surface modification, the membranes were 

repeatedly rinsed with acetonitrile and air-dried.  Amine-modified membranes were 

placed in 100 mL of dichloromethane solution containing 2 mL of triethylamine (0.15 M 
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solution), 1.6 mL of 2-bromoisobutyrylbromide (0.13 M solution), and a catalytic amount 

of DMAP for 12 h at room temperature.  Initiator-modified membranes were repeatedly 

rinsed with dichloromethane and air-dried.  Copolymer brushes with various molar ratios 

of monomers were grown inside the initiator-modified silica membranes via ATRP by 

placing the membranes in 12 mL of a 2:1 by mass mixture of degassed methanol and 

water, containing 2,2’-dipyridyl (1.6 mmol, 0.2496 g), CuCl2 (0.12 mmol, 16 mg), CuCl 

(0.4 mmol, 40 mg), and varying amounts of monomers (with total amount being 20 

mmol) at room temperature for 12 h.  After quenching the polymerization reaction, the 

membranes were rinsed with water and placed in 1 M HCl solution overnight, and then 

rinsed with water.  SEM images of pore-filled silica colloidal membranes are shown in 

Figure 3.4. 

3.2.8 Electrochemical Impedance Spectroscopy Measurements  

 Electrochemical impedance spectroscopy measurements were carried out for 

pore-filled ordered silica colloidal membranes.  Silver paint was coated on both sides of 

the membranes to serve as electrodes.  The impedance was measured using a two-probe 

testing device placed in humidity- and temperature-controlled chamber according to the 

previously reported procedure.
21

  The relative humidity was controlled by injecting 

deionized water through a heated inlet tube and was kept 98% during the experiments.  

The complex impedance of the samples was measured and the proton conductivity was 

calculated using σ=l/RA, where σ is the ionic conductivity, l is the distance between the 

two electrodes, R is the ohmic resistance of the membrane, and A is the cross-sectional 

area of the material. 
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3.2.9 Open-circuit Voltage and Linear Polarization Measurements  

 OCV and linear polarization were measured using a home-made static membrane-

electrode assembly (MEA) with pore-filled silica colloidal membranes (Figure 3.5).  The 

10×10 mm square platinized carbon (ELAT GDE 5 gpm) cloth was used as the cathode.  

The anode was prepared as following: the catalyst powder (20% HP Pt:Ru alloy (1:1 

atomic ratio) on Vulcan XC-72R Carbon suspended in a water-ethanol mixture (4 mg of 

powder alloy in 50 μL water and 100 μL ethanol) was evenly applied using a paint brush 

onto 4 square (10×10 mm) pieces of Toray carbon paper.  The resulting pieces were air 

dried for 12 h and were ready to use. The anode and cathode were placed inside custom-

made 21×15 mm graphite plates, which had 4 loops of serpentine channel of 0.8 mm 

width and 11 mm length for each loop and were modified with slits to inject fuel. The 

plates were attached to the pore-filled silica membranes using double-sided tape. To 

achieve better connection between silica membrane and anode or cathode, a drop of 

Nafion perfluorinated resin solution in an alcohol-water mixture was applied on 

membrane surface. The aluminum foil strips were clamped to graphite plates using a 

plastic clamp and connected to potentiostat with alligator clips. 3 M methanol solution in 

water was used as fuel, which was supplied drop wise to the anode using a syringe 

through the slits in graphite plates. The cathode was exposed to the air, which served as a 

source of oxygen. After a drop of methanol was applied, the open-curciut voltage (OCV) 

of the system was measured until equilibrium was reached. Since no constant fuel flow 

existed in the system, OCV decreased after the cell consumed the fuel. Thus, the 

equilibrium value of OCV was recorded and polarization was measured starting from that 

OCV in 1 mV steps (hold time at each step was 1 sec) until the potential decreased to 1 
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mV. 

3.2.10 Methanol Uptake Measurements  

 First, the weight was determined for the pore-filled membranes after drying under 

vacuum at 80 °C at 4.  Next, the weight of the membranes was determined after soaking 

them in methanol at room temperature for 24 h, then wiping the samples with filter paper.  

The methanol uptake of the pore-filled membranes was calculated as shown in eq 3.1. 

𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑢𝑝𝑡𝑎𝑘𝑒 (%) =  
𝑊𝑀𝑒𝑂𝐻−𝑊𝑑𝑟𝑦

𝑊𝑑𝑟𝑦
 × 100%   (3.1) 

where Wdry is the dry weight of the membrane and WMeOH is the weight of the membrane 

after soaking in methanol. 

3.3 Results and Discussion 

3.3.1 Copolymerization of EEMA and SPM in Solution  

 In order to control the sulfonic group content in the polymer filling the pores in 

silica colloidal membranes, we chose 2-ethoxyethyl-methacrylate as a copolymerizing 

monomer because it does not contribute to proton conductivity while having the size 

similar to SPM, which is important for preventing any undesired steric effects.  Both 

EEMA and SPM copolymerize successfully with other methacrylate derivatives,
31-33

 but 

to the best of our knowledge, copolymerization of EEMA and SPM has not been 

reported. 

 Thus, we investigated the EEMA and SPM copolymerization in solution in order 

to establish the relative rates of polymerization of both monomers.  This information was 

necessary to be able to control the copolymer composition by varying the monomer ratio.  

The solution copolymerization was also performed to measure the molecular weight of 
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the copolymers.  First, equal amounts of SPM and EEMA monomers were 

copolymerized.  Aliquots were taken after 1, 2, and 24 h of polymerization and 

copolymer samples were isolated.  According to the GPC analysis, molecular weights of 

the samples after 1, 2, and 24 h of copolymerization were 25, 41, and 45 kDa, 

respectively.  The 
1
H NMR spectra of the copolymers showed characteristic peaks at 2.9 

ppm (-O-CH2- in SPM fragment) and 3.6–3.7 ppm (-CH2-O-CH2- in EEMA fragment).  

Integration of these peaks gave the molar ratio of SPM/EEMA monomers in copolymer 

of 1.02, closely matching the initial monomer ratio.  We prepared two more copolymers 

using 75 mol% and 25 mol% SPM, and found the peak integration for PSPM/PEEMA 

copolymers to be 3.15:1 and 1:3.07, respectively.  Based on these results, we concluded 

that the polymerization rates of SPM and EEMA monomers are similar, which makes it 

possible to control the content of SPM monomers in the copolymers and thus the sulfonic 

group content by varying the ratio of the monomers participation in the polymerization. 

3.3.2 Preparation of PSPM/PEEMA Brushes on Silica Surface   

 Next, PSPM/PEEMA copolymer brushes of various compositions were grown on 

the silica surface in order to model their growth inside the colloidal mesopores.  The 

silica spheres surface-modified with initiator moieties were placed in methanol/water 

solution containing equal amounts of SPM and EEMA and ATRP catalyst, and the 

polymerization was carried out for 12 h.  To confirm that the PSPM/PEEMA brushes 

grow successfully on the silica surface, TEM images of the polymer-modified silica 

spheres were obtained (Figure 3.2) and showed a polymer layer on the silica surface.  

According to dynamic light scattering (DLS) measurements, the hydrodynamic diameter 

of the polymer-modified spheres in water was 1100±400 nm, which corresponds to ca. 
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350 nm length of swollen polymer brush in solution. 

 In addition, we performed thermogravimetric (TGA) analysis of PSPM/PEEMA-

modified silica spheres, which showed the weight loss of ~24 wt%, which corresponds to 

ca. 230 monomers in each polymer brush, assuming that the grafting density of the 

polymer is ~0.6 polymer brush per 1 nm
2
 of silica surface.

34
  This corresponds to the 

length of the single expanded dry polymer brush of ca. 60 nm. 

3.3.3 Membrane Pore-filling with PSPM/PEEMA Brushes 

 Sintered silica colloidal membranes were rehydroxylated in the presence of a base 

in order to restore the hydroxyl groups on silica surface.  The silica surface was then 

modified with amino groups followed by ATRP initiator 2-bromoisobutyrylbromide.  

PSPM/PEEMA brushes of various monomer ratios were grown on silica surface inside 

the membrane mesopores via surface-initiated ATRP.  Polymer-modified membranes 

were characterized using TGA and SEM.  SEM images (Figure 3.4) confirmed that filling 

the colloidal mesopores with the polymer brushes does not alter the geometry of the 

membrane, as silica spheres remained close-packed.   

The TGA weight loss for PSPM/PEEMA-filled silica colloidal membrane was ca. 

4%, which, assuming a similar behavior of the polymer brush on silica surface inside the 

mesopores and that on silica spheres suspended in solution, corresponds to ca. 13 nm dry 

or ca. 70 nm swollen polymer brush.  In silica colloidal crystals containing close-packed 

face-centered cubic arrangements of silica spheres, the distance from the center of the 

tetrahedral voids, which form the mesopores, to the silica sphere surface is 22.5% of the 

sphere radius (calculated by elementary trigonometry).  For a membrane comprised of 

silica spheres 400 nm in diameter, this distance is 45 nm.  Since all the conductivity and 
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fuel cell performance experiments were carried out at 98% RH, we assume that polymer 

brushes inside the mesopores prepared by ATRP are fully hydrated and swollen and thus 

fill the colloidal mesopores completely. 

3.3.4 Proton Conductivity as a Function of Sulfonic Group Content 

 Proton exchange membranes (PEMs) are often prepared by treating polymeric 

materials with sulfonating agents,
23,24

 with the degree of sulfonation controlled by 

varying the sulfonation time and sulfonating agent.  The amount of sulfonic groups in 

PEMs can be also controlled by varying the sulfonated monomer ratio during the 

polymerization.
25-26

  This method allows for a wider range of sulfonic group content and 

for precise control of this content.  ATRP lends itself naturally to this approach, which 

we utilized in our work. 

 We varied the amount of SPM monomer in copolymers filling the colloidal 

mesopores from 0% to 100% by changing the SPM/EEMA monomer ratio.  Proton 

conductivities measured for the membranes with various SPM content at 98% RH are 

shown in Table 3.1.  As expected, the highest value of the proton conductivity was 

obtained for the membrane filled with pure SPM brushes.  It is 0.011±0.007 S cm
-1

, and 

is comparable to that of Nafion™ reported in the literature
35

 and measured using our 

experimental setup (0.010±0.004 S cm
-1

).  At the same time, the proton conductivity of 

the membrane modified with pure EEMA was negligibly small.  This is also expected, as 

EEMA monomer does not contain an acidic group. 

 The plot of the proton conductivity of the pore-filled membranes as the function 

of mol% of SPM monomer in copolymer brushes (Figure 3.6) is sigmoidal with three 

distinct regions.  First, there is a low conductivity region corresponding to the 20-40% 
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sulfonic group content.  Increasing the sulfonic group content to 50% leads to a four-fold 

increase in proton conductivity.  In the narrow range of 50-75% sulfonic group content, 

the proton conductivity grows sharply.  Finally, the third region is characterized as 

saturation in proton conductivity, where increasing sulfonic group content from 75 to 

100% causes the proton conductivity growth by only ~20%. 

 The proton transport in acidic polyelectrolytes involves a combination of two 

processes: (1) vehicle diffusion involving translation of solvated protons (e.g., hydronium 

ions) and (2) structure diffusion involving solvent-assisted proton hopping.
36

  The latter 

mechanism is thought to be dominant in humidified polymer electrolyte membranes.  In 

most PEMs, acidic groups form ion-rich clusters that must be connected with each other 

to provide proton conductivity.  This is facilitated by water uptake, which increases with 

increasing amount of sulfonic groups and eases the formation of hydrophilic ionic 

pathways.
24,26

  It can be concluded from our proton conductivity measurements that ion-

rich clusters become connected to each other when sulfonated monomers constitute 50-

60% of the copolymer.  This observation is similar to the previously reported results, 

where a rapid increase in proton conductivity of was observed for poly(styrene-

isobutylene-styrene) membranes at 63% sulfonation and reached its maximum at 84%.
24

  

That membrane showed a slight decrease in proton conductivity at 92%, which was 

explained by the formation of random ionic pathways at high sulfonation levels.
24

  We do 

not observe the decrease in ionic conductivity at high sulfonic group content levels (90-

100%), which suggests that that the formation of random ionic pathways is suppressed in 

rigid hydrophilic silica matrix with interconnected mesopores. 
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3.3.5 Fuel Cell Performance as a Function of Sulfonic Group Content 

 Ordered silica colloidal membranes serve as a good system for proton 

conductivity measurements.  However, they are limited in size, since it is challenging to 

obtain uniform and evenly thick large area colloidal membranes by self-assembly.  OCV 

and polarization measurements of fuel cell require the attachment of 21 × 15 mm graphite 

plates to the membrane, so that nonuniform thickness and area of ordered silica colloidal 

membranes make this assembly hard to prepare.  To avoid these drawbacks, we prepared 

silica colloidal membranes by pressing silica spheres together using hydraulic press 

followed by sintering as was described in Chapter 2 of this thesis.  This provides an even 

distribution of particles throughout the membrane, resulting in membranes with uniform 

thickness.  The size of the membrane is only limited by the dimensions of the die set.  

This preparation of nanoporous silica membranes is also time-efficient.  Despite the fact 

that pressing the silica spheres provides membranes that are less ordered compared to the 

self-assembled membranes, their overall structure and pore dimensions remain the same. 

 In order to prepare the MEA and to test fuel cell performance, we filled the pores 

of the colloidal membranes as described above and measured the open circuit voltage 

(OCV) values for fuel cells made with membranes with varying sulfonic group content 

(Table 3.1).  Figure 3.6 shows the dependence of OCV on the sulfonic group content.  

The observed OCV dependence at low and medium sulfonic group content (up to 60%) is 

similar to that of the proton conductivity.  However, unlike the proton conductivity, OCV 

does not increase at the higher sulfonic group content.  In the case of 100% sulfonated 

monomer content, the voltage is smaller compared to that for 75% and 60% content.  The 

OCV plot suggests that modification of silica surface with copolymer having 65% of 
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SPM monomer is optimal for the fuel cell performance.  This is likely due to the interplay 

between the proton conductivity and methanol permeability of the membrane.
37

  Indeed, 

while the non-acidic EEMA monomer in the copolymer lowers the proton conductivity of 

the pore-filled membranes, it should also lower the methanol permeability of the 

membrane as the result of the lower polarity of the ethoxyethyl functional group.  Our 

methanol uptake measurements confirmed this suggestion. 

 It has been shown that methanol permeability is directly related to the methanol 

uptake for hybrid membranes,
38

 which should be true for our pore-filled membranes in 

particular due to their nonswelling structure.  Thus, we measure methanol uptake for the 

pore-filled membranes.  The average methanol uptake for the membrane with 50-60% 

SPM monomer content is 5%, while for 75% and 100% SPM content the methanol 

uptake is 13% and 17%, respectively.  The proton conductivity does not change 

significantly above 75% SPM monomer content, while methanol permeability increases 

significantly.  This, in turn, reduces the performance of the fuel cell using membranes 

pore-filled with 75-100% PSPM. 

 For comparison, we prepared a similar model fuel cell using Nafion 117 as proton 

conductive membrane.  This fuel cell showed an OCV of ca. 400 mV.  Thus, the OCV of 

fuel cells using pore-filled silica colloidal membranes with 60 and 75% sulfonic group 

content exceeded the potential of our Nafion 117 fuel cell and was comparable to that for 

Nafion and other PEM-based DMFCs reported earlier.
39,40

  It is important to note that this 

potential is significantly smaller than the standard electromotive force for the ideal 

DMFC (1.2 V).
41

  We speculate that this to be due to using a model fuel cell, which 

required a redesign for a thicker membrane and did not allow for good connection 
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between the anode and cathode and the membrane separator. 

 Representative polarization curves for the model fuel cells using pore-filled 

colloidal membranes are shown in Figure 3.7.  Since the active surface area was 1 cm
2
, 

the current density (µA/cm
2
) matches the current values (µA).  The plots represent single 

experiments, which were reproducible for each sample with different sulfonic group 

content.  The membranes with sulfonic group content above 60% showed similar current 

values, with the highest value corresponding to the membrane with 75% content (above 

450 μA), which is in good agreement with the OCV measurements.  This current is 

significantly higher than that measured for the same fuel cell design but using a Nafion 

117 membrane separator (ca. 25 μA). 

3.4 Conclusions 

 We prepared pore-filled proton conducting membranes with various sulfonic 

group content by surface-initiated polymerization of EEMA and SPM monomers in 

different ratios.  We demonstrated that there is a sigmoidal dependence of the proton 

conductivity in copolymer-filled silica colloidal membranes on the amount of sulfonic 

groups in the copolymer and that there is no significant increase of the proton 

conductivity with increasing sulfonic group content above 75%.  We built MEAs using 

these membranes and studied their performance in a direct methanol fuel cell.  We found 

that OCV for these MEAs reached its maximum at 65% sulfonic group, and decreases 

after that.  We attribute this effect to the increased methanol cross-over, which was 

confirmed by methanol uptake measurements for the membranes. 

 The pore-filled silica colloidal membranes are a promising material for fuel cell 

fabrication, with characteristics that are comparable or exceeding Nafion 117 in the same 
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fuel cell design.  Presently, we are studying the dependence of fuel cell performance on 

the pore geometry and structure and on the composition of the polymer brushes in order 

to further improve the performance of the pore-filled colloidal membranes.  We are also 

developing a new fuel cell design to enable an efficient use of this type of membranes. 
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Figure 3.1. Structures of SPM and EEMA and their copolymerization reaction. 

 

 

 
Figure 3.2. TEM image of PSMP/PEEMA modified silica spheres. Scale bar is 0.2 μm. 

 

 

 
Figure 3.3. SEM images of sintered silica colloidal membranes comprised of 400 nm 

silica spheres: (a) self-assembled membrane, scale bar = 5 µm; (b) pressed membrane, 

scale bar = 3 µm. 
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Figure 3.4. SEM images of (a) self-assembled (scale bar = 3 µm) and (b) pressed (scale 

bar = 4 µm) sintered silica colloidal membranes pore-filled with PSPM/PEEMA brushes 

(50 mol% SPM). 

 

 

 
Figure 3.5. The schematic representation of model MEA prepared using pore-filled 

proton conducting silica colloidal membrane. 

 

 

 

Figure 3.6. Plot of room temperature proton conductivity for vertically deposited 

membranes (A) and room temperature open circuit voltage for pressed membranes (B) as 

a function of SPM content in the pore-filling copolymer. 
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Figure 3.7. Polarization curves for fuel cells using PSMP/PEEMA-filled membranes 

containing 75% (–), 60% (--), 100% (- -), 50% (– –), 25% (=) SPM, and using Nafion 

117 (- • -) at room temperature. 

 

 

Table 3.1. Dependence of pore-filled membrane proton conductivity, methanol uptake, 

and open circuit voltage of the corresponding fuel cell on SPM content in the pore-filling 

copolymer at room temperature and 98% R.H. 

 

Sulfonic group content, mol% σ × 10
-2

, S cm
-1

 Methanol uptake, % OCV, mV 

0 negligible - - 

25 0.012±0.001 - 40±5 

40 0.064±0.012 - - 

50 0.27±0.03 3 140±20 

55 0.45±0.12 - - 

60 0.73±0.13 5 440±30 

75 0.85±0.12 13 495±20 

90 1.00±0.10 - - 

100 1.07±0.07 17 390±40 
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CHAPTER 4 

 

 

REVERSIBLE ASSEMBLY OF TUNABLE ULTRAFILTRATION  

MEMBRANES FROM “HAIRY” SILICA NANOPARTICLES 

4.1 Introduction 

 Ultrafiltration is a type of filtration through the semipermeable membrane, which 

is used on industrial scale for purification of water and in food industry
1,2,3

 and in 

research laboratories for separations of inorganic and biological nanoparticles and 

synthetic and biological macromolecules.
4
  Ultrafiltration membranes contain nanopores 

in the 1-100 nm range
3
 and are typically made of porous polymeric or ceramic materials.  

These membranes are prone to blockage and fouling, and given the importance of 

ultrafiltration, novel membrane materials, particularly those prepared using alternative 

approaches, are desired.
1,2

  Nanoporous membranes reversibly assembled from colloidal 

particles constitute such a novel approach.   They can be disassembled back to the 

building blocks and may be advantageous due to recyclability, cleaning, and reuseability, 

as well as ability to easily control the pore size.  Here, we report the preparation and 

characterization of durable nanoporous membranes with controlled thickness, area, and 

pore size via reversible assembly of polymer brush-grafted (“hairy”) silica nanospheres.  

We describe two types of reversible ultrafiltration membranes: (1) membranes made of 

silica particles grafted with polymer brushes carrying acidic and basic groups, and (2) 

membranes in which the grafted polymer brushes have neutral groups.  The former are 
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stable in most organic solvents and easily disassemble in water, while the latter are water-

stable and disassemble in organic solvents.  Both types of membranes are capable of size-

selective transport and ultrafiltration.
1
 

 Nanoporous membranes are widely used in ultrafiltration
5
 and attract increasing 

attention due to their potential applications in molecular separations,
6
 biosensing,

7,8
 drug-

delivery,
9
 catalysis,

10,11
 optics,

12
 etc.  Many of these applications require control over the 

nanopore size, a narrow pore size distribution,
13,14

 and a functional membrane 

surface.
15,16

 Additional requirements include good mechanical, chemical and thermal 

stability,
17

 and simple and economical preparation processes.
17

 

 The typical materials used for nanoporous membrane preparation are polymers,
18

 

ceramics,
19

 zeolites,
20,21

 and metal oxides.
22

  Polymer ultrafiltration membranes are 

usually made using track-etching or phase separation method with further cross-linking.
23

  

Ceramic ultrafiltration membranes are usually made of anodized alumina,
24

 mesoporous 

silica, zeolites, etc.
17

 Regardless of the material, these membranes are formed via 

irreversible covalent bonds
25

 and often suffer from pore blocking and surface fouling 

during operation.  Therefore, membranes formed by noncovalent reversible assembly of 

molecular or nanoscale building blocks could provide a useful alternative in terms of 

fabrication, processing, cleaning, recycling, and reuseability.
25

 

 Using molecular building blocks to assemble nanoporous membranes allows for 

the preparation of thin supported materials suitable for utrafiltration of nanoparticles, as 

has been recently reported.
25

  Such membranes, made by reversible self-assembly of 

perylene diimide-based organic molecules that contained a continuous three-dimensional 

network, formed in water/THF, could be dissolved in water/ethanol and possessed a cut-
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off of 5 nm.  While their formation was reversible and simple, the pore size of such 

membranes if defined by the structure of the molecular building block and thus cannot be 

easily varied in a broad range. 

 Self-assembly of colloidal particles into nanoporous membranes would allow 

combining the advantages of the reversible assembly with easy pore size tunability and 

cheap building blocks.  The challenge in this case is to develop a system that is held 

together by noncovalent interactions strong enough to provide materials that can 

withstand the ultrafiltration conditions. 

 So far, only gold nanoparticles were used to form self-assembled nanoporous 

membranes, either by chemically directed assembly of AuNPs and polyamidoamine 

dendrimers (PAMAM), in which the pore size was controlled by varying the dendrimer 

generation,
26

 or by self-assembly of dodecanethiol-ligated Au nanocrystals,
27,28

 where the 

pore size was controlled by the gold nanoparticles size.  The free-standing 

AuNP/dendrimer membranes are relatively easy to prepare, are durable, and are capable 

of size-selective separations and filtration; however, the small size of the gold 

nanoparticles and their high cost limit scaling up and achieving a broader pore size range.  

Other colloidal particles have been self-assembled into loops using topological 

interaction by entangled DNA single strands
29

 and host-guest interactions and the mutual 

molecular recognition of the cyclodextrins and hydrocarbon groups,
30

 while high affinity 

binding of surface-attached “host” cucurbituril and “guest” ferrocene molecules was used 

for surface adhesion.
31

 

 Assembling silica colloidal spheres into ultrafiltration membranes would provide 

a cheap alternative to gold nanoparticles while allowing for flexibility in the pore size.  
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Recently, we demonstrated that covalently-bound silica colloidal membranes
32

 are 

capable of size-selective transport
33

 that can be tuned by varying the silica sphere 

diameter, as well as charge-
32

 and enantioselective transport after the suitable silica 

surface modification.  The covalently formed silica colloidal membranes are 

mechanically, thermally, and chemically stable, but have to be prepared by sintering 

above 1000 °C.
32

 

 In this work, we report the reversible formation of two types of nanoporous 

membranes via the self-assembly of silica nanospheres. To introduce relatively strong but 

reversible interactions between the spheres, we modified the surface of the spheres with 

polymer brushes through atom transfer radical polymerization (ATRP).  The first type of 

nanoporous membranes was prepared using silica spheres carrying acidic poly(3-

sulfopropylmethacrylate), PSPM, and basic poly(N-dimethylaminoethylmethacrylate) 

(PDMAEMA), brushes.  The membrane preparation process involves mixing two 

colloidal solutions of silica spheres and air-drying to let the solvent evaporate. We called 

the resulting material “acid-base membranes.” In the second type of nanoporous 

membranes, poly(hydroxyethylmethacrylate) (PHEMA), brushes were formed on the 

silica sphere surface and the membranes were prepared by the deposition of PHEMA-

modified silica spheres from ethanol.  These were called “neutral membranes.” 

4.2 Experimental Section 

4.2.1 Preparation of Silica Colloidal Spheres  

 All silica spheres were prepared according to previously reported procedure from 

solution with final concentrations of 0.2 M TEOS, 0.6 M NH4OH, and 17 M H2O.
34

  The 

spheres were purified by repetitive cycle of suspending the spheres in ethanol and water 
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by sonication followed by centrifugation.  Then the silica spheres were dried in a stream 

of nitrogen for 12 h and calcinated in an oven at 600°C for 4 h. SEM images of the 

spheres were taken and the diameters determined to be 330 ± 30 nm after preshrinking.  

The second batch was prepared following the same procedure with same concentrations, 

resulting in the formation of 390±20 nm silica spheres.  The other two batches of spheres 

were prepared following the same procedure with 0.6 M and 1.2 M as the final 

concentrations of ammonia, resulting in the formation of 290±30 nm and 480±50 nm 

silica spheres, respectively; after preshrinking, the sizes reduced to 280±20 nm and 

460±30 nm, respectively. 

4.2.2 Preparation of Polymer-modified Silica Spheres  

 The calcinated silica spheres were first rehydroxylated and modified with 2-

bromoisobutyrylbromide (ATRP initiator) as reported earlier.
35

  The PSPM-r-PEEMA 

and PDMAEMA-r-pMMA brushes were grown on the surface of silica spheres via ATRP 

according to previously reported procedures.
36

  The grafting of PSPM and PSPM-r-

PEEMA brushes onto initiator-modified silica spheres (1 g) was carried out in of a 2:1 by 

mass mixture of degassed methanol and water, containing 2,2’-dipyridyl, CuCl2, CuCl as 

well as equal amounts of monomers EEMA and SPM (0.01 mol of each) at room 

temperature for 12 h in a nitrogen atmosphere. Polymerization was quenched by exposing 

the reaction mixture to open air and the addition of cold water. Polymer-modified silica 

spheres were repeatedly rinsed with water and methanol, soaked in 1 M HCl for 12 h to 

exchange potassium ions with protons, then the sample was rinsed with water again to 

remove excess acid.  The grafting of PDMAEMA and PDMAEMA-r-pMMA brushes 

onto initiator-modified silica spheres (1 g) was carried in degassed acetone/water mixture 
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(9:1 ratio by mass respectively) containing 2,2’-dipyridyl, CuCl2, CuCl, as well as equal 

amounts of monomers DMAEMA and MMA (0.01 mol each) at 50 ºC in nitrogen 

atmosphere for 12 h.  Then polymerization was quenched by exposing the reaction 

mixture to open air and addition of cold water.  Polymer-modified silica spheres were 

repeatedly rinsed with water and acetone and placed in a flask containing degassed 

acetonitrile with 0.5 mL of bromoethane for 12 h in order to quarternize the amine group.  

The sample was finally rinsed with acetonitrile and ethanol to remove excess 

bromoethane. The grafting of pHEMA brushes onto initiator-modified silica spheres (1 g) 

was carried out in of degassed methanol, containing PMDETA, CuBr2, CuBr, as well as 

HEMA (5.7×10
-3 

mol) at 70 ºC for 12 h in nitrogen atmosphere. The resulting modified 

particles were washed in methanol and water. 

4.2.3 Assembly of the Membranes  

 The separate colloidal solutions of “acid-polymer” and “base-polymer”-modified 

silica spheres (1 g each) were prepared in 10 mL of ethanol. The solutions were mixed 

together in 25 mL beaker or 4 inch Petri dish and air-dried.  p(HEMA) modified particles 

were dispersed in an ethanol solution and left to air-dry. 

4.2.4 Diffusion Measurements through Nanoporous Membranes  

 Diffusion experiments through the colloidal membranes were performed by 

placing a piece of membrane between two connected 1 cm quartz cuvettes. The feed cell 

contained 4.00 mL of a ferrocene-carboxaldehyde solution in ethanol or polystyrene or 

dansyl-labeled silica spheres dispersed in ethanol, while the reservoir cell contained 4.00 

mL of ethanol. The flux was monitored by recording the absorbance at 555 nm for dye-

labeled dendrimers, 250 nm for polystyrene spheres, 323 nm for dansyl-labeled silica 
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spheres, and 200 nm for gold nanospheres in the reservoir cell for at least 12 h.  Prior to 

using a membrane for a new trial, the membranes were immersed in ethanol for at least 

24 h and the solvent replaced occasionally to ensure the removal of any previous probe 

molecule or particle from within the membranes. 

4.2.5 Pressure-driven Filtration of Nanoparticles   

 A UHP-25 pressure filtration system was used for this procedure.  A membrane 

was quantitatively deposited on the support by driving 10 mL of silica solution (total 

amount of polymer-modified silica spheres in 80% ethanol and 20% water is 1g, but can 

be varied depending on desired membrane thickness) under constant 21 psi air stream. 

The support was 25 mm in diameter disc made of nylon and celullose filter membranes 

having 0.1 µm and 0.2 µm pores. Silica spheres of 280 nm and 460 nm in diameter were 

modified with pHEMA brushes, and the 390nm silica spheres were modified with “acid” 

and “base” polymer brushes. The membrane was air-dried for 15 min. Aqueous solutions, 

containing G5 PAMAM dendrimer and 20 nm and 40 nm gold nanospheres, were driven 

through the ”neutral” membrane separately. The solutions of G5 PAMAM dendrimer and 

25nm and 39 nm polystyrene spheres in ethanol were driven through the “acid-base” 

membranes separately. The filtrates were analyzed using DLS, IR, and UV-vis 

spectroscopy. Between the runs, the membrane was cleaned by driving ethanol through it 

and left to air-dry for 15 min.  

4.2.6 Flux Measurements  

 A “neutral” membrane was prepared as above with silica spheres that were 460 

nm in diameter and a regenerated cellulose filter disc support (pore size 0.2 µm, disc 

diameter 25 mm). Distilled water was driven once through the naked filter first and then 
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twice through the supported membrane (the membrane was dried for 15 min between 

experiments) under constant driving pressure of ~0.35 bar (5 psi) and ~1.45 bar (21 psi). 

Time taken to expel 4 mL of water was recorded after 1 mL of liquid had already been 

pushed through. The flux through “acid-base” membrane was measured following the 

same procedure and using 390 nm silica spheres modified with “acid” and “base” 

polymer brushes. 

4.2.7 Mechanical Testing of Pressed Silica Colloidal Membranes   

 The flexural strength of free-standing “neutral” membranes was estimated using 

the 4-point bending test. The membrane test samples were cut to rectangular shape using 

a carbon dioxide laser. The rectangular beam of the free-standing membrane was 

supported at two points from below (the support span) and bearing a load that makes 

contact at two points above (the loading span).  The load was increased until the beam 

fractures, and this rupture force was used to calculate the flexural strength.  If the loading 

span is one third the length of the support span, then the flexural strength is calculated 

using the eq 4.1: 

𝜎 =
𝐹𝐿

𝑏𝑑2
     (4.1) 

where σ is flexural strength (Pa), F is rupture force (N), L is support length (m), b is 

beam width (m), and d is beam thickness (m). 

4.3 Results and Discussion 

4.3.1 Acid-base Membranes  

To form these membranes, we prepared “hairy” silica spheres using surface-

initiated ATRP of SPM and DMAEMA (Figure 4.1A) and varied the length of the 
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polymer brushes using the polymerization time to find the optimal ratio of this length to 

the silica sphere diameter.  We discovered that when the polymer brush length is larger or 

equal to the silica sphere diameter, smooth nonporous films are formed after casting from 

colloidal solution.  In contrast, upon mixing two ethanol colloidal solutions containing 

390 nm silica spheres modified with short PSPM and PDMAEMA brushes (in average, 

10 and 40 nm, respectively, according to TGA data), we observed the formation of a 

porous material.  Initially, a gel formed within several seconds  and after complete 

evaporation of ethanol, irregular cracked pieces of a porous material formed, which were 

not suitable for ultrafiltration.  We believe that the cracking resulted from capillary stress 

generated during drying,
37

 from rigidity of the resulting polymer-polymer aggregates.  To 

improve the membrane properties, additional monomers, 2-ethoxyethyl methacrylate 

(EEMA), and methyl methacrylate (MMA), were added to PSPM and PDMAEMA 

brushes, respectively.  The suitable molar ratios for copolymer brushes were found 

experimentally.  The EEMA:SPM and MMA:DMAEMA molar 0.3:0.7 and 0.7:0.3 ratios 

did not lead to the desired properties of the material.  On the other hand, molar ratios of 

1:1 were optimal for the formation of durable, flexible, and large area (~1.5 cm
2
) crack-

free membranes.  We speculate that crack reduction is caused by slower solvent drying 

due to higher “affinity” of neutral PMMA and PEEMA towards ethanol compared to 

charged PSPM and PDMAEMA. 

 The thickness of the membrane can be controlled by the concentration of the 

“hairy” particles in solution.  For example, it changed from 0.5 to 1 mm with a 

concentration change from 6 to 12 wt%.  The flexibility of the membrane depends on the 

thickness and the length/thickness ratio, for instance, a piece of the membrane prepared 



81 

from 4 wt% solution that is 10 mm long and 0.2 mm thick shows significant flexibility 

(Figure 4.1 D). The SEM image in Figure 4.1C shows close-packed, yet disordered silica 

spheres in the membrane with clearly visible connecting polymers.  

 The particle-particle interactions in particle brush systems are mainly caused by 

polymer brush entanglement, responsible for holding the particles in the membrane 

together.
38,27

 These interactions depend on the polymer brushes’ length and grafting 

density. With increasing degree of polymerization, the material’s fracture toughness 

increases and transition from particle-like deformation to polymer-like deformation 

occurs.
38

 However, the particle brush system with too long polymer brushes will not 

remain porous, due to complete filling of voids by polymer brushes. Thus, a balance 

between the material’s mechanical properties and porosity should be found by adjusting 

the polymer brush length.    

 We believe that due to different solvation of polymers by different solvents,
39

 the 

polymer brush interactions can be tuned by solvent variation. Indeed, the membranes 

remain relatively strong in organic solvents, such as ethanol, acetonitrile, acetone, DMF, 

and benzene, where the membranes are stable and durable for days.  The membranes also 

remain stable in organic solvents for at least 2 h under sonication.  However, these 

interactions are disrupted in water, where the membranes soften in 5-10 min and 

completely disperse within ~ 5 min of sonication.  Within ~10 s after sonication, the 

membrane re-assembles from solution into a gel at the bottom of the vial (Figure 4.1 B).  

The membranes re-assemble after complete water evaporation and remain durable and 

pliable.  They can withstand multiple cycles of assembly-disassembly without losing their 

properties.  SEM images confirmed that the membranes disassemble into single silica 
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spheres and that the packing of silica spheres in re-assembled membranes is similar to the 

initially deposited membrane.  Thus, the assembly of the “acid-base” membranes is 

completely reversible. 

 We speculate that this reversible assembly behavior in different solvents is due to 

the different solvation of polymer brushes on the silica surface.
39

  Acidic and basic 

polymer brushes interact strongly in organic solvents, while water effectively solvates 

sulfonic and quaternized amino groups and disrupts these interactions more effectively 

than organic solvents, so the polymer brushes swell and cause weaker interactions 

between polymer brushes and therefore between spheres.  Presence of both positive and 

negative charges holds the silica spheres together and prevents complete dissolution of 

the membrane. 

 To demonstrate that “acid-base” membranes made of “hairy” 390 nm silica 

spheres are porous and capable of size-selective transport, we performed diffusion 

experiments using Rhodamine B-labeled PAMAM dendrimers, dansyl-labeled silica 

particles, and polystyrene (PS) particles in ethanol.  We found that G5 PAMAM 

dendrimer (ca. 6 nm in diameter) diffuses quickly through these membranes, while no 

diffusion was observed for 100 and 250 nm dansyl labeled silica particles.  Furthermore, 

we found that 54 nm PS particles diffused through this membrane, while 84 nm PS 

particles did not diffuse.  Thus, the size cut-off for these “acid-base” membranes is 

between 54 and 84 nm.  The pore “diameter”
 
for a close-packed colloidal crystal can be 

estimated as ca. 15% of the silica sphere diameter.
33

  For the colloidal crystal made of 

390 nm silica spheres, this “diameter” is 59 nm, suggesting that randomly packed “hairy” 

silica spheres produce a reasonably close-packed arrangement as well. 
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 Next, we deposited 390 nm silica spheres modified with PSPM/PEEMA and 

PDMAEMA/PMMA brushes on top of a regenerated cellulose filter with 0.2 µm pore 

size.  The thickness of deposited membranes can be varied from a few micrometers to ca. 

0.5 mm by changing the concentration of silica in colloidal solution. Just as for free-

standing “acid-base” membranes, the fast formation of gel is observed due to strong 

affinity of “acid” and “base” polymer brushes to each other. Once all of the solvent is 

pushed through the device, the membrane is left on top of the support. The solvent 

behavior of dry supported membranes remained same as that of free-standing “acid-base” 

membranes: they can be completely dispersed in water in minutes of sonication and 

redeposited on the same or new support. 

 The supported “acid-base” membranes were tested for ultrafiltration performance.  

We measured the flux of ethanol through the 0.5 mm-thick membrane using the driving 

pressure of 1.45 bar (21 psi).  The average flux through the regenerated cellulose filter 

under this pressure was 7600 l/m
2
hr

1
 (33 gpm).  The average flux of ethanol through the 

“acid-base” membrane under the same pressure was 380 l/m
2
hr

1
 (1.6 gpm).  This flux is 

comparable or exceeds the flux of commercially available ultrafiltration drinking water 

membranes
 
(Neo-Pure TL3 Ultrafiltration system - 1 gpm for 25 nm cutoff size).

40
 

 We used ethanol solutions of G5 PAMAM dendrimer and polystyrene 

nanoparticles to determine the membrane cut-off.  The 6 nm dendrimer molecules passed 

through the membrane, while 39 nm polystyrene nanoparticles were retained, which was 

confirmed by dynamic light scattering (DLS) and UV-Vis spectroscopy of the permeate.  

In addition, we found that 25% of 25 nm polystyrene particles passed through the 

membrane.  Thus the cut-off of the membrane is between 25 and 39 nm.  This is 
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significantly smaller compared to the cut-off (between 54 and 84 nm) found in diffusion 

experiments for the same membrane.  We believe that this difference in cut-off is due to 

the time factor, i.e., in the case of the pressure-driven ultrafiltration, nanoparticles have 

much shorter time (seconds) to make their tortuous way across the membrane and thus 

retain more efficiently, while the same nanoparticles can travel across the membrane 

during the slow (hours) diffusion experiments.  

4.3.2 “Neutral” Membranes  

 Ultrafiltration in organic solvents can have some interesting applications;
41

 

however, aqueous ultrafiltration is more widely used in various areas such as water 

purification,
5
 protein concentration and food industry,

24
 etc.  We discovered that 

nanoporous membranes can be prepared by deposition of “hairy” silica spheres carrying 

poly(2-hydroxyethyl methacrylate), PHEMA, brushes from their ethanol solutions 

(Figure 4.2 A).  The length of PHEMA brushes on 330 silica spheres required to prepare 

the membranes was ~15 nm (determined by DLS) with the average molecular weight of 

~3000 g/mol (approximately 24 HEMA monomers per brush), as determined by 

thermogravimetric analysis (TGA).  After ethanol evaporation, membranes material 

formed as smooth and evenly thick flat pieces of ~ 2 cm
2
.  Their thickness can be 

controlled in the range from 0.4 to 0.7 mm by the concentration of the “hairy” spheres in 

colloidal solution in the 6 to 10 wt%.  Generally, there were significantly fewer cracks 

observed compared to the “acid-base” membranes.  We believe this is also caused by 

drying the membrane slowly and by the larger interconnection of the polymer brushes of 

HEMA compared to the PSPM and PDMAEMA brushes.  SEM images of the 

membranes (Figure 4.2 B) showed close-packed silica spheres. 
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 We measured the flexural strength of the “neutral” membranes using the 4-point 

bending test, and found it to be 0.5±0.1 MPa (73±15 psi).  This value is significantly 

smaller than the flexural strength of sintered silica colloidal membranes (49±8.5 MPa, 

7,000±1,200 psi), which were prepared earlier.
32

  This is expected as silica spheres in 

sintered membranes are connected to each other by strong Si-O-Si covalent bonds, while 

self-assembled “neutral” membranes form via noncovalent interactions of PHEMA 

brushes. Despite the low flexural strength, the “neutral” membranes can be handled, 

sonicated, sandwiched between two plastic or two metal plates, and even dropped from 1 

m height without breaking or cracking. 

 We found that “neutral” membranes are stable in water for at least 72 h, but soften 

in ethanol and acetonitrile within ~ 30 min and completely disperse in 24 h.  The 

sonication speeds up this process and the membranes disperse completely after 15 min of 

sonication.  Unlike “acid-base” membranes where silica spheres carrying oppositely 

charged polymer brushes attract each other, this solvent behavior of “neutral” membranes 

should arise from different solvation of PHEMA brushes by different solvents.  The 

PHEMA brushes swell more in organic solvents such as ethanol and methanol,
42

 which 

causes the membranes to complete disassemble, while water solvates PHEMA to a 

smaller extent.
42

  However, as will be discuss below, we believe that water salvation of 

PHEMA brushes leads to some swelling, which affects the membrane pore size. 

 We measured the flux of water through the 1.3 mm thick “neutral” membrane 

made of 460 nm PHEMA-modified silica spheres deposited on 0.2 µm regenerated 

cellulose support.  The driving pressure was ~0.35 bar (5 psi) and ~1.45 bar (21 psi).  The 

average water flux through the bare support was 1700 l/m
2
hr

1
 (7.5 gpm) with driving 
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pressure of 0.35 bar.  The average flux of water through the “neutral” membrane under 

the same pressure was 18 l/m
2
hr

1
 (0.08 gpm).  This result is comparable to other 

nanoporous ultrafiltration membranes with similar porosity (ca. 25%).
40,43

 However, such 

polymer membranes are much thinner.  Thus, taking thickness into account, the “neutral” 

membrane shows high flux.  As expected, applying higher driving pressure resulted in 

higher flux.  The average water flux under 1.45 bar was 103 l/m
2
hr

1
 (0.45 gpm), thus the 

flux increases by a factor of 5.7 when pressure is 4.2 times higher. This flux is 

comparable or exceeds the flux of commercially available ultrafiltration drinking water 

membranes
 
(Watts WQCFU-T-13KIT 3 Stage Kwik-change Ultrafiltration system – 0.5 

gpm for 0.2 µm cut-off size
40

). The flux through the “neutral” membranes was ca. 4 times 

smaller than that for “acid-base” membranes while the “neutral” membranes were ca. 2.6 

times thicker than “acid-base” membranes.  Thus, “neutral”membranes show high flux of 

water and can be potentially applied in filtration and water purification systems.  

 According to the diffusion experiments in water, the cut-off of the “neutral” 

membrane made of 330 nm silica spheres was 20 nm, as determined using G5 PAMAM 

dendrimer (6 nm in diameter), which showed high diffusion rate and 20 nm gold 

nanoparticles, which were retained by the membrane.  We believe that the much lower 

cut-off of the “neutral” membranes compared to the “acid-base” membranes comprised 

of comparably sized silica spheres results from swelling of PHEMA polymer brushes in 

water, which partially blocks the pores, reducing the effective pore size.
28

 

 Silica spheres of two different diameters (280 and 460 nm) modified with 

PHEMA brushes were deposited from ethanol solution on top of a nylon filter with 0.2 

µm pore size (Figure 4.3 A-C).  Supported “neutral” membranes could be redispersed in 
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ethanol and deposited again.  Due to the weaker interaction between PHEMA brushes 

compared to the interactions of the brushes carrying charged sulfonic and quaternized 

amino groups, the supported “neutral” membranes needed to be thicker (ca. 1.3 mm) than 

“acid-base” membranes. 

 The 6 nm dendrimer molecules passed through the membranes made of 280 nm 

“hairy” silica spheres, while 20 nm gold nanoparticles were retained (Figure 4.3 D), 

which was confirmed by DLS and UV-Vis spectroscopy of the permeate. This cut-off is 

similar to that observed in diffusion experiments. As expected, the membrane made of 

PHEMA-modified 460 nm silica spheres had a higher cut-off: they were permeable for 

20 nm gold nanoparticles while 40 nm gold nanoparticles were retained. The cut-off is 

smaller than calculated for close-packed silica colloidal crystals made of 280 and 460 nm 

spheres (44 and 70 nm, respectively), which we attribute to the swelling of PHEMA 

brushes in water. These results demonstrate that reversible “neutral” membranes are 

capable of size-selective ultrafiltration and that their pore size can be varied by changing 

the silica spheres size. 

 The deposited “neutral” membrane with trapped gold nanoparticles can be 

dissolved in by sonication, forming colloidal solution containing “hairy” silica spheres 

and gold nanoparticles. After quick sonication, heavy silica particles sediment, while gold 

nanoparticles remain in solution and thus can be separated. Depending on size of silica 

and gold, the complete separation may require several sonication-centrifugation cycles. 

The purified silica spheres can be dissolved and deposited into nanoporous membrane 

again (Figure 4.3 E,F). This separation process and membrane reusing are illustrated in 

Figure 4.4. 
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4.4 Conclusions 

 In conclusion, in this work we introduced a novel concept of reversible assembly 

of nanoporous membranes from polymer-modified colloidal nanoparticles.  The 

membranes can be deposited from solution and dispersed by changing the solvent.  This 

creates advantages in terms of recycling, cleaning, and reusing the membrane without 

performance loss.  Membranes made of silica spheres modified with polymer brushes 

carrying acidic and basic functional groups remain stable in organic solvents and 

disassemble in water, while membranes made of PHEMA-modified silica spheres are 

stable in water and disassemble in organic solvents.  The membranes can withstand 

multiple cycles of assembly-disassembly.  The membrane cut-off can be controlled by 

varying the silica sphere diameter and also depends on polymer brush structure.  The 

membranes can be prepared as both free-standing materials and as supported films.  The 

control over the pore size, high flux, durability, time- and cost-efficiency of membrane 

preparation, and the ability to recover the retentate and clean the membranes by 

disassembly makes these membranes a promising material for ultrafiltration and size-

selective separations. 
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Figure 4.1. Preparation and properties of “acid-base” membranes. (A) Preparation of 

copolymer brushes in the surface of silica spheres. (B) Dispersion of “acid-base” 

membranes in ethanol and gel formation. (C) Flexible “acid-base” membrane. (D) 

Representative SEM image of “acid-base” membrane. Scale bar is 1 μm. 

 

 

 
Figure 4.2. “Neutral” membrane: (A) Preparation of PHEMA brushes on the surface of 

silica spheres; (B) Representative SEM image of the “neutral” membrane. Scale bar is 2 

μm. 
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Figure 4.3. Preparation of supported “neutral” membrane and isolation of Au 

nanoparticles. (A) Formation of “neutral” membrane on cellulose support inside stirred 

cell. (B) Disassembled stirred cell with “neutral” membrane on support. (C) Supported 

membrane. (D) Ultrafiltration of 20 nm Au nanoparticles through “neutral” membrane 

made of 280 nm “hairy” silica spheres. (E) Disassembled stirred cell with Au 

nanoparticles trapped inside the “neutral” membrane. (F) Dispersed “neutral” membrane 

with Au nanoparticles in solution. 

 

 

 

  

 

Figure 4.4. Schematic representation of the separation of 20 and 40 nm Au nanoparticles 

using the “neutral” ultrafiltration membrane and membrane recycling. 
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CHAPTER 5 

 

 

NOVEL SOLID POLYMER ELECTROLYTE HYBRID MATERIALS  

 

FOR LITHIUM RECHARGEABLE BATTERIES 

 

5.1 Introduction 

 Lithium rechargeable batteries are used in a wide variety of applications; such as 

electric vehicles, portable electronics, personal communication, etc.
1
 Presently used 

liquid electrolyte batteries have a number of serious disadvantages. The liquid 

electrolytes are not entirely stable chemically or electrochemically, and the always-

possible leakage makes liquid electrolyte batteries both unreliable and environmentally 

unsafe.
2
 Thus, the solid polymer electrolyte (SPE) has been recognized as a promising 

material for the production of lithium batteries.
3,4

  Performance parameters that are 

common to all lithium polymer electrolytes and that will be required to ensure 

technological success in any application include high lithium conductivity at room 

temperature, high transport number for the lithium cation, and good mechanical stability.
5
 

Most commonly used SPEs are based on complexes formed between polyethylene oxide 

(PEO, also known as polyethylene glycol, PEG) and various lithium salts, usually having 

large noncoordinating anions.
6,7

 These systems have good mechanical properties, large 

redox stability windows, good compatibility with cathodes and lithium anode, a very high 

solvating power, and chain flexibility at elevated temperatures.
8
 However, they possess 

low conductivity at ambient temperature, very low cation transference numbers, and high 
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crystallinity.
9
 A few approaches to improve lithium conductivity and transport number of 

the cation at room temperature were reported: random copolymers,
10

 block copolymers,
11

 

comb-branched block copolymers,
12

 networks,
13

 and single lithium conductors
14

 were 

applied. Another fundamentally different approach is to prepare composite electrolytes,
15

 

in which lithium conductivity is enhanced by the addition of an insoluble second phase, 

such as aluminum oxide or silica. Other methods include preparation of gel-polymer 

electrolytes,
16,17

 molten conducting salts,
18

 addition of aluminum oxide,
19

 or chloride.
20

 

However, the need to optimize simultaneously the lithium conductivity and mechanical 

properties of SPEs limits suitable polymer architectures. At the same time, fundamental 

understanding of lithium ionic conductivity as a function of polymer structure and 

composition is needed to optimize lithium rechargeable batteries.  

In this work, we develop novel hybrid SPE materials, where silica colloidal 

membranes provide rigid and durable matrix and pore-filling surface-grafted polymer 

brushes provide lithium ion conductivity. To the best of our knowledge, this approach is 

applied for the first time for SPE preparation. The architecture of the proposed materials 

makes them particularly suitable for systematic studies needed to understand the lithium 

transport through polymer brushes inside the nanopores. We use PEG-containing 

polymers to enable lithium ion conductivity in silica-based SPEs. Since pure PEG chains 

cannot be surface-grafted to silica via ATRP, we use commercially available 

methacrylate-based monomers that contain PEG chains, such as 

(polyethyleneglycol)methacrylate (PEGMA), which has been reported to provide lithium 

conducting SPEs
21-23

 (Figure 5.1). The PEGMA monomers are available with various 

lengths of attached PEG chains, which allows studying ionic conductivity as a function of 
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PEG length. This approach allows the preparation of durable solid material with short 

enough PEG chains to prevent PEG crystallization and ensure high ionic conductivity.  

 We apply two different approaches to the preparation of ion-conductive materials, 

each of them having their own advantages and limits. In the first method, close-packed 

silica colloidal membranes were prepared via vertical deposition and then sintered in the 

oven, as was described in previous chapters. The resulting durable membranes were then 

modified with pore-filling surface-grafted PEGMA brushes with desired chain length 

inside the pores and impregnated with LiPF6 to introduce ionic conductivity. The pore 

size can be controlled by varying silica spheres’ size. This method allows for the 

preparation of stable and durable free-standing SPE material with controlled pore size. 

However, the amount of PEG chains introduced inside the pores is limited by the void 

fraction of highly-ordered silica colloidal membranes (26%) and the detailed study of 

ionic conductivity as a function of number of PEG chains is challenging. This method is 

good as proof of concept for Li
+
-conductive hybrid pore-filled colloidal membranes.  

 In the second approach, we grafted poly(hydroxyethyl) methacrylate brushes to 

silica colloidal spheres via ATRP. Next, PHEMA brushes were modified with an initiator 

and PEGMA brushes were grown on the PHEMA backbone (Scheme 5.1). Silica 

colloidal spheres modified with the resulting comb-polymer brushes were then assembled 

into colloidal membranes via horizontal deposition and impregnated with LiPF6. It is 

known that when a lithium salt-solvating polymer is chosen as one block component in 

block copolymer SPEs, continuous, nanoscopic, ion-conducting pathways can form.
24

 

Thus, by varying the PEG side-chain size, the distance between the PEO-containing 

blocks and their length, we will be able to affect the lithium transport and study the 
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structure-conductivity relationships. 

 We measured ionic conductivity of resulting SPEs using electrochemical 

impedance spectroscopy to estimate the potential of the material as part of lithium 

rechargeable battery. The experiments are similar to those described in Chapter 3.  

5.2 Experimental Section 

5.2.1 Materials  

 Ammonium hydroxide (28-30% as NH3, EMD Chemicals, Inc.), tetraethyl 

orthosilicate (99.999% metal basis, Alfa Aesar), N,N,N′,N′,N′′-

pentamethyldiethylenetriamine (PMDETA), 2-bromoisobutyryl bromide (2-BIB), 3-

aminopropyltriethoxysilane, and lithium hexafluorophosphate (all from Sigma-Aldrich) 

were used as received. HEMA and two types of PEGMA monomers (average Mn 500 

g/mol and 950 g/mol) (Sigma Aldrich) were passed through Al2O3 column to remove 

inhibitor prior to use. Deionized water with 18 MΩ resistivity used in all experiments was 

obtained from a Barnstead “E-pure” water purification system. All ethanol used was 200 

proof. Dimethylformamide (DMF) and tetrahydrofuran (THF), dichloromethane (DCM) 

were reagent grade.  

5.2.2 Instruments 

 Scanning electron microscopy (SEM) images were obtained using a FEI 

Novanano 630 instrument. A Branson 1510 sonicator was used for all sonications. A 

Clay Adams Compact II Centrifuge (3200 rpm, Becton Dickinson) was used for all 

centrifugations. A Fisher Scientific Isotemp Programmable Muffle Furnace (Model 650) 

was used for calcination and sintering. The complex impedance of the samples was 

measured using Princeton Applied Research VersaSTAT. Thermogravimetric analysis of 
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polymer-modified silica particles was performed using TGA Q500 (TA Instruments). 

5.2.3 Preparation of Silica Spheres and Silica Colloidal Membranes 

 Silica spheres were prepared according to the previously reported procedure.
,25,26

 

All glassware was cleaned with distilled water prior to use. A batch of silica spheres was 

made by mixing 500 mL of an ethanol solution containing TEOS (51.4 mL, 0.20 mol) 

with 500 mL of ethanol solution containing NH4OH (27.0 mL, 0.4 mol) and water (287 g, 

16 mol). These two solutions were poured simultaneously in a 2 L Erlenmeyer flask and 

vigorously stirred. The resulting mixture had final concentrations of 0.2 M TEOS, 0.4 M 

NH3 and 17.0 M H2O. After about 30 min of being stirred, the solution became cloudy, 

indicating silica sphere formation. After 24 h, the silica spheres were centrifuged in 15 

mL centrifuge tubes (Corning) at 1163g for 15 min. After all of the spheres were 

collected as pellets at the bottom of the centrifuge tubes, the supernatant was decanted 

and the silica spheres were purified by repetitive cycle of suspending the spheres in 10 

mL of a solvent by sonication for 15 min, during which the tubes were periodically 

shaken by hand to free any pieces of the pellet stuck to the sides of the tubes, followed by 

centrifugation. Following solvents were used: water (twice), 25% ethanol in water, 50% 

ethanol, 75% ethanol, and 100% ethanol (twice). After the final centrifugation, the 

supernatant was decanted and the silica spheres were dried in a stream of nitrogen for 12 

h. Dried spheres were later calcinated by placing them into a Petri dish, breaking all large 

aggregates with spatula, and placing the dish in the oven programmed to heat the spheres 

for 4 h at 600 °C.  The heating rate in the oven was set to 10 °C/min.  SEM images of the 

spheres were taken and the diameters determined from 100 individually measured silica 

spheres in each sample to be 240±10 nm after the calcination. 
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 Silica colloidal membranes were prepared by vertical deposition. Four glass 

microscope slides were placed into a 100ml beaker containing silica suspended in 

ethanol. The suspension was 12% silica by mass. Each suspension used 42 mL of 

ethanol. These were left overnight to deposit the membranes as the ethanol evaporated. 

The resulting membranes were 400-1000 μm thick and were sintered in a furnace at 1050 

°C for 12 h (10 ºC/min ramp), becoming very robust and durable after that.  

5.2.4 Pore-filling of Silica Colloidal Membranes  

 Sintered colloidal membranes were rehydroxylated in solution of 

tetrabutylammonium hydroxide of pH=10 at 60 °C for 12 h, then rinsed with large excess 

of water (2×), 1 M nitric acid, methanol (2×), water (2×), and acetonitrile. 

Rehydroxylated membranes were modified with amine groups by placing them into 20 

mL of solution of APTES (4.3 mmol) in dry acetonitrile at room temperature under 

nitrogen atmosphere for 17 h. After the surface modification, the membranes were 

repeatedly rinsed with acetonitrile and air-dried. Amine-modified membranes were 

placed in 100 mL of dichloromethane solution containing 2 mL of triethylamine (0.15 M 

solution), 1.6 mL of 2-bromoisobutyrylbromide (0.13 M solution), and a catalytic amount 

of DMAP for 12 h at room temperature.  Initiator-modified membranes were repeatedly 

rinsed with dichloromethane and air-dried.  PEGMA brushes were grown inside the 

initiator-modified silica membranes via ATRP by placing the membranes in 15 mL of 

DMF, containing PMDETA (0.5 mmol, 100 µm), CuCl2 (0.12 mmol, 16 mg), CuCl (0.4 

mmol, 40 mg), and large excess of PEGMA monomer (30-50 mmol passed through 

alumina column) at 40 ºC for 12 h.  After quenching the polymerization reaction by 

exposing the reaction mixture to air, the membranes were repeatedly rinsed with DMF 
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and ethanol and dried under constant air flow. The resulting pore-filled membranes were 

then impregnated by LiPF6 using following procedure: 0.1g of dry LiPF6 was dissolved in 

1 ml of ethanol, the resulting solution was added drop by drop evenly distributed over the 

membrane surface, letting the membrane dry between drops.  

5.2.5 Preparation of Comb-polymer Modified Silica Spheres and Membranes 

 First, silica spheres were modified with amine groups by suspending them into 20 

mL of solution of APTES (4.3 mmol) in dry acetonitrile at room temperature under 

nitrogen atmosphere for 17 h.  After the surface modification, the membranes were 

repeatedly rinsed with acetonitrile and air-dried. Amine-modified membranes were 

placed in 100 mL of dichloromethane solution containing 2 mL of triethylamine (0.15 M 

solution), 1.6 mL of 2-bromoisobutyrylbromide (0.13 M solution), and a catalytic amount 

of DMAP for 12 h at room temperature.  Initiator-modified spheres were repeatedly 

washed with dichloromethane via centrifugation-sonication cycles and air-dried. The 

grafting of PHEMA brushes onto initiator-modified silica spheres (1 g) was carried out in 

of degassed methanol, containing PMDETA (0.5 mmol, 100 µm), CuCl2 (0.12 mmol, 16 

mg), CuCl (0.4 mmol, 40 mg),  as well as HEMA (2ml passed through alumina column) 

at 70 ºC for 12 h in nitrogen atmosphere. The resulting modified particles were washed in 

methanol and water. Then PHEMA-modified spheres were modified with 2-

bromoisobutyrylbromide again, the reaction was carried out in 30 ml of anhydrous 

pyridine in presence of 0.1 ml of 2-BIB. The reaction mixture was stirred at 0 ºC for 3 h 

and then at room temperature for 24 h. The spheres were washed with THF, acetone and 

DCM and air-dried. Then PEGMA brushes were grafted onto initiator-modified PHEMA 

backbone. The reaction was carried out according to reported procedure,
27

 in 10ml of 
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DMF, in presence of PMDETA (0.5 mmol, 100 µm), CuCl2 (0.12 mmol, 16 mg), CuCl 

(0.4 mmol, 40 mg), and large excess of PEGMA monomer (30-50 mmol) at 40 ºC for 12 

h.  The resulting comb-polymer modified spheres were washed with DMF and ethanol.  

 The lithium ion-conducting membranes were prepared using comb-polymer 

modified spheres by horizontal deposition. 0.5g of polymer-modified silica and 0.1g of 

LiPF6 were dissolved in 5 ml of ethanol in 10ml beaker and let the solvent evaporate 

overnight. After complete solvent evaporation the smooth and crack-free membrane self-

assembled at the bottom of the beaker as single piece.   

5.2.6 Ionic Conductivity Measurements  

 Electrochemical impedance spectroscopy measurements were carried out for both 

pore-filled ordered silica colloidal membranes and for self-assembled comb-polymer 

modified silica membranes.  Silver paint was coated on both sides of the membranes to 

serve as electrodes. Then the membranes were dried in vacuum at 80°C for at least 4 h to 

remove water and other solvent residues. 

 The impedance was measured using a two-probe testing device placed in 

humidity- and temperature-controlled chamber according to the previously reported 

procedure.
28

  The relative humidity was kept ~25% during all experiments. The 

measurements were carried out at room temperature. The complex impedance of the 

samples was measured and the ionic conductivity was calculated using σ=l/RA, where σ 

is the ionic conductivity, l is the distance between the two electrodes, R is the ohmic 

resistance of the membrane, and A is the cross-sectional area of the material.  
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5.3 Results and Discussion 

 The PEGMA-500 and PEGMA-950 polymer brushes were grown on silica 

surface inside the pores of silica colloidal membranes. The resulting pore-filled 

membranes are robust and durable, easy to handle, and easy to modify with electrodes. 

To confirm successful polymerization, the resulting material was characterized by TGA. 

According to TGA results, the average PEGMA-500 brush is comprised of only ~ 2 

PEGMA monomer fragment, assuming the grafting density is 0.5 brush per nm
2
 of silica 

surface. We explain such a low molecular weight of grown polymer brushes by large 

PEGMA monomer’s size. The monomer with average Mn = 500g/mol is bulky and the 

ATRP rate is limited by monomer diffusion inside the pores to the silica surface.  These 

polymer brushes are significantly shorter than those grown using smaller monomers, such 

as polysulfopropyl methacrylate, polydimethylaminoethoxymethacrylate, or PHEMA (in 

which average polymer brushes consist of 20-40 monomer fragments), that were 

previously discussed in Chapters 3 and 4.  

 Pore-filled silica membranes were then impregnated with LiPF6 and ionic 

conductivity was measured. The average ionic conductivity values measured at room 

temperature are shown in Table 5.1. As expected, the average conductivity of the 

membranes modified with shorter PEG chains is higher than of those with longer chains. 

It can be explained by higher mobility of shorter PEG chains compared to longer chains. 

Both membranes show good ionic conductivity, comparable or exceeding similar 

membranes with ion conductive PEG chains.
29

 We believe that good conductivity arises 

from formation of ion-conductive pathways inside the pores through the membrane, 

where Li
+
 ions coordinate with flexible PEG chains.  These SPE materials provides a 
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good proof of concept for our approach; however, a further study of ionic conducitivity 

as a function of PEG chain length, temperature, humidity, as well as pore size and 

geometry in pore-filled silica-based SPEs is clearly needed.  

 In our second approach, silica spheres were first modified with PHEMA brushes. 

According to the TGA data, the average PHEMA brush contained ~72 HEMA monomer 

fragments, assuming the grafting density is 0.5 brush per 1 nm
2
 of silica surface. Later 

PEGMA brushes were grafted onto PHEMA backbone. According to TGA results, in 

average 0.4 PEGMA-500 fragments were grafted onto each HEMA fragment, i.e., 

average PHEMA brush comprised of 36 HEMA fragments contained ~14 PEGMA units. 

The comb-polymer modified silica spheres were dispersed in ethanol with LiPF6 and 

horizontally deposited from solution. Upon solvent evaporation, silica spheres self-

assembled into smooth and solid film. The resulting material was pliable and crack-free; 

however, it was significantly less durable than sintered silica membranes and could easily 

break upon little pressure. Similar to the membranes described in Chapter 4, this 

membrane is held together via noncovalent van der Waals interactions, which are 

significantly weaker than covalent bonds. This could possibly limit the applications of the 

resulting SPEs.  

 However, this material has several significant advantages over pore-filled sintered 

silica membranes. In the pore-filled sintered silica membranes, the growth of polymer 

brushes is limited by void fraction of the membrane. The polymerization rate is also 

limited by diffusion of monomers to the silica surface inside the pores. Self-assembled 

silica membranes do not have these limitations, since polymerization is done on loose 

silica spheres in solution before assembling the membrane. Also, different parameters of 
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SPE, such as polymer brush length, geometry and composition are easier to control in 

self-assembled membranes, compared to sintered silica membranes. 

 The average conductivity of self-assembled SPE is 2.7±0.3 × 10
-4

 S/cm, which is 

significantly lower, than that for sintered silica membranes. We predicted that the 

conductivity of self-assembled membranes will be higher than for sintered membranes 

due to the larger amount of PEG chains present. In addition, the PEG chains in self-

assembled SPE should have higher flexibility, since they are attached to another flexible 

polymer backbone instead of silica surface. We explain the lower conductivity of self-

assembled SPE by the lower amount of loaded LiPF6 in the membrane. Further 

investigation of ionic conductivity as a function of lithium salt load is needed for both 

sintered and self-assembled SPEs.  

5.4. Conclusions and Future Directions 

 In this work, we introduced new SPE materials for lithium rechargeable batteries. 

In the first approach, we prepared highly-ordered sintered silica membranes with pores 

filled with PEGMA chains and impregnated with lithium salt. The membrane showed 

good ionic conductivity and mechanical properties. We found that the membrane 

modified with shorter PEG chains possesses higher conductivity presumably due to 

higher mobility of polymer brushes. We showed good proof of concept for this method.  

In the second approach, we prepared self-assembled membrane comprised of comb-

polymer modified silica spheres impregnated with lithium salt. The resulting SPE is not 

as durable as the sintered membrane, but is easier to prepare. It also shows good ionic 

conductivity and could be a perspective material for SPE for lithium batteries.  

Clearly, a more detailed study is needed for both developed models. Ionic 
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conductivity in both systems needs to be studied as a function of polymer chain length, 

geometry, composition, as well as lithium salt load, temperature, etc. Both approaches 

have their advantages and disadvantages. Different lithium battery applications require 

different parameters and thus both methods might be useful in developing SPEs for 

lithium batteries.  
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Figure 5.1 PEGMA brush grafted to the surface of silica sphere. 

 

 

 
Scheme 5.1 Preparation of comb-polymer modified silica spheres. 

 

 

Table 5.1. Li
+
 ionic conductivites of silica colloidal membranes modified with different 

PEGMA monomers. 

 

Mw PEG, g/mol σ
avg

 , S/cm ×10
-3

 

500 1.3   

950 0.84  
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Silica-based nanoporous membranes are a promising material for various 

applications, including energy applications, bioseparations, drug delivery, and water 

purification, due to their mechanical and chemical stability, easy preparation, and well-

defined surface chemistry. In this dissertation, we described the development of novel 

silica and hybrid nanoporous membranes and their applications in fields of fuel cells, 

lithium batteries, ultrafiltration, and separations. We also used different approaches to 

make membrane preparation process faster and easier and more environmentally friendly. 

 We described the preparation of novel silica nanoporous membranes by pressing 

silica colloidal spheres followed by sintering in the oven. The preparation is very time- 

and cost-effective and easy to scale up, which makes it successfully comparable to 

commercial methods, such as electrochemical and deposition methods. The resulting 

membranes were mechanically durable, crack-free, and possessed uniform thickness and 

area. We controlled the pore size of the membranes by varying the silica spheres’ size 

used for membrane preparation. Studying the diffusion of polystyrene beads through the 

pores, we showed that developed membranes are capable of size-selective transport. Due 

to fast and easy preparation process, these membranes are promising in the area of 

separations and filtration, as well as controlled ion and molecular transport. With further 

modification of silica surface with functional organic moieties and polymer brushes, 
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these membranes will be capable of not only size- but also charge- and chiral-selective 

separations. Introducing ion-exchange moieties will allow preparation of cheap ion-

exchange membranes using our approach. Future directions in this project include these 

studies.  

 To demonstrate the utility of the pressed membranes, we developed proton 

conductive pore-filled silica colloidal membranes prepared by both pressing and vertical 

deposition and we evaluated the fuel cells prepared using pressed membranes. We 

modified these membranes by filling the membrane pores with surface-attached proton 

conductive polymer brushes and prepared membrane-electrode assembly to test fuel cell 

performance. We studied how the proton conductivity and fuel cell performance depends 

on the number of sulfonic groups in the pore-filling polymer brushes. We found that the 

proton conductivity and fuel cell voltage and current generally increase with increasing 

degree of sulfonation; however, the dependence is not linear. Our approach in which 

silica membrane provides rigid matrix and functional polymer brushes provide proton 

conductivity is very convenient for fundamental studying of proton conductivity, because 

the silica-based membranes do not swell or dissolve in water and methanol. In our 

membranes, every parameter of the membrane, such as polymer brush length, geometry, 

and composition, as well as pore size, can be tuned in order to achieve better performance 

of the device. Future directions here include a further study of proton conductivity and 

fuel cell performance as a function of various membrane parameters listed above. These 

studies will be beneficial for both fundamental research and optimization of fuel cell 

design.   

 We described the preparation and characterization of reversible nanoporous 
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membranes, comprised of polymer-modified silica colloidal spheres. The reversible 

assembly of nanoporous membranes provides advantages in recycling, cleaning, and 

reusing of the material. We developed two types of reversible membranes. The first type 

was assembled using silica spheres modified with polymer brushes containing acidic and 

basic functional groups. These membranes showed size-selective transport in organic 

solvents, but dissolved in water. The second type was prepared from silica spheres 

modified with PHEMA brushes; they were stable in water and also showed size-selective 

transport, while they could be dissolved in ethanol. This approach is promising in the area 

of reusable membranes for water purification, bioseparations, and ultrafiltration due to its 

cost- and material-efficiency. The PHEMA-modified silica reversible membranes have a 

potential in separation and trapping of biological species, such as proteins. The conditions 

of separations can be tuned by using various buffers as media instead of water, as well as 

PHEMA brush length. The polymer brushes can also be prepared from PHEMA 

copolymerized with functional polymers to introduce other interactions with separated 

molecules, such as chiral or charge interactions. This is the next step and promising 

direction for this material. Other directions include research on charge-selective 

separations through acid-base membranes in organic solvents and on size-selective 

separations through both acid-base and neutral membranes as function of polymer brush 

length.  

 We applied our approach for the preparation of both pore-filled and self-

assembled silica membranes to develop a new SPE material for lithium rechargeable 

batteries. We successfully prepared ion conductive SPE from each of the materials and 

demonstrated the proof of concept for these approaches. Both approaches are promising 
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for the preparation of SPEs for lithium batteries; however, intensive research is still 

needed to complete this project. A systematic study of ionic conductivity as a function of 

polymer brush composition and geometry, PEG chain length and lithium salt load is 

needed in order to achieve high ionic conductivity and to demonstrate the efficiency of 

our material as lithium battery SPE.  

 In conclusion, we applied several approaches to prepare novel nanoporous 

membranes using such convenient material as silica colloidal spheres. We combined the 

well-known advantages of silica spheres, such as low cost, easy preparation, size control, 

mechanical and thermal stability, and well-established surface chemistry, with advantages 

of our approaches: time- and cost-effective methods, reversibility, and control of every 

parameter of the material, in order to develop new promising silica-based materials for 

various applications.  
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