
COMPUTATIONAL MODELING OF THE EXPLOSION 

AND DETONATION OF HIGH EXPLOSIVES

by

Jacqueline Beckvermit

A dissertation submitted to the faculty of 
The University of Utah 

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry 

The University of Utah 

May 2016



Copyright ©  Jacqueline Beckvermit 2016 

All Rights Reserved



The U n i v e r s i t y  of  Ut ah  G r a d u a t e  S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Jacqueline Beckvermit

has been approved by the following supervisory committee members:

Charles Wight Chair 12/17/2015
Date Approved

Martin Berzins Member 12/17/2015
Date Approved

Valeria Molinero Member 12/17/2015
Date Approved

Michael D. Morse Member 12/17/2015
Date Approved

Ryan P. Steele Member 12/17/2015
Date Approved

and by Cynthia J. Burrows Chair/Dean of

the Department/College/School o f ___________________ Chemistry

and by David B. Kieda, Dean of The Graduate School.



ABSTRACT

The detonation of hundreds of explosive devices from either a transportation or stor

age accident is an extremely dangerous event. Motivation for this work came from a 

transportation accident where a truck carrying 16,000 kg of seismic boosters overturned, 

caught fire and detonated. The damage was catastrophic, creating a crater 24 m wide 

by 10 m deep in the middle of the highway. Our particular interest is understanding 

the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 

9501 devices can transition to a fully-developed detonation in transportation and storage 

accidents. Predictive computer simulations of large-scale deflagrations and detonations 

are dependent on the availability of robust reaction models embedded in a computational 

framework capable of running on massively parallel computer architectures. Our research 

group has been developing such models in the Uintah Computational Framework, which is 

capable of scaling up to 512 K cores. The current Deflagration to Detonation Transition 

(DDT) model merges a combustion model from Ward, Son, and Brewster tha t captures 

the effects of pressure and initial temperature on the burn rate, with a criteria model for 

burning in cracks of damaged explosives from Berghout et al., and a detonation model 

from Souers describing fully developed detonation. The prior extensive validation against 

experimental tests was extended to a wide range of temporal and spatial scales. We made 

changes to the reactant equation of state-enabling predictions of combustions, explosions, 

and detonations over a range of pressures spanning five orders of magnitude. A resolution 

dependence was eliminated from the reaction model facilitating large scale simulations to 

be run at a resolution of 2 mm without loss of fidelity. Adjustments were also made to 

slow down the flame propagation of conductive and convective deflagration. Large two- 

and three-dimensional simulations revealed two dominant mechanisms for the initiation of 

a DDT, inertial confinement and Impact to Detonation Transition. Understanding these 

mechanisms led to identifying ways to package and store explosive devices tha t reduced the 

probability of a detonation. We determined tha t the arrangement of the explosive cylinders 

and the number of devices packed in a box greatly affected the propensity to transition to 

a detonation.
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CHAPTER 1

INTRODUCTION

On August 10th , 2005 a semi-tractor-trailer carrying 16,000 kg of seismic boosters 

traveling on Highway 6 through Spanish Fork Canyon, Utah overturned and caught fire. 

The deflagration quickly transitioned into a fully developed detonation, made apparent 

by the 24 m wide by 10 m deep crater formed in the middle of the road, with burning 

debris found up to 400 m away. Though these accidents are rare, the damage caused 

by the detonation of thousands of explosive devices can be extremely dangerous. This 

thesis is focused on the development of the science-based computational tools needed to 

accurately model all aspects of a Deflagration to Detonation Transition (DDT) in a large 

array of explosive cylinders. These tools were embedded in the Uintah Computational 

Framework, allowing for large-scale DDT simulations. The goal of this research was to 

understand the initiation mechanisms for the DDT in an array of explosive cylinders and 

to determine how packing configurations for the devices could help to prevent a detonation. 

Presented in this chapter is an evaluation of the combustion of the explosive of interest, 

Section 1.1. The governing equations used in the Uintah Computational Framework and 

an explanation of the simplified reaction model are examined in Section 1.2. Chapter

2 is an overview of the Uintah Computational Framework, describing its wide range of 

modeling capabilities. Chapter 3 discusses changes made to the reactant Jones-Wilkins-Lee 

(JWL) equation of state-enabling material response predictions for a wide range of pressures. 

Chapter 4 presents the resolution dependence on the conductive deflagration and detonation 

models, permitting simulations to be run at a 2 mm grid resolution. Chapter 5 discusses 

the adjustments made to Uintah's DDT model to eliminate a resolution dependence in 

convective deflagration and accurately model the flame propagation velocity in all stages of 

combustion. Chapter 6 analyzes the DDT initiation mechanisms for an array of explosive 

cylinders. They were determined to be inertial confinement and Impact to Detonation 

Transition (IDT). Chapter 7 examines possible packaging configuration variations that may 

reduce the probability of detonation in transportation and storage.



2

1.1 Combustion of PBX  9501
This research focused on the combustion of PBX 9501 (95% 1,3,5,7-octahydro-1,3,5,7- 

tetranitro- 1,3,5,7-tetrazocine (HMX, Figure 1.1) and 5% of a plastic binder). PBX 9501 is 

extensively used by the military, and thus, comprehensive research has gone into understand

ing all aspects of its decomposition, deflFagration, and detonation. There are three important 

regions in the combustion of HMX and PBX 9501, depicted in Figure 1.2. The first is the 

condensed phase. On the edge of the condensed phase exists a melt layer, where HMX 

evaporates and decomposes. This results in a largF tem perature increase and intermediates 

being formed. According to Charkaborty et al.1 there are three hypothesized mechanisms 

for the unimolecular decomposition of HMX. First is a successive methylenenitramine 

elimination, forming four methylenenitFramines tha t further decompose into formaldehyde 

and nitrous oxide. The second mechanism is the homolytic cleavage of the N  — N O 2 bond 

forming four nitrogen dioxide molecules and a ring that further eliminates into the final 

byproducts. The last path proposed is the successive HONO elimination leading to four 

HONO and four HCN molecules. The intermediates then further decompose. Using the 

DFT(B3LYP) method Charkaborty et al.1 concluded the consecutive HONO elimination 

was the initiation step in the decomposition of HMX. Multiple scientists agree with the 

dominant mechanisms but disagree on the initiation step. Lewis et al.2 and Sharia et al.3

determined the N  — N O 2 dissociation was the initiation mechanism based on its energies. 

Even though the exact mechanism for decomposition is undecided, it is understood that 

the final products include but are not limited to NO2, N2O, H2O, N2, CO, NO, HCN, H2, 

NH3, CH3OH, CH2O, and CO2.1,4,5

F ig u re  1.1: Molecular structure of HMX.
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F ig u re  1.2: Schematic of idealized steady deflagration of a solid explosive.

The second region in the combustion of HMX-based explosives is the dark zone (Figure 

1.2). Between the propellant surface and the dark zone the first flame stage occurs. In this 

region the rapid exothermic reactions consume most of the CH2O, NO2, HONO, and N2O 

produced from the decomposition of the solid. This results in a relatively small temperature 

increase.6 Examples of such reactions include:

N 2O +  H  ^  N 2 +  O H  (1.1)

C H 2O +  N O 2 ^  H CO  +  H O N O  (1 .2)

H O N O (+ M ) ^  N O  +  O H (+ M ). (1.3)

W ithin the dark zone, the intermediate products are comparatively unreactive, causing a 

time delay for the radicals to build up in concentration before ignition in the luminous 

flame.6 The dark zone primarily contains HCN, N2, CO, CO2, H2O, NO, and small 

leftover traces of N2O, CH2O, and NO2. This zone is also known as the flame standoff 

distance and is very important in determining the flame structure at low pressures and the 

burn rate at high pressures. The species concentrations and temperature profile have been
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measured experimentally by planar laser-induced fluorescence, UV/VIS absorption, Raman 

spectroscopy, and thermocoupling techniques.6,7

The third region in the combustion of condensed phase explosives is the bright zone, 

known for its luminous flame. W ithin this region, a large temperature increase occurs and 

is primarily caused by the heat released as HCN and NO go to final products.6 Some of the 

reactions which occur in this region include the following:

H C N  +  M  ^  H N C  +  M  (1.4)

H C N  +  O ^  N C O  +  H  (1.5)

H C N  +  O H  ^  H N C O  +  H  (1.6)

H N C O  +  H  ^  N H 2 +  CO  (1.7)

N C O  +  H  ^  N H  +  CO  (1.8)

N  +  N O  ^  N2 +  O (1.9)

N H  +  N O  ^  N 2 +  O H  (1.10)

N H  +  N O  ^  N 2O +  H  (1.11)

N H 2 +  N O  ^  N 2 +  H 2O. (1.12)

Due to the extreme conditions of combustion it is very difficult to determine all species and 

reactions occurring. It has been concluded that over 230 reactions, including more than 45 

species, are involved in the combustion of HMX and PBX 9501.5

Breaking the combustion of condensed-phase explosives into three regions is a simpli

fied view of the deflagration occurring. W ith condensed-phase combustion there are two 

types of deflagration which can occur, conductive deflagration and convective deflagration. 

Conductive deflagration, or on-surface burning, was described previously as the process 

where the flame is on the surface of the solid explosive. This deflagration occurs at low 

pressures and propagates along the surface at velocities of a few m /s. As intermediate 

product concentrations and relative pressures increase, the luminous flame extends closer 

to the condensed phase, decreasing the flame standoff distance and increasing the reaction 

rate and propagation velocity of the flame. When the flame standoff distance is small 

enough, convective deflagration can occur. Convective deflagration occurs within the solid 

material when the pressure is great enough for the hot gases to penetrate the damaged 

solid. The pressure at which this occurs is defined as the critical pressure and is dependent 

on the porosity of the material.8 The more porous or damaged the explosive, the lower
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the critical pressure. Convective deflagration is sustained by the convective feedback of 

the hot product gases rapidly penetrating the damaged explosive. This deflagration occurs 

at much faster propagation velocities of 100's to 1000's of m /s and rapidly increases the 

rate of reaction. Convective deflagration is considered to have a very important role in the 

transition to detonation in solid explosives and will be discussed in more detail in Chapters 

5 and 6 .

1.2 Uintah Computational Framework
The Uintah Computational Framework is a collaboration of work from computer scien

tists, engineers, and chemists, developed at the University of Utah. This framework was 

first developed to model the response of energetic devices to hydrocarbon pool fires and has 

since been expanded to modeling solid explosives, coal burning plants, and flow through 

urban environments. Uintah is a component-based software that accurately resolves the 

fluid-structure interactions (FSI) of the combustion of high explosives. The framework is 

comprised of numerous physics-based components, three of which were used in the work 

described here. These are the Material Point Method (MPM),9-12 a compressible flow 

computational fluid dynamics (CFD) algorithm (ICE),13,14 and a FSI algorithm (MP- 

MICE).9,15,16 The FSI algorithm was developed at Los Alamos National Laboratory and was 

specifically designed to simulate high deformation rate FSI. ICE is a finite volume method 

and uses an adaptive hexahedral mesh. MPM is used to evaluate the distortion and evolution 

of the solid material using Lagrangian points (particles) on a Eulerian grid. The particle’s 

state vector is then extrapolated to the cell centers to be used in the multimaterial CFD 

model. This allows multiphase materials to use the same Eulerian mesh. The MPMICE 

algorithm is unique in the way in which solid and gas phase materials interact, and this 

approach facilitates treatm ent of solid ^  gas phase reactions. The Uintah Computational 

Framework has exhibited linear strong and weak scaling up to 512 K cores on DOE’s 

Mira.17 This enabled the execution of macroscale simulations with a relatively small grid cell 

resolution (2 mm). Substantial changes in the Uintah infrastructure were required in order 

to run these numerical experiments at the scales required. The MPMICE component was 

updated to dynamically execute the task graph18 by way of message passing to communicate 

between nodes.19,20 This method has been shown to be portable across a number of different 

supercomputers. A full description of the changes made was presented in.17 Adaptive 

Mesh Refinement (AMR)21 was also utilized for large-scale simulations to decrease the 

computational costs.
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1.2.1 M u ltim ateria l G overning E quations

This section is a reprint of a portion of the accepted article “ M. Berzins, J. Beckvermit, 

T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt, C. Wight. Accepted to SIAM 

Journal on Scientific Computation 2015” .17

“The governing multi material model equations are stated and described, but not devel

oped, here. Their development and the methods for solving them can be found in .9,15,16,22 

Here, we identify the 8 quantities of interest and the equations (or closure models) which 

govern their behavior. Consider a collection of N  materials, and let the subscript r signify 

one of the materials, such tha t r =  1, 2, 3 , . . . , N . In most simulations discussed in this 

thesis two materials are used, a solid (PBX 9501) and a gas (products of reaction). In an 

arbitrary volume V(x, t), the averaged thermodynamic state of a material is given by the 

vector [Mr, u r, er , Tr , vr , Or , o r ,p], where the elements are the r-material mass,velocity, inter

nal energy, temperature, specific volume, volume fraction, stress, and the “equilibration” 

pressure. The r-material averaged density is pr =  Mr/V . The rate of change of the state in 

a volume moving with the velocity of r-material is 

1 DrMr N
1 DrMr =  C S ^ r (1.13)V D t s = 1,n = r P

1 D r(M u r) =  OrV ■ o  +  V  ■ Or(o r -  o) +  Prg +  EN=iFrs +  C S p T  (1.14)
V D t s = 1 ,n = r r

1 D r(Mrer) _ D r vr „ _  . n ^  , N QŜ r /i 1 r\
TT-----pTT----  =  —prP^T,---+ OrTr : V u r — V  ■ Jr +  E s=iQrs +  E  S pe (1.15)V D t D t s=1,n=r

Equations (1.13-1.15) are the averaged model equations for mass, momentum, and 

internal energy of r-material, in which o is the mean mixture stress, taken here to be 

isotropic, so tha t o  =  — p i in terms of the hydrodynamic pressure p. The effects of 

turbulence have been omitted from these equations.

In Eq. (1.14) the term ^ N=1 F rs signifies a model for the momentum exchange among 

materials and is a function of the relative velocity between materials at a point. For a two- 

material problem we use F 12 =  K 12O1O2(u 1 — u 2), where the coefficient K 12 determines the 

rate at which momentum is transferred between materials. Likewise, in Eq. (1.15), ^ N=1 Qrs 

represents an exchange of heat energy among materials. For a two-material problem Q 12 =  

H 12O1O2(T2 — T1), where Tr is the r-material temperature and the coefficient Hrs is analogous 

to a convective heat transfer rate coefficient. The heat flux is j r =  —prbrVTr where the 

thermal diffusion coefficient br includes both molecular and turbulent effects (when the 

turbulence is included).
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The temperature, Tr , specific volume, vr , volume fraction, 9r , and hydrodynamic pressure 

p are related to the r-material mass density, pr, and specific internal energy, er , by way of 

equations of state. The four relations for the four quantities (Tr,v r,dr,p) are:

Equations (1.16) and (1.17) are, respectively, the caloric and thermal equations of state. 

Equation (1.18) defines the volume fraction, 9, as the volume of r-material per total material 

volume, and with tha t definition, Equation (1.19), is referred to as the multi material 

equation of state. It defines the unique value of the hydrodynamic pressure, p , tha t allows 

arbitrary masses of the multiple materials to identically fill the volume, V . This pressure 

is called the “equilibration” pressure.23

A closure relation is still needed for the material stress, c r . For a fluid c r =  —pI +  Tr 

where the deviatoric stress is well known for Newtonian fluids. For a solid, the material 

stress is the Cauchy stress. The Cauchy stress is computed using a solid constitutive model 

and may depend on the rate of deformation, the current state of deformation (E), the 

temperature, and possibly a number of history variables:

Equations (1.13-1.20) form a set of eight equations for the eight-state vector with com

ponents [Mr, u r , er, Tr , vr , 9r, c r ,p], for any arbitrary volume of space, V , moving with the 

r-material velocity. This approach uses the reference frame most suitable for a particular 

material type. The Eulerian frame of reference for the fluid and the Lagrangian for the 

solid. There is no guarantee tha t the arbitrary volumes will remain coincident for the two 

materials. This problem is addressed by treating the specific volume as a material state 

which is integrated forward in time from the initial conditions. The total volume associated 

with all of the materials is given by

er =  er(vr, Tr)

Vr =  Vr(p,Tr)

9r =  prvr

0 =  1 — E s=ipsvs

(1.16)

(1.17)

(1.18) 

(1.19)

c  r =  ffr (V ur, E r ,Tr , . . . ) (1 .20)

Vt =  E  N=l Mrvr (1 .21)

where the volume fraction is 9r =  M rvr/V t (which sums to one by definition). An evolution 

equation for the r-material specific volume has been developed in22 and is stated here as:
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1 Dr(Mrvr)
v  D t

f t v • u  +  vrs ; ^ r -  ftzN = ivss s^ rPs

I P r O r ^  -  f t EN=iPsOs DSTSD t D t
(1 .22)

Or Kr 
\^N o k2l̂ S=1OSKS

and kr is the r-material bulk compressibility, O is the constant pressure

thermal expansivity.

The evaluation of the multi-material equation of state (Eq. (1.19)) is required to 

determine an equilibrium pressure that results in a common value for the pressure, as 

well as specific volumes that fill the total volume identically.”

1.2.2 R eaction  M odel

As discussed in Section 1.1, the combustion of HMX-based explosives is very complex. 

Many research groups have looked into modeling the combustion on all scales, from de

tailed kinetics models to simple combustion models. The detailed kinetics models are very 

in-depth, using thermal decomposition reactions for the condensed phase and elementary 

kinetics mechanisms to describe the gas phase. Simple kinetics models, on the other hand, 

do not account for the chemical kinetics of combustion. Instead they examine the reaction 

rate by conserving energy, mass, and momentum.

Detailed kinetics models are useful in fully simulating the different aspects of combustion 

on the microscale. One challenge of detailed kinetic modeling is determining how to treat 

the condensed phase decomposition, because the exact mechanism is still unknown for 

HMX-based explosives. The approximations presented here for the condensed-phase are 

considered acceptable approaches because most of the energy release in the combustion of 

HMX comes from the gas-phase reactions. To account for this uncertainty, some modelers 

have allowed two global pathways for the condensed-phase decomposition.24 Allowing the 

condensed phase to decompose by the exothermic path of H M X ^4C H 2O +  4N2O or the 

endothermic path of H M X ^4H C N + 2N O 2+2N O + 2H 2O .5 Other groups have opted to use 

a simplified modeling approach where they employ known surface temperatures and species 

concentrations as a boundary condition without solving any laws of conservation between 

the solid and gas.25,26 Another approach is to avoid modeling the condensed-phase structure 

by solving the mass burn rate iteratively as a function of the heat flux at the surface.27,28 

A more in-depth model was developed by Washburn and Beckstead,29 and is able to closely 

represent the tem perature sensitivities of the burn rate at low pressures. This was done by 

including the surface tension of the bubbles to more accurately represent the melt layer at 

the surface of the propellent.
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At higher pressures the flame stand off distance is much smaller than at lower pressures, 

resulting in the gas phase reactions dominating the burn rate. Detailed kinetics models 

excel in this region. Since the combustion of many high explosives results in similar final 

reactions with varying species concentrations, the kinetics are fairly well known for this 

region. Modeling packages such as CHEMKIN30 and CHEETAH31 can be used for such 

calculations. Other detailed kinetics models have shown good agreement with the species’ 

concentration and temperature profiles in the gas phase combustion of HMX .32-36 The 

advantages of using detailed kinetics models is their ability to examine the temperature 

and species’ concentration profiles. This gives insight into the flame structure and heat 

release mechanisms. The burn rate tem perature sensitivities over a wide range of pressures 

can also be calculated.

In order to model the detailed kinetics of the reactions involved in the combustion of 

HMX-based explosives, the grid cell sizes must be on the micron scale to fully resolve the 

flame standoff distance and melt layer. This is unfeasible for the scales this research was 

focused on. Therefore Uintah was set to utilize a simple combustion model which assumed 

global kinetics to describe the deflagration of HMX. The Ward, Son, and Brewster (WSB) 

steady deflagration model, developed at Los Alamos National Laboratory,37 describes the 

deflagration mass conversion rates in a simplified algebraic solution. This model was devel

oped to describe the flame structure, along with the tem perature and pressure sensitivities 

of the mass burn rate in a simplified form. The reaction model is a two-phase chemistry 

model, in which the solid explosive (A) is converted to gas-phase intermediates (B) which 

react to form the final products (C), tha t is, A (Solid)^  B(gas) ^  C(gas). Therefore only 

two phases of the combustion are modeled; the condensed and gas phases. The melt layer 

is assumed to have little impact on the overall combustion and is therefore ignored.

Previous simple combustion models38-41 assumed a high activation energy associated 

with the condensed and gas-phase reactions. In doing so the models produced a concave-up 

temperature profile tha t increased much more sharply than the empirical data did when 

moving away from the material surface. Zenin et al.42 discovered through thermocouple 

experiments tha t the unconfined deflagration of HMX exhibited a concave-down flame 

temperature profile adjacent to the surface of the solid. This suggested that there is not 

a large convective diffusion zone on the surface of the solid as was observed with previous 

models. To account for this the WSB model assumes a negligible activation energy for 

the gas-phase reactions. The temperature profile from the improved model matched the 

empirical data very well and exhibited the correct concave-down shape with a positive
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slope at the surface. The negligible gas-phase activation energy assumption was justified 

by the gas-phase reactions being radical chain reactions. This chemistry is easily explained 

with the Zeldovich mechanism43 for a hydrogen/oxygen combustion system. This breaks the 

combustion into two steps, initiation/branching and recombination/termination. In these 

systems there is a high activation energy associated with the initiation/branching step,

H  +  O2 +  3H2 ^  3H +  2H 2O (1.23)

needed for the dissociation of H2. This step is analogous to the decomposition of the 

condensed phase and is very tem perature sensitive. The recombination/termination step,

H  +  H  +  M  ^  H 2 +  M  (1.24)

on the other hand, is temperature insensitive, resulting in a negligible activation energy. 

This step exhibits most of the energy release of the system, similar to the chemistry seen 

with radical gas-phase reactions in the steady combustion of HMX.

The WSB model therefore assumes the condensed phase thermal decomposition is a 

unimolecular, irreversible, zeroth-order reaction, such that A ^ B . The gas-phase then un

dergoes an irreversible, first-order with respect to B, second-order with respect to C, chain 

reaction (B + M ^C + M ). This model has a large pressure dependence associated with the 

conductive heat transfer, which greatly affects the rate of the gas-phase reactions. The 

main assumptions in the WSB model37 are:

1. The specific heat of the gas-phase and the condensed-phase are equal.

2. There is no mass diffusion assumed in the condensed-phase.

3. Mass diffusion of the gas-phase is described by Fick’s Law.

4. The gas-phase follows the ideal gas law.

5. The condensed-phase is considered incompressible.

6. There is no pressure dependence associated with the heat release of the condensed- 

phase, only the gas-phase.

7. The thermal conductivities and specific heat are constant.

8. The thermal diffusivity and mass diffusivity are assumed to be equal in the gas-phase.
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W ith these assumptions the WSB model closely represents the experimentally determined 

flame temperature profile, and similar surface tem perature and heat release profiles.37 The 

model also exhibited good agreement with the pressure and temperature sensitivities of the 

mass burn rate and the flame standoff distance.37

The mass burn rate, Sp^ r , is computed using

where T0 is the initial bulk solid temperature, k is the thermal conductivity, E s is the 

condensed phase activation energy, R is the ideal gas constant, CP is specific heat, Q is the 

heat released, ps is the condensed phase density, A s is the condensed phase frequency factor, 

x cd is the convective diffusion length, and x s is the flame thickness.44 Tsurf  is a subscale 

surface temperature. Equations 1.25 and 1.26 are solved iteratively until a convergence 

criteria is met. A further, more detailed description, including the equations used in the 

WSB reaction model, is discussed in Chapter 5.

It is understood tha t the WSB model is a simplified view of the complex reactions 

occurring in the combustion of HMX and PBX 9501. Due to the need for deterministic 

modeling on a macroscale and the good agreement with experimental results, the WSB 

steady deflagration model was implemented in the Uintah DDT reaction model. The one

dimensional WSB model was modified from its original form to include three-dimensional 

effects.47 Extensive validation on Uintah’s DDT model was previously done by Peterson 

and W ight.45 The simulated DDT model was validated at multiple pressures and initial 

temperatures (273, 298, and 423 K) for the conductive burn rate of HMX. The burn rates 

closely matched experimental results, as seen in Figure 1.3. The burn rate was measured by 

a strand burner experiment described in .46 This experiment allows for the regression rate, 

the rate the material is consumed, to be measured as a function of temperature and pressure. 

Experimentally a wide range of pressures can be analyzed using the photocinemicrographic 

method .46 This method allows for control over the pressure and initial temperature of the 

condensed phase combustion. In these experiments the explosive was ignited by a flash wire 

and high-speed cameras were used to determine the regression rate of the combustion. Ex

periments were carried out in a window bomb apparatus. Computationally, measurements 

were taken from a one-dimensional simulation consisting of a stick of HMX surrounded by 

symmetric wall boundary conditions on nonprinciple faces and Neumann pressure boundary

KspsAsR(Tsurf )2exp (-E s/R T su rf) j 1/2

CpE s[Tsurf — T0 — Qs/ 2Cp] _
(1.25)

(1.26)
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F ig u re  1.3: Simulated surface burn rates compared with experimental values. The 
simulated data is from Peterson et al.,45 while the experimental data is from Atwood et 

al.46 Plot used with permission from J. Peterson and C. W ight.45

conditions on the open end. The HMX was ignited by 600 K gas on the open end which was 

pressurized to the desired pressure. Measurements were taken as an average of the mass 

converted from solid ^  gas in the amount of time it took to burn a few cells (^ 1  mm) after 

the initial deflagration instabilities subsided.45

The simulated burn rate agreed well with experimental values for pressures from 1-70 

MPa, the pressure range within which DDT occurs (Figure 1.3). The large deviations seen 

at low pressures would occur in simulations of unconfined deflagration, where convective 

deflagration does not occur. Thus the simulations presented in this thesis should not occur 

in this region. When the model was previously adapted to three dimensions, a resolution 

dependence for convective deflagration was introduced. Chapter 5 discusses the changes 

made to account for this.

The DDT model is embedded within the MPMICE component and is used to describe 

deflagration, detonation, Shock to Detonation Transitions (SDT), and DDT in condensed 

phase explosives. The WSB model was combined with the the ViscoSCRAM constitutive
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model48 to evaluate the crack propagation in the solid material to model the transition to 

convective deflagration as defined by Berghout.49 This model has been designed to match 

experimental relaxation times as determined by the visco-elastic response for PBX 9501.48 

At a pressure of 5.3 GPa or higher U intah’s DDT model switches from deflagration to 

detonation. The JW L + +  simple reactive flow model50,51 is used to describe the detonation. 

The pressure threshold of 5.3 GPa for HMX and PBX 9501 was chosen by Peterson and 

Wight45 for three main reasons. First, this threshold gave reasonable results for the run 

distance to detonation for aluminum impact experiments.45 Second, it is well known that 

the reaction rate increases with increasing pressure. It was discovered there is a discontinuity 

in this increase at 5 GPa, and the reaction rate exhibits a large increase at this pressure. 

At pressures above 5 GPa the reaction rate continues to increase with pressure, but more 

dramatically than it did at pressures below the discontinuity.45,52 Third, the internal energy 

produced by the reversible adiabatic compression of solid HMX to 5.3 GPa was calculated 

to be 138.9 kJ/m ol.45 This amount of energy is relatively close to the activation energy 

found for HMX, which lies between 140 and 165 kJ/m ol.45 More details of U intah’s DDT 

reaction model are presented in45,47 and Chapters 2-5.

This thesis examines the DDT in a large array of explosive cylinders. In doing so the 

reaction models needed to be further validated from what Peterson et al.45 had previously 

reported. Chapter 2 is an overview of the Uintah Computational Framework. This chapter 

examined work done by many collaborators in an effort to describe the full capabilities of 

Uintah. Research on the mesoscale of explosions was examined by Joseph Peterson and 

Scott Bardenhagen, and macroscale simulations were examined by Jacqueline Beckvermit, 

Joseph Peterson, and Monica Hall. A brief discussion also looks at the Uintah infrastructure, 

including strong and weak scaling studies, the fluid structure interactions, and the task 

graph used. Todd Harman, John Schmidt, M artin Berzins, and Qingyu Meng were the main 

contributors to the computational infrastructure and fluid-structure interactions. Chapter 3 

examines the equation of state used for the reactant and products. Due to the fit parameters 

for the reactant equation of state, negative pressure was observed when the material was 

in tension. This is not allowed within the MPMICE component, which was thus modified 

from the original to eliminate the possibility of negative pressures. Chapter 4 evaluates the 

resolution dependence on the DDT reaction model and a comparison between mesoscale and 

bulkscale modeling of explosions. This chapter was a collaboration with Joseph Peterson, 

who focused on the mesoscale simulations. The results showed the conductive deflagration 

rate was not effected by the grid cell size. The detonation model on the other hand
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exhibited an 8% error associated with the detonation velocity when increasing the cell 

size from 1 to 12 mm. Chapter 5 describes a resolution dependence in the convective 

deflagration model and changes made to eliminate it. The propagation velocity of conductive 

and convective deflagration was also modified to match experimentally determined values. 

Andrew Bezdjian contributed a grid convergence study, examining the time to detonation 

dependence on grid cell size. W ith the completion of validating the known quantities of the 

DDT reaction model, the initiation mechanism for a DDT in an array of explosive cylinders 

is examined in Chapter 6. Two mechanisms were observed: inertial confinement and impact 

to detonation transition. Inertial confinement occurred as the explosive cylinders compacted 

into one another, forming a high-density barrier. This barrier trapped the product gases, 

building the pressures to tha t needed for the reaction model to transition to detonation. 

Impact to detonation transition occurs when the deflagrating cylinders are at an elevated 

pressure and are impacted by a pressure wave or explosive fragment. The impact causes the 

stress waves to reach pressures above the detonation pressure threshold. The DDT initiation 

mechanisms were used in order to propose safer ways to package cylinders. The results of 

tha t work are reported in Chapter 7. It was determined that the packing configuration can 

inhibit DDT in an array of explosive cylinders.
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The Uintah Com putational Framework is the first software to enable effectively sim ulating the development 
of detonation in semi-truck-scale transportation accidents.

Accidental explosions are ex
ceptionally dangerous and 
costly, both in lives and mon

ey. Regarding worldwide conflict 
with small arms and light weapons, 
the Small Arms Survey has recorded 
more than 297 accidental explosions 
in munitions depots across the world 
that have resulted in thousands 
of deaths and billions of dollars in 
damage in the past decade alone.1 As 
the recent fertilizer plant explosion 
that killed 15 people in the town 
of West, Texas demonstrates, acci
dental explosions aren’t limited to 
military operations. Transportation 
accidents also pose risks, as illus
trated by the occasional train derail
ment/explosion in the nightly news, 
or the semi-truck explosion detailed 
in the following section. Unlike oth
er industrial accident scenarios, ex
plosions can easily affect the general 
public, a dramatic example being the 
Pacific Engineering and Production 
Company of Nevada (PEPCON) 
plant disaster in 1988, where win
dows were shattered, doors were 
blown off their hinges, and flying 
glass and debris caused injuries up 
to 10 miles away.

W hile the relative rarity of acci
dental explosions speaks well of our 
understanding of the safety hazards 
to date, their violence rightly gives 
us pause. A better understanding of 
these materials is clearly still need
ed, but a significant barrier is the

complexity of these materials and 
the various length-scales involved. In 
typical military applications, explo
sives are known to be ignited by the 
coalescence of hot spots that occur on 
micrometer scales. W hether this re
action remains a deflagration (burn
ing) or builds to a detonation depends 
both on the stimulus and boundary 
conditions or level of confinement. 
Boundary conditions are typically on 
the scale of engineered parts, approx
imately meters. Additional dangers 
are present at the scale of trucks and 
factories. The interaction of various 
entities, such as barrels of fertilizer or 
crates of detonators, admits the pos
sibility of a sympathetic detonation— 
that is, the unintended detonation of 
one entity by the explosion of anoth
er, generally caused by an explosive 
shock wave or blast fragments.

Although experimental work has 
been and will continue to be critical 
to developing our fundamental un
derstanding of explosive initiation, 
deflagration, and detonation, there’s 
no practical way to comprehensively 
assess safety on the scale of trucks and 
factories experimentally. The sce
narios are too diverse and the costs 
too great. Numerical simulation 
provides a complementary tool that, 
with the steadily increasing compu
tational power of the past decades, 
makes simulations at this scale begin 
to look plausible. Simulations at both 
the micrometer scale (the mesoscale)

and at the scale of engineered parts 
(the macroscale), have contributed in
creasingly to our understanding of 
these materials. Still, simulations on 
this scale require both a massively 
parallel computational infrastruc
ture and selective sampling of me- 
soscale response, such as advanced 
computational tools and modeling. 
W ith this in mind, we developed the 
computational framework Uintah 
(see www.uintah.utah.edu) for ex
actly this purpose.

Motivation
In 2005, a truck carrying 16,000 
kilograms of seismic boosters, driv
ing through Spanish Fork Canyon, 
Utah took a corner too quickly and 
overturned. The semi-truck caught 
fire and within three minutes deto
nated, creating a crater in the road 
approximately 24 meters wide and 
10 meters deep (see Figure 1). The 
detonation hurled hot metal shards 
as far as one-quarter mile away, 
which started grass fires in the sur
rounding hills. Fortunately, the 
driver was coherent enough to relay 
to nearby drivers that the truck was 
carrying mining explosives, and to 
evacuate the area immediately. Only 
minor injuries were sustained, but if 
this had occurred in a densely popu
lated region, the death toll could 
have been substantial. W hat has sci
entists and engineers puzzled is the 
extent of the damage. The crater’s

Copublished by the IEEE CS and the A IP  1521-9615/13/131.00 © 2013 IEEE C o m p u t in g  in  S c ie n c e  &  E n g in e e r in g

mailto:moe@iran.usc.edu
mailto:nsfphyman@gmail.com
mailto:Gabriel.Wainer@sce.carleton.ca
http://www.uintah.utah.edu


21

M

Figure 1. A 24-meter-wide crater produced from an unexpected Deflagration-to- 
Detonation Transition (DDT) of 16,000 kilograms of high explosives, carried by a 
truck through Spanish Fork Canyon, Utah.

size and the lack of any unexploded 
boosters suggest that a mode of com
bustion called detonation occurred. 
The safety characteristics of a single 
device suggest detonation should 
never occur in transportation acci
dents; instead, a mild, relatively slow 
mode of combustion, called defla
gration, should have occurred. In 
confined deflagrations, only a small 
percentage of the explosive is con
sumed before it’s ejected away from 
the ignition site. We hypothesize 
that it was inertial confinement or 
the way the explosives were loaded 
inside the trailer that caused the def
lagration reaction to transition into 
a detonation. This accident, along 
with several other petascale simula
tion efforts, has driven the develop
ment of the Uintah Computational 
Framework. The complex physics of 
this accident requires modeling at 
multiple spatial and temporal scales 
to provide predictive simulations.

Because the reaction rates and 
subsequent energy release rates of 
deflagration and detonation differ by 
roughly five orders of magnitude, a 
Deflagration-to-Detonation Tran
sition (DDT) leads to extremely 
violent events. The mechanism of a 
D D T  in solids is still unknown, but 
various mechanisms have been pro
posed. One such mechanism involves 
the advection of hot combustion gas
es through cracks in the explosive, 
a process called convective deflagra
tion. Convective deflagration occurs 
when the pressure outside a damaged 
combustible forces hot gases into 
the explosive, increasing the burn
ing surface area, damaging the ma
terial in several different directions 
simultaneously, and accelerating the 
reaction. In this particular accident, 
8,400 explosive boosters were ar
ranged in a way that’s reminiscent

of a porous material rather than a 
monolithic solid. We suspect that the 
convective burning mechanism was 
partially responsible for DDT. Using 
large-scale simulations, we intend 
to investigate why D D T occurred 
and determine if inertial confine
ment contributed to the detonation. 
If inertial confinement was the cause, 
we’ll use our simulation capabilities 
to suggest alternative, safe packing 
configurations.

Challenges in Modeling 
Explosives
The deflagration-to-detonation tran
sition of high explosive materials is a 
multistep process with fluid-structure 
interactions (FSIs) during the slow 
deflagration and rapid detonation re
gimes. As deflagration is occurring, a 
cold solid reactant is heated to the point 
of ignition to form hot gas, which can 
flow through pores or cracks in the 
damaged material. The greatest diffi
culty of a D D T simulation is accurate
ly modeling stress-induced material 
damage so that it statistically captures 
cracking and the formation of pores in 
the explosive, which allows convective 
burning in the cracks.

Cracking, porosity, and convec
tive burning are difficult to capture 
at the macroscale, due to averaging, 
necessitating the use of statistically 
based, subgrid scale models. Meso- 
scale modeling has the potential to 
provide the statistics needed for sub
grid models that live on the discrete 
elements of the simulation domain. 
Mesoscale simulations are compu
tationally expensive, requiring so
phisticated material models capable 
of capturing the material fracture, 
elastic yield, plastic flow, melting, 
and heating due to the energy con
version from these forms of mechan
ical work. Finally, detailed reaction 
modeling of explosives at the me- 
soscale involves many reaction spe
cies and the complex interplay of the 
reacting species further complicates 
the problem. The development of 
simple reaction models that capture 
the complex behaviors at this scale 
are needed, which we’ll discuss later.

Uintah Computational 
Framework
The open source (M IT license) 
Uintah software originated in the 
University of Utah Department of
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Particles

mesh with particles. The Implicit, 
Continuous-fluid Eulerian (ICE) 
algorithm uses a hexahedral block of 
cells and the Material Point Method 
(M PM ) particles reside within that 
block.

Energy (DOE) Center for the Simu
lation of Accidental Fires and Explo
sions (C-SAFE),2 and has been in use 
for a number of years. The present 
status of Uintah, including applica
tions, documentation, and releases, 
is described in a recent report.3 U in
tah is a computational framework 
that integrates multiple simulation 
components, analyzes the data de
pendencies and communication pat
terns between them, and efficiently 
executes the resulting multiphysics 
simulation. Uintah presently con
tains four main simulation compo
nents or algorithms:

• the finite volume mulitmaterial com
putational flow dynamics (CFD) 
formulation (the Implicit, Continuous- 
fluid Eulerian algorithm, or ICE),4’5

• the Material Point Method (MPM)6 
for structural mechanics,

• the combined FSI algorithm MP- 
MICE,7 and

• the ARCHES turbulent-reacting 
Large Eddy CFD component.8

Uintah exhibits good scalability char
acteristics,9 runs on both National 
Science Foundation (NSF) and DOE 
parallel computers (Stampede, Krak- 
en, Titan, Lonestar, and Vesta), and 
is used by many National Nuclear Se
curity Association (NNSA), Depart
ment of Defense (DOD), DOE, and 
NSF projects.

I M U L AT  I O N S

The main Uintah component 
used in this research is the M P- 
M ICE, in which the multimaterial 
CFD  formulation (ICE) is used to 
model fluids, and the M PM  code is 
used to model the solid explosive. 
The ICE algorithm uses a hexa- 
hedral block of cells and the MPM 
particles reside within that block as 
shown in Figure 2.

A unique feature of Uintah is that 
the application developer is only 
asked to write code to solve equa
tions on a hexahedral patch of the 
computational domain, and doesn’t 
have to worry about parallelism and 
communications between patches, 
because this is all automatically re
solved by the framework. The U in
tah computation framework has a 
wide range of material models, reac
tion models, and equations of state 
that allow simulations of exothermic 
FSIs at different length- and time- 
scales. These embedded models live 
inside a framework that hides the 
method’s parallelization, allowing 
simple science or engineering mod
els to scale to hundreds of thousands 
of processors.

F lu id -Stru ctu re  In te ractio n s
Our methodology for solving FSIs 
uses a strong coupling between the 
fluid and solid phases, with a full Na- 
vier-Stokes representation of the flu
ids and transient, nonlinear response 
of the solids, including exothermic 
solid-to-gas reactions. The Euleri- 
an- based ICE method4,5 is used to 
represent materials on a hexahedral 
grid. It allows simulation of complex 
gas flows with heat and momentum 
coupling inside a compressible flow 
paradigm. For solid mechanics, a 
Lagrangian-based M PM 6 is used 
that’s capable of simulating complex 
behaviors, including material damage,

stress and strain, and elastic and plas
tic responses.

The algorithm has its foundation 
in a “multimaterial” CFD approach 
in which each material (either fluid 
or solid) is defined at the continuum 
level over the entire computational 
domain, including regions where a 
material doesn’t exist. In addition 
to the physical state (that is, mass, 
momentum, and energy) at each 
discrete point, the volume fraction 
of each material is tracked with the 
constraint that the volume fractions 
of all materials must sum to unity in 
any grid cell.4

To solve the discretized m ulti
material equations, we use a cell- 
centered formulation of the ICE 
m ethod of Harlow, further de
veloped by Kashiwa and others at 
the Los Alamos National Labora- 
tory.4,5 The use of a cell-centered, 
finite volume solution technique 
is convenient in that a single con
trol volume is used for all m ateri
als, simplifying the conservation of 
mass, momentum, and energy, and 
the exchange of these quantities 
between the materials. The m eth
od is fully compressible, an im por
tant consideration in simulations 
involving explosions of any type, 
particularly detonations. In  addi
tion to the source terms present 
in any CFD  formulation, the mul
timaterial equations also include 
exchange terms for mass, momen
tum, and heat. Intermaterial mass 
exchange is based on the reaction 
models, such as those described 
in the next section. M om entum  
and heat exchange is typically 
modeled as a drag law based on 
relative material velocities or tem 
peratures, respectively, computed 
in a point-wise implicit manner to 
ensure conservation.

C o m p u t in g  in  S c ie n c e  &  E n g in e e r in g
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Figure 3. DDT reaction model results compared with experimental results. (a) The burn rate at three initial solid temperatures 
versus pressure where simulated data is compared against data from A.I. Atwood and her colleagues for the plastic-bonded 
explosive PBX9501.18 (b) Comparison of the threshold for reaction against velocity for weak impacts.20 Plots used with 
permission from Joseph Peterson and Charles W ight.16 (HEVR = high explosive violent reaction.)

This formulation makes no explic
it distinction between the fluid and 
solid materials in the model equa
tions. FSIs aren’t tracked, nor are 
boundary conditions passed through 
them. To maintain the integrity of 
the fluid-solid interface and pro
vide a mechanism to track the de
formation history of the solid(s), 
we employ the Lagrangian particle 
technique MPM. The M PM  is used 
to evolve the equations of motion 
for solid materials, in part on ac
count of advantages in interfacing 
with the ICE method. The M PM 6 
is an extension to solid mechanics of 
the Fluid-Implicit-Particle (FLIP) 
method,10 which is a particle-in-cell 
method for fluid-flow simulations. 
Development of the M PM  has con
tinued, both studying and improv
ing the M PM  algorithm,11,12 as well 
as extending the technique by gener
alizing particle shapes.13 The MPM 
has become a powerful technique 
for computational solid mechanics 
in its own right, and has found favor 
in applications involving complex 
geometries,14 contact mechanics,13 
large deformations, and fracture,15 
to name a few.

Lagrangian particles or material 
points are used to discretize a mate
rial’s volume, and each particle car
ries state information (such as mass,

volume, velocity, and stress) about 
the portion of the material that it 
represents. O ur implementation uses 
a Cartesian grid as a computational 
scratchpad for computing spatial 
gradients—the same grid used by 
the ICE component. In MPM, parti
cles with properties (such as velocity 
or mass) are defined on a mesh, and 
particle properties are then mapped 
onto the mesh points. Forces, ac
celerations, and velocities are then 
calculated on the mesh points. The 
mesh-point motion is calculated, but 
only particles are moved by mapping 
velocities back to particles.

The combination of M PM  and 
the multimaterial CFD  algorithm 
to form our FSIs algorithm (MP- 
M ICE) involves a complex 14-step 
algorithm described elsewhere.7 
W hat makes this methodology 
unique is that the exchange of mass, 
momentum, and energy between the 
solid reactant and product gases oc
curs in the governing equations, and 
also that boundary conditions aren’t 
applied to tracked surfaces. Clearly, 
surface tracking in these types of 
simulations would be difficult.

D e fla g ra tio n  and  D etonation  
M odels
Our reaction models convert mass 
from the energetic materials (for

example, the plastic-bonded explo
sive PBX9501) to product gases, 
with the appropriate release of heat 
and exchange of momentum. U in
tah now includes models validated 
against various detonation, deflagra
tion, DDT, and shock-to-detona- 
tion transition (SDT) experiments. 
These models give us the capabil
ity to simulate steady and unsteady 
thermally activated deflagration and 
pressure-induced detonation of high 
explosives, including the D D T.16

T he numerical model for defla
gration is based on a two-step global 
kinetics model described by M J. 
Ward, S.F. Son, and M.Q. Brewster 
(called WSB).17 As originally formu
lated, this model predicts the steady 
combustion rate of the energetics as 
a function of the product gas’s pres
sure and the solid material’s tem
perature. We extended the 1D WSB 
model to 3D, and validated the pa
rameters against the experimental 
strand burner measurements of A.I. 
Atwood and her colleagues for the 
correct temperature and pressure 
dependence of the burn rate.18,19 
Figure 3 shows a validation of our 
burn model over a range of tempera
tures and pressures.

A simple shock-to-detonation 
model known as JWL++21 is used to 
simulate detonation formed when a
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shock wave, initiated by a mechanical 
insult, passes through the explosive. 
The model captures the SDT as a 
function of pressure in the solid-gas 
mixture, allowing for the advanta
geous use of simple equations of 
state. These equations of state model 
pressure at high-compression lev
els, while neglecting the calculation 
of complicated material processes. 
Shock-based ignition can occur when 
an explosive is dropped or perhaps 
impacted by a forklift or other mov
ing objects, and has the potential to 
lead to an accidental explosion. We 
validated our SDT model with a stan
dard test developed at Los Alamos 
National Laboratory, in which an ap
proximate 0.15-meter radius, hockey 
puck-shaped explosive is impacted 
at increasing speeds. A sharp speed 
threshold was observed in impact un
der about 75 meters per second (m/s), 
which caused cracking and other ma
terial damage but no reaction, while 
anything higher caused an explosion. 
Figure 3 compares experimental and 
simulated results for the test, where 
“0” indicates cracking and material 
damage, while “1” indicates a highly 
explosive, violent reaction.

The general approach for simu
lating the D D T  process relies on 
the idea that high pressure forces 
hot gases through the voids (pores, 
cracks, and so on) in an explosive, 
which increases the reaction rate. 
Relating this to the normal factors 
cited for causing DDT, such as hot
spot nucleation and growth, shear 
and heating of a solid near hot- 
cavity gases, and frictional heating, 
leads to the startling conclusion that 
all of these phenomena can be relat
ed to the simple process of hot prod
ucts of reaction flowing through 
the solid explosive. By merging the 
WSB deflagration model with the

JW L++ detonation model inside a 
fluid-structure algorithm with a few 
experimentally derived thresholds, 
we’re able to model the D D T  in 
solid materials.

O ur D D T  model agreed well 
with experimental data for the pres
sure and temperature dependence 
of the burn rate and detonation 
velocities (see Figure 3), including 
convective deflagration propagation. 
Convective deflagration is the pro
cess of burning within the cracks of 
the energetic solid, rapidly increas
ing the reaction rates and pressure. 
W ithout convective deflagration, 
D D T  wouldn’t occur in an uncon
fined explosive, because deflagration 
would only occur on the solid’s sur
face. W e’re able to model convective 
deflagration by using a crack model 
that describes the crack develop
ment as a function of pressure.22 
W ith this model, we’re able to rep
resent a material’s damage, depen
dent on the surface pressure and the 
propagation of the reaction through 
a damaged explosive.

Sca lin g
Modeling explosions from meso- 
scale up to a full semi-truck requires 
a linearly scalable framework—in 
other words, the time to solution 
decreases with the number of pro
cessing units. Though mesoscale 
simulations are small in physical 
size, they can be com putation
ally expensive, when the explosive 
grains and binders are fully re
solved. At the other end of the scale, 
simulating an entire semi-truck 
with high spatial resolution is also 
expensive, and requires the largest 
computing platforms. The Uintah 
Com putational Fram ework has 
been shown to linearly scale from 
16 cores to 256,000 cores, running

the M PM ICE component. This 
scalability has relied heavily upon 
the asynchronous task-graph ap
proach that allows components to 
be written as a series of tasks, where 
each task is a major step in the M P- 
M IC E algorithm. Each task has 
required inputs from the data ware
house and writes outputs to the data 
warehouse. The actual execution of 
the tasks is managed by a runtime 
system that maps the tasks onto pro
cessors after an analysis of the task’s 
data dependencies. Figure 4 shows 
an example of a high-level Uintah 
task graph for the MPM.

The scalability of Uintah has 
proceeded in three distinct phases. 
In Phase 1 (1998-2005), Uintah 
overlapped communications with 
computation and executed the task 
graph in a static manner using 
standard data structures and one 
message-passing process per core 
(see www.uintah.utah.edu).23 In 
the second phase, the data struc
tures were greatly improved and 
fast mesh-refinement algorithms 
were developed to scale to 100,000 
cores.9,24,25 In this phase, tasks were 
executed in a dynamic or even out- 
of-order way. Finally, in the third 
and current phase, we’re moving 
to a hybrid M PI-Pthread model, 
in which there’s only one M PI pro
cess per node and individual task 
threads are bound to available C PU  
cores. Individual tasks are sent to 
available CPU  cores and GPUs 
when available. This approach re
duces the total global memory us
age per node by up to 90 percent 
on the Jaguar XT5 system.26 Using 
a recently designed decentralized 
multithreaded scheduler and lock- 
free data warehouse, the overhead 
of using this hybrid approach has 
been significantly reduced, and both
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Figure 4. An example of a Uintah task graph for the MPM.

single-node performance and over
all scalability of U intah are further 
improved.27

T he scalability of the M PM ICE 
component used for modeling ex
plosives with adaptive mesh re
finement has been tested in both 
the weak and strong sense on the 
Jaguar XK6 system.27 The perfor
mance was tested with four problem 
sizes, with each problem containing 
approximately eight times as many 
cells as the previous problem. The 
numbers of particles representing 
the solid material created in the four 
runs were 7.1 million, 56.6 million, 
452.9 million, and 3.62 billion re
spectively. The grid contained three 
levels of mesh refinement, with each 
level being a factor of four more re
fined than the coarser level. Figure 5 
shows good weak and strong scal
ing, for macroscale simulations up 
to 256,000 cores on the then Jaguar 
XK6 (now Titan) architecture at 
DOEs Oak Ridge Laboratory.27

Mesoscale Explosions
W hen the relevant physics occurs 
on scales smaller than the compu
tational resolution, additional in
formation is needed. For accidental 
explosions, the vast majority of the 
simulation scenario needs only to 
resolve the macroscale. However, 
ignition occurs on the mesoscale, 
by the coalescence of hot spots. Hot 
spots are energy-localizing mecha
nisms that occur on the scale of ex
plosive heterogeneity—that is, the 
explosive grains. There are many 
possible hot-spot mechanisms,28 
and it’s clear that the dominant 
mechanisms vary with the scenario 
considered. Here, we use mesoscale 
simulations to gain insight into the 
ignition process. O ur long-term 
goal is to judiciously place mesoscale

simulations directly in macroscale 
simulations, to resolve hot-spot dis
tributions and predict ignition in 
areas of interest. These simulations 
bridge the gap between molecular 
and macroscale modeling.

At the micrometer-length scale, in
teractions between explosive grains 
and the plastic binder that hold 
them together, or other explosive 
grains, are explicitly resolved (see 
Figure 6). W hen the binder and 
grains are fully resolved, we can in
vestigate the different mechanisms. 
W hen a sufficient force is applied 
to the explosive and binder, there 
will be plastic deformation or work 
that generates hot spots, as Figure 6c 
shows. These hot spots could ei
ther dissipate their energy to colder

surrounding material, or coalesce 
and cause a sustained reaction, de
pending on their size, intensity, and 
number density.

Initially, our studies utilized ide
alized geometries of the explosive 
grains that were impacted by a 
piston at varying speeds and com
pared against experimental results.29 
These studies were designed to vali
date our material model, which in
cludes the elastic and plastic response 
as well as tem perature-varying 
thermal parameters. We compared 
the velocity and stress traces at the 
impact surface, for all of the im
pact speeds, and found good com
parison within 10 percent.29 W ith 
this agreement, we sought to study 
hot-spot distributions to find what
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Cores

Figure 5. Strong and weak scaling of an MPMICE 
problem with a steel container traveling at Mach- 
2 through ideal gas.27 W e used adaptive mesh 
refinement.

critical densities could cause a 
sustained reaction.

The WSB reaction model 
was used to determine if the 
hot spots could sustain a reac
tion.17 The simple temperature 
threshold used in the original 
formulation19 was incorrect 
at the time- and length-scales 
of the mesoscale simulation, 
necessitating the use of an Ar
rhenius-based adiabatic induc
tion time model. The model is able 
to capture the time to rapid reaction 
based on the local temperature in 
the material. We applied this model 
to impacts of approximately 100 
and 700 m/s. An insufficient num
ber of hot spots were formed in the 
low-velocity impact, and the reac
tion was ultimately quenched. At the 
high-velocity impact, the material 
temperature rises immediately, and 
a sustained reaction is formed as one 
pore is collapsed (see Figure 6d). The 
reaction then propagated through the 
bed. These results are qualitatively in 
agreement with experiments. Fur
ther investigation is needed to see if 
the model is able to capture hot-spot 
criticality for the initiation of rapid 
reaction that was seen to be some
where in the range of 400-500 m/s 
for the scenario studied.

It’s unlikely that idealized meso- 
scale geometries will result in the 
same hot-spot distributions and the 
same ignition behavior as real explo
sives. X-ray microtomography has 
been used to determine mesoscale 
morphology for a mock explosive, 
as seen in Figure 6a. Analysis of this 
mesostructure gave grain-sized dis
tributions in good agreement with 
formulation measurements. Frac
tured bits, as well as conglomer
ates (see Figure 6b) created during 
formulation, were also identified.

Using these same morphological 
tools, hot-spot size and shape distri
butions were quantified. An example 
calculation, with hot spots depicted 
in magenta, may be seen in Figure 6b. 
It was found that different mock 
materials had substantially differ
ent grain and simulated hot-spot 
morphologies.

W e’re in the process of studying 
the critical-impact velocity that our 
model predicts, and the associated 
hot-spot distributions from our ide
alized simulations. Looking further, 
we plan to use full 3D simulations 
of the real microstructures to either 
validate or refute the utility of the 
ideal simulations. The knowledge 
learned from these simulations will 
then be used to develop subgrid 
scale models that are applicable 
on the millimeter-length scale to 
validate our current work on truck
sized explosions (see Figure 6e).

Macroscale Explosions
The exact mechanism of D D T  is 
still being investigated, but numeri
cal analysis has shown that this tran
sition takes place when the local 
pressure exceeds a threshold of 5.3 
gigapascals (GPa) for the explosive 
PBX9501. W hat’s interesting about 
this pressure is that under adia
batic conditions, the deflagration of 
PBX9501 will produce pressures

around 2 GPa—far below 
what’s required for detonation. 
To investigate the possible 
mechanism, we ran small-scale 
(a few millimeters) simulations 
of confined PBX9501. In these 
simulations the explosive was 
enclosed in a steel shell and 
heated externally. We discov
ered that the collision of two 
pressure waves yielded the 
pressures needed for detona

tion (see Figure 7).30 By analyzing 
the interference of the waves over a 
range of device sizes and applied heat 
fluxes, a trend was discovered. De
pending upon the applied heat flux, 
the convective deflagration traversed 
the explosives at different rates, pro
ducing pressure waves. Depending 
upon the heating rate, the origins of 
the pressure waves and the resulting 
interference pattern varied.

In a separate series of simulations, 
we looked at the crack propagation 
and the resultant flame-propagation 
velocities, and qualitatively compared 
them with experiments.31 In these 
tests, a hot wire ignited a disk of ex
plosives in the center and high-speed 
photography captured the crack and 
flame-propagation velocities and pat
terns (see Figure 8). These results are 
an important step towards simulating 
explosions at the semi-truck scale, 
and show the utility of subgrid-scale 
statistical models for material damage 
and crack propagation in macroscale 
simulations.

The ultimate goal of our research 
is to assess the safety of transport
ing arrays of explosives. Specifically, 
we’re interested in the 2005 trans
portation accident described in the 
motivation section, since a deto
nation should not have occurred. 
O ur macroscale simulations involve 
homogeneous solid materials to
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Figure 6. A schematic of how mesoscale simulations can be used to inform macroscale simulations. (a, b) Real microstructures 
can be included in shock studies and hot-spot distributions can be quantified. At the same time, idealized microstructures 
can be used to study many different initial setups and (c, d) the resulting reactions. Real microstructure simulations can be 
used to validate the idealized microstructures when possible, which will provide some certainty of the validity of the idealized 
simulations. From the many-varied simulation setups for the idealized simulations, statistics can be extracted regarding hot
spot distributions, average reaction rates, and time to reaction as a function of some metric such as the average stress rate. 
These can then be formulated as subgrid scale models that are used in macroscale simulations, such as those damage and 
cracking materials we already use. (e) The deflagration on the macroscale of explosive cylinders using the reaction models 
validated on the mesoscale. In this simulation, deflagration and convective burning can propagate as far as 0.5 m or more 
prior to detonation. (MPa = megapascal.)

represent the PBX9501 grains and 
binder. W ith validation from meso
scale simulations and experimental 
data, we developed reaction models 
for deflagration and detonation that 
are helping us understand the under
lying mechanism of DDT. To keep 
the computational costs reasonable, 
the reaction models rely on a global 
kinetics model, with the understand
ing that reactants go to products at a 
known energy release.

In the 2005 accident, explosive cyl
inders were packaged in boxes con
taining approximately 20 cylindrical 
boosters, 5.7 cm in diameter, ranging 
from 33-74 cm in length. Our simu
lations are being used to investigate if 
inertial confinement was a significant 
contributor to the DDT, considering 
how the explosives were packed in the 
semi-truck. Determining the level 
of confinement needed for D D T  is 
computationally expensive, requiring 
machines like Titan. Through our 
simulation, we hope to understand

185 pis

-~3.125e+09 Pa 

2.083e+09 Pa 

1.042e+09 Pa 

-■ 1.013e+05 Pa

4.464e+09 Pa 

2.976e+09 Pa 

1.488e+09 Pa 

1.013e+05 Pa
191 ps

(a) (b)

Figure 7. A simulation of a square explosive device heated on one side. As the 
material decomposes, the pressure increases, deforming the steel case (shown 
in black) until it ruptures. Pockets of hot combustion gas cause stress waves 
to propagate out from those points. These waves can collide, forming a high- 
pressure region that initiates a detonation. (Pa = pascal; ^s = microseconds.)

how pressures can reach the neces
sary threshold and produce an ex
tremely violent detonation reaction. 
We hypothesize that the individual 
boosters reacted and the pressure 
forces deformed the nearby unre
acted boosters, creating “pores” or 
regions where the product gases were 
trapped. Pressure or stress waves 
propagated outward from the “pores” 
and collided, forming regions of high 
pressure, sufficient for a DDT.

Figure 9 shows results from our 
initial effort. In the simulation, we 
used realistic booster geometries 
ignited by hot gas (in the lower left 
corner of each graph), with burning 
propagating outward. These pre
liminary results suggest that iner
tial confinement can lead to a DDT. 
These results are preliminary, and 
we used artificial wall boundaries in 
the x, y, and z directions. This re
search is ongoing, and we’re looking
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Figure 8. Comparison of an experiment with a simulation. A one-inch hockey puck-shaped disk is heated to just under the 
ignition point of the material, approximately 200° C, and then ignited via a wire in the center. In the experiment shown on 
the left, cracks can be seen to form as the reaction stresses the material, and convective burning spreads through the cracks, 
which is seen as regions of high illumination.31 The simulation at the same physical time shows considerably more cracking, 
but the general structures appear to be similar. The subgrid scale cracking/damage model we use, as well as the convective 
burning model, result in similar reaction characteristics. The plots shown are used with permission.31

0.80 
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0.60 
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2.650 GPa 0.40

V 1.325 GPa 

L 0.100 GPa

(a)
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0.4 0.6
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Figure 9. Pressure profile of a DDT in an array of tightly packed explosive cylinders confined by symmetric boundaries on 
all sides: (a) at 0.534 milliseconds (msec), (b) at 0.634 msec, and (c) at 0.644 msec. Realistic booster geometries were used. 
Thermally activated deflagration occurred in the lower left corner. This simulation suggests inertial confinement can be 
reached with six cases of tightly packaged explosives, as seen by detonation (in red) occurring before the pressure wave hits a 
symmetric boundary.

at how the explosive boosters inter
act without wall boundaries. These 
simulations are being run on Oak 
Ridge’s T itan machine.

W ith a strong understanding 
of the inertial confinement 
needed for D D T  to occur in an ar

ray of explosives, considerations will 
be made on the proper packing con
figuration needed to prevent large 
transportation accidents. The main 
goal is to reduce the possibility of 
the pressure building to the detona
tion threshold, diminishing the risk 
of a detonation transition.

Our approach to preventing a 
D D T  in truck-size shipments of ex
plosives is to simulate the effect of 
packing arrangements that can avoid 
inertial confinement and rapid pres- 
surization that causes the DDT. Con
siderations will be made for a variety 
of “what-if” local packing geometries 
(for example, a 3D checkerboard with 
alternating empty containers) as well 
as more global arrangements (large 
open areas in the center of the load) 
to maximize the mitigation effect on 
explosion violence without compro
mising the load’s structural integrity.

The capability of modeling ex
plosive devices on a wide range of

temporal and spatial scales will give 
great insight into the many chemical 
and physical processes involved with 
explosives. Although a great deal of 
our focus is on the DDT, the U in
tah Computational Framework has 
the capability of one day modeling 
all aspects of explosives and similar 
substances. se
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CHAPTER 3

MODIFIED JWL EQUATION OF STATE FOR 

NEAR ATMOSPHERIC CONDITIONS

One of the equations of state commonly used for describing the combustion reactants and 

products of solid explosives is the Jones-Wilkins-Lee Equation of State (JWL EOS). This 

EOS was first developed to describe the expansion of detonation products,1 and was later 

used to describe the reactants in shock-initiated reactions.2 In our application, simulation 

of DDT, it is necessary to utilize an EOS tha t is valid over an extremely wide range of 

temperatures and pressures where solids and gases are in intimate contact. We have there

fore developed a modified version of the JWL EOS in which the high-pressure properties 

around the Chapman-Jouguet (CJ) state are unchanged, but low-pressure behavior has 

been modified to be consistent with interactions with gases.

The temperature-dependent JWL EOS uses pressure, volume, and energy to describe 

the isothermal expansion of an explosive material, and is defined as

Pjw l  =  A e-R1Vr +  B e-R2Vr +  wCVT. (3.1)
V r

The equation consists of the temperature, T, relative volume, Vr =  V/VO =  po/p, constant 

specific heat, Cv, the Gruneisen coefficient, w, and four fit parameters, A ,B ,R 1} and 

R 2. The constants A and B were calculated from the total energy available determined 

from detonation calorimetry experiments, detonation velocity, the CJ pressure, and initial 

density. R 1 and R2 are linear coefficients calculated to fit the experimental expansion data of 

a cylinder te st.1-3 The parameters were chosen to satisfy four conditions: (1) the EOS must 

follow the measured CJ state, (2) the equation must match the experimentally determined 

cylinder test expansion behavior, (3) thermodynamic limits for large expansions must be 

considered, and (4) the equation must maintain hydrodynamic continuity.1

The cylinder test is a standard experiment designed to measure the explosives ability to 

accelerate metal and the expansion of the detonation products. The experiment consists of 

a cylinder of solid explosive confined by a copper tube and detonated at one end. The deto
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nation is initiated by an exploding bridgewire detonator. This produces a shock, putting the 

explosive material in compression, and transitions to a detonation. The detonation velocity 

is measured by fine electrical pin wires placed inside the cylinder, and the displacement of 

the metal is measured by a streak camera.4 The validity of the JWL EOS in the Uintah 

Computational Framework for the reactants and products was examined by reproducing the 

cylinder te st.5 The simulations resulted in a less then 8%5 error from experimental results,6 

though there was an overestimation of case expansion at low expansion volumes (early in 

the simulation). Peterson and W ight5 concluded this was due to an over estimation of the 

CJ pressure as a result of a stiff EOS, tha t is, there is too large of a change in the pressure 

for small changes in the specific volume. This was also observed by Menikoff,7 who found 

inconsistencies at pressures greater than 10 GPa, including lower than expected particle 

velocities. A full description of U intah’s validated EOS can be found in .5

3.1 Problem with JWL EOS in Tension
The JWL EOS is graphically described in Figure 3.1 using the constants for the un

reacted PBX-9501 stated in Table 3.1. The first term  on the right hand side of Equation

3.1 dominates at high pressures as seen by the red line, the second term at intermediate 

pressures (the green line), and the last term  at low pressures and large expansions (the blue 

line).8 This EOS was developed to represent the relationship between pressure and volume 

of a solid explosive when the material is under compression. Therefore the JWL EOS has 

only been validated for relative volumes less than one. As a consequence of fitting the curve 

to match cylinder case expansion data at high densities and pressure, the JWL equation 

results in negative pressures at low relative volumes. This is a problem when modeling 

deflagration, which places the material in tension, resulting in negative pressures.

Though negative pressures are physical and have been observed in solid materials, 

many computational codes, including the Uintah Computational Framework, are unable to 

simulate negative pressures. This results in catastrophic algorithm errors when attempting 

to simulate an unconfined deflagration. Uintah places an infinitesimally small amount 

of mass of every material in every grid cell. This allows MPMICE to not track the 

boundaries of a material, enabling the solid reactant to convert to product gas. The ICE 

component calculates the pressure of a grid cell by analyzing all materials in the cell. Since 

negative pressures are nonphysical for gases, Uintah has determined negative pressures are 

nonphysical in all MPMICE simulations. This has lead to the modification of the JWL 

EOS for the solid explosive material, eliminating the possibility of negative pressures.
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R elative V olum e

F ig u re  3.1: JWL Equation of State.

T ab le 3.1: JWL Constants.3

Variable Solid PBX-9501 Product Gas
A 732000 GPa 1668.9 GPa
B -5.2654 GPa 59.69 GPa
R1 14.1 5.9
R2 1.41 2.1
w 0.8867 0.45

Cv 2.7806e-3 G Pa/K 1.0e-5 G Pa/K
Pref 101325 Pa
po 1832 K g/m 3 1832 K g/m 3
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3.2 Modifications to the JWL EOS
The modified JWL EOS for the reactant uses the original form, Equation 3.1, for 

compression of the material above the reference pressure, Pref , typically 1 atm. When 

the JWL EOS calculates a pressure < Pref , the modified EOS is used:

1 K0
PMOD =  Pref ( V -) ^  (3.2)V r

where K0=pc2. This equation originated from an altered solid phase equation of state 

implemented in many of the MPM constitutive models to ensure a positive equilibration 

pressure.9 To keep the EOS continuous, a reference density, pref , at the current temperature 

and a reference pressure are iteratively solved for, as described in Appendix B. Since the 

temperature in the cell is constantly changing, the reference density is calculated every 

timestep. The reference density is the density at the reference pressure, and current 

temperature used in place of p0. Because the density is determined at every timestep, 

the derivative of the EOS equations can be determined at the reference pressure, where 

p= pref. The first derivatives of the original EOS and modified EOS,

opj w l  _ A R ipo ^ - r 1 pp i B R 2P0 ^ - r 2 po , CvT u  /or — o e p +  o e p +  (3.3)
Op p2 p2 po

5Pmod  — ^ 0  ̂ ^ )  PW -1  (3 4)
Op p Vr K ^

respectively, are inherently equal to each other at the reference pressure. This ensures that 

the EOS functionality is continuous over the transition from expansion to compression.

The modified EOS is illustrated in Figure 3.2 with Pref —101325 Pa. Notice the com

pression behavior above 1 atm  is the same as the original JWL EOS; below the pressure 

exponentially decays to zero but is never negative. W ith these modifications, tension and 

compression can occur in the reactant material without outputting negative pressures or 

changing the detonation-expansion profile.
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R e la tiv e  V o lu m e

F ig u re  3.2: JWL Equation of State and Modified Equation of State.
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ABSTRACT
The development of a reaction model to  sim ulate the  acci
dental detonation of a large array of seismic boosters in a 
sem i-truck subject to  fire is considered. To tes t th is model 
large scale sim ulations of explosions and detonations were 
performed by leveraging the  massively parallel capabilities of 
the  U intah C om putational Framework and th e  X SED E com
putational resources. C om puted stress profiles in bulk-scale 
explosive m aterials were validated using com paction simula
tions of hundred micron scale particles and found to  compare 
favorably with experim ental da ta . A validation study of re
action models for deflagration and detonation showed th a t 
com putational grid cell sizes up to  10 mm could be used 
w ithout loss of fidelity. The U intah C om putational Fram e
work shows linear scaling up to  180K cores which combined 
with coarse resolution and validated models will now enable 
sim ulations of sem i-truck scale transporta tion  accidents for 
the  first time.

Keywords
D eflagration, detonation , parallel multi-scale modeling, gran
ular compaction

1. INTRODUCTION
Analyzing risks involved with transporting  and storing 

solid phase propellants, explosives and pyrotechnics involves 
understanding reactive behaviors of the  m aterials used in 
the  device. In such analyses, the  ability to  model th e  un
derlying physics of rapid reaction scenarios over large spa
tia l and tem poral scales is param ount. M otivation for th is 
work is the  2005 incident in U tah ’s Spanish Fork Canyon,

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.
XSEDE12, July 16 - 20 2012, Chicago, Illinois, USA 
Copyright 2012 ACM 978-1-4503-1602-6/12/07 ...$15.00.

where a truck  containing seismic booster explosives over
tu rned , caught fire and unexpectedly detonated  with vio
lence a ttrib u ted  to  “sym pathetic” reaction of multiple ex
plosive devices reacting in tandem  [11]. A num ber of mile
stones tow ards predictive solution on the  length scales of 
interest have been achieved. The scale of the  problem  is 
sufficiently large th a t  utilizing supercom puting resources is 
essential to  capture the  physical behavior of th e  array of 
explosives. The Uintah C om putational Framework [15] pro
vides the  means to  both  model and com pute the  simulation 
scenario on supercom puters [28, 26]. Both modeling tech
niques and com puting resources are sufficiently m ature to  
address tens-of-meter-scale sim ulations of explosions.

An energetic m aterial model capable of accurately predict
ing the  physics of a reaction over tim e scales from microsec
onds to  m inutes is desirable. Previous research in the  field 
of granular com paction of the  explosive octahydro-1,3,5,7- 
tetranitro-1,3,5,7-tetrazocine (HMX) beds has led to  the  de
velopm ent of several bulk-scale analytical models th a t  are 
able to  predict the  qualitative behavior of com paction and 
th e  resulting reaction [4, 16]. These modeling efforts have 
examined th e  behavior of m aterials with varying porosity, 
particularly  noting th a t  large differences between bulk aver
aged quantities of interest and micro-scale heterogeneities. 
This is especially relevant for tem peratu re, which drives the  
decomposition of solid reactan ts leading to  deflagration-to- 
detonation transition  (DDT) in granular, porous, and /or 
dam aged explosives, or shock-to-detonation transition  (SDT) 
in solid and plastic bonded explosives (PBX ). In DDT and 
SDT the  transien t energetic extrem es are a ttrib u ted  to  fric
tional heating, plastic flow, crystal fracture [1] and grain /b inder 
de-bonding [35], which create hot-spots th a t  act as nucle- 
ation sites for reaction. W hen enough hot-spots are formed, 
a self-sustaining com bustion occurs th a t  can cause a DDT or 
SDT. These events are extrem ely dangerous and damaging.
A number of works in th is field have highlighted the  need for 
mesoscale sim ulations (m icrom eter scale) for the  validation 
of bulk scale models [29, 7, 17, 3]. A conclusion from these 
studies is th a t  mesoscale sim ulations are useful not only for 
validation, b u t also in inspirirng physically based bulk mod
els. Mesoscale sim ulations of com paction have been used 
to  validate the  burning behavior of a model [32] for bulk

mailto:joseph.peterson@utah.edu
mailto:j.beckve@chem.utah.edu
mailto:t.harman@utah.edu
mailto:mb@sci.utah.edu
mailto:chuck.wight@utah.edu
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reactions over the  range of deflagration and detonation  phe
nom ena.

V alidation is necessary as the  pred ictab ility  of m any bulk- 
scale models is subject to  large uncertain ty  associated w ith 
th e  applied boundary  conditions, lim iting the  applicability 
of th e  m odel to  conditions used for calibration. In  m any 
cases these m odels are lim ited by th e  range over which the  
reaction equations have been calibrated. T h is brings into 
question w hether th e  m odel can accurately cap ture  th e  physics 
outside th is calibration range. Thus as m odels are extended 
beyond their calibration  regions, careful consideration m ust 
be taken in analyzing th e  physical results on th a t tem poral 
and spatia l scale, to  understand  th e  effect on th e  prim ary  
m etric of interest. In addition, the  levels of uncertain ty  in 
th e  m odel m ust be addressed a t a given scale in order to  
have confident analysis of results and  observations.

Section 2 describes, very generally, th e  approach taken  in 
sim ulating these m ulti-scale problem s. Sections 3-5 describe 
m odeling advancem ents th a t enable large-scale sim ulation 
of the  energetic arrays found in the  Spanish Fork accident. 
Section 6 concludes w ith a discussion of the  current outlook 
of large scale accident sim ulations along w ith recom m enda
tions for fu rther study.

2. SIMULATION METHODOLOGY
All sim ulations m ade use of a flu id-structure in teraction  

algorithm , based on th e  com bination of the  particle-based 
M aterial Poin t M ethod (M P M ) and th e  cell-based Im plicit 
Continuous E ulerian  ( IC E ) com pressible m ulti-m aterial C FD , 
known as M PM IC E [21, 19]. T he ICE algorithm , originally 
form ulated by Kashiw a et al. a t LANL [24, 22, 23], is capa
ble of sim ulating flow scenarios w ith any num ber of m ateri
als in the  com pressible or incom pressible regime while con
serving m ass, m om entum  and energy. IC E is necessary for 
solving th e  complex flow behavior of com bustion gas in terac
tions in surface flames, convective flames and high-density 
detonation  product gas expansion. M PM  is a Lagrangian 
m ethod based on th e  particle-in-cell m ethod  from LANL, 
first described by Sulsky, et al. [37, 5, 6]. M PM  excels in 
m odeling of solid m aterial mechanics, including large defor
m ations [5], complex geom etries [12], frac tu re [25], m aterial 
contact [6] and even biological constructs [20]. M PM IC E 
leverages the  streng ths of bo th  m ethods to  solve high defor
m ation  ra te  flu id-structure in teractions ( th e  flow field, defor
m ation  of th e  solid, etc.) [18]. T he use of M PM IC E allows 
sim ulations of flow, deform ation and fluid-solid interactions 
a t micro- to  deka-m eter length scales.

Sim ulations were perform ed in one, two or th ree dim en
sions. A daptive mesh refinem ent was used when p arts  of 
th e  dom ain where relatively dorm ant to  reduce com puta
tional cost. A recently developed decentralized scheduling 
model including on-node th read ing  and in tra-node message- 
passing-interface (M PI) com m unications was used to  achieve 
appropria te  u tilization  of X SED E resources [28, 27]. Typical 
th ree  dim ensional problem s utilized betw een 512 and 49,152 
cores for the  validation and production  sim ulations. The 
largest influence on solution accuracy, aside from  the  partic
ular m aterial m odels used, was the  grid resolution for ICE 
and num ber of particles for M PM . All validation sim ulations 
for bo th  m icro-scale com paction and bulk-scale com paction 
were exam ined for convergence. A n extension of th e  various 
models to  coarser resolutions was perform ed w ith a relative 
error bound betw een 5% and 10% com pared w ith converged

resolution. T he lim its for which th e  m odels can perform  
under th is error bound were identified for the  m etric of in
terest (de tonation  velocity, bu rn  rate , etc.) in the  particu lar 
sim ulation.

3. MESOSCALE COMPACTION SIMULA
TIONS

A num ber of shock im pact experim ents on granular ex
plosive beds have been reported  [33]. The experim ents con
sisted of a colum n of explosive granules packed to  different 
ex tents of porosity. These granular beds are then  im pacted 
a t several hundred m eters per second and investigated w ith 
stress and velocity gauges a t th e  top  and bo tto m  of the  col
um n. Experim ents provided validation d a ta  for bulk scale 
reaction  and sub-grid-scale m odel; reactions did not occur 
in every case. A m odeling approach inspired by a num 
ber of o ther studies of mesoscale com paction of porous beds 
was adopted  [29, 7, 17]. Sim ulations of random ly generated 
sphere packings of experim entally  determ ined HM X distri
butions [14, 7] were run  w ith a m odel including a Steinberg- 
C ochran-G uinan [36, 13] viscoelastic response of the  explo
sive m aterial. M elting tem p era tu re  and specific heat models 
for HM X were taken  from  Menikoff and Sewell [31]. Simu
lation  cell sizes were 5 w ith 9 particles per cell m aking 
them  com putationally  intensive, requiring thousands of pro
cessors even in two dimensions. T he m odel was validated 
against experim entally  determ ined stress and velocity pro
files for non-reactive cases. A typical exam ple of these gran
u lar com paction sim ulations, excluding reaction, can be seen 
in F igure 1 dem onstrating  b o th  th e  behaviors of the  tem per
a tu re  and th e  stress. Features such as the  com paction wave, 
plastic yield, work heating  and frictional heating  can all be 
seen along w ith a few hot-spots. T he m odel was found to  
have sim ilar behavior to  previously validated  non-reactive 
m odels [33, 30].

F ig u re  1: S tr e ss  and  te m p e r a tu r e  d is tr ib u tio n s  in  a 
g ran u lar  b ed  a fter  b e in g  im p a c ted  from  th e  to p  at 
288  m /s .  A  p la stic  flow  zo n e  (A ), a co m p a c tio n  zo n e  
(B ) , s tr e ss  fin gers (C ), and  fr ic tio n  and  p la stic  flow  
in d u c ed  h o t-s p o ts  (D )  can  b e  seen .

A com parison of tem pera tu res for a non-reactive case for 
particles and fluids is shown in Figure 2. T he left im age de
picts the  particle tem p era tu re  while the  right image shows
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fluid tem peratu res. The U intah  im plem entation of the  re
action model uses the  cell centered tem pera tu res in the  de
term ina tion  of the  burn  ra te  while the  particle tem peratu res 
are used for for determ ining the  solid’s m echanical behavior. 
High tem pera tu res of gas in void spaces can enhance reac
tion  rates and m ust be represented accurately to  ensure the  
correct bu rn  rate. These com parisons underscore th e  need 
for accurately m odeling b o th  gas and solid phases and their 
interactions, as gas tem pera tu res in void spaces can be seen 
to  be near the  ignition tem pera tu re  in a num ber of places.

Of p articu lar in terest in the  granular com paction of HMX 
is the  in itia tion  of sustained reaction. T his is im portan t for 
th is study as the  heterogeneous n a tu re  of th e  bed allows for 
transien t energy extrem es, as seen in hot-spots. T he decom
position of HM X was m odeled using th e  W ard, Son, Brew
ster (WSB) m odel [39] w ith  a decom position tem pera tu re  
threshold  of 450 K. W hile validation of th e  reaction model 
against experim ental d a ta  continues, the  u tility  of being able 
to  m odel mesoscale phenom ena in heterogeneous condensed 
explosives becomes ever more apparent. Some studies have 
been perform ed on the  effects of frictional heating, m elt
ing, discretization strategies and geom etries [7, 35, 29, 31, 
38, 17], b u t relatively little  work has been perform ed w ith 
respect to  surface area, porosity and gas perm eability  Bulk- 
scale models may be developed based on th e  sim ulations of 
these effects since currently  some m ay not be probed or val
idated  experim entally; hence our developm ent of mesoscale 
models. Congruent to  th e  developm ent of mesoscale models 
is th e  progression of th e  bulk-scale m aterial m odels tow ards 
correct behavior in b o th  com paction for porous explosives 
and dam age in solid explosive. Results from these mesoscale 
sim ulations are utilized as a validation source for bulk-scale 
models.

F ig u re  2: T e m p era tu re  d is tr ib u tio n  in  a gran u lar  
c o m p a c tio n  a fter  5 m icro sec o n d s . T h e  le ft im a g e  
sh o w s p a r tic le  te m p e r a tu r e  and  th e  right im a g es  
sh o w s g a s te m p e r a tu r e . T h e  sa m e  co lor  sc a le  is u sed  
for b o th  p lo ts .

4. BULK-SCALE COMPACTION SIMULA
TIONS

W hen sim ulating th e  tran sp o rta tio n  of explosives it is im
p o rtan t to  m odel accurately bulk-scale com paction, since 
th e  surface area, gas confinement and dam age from b o th  me
chanical and therm al insult are directly  affected by porosity. 
For th is s tudy  a new com paction m odel was im plem ented to  
represent a heterogeneous com paction of energetic m ateri
als. T his m odel uses previously im plem ented isotropic dam 
age m odel for full density  explosive, ViscoScram [9], m erged 
w ith  an accurate representation  of bulk com paction, P -a  
[40]. The P -a  m odel allows a q u an tita tive  extent of poros
ity  th a t  is used to  determ ine w hether convective burning  
can occur in a m aterial. Similarly, ViscoScram has a vari
able th a t represents th e  extent of cracking in th e  explosive 
m aterial. By using these quantities, a relationship presented 
by Belyaev et al. [8], and a fit by Berghout et al. [10] for a 
PB X  of in terest, the  W SB burn  m odel [39] allows burning 
inside m aterials. T his allows pressurization and continued 
dam age of HMX, which can cause self-accelerated sub-sonic 
reactions th a t  m ay undergo D D T or SDT.

Time (^s)
Experiment ----- Mesoscale ----- Bulk Scale

F ig u re  3: A  co m p a riso n  o f  b u lk  sc a le  and  m e so sca le  
s im u la tio n s  o f  e x p e r im e n ta l S h o t 912  [33] w h ere  th e  
H M X  b ed  is im p a c ted  at 288  m /s .  L in es on  th e  left 
are from  e x p e r im e n ta l v e lo c ity  g a u g e s  at th e  to p  o f  
th e  b e d , and  th o se  on  th e  right are from  g a u g es  on  
th e  b o tto m  o f  th e  b ed .

To validate the  com paction behavior of th e  P -a  m odi
fied ViscoScram, a homogenized version of the  sim ulation 
presented in Section 3 was run. T he results have been com
pared  to  th e  mesoscale sim ulations presented in th e  previous 
section and th e  experim ental da ta . Velocity profile com par
isons can be seen in Figure 3. A greem ent to  w ithin 10% can 
be seen for the  velocities a t th e  top  and b o ttom  of th e  spec
im en for Shot 912 [33]. Stress profile com parisons can be 
seen in Figure 4. T he P -a  modified ViscoScram m odel has 
larger error in stress th an  in velocity. Figure 5 dem onstrates 
th e  u tility  of mesoscale sim ulations in th a t tem pera tu res on 
th e  tim escale of m icroseconds are difficult or impossible to  
o b ta in  experim entally. T he tem pera tu re  com puted by the  
bulk-scale m odel is larger th an  th e  average tem pera tu re  for 
th e  mesoscale sim ulation, however it is w ithin one standard
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deviation of the  averaged mesoscale tem pera tu re . By incor
porating th is bulk-scale com paction model, the  deflagration 
to detonation  phenom enon can be more accurately repre
sented in porous or dam aged m aterials. W h at then  remains 
is extension of sim ulations to  a length scale of tens-of-m eters.

Time (|as)
Experiment ----- Mesoscale ----- Bulk Scale

F igu re 4: A  co m p a r iso n  o f  b u lk  sc a le  an d  m eso sca le  
sim u la tio n s  o f  e x p e r im e n ta l S h o t 24 7 7  [33] w h ere  th e  
H M X  b ed  is im p a c ted  a t  288 m /s .  L ines are  from  
ex p e r im e n ta l s tress  g a u g es  a t  th e  to p  o f  th e  b ed .

Time (|is)
Bulkscale ----  Mesoscale ----  +1o

F igu re 5: A  co m p a r iso n  o f  te m p e r a tu r e s  c o m p u ted  
b y  th e  m eso sca le  s im u la tio n  an d  th e  b u lk  sc a le  s im 
u la tio n  m ea su red  a t th e  to p  o f  th e  gran u lar co lu m n . 
T h e  m eso sca le  te m p e r a tu r e  w as a veraged  la tera lly  
across th e  s im u la tio n  d o m a in  an d  a  sta n d a rd  d e v i
a tio n  c o m p u te d . T h e  lin e  m arked  has th e  
s ta n d a rd  d e v ia t io n  o f  th e  te m p e r a tu r e  a d d ed  t o  th e  
a v erage for th e  m eso sca le  s im u la tio n .

5. COARSE RESOLUTION MODELS

Despite the  availability of petascale machines such as N S F ’s 
Kraken, considerations m ust be made when weighing the  ac
curacy of solution against the tim e, power and expense of 
the  sim ulation. T he com plexity of the  modeling approach 
and the  grid cell size m ust be selected to  maximize the  accu
racy while minimizing com putational cost. It is desirable to 
extend the  models to  the  largest cell size possible while m ain
tain ing  a ta rget level of error. The model used by U intah  to 
sim ulate m ultiple reaction phenom ena, such as deflagration 
and detonation , is DDT1 [32]. B oth deflagration and deto
nation are sub ject to  grid cell size dependence bu t are barely 
seen to have particle density dependence [32]. The more res
olution dependent model will lim it the extension to  coarser 
grid cell sizes and d ictate  com putational costs. To extend 
the  deflagration and detonation  models used in DDT1 to  re
gions outside the  range in which they  are calibrated, a m et
ric of in terest m ust be identified, and a convergence study 
performed.

W ork has begun in extending the W SB model [39, 41] and 
the  JW L + +  [34] model used in the  previous validation study
[32] beyond their calibration  ranges. In the  W SB model, 
the  m etric of interest is the  burn  rate which often has the 
largest effect in the  m oderate stra in  rate  region of m aterial 
deform ation. In the  case of detonation  the m etric of interest 
is the  affect of the  transien t pressure wave and subsequent 
release wave on m aterials close to  the  blast wave. These 
m aterials are accelerated and become dangerous projectiles, 
which is why they are of interest.

Coarsening the grid cell size will potentially  allow for 
larger scale sim ulations w ith similar accuracies as mesoscale 
sim ulations. The burn  rate is determ ined bo th  experim en
tally  and com putationally  by a stran d  burner tes t [2]. Ex
perim entally  a stick of explosive is confined and lit a t one 
end. P ressurization  occurs due to  confinement th a t  causes 
the  burn  rate to  increase. The burn rate  is m easured by the 
tim e of arrival a t a num ber of m easurem ent gauges placed 
in the explosive. This allows the  burn rate  to be determ ined 
as a function of pressure. In many cases the  initial tem per
atu re of the bulk explosive was changed to  investigate the 
tem pera tu re  dependence of the  burn  rate  [2].

C om putationally  the same d a ta  can be collected by en
closing a stick of explosive in sym m etric boundaries, allowing 
for the  pressure to rise as burning occurs. These sim ulations 
were run  in one dim ension for sim plicity and speed. Here 
the  pressure in the gas cells were averaged, giving the  sim
ulated  pressure, and the mass burned was m easured. These 
com putational experim ents were used to  determ ine the grid 
cell size dependence of the  burn  rate  com puted by the W SB 
model. T he results in Figure 6 show m inim al grid depen
dence on the burn  rate for the  resolutions studied. The 
initial bulk tem pera tu re  of the  HMX was 373 K. It was also 
observed th a t  the  burn  rate  was slightly overestim ated at 
higher initial bulk tem pera tu res and slightly underestim ated 
a t room tem peratu re  (298 K). However, a t m ost the  error 
was no larger th an  10% of the  experim ental burn  rate. The 
region of interest is dependent upon the specific explosive 
and our focus was on the  validation of the W SB reaction 
model for HMX. For th is sim ulation it is im portan t to look 
a t elevated pressure and tem peratu res, for th is is where con
vective burning and transitions to detonations occur. The 
same sim ulation was run  a t initial bulk tem pera tu res of 298 
K and 423 K, which produce sim ilar grid dependence results.

W hen looking at the  cell size effects on detonation , the
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m ain m etric of interest is the  effect of the  expansion wave 
on o ther objects in the  domain. For instance, if a deto
nation wave accelerates a piece of steel, it is desirable to 
know, to  high accuracy, the velocity of the steel. Similarly, 
once the  explosive m aterial is consum ed, the  b last wave is 
largely supported  by expansion of gases w ithout the reac
tion to  sustain  the peak. This expansion wave begins a t the 
sonic plane. T he sonic plane is the  point a t which m aterial 
behind the lead pressure wave no longer affects the  detona
tion front. The release wave, seen in Figure 7 a t the end 
of the  p lateau  as the  pressure begins to drop, is the main 
factor in the velocity of the steel plate. The release wave 
can effect objects on the length scale of a few m illim eters 
while the  reaction peak has a much smaller effect on the ve
locity of an object. Sim ulations were perform ed a t various 
grid cell sizes showing the effect of cell size on the  velocity
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of the steel. In  these sim ulations a small piece of explosive 
was collied w ith a one dim ensional stick of explosive causing 
detonation  to occur. A t the  end of the  explosive rod is a 
steel plate. As the  detonation  consumes the  explosive, the 
pressure wave accelerates the steel plate. The velocity of 
the  steel plate was com puted and com pared against a con
verged resolution sim ulation, determ ining the error in the 
velocity. W ith  increased cell size the pressure spike due to 
reaction encroaches on the  sonic plane affecting the  am ount 
of energy th a t  is transferred to  the  steel. W ith  increasing 
the  grid cell size, the ra te  param eters for the  JW L + +  model 
had to  be reduced to keep the detonation  velocity constant 
a t 8800 m /s.

W ith in  the studied cell sizes, the  differences in velocity 
of the steel was less th an  8%. A t larger grid cell sizes the 
reaction constant is seen to decrease more rapidly, and the 
velocity difference changes considerably, likely due to  the re
action peak falling inside the  expansion region. This changes 
the  sonic plane and hence the am ount of m aterial th a t  can 
affect the  reaction front, effectively increasing the  reaction 
rate. The shift in the  reaction peak is dem onstrated  in Fig
ure 7. N ote the  reaction peak m igrates back w ith increased 
cell size, encroaching slightly on the  release wave a t cell sizes 
larger th an  about 10 mm. Therefore, a cell size larger than  
10 mm will effect the sonic plane. A consequence of the shift 
due to larger cell size is th a t  the reaction wave will reach a 
position slightly later in tim e th an  the more finely resolved 
sim ulations, b u t by no more th an  10 microseconds behind 
the  converged wave. However, th is is partially  offset by the 
fact th a t the interpolated pressure of the  shock is felt a t an 
earlier tim e because of the coarser mesh resolution. W ith  lit
tle error associated w ith larger resolutions in bo th  the burn 
ra te  and detonation  propagation the capability to move up 
to  10 mm grid cell size while keeping the same accuracy now 
seems feasible.
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F igu re 6: R e so lu t io n  d ep e n d e n c e  o f  b u rn  ra te  o f  
W S B  m o d e l a t  a  b u lk  te m p e r a tu r e  o f  373  K . S im u 
la ted  d a ta  w as com p a red  a g a in st  d a ta  from  A tw o o d
e t  al. for th e  e x p lo s iv e  H M X  [2].

Position (m)

F igu re 7: P r e ssu r e  p rofiles for d e to n a tio n  sim u la 
t io n s  a t  variou s c e ll sizes.

C o re  C o u n t

F igu re  8: W eak  sc a lin g  o f  th e  U in ta h  fram ew ork .

In addition to  a grid cell size study, a scaling study was 
perform ed showing the capability  of the U in tah  framework 
to  model high particle density M PM IC E  sim ulations char
acteristic of those seen in the  trucking accident on a large 
num ber of cores. The study sim ulated detonation  of HMX 
at various dom ain sizes ranging from 103 mm3 to 3603 m m 3 
at 1 mm grid cell size. Sim ulations were run  w ith 1000 grid 
cells/pa tch  and 1 patch/core. The results can be seen in
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Figure 8. These results can be improved upon with recent 
advancements made in improving memory use for the Uintah 
framework, allowing for linear scalablility up to 180K cores. 
[28, 27]. Increased zoning, along with the relaxation of the 
time stepsize due to the larger cell size will allow simulations 
of semi-truck sized explosions.

6. CONCLUSIONS
For many different reasons the safe transportation of ex

plosives is essential. Models designed to analyze poten
tial accident scenarios must accurately capture the relevant 
physics over a wide range of spatial and temporal ranges. 
Utilizing mesoscale results in validating bulk-scale models 
has proven to be useful for improving predictive capability. 
Furthermore, a physical quantity that is difficult to mea
sure experimentally may be analyzed by mesoscale simula
tions and used to inspire bulk-scale models. A  bulk-scale 
model for the compaction of a porous explosive, and dam
age evolution of fully densified material has been validated 
with mesoscale results. Good agreement has been shown 
between the simulated and experimental stress profiles for 
both mesoscale and bulk scale simulations. Good agree
ment has also been seen between temperatures in mesoscale 
and bulk-scale simulations, highlighting the utility of the 
mesoscale modeling.
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Figure 9: Demonstration of combustion in an array 
of explosives. The left colormap shows the pressure 
inside the explosive cylinders, while the right col- 
ormap shows the temperature of the product gas. 
The array was ignited in the lower left corner.

Using validated bulk-scale models, our studies have shown 
that extension of these models to larger cell sizes can cap
ture, without significant loss of fidelity, the metric o f inter
est. Both detonation and deflagration reactions were found 
to extend reasonably well to larger cell sizes. The detonation 
model was found to be the limiting factor with maximum cell 
sizes on the order of 10 mm, due to the reaction peak en
croaching on the sonic plane effecting blast wave pressure 
and imparted kinetic energy.

Complex geometries such as those seen in the 2005 truck 
accident are o f high interest for their potential of being a 
“sympathetic” explosion. For example, the 2005 accident in
volved 18,500 small explosive cylinders packaged in an array 
similar to that seen in Figure 9. The preliminary modeling 
efforts of this explosive array show deflagration to detonation 
transition in agreement with the violence of the truck explo
sion. This simulation will provide the benchmark needed to 
validate a bulk-scale array. We have shown that the cur
rent Uintah code can move to much coarser grid cell sizes, 
allowing accurate modeling of arrays orders of magnitude 
larger. The coarsened resolution, combined with Uintah’s 
linear scalability up 180K cores [27] will allow for full-scale 
simulations of transportation accidents on the length scale 
o f tens of meters.
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Abstract
Predictive computer simulations of highly resolved large-scale 3D deflagrations and detonations 
are dependent on a robust reaction model embedded in a computational framework capable of 
running on massively parallel computer architectures. We have been developing such a model 
in the Uintah Computational Framework, which has exhibited good strong and weak scaling 
characteristics up to 512K cores[16]. Our focus is on predicting a Deflagration to Detonation 
Transition (DDT) when a large number of energetic devices are present. An example of this 
is a semi-tractor-trailer loaded with thousands of mining boosters that rolled over, ignited and 
went through a DDT. Our current reaction model adapts components from a) Ward, Son and 
Brewster[22] which incorporates the effects of pressure and initial temperature on deflagration, 
b) Berghout et al.[9] to model burning in cracks of damaged explosives, and c) Souers[20] for 
describing fully developed detonation. The reaction model has been subjected to extensive 
validation against experimental tests. Current efforts are focused on the effects of varying the 
grid resolution on multiple aspects of deflagration and the transition to detonation.
Keywords: Detonation, DDT, Deflagration, Multiscale Modeling, Deflagration Propagation

1 Introduction
In August of 2005, a truck carrying 16,000 kilograms of seismic boosters overturned, caught 
fire and detonated in Spanish Fork Canyon, Utah. The damage was catastrophic, causing 
a crater 10 meters deep by 24 meters wide with burning debris found up to a quarter of a 
mile away. It was apparent by the size of the crater that the explosion transitioned from a 
deflagration into a fully developed detonation. This research focuses on developing a science 
based reaction model incorporated into the Uintah Computational Framework[1] to simulate 
large scale transportation accidents. Our model captures the appropriate chemistry and physics, 
including the temperature and pressure sensitivity of the burn rate, detonation propagation, 
Shock to Detonation Transition (SDT) and Deflagration to Detonation Transition (DDT). Using
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Luminous Flame

J "  Dark Zone Figure 1: Schematic show
ing the three regions involved 
in the combustion of solid 
explosives.

Condensed Phase 
Explosive

this advanced computational framework, we can simulate the conditions necessary for a DDT 
to occur in much larger systems. With this computational tool, packaging protocols can be 
simulated to decrease the probability of detonation while transporting explosives.

The Uintah Computational Framework, developed at the University of Utah, is a collabora
tive effort within the Chemistry, Mechanical Engineering and Computer Science departments. 
The framework contains algorithms for modeling fluid structure interactions with MPM, ICE, 
and MPMICE[11, 12, 13], involving multiple materials, solid ^  gas exothermic reactions and 
a variety of constitutive models and equations of state. MPMICE solves the mass, momentum 
and energy conservation equations for the fluids and solids. Our reaction model is a source term 
in these equations, specifically the amount of converted mass. The solid ^  gas reaction models, 
which utilize the fluid structure interactions of MPMICE, have been validated for the explo
sives 1,3,5,7-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and PBX-9501 (95 percent 
HMX with 5 percent of a plastic bonding agent). In this paper we have focused on these 
explosives due to the abundance of experimental data available. This paper describes a reac
tion model which is used within Uintah’s MPMICE component to calculate the propagation of 
conductive and convective deflagration needed to simulate a DDT.

With the combustion of explosives there are three reaction zones/regions. The first is the 
condensed phase, where there is a large temperature increase from the luminous flame and 
where intermediates species are formed. The second is the dark zone as illustrated in Figure
1. Within this zone, the intermediate products are comparatively unreactive, causing a time 
delay for the radicals to build up in concentration before ignition in the luminous flame[3]. The 
height of the dark zone above the condensed phase is very important in determining the flame 
structure at low pressures and the burn rate at high pressure. This height is known as the 
flame standoff distance, which plays a large role in the transition into convective deflagration. 
As intermediate product gas concentrations and relative pressures are increased, the luminous 
flame moves closer to the condensed phase, decreasing the flame standoff distance and increasing 
the burn propagation and solid ^  gas mass conversion rate (burn rate). The third region is the 
bright zone, known for its luminous flame. This region is characterized by a large temperature 
increase, resulting from HCN and NO reacting to final products. The temperature in this zone 
can approach the adiabatic limit[3].

In the combustion of high explosives, there are two types of deflagration: conductive and 
convective. In a conductive deflagration, heat is transferred between the products of reaction 
and the surface of the explosive. This deflagration is observed to have relatively slow flame 
propagation velocity. For PBX-9501 undergoing a conductive deflagration the flame propagation

2 Deflagration in Solid Explosives
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speed is a few cm/s, varying slightly with pressure[19]. As the pressure of the system increases 
the flame standoff distance will decrease, increasing the propagation speed of the deflagration. 
At relatively high pressures the flame standoff distance will decrease to a point that the flame 
can propagate into the cracks and pores of the solid material, transitioning into convective 
deflagration. This pressure is known as the critical pressure[9], and is inversely dependent on 
the porosity of the material. Convective deflagration is a very important mode in the combustion 
of high explosives because of its tendency to transition into a detonation. Above the critical 
pressure, hot product gases propagate into the damaged solid, igniting the material within. 
This results in significantly faster burning velocities. For PBX-9501 the convective deflagration 
velocities have been measured between 400 m/s to 1500 m /s[8].

Convective deflagration is very important to understanding a Deflagration to Detonation 
Transition (DDT). It has been observed that in a monolithic condensed phase explosive, a 
DDT occurs from the coalescence of pressure waves formed from convective deflagration. As 
burning occurs within the material, pressure waves propagate outward and grow in strength 
until a shock to detonation transition occurs[4]. This phenomena, in solid explosives, has been 
observed experimentally[4, 21] and in computational experiments[4, 15]. Understanding and 
accurately modeling conductive/convective deflagration is required to predict the behavior of 
10s-1000s of reacting explosive devices.

3 Modeling Deflagration of HM X Based Explosives
Within Uintah, multiple reaction models have been combined with various constitutive material 
models to represent many aspects of combustion. Uintah’s Deflagration to Detonation model, 
DDT1, is a multi-material, multiphase model used to describe the slow propagations of deflagra
tion and the high energy release rates of detonation. We use the ViscoSCRAM[6] constitutive 
model to describe crack development or material damage in the condensed phase with respect 
to pressure, allowing for convective deflagration. The Ward, Son and Brewster (WSB)[22] burn 
rate model describes the mass flux of combustion, this is coupled with a reactive flow model, 
JWL++[20], to model detonation.

The WSB model[22] utilizes simple kinetics and is a commonly used approach to model 
steady combustion of explosive materials. It utilizes an iterative solution to determine the 
rate of mass conversion and is dependent on the pressure and temperature, while assuming 
global kinetic reactions. The WSB model was derived out of Los Alamos National Labratory 
to define the steady deflagration rate of HMX and similar explosives, in one dimension. This 
model assumes a high activation energy with unimolecular, irreversible, zeroth order thermal 
decomposition of the condensed phase. The gas phase reactions are considered second order 
with negligible activation energy. Good agreement is shown in the gas phase temperature be
tween HMX undergoing a conductive deflagration and self deflagrating nitramines, when the 
activation energy is assumed to be negligible. With this model the flame standoff distance, 
pressure and temperature dependence on the burn rate agree well with experimental data[22]. 
The assumption that the gas phase has a negligible activation energy is justified by the gas 
phase reactions being radical chain reactions. This chemistry is easily explained with a hy
drogen/oxygen combustion system. In these systems there is an activation energy associated 
with the initiation/branching step but the recombination/termination step is temperature in
sensitive, resulting in a negligible activation energy. This is similar to the chemistry seen with 
radical gas phase reactions in the steady combustion of HMX. The main assumptions in the 
WSB model are 1) the specific heat of the gas phase and the condensed phase are equal, 2) there 
is no mass diffusion assumed in the condensed phase, 3) the gas phase follows the ideal gas law,
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4) th e  con d en sed  phase is con sid ered  in com pressib le  and 5) th ere  is n o  pressure d ep en d en ce  
associa ted  w ith  th e  heat release o f  th e  con d en sed  phase, o n ly  th e  gas phase.

T h e  W S B  m o d e l uses a sim plified  tw o  ph ase ch em istry  m od el, in w hich  th e  so lid  exp losive  
(A ) is con v erted  to  gas phase in term ediates (B ) w h ich  react t o  form  th e  final p ro d u cts  (C ). 
A (s o lid )  ^  B (g a s ) ^  C (g a s ). T h ere fore  o n ly  tw o  phases o f  th e  co m b u stio n  are m od eled ; th e  
con d en sed  and gas phases. T h e  m elt layer present in m a n y  exp losives is assum ed t o  have little  
im p act on  th e  overa ll co m b u stio n  and is th ere fore  ignored . T h is  m od e l has a large pressure 
d ep en d en ce  associa ted  w ith  th e  co n d u ctiv e  heat transfer; as m en tion ed  be fore , th is g rea tly  
affects th e  rate o f  gas ph ase reaction s. T h e  m ass bu rn  flu x  is c o m p u te d  using E q u a tion s 1 and
2, w here mb is th e  rate  o f  m ass con v erted  in k g / ( m 2 s ), and T s is th e  ca lcu la ted  con d en sed  
phase su rface tem pera tu re .

( T  ) =  [ K c p c A c R T S ; e x p ( - E c / R T s ) 1 1 / 2  

m b( s) =  L C p E c [ T s -  To -  Q c / 2 C p ] \  ( )

T s < " * ' P ) =  T 0 +  Q f  +  ........ ^ P )  ■ (2)
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P C p(1 +  Xg (mb’ 7 )p V Xc d( r nh)  >JV\ ' x c d ( m b)

T h e  su rface  te m p era tu re  o f  th e  so lid  is dep en d en t on  th e  in itia l bu lk  so lid  tem p era tu re , T 0. 
A n  increase in th e  su rface  te m p era tu re  is a result o f  th e  con d en sed  ph ase reactin g  t o  in term e
d iates, and th e  co n d u ctiv e  heat tran sfer  from  th e  lum in ou s flam e reaction s. In d eterm in in g  th e  
m ass bu rn  flu x  and surface te m p era tu re  th e  flam e s ta n d o ff d istan ce , x g , con vective -d iffu s ive  
len gth , x cd, and th e  D am k oh ler n um ber, D a , m ust b e  determ in ed  as seen in E qu ation s 3,4, and 
5. E qu ation s 1 and 2 are so lved  itera tive ly  until a con v erg en ce  criteria  is m et. F or use in U intah , 
th is m od e l has been  m od ified  t o  in clu de  th ree  d im en sion a l effects b y  in clu d in g  th e  surface  area 
o f  a ce ll and th e  to ta l m ass w ith in  th e  cell[23], see E q u a tion s 6 , and 7. T h is  m od e l has been  
va lid ated  against ex p erim en ta l d a ta  for  a w id e  range o f  pressures at in itia l solid  tem pera tu res 
o f  273K , 298K  and 423K [18].

2 x c d (m b )
x g (m b, P )  =  —  =----------  (3)

\ J m b 2 + 4 D a ( m b ,  P )  -  m b

x c d ( m b )  =  K g  (4)
m b C p

™  B g  M W 2 C p P 2 , 2 
D a ( m b , P )  = ---------5 2 -------------x c d ( m b )  (5)

R 2 K g

M B  =  A t  * B F A  * m b  ( 6 )

B F A  = ______________ A x  * A y  * A z ______________

( A x |gx| +  A y \ g y  \ +  A z \ g z  |) max(1 (i/3 ))

T h e  W S B  m o d e l utilizes th e  crack  p rop a g a tion  resu lts from  th e  V is c o S C R A M  con stitu tive  
eva lu ation  to  m od e l th e  tran sition  in to  con v ectiv e  deflagration  as defin ed  b y  B ergh ou t[9 ]. T h e  
cr itica l pressure, P c , is d ep en d en t on  th e  crack  radius or  porosity , w ,  and co m p u te d  using 
E q u a tion  8 .

P ; 2 - 8 4 w 2 =  8 x 1 0 8 ( 8 )

T h e  V is c o S C R A M  con stitu tiv e  m od e l was d ev e lop ed  for  th e  ex p losive  P B X -9 5 0 1  to  d escr ibe  
crack  d eve lop m en t and th e  form ation  o f  h ot sp ots  in d a m ag ed  m aterials. It is a com b in a tion
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of Maxwell’s visco-elastic model developed by Addessio et al.[2] and the Statistical Crack Me
chanics model[10], developed at Los Alamos National Laboratory. ViscoSCRAM was developed 
to model the mechanical behavior of brittle explosives under non-shock conditions accounting 
for the viscoelastic response, statistical fracture mechanics and hot spot ignition. The growth 
of the cracks in a solid explosive are dependent on the initial crack radius, crack growth rate, 
five Maxwell elements and other parameters allowing for random distribution of cracks[6]. This 
model has been fit to match experimental relaxation times as determined by the visco-elastic 
response[6]. More about Uintah’s validated reaction and material models can be found at[18].

3.1 Conductive Deflagration Model

The WSB model, described in Section 3.0, shows good agreement with experimentally measured 
mass burn rates over a wide range of initial solid temperatures[18]. Before Equations 1-5 are 
solved, certain conditions in the computational cells need to be satisfied. Those conditions 
include:

• The computational cell must be on the surface of the explosive, or the product gas pressure 
in a surrounding cell must be above the critical pressure for convective deflagration.

• There must be a surrounding cell with a significant amount of material above the ignition 
temperature. For PBX-9501 the ignition temperature is 550 K .

Once these criteria are satisfied, the cell will react converting solid HMX ^  gas via Equations 
1-5.

As discussed above the original one dimensional WSB model was extended to three di
mensions, allowing for Equations 1-5 to be calculated over a finite cell of reactant[23]. This 
extension introduced a grid resolution dependence. The WSB model computes the mass con
verted during a finite amount of time using Equations 1, and 2. This rate is then multiplied 
by the burn front area of the cell, BFA, and the change in time, At, using Equation 6. For 
conductive deflagration the burn front area is calculated by the surface of the cell exposed to 
air using Equation 7. Where Ax, Ay, and Az are the length of the finite volume grid cell 
in the x,y, and z directions and gx, gy, and gz are the components of the normalized density 
gradient[23]. This allows for only the surface of the explosive to deflagrate, making the burn 
rate of conductive deflagration independent of the cell size.

The WSB Equations 1-5, and the criteria for burning initiation has been shown to compute 
the correct conductive mass burn rate, however the propagation velocity of the deflagration 
front was orders of magnitude faster than the measured velocities. This overdriven velocity was 
due to the discretization of the domain into cells of a finite size and the cell ignition criteria 
described above. We discovered that cells adjacent to a burning cell could ignite before the 
deflagration traversed across the burning cell. This “skipping” or “jumping” of the reaction 
was dependent on cell spacing and timestep size.

To mitigate this non-physical propagation we added an “induction period” before mass could 
be consumed. This “induction period” is meant to emulate the amount of time needed for the 
hot gases to flow through the cell before igniting the next one. In doing so the propagation of 
deflagration will be constant for all cell sizes, eliminating a resolution dependence. The length 
of the “induction period” is dependent on the product gas pressure in the surrounding cells and 
the grid resolution. Son et al.[19] experimentally measured the propagation velocity of a flame 
on the surface of PBX-9501 and found it to follow Equation 9, where Pd is the dimensionless 
pressure (P / P0, Po =0.1 MPa). This equation was used in the determination of the “induction
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Figure 2: Pressure dependence of the con
ductive deflagration propagation. Simu
lated two dimensional results (diamonds) 
compared to experimental data (triangles) 
determined by Son et al.[19].

Figure 3: Instantaneous convective defla
gration propagation vs time for a 1 dimen
sional simulation. This plot shows the large 
decrease in propagation velocity with the 
“induction period” correction seen by the 
green points. The blue shaded region is 
experimentally determined propagation of 
convective deflagration for PBX-9501[8].

period” , Equation 10, where Ax is the average length of the cell and A is a constant used 
to control the propagation velocity. For conductive deflagration A=1, following the equation 
determined by Son et al.[19]. The addition of an “induction time” corrected the deflagration 
propagation velocity on the surface of PBX-9501 as shown in Figure 2.

Sf = 0.259Pd0'538 (9)

AxA
Sf

(10)

3.2 Convective Deflagration Model

The propagation of a convective deflagration is a complex phenomena and there is no empirical 
correlation to describe the flame propagation into cracks or pores. For PBX-9501 the propaga
tion velocity in cracks has been experimentally measured to be between 400 and 1500 m/s[8]. 
Our model for deflagrating PBX-9501 has been validated against experimental data for multi
ple pressures, initial temperatures and grid resolutions for conductive deflagration[18, 17]. An 
abundance of research has been directed at understanding convective deflagration[14, 5, 7], but 
there are still many unknowns and no empirical correlations similar to Equations 1-5 and 9 
to evaluate the mass burn rate and propagation velocity. We therefore assume that the WSB 
model is valid in this regime and compute the mass burn rate and propagation velocity using 
Equations 1-6, 9 and 10. The constant A was determined using a one dimensional simulation 
where a stick of PBX-9501 was thermally ignited at elevated pressures, to ensure convective de
flagration. The propagation of the deflagration was measured by the amount of time it took for 
the burn front to travel a known distance through the material. A was varied until simulation 
results matched the experimental data to within the bounds of uncertainty. In our simulations



52

Modeling Deflagration in Energetic Materials Beckvermit, Harman, Bezdjian and Wight

Figure 4: Illustration of a grid cell dou
bling in resolution resulting in the sur
face area doubling seen by the red cell 
faces.

using Ax = 2 mm, A = 0.0002 gave the most accurate convective deflagration propagation 
velocity. This constant will change with each explosive and has only been determined for PBX- 
9501. Figure 3 shows the decrease in propagation velocity with the addition of an “induction 
period” correction, as shown by the green line. The blue shaded region are the experimental 
results of Berghout et al.[8].

With convective deflagration the reaction occurs inside the reactant, therefore the burn 
front area was assumed to be one sixth of the surface area of the cell, introducing a resolution 
dependence. By calculating the burn front area this way, the total mass burned for a given 
volume would double when increasing the resolution of a cell by two. Figure 4 illustrates this 
phenomena as seen by the area of the red cell faces doubling. To account for this, the burn 
front area for convective deflagration is calculated using Equation 11, where B FA ref is the 
reference burn front area. The elimination of the normalized density gradient was attributed to 
the fact that convective deflagration occurs in cells which are not on the surface, therefore the 
normalized density gradient in a homogenous material will cause the denominator of Equation 7 
to equal Ax for a square cell. By evaluating the burn front area of convective deflagration with 
respect to a reference resolution the grid dependence was eliminated. The reference resolution of 
2mm was chosen for our simulations because the flame propagation and conductive burn rates 
for this resolution lie within the experimental data and the resolution is large enough to run 
petascale simulations without loss of fidelity[17]. Until further experimental research is done to 
fully understand the mass burn rate with convective deflagration this approach, to the best of 
our knowledge, accurately represents convective deflagration and decreases the non-linearity in 
the simulations.

BFAn Ax * Ay * Az
BFA r e f

(1 1 )

3.3 Grid Convergence Study
A grid convergence study was performed to ensure that the time to detonation of deflagrating 
PBX-9501 was no longer exhibiting a resolution dependence. This study utilized all reaction 
models, equations of state, and material models needed to represent a DDT. For this study a 
2D stick of PBX-9501 was thermally activated at ambient pressure with a bulk temperature of 
298K; 5 different grid resolutions were examined ranging from 4mm to 0.25mm. The time from 
thermal activation to detonation for each resolution was analyzed. Clear convergent behavior 
can be seen in Figure 5 as resolutions approached 0.5mm. Although convergence criteria can 
be met at a 0.25mm resolution, running large 3D simulations at a fine mesh size can be very 
computationally expensive. Thus, all of the simulations for this research used a resolution of 
2mm. By increasing the grid resolution from 0.25mm to 2mm large 3D simulations can be 
run using 512 times less computing power with only a 8% error associated with the time to 
detonation. Extensive research has been done on the effects of increasing the resolution on the 
burn rate and the detonation propagation[17]. We have determined that the rate of reaction 
for conductive[17] and convective deflagration have no dependence on the resolution and the 
denotation velocity is not affected by the increase of resolution until cells are 8mm or larger[17].
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Figure 5: Convergence study results on the time to denotation as a function of the resolution.

4 Conclusion
Modeling the Deflagration to Detonation Transition in solid explosives is very difficult. The 
addition of an “induction period” to the Uintah DDT1 model has allowed for a more accurate 
representation of the flame propagation velocity for conductive and convective deflagration. 
The new burn front area calculation has eliminated the resolution dependence of the mass burn 
rate for convective deflagration. With these changes Uintah accurately predicts a Deflagration 
to Detonation Transition in solid PBX-9501 and HMX. Large scale simulations would not be 
possible without the use of the global kinetic reaction model and a non-resolution dependent 
burn model.

Current efforts are focused on analyzing a large scale 3D simulation run on 64,000 cores on 
DOE’s Mira. This simulation consists of 968 million particles in 206 million cells representing 
1 / 8th of the semi-tractor-trailer involved in the 2005 accident. These results will give us a better 
understanding into the physical mechanisms of DDT in large arrays of explosives and will be 
used to determine a safer packaging configuration to suppress the probability of transportation 
accidents in the future.
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A Nomenclature

Modeling Deflagration in Energetic Materials Beckvermit, Harman, Bezdjian and Wight

A Induction time coefficient
1.637x1015A c Condensed phase frequency factor 1 /s [23]

B g Gas phase frequency factor 1 .6x10 — 3 m3 /(kg ■ K 2 ■ s) [23]
B F A Burn front area m 2

B F  A new New burn front area m 2

B F A r e f Reference burn front area 0.002 m
Cp Specific heat of the condensed phase 1.4x103 J/( kg  ■ K ) [23]
Da Damkohler number [22]
Ec Condensed phase activation energy 1.76x105 J / mol [23]
gx x component of the normalized density gradient [23]
gy y component of the normalized density gradient [23]
gz z component of the normalized density gradient

g (m to [23]
m b Mass flux [22]
M B Mass burned per timestep

3.42x10 — 2
kg/s

M W Molecular weight kg/mol [23]
P Pressure Pa
Pc Critical pressure Pa [9]
Pd Dimensionless pressure P /P0 P0= 0.1 MPa [8]
Qc Chemical heat release from condensed phase reaction 4.0x105 J/kg [23]
Q g Chemical heat release from gas phase reaction 3.018x106 J/kg [23]
R Ideal gas constant 8.314 J / ( K  ■ m o l ) [22]
Sf Flame propagation cm/s [8]
Ts Surface temperature of the condensed phase K [22]
TO Initial temperature of condensed phase K [22]
w Crack radius m [9]
x cd Convective-diffusive length m [23]
x g Gas phase flame thickness m [22]
Kc Condensed phase thermal conductivity 0.2 W / ( m ■ K ) [23]
Kg Gas phase thermal conductivity 0.07 W / ( m ■ K ) [23]
Pc Density of condensed phase 1.34x103 k g / m 3 [23]
T Induction time s
A t Change in time s
Ax Length of cell in the x direction m [23]
A y Length of cell in the y direction m [23]
A z Length of cell in the z direction m [23]



CHAPTER 6

PHYSICAL MECHANISMS OF DDT IN AN  
ARRAY OF PBX 9501 CYLINDERS

This chapter has been submitted to Combustion and Flame, Jacqueline Beckvermit, 

Todd Harman, Chuck Wight and Martin Berzins, “Physical Mechanisms of DDT in an 

Array of PBX 9501 Cylinders,” January 2016.
The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive 

devices is investigated using large-scale computer simulations running the Uintah Com
putational Framework. Our particular interest is understanding the fundamental physical 

mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition 

to a fully developed detonation in transportation accidents. The simulations reveal two 

dominant mechanisms, inertial confinement and Impact to Detonation Transition. In this 

study we examined the role of physical spacing of the cylinders and how it influenced the 
initiation of DDT.

6.1 Introduction
In 2005 a semi-tractor-trailer carrying 8,400 seismic boosters on US Route 6 in Spanish 

Fork Canyon, Utah overturned and ignited. Within three minutes, the deflagration caused 

by the fire transitioned into a fully developed detonation. The detonation produced a crater 

approximately 24 m wide and 10 m deep; hot metal shards from the trailer started small 
fires a quarter of a mile away. From the size of the crater it is clear that the explosive 

underwent a Deflagration to Detonation Transition (DDT). This research is focused on 
determining the physical mechanisms of a DDT in large arrays of explosive cylinders. This 

research is significant since the reaction rates of the two modes of combustion (deflagration 

and denotation) differ by roughly five orders of magnitude, and similar accidents could 

occur in the future in populated areas.

Many scientists have studied how a subsonic reaction, controlled by heat transfer (defla

gration), transitions into a fully developed, highly energetic detonation in a single device.
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Previous research determined that the different mechanisms for this transition depended, 

in part, on the porosity and phase of the monolithic solid in a highly confined environment. 

The mechanisms were studied experimentally1-4 and computationally.5,6 The physical ex
periments consist of a condensed phase explosive, packed at various fractions of Theoretical 

Maximum Densities (TMD), confined in a steel tube. The explosive was ignited by a 
combustion-driven piston moving at low velocities to avoid a shock to detonation transition.1 

Diagnostic probes were placed throughout the steel tube to measure the response of the 

explosive bed, including but not limited to the velocity of the piston, the velocity of the 

pressure waves and the onset of convective deflagration. For explosives near the TMD, the 

mechanism for DDT was the coalescence of pressure waves. In highly confined experiments 

as described above, the deflagration produces pressure waves which propagate through the 
material, in front of the reaction zone. At some distance the waves coalesce forming a shock 

discontinuity. This shock continues to grow in strength until the pressure rise causes a 

transition to detonation.2,5,7 In monolithic solid explosives convective deflagration plays a 
very important role in the transition because the pressure waves are generated within the 

material. Convective deflagration occurs in the cracks and pores of the solid material and 

is controlled by the convective heat transfer of the penetrating gases.8 As a result of the 

pressure waves, the explosive undergoes deformation and is damaged allowing the flame to 

penetrate deeper.
The mechanism for DDT in lower density condensed phase explosives (50-70% TMD) is 

similar. In the experiments o f1,4,7 a porous bed of explosive was ignited by a slow-moving 

piston. The initial compaction wave from the piston traveled through the explosive bed, 

compressing the porous material to around 90% TMD. The frictional hot spots and shear 

caused by the initial compaction wave ignited the explosive material. Pressure waves formed 

behind the initial compaction wave, further compressing the explosive bed, forming a ^ 100% 
TMD high-density plug. This plug was formed in front of the burn front and behind the 

compaction wave. As the convective deflagration traveled towards the plug, the size of 
the plug grew. Once the burn front reached the back of the high-density plug, it behaved 

as a second piston, causing a shock to detonation transition in the remaining unburnt 

explosive.1,4,7

Though the mechanisms for DDT are understood and accepted for highly confined 

monolithic solids, to our knowledge no research has examined how the shape of the explosive 

or how the interactions with other explosives influences the transition to detonation. Here we 

examine arrays of explosive cylinders, specifically those present in the 2005 transportation
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accident. The explosive of interest is PBX 9501 (95% 1,3,5,7-octahydro-1,3,5,7-tetranitro-

1,3,5,7-tetrazocine (HMX) and 5% of a plastic binder) due to the abundance of experimental 

data and previously validated numerical models for describing DDT .9,10 These arrays have 
gaps between the cylinders providing a pathway for products of reaction to escape and 

space for cylinders to accelerate and collide with each other, unlike a monolithic solid. We 

therefore expect some similarities to the observed mechanism of porous explosives, with 

differences due to the interactions with other explosives and the unconfined nature of this 
problem. The aim of this paper is to present two physical mechanisms for a DDT in multiple 

large arrays of PBX 9501 cylinders. The two mechanisms are inertial confinement and 

Impact to Detonation Transition. Section 6.2 will describe the computational domain and 

initial conditions, numerical models and present results showing justification for performing 
2D simulations. Section 6.3 will describe the two dominant DDT mechanisms.

6.2 Computational Methods
To investigate the mechanisms for initiating a DDT in an array of explosives, large- 

scale simulations were conducted. These simulations were performed in two and three 
dimensions. The array consisted of PBX 9501 cylinders, with dimensions similar to those 

in the 2005 trucking accident, (0.054 m in diameter and 0.33 m long). The sizes of the 

cylinders were fixed and the packing configuration was varied see Figure 6.1. Table 6.1 
describes the different initial configurations for each simulation presented. The compaction 

and displacement of the explosive cylinders which would be seen in a transportation accident 
was not examined. This research was focused on determining the initiation mechanism for 

DDT in an ordered array of explosive cylinders to understand how deflagration transitions 

to detonation in the transportation and storage of explosive cylinders. It is understood 
the movement of the cylinders in the truck rolling over would effect the placement of the 
cylinders and ultimately the initiation mechanism. The two-dimensional simulations were 

run with the x —,y —, z —and z+  boundaries closed (planes of symmetry), prohibiting gases 

or explosive particles from escaping. On the x+  and y+ boundaries we assumed a zero 

gradient for temperature, pressure, density, and velocity. These boundaries were positioned 

>0.5 m from the reactive explosive to minimize any nonphysical boundary condition effects. 

The initial temperature of the cylinders and surrounding gas was 300 K, and the pressure 

was 1 atm. To initiate the reactions, the gas temperature in a few computational cells on 

the x — boundary was set to 2500 K. Adaptive Mesh Refinement and a grid resolution of 
2 mm was used to decrease computational costs without loss of fidelity of the results.9-11
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Base Configuration Checkered Configuration

Figure 6.1: Initial configurations of explosive boxes. Both configurations have 20
cylinders per box.

Table 6.1: Initial Conditions

Simulation Name #  of Cylinders 
per box

Spacing between 
boxes (x)

Configuration 
(Described in 
Figure 6.1)

Transportation Accident 20 10 mm Base
Base_20_190mm 20 190 mm Base

Checkered_20_220mm 20 250 mm Checkered
Base_16_120mm 16 120 mm Base
Base_12_90mm 12 90 mm Base
Base_4_14mm 4 14 mm Base
Base_1_6mm 1 6 mm Base

Resolution studies previously showed that 2 mm grid resolution could be used without 

degradation to the results.10,11

The simulations were all run using the Uintah Computational Framework12,13 developed 

at the University of Utah. This framework utilizes the fluid-structure interaction algorithm 
of MPM, ICE and MPMICE14-16 to solve for the conservation of mass, momentum and 

energy. The Material Point Method (MPM) is used to evaluate the evolution of the solid 
material. MPM allows the solid field (Lagrangian points) to distort,15,17-19 then they are 
interpolated back to the cell center in order to be incorporated into the CFD multimaterial 

model (MPMICE). This allows for simulations consisting of multiple-phase materials to use 

the same Eulerian background mesh with no issues related to the laws of conservation. The 
development and methods for solving the governing multimaterial CFD model equations 

are found in.14-16,20,21 Embedded within MPMICE is a DDT reaction model. The reaction 

model has been validated for multiple initial temperatures (273, 298, and 423 K), pressures
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(0.5-60 MPa) and grid resolutions.9-11,22 The model utilizes a modified Ward, Son and 

Brewster (WSB) burn model10,22,23 to evaluate the mass conversion rate, the ViscoSCRAM 

constitutive model24 to model the damage in the solid, and the JW L++ simple reactive 
flow model25 to describe detonation. The DDT model implemented in Uintah does not 

use the JW L++ model to determine the onset of detonation, it is used to determine 
the mass conversion rate once detonation is reached. Uintah's DDT model determines 

when detonation is reached by exceeding a pressure threshold of 5.3 GPa. As described 

by Peterson et al.,9 this approach gave reasonable run distance to detonation results for 

shock-initiated detonation. The commonly used JWL equation of state25,26 was used for 

the solid explosive and the product gases. A full description of the models used and their 
limitations can be found in.9

Substantial changes in the Uintah infrastructure were required in order to run these 
numerical experiments at the scales required. The MPMICE component, which produces 

a graph of tasks to be executed, is now done dynamically27 by using message passing 

to communicate between nodes.13,28 This method has been shown to be portable across 

a number of different supercomputers, and has been applied to early simulations of the 

DDT problem considered here.29,30 More recently, substantial changes were required to 

the Uintah infrastructure to allow the large-scale simulations described in Section 6.2.1.31 

Once these changes were in place, Uintah demonstrated that it is possible to model the 

2005 transportation accident.31

6.2.1 Dimensional Effects
In this section we provide justification for using low-cost 2D computational domains for 

our investigations, as was done in.31 Highly resolved 3D simulations are computationally 

expensive and require tens of thousands of computing cores, running for hundreds of 

wall clock hours to complete a single simulation. To reduce these costs the effect of the 
length of the computational domain in the z direction was investigated. Three simulations 
were performed with z =  3 m (full 3D), 0.33 m (highly confined 3D), and 2 mm (2D). 

The explosive packing configuration of the 2005 transportation accident, consisting of 20 

explosive cylinders packaged in a fiberboard box, was used. For simplicity the fiberboard 

was not modeled, instead 10 mm gaps filled with air separated the “boxes.” In the 2D and 

highly confined small 3D simulations the x - , y - , z — and z+  boundaries were symmetric 

walls while the x+  and y+ boundary conditions were a zero gradient for the primitive 
variables [T,p,v,p]. Figure 6.2 shows three domain sizes.31 The small, highly confined 3D 

domain, yellow region, includes the addition of a 10 mm gaps between the boxes in the z
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Figure 6.2: Image illustrating the initial conditions of the 2D (blue), small 3D (yellow) 
and full 3D (whole image) simulations. The cylinders, red, are packaged in the 

Transportation Accident configuration, consisting of 20 cylinders per “box” .

direction. The gap is critical since it allows the hot product gases to expand, similar to the 
full 3D simulation. Finally, the boundary conditions in the full 3D simulation were planes 

of symmetry on the x — and y— boundaries, acting as the ground and the back of the truck. 

All other boundaries conditions were set to a zero gradient for the primitive variables, and 

the edge of the domain was far from the area of interest to minimize nonphysical boundary 
condition effects.

All three simulations were ignited on the x — axis by hot product gas, and they exhibited 

similar behavior until detonation occurred. We concluded that the DDT resulted from 

inertial confinement, which will be discussed in Section 6.3. Figure 6.3 shows the maximum 
pressure in the computational domain as a function of time.31 Note the good qualitative 

agreement between the three experiments. The oscillations in the pressure profile are due 

to the deflagration encountering the open space surrounding each cylinder as it traversed 

through the cylinders. As expected, the large 3D simulation took longer to detonate due 

to the additional escape routes for expanding product gases. By increasing the length of 
thezdimension the product gases could expand, slowing the rate of pressurization in the 

domain and increasing the time to detonation. Not only do the three pressure profiles show 

similarities, the physical location where the DDT took place and the physical mechanism 

were very similar, as shown in Figures 6.4, 6.5 and 6.6. Note that detonation occurred in
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Figure 6.3: Maximum pressure in the domain versus time for the different-sized
computation domains.

Figure 6.4: Contour plot of pressure and shadow of explosive cylinders in the 2D 
simulation (Transportation Accident).
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Figure 6.5: The top figure shows the progression of deflagration through the explosives 
(light blue). The dark blue slice shows the location of the pressure contour plot (shown 
below). The bottom plot shows the contour plot of pressure of DDT over time in the

small 3D simulation used in.31

Figure 6 .6 : Contour plot of pressure and shadow of the explosive cylinders, in the full 3D
simulation.
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the same “box” of explosives for all three simulations, though in a slightly different position. 

This is due to the close proximity of the domain walls, preventing product gases from leaving 
the domain in the 2D and small 3D simulations.

The high computation cost of performing a full 3D simulation and the good quantitative 
and qualitative agreement in the detonation location and maximum pressure profile justifies 

using low-cost 2D computational domains in this study. The full 3D simulation cost 24M 

service units (SU’s) while the small 3D and 2D simulations only cost 215K and 10K SU’s, 

respectively.

6.3 Results and Discussion
The main objective of this paper is to understand the physical mechanisms for a DDT 

in an array of solid explosives. Two mechanisms were predominantly observed over a wide 

range of initial conditions, inertial confinement and Impact to Detonation Transition. All 

simulation results presented used the same-sized PBX 9501 cylinders, but the initial spacing 
between the cylinders and “boxes” was varied, as described in Table 6.1 and Figure 6.1.

6.3.1 Inertial Confinement
Inertial confinement occurs when the inertial mass of the cylinders surrounding a de

flagration is greater than the pressure forces exerted on the cylinders. These cylinders 

move relatively slowly away from the reaction zone and as they move, the cylinders collide 

and deform, filling in the gaps between the cylinders, trapping the product gases. The 

deformation and expansion of the explosives is limited due to the close spacing of the 
cylinders. As deflagration and deformation continues, a high-density barrier is formed, 

trapping the product gases and increasing the local pressure. The increase in localized 

pressure causes a positive feedback, increasing the reaction rate until 5.3 GPa is reached 

and detonation occurs. This phenomenon is shown in Figure 6.7, which shows the volume 
fraction of PBX 9501 after multiple cylinders have deflagrated and deformed. Figure 6.8 

shows the pressure as a function of time and position along the white line in Figure 6.7. 

As specified by the reaction model, detonation occurs at 5.3 GPa, the red dotted line. 

Notice that in front of the barrier (0-350 mm) the pressure slowly increases, plateaus, then 

sharply decreases. In these cylinders the product gases flow unimpeded from the burn 

front, resulting in a relatively low pressure. The decrease in pressure in these cylinders is 
sharper than expected due to the cylinders moving through space. Therefore the cylinders 

from 0-350 mm are slowly decreasing in pressure due to expanding gases and the cylinders 

moving from the initial position through space while the data is collected at the same point
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Figure 6.7: Volume Fraction of PBX 9501 cylinders forming a high-density barrier 
leading to the inertial confinement mechanism in the Base_1_6mm simulation.

Figure 6 .8 : Pressure profile versus position and time. The red dotted line represents 
detonation. Position of data is shown in Figure 6.7.
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in space. Between 350-480 mm the high-density barrier begins to form, restricting the flow 

field and causing an increase in pressure until detonation is reached at 0.753 msec. In this 
region of the domain we observed the explosive cylinders to be moving at approximately 
300 m/s as the barrier is being formed, trapping and compressing the gases between the 
cylinders. A  combination of the pressure wave formed from the compression of the gas and 

the high-density barrier restricting the expansion of product gases is thought to raise the 
localized internal pressure of the cylinders from 2-3 GPa to detonation. Beyond 480+ mm 

the cylinders are at ambient pressure and temperature since hot gases cannot flow beyond 
the barrier.

The inertial confinement mechanism was also observed when 20 cylinders were placed in 

a “box” and spaced to reproduce the 2005 Transportation Accident, see Figures 6.4, 6.5 and 
6 .6 . Even though the initial layout of the cylinders is different between these simulations, the 

same mechanism to initiate DDT was observed. Visually the barrier is not as pronounced 

for simulations with 20 cylinders per “box” when compared to simulations consisting of 

one explosive cylinder per “box.” However, in both numerical experiments the explosive 

material and product gases did not have room to expand, thus the cylinders collided and 
deformed, forming a high-density barrier.

Another way of analyzing the inertial confinement mechanism is looking at the pressure 

profile in the cell where detonation first occurs, Figure 6.9. This figure shows the pres
sure profile for many simulations with varying initial cylinder configurations. For inertial 

confinement the idealized pressure profile is a monotonic raise in pressure after burning 

first begins in the cell. The Transportation Accident is a perfect example of this. Notice 

the pressure in the cell where detonation first occurs gradually increases to 5.3 GPa after 

ignition, without any sharp transitions. The increase in pressure occurs very quickly after 

the cell is ignited (less than 1 msec). The Base_1_6mm and Base_4_14mm simulations also 
exhibit this behavior.

With the inertial confinement mechanism the global maximum pressure slowly increases 

as the barrier is formed. This is illustrated in Figure 6.3, which shows a fairly linear increase 

in the maximum pressure in the domain until detonation is reached. The amount of time 
needed to form this barrier depends on the original configuration of the explosives. As 

expected, the closer the explosives are packaged together, the less time it takes to form the 
barrier. Inertial confinement has only been observed when the explosives are closely packed 

together. As the explosives are separated there is more room for the explosive material and 

gases to expand.
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Figure 6.9: Pressure in cell of detonation after time of ignition.

6.3.2 Impact to Detonation Transition
The second mechanism for initiating a DDT in an array of explosive cylinders is an 

Impact to Detonation Transition (IDT). This occurs when a deflagrating cylinder is im

pacted by either a) another cylinder or b) by a large pressure wave. When the deflagrating 
cylinders are at an elevated pressure, the external force can be relatively small to initiate a 

DDT.
The IDT mechanism was observed in simulations where the cylinders were spaced further 

apart, allowing gases or solids to accelerate before impacting surrounding cylinders. An 

example of an IDT is shown in Figure 6.10. The blue region represents surrounding gas and 
the orange region shows high-density explosive. As the deflagration moved radially through 

the domain, deflagrating cylinders began deforming and compacting into one another as seen 

at point A, forming the “jet” shown at point B. The impact of the solid “jet” caused the 

transition to detonation. The impact generated stress waves in the explosive that reflected, 
amplified, and accelerated the burn rate to the point of detonation.
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Figure 6.10: Formation of PBX 9501 “jet” leading to a DDT.

Another example of the IDT mechanism was observed when the explosives were packaged 

20 (5x4) to a “box.” The boxes were evenly spaced 190 mm from one another and separated 

by ambient gas (Base_20_190 mm simulation). As the deflagration progressed outward from 
the x — corner of the domain, the deflagrating cylinders moved outward accordingly. As 

shown in Figure 6.11, the explosive material and gases had ample room to expand. Due 

to the increased spacing, more cylinders had time to deflagrate before the transition to 
detonation, increasing the overall time to detonation. This simulation detonated 1.55 msec 

after ignition, more than double the amount of time observed for an inertial confinement 

DDT. In this simulation the external force or impact was from a pressure wave produced 

from the deflagration of surrounding explosives. At each cell, shown by the shaded line 

in Figure 6.11, a time series of the computed pressure was plotted in Figure 6.12. Notice 
the pressure in the deflagrating cylinder, 1630-1644 mm, plateaus around 2 GPa before 

rapidly increasing to detonation, seen by the red dotted line. This phenomenon is evident 

in Figure 6.9, which shows the pressure in the cell where detonation initiated versus time. 

The pressure profile for this cell, navy blue line, shows the cell deflagrating for a long period 

of time (2 GPa), before the impact occurred at t=0.24 msec after ignition of the cell. After 

the impact there is a sharp increase in pressure, and detonation occurs.
A third example of the IDT mechanism is shown with 20 cylinders packaged to a 

“box” arranged in a checkerboard configuration, with 0.25 m gaps between each “box,” see 

Figure 6.13 (Checkered_20_250mm simulation). As the deflagration progressed outward, the 

product gases and explosive moved away from the origin. At 1.73 msec DDT occurred due 

to an impact event. Close examination of pressure contour plots and particle visualization 

showed the impact was a pressure wave and high-velocity explosive projectile. Figure 6.14 

shows the pressure profile of this simulation as a function of time and position. In this 

simulation the pressure in the explosive cylinders was approximately 2 GPa before the 

impact, at which point it rapidly increased to greater than 5.3 GPa. In Figure 6.9 the
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Figure 6.11: Volume fraction of PBX 9501 in the Base_20_190mm simulation exhibiting
IDT mechanism behavior.

Position (mm) 1590 1.2 Time (ms>

Figure 6.12: Pressure profile versus time and position for an IDT in Base_20_190mm 
simulation. Position of data extraction is shown in Figure 6.11 by the grey region.



70

Figure 6.13: Volume fraction of PBX 9501 in Checkered_20_250mm simulation exhibiting
IDT mechanism behavior.

Figure 6.14: Pressure profile verses time and position for an IDT in the 
Checkered_20_250mm simulation. Position of data extraction is shown in Figure 6.13 by

the grey region.
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yellow line shows the pressure profile in the cell where detonation occurred. It is qualitatively 
similar to the other experiments with IDT symptoms prior to a DDT.

The Impact to Detonation mechanism was observed in a variety of array layouts. Each 
experiment exhibited similar traits, a deflagrating cylinder at elevated pressure reaching 

detonation by an impact. This mechanism was only observed when there was substantial 

spacing between the boxes or cylinders.

6.4 Conclusion
Two physical mechanisms for DDT in an array of explosive cylinders were presented, 

inertial confinement and Impact to Detonation Transition. Inertial confinement occurs when 

the cylinders are packed closely together, allowing for a high-density barrier to form and 

trapping the product gases. Impact to Detonation occurs when deflagrating cylinders at 

high pressures (1-2 GPa) undergo a mechanical insult. The differences between these two 

mechanisms are very subtle and depend on the ability of the product gases to expand. In 

both mechanisms two conditions are required. First, the cylinders must be at an elevated 
pressure. For inertial confinement this elevated pressure is much higher than observed in 

an IDT due to the confinement made from the high-density barrier. Second, there needs 
to be an external force on the cylinders. With inertial confinement this external force is 

the compression of trapped gases between the cylinders. For an IDT the force originates 
from either the impact of pressure waves or fast-moving explosive material. The inertial 

confinement mechanism is easy to identify since the global maximum pressure gradually 

increases and the cylinders compact together.
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CHAPTER 7

PACKING CONFIGURATIONS OF PBX 9501 
CYLINDERS TO REDUCE THE 

PROBABILITY OF A DDT

This chapter has been provisionally accepted to Propellants, Explosives, Pyrotechnics, 

Jacqueline Beckvermit, Todd Harman, Chuck Wight and Martin Berzins, “Packing Config
urations of PBX 9501 Cylinders to Reduce the Probability of a DDT,” February 2016.

The detonation of hundreds of explosive devices from either a transportation or storage 

accident is an extremely dangerous event. This paper focuses on identifying ways of pack

ing/storing arrays of explosive cylinders that will reduce the probability of a Deflagration 
to Detonation Transition (DDT). The Uintah Computational Framework was utilized to 

predict the conditions necessary for a large-scale DDT to occur. The results showed that 

the arrangement of the explosive cylinders and the number of devices packed in a “box” 

greatly affects the probability of a detonation.

7.1 Introduction
In August of 2005, a tractor-trailer carrying 16,000 kg of seismic boosters overturned, 

caught fire, and detonated in Spanish Fork Canyon, Utah. The damage was catastrophic, 

creating a crater 10 m deep by 24 m wide with burning debris found up to 400 m away. It 
was apparent by the size of the crater that the explosion transitioned from a deflagration 

into a fully developed detonation. Though these accidents are rare, the damage caused by 

the detonation of thousands of kilograms of explosives can be extremely detrimental. The 

focus of this research is to mitigate the risk of detonation of solid class 1.1 explosives in 
either a transportation or storage accident.

The results from this paper showed that the way the explosives are packed is important 
in mitigating this risk. To the best of the authors’ knowledge the probability of DDT as a 

function of packaging arrangement has not been studied. Here we describe spatial layouts of
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the devices which were computationally tested to determine which would reduce the prob

ability of a denotation. Two hypotheses were tested in these computational experiments:

1. How does the number of explosive cylinders in a “box” contribute to the propensity 
for a detonation?

2. Does changing the arrangement of the “boxes” filled with explosives alter the propen

sity for a detonation?

To analyze these hypotheses four variables were examined: (1) the spacing between the 
boxes, (2) the arrangement of the boxes, (3) the number of cylinders in each box, and (4) 

the arrangement of cylinders in the box. The Uintah computation tool was used to simulate 

these different configurations. Once simulated, the configurations were visually examined 

to determine if a detonation occurred. Section 7.2 discusses the computational framework 
used to model the DDT scenario and previously identified DDT initiation mechanisms in 

an array of cylinders. Section 7.4.1 discusses how changing the number of cylinders in a 
box effects the deflagration to transition to a detonation. Section 7.4.2 examines different 

packing configurations to reduce the probability of a detonation.

7.1.1 Current Packaging and Storage Protocol
In the 2005 transportation accident, 8,400 seismic boosters were being transported ac

cording to the existing U.S. government regulations. Each booster was filled with Pentolite, 
an equal part mixture of PETN and TNT, which is commonly used for underground oil 

and gas exploration. Two sizes of cylindrical boosters were on board and were enclosed 

in open-ended plastic tubes. There were 5,000 large boosters, each containing 2.5 kg of 

explosive. Each one was 0.737 m long and they were packaged 10 to a box. The smaller 

boosters weighed 1.13 kg each and were 0.33 m in length and were packaged 20 to a box. All 

of the seismic boosters were packaged in fiberboard 4G boxes in accordance to the Code of 
Federal Regulations (CFR) Title 49 §173.62 instruction 132. The CFR states that boosters 

must only be packaged with materials of the same classification, meaning no detonators 

can be transported in the same load. They must also be packaged in boxes made of steel, 

aluminum, wood, plywood, reconstituted wood, fiberboard, or solid plastics. The mass of 
the explosives in a box or their spatial arrangement is not defined in the regulations and is 

at the discretion of the manufacturer.1 The only limitation on the quantity of explosives 

transported is the maximum weight limit set by each state. For Utah, where the 2005 
accident occurred, regulation 23 CFR §658.17 defines a maximum of 36,000 kg, well above 

the weight in the accident.
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The regulations for storing high explosives are defined by the United States Bureau of 

Alcohol, Tobacco, Firearms, and Explosives (ATF), Title 27 of CFR §555. It describes 
the ventilation system requirements, permits, required markings, and what material each 
component of the storage facility can be constructed from. It also states the required 

spatial separation from surrounding buildings, roadways, and highways. According to Title 

27 CFR §555.213 the maximum quantity of high explosives allowed in a building is 136,000 

kg. Similar to the transportation regulations, detonators cannot be in the same building as 

Class 1.1 explosives. There are no regulations on how the explosives are packed or stored 

inside the building. Boxes can be stacked side by side and on top of one another.

7.2 Computational Methods
The Uintah Computational Framework,2,3 developed at the University of Utah, was 

utilized to predict a DDT in large arrays of explosive cylinders in a variety of spatial 

arrangements. The framework utilizes the fluid-structure interaction algorithms of the 

Material Point Method (MPM),4-7 a low- and high-speed compressible CFD algorithm 
(ICE),8 and a fluid-structure interaction algorithm (MPMICE).4,9,10 ICE is a finite-volume 

method and uses an adaptive hexahedral mesh. MPM was used to evaluate the evolution of 
the solid material by using Lagrangian points (particles) and an Eulerian mesh to evolve the 

governing equations. The particle’s state vector is interpolated back to the cell-center, where 

the exchange of mass, momentum, and energy occurs. This allows multiphase materials to 
use the same Eulerian mesh. The governing equations and the algorithms to solve them can 

be found in.4,9-12 Embedded within the MPMICE component is a validated DDT model to 

represent the reaction of solid explosive ^  gaseous products at multiple initial temperatures 

and pressures.13-16 The DDT model utilizes a modified Ward, Son, and Brewster (WSB) 

burn model14,16,17 to evaluate the mass conversion rate, the ViscoSCRAM constitutive 
model18 to model the damage in the solid, and the JW L++ simple reactive flow model19 

to describe detonation. The commonly used JWL equation of state19,20 was used for the 

solid explosive and the product gases. Detonation occurs in Uintah’s DDT model when 

the localized pressure is greater than the pressure threshold, 5.3 GPa.13,14 Further details 
on the model can be found in [4, 9-12]. The Uintah framework has a long history of high 

performance computing and has shown good strong and weak scaling characteristics up to 

512 K cores on DOE’s Mira.22-24 Uintah’s strong scalability enabled us to run large 2D and 

full 3D simulations at high grid resolutions (2 mm). The reaction model has been validated 
at many resolutions including 2 mm.15,25 Using this advanced computational tool it was
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possible to predict if a thermally ignited array of explosives would undergo a DDT event.

7.2.1 Common Simulation Setup
This research focused on the smaller of the two cylinders involved in the 2005 accident,

0.054 m in diameter and 0.33 m in length. Due to the abundance of experimental data and 

Uintah’s validated DDT model, solid PBX 9501 (95% 1,3,5,7-octahydro-1,3,5,7-tetranitro-

1,3,5,7-tetrazocine (HMX) and 5% of a plastic binder) was the explosive examined. For 

simplicity the fiberboard material was not modeled, instead 10 mm air gaps separated the 

“boxes.” These simulations consisted of only two materials, the solid reactant modeled 

by MPM particles and the product gas modeled by ICE. The explosives and surrounding 

gas were initially at ambient pressure and temperature, and the explosives were ignited 

by hot product gas at 2500 K in the x — corner of the domain. All explosive devices 

were one to two cells away from the computational boundaries to reduce boundary effects. 
The 2D simulations were performed using symmetric/reflective boundary conditions for 

the x —, y—, z —, and a wall on the z+  face. All other boundaries conditions were set to 

a zero gradient for the primitive variables (temperature, velocity, density, and pressure) 

and the edge of the computational domain was positioned far from the area of interest to 
minimize nonphysical boundary condition effects. The 3D simulations were the same with 

the addition of the z— and z+  boundaries being set to a zero gradient for the primitive 

variables.
There are two ways to package cylinders in a box, tight packing, where the cylinders are 

in a hexagonal configuration, or loose packing, where the cylinders are in a square configura

tion. For this study both configurations were examined and preliminary simulations showed 

that the loose packing distribution is less likely to transition to a detonation. Therefore we 

only presented the simulations consisting of explosives loosely packed in a “box.”
A large 3D simulation was run with 1280 PBX 9501 cylinders packaged 20 to a “box” 

and stacked one on top of the other, as shown in Figure 7.1. The simulation consisted of 
64 “boxes,” 4 in each direction, correlating to 1/8th of the original tractor-trailer in the 

2005 accident. The domain for this simulation was 12 m3, resulting in 350 million cells 

containing 980 million PBX 9501 particles. This was run on 64 thousand cores on DOE’s 

Mira, costing over 24 million core processing units. Under these conditions our results 

showed that the array transitioned to a denotation at 0.66 msec. From this simulation 

there was strong evidence that the packing arrangement used in most storage facilities 
and during transportation will transition to a DDT. This result provided motivation to 

study new ways of packing/storing explosive cylinders to prevent a detonation. The level of



78

Figure 7.1: Contour plots of the pressure and shadow of the explosive cylinders in the
3D simulation.

computational resources required to preform a parametric study of this type is exceedingly 

expensive on current computational platforms. We therefore investigated using low-cost, 

fast running, 2D simulations for our study. We ran a series of 2D simulations and compared 

the position and time of the detonation against the large 3D results. Analysis of the state 

of the cylinders at the point of detonation showed that a similar physical mechanism caused 
the detonation in each simulation.25 The global maximum pressure in the domain as a 

function of time was also compared, and good qualitative agreement was observed. The 

good level of agreement in the main variables of interest justified our use of low-cost 2D 

simulations for the parametric study.

7.3 DDT Initiation Mechanisms
Previous work on identifying the previously unknown physical mechanisms involved in 

initiating a DDT in an array of explosive cylinders was presented in.25 Two dominant 

mechanisms were identified, inertial confinement and Impact to Detonation Transition 

(IDT). Inertial confinement only occurs when the explosive cylinders are packaged closely
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together. As the deflagration progresses outward, the inertial mass of the surrounding 

explosives slows the movement of the deforming deflagrating cylinders, causing them to 
compact into one another. In the compaction zone a high-density barrier forms, trapping 
the product gases and increasing the local pressure behind the barrier. As the pressure 
increases, the burn rate accelerates until a detonation is reached.25 The second mechanism, 

IDT, was observed when the explosive cylinders were packaged further apart, allowing for 

the gases and explosive fragments to accelerate to velocities of >500 m/s before impacting 

nearby deflagrating cylinders. Due to the deflagration, these nearby explosives are typically 

at an elevated pressure («3  GPa). Once impact occurs the deflagration quickly transitions 
to detonation. The observations suggested that the mechanical insult generates stress waves 

in the explosive, that reflect, and produce the pressures required for a detonation. A full 
discussion of these physical mechanisms can be found at.25

7.4 Results and Discussion
This study examined two strategies to reduce the probability of a DDT in packed PBX 

9501 cylinders. The first was to change the number of explosives in a “box” and the overall 
volume or the global Packing Volume Fraction (PVF). The global PVF is the total PBX 

9501 volume divided by the total volume that the “boxes” occupy (not the computational 

domain volume). The second was to change the way in which the “boxes” are organized 
while keeping the size of the boxes constant. This is referred to as the packing configuration. 

Figure 7.2 illustrates the four different packing configurations presented.

7.4.1 Critical Packing Volume
This section examines hypothesis one: how the number of explosive cylinders in a “box” 

contributes to the propensity for a detonation. In these simulations the outer dimensions 

of the boxes were varied to account for the number of cylinders contained, see Figure 7.2 
((a) compared to (c)). A critical PVF was defined as the maximum global PVF that does 
not initiate a DDT when thermally ignited. In Section 7.4.2 we show that the initial spatial 

layout of the explosives greatly influenced the probability of a DDT and that there was 

not a critical PVF for all packing configurations. This realization led to the hypothesis 

that varying the number of explosive cylinders in a “box” can increase the critical PVF 

and decrease the amount of space needed to package 320 PBX 9501 cylinders safely. In 

this study the only packing configuration examined was the Base configuration, Figure 7.2 
(a and c). The number of “boxes” simulated varied in order to contain ^320 cylinders. 

Two variables were varied in the parametric study: (1) the number of cylinders per box
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0.56 m

Figure 7.2: Initial packing configurations.

and (2) the distance between the boxes. Table 7.1 shows the simulations nearest to the 

critical PVF threshold for each configuration. This is a small representation of the >65 
simulations examined. Figure 7.3 shows the PVF of all simulations as a function of the 

number of explosives in a “box.” The green line and points show the critical PVF for each 

configuration and the red points are simulations which resulted in a detonation. Below the 

critical PVF (blue points) detonation did not occur due to adequate spacing. Above the 

critical PVF threshold the explosives were too densely packed and resulted in a detonation. 

This plot illustrates two ideas: (1) the fewer cylinders there were per “box” the larger the 

critical PVF, (2) there was a threshold at 9 cylinders per “box” where the critical PVF 
dramatically increases from 0.37 to 0.497.



Table 7.1: Initial conditions for the simulations near the critical packing volume fraction (defined in Section 7.4.1) for each configuration.

Simulation Name #  of Cylinders 
per box

Spacing between boxes
(x)

Configuration 
(Described in 
Figure 7.2)

Global Packing 
Volume Fraction

DDT Initiation 
Mechanism

Transportation_Accident 20 10 mm Base 0.739 Inertial Confinement
Base_20_200mm 20 200 mm Base 0.298 -

Base_20_190mm 20 190 mm Base 0.31 IDT
Base_20_136mm 20 136 mm Base 0.387 IDT
Base_16_150mm 16 150 mm Base 0.26 -

Base_16_120mm 16 120 mm Base 0.301 IDT
Base_12_104mm 12 104 mm Base 0.37 -

Base_12_90mm 12 90 mm Base 0.404 IDT
Base_9_90mm 9 90 mm Base 0.367 -

Base_9_50mm 9 50 mm Base 0.497 -

Base_9_40mm 9 40 mm Base 0.54 IDT
Base_6_34mm 6 34 mm Base 0.524 -

Base_6_30mm 6 30 mm Base 0.547 IDT
Base_4_30mm 4 30 mm Base 0.505 -

Base_4_24mm 4 24 mm Base 0.548 Inertial Confinement
Base_2_20mm 2 20 mm Base 0.503 -

Base_2_10mm 2 10 mm Base 0.62 Inertial Confinement
Base_l_16mm 1 16 mm Base 0.598 -

Base_l_14mm 1 14 mm Base 0.615 Inertial Confinement
Offset 20 - Offset 0.385 -

2X2_Offset 20 - 2X2 Offset 0.375 Inertial Confinement
Checkered_Box 10 - Checkered Box 0.393 -
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Figure 7.3: The PVF for each of the >65 simulations using between 1 and 20 cylinders 
per box. The green circles and line represent the critical PVF for each configuration. The 

red asterisks depict simulations that detonated, while the blue triangles represent 
simulations that never detonated because they had a PVF below the critical one.

The explanations behind the two postulations illustrated in Figure 7.3 are very similar. 
The observed average pressure was lower in “boxes” containing fewer cylinders, 2 GPa 

compared to 3-4 GPa. When more explosives were packaged together the interior devices 

were “confined” by the surrounding cylinders, thus restricting the expansion of product 

gases and increasing the localized pressure. When the number of cylinders per box was 
increased from 9 to 12, in order to ensure safe deflagration the spacing between the “boxes” 

needed to be doubled, from 50 mm to 104 mm. This was due to a “box” with 12 cylinders 
reaching a higher pressure, from the confinement of the surrounding cylinders, than was seen 

in boxes containing 9 cylinders. Figure 7.4 shows that the pressure in the Base_12_90mm 

simulation was 1-1.5 GPa higher than the pressure reached in the Base_9_90mm simulation, 

Figure 7.5. Figures 7.6 and 7.7 show the position the data was extracted from, shown by the 

white line. The only difference between these two simulations was the number of explosives 

in a “box.” A result of the elevated pressure was increased particle velocities. The observed
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Figure 7.4: Pressure profile verse position and time for the Base_12_90mm simulation. 
The red dotted line represents the pressure threshold for a detonation. Position of 

extracted data is shown in Figure 7.6 by the white line.

Figure 7.5: Pressure profile verse position and time for the Base_9_90mm simulation. 
The red dotted line represents the pressure threshold for a detonation. A detonation was 
not observed in this simulation. Position of extracted data is shown in Figure 7.7 by the

white line.
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Figure 7.6: The volume fraction of PBX 9501 in each grid cell of the simulation domain, 
at the timestep at which an IDT initiation of a DDT was detected in the Base_12_90mm 

simulation. The white line illustrates where the data were extracted for Figure 7.4.

Figure 7.7: The volume fraction of PBX 9501 in each grid cell of the simulation domain 
in the Base_9_90mm simulation. The white line illustrates where the data were extracted

for Figure 7.5.
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particle velocities were over 100 m/s faster than those seen in the Base_9 simulation. This 

forced the boxes to be spaced further apart in order for the impact of deflagrating particles 

and pressure waves to not initiate an IDT event. Thus the more explosives packed together, 
the higher the localized pressure, the higher the particle velocity, and the further the boxes 

must be separated to avoid a detonation.
The same explanation can be used to understand why decreasing the number of cylinders 

per box resulted in an increase of the critical PVF. It was observed when there were 4 or 

fewer cylinders per “box” that the gases easily expanded, resulting in low localized pressures. 
As a result, the only observed DDT mechanism was inertial confinement which occurred 

when the boxes were packed closely together (<30 mm). For the Base_1 configuration the 
“boxes” had to be packaged less than 16 mm apart to form inertial confinement. That is less 

than the space needed for one cylinder (54 mm). Thus packing fewer cylinders in a “box” 

increased the critical PVF, decreased the space occupied, and decreased the probability of 
a detonation.

7.4.2 Packing Configuration
The second strategy for safer transportation and storage of explosive devices (hypothesis 

two) was to change the packaging configuration while holding the global PVF constant. The 
arrangements are presented in Figure 7.2. In the four configurations considered, the box 

size was held constant at 0.27 m x 0.216 m, resulting in global PVF ranging from 0.375 to

0.393, see Table 7.1.
The first layout analyzed was the 2X2_Offset configuration, which had a global PVF of

0.375. It contained four boxes packed together surrounded by open space where four other 

boxes would have been, see Figure 7.2(e). Figure 7.8 shows the progression of deflagration 
(red) through the explosive cylinders (grey), an enlarged view of the pressure field as the 

DDT occurred is shown in the upper right corner. These results showed that four “boxes” 

containing 20 cylinders should not be placed directly next to one another, to avoid a DDT.
The second packing configuration considered was the Base configuration, Figure 7.2(a). 

Here we present the results from the Base_20_136mm simulation, which had a global PVF 

of 0.387, similar to the previous test case. This simulation transitioned to detonation due 

to an IDT mechanism. Figure 7.9 shows a contour plot of the magnitude of the product 

gas velocities and the pressure field at the time of detonation. The pressure is shown in the 

upper right corner, focused where the DDT occurred. With this packing arrangement the 
particles and gases did not have sufficient room to expand, causing the particles to impact 

surrounding deflagrating cylinders and resulting in a transition to detonation. Figure 7.10
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0.0 1.0 2.0 3.0 4.0

Figure 7.8: Contour plots of the progression of deflagration (red) and the pressure 
(upper right corner) in the 2X2_Offset configuration. This configuration transitioned to a 

detonation due to an inertial confinement initiation mechanism.
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Figure 7.9: Contour plots of the magnitude of the gas velocity and the pressure in the 
Base_20_136mm configuration. A detonation occurred due to an IDT mechanism.

Figure 7.10: Schematic diagram of the idealized undeformed cylinders flow field for the 
Base_20_136mm (a) and the Offset configuration (b). The solid arrows represent the bulk 
flow and the dashed arrows the local flow field.
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(a) is a schematic diagram of the flow field. Notice there is little impeding the flow of 
high velocity gases and explosive fragments from impacting the surrounding deflagrating 

cylinders. As illustrated in Section 7.4.1, in order for this packing configuration of 20 

cylinders per box to be effective and not transition to detonation, the “boxes” must be 

spaced >200 mm apart.

The next arrangement considered was the Offset configuration, with a global PVF of

0.385. With this spatial layout detonation was not observed. Figure 7.11 shows a contour 

plot of the magnitude of the gas velocities and pressure. The large open regions allowed the 

product gases to expand. The pressure in this simulation never reached more than 3 GPa, 
well below the threshold needed for a detonation. In this configuration an IDT mechanism 

seemed likely due to the large gaps, allowing gases and particles to accelerate as was seen 
in the Base_20_136mm configuration. We hypothesize that this did not occur due to the 
arrangement of the boxes, allowing for the higher gas velocities to redirect the particles and 

pressure waves away from the deflagrating cylinders and into the small gaps between the

Figure 7.11: Contour plots of the magnitude of the gas velocity and the pressure in the 
Offset configuration. A detonation did not occur.



89

corners of the boxes, as shown in Figure 7.11. This gas movement redirects the particles 

and pressure waves, which could cause an IDT, to an open area. Figure 7.10 (b) illustrates 

a schematic of how we believe the gas flow is altered by packing the “boxes” in an Offset 
configuration rather than the Base configuration. This configuration shifted the flow of 

gas and particles from directly toward the deflagrating cylinders 7.10(a) to in-between the 
“boxes” 7.10(b), preventing a detonation.

The last packing configuration considered was the Checkered_Box configuration, Figure 

7.2(b). In this loading arrangement every other cylinder was removed from the box, and 
the remaining cylinders were positioned in a checkered configuration so no explosives were 

directly on top of one another. Figure 7.12 shows the pressure field and magnitude of the 

gas velocity at t=  0.8 msec. The simulation results showed product gases easily expanded 
with minimal impedance, resulting in relatively low pressures. Since the pressures were 

low the particle velocities were ^300 m/s, much lower than the >500 m/s seen in an IDT 

event. Inertial confinement was also not a possible mechanism for this distribution because

Figure 7.12: Contour plots of the magnitude of the gas velocity and the pressure in the 
Checkered_Box configuration. A detonation did not occur.
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there was substantial distance between each cylinder (>54 mm), making it difficult for them 

to compact into one another and form a barrier. Similar to the Offset configuration, the 

pressure in the deflagrating cylinders never reached more than 3 GPa. An enlarged view of 

the pressure field is seen the upper right corner. This result suggests that this configuration 
has a low probability of a detonation.

7.4.3 Comparison of 2D versus 3D Computational Domain
A 3D simulation was run to confirm the results of the 2D Offset configuration. The 

3D initial setup was the same as the 2D with the addition of 4 rows of “boxes” in the 

z dimension, giving more space for the product gases to expand, making it more difficult 

to build to the pressures needed for a detonation. Due to the configuration of the boxes, 

Adaptive Mesh Refinement26 could not be utilized, drastically increasing the computational 

costs. Figure 7.13 shows a contour plot of the pressure and the magnitude of the gas 

velocity. Notice the pressure was well below 5.3 GPa. The pressure and gas velocities were 

qualitatively similar to those found in the 2D simulation, Figure 7.11. In both simulations 
we observed high velocity gases flowing between the corners of the boxes. Even though the 

3D simulation did not run to completion, due to lack of resources, the similarities between 

the 2D and 3D simulations suggest that a detonation would not occur in this configuration.

7.5 Conclusions
The results from numerical experiments described here have shown that the number 

of cylinders packed in a “box” effected the probability of a detonation. An important 

factor in the Base configuration not leading to a detonation was adequate space for the 

explosive fragments and gases to expand. As fewer explosives were packaged together, 
the mechanism for a DDT switched from IDT to inertial confinement. This allowed the 

cylinders to be packed closer together without transitioning to a detonation. IDT was 

less probable with fewer cylinders packed in a “box” because the explosives could not 

sustain the elevated pressures needed. Strong evidence also suggested that while holding 
the global PVF constant the packing configuration changes the probability of a detonation 
along with the DDT mechanism. Two configurations showed that detonation can be avoided 

while sustaining a global PVF ^0.39, the Offset and Checkered_Box configurations. The 

2X2_Offset and Base_20_136mm configurations, on the other hand, exhibited two different 
mechanisms for DDT and quickly transitioned to a detonation.
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Figure 7.13: Contour plots of the magnitude of the gas velocity and the pressure in the
3D Offset configuration.
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CHAPTER 8

CONCLUSIONS

Modeling the many aspects of a DDT on large scales is a very difficult task. This thesis 

focused on developing the tools necessary to computationally model multiple aspects of 

the combustion of PBX 9501 and how these tools were used to examine how a relatively 
unenergetic deflagration can transition into a fully developed detonation in an array of 

explosive cylinders. With a strong understanding of the initiation mechanism needed for a 

DDT to occur in an array of explosives, considerations can be made on the proper packing 

configuration needed to prevent large storage and transportation accidents. The ultimate 

goal was to reduce the probability of detonation in an ordered array of solid explosive 
cylinders. To do this, a computational framework must be capable of scaling to large core 

counts, run in parallel on massive computational infrastructures, and accurately represent 

the fluid-structure interactions. A collaboration with computer scientists and engineers has 
made the Uintah framework capable of scaling to 512 K cores on DOE’s Mira, enabling 

large-scale simulations. The engineers have included fluid-structure interactions, described 

in Chapters 1 and 2, enabling the solid PBX 9501 to be converted to product gas. With 
this strong computational framework large-scale simulations of hard scientific problems are 

possible.
When running complex fluid-structure interaction simulations unforeseen problems arise. 

One of these problems was the reactant equation of state (JWL) producing negative pres

sures when the material was placed in tension, as seen in unconfined deflagration. Negative 

pressures are unphysical for gases and are not allowed within the Uintah infrastructure due 

to the MPMICE component. MPMICE requires that there be a very small amount of every 

material in every cell. To account for this, the JWL equation of state was modified for the 

reactant material, eliminating the possibility of negative pressure. The modified equation 

of state exhibited the same expansion behavior at pressures above the reference pressure 
(1 atm) and exponentially decays to zero below. This modification eliminated the pressure 

error occurring when the solid material was in tension.
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Another challenge with large-scale simulations is understanding the resolution depen

dence within the models. The quantities examined when investigating a resolution depen

dence were the effect on the conductive and convective deflagration rates and the detonation 
velocity. It was observed that the conductive burn rate was not dependent on the resolution 

of the grid cells. Cell sizes from 1 mm to 10 mm were examined for on surface burning 

at three initial temperatures over a wide range of pressures and little to no change was 

observed. The detonation velocity and convective deflagration rate on the other hand did 

exhibit a resolution dependence. Cell resolutions of 1 to 12 mm were examined for the 

detonation velocity. It was observed as the cell resolution increased the reaction peak 

extended closer to the sonic plane, accelerating the detonation velocity. At a resolution of 

12 mm an error of 8% was introduced. This suggested that grid resolutions of 10 mm or 
smaller should be used to reduce substantial error in the detonation velocity.

A resolution dependence in the convective deflagration rate was introduced from previ

ously implementing the WSB model as a 3D model. In doing so the burn front area, needed 

to calculate the mass burn rate, was assumed to be a face of the deflagrating cell. As the 

resolution was doubled the burn rate then doubled due to the number of cell faces increasing 

by a factor of two. To account for this the burn front area for convective deflagration is 
now calculated as the volume of the cell divided by a reference burn front area (2 mm). 

This has eliminated all resolution dependence associated with convective deflagration. It is 
understood this was a simplified approach to model the convective deflagration rate. Until 
further experimental research is done to fully understand the mass burn rate with convective 

deflagration, this approach, to the best of our knowledge, accurately represents convective 
deflagration and decreases the nonlinearity in the simulations. Additionally, modifications 

to the burn model were made to more accurately represent the deflagration propagation 

velocity of conductive and convective deflagration. An induction time was introduced to 
slow down the flame velocity to that seen experimentally. With these changes Uintah 

accurately predicts a DDT in solid PBX 9501 with a resolution-independent DDT model. 
In order to run the large-scale simulations described in this thesis, it was essential that there 

was no resolution dependence, as larger cell sizes were needed for these very computationally 

expensive simulations.
The main focus of Chapter 7 was of analyzing a large 3D simulation run on 64,000 

cores on DOE’s Mira. This simulation consisted of 969 million particles in 206 million 
cells, representing 1/8th of the tractor-trailer involved in the 2005 transportation accident. 

The results from this simulation suggested that even without the additional compaction
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and displacement of explosive cylinders moving in the accident, the original packing con

figuration would have still transitioned to detonation once ignited. It was observed in the 
large-scale simulation that the initiation mechanism for this transition occurred from inertial 

confinement. Inertial confinement occurred when the explosive cylinders were packed too 

closely together. This allowed for the cylinders to compact into one another, forming a 
high density barrier. Within the confines of this barrier the product gases were trapped 

and the compression of these gases transitioned to detonation. A second DDT initiation 
mechanism, Impact to Detonation, was observed when the cylinders were placed further 

apart. In these simulations the deflagrating cylinders were at an elevated pressures and the 

impact of a pressure wave or explosive fragment increased the localized pressure to that 

needed for detonation.
With a greater understanding on how deflagration can transition to detonation in an 

array of explosive cylinders, safer packing configurations were examined. The results showed 
that detonation can be inhibited by changing the packing configuration or number of 

devices packed in a box. It was observed that the fewer number of cylinders packaged per 

box, the closer the boxes could be packaged together without transitioning to detonation. 
This ultimately led to higher critical packing volume fractions, decreasing the amount of 

space needed to safely store explosive devices. The results also suggested that the packing 

configuration of the boxes greatly influenced the simulations’ propensity to transition to 
detonation. Two simple packing configurations, the Offset and Checkered_Box configura

tions, were determined to be viable ways to safely package explosives. With this greater 

understanding of how arrays of explosive devices transition from deflagration to detonation 

and new suggestions on safer packing arrangements, we hope this research will decrease the 

probability of future transportation and storage accidents.



APPENDIX A

DDT1 MODEL

This appendix shows the logic of using the Uintah’s DDT1 reaction model. The hot cell 
is defined as a surrounding cell which has a volume fraction of 0.7 or higher of the material 

that is above the temperature threshold for burning which ignites the cell of interest.

A.1 Compute Number of Particles per Cell
1. Count number of particles per cell (numPPC)

2. If used crack model, calculate crack width threshold1

(a) If CrackRad >CrackWidthThreshold then crackedEnough[c]=1. CrackRad is 
calculated from ViscoSCRAM2

• Determ ine intermediate values used for determining type o f  burning.

1. Loop over all cells containing a reactant voLfrac >1e-10

(a) Check to see if the output interval should be adjusted based on pressure defined 
in the input file.

(b) Determine if cell is detonating

i. Pressure threshold for detonation <press_CC

ii. Detonating =  1

(c) If pressure threshold for detonation >press_CC > pressure threshold for burning

i. Pressure in adjCell is determined based on the pressure in a surrounding cell 

with the largest product gas volume fraction

A.2 Compute Burn Logic
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ii. Determine if cell is on surface of explosive

A. Vol_fac_CC[m][adjCell] > 0.2

B. Temp_CC[m][adjCell] >ignition temp

C. numPPC >0

D. Mass fraction is <0.7 (make sure surface of explosive is exposed)

E. If A-D are true burning =  on surface

F. If true break out of burn logic.

iii. Determine if surrounding cell is detonating

A. Pressure threshold for detonation <press_CC[adjCell]

B. Set detLocalTo[c] =1

iv. If use crack model =  true; determine if temperature for burning is exceeded

A. Temp [adjCell] >ignition temperature

B. Set temperatureExceeded=1

2. If use induction time

(a) Determine if cell was burning in last timestep.

i. If true, continue warming up and add to countTime

(b) Determine if cell is on the surface

i. If minOverMax <0.7 and numPPC >0

ii. Loop over all cells

A. If burning =  onsurface

• calculateInductionTime =  true

• If the hot gas is in the cell

— if vol_frac[m][c] > 0.2 and temp_cc[m][c] >ignition temp

0 hotgas— 0

• If the hot gas is in a surrounding cell

-  if vol_frac[m][adjCell] > 0.2 and temp_cc[m][adjCell] >ignition temp

— Determine where the hot gas is in relation to the cell

-  Compute induction angle (0 hotgas)

B. If on surface cell is ignited from burning cell
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• Use crack model =  true, cell is cracked enough and surrounding cell 
is burning

• calculateInducitonTime =  true

• If the hot gas is in a surrounding cell

-  If vol_frac[m][adjCell] > 0.2 and temp_cc[m][adjCell] >ignition temp

-  Determine where the hot gas is in relation to the cell

-  Compute Qhotgas

(c) If cell is not on the surface, is cracked enough and a surrounding cell is burning

i. Determine where the hot gas is in relation to the cell

ii. Compute Qhotgas

(d) Compute Aid
1 +  IC  1 +  IC  . „  , /A ,

Aid =  ----2------ 1------ 2----Sm(2®hotgas -  Y) (A.2)

(e) Determine if ignited from conductive burning or conductive burning

(f) Calculate induction time

InductionTime =  A xAid (A.3)
Sf

Sf  =  0.259Pda538 (A.4)

Flame spread on a surface from Son et al.3

(g) Add At to count time

(h) Determine if induction time is exceeded

3. Determine burning criteria

(a) If use induction time =  true

i. Burning Criteria =  conductive burning (on surface) if

A. detLocalTo[c] != 1 (surrounding cell is not detonating)

B. Burning =  on surface

C. Press_CC > threshold for burning

D. Induction time is exceeded

E. Ignited from conductive burning

ii. Burning Criteria =  Convective burning if
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A. detLocalTo[c] != 1 (surrounding cell is not detonating)

B. Use crack model =  true

C. Cell is cracked enough

D. Temp_CC >burning temperature threshold

E. Induction time is exceeded

F. Ignited from convective burning

iii. Burning Criteria =  Warming up if

A. Count time <induction time

B. Count time >0

(b) When use induction time =  false

i. Burning Criteria =  conductive if

A. detLocalTo[c] != 1 (surrounding cell is not detonating)

B. Burning =  on surface

C. Press_CC > Pressure threshold for burning

ii. Burning Criteria =  Convective if

A. detLocalTo[c] != 1 (surrounding cell is not detonating)

B. Use crack model =  true

C. CrackRad >CrackThreshold

D. temperatureExceeded=1

Com pute Induction Angle

• Hot cell Vector =  vector [(hotcellCord.x() - cellCord.x()),

(hotcellCord.y() - cellCord.y()), 
(hotcellCord.z() - cellCord.z())]

Sp Sp Sp
• Norm alizedDensityGradientVector = --------Sx ’ Sy ’Sz--------

(Sx )2+( Sy )2+( Sp )2Sx '  ̂Sy '  ̂Sz '

• massHotCell =  N orm alizedDensityGradientVector*H otCellVector 

U pdate output intervals based on pressure exceeding threshold

Com pute M odel Sources (mass, m om entum  and energy converted from 
solid ^  gas)
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1. Loop over all cells containing a reactant voLfrac >1e-10

2. If detLocalT[c] =  1 (cell is detonating)

(a) Use JW L++ model for explosion to compute delF

F  =  Pprod (A.5)
prct +  pprod

delF =  G * P  * (1 -  F ) (A.6)

(b) Determine rctMass, prdMass and MB

i. MB =  delF*(prdMass+rctMass)

ii. A maximum of 20% of the cell can burn per timestep4

(c) Clamp burned mass to total convertible mass in cell

(d) Update totalBurnedMass, mass_src, momentum_src, energy_src, totalHeatRe- 

leased, sp_vol_src

3. If conductive burning (on surface burning) =  true

(a) Determine density gradient and BFA

Sp Sp Sp
Norm alizedDensityGradientVector =  — Sx ’ Sz ----  (A.7)

\/( SX )2 +  ( g  )2 +  ( Sp )2

B F A  = ------------------Ax * Ay * Az------ ------ (175) (A.8)
+ Ay^| +  A z |9 l|) (max(g))

(b) Compute Burned Mass from WSB model a function of Tzero, Tsurf, prodPress, 

rctSpvol, surfArea, deltT, solidmass, min_mass_in_cell

i. Update constants

ii. Ts and mb are iteratively solved

1/2

mb(Ts) =
KcpcAcRT2exp-jRjf- 

CpEc(Ts -  T0 - 2C_

QC Qg

(A.9)

Ts(mb, P ) =  T0 +  C  +  ---- ------x P (A .10)
C  c p(1 + x s m p

xg (mb , P ) =  2xcd(mb) (A.11)
g' ' V 1 + D„ (mb, P ) -  1
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xcd(mb) =  — ^  (A.12) 
mbCp

x 4Bg M W C VP 2 , x2 , A x
Da(m b,P ) =  — ^ 2— P— Xcd(mb) (A.13)R2Kg

M B  =  AT * B F A  * mb (A.14)

(c) Clamp burned mass to total convertible mass in cell

(d) Update totalBurnedMass, mass_src, momentum_src, energy_src, totalHeatRe- 
leased, sp_vol_src

4. If convective burning

(a) Determine Burn Front Area

BFA =  A F A A  (A ,5 )

This ensures the burned mass will not change with resolution.

(b) Compute burned Mass from WSB model a function of Tzero, Tsurf, product- 

Press, rctSpvol, surfArea, deltT, solidmass, min_mass_in_cell

i. Update constants

ii. Ts and mb are iteratively solved using Equations A.9-A.14

(c) Clamp burned mass to total convertible mass in cell.

(d) Update totalBurnedMass, mass_src, momentum_src, energy_src, totalHeatRe- 

leased, sp_vol_src.

5. If warming up =  true

(a) Do nothing.

6. Save total quantities.
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APPENDIX B

MODIFIED JWL EQUATION OF STATE

Determining reference density to eliminate negative pressure in JWL EOS for the solid 

material when under tension.

B.1 Flow Chart
JWL EOS
P  =  A e(-RlV) +  B e ( -R2V) +  ^

Po
V  =  p+1e- 100

Initialize Variables 

f  =  0

f p =  0

ConvergenceCriteria  =  1e — 15

pmax =  100000 

pmin =  0

pref — pguess — porig 

pIR =  pmax 

pIL =  pmin

iter =  0 

Initial Guess

while do

Bisection Methoud

EOS JWL (T,pref ) compute ^  , Piter

f  — Piter Pref 

SetI nterval(pmax, pmim f\ pref )
if | PlLp-piR | < convergence criteria then
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p . =  PIR+PIL pref =  2

Break Outer Loop 
end if

Snew =  1e100

while do

Newton’s Method

E O Sjw L(T ,pref) compute ^  , f

Sold — Snew

S =  —fSnew — df 
dp

pref +  — Snew

if  | —  | < convergence criteria then 
dp Pref 

Break Outer Loop
end if

if  iter > =  100 then 

Throw Error 

end if

if  pref <  PIL, or pref >  Pi r , or ISnew| > |Soid0.7| then 
Break Inner Loop

This catch is if the improvement from Newton Method is not shrinking try to use 
Bisection Methoud to make problem more local 

end if

EOSjWL(pref ,T ) compute ^  , Piter

f  — Piter Pref

iter++ 

end while

setInterval(piR, piL, f ,  pref) 
if Break Outer Loop then

p . =  PIL+PIR pref =  2

iter++ 

end if 

end while


