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ABSTRACT 
 
 
 

 Optical spectra of the supersonically cooled NiCCH radical have been recorded in 

the 530-650 nm region using the resonant two-photon ionization method, and five of the 

observed bands have been rotationally resolved. The rotationally resolved studies 

demonstrate that the ground state of NiCCH is of �̃� Δ5/2
2 . Most of the observed bands 

are assigned to the �̃� Δ5/2 ←  �̃� Δ5/2
22  electronic transition, which shows a progression 

in the Ni-C stretching mode, ν3. In addition, single excitations of the modes ν2 (C≡C 

stretch), ν4 (C≡C-H bend), and ν5 (Ni-C≡C bend) are observed, allowing these vibrational 

intervals to be determined for the �̃� Δ5/2
2  state. Hot bands also allow the determination 

of ν5 in the ground �̃� Δ5/2
2  state. 

 The optical spectrum of diatomic OsSi has been investigated for the first time. 

Two electronic band systems have been identified along with a number of unclassified 

bands. Nine bands have been investigated at rotational resolution, allowing the ground 

state to be identified as X Σ0+
−3 , arising from the 1σ21π42σ23σ21δ2 configuration. The 

ground X Σ0+
−3 state is characterized by re = 2.1207(27) Å and ΔG1/2" = 516.315(4) cm-1 

for the most abundant isotopologue, 192Os28Si (38.63%). The A1 excited electronic state 

is characterized by T0 = 15 727.7(7) cm-1, ωe = 397.0(7) cm-1, and re = 2.236(16) Å for 

192Os28Si. The B1 excited electronic state is characterized by T0 = 18 468.71 cm-1, ΔG1/2 

= 324.1 cm-1, and re = 2.1987(20) Å for 192Os28Si. 



 
 

iv 
 
 

The abrupt onset of predissociation in the congested electronic spectra of jet-

cooled VC, VN, and VS has been observed using resonant two-photon ionization 

spectroscopy. Using this method, bond dissociation energies of D0(VC) = 4.1086(25) eV, 

D0(VN) = 4.9968(20) eV, and D0(VS) = 4.5353(25) eV are obtained. These values are 

compared to previous measurements and to computational results.  The precision of these 

bond dissociation energies makes them good candidates for testing computational 

chemistry methods, particularly those that employ density functional theory.
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The essence of science: ask an impertinent question, and you are on the way to a 
pertinent answer. 

 
Jacob Bronowski (1908-74)
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 Spectroscopy, which may be defined as the study of the interaction between light 

and matter, has played a major role in chemistry, physics, and astronomy. Spectroscopy 

was founded in the 17th century, when many physicists started to use prisms to look at the 

spectra of the sun and the stars. Most famously, Isaac Newton found that by using a 

prism, white light could be split into its component colors. Furthermore, a second prism 

could recombine the component colors to make white light.1 After Newton’s discovery, 

physicists investigated the spectra and found that each element had a distinct pattern of 

colors. This original work used a prism as the dispersing element. The next major step in 

the development of spectroscopy was the invention of the diffraction grating 

spectroscope by Joseph von Fraunhofer in 1814.2-3 The spectroscope was invented by 

replacing a prism with a diffraction grating. Fraunhofer’s diffraction grating was 

constructed using wires to form a series of slits that are closely spaced together. When the 

light impinges on the diffraction grating, the separate components of the light will emerge 

at different angles. The development of the spectroscope allowed spectra to be collected 

with better resolution and enabled the wavelengths of the radiation to be measured. 

Fraunhofer used this to analyze the dark lines in the spectrum of the sun, 



 2 

which arise from absorption of the continuum emitted by the sun at the specific 

absorption wavelengths of elements that are present in the solar atmosphere. These 

absorptions lines are now known as the Fraunhofer lines. After the development of the 

spectroscope, scientists started to measure lines emitted by the elements. Gustav 

Kirchhoff and Robert Bunsen, in particular, used the diffraction grating developed by 

Fraunhofer and a new flame source developed by Bunsen, now known as the Bunsen 

burner, to prove that every element has a unique set of emission lines.2  

Although the studies mentioned above helped develop the field of spectroscopy, 

scientists were still confused about how exactly light and matter interacted with one 

another. To clarify this confusion, Kirchhoff introduced the idea of a blackbody as a 

material that absorbs and emits all radiation frequencies at any temperature. The radiation 

emitted from a blackbody is the simplest case for the interaction between light and matter 

because in a blackbody cavity the radiation does not depend on the material of the cavity. 

Lord Rayleigh and J. H. Jeans modeled blackbody radiation using classical 

electromagnetic theory, as developed by Maxwell, and obtained 

 

   ( )        
      . (1.1) 

 

Here ρν(T)dν is the radiant energy density per unit frequency, kB is the Boltzmann 

constant, T is the temperature, c is the speed of light, and ν is the frequency. This is 

known as the Rayleigh-Jeans law. It accurately modeled the blackbody radiation 

frequency distribution at low frequencies but fails miserably at high frequencies.4-6 The 

deviation could not be explained by classical physics and led to the development of 
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quantum mechanics. Only by requiring that energy could be added to or removed from 

the radiation field in increments of hQ was it possible to obtain the correct blackbody 

formula. This insight by Max Planck introduced a new fundamental concept, Planck’s 

constant, and led to the the Planck blackbody law: 

 

   ( )      
  

    
      ⁄   . (1.2) 

 

Here h is Planck’s constant.5-6 Its value was originally determined by fitting the 

experimental data to the form of the Planck law given above. In his derivation, Planck 

assumed that the electrons in the blackbody material had energies that were discrete, or as 

they are now known, quantized energies, and proportional to an integral multiple of the 

frequency. Although this leap of faith ultimately led to the correct answer and the 

development of quantum mechanics, many scientists did not accept Planck’s work. 

However, only a few years after Planck, Albert Einstein used Planck’s hypothesis to 

explain the photoelectric effect. 

 Heinrich Hertz, a German physicist, discovered the photoelectric effect. He found 

that ultraviolet light causes electrons to be emitted from a metallic surface.6-7 The 

photoelectric effect deviates from the expectations of classical physics in two ways: first, 

in classical physics, the kinetic energy of the electrons that are ejected from the metal 

should be dependent on the intensity of the radiation, but they are not. Second, the 

photoelectric effect would be expected to occur at any frequency as long as the light is 

intense enough. However, in experiments it was found that the kinetic energy of the 

electrons was independent of the intensity of the radiation and that there was a threshold 



 4 

frequency, below which the electrons could not be ejected from the metallic surface.  To 

explain these observations, Einstein took Planck’s hypothesis and expanded it. As 

mentioned above, Planck used the quantization of energy in the absorption and emission 

mechanics of the electrons in the blackbody, but assumed that the radiation acted like a 

classical wave. In effect, he assumed that the energy in the electromagnetic field was not 

quantized, but would take on any magnitude. Einstein proposed that the radiation itself 

actually consisted of small packets of energy, known as photons, and that it behaved like 

a particle. By using this assumption, it was easy for Einstein to show that the kinetic 

energy of an ejected electron is equal to the energy of the incoming light minus the 

minimum energy required to eject an electron from a specific metal, also known as the 

work function. This explanation can be easily seen in the following equation 

 

         (1.3) 

 

where KE is the kinetic energy of the ejected electron, Q is the radiation frequency, and I 

is the work function.4-6 Even though both Planck’s and Einstein’s solutions accurately 

modeled these experiments that could not be explained by classical physics, it took many 

years before quantum mechanics was fully developed as a theory and accepted by the 

scientific community as a whole. 

 Although the history of spectroscopy is fascinating, that is not the focus of this 

dissertation. The previous paragraphs were used to demonstrate why spectroscopy is 

important and how it was established. Once the field was well established, it was used to 

explain how matter acted on a molecular, atomic, and subatomic level. 
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 Over the last several decades, scientists have used spectroscopy to investigate the 

structure and characteristics of molecules. Some classic examples include ultraviolet-

visible molecular absorption spectroscopy, infrared spectroscopy, microwave 

spectroscopy, Raman spectroscopy, and nuclear magnetic resonance (NMR) 

spectroscopy. However, if spectroscopy is being performed on highly reactive 

compounds, a custom spectrometer needs to be built. In the Morse group, the focus is on 

unsaturated transition-metal compounds, which are highly reactive, therefore the resonant 

two-photon ionization (R2PI) spectrometer was constructed. The design and 

implementation of the R2PI spectrometer is described in Chapter 2. It is used to 

characterize small transition-metal-containing compounds that would be much more 

difficult to investigate using other techniques. 

 In the R2PI spectrometer, lasers are used to probe the molecules. Not every type 

of spectroscopy uses lasers, but they are fairly common. When the laser was first 

invented, it had a fixed frequency, which severely limited the studies that scientists could 

undertake. With development of tunable lasers, including dye lasers and optical 

parametric oscillator (OPO) lasers, scientists have been able to expand the scope of their 

studies significantly. One of the major advantages of laser light is that it has high 

intensity and can be produced with narrow linewidths. This allows scientists to 

investigate the electronic, vibrational, and rotational structure of molecules in greater 

detail than ever before. By investigating the electronic spectrum of a molecule, one can 

elucidate the electronic structure of the system. Investigating the vibrational spectra of 

molecules has permitted measurements of the forces between atoms in the molecule. 

Finally, the rotational structure of molecules is used to determine the rotational constant, 
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which is inversely related to the moment of inertia and can be used to find the bond 

lengths and bond angles in polyatomic molecules. In a diatomic molecule, it is only the 

bond length that may be determined. The rotational structure of the spectrum can also be 

used to determine the total electronic angular momentum around the axis of the molecule, 

known as :. This quantity often provides a great deal of insight into the electronic 

structure of the molecule. 

 In the Morse group, we use the R2PI spectrometer to investigate transition metal 

compounds and to determine their ground and excited electronic states, bond lengths, 

vibrational frequencies, and bond energies. The goal of the research is to gain knowledge 

about these molecules and pass along the information to other chemists so they can 

accurately model systems that cannot be readily investigated experimentally. 

 

1.2 Dissertation Outline 

 This thesis is separated into six chapters and two appendices. The first chapter 

explains the history and importance of these studies along with an outline of the 

dissertation. Chapter 2 focuses on the design and implementation of the R2PI 

spectrometer. This chapter was written with a person who has little to no spectroscopic 

experience in mind. The studies that were collected by this author using the R2PI 

spectrometer are described in the following three chapters. 

 In Chapters 3 and 4, R2PI spectroscopy was used to study NiCCH8 and OsSi,9 

respectively. For NiCCH, I found that the ground state is  ̃      . In my investigation of 

NiCCH, I only found one excited state,  ̃      . I determined the rotational constants for 

both the ground and excited states. Finally, multiple vibrational frequencies were 
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experimentally determined for the excited state. For OsSi, the ground state was found to 

be X      . Two excited states were investigated, A1, which is assigned as 3Π1, and B1, 

which is assigned as 1Π1. 

 In Chapter 5, I describe how the bond dissociation energies of VC, VN, and VS 

were determined using R2PI spectroscopy.10 This study used an OPO laser because it has 

a much wider scanning range than the dye laser that is typically used in the Morse group. 

The bond dissociation energies in Chapter 5 are more accurate than those found in 

previous investigations into VC, VN, and VS. 

 The final chapter, Chapter 6, concludes the dissertation and looks forward to how 

these data can be used. The final sections of this thesis contain Appendices A and B, 

which provide detailed spectroscopic data, compiled into tables and figures, for the nickel 

acetylide and osmium silicide molecules.  
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CHAPTER 2 

 

THE EXPERIMENTAL METHOD 

 

2.1 Introduction 

  In this dissertation, spectroscopy is used to study the ground- and excited-state 

characteristics and bond dissociation energies of transition-metal-containing molecules. 

The purpose of the research is to map the energy levels of the molecule of interest. By 

measuring the energy levels, one may also determine the rotational constants, bond 

lengths, and vibrational frequencies for the ground and excited states of the species of 

interest.  More importantly, rotationally resolved spectra allow the ground- and excited-

state electronic symmetries to be deduced, and from that information the molecular 

orbital configurations of the upper and lower states may often be determined. Resonant 

two-photon ionization (R2PI) spectroscopy is the particular spectroscopic method that 

was used to study the molecules reported here.  This method came into common use with 

the combination of tunable lasers, pulsed ultraviolet lasers, supersonic expansion 

techniques, and time of flight mass spectrometry.1-2 The tunable laser allows one to scan 

the spectrum and the pulsed ultraviolet laser allows the excited state to be ionized. 

Supersonic expansion cools the molecules to their ground electronic, vibrational and 

lowest rotational states.  This greatly reduces the spectral congestion that occurs when 

many low-lying excited states are populated, making the spectra much easier to interpret. 
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Spectral congestion is a particular problem for molecules with many low-frequency 

vibrations, or when rotational structure is complicated by overlapping branches at higher 

temperatures. By studying these molecules at low temperatures, typically around 5 K, the 

spectra are generally much less congested and far easier to assign. 

Another advantage of R2PI spectroscopy is that the molecule of interest is ionized 

after being excited with the dye laser, and the resulting ion is detected. This is a form of 

action spectroscopy, in which the absorption of a photon is not detected directly, but is 

inferred by some action that is induced by the absorption.  In this case, it is an ionization 

event.  In another example, laser-induced fluorescence spectroscopy, the absorption of a 

photon is detected by the fluorescence that follows. Detection of ions is advantageous for 

two primary reasons.  First, it is in principle possible to detect nearly 100% of the ions 

that are produced. This contrasts with laser-induced fluorescence (LIF) spectroscopy, in 

which a superb light collection system may collect 10% of the emitted photons, and an 

excellent photomultiplier may detect only 30% of the incident photons.  The net detection 

of only 3% of the emitted photons seems like very poor performance, but it is close to the 

best that can be achieved by LIF spectroscopy. A second advantage is that ions can be 

detected using a mass spectrometer, providing unambiguous identification of the carrier 

of the spectroscopic transition.  This is particularly helpful when the sample contains 

many different chemical species. In fact, the mass spectrum permits the spectra of 

individual isotopic combinations to be separately recorded without requiring the use of 

isotopically enriched samples. In addition, the background signal in the mass spectrum is 

frequently very low because off-resonant two-photon ionization processes can often be 

minimized by reducing the laser intensity. 



11 
 

In the Morse group, the majority of molecules that are studied contain a transition 

metal molecule. Most often, the group studies transition metal dimers, such as Pt2
3 or 

TiFe.4 However, transition metal atoms attached to ligands are also frequently studied in 

the group, with chromium tungsten, CrW,5 iridium silicide, IrSi,6-7 and copper acetylide, 

CuCCH,8 being three recent examples. Although infrequent, the group has also studied 

molecules that do not contain transition metals, such as Al2,9 Al3,10 Bi3.11 

 

2.2 Source Chamber 

Figure 2.1 shows a drawing of the instrument that was used in all of these studies. 

As can be seen in the figure, there are two major chambers: the source chamber, which is 

on the left, and the analytical chamber, also known as the A chamber, is on the right. The 

source chamber is 71 cm wide by 41 cm high and 46 cm deep, enclosing a volume of 

about 108 L. It is evacuated by a three-stage vacuum system. First, the chamber is 

evacuated to 1 torr or less using an Edwards E2M80 mechanical pump, then an Edwards 

EH500 Mechanical Booster pump is used to evacuate the chamber to about 20 mtorr. 

Finally, a 10-inch Varian VHS-10 diffusion pump is turned on, which pumps the 

chamber down to its final pressure, which is around 6 × 10-7 torr. The Edwards 

mechanical and turbo pumps back the diffusion pump. The source chamber and the 

diffusion pump are separated by a pneumatic 10-inch gate valve. 

 

2.3 Analytical Chamber 

 The analytical chamber, which is commonly referred to as the A-chamber, is to 

the right of the main chamber in the drawing in Figure 2.1. It is isolated from the main  



12 
 
 
 
 
 
 
 

Figure 2.1 Schematic of the resonant two-photon ionization instrument. 
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chamber by a 4-inch pneumatic gate valve. This chamber is where the tunable dye laser 

and the ionization laser probe the molecules. The molecular beam enters the chamber 

from the left in Figure 2.1; the other three sides of the chamber are sealed with circular 

flanges with a 2-inch optical window in the center of each flange. The A chamber 

consists of two pieces: the bottom portion, which is a cube about 27 cm on each side that 

encloses about 14 L of volume; and the time of flight tube, which is composed of a 5 cm 

diameter tube that extends upwards about 61 cm, terminating at a cylinder that is 

approximately 20 cm in diameter and 25 cm in height. This cylinder houses the reflecting 

electric field assembly. Extending down from this cylinder at an angle of about 18 

degrees is a 7.6 cm diameter tube with a length of about 62 cm, which terminates at the 

housing for the microchannel plate detector. 

 The analytical chamber is first evacuated to approximately 20 mtorr by an 

Edwards RV12 mechanical pump. Then, an Edwards Diffstak 160 Series diffusion pump 

is turned on to pump the chamber out to approximately 2 × 10-7 torr. The interface 

between the analytical chamber and the diffusion pump is a butterfly valve that is 

controlled by a pneumatic Edwards BRV25 valve. Unlike the main chamber, the 

analytical chamber is constantly maintained under vacuum to prevent water vapor from 

being adsorbed on the microchannel plate detector, which causes swelling and eventually 

cracking of the microchannel plates. 

 

2.4 Molecular Source 

 When investigating the spectra of a stable molecule, it is often possible to 

purchase the compound from a chemical company.  The molecules studied in the Morse 
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group, however, are generally highly reactive and must be created in the instrument. A 

major issue is that it can be difficult to produce the molecule of interest because although 

the molecule is stable in isolation, it can easily react with water or oxygen or can readily 

form larger clusters. In fact, clusters are regularly seen in the mass spectrum of a typical 

experiment because clustering is exothermic. To obtain the best molecular signal, some 

trial and error tweaking of experimental conditions is generally required. If the species 

being studied is a transition metal attached to a ligand, a reaction gas is needed to supply 

the ligand. The ablated metal will then react with the gas to produce the target molecule 

along with other species. For example, silane gas is used to produce transition metal 

silicides. Other common examples include methane to produce carbides, acetylene to 

produce acetylides, ammonia to produce nitrides, and hydrogen sulfide to produce 

sulfides. There are two important components of the R2PI instrument that help to form 

the target species: laser ablation and supersonic expansion, both of which occur in the 

source chamber. 

 The metal sample that is used is usually either pure metal or an alloy disk with a 

diameter between 1.5 and 3 cm. To make a consistent quantity of the molecule, the 

sample must be homogenous and smooth. Any irregularities in the sample can lead to 

fluctuations in the mass spectrum, which can make experiments very difficult if not 

impossible.  The metal sample disk is mounted to a sample holder that is attached to an 

assembly that has a series of gears, pulleys, and cams, all of which are driven by an 

external motor. The sample is pressed up against the vaporization block so that no gas 

can escape between the sample and the block as the sample is being ablated. A schematic 

of the sample holder is shown in Figure 2.2. The sample is rotated and translated to  
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Figure 2.2 The molecular source. 
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prevent holes from being drilled in the sample and to reduce or eliminate fluctuations in 

the molecular signal. The stainless steel or brass vaporization block measures 5 cm × 5 

cm × 2.5 cm and has two perpendicular channels that are drilled completely through the 

block. One channel provides a path for the vaporization laser to ablate the metal sample. 

This channel has a diameter of 2 mm and a length of 2.5 cm. The other channel is used to 

direct the carrier gas, which can be seeded with a reactive gas, to flow over the ablated 

metal and carry it toward the expansion orifice. In the Morse group, a variety of 

expansion blocks have been machined to allow the diameter of the expansion orifice to 

vary from 1 mm to 5 mm. The diameter of the expansion orifice can dramatically affect 

the species that are produced in the reactions, as well as changing the temperature of the 

molecules at the position where they are probed. Larger diameter expansion orifices 

cause the molecules to exhibit higher rotational temperatures.  

The molecules described in this dissertation were produced using a Quantel 

Brilliant pulsed Nd:YAG laser (3rd harmonic radiation, 355 nm) to ablate the metal 

sample at a rate of 10 Hz. The beam profile measures approximately 5 mm in diameter at 

the laser aperture, but was focused onto the sample using a 50 cm focal length lens, 

leading to a beam diameter of about 0.5 mm at the sample. One important way to 

optimize the molecular signal is to vary the timing between the pulse of the gas valve and 

the firing of the vaporization laser so that sample ablation occurs during the most intense 

part of the gas pulse. 

The short duration of the laser pulse combined with the small focus diameter 

causes the vaporization laser to have a high power density. This causes the sample to heat 

up rapidly and atoms are ejected into the gas phase, which leads to the formation of a 
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plasma. The plasma that is formed consists of atomic ions, neutral atoms, and electrons.12 

A pulsed valve is attached to a flange directly behind the vaporization block, and is timed 

to fire prior to when the vaporization laser is fired. This guarantees that the high-pressure 

carrier gas mixture will be above the metal surface when the laser is fired. The point of 

ablation is about 3.7 cm downstream from where the carrier gas enters the vaporization 

block. Downstream from the ablation channel, the metal plasma products are entrained in 

the carrier gas and collisions with reactive molecules lead to the formation of a wide 

variety of molecules, including both neutral and ionic molecules, as well as clusters. 

Unfortunately, the chemistry involved in this process is not selective, so it takes trial and 

error to make a strong signal of the molecule of interest. In a typical experiment, one 

must get the signal for the molecule of interest to be as strong as possible while also 

maintaining a low signal for competing molecules. The most important parameters to 

vary are the concentration of reactant gas that is mixed with the carrier gas, the backing 

pressure, the duration of the gas pulse, the vaporization laser energy, and the diameter 

and length of the channel through which the gas pulse is directed. 

 

2.5 Supersonic Expansion 

Supersonic expansion is a key component of R2PI because it allows the molecules 

to be cooled to around 5 K. If one were not to cool the molecules, their spectra would be 

much more difficult to assign, if not impossible. In addition, a hot molecule has a 

multitude of states that are populated, which reduces the intensity of any given 

spectroscopic feature, leading to a poor signal-to-noise ratio. Most of the cooling of the 

plasma that results from the vaporization of the metal sample takes place in the 12.5 mm 
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long channel prior to supersonic expansion. Here, ions are recombined with electrons, 

and chemical reactions with the added reactant gas lead to production of a variety of 

molecules. The high pressure of the carrier gas, typically 1-10 atm of helium with a small 

percentage of reactant gas, leads to a large number of collisions as the molecules flow 

down the channel.  We believe that in this high-pressure zone molecules are cooled to 

close to room temperature.  However, even room temperature molecules can have spectra 

that are hard to assign due to spectral congestion.  To cool to extremely low temperatures, 

supersonic expansion is employed. 

Supersonic expansion is achieved by expanding a gas from a high-pressure (1 atm 

to 13.6 atm) reservoir at a temperature T (300 K in these experiments) into a low-pressure 

environment through an orifice that is much larger than the mean free path between 

collisions. The gas is introduced through a pulsed gas valve, which directs the gas flow 

over the sample. In the high-pressure environment within the narrow channel, molecules 

are formed via two different routes. Clustering processes involve the combination of two 

pre-existing species (such as two metal atoms, or a metal cluster and another metal atom).  

In these processes, the dissociation of the newly formed cluster will occur unless energy 

is removed by a collision.  Thus, clustering reactions require three-body collisions to 

stabilize the product.  An example is the three-body collision between two metal atoms 

and a helium atom, leading to metal dimer formation. Another kind of reactive process is 

the reaction of the metal atom (possibly in an excited electronic state) with a reactant gas.  

In this type of process, products can be formed by a two-body collision, because other 

atoms may depart to carry off the excess energy.  An example would be the reaction of a 

metal atom with CH4 to form MC + 2H2. The clustering reaction to form metal dimers 
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requires a high helium pressure in order to stabilize the product, while the formation of 

metal-ligand complexes such as those studied in this dissertation may be formed with a 

much lower carrier gas pressure.  In either case, a trial and error procedure is needed to 

optimize the concentration of the species of interest. 

 Supersonic expansion occurs through a small circular orifice into the source 

chamber. The diameter of the expansion orifice in most of the experiments is 1 mm, so 

the mean free path (λ) between the helium collisions must be much smaller than the 

diameter (D) of the expansion orifice. The mean free path of helium was calculated using 

the gas kinetic equation 

 

 𝜆0 = 𝑅𝑇
21 2⁄ 𝑁𝐴𝜋𝑑2𝑃 , (2.1) 

 

where R is the gas constant in J∙K-1 ∙ mol-1, T is the temperature in K, d is the molecular 

diameter and P is the pressure in Pascals. For supersonic expansion, the mean free path 

must be much smaller than the diameter of the expansion orifice, thereby allowing the 

gas to maintain thermal equilibrium during the expansion. Since the source pressure is 

high, gas viscosity and heat transfer may be neglected. Therefore, the gas flow may be 

treated as an adiabatic, isentropic expansion. This expansion of the gas is called a 

supersonic expansion, as is explained below. 

 In an adiabatic, isentropic expansion, the sum of the enthalpy and kinetic energy 

of the gas is conserved, so that 

 

 𝐻(𝑥) + 1
2 𝑚𝑢(𝑥)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (2.2) 
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Here H is the molar enthalpy, m is the molar mass, u is the flow velocity and x is the 

distance downstream from the expansion orifice.1 

 As the flow velocity increases, equation (2.2) requires that the enthalpy of the gas 

must decrease. This cools the translational degrees of freedom of the carrier gas. The 

various degrees of freedom of the molecules that are carried along in the flow are cooled 

by their immersion in the cold translational bath.13 The energy levels with the closest 

spacing, which are the rotational energy levels, are the most readily cooled, and these 

continue to be cooled farther downstream of the expansion orifice than the other degrees 

of freedom. Electronic and vibrational degrees of freedom, which have larger gaps 

between energy levels, are not cooled as effectively in supersonic expansion and cooling 

of these degrees of freedom does not continue as far downstream as rotational cooling. In 

fact, most electronic and vibrational cooling takes place in the channel prior to expansion 

because there are higher energy collisions with the helium carrier gas in the channel. The 

supersonic expansion causes the rotational degrees of freedom to be cooled close to the 

translational temperature, while the electronic and vibrational energy levels are less 

effectively cooled. 

 The maximum velocity of the molecular beam is determined by the mass of the 

carrier gas and the temperature of the reservoir. The source pressure does not affect 

supersonic expansion unless the pressure is too low to achieve a fully developed 

supersonic expansion. The ultimate flow velocity of the carrier gas occurs when all of the 

enthalpy is converted into directed mass flow, and is given by 

 

 𝑢𝑚𝑎𝑥 = √2𝐶𝑝𝑇0
𝑚  . (2.3) 
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Here Cp is the constant pressure molar heat capacity, m is the molar mass, and T0 is the 

temperature of the reservoir of the monatomic ideal gas.1 The most common carrier gas 

that is used in the Morse group is helium. For a monatomic gas, Cp equals 5/2 R, where R 

is the gas constant. The typical reservoir temperature is around 300 K, which produces a 

terminal velocity of 1.77 × 105 cm/s. 

 The expansion of the molecular beam is known as supersonic because the ratio of 

the beam velocity to the speed of sound is greater than one. This ratio is also known as 

the Mach number and is given by 

 

 𝑀(𝑥) = 𝑢(𝑥)
𝑎  . (2.4) 

  

Here u(x) is the flow velocity at a downstream distance from the orifice given by x, and a 

is the speed of sound, which is given by 

 

 𝑎 = √𝛾𝑘𝑇
𝑚  . (2.5) 

 

Here 𝛾 = 𝐶𝑝
𝐶𝑣

= 𝐶𝑝
𝐶𝑝−𝑅, k is Boltzmann’s constant, T is the temperature in Kelvin, and m is 

the mass of one molecule. 

 After the molecules exit the expansion orifice and undergo supersonic expansion 

into the source chamber, a highly divergent expansion jet is obtained.  To conduct 

experiments that depend on mass spectrometry for detection, the beam is passed through 

a skimmer into the analytical chamber.  The skimmer limits gas flow into the second 
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chamber, allowing conditions conducive to mass spectrometry to be maintained.  It also 

collimates the molecular beam so that good overlap with the probing laser beams may be 

achieved.  The skimmer employed in these experiments has a 1 cm opening, allowing a 

good match between the diameter of the molecular beam and the diameters of the 

unfocussed laser beams. For ease of operation, a pneumatic gate valve is installed 

between the source and analytical chambers.  This allows the user to keep the analytical 

chamber under high vacuum while maintenance is performed (changing metal samples, 

etc.) inside the source chamber. 

 

2.6 Resonant Two-Photon Ionization Process 

 After the molecular beam enters the analytical chamber, it is first probed by either 

a dye laser (Lamba Physik Scanmate Pro) or an OPO laser (Continuum Horizon). The 

key part of R2PI is that after being probed by the first laser, the molecular beam is then 

probed by a second laser to ionize the molecules. 

 

2.6.1 Ionization Process and One-Photon Ionization Process 

When employing R2PI spectroscopy as a spectroscopic method, it is crucial that 

none of the lasers employed can ionize the molecule of interest in a one-photon process. 

Thus, all photon energies employed must be less than the ionization energy of the 

molecule. If this requirement is not followed, the molecule will undergo one-photon 

ionization, which is schematically illustrated in Figure 2.3 (a). The number of ions 

generated by a one-photon ionization process is vastly greater than the ion signal 

produced by any other process, making other processes unobservable under these  
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Figure 2.3 Ionization processes in the R2PI experiment, which include (a) one-photon 
ionization, (b) one-color, two-photon ionization, (c) two-color, two-photon ionization, 
and (d) a two-color, two-photon ionization through a virtual state.  
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conditions. 

Typically, the processes investigated in the Morse group employ a visible photon 

for excitation and an ultraviolet photon to ionize the molecules that have been excited by 

absorption of the first photon.  A second case that leads to spectroscopic failure occurs 

when the wavelength of the ionization laser is resonant with a transition in the molecule. 

When this occurs, the absorption of two ultraviolet photons can very effectively ionize 

the molecule, leading to a large molecular signal that is independent of the visible photon 

wavelength, as depicted in Figure 2.3 (b).  When this occurs, it can be very difficult or 

impossible to pick out transitions induced by the visible wavelength against the large 

background due to absorption of two ionization laser photons. If the ionization laser 

wavelength is resonant with a transition in the molecule of interest, it is generally 

necessary to move to a different ionization wavelength.  

In the experiments presented in this dissertation, the ionization photon was 

supplied from an excimer laser (GAM 100/125). This has the advantage that by filling the 

laser with different gases, the output wavelength can be varied substantially. In the Morse 

group, three gases were typically used in the excimer laser: KrF (248 nm, 4.66 eV), ArF 

(193 nm, 6.42 eV), and F2 (157 nm, 7.90 eV). Using KrF and ArF gas in the excimer is 

straightforward, but using F2 gas is more difficult because 157 nm is in the vacuum 

ultraviolet region of the electromagnetic spectrum and is easily absorbed by both 

molecular oxygen and fused silica. Therefore, when using F2 gas in the excimer laser, the 

fused silica window through which the excimer radiation passes is replaced with an MgF2 

window and a purge tube is attached between the excimer laser and the A-chamber. The 

tube is purged of O2 using a constant flow of nitrogen. This allows the 157 nm vacuum 
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ultraviolet radiation to be transmitted to the MgF2 window, which admits it to the 

chamber. 

 

2.6.2 Two-Photon Ionization Processes 

The ideal ionization process in a typical experiment in the Morse group is a two-

photon ionization process in which the sum of the excitation laser and the ionization laser 

photon energies is greater than the ionization energy of the molecule. This is depicted in 

Figure 2.3(c) and may be termed a resonant two-color, two-photon ionization process, 

because the two photons involved in the process have different frequencies. The rate of 

adsorption for a two-photon process is given by 14 

 

 𝑊𝑓←𝑖 = 2𝜋
ħ4 |∑ (𝑬2∙𝝁𝑓𝑛)(𝝁𝑛𝑖∙𝑬1)

𝜔𝑛𝑖−𝜔1
+ (𝑬1∙𝝁𝑓𝑛)(𝝁𝑛𝑖∙𝑬2)

𝜔𝑛𝑖−𝜔2𝑛 |
2

𝛿(𝜔𝑓𝑖 − 𝜔1 − 𝜔2),  (2.6) 

 

where i and f represent the initial and final states of the molecule and n is the intermediate 

state. In Equation 2.6, E1 and E2 represent the amplitudes of the electric field vectors of 

the two laser sources, with their respective frequencies denoted by Z1 and Z2. In addition, 

Pfn and Pni represent the transition dipole integrals between the final and intermediate 

state and the intermediate and initial state, respectively.  The energy difference between 

the intermediate state and the initial state is given by ℏZni. The sum over all n covers all 

possible intermediate states, and these various pathways to ionization can interfere 

constructively or destructively. The delta function G(wfi-w1-w2) expresses the 

conservation of energy, so that the energy of the overall molecular transition must be 

equal to the sum of the two photon energies. In R2PI experiments, the final state lies in 
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the ionization continuum so this condition can always be met. The denominators of the 

two terms go to zero when the excitation to a particular intermediate state matches the 

photon energy, which is termed a resonance. An additional imaginary term in the 

denominator, associated with the lifetimes of the intermediate states, n, prevents these 

terms from actually going to zero and blowing up, but this detail is omitted here.  In 

practice, because of the separation in time between the two laser pulses, it is only the first 

term that is relevant to our experiments, because excitation always occurs using ω1, 

which is the frequency of the excitation laser.   

In addition to providing an undesirable source of background signal when the 

ionization wavelength is resonant with a transition, the process depicted in Figure 2.3(b) 

can be a useful means of obtaining an R2PI spectrum if the ultraviolet laser can be 

scanned.  In Figure 2.3(c), two photons of the same wavelength have sufficient energy to 

ionize the molecule, so as the laser is scanned, whenever an absorption resonance is 

reached, absorption of the second photon occurs readily, carrying the molecule to the 

ionization continuum and producing ions.  This is termed a resonant, one-color two-

photon ionization process. This mechanism is not commonly utilized in the Morse group, 

because we are generally investigating spectra that are in the visible region, and nearly all 

of the species investigated have ionization potentials that are too high to be reached by 

the absorption of two visible photons. In the bond dissociation energy studies that are 

discussed later in this dissertation, however, the excitation photon lies in the ultraviolet 

(UV). For the VC, VN, and VS molecules that were studied, two photons of the 

excitation wavelength provided sufficient energy to ionize the molecule, and the one-

color, resonant two-photon ionization process was readily observed.  
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If the laser that produces the tunable output is fired earlier than the fixed-

frequency ultraviolet laser, it is straightforward to separate the ion signals generated by 

absorption of two tunable laser photons from the ion signal caused by absorption of one 

photon of each frequency, or of two photons of the fixed-frequency laser.  This is because 

the separation in time between the firing of the two lasers leads to a slightly earlier 

production of ions when the ion is formed by absorption of two tunable laser photons.  

The ions that are produced earlier in time arrive slightly earlier at the detector, leading to 

a doubling of the mass peak in the spectrum. By monitoring the peak that appears at the 

slightly lower mass, we can monitor ions produced by the absorption of two tunable laser 

photons.  Conversely, by monitoring the second peak we are able to record the spectrum 

that is obtained by excitation with the tunable laser followed by ionization with the fixed-

frequency laser. In fact, if the timing between the ionization laser and the tunable OPO 

laser is increased, the first peak moves towards lighter masses; the opposite occurs if the 

timing between the lasers is decreased. Figure 2.4 shows the mass spectrum of VS, which 

will be described in more detail later in this dissertation, with the tunable OPO and fixed-

frequency excimer lasers firing. The one-color, two-photon ionization peak caused by 

absorption of two OPO laser photons occurs at slightly lower apparent mass than the peak 

caused by the two-color, two-photon process.  

Another method to determine if a molecular signal arises from a one-color, two-

photon process is to simply omit the second laser.  Any transitions that are observed are 

then of necessity caused by one-color, two-photon ionization processes. 

The final two-photon ionization process is displayed in Figure 2.3(d).  This occurs 

when the first photon is not resonant with an absorption in the molecule. It is said that the 
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Figure 2.4 The mass spectrum with the OPO and excimer laser firing. Two peaks are 
typically observed: the one to the left is due to one-color, two-photon ionization from the 
OPO laser and the one to the right is due to two-color, two-photon ionization from the 
OPO and excimer lasers. 
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transition goes through a “virtual state”.  This corresponds to the situation in which no 

intermediate state, n, in Equation (2.6) causes the denominator to approach zero.  As a 

result, it is possible for several molecular eigenstates to make significant contributions to 

the summation in this equation. The extent to which a given molecular eigenstate will 

make a contribution to the sum is governed by the magnitudes of the transition dipole 

moments between the state in question and the initial and final states, and the energy 

defect, which defines how far away from resonance the state lies.  Because several 

intermediate states can contribute to the sum, it is sometimes said that a virtual state is a 

superposition of molecular eigenstates. This in indicated in Figure 2.3(d) by the dashed 

line.  

In principle, ionization through a virtual state can always occur, although if the 

molecular eigenstates that contribute to the sum are far from resonance, the net rate of 

ionization will be small.  We frequently observe this effect when a high intensity of 

fixed-frequency excimer laser radiation is employed, and thus monitoring this signal 

provides a convenient way to optimize the concentration of the molecule of interest.  To 

obtain a spectrum with a good signal-to-noise ratio, however, this nonresonant 

background signal must be reduced.  This is easily done by simply reducing the intensity 

of the excimer laser, which is done by either reducing the operating voltage of the laser or 

by placing low-quality fused silica filters between the laser output and the analytical 

chamber. Filtering the excimer laser allows the intensity of the background signal due to 

the nonresonant virtual state ionization processes to be reduced compared to the resonant 

two-photon ionization signals. This occurs because the nonresonant ionization process 

requires the absorption of two excimer laser photons, causing its probability to be 
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proportional to the laser intensity squared.  In contrast, the resonant ionization process 

requires absorption of only one excimer laser photon, causing these signals to be 

proportional to the excimer laser intensity raised to the first power. If the excimer laser 

intensity is reduced excessively, however, both the virtual state transitions and the 

resonant transitions will disappear. 

Figure 2.5 displays the enhancement that occurs in a resonant two-color, two-

photon ionization process. In Figure 2.5 (a), the mass spectrum of 58NiCCH (mass 83) 

and 60NiCCH (mass 85) is shown with only the excimer laser firing. The larger signals 

correspond to 58Ni∙HCCH and 60Ni∙HCCH, which are probably one-photon ionized with 

this choice of excimer laser wavelength (157 nm, 7.9 eV).  This NiCCH molecular signal 

observed in Figure 2.5(a) is due to the one-photon ionization process that was described 

above. Figure 2.5 (b) shows the same mass spectrum but with both the dye laser and 

excimer laser beams intersecting the molecular beam. The increase in molecular signal is 

due to the two-color, two-photon ionization process depicted in Figure 2.3(b). This figure 

clearly demonstrates why the two-photon processes are so important to the experiments 

performed in the Morse group.  It also demonstrates the utility of a mass-resolved 

detection system: this allows the weak ion signals due to NiCCH to be readily 

distinguished from the much stronger signals due to Ni∙HCCH. 

 

2.7 Time-of-Flight Mass Spectrometry (TOFMS) 

 After the molecules are ionized, they are accelerated in the ion source region of 

the time-of-flight mass spectrometer, which is used to separate the ions by mass. Because 

the ions are singly charged, if they are produced in a region with an electrostatic potential 
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Figure 2.5 Mass spectrum with (a) just the excimer laser firing and (b) the dye and 
excimer lasers firing, with the dye laser tuned to a transition. 
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V0 and are accelerated to ground potential, they develop a kinetic energy of eV0.  After 

acceleration, the ions travel up a flight tube and are then reflected down a second flight 

tube to the detector.  Because the kinetic energy is the same for all ions, independent of 

mass, the equation 

 

 𝐾𝐸 = 𝑚𝑣2

2  (2.7) 

 

implies that ions of small mass, m, will compensate by achieving a higher velocity, 

thereby reaching the detector after a short time.  Heavier ions will strike the detector at a 

later time.  This is the basis of the time-of-flight mass spectrometric method. 

 

2.7.1 Wiley-McLaren Ion Source Design 

When TOFMS was first developed, ions were accelerated in a single region 

characterized by a uniform electric field. With this arrangement, however, the mass 

resolution was very poor. By breaking up the acceleration region into two regions with 

different electric field strengths, however, it is possible to obtain much better mass 

resolution.  This is the technique employed in the Morse group R2PI spectrometer. In the 

Morse group, the ion source employs the Wiley-McLaren design,15 which breaks the 

acceleration region into an extraction region and an acceleration region.  This employs 

three elements to control the electric field. The electrode farthest away from the flight 

tube is known as the repeller and is set to a fixed voltage of +2000 volts. The electrode 

closest to the flight tube is grounded and is therefore set to 0 volts. The intermediate 

electrode, which lies between the repeller and the ground electrode, is known as the 
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draw-out grid (DOG). This electrode can be adjusted to optimize the resolution of the 

mass spectrum. Its function is to position the spatial focus of the ion packets at the planar 

front surface of the detector, so that all of the ions of a given mass reach the detector at 

the same time. This electrode design is known as the Wiley-McLaren design.15 This 

design is advantageous because with the three electrodes there is a smooth decrease in the 

voltage potential, which allows for much better mass resolution than one electrode 

acceleration. 

As seen in Figure 2.1, the TOFMS used in the experiments in this dissertation 

employs additional ion optics to reflect the ion packet down a second flight tube. Non-

linear TOFMS designs, such as this, can be advantageous because they allow some 

imperfections in the linear design to be corrected. They also allow a longer flight path to 

be achieved in a smaller amount of space.  However, with any nonlinear design, 

additional ion optics are required to reflect the ions into the next portion of the flight 

tube. 

Along with these extraction, acceleration, and reflection ion optics, two additional 

electrodes are required to steer the ions through the TOFMS to the detector. As described 

previously, when helium is the carrier gas, the velocity of the molecular beam is 1.77 × 

105 cm/s. This forward velocity is unaffected by the acceleration imparted by the 

extraction and acceleration electric fields, because these fields are orthogonal to the 

forward velocity vector.  If the forward velocity is not reduced or halted, the ions will 

crash into the wall of the flight tube and never reach the detector. Therefore, two 

electrodes, known as the deflector, are placed above the Wiley-McLaren ion 

extraction/acceleration region. The deflector plates are used to halt the forward motion of 
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the ions and direct them toward the detector. The voltage on the deflector plates can be 

adjusted to make minor improvements on the mass resolution and to optimize the 

transmission of the desired ion to the detector. 

 

2.7.2 Reflectron 

 When employing a single-stage ion extraction/acceleration assembly, the local 

electrostatic potential at the point of ion production, V(z), determines the ultimate kinetic 

energy of the ion and therefore its velocity in the flight tube.  The resulting flight velocity 

is given by 

 

 𝑣 = √2𝑒𝑉(𝑧)
𝑚  (2.8) 

 

where V(z) is the electrostatic potential at the position where the ion is created, z, e is the 

electron charge, and m is the mass of the ion. It is assumed that the ion is singly charged, 

which is the case for the species produced by the R2PI process.  As can be seen, there is a 

correlation between the position where the ions are formed (z) and the resulting ion 

velocity, v.  Because the ions produced at a higher potential are farther away from the 

detector, they also develop a higher velocity and will begin to catch up with the more 

slowly moving ions that were formed farther from the repeller plate.  At a certain 

position, the faster ions will catch up with the slower ions in front of them, and the ion 

packet will be compressed to a plane.  This point is known as the spatial focus and after 

it, the ions will diverge again. In the experiments performed in this dissertation, a 

reflectron was installed to improve the mass resolution by ensuring that the spatial focus 
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of the ion of interest occurs at the detector.16 The design of the reflectron is similar to the 

Wiley-McLaren design in that there are three electrodes in the reflectron. The first 

electrode that the ions encounter is the ground electrode, which is set at 0 V. The final 

electrode the ions encounter in the reflectron is the reflector, which, like the repeller, is 

always set at +2000 V. Between the ground and reflector electrodes is the retarder 

electrode. Much like the DOG electrode, the retarder electrode can be adjusted to change 

the spatial focus of the ions and adjust the mass resolution. When the ions enter the 

reflectron, the faster ions penetrate farther into it than slower ions. Therefore, it will take 

longer for faster ions to be reflected than the slower ions. After the reflectron, the slower 

ions will exit first but the faster ions will catch up eventually at a second spatial focus. 

 The flight tube is designed with the second portion at an angle of 18 degrees 

relative to the first flight tube, so when undergoing reflection the ions are turned 162 

degrees. The vector that is perpendicular to the electrodes in the reflectron is oriented at a 

9 degree angle relative to the first and second portions of the flight tube, so that the angle 

of incidence is equal to the angle of reflection. Finally, the planar surface of the 

microchannel plate detector is aligned so that its surface normal is parallel to the second 

portion of the flight tube. 

 

2.8 The Detector 

 A chevron configuration dual microchannel plate (MCP) detector is located at the 

end of the flight tube. The two microchannel plates each consist of an array of tiny 

continuous dynode electron multipliers. Each microchannel is approximately 10 Pm in 

diameter and etched at a 12 degree bias angle to the surface normal. This prevents the 



36 
 
ions from passing through the microchannels without hitting the walls. The first surface 

of the first plate of the MCP is charged to -2000 V to attract the ions so that they strike 

the surface with nearly 4000 eV of kinetic energy.  The bottom surface of the second 

plate is charged to -50 V. The two microchannel plates have matched resistances, so the 

interface between the two is at roughly -1000 V.  This ensures that each microchannel 

plate provides roughly the same gain.   When the ions collide with the front of the MCP, 

electrons are dislodged from the surface of the MCP. These electrons then travel down 

the channels and hit the walls. When the primary electrons collide with the walls of the 

channels, several secondary electrons are ejected, and these collide with the wall of the 

channel further down, leading to a tremendous net gain. The typical gain for the dual-

plate MCP is 107.  

The MCP is connected to a 50 : terminated anode17 that is coupled to a 350 MHz 

SR445 A Stanford Research preamplifier with 5× amplification per channel, with 4 total 

channels available, which may be chained in sequence for a total of 625× amplification.  

In practice, we usually operate with only two channels chained in sequence, providing 

25× amplification. The output voltage waveform is digitized by a National Instruments 

scope card. The digitized signal is then read and manipulated using a Windows 7-based 

PC, using a program developed by the Morse group in the LabView programming 

language. The signal-to-noise ratio is improved by summing 30 time-of-flight waveforms 

before measuring the intensities of the molecule of interest, which averages out shot-to-

shot fluctuations. The entire experimental cycle repeats at a rate of 10 Hz so the 

collection of one mass spectrum takes 3 seconds of laboratory time. 
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2.9 Data Collection 

2.9.1 The Mass Spectrum 

 After the molecules are created, cooled by supersonic expansion, skimmed, 

probed by the two lasers, and the resulting ions pass through the TOFMS and impact the 

detector, the mass spectrum is displayed on the computer screen. The mass spectrum can 

be used to verify that the molecule of interest is being formed. This can be done by 

setting the ionization laser to a high fluence, so that nonresonant two-photon ionization 

can occur. Viewing the mass spectrum over a period of time allows the user to determine 

whether or not the molecular signal is stable. If a particular molecular signal is not stable, 

this will show up in the R2PI spectrum of the molecule as fluctuations. These could be 

due to inhomogeneous metal alloy sample, a sample that seals poorly on the vaporization 

block, a poorly functioning pulsed valve, fluctuating vaporization or ionization laser 

power, or a multitude of other issues. Another advantage of the mass spectrum is that it 

can be used to align the dye laser into the analytical chamber. This is done by first 

collecting the mass spectrum with just the ionization laser firing, which gives a baseline 

for the molecular signal. Then the mass spectrum is collected with both the ionization 

laser and the dye or OPO firing. The molecular signal will increase due to the two-color, 

two-photon ionization process described above if the tunable laser is tuned to an 

absorption wavelength. The optics that direct the light from the OPO or dye laser can 

then be adjusted while monitoring the mass spectrum so that this light interacts with the 

highest density of molecules. This gives the largest increase in signal and should give the 

strongest transitions, provided the ion signal on resonance is much larger than the 

background signal due to the ionization laser alone. For example, Figure 2.5(a) displays a 
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mass spectrum with just the ionization laser firing, and Figure 2.5(b) displays the same 

mass spectrum with the ionization laser and dye laser firing, with the dye laser tuned to 

an absorption band. The increase in signal in the mass spectrum is what is monitored in a 

R2PI experiment. 

 One final advantage of the mass spectrum collected in the Morse group using 

time-of-flight mass spectrometry is that multiple peaks (corresponding to different 

chemical species, or different isotopic modifications of a given species) can be monitored 

while scanning the tunable laser. This makes the experiment more efficient because 

transitions in different molecules can be observed in one scan. For example, if the 

molecule of interest has multiple masses due to different isotope combinations, these 

masses can be monitored in one scan. This scan can then be used to determine the isotope 

shift between the different masses. 

 

2.9.2 Low-Resolution Spectra 

 For a typical experiment in the Morse group, after the mass channels are assigned, 

a low-resolution scan is collected by scanning a tunable laser while the frequency of the 

ionization laser is fixed. As mentioned above, the ionization laser in the experiments 

discussed in this dissertation is an excimer laser so it is easy to fix its frequency. There 

are two tunable lasers used in these experiments: Lambda Physik Scanmate Pro dye laser 

or Horizon OPO laser. The dye laser is pumped by a Continuum Surelite III Nd:YAG 

laser and the OPO is pumped by a Continuum Surelite II Nd:YAG laser. 

 The dye laser has a low-resolution linewidth of 0.15 cm-1. The diffraction grating 

is controlled by using a program in LabView using VIs provided by Lambda Physik. The 
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dye laser can be scanned from 11000 cm-1 to 25000 cm-1 and is covered by a large variety 

of dyes. The dyes can be separated into two regions: the red region, which goes from 543 

nm to 900 nm, and the blue region, which goes from 400 to 563 nm. Depending on the 

region, the dye laser is pumped either with second harmonic (532 nm, red dyes) light or 

third harmonic (355 nm, blue dyes) light from the Nd:YAG laser. 

 The OPO has linewidths that range from 5 cm-1 to 15 cm-1. The crystals and 

prisms in the OPO are also controlled using a program in LabView. The OPO can be 

scanned from about 3700 cm-1 to about 52,000 cm-1.  The advantage of the OPO is that 

dyes are not needed so one does not have to worry about switching between dyes. The 

OPO laser is pumped by both 1064 nm and 355 nm light from the Nd:YAG pump laser. 

The 355 nm pump radiation is split into a signal beam (wavelengths shorter than 710 nm) 

and an idler beam (wavelengths longer than 710 nm).  The photon energies of the signal 

and idler beams always add up to the energy of the 355 nm pump photons. The 1064 nm 

fundamental radiation of the Nd:YAG laser is used to create UV light in the regions from 

292 to 400 nm and from 193 to 208 nm. Overall, the laser can generate wavelengths in 

five different regions via different mechanisms.  From 709.4 nm to 2700 nm, the idler 

beam is used.  From 400 nm to 709.4 nm, the signal beam is used.  From 292 nm to 400 

nm, the signal beam is summed with the 1064 nm Nd:YAG fundamental radiation using a 

sum frequency generation crystal.  From 208 nm to 292 nm, the signal beam is frequency 

doubled using one of two different second harmonic generation crystals.  Finally, from 

208 nm to 193 nm, the signal beam is first frequency doubled and then mixed with the 

1064 nm Nd:YAG fundamental beam. Naturally, the output energy that may be obtained 

varies significantly between these different wavelength regions. The laser linewidth 
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varies significantly as well. 

 Figure 2.6 shows an example of a low-resolution spectrum as is typically 

collected with the dye laser. The figure displays the vibronically resolved spectrum of 

58NiCCH from 15,500 cm-1 to 18,500 cm-1. This region is not very congested but there 

are multiple transitions from the v”=0 and v”=1 levels in the ground electronic state that 

terminate at the same excited level but excite different vibrational modes in NiCCH. The 

vibronically resolved spectra can be fitted using the following equation 

 

𝜈 = 𝑇0 − 𝜔5
” 𝜈5

” + 𝜔2
′ 𝜈2

′ + 𝜔3
′ 𝜈3

′ + 𝜔4′ 𝜈4′ + 𝜔5
′ 𝜈5

′ + 𝑥33
′ (𝜈3

′2 + 𝜈3
′ ) 

 +𝑥23
′ (𝜈2

′ 𝜈3
′ + 𝜈2′ +𝜈3′

2 ) + 𝑥34
′ (𝜈3

′ 𝜈4′ + 𝜈3′ +𝜈4′

2 ) + 𝑥35
′ (𝜈3

′ 𝜈5
′ + 𝜈3′ +𝜈5′

2 ) (2.9) 

 

where T0 is the term energy of the excited state, ωr’ is the vibrational frequency of the rth 

vibrational mode and xrs’ is the anharmonicity between the rth and sth vibrational modes. 

 With the OPO laser, the low-resolution spectra are collected to find the bond 

dissociation energy of a molecule, although it can also be used like the dye laser to obtain 

a vibronically resolved spectrum, albeit at a lower resolution than may be obtained using 

the dye laser. Figure 2.7 displays a scan over the bond dissociation energy of 51VC.  Here,  

below 33,138 cm-1 the excited vibronic levels are long lived because the only decay 

pathway is fluorescence.  Above this threshold, however, the molecule has the additional 

decay channel of dissociation available, leading to a much shorter excited state lifetime. 

The net result is that above 33,138 cm-1, the molecule falls apart before it can absorb a 

second photon and be ionized.  This allows the sharp cut-off in the spectrum to be 

assigned as the bond dissociation energy of VC. Unlike the widely spaced vibronic 



41 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6 Vibronically resolved spectrum of 58NiCCH. 
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Figure 2.7 Predissociation threshold in 51VC. 
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features of Figure 2.6, the spectrum of VC corresponds to a structured continuum.  This is 

due to the high density of vibronic levels near the dissociation limit, and is characteristic 

of many transition metal molecules near this limit. 

 

2.9.3 High-Resolution Spectra 

 Although the vibronically resolved spectra collected in low-resolution scans 

contain a great deal of useful information, the goal of the Morse group is to determine 

fundamental information of transition metal molecules, such as bond lengths and ground 

electronic state symmetries. To obtain this information, rotationally resolved spectra must 

be collected. To do so, an air spaced intracavity étalon with a free spectral range of 1.0 

cm-1 is placed inside the dye laser oscillator in a sealed cavity that also contains the 

diffraction grating. The étalon increases the resolution of the dye laser to 0.04 cm-1. 

When the étalon is placed inside the oscillator, it is aligned so that only one étalon mode 

lies under the transmission range of the diffraction grating. This is done using a hand-

held étalon while making adjustments to the dye laser until one set of fringes are 

observed in the hand-held étalon. Once a single étalon mode is observed, the laser cavity 

is sealed and evacuated using an Alcatel rotary vane vacuum pump until the pressure is 

reduced to 15 torr.  

After confirming that a single fringe pattern is still seen at this low pressure, the 

laser cavity is then slowly pressurized to atmospheric pressure with sulfur hexafluoride 

(SF6) while the diffraction grating and étalon are held in place. By introducing sulfur 

hexafluoride slowly, the index of refraction of the medium in the oscillator cavity is 

slowly increased, which causes the speed of light to decrease. As the speed of light 
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decreases, the frequency is also decreased based on the following relationship 

 

 𝜈 = 𝑐𝑚
𝜆  . (2.10) 

 

Here cm is the speed of light in the medium, ν is the frequency, and λ is the wavelength. 

Sulfur hexafluoride is used because its index of refraction (1.000723 at 633 nm, 1 atm, 

300 K)18 is among the highest of readily available gases. The slow introduction of SF6 

into the oscillator cavity is known as pressure scanning. The diffraction grating and 

étalon serve to select a wavelength, which remains fixed within the dye laser oscillator 

cavity. As the pressure increases, however, the speed of light within the medium 

decreases as the index of refraction is slowly changed from 1.000000 to 1.000723 (at 1 

atm pressure, 633 nm). As the speed of light decreases, the output frequency also 

decreases.  Because the photon energy is given by E=hν, the photon energy also 

decreases during a pressure scan, allowing the spectrum to be recorded over a limited 

range. In the work described in this dissertation, a pressure scan typically covered a range 

from 15 torr to 760 torr, corresponding to about 15 cm-1 in the blue region and 10 cm-1 in 

the red region of the spectrum. Multiple scans were typically recorded, individually 

calibrated, and averaged together to improve the signal-to-noise ratio. If the rotational 

structure of a given molecular band spanned a broader range than 10-15 cm-1, the dye 

laser could be moved to a slightly different wavelength and scanned again using pressure 

scanning, and the calibrated final scans could be pieced together to allow the high-

resolution spectrum of the overall band to be examined. The calibration process is 

discussed later in this chapter, in Section 2.9.4. 
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 As mentioned above, the goal of these scans is to obtain the rotational structure of 

the vibronically resolved peaks that were found in the low-resolution spectrum. Figure 

2.8 displays the rotationally resolved spectrum for the 30
1 band of the Ã 2'5/2 m X̃ 2'5/2 

band system of the 58NiCCH molecule. This is a good example of a typical high-

resolution spectrum that is collected in the Morse group. 

 

2.9.4 Calibration 

 Although the dye laser provides narrow linewidth tunable radiation, the precise 

output wavenumber is not accurately known.  For this reason, it is important to calibrate 

the high-resolution spectra. In order to calibrate the high-resolution spectra, a 

beamsplitter is used to pick off the dye laser light and send about 5% of the radiation 

toward a cell filled with a reference gas and 5% to an étalon with the free spectral range 

of 0.22 cm-1. Two photodiodes are placed after the cell and the étalon to record the 

reference gas transmission spectrum and the étalon transmission fringes, respectively. 

The fringes are used to linearize the high-resolution spectrum and the reference gas is 

used to calibrate the spectrum. The reference gas is either isotopically enriched tellurium 

(130Te2) or iodine (127I2). Isotopically enriched 130Te2 in a heated cell is used if the scan is 

between 18,500 cm-1 and 24,000 cm-1.19-20 I2 is used to the red of 18,500 cm-1, although 

the iodine has to be heated if the scan is to the red of 14,100 cm-1.21-23 Either Te2 or I2 can 

be used between 18,500 cm-1 and 19978 cm-1, but I2 is easier to use because it does not 

have to be heated in this region. 

 For the bond dissociation energies reported in this dissertation, a different 

calibration method was used. Because the OPO has a much worse resolution than the dye 



46 
 

Figure 2.8 High-resolution spectrum of the 30
1 band in the Ã 2Δ5/2 ←X̃ 2Δ5/2 band system 

of 58NiCCH. The upper spectrum is the collected spectrum and the lower spectrum is 
simulated. 
  



47 
 
laser, the iodine/tellurium and étalon method could not be used. Instead, the atomic 

signals of certain elements were monitored while scanning over the bond dissociation 

threshold. Figure 2.9 shows the scan over the bond dissociation energy of VC, along with 

the atomic signals of Mo and V. For this example, a vanadium-molybdenum alloy was 

used as the metal sample, so both atomic V and Mo were present, and their signals could 

be separately recorded. Using the known lines in the atomic spectra of V and Mo,24 the 

VC bond dissociation threshold could be accurately calibrated. 

After the high-resolution spectra are collected and calibrated, a minor correction 

has to be made. Due to how the dye laser enters the chamber, the molecules move toward 

the dye laser at the terminal velocity of helium (1.77 × 105 cm/s). This means that the 

molecules interact with dye laser light that is shifted slightly to the blue due to the 

Doppler effect. The correction that must be added to the apparent dye laser wavenumber 

is given by Δν = ν × (v/c), where v is the velocity of the gas, ν is the wavenumber of the 

peak in the spectrum, c is the speed of light, and Δν is the correction. This correction 

usually ranges from 0.1 cm-1 to 0.2 cm-1. 

 

2.9.5 Excited State Lifetimes 

 As mentioned above, the low- and high-resolution scans can be used to extract a 

great deal of information about the molecule under study. However, neither the low- 

resolution nor the high-resolution scan can provide the decay lifetime of a particular 

excited state. The lifetime curve is collected by setting the excitation laser to the desired 

transition and randomly varying the time at which the tunable laser fires with respect to 

the ionization laser, which is fixed in time. As the excitation laser is varied in time, ion 
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Figure 2.9 Predissociation threshold in VC (blue), Mo atomic signal (red), and V atomic 
signal (black). The spectra were recorded using an OPO laser in conjunction with KrF 
excimer radiation, which provided the second, ionizing photon. The dense continuum of 
transitions terminates at 33,138 cm-1, allowing the bond dissociation energy of VC to be 
determined as D0(VC) = 4.1086 r 0.0025 eV and the heat of formation to be 'Hf

0(VC) = 
822.70 r 0.51 kJ/mol. 
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ion signals are accumulated for the various excitation-ionization time intervals.  After 

sufficient datapoints have been collected and averaged, an ion signal versus delay time 

curve is generated. The exponential decay lifetime, W, is then extracted from the data 

using the Levenberg-Marquardt nonlinear least-squares algorithm.25 The lifetime may be 

used to confirm if a series of vibrational bands correspond to different vibrational levels 

in the same excited state, since then the vibrational levels would be expected to have 

similar lifetimes.  Similarly, if the excited state decays primarily by fluorescence to the 

ground state, the oscillator strength of the transition can be deduced from the upper state 

lifetime.  Finally, an abrupt shortening in the lifetimes of vibronic levels as a function of 

level energy can be used as an indicator that predissociation sets in above the threshold 

energy. Figure 2.10 demonstrates a typical lifetime curve collected in the Morse group. 

This figure shows the lifetime of the 00 level of the Ã 2'5/2 state of NiCCH. If we assume 

that the decay is purely due to fluorescence to the ground state, the lifetime can be used to 

determine the absorption oscillator strength using the equation 

 

 𝑓 = (1.499 𝑠
𝑐𝑚2) 𝜆2

𝜏   ,  (2.11) 

 

where f is the absorption oscillator strength and λ is the wavelength. Even if fluorescence 

to other states occurs or if other decay processes, such as predissociation, are present, the 

absorption oscillator strength calculated using this formula will provide an upper limit.  
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Figure 2.10 Exponential decay of the 00 level of the �̃� 𝛥2

5/2 state of NiCCH, measured 
by the time-delayed resonant two-photon ionization method.  The fit of this decay curve 
gives τ = 0.730 μs; combined with two other measurements, a value of τ = 0.725 ± 0.015 
μs is obtained. 
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CHAPTER 3 

 

THE �̃� 𝛥2 5/2 ← �̃� 𝛥2 5/2 ELECTRONIC BAND SYSTEM OF  

NICKEL ACETYLIDE, NiCCH 

 

Reproduced from Johnson, E. L.; Morse, M. D., The �̃� 𝛥2 5/2 ← �̃� 𝛥2 5/2 electronic band 

system of nickel acetylide, NiCCH. Mol. Phys. 2015, 113, 2255-2266., with the 

permission of Taylor and Francis Publishing. 

 

3.1 Introduction 

 Nickel and organonickel compounds are critically important as catalytic reagents 

in modern synthetic organic chemistry.
1
 Probably the first example of the use of an 

organonickel reagent is the Mond process, which was developed in the 1890s and uses 

volatile nickel tetracarbonyl to purify nickel from impure nickel powder.
2
 Another early 

example of the use of nickel in organic chemistry is Raney nickel, a powdered nickel-

aluminum alloy that was developed in 1926 as a catalyst for the hydrogenation of 

vegetable oil.
3
 More recently, nickel has been employed as a more cost-efficient 

replacement for palladium in the Heck reaction for the benzylation or arylation of 

alkenes.
4-6

 These examples truly just scratch the surface of the uses of nickel in catalytic 

chemistry.  Other examples include the Reppe synthesis of cyclooctatetraene,
7
 the 
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Kumada coupling of organic halides with Grignard reagents,
8-9

 and the Negishi cross-

coupling reaction.
10

 Nickel acetylides, especially those with the Ni(C≡CR)2L2 structure, 

are useful as catalysts in organic chemistry,
11

 particularly in the polymerization of methyl 

methacrylate
12-14

 and of alkynes.
15-16

 In these catalysts, nickel is typically either 

zerovalent (Raney nickel and Ni(CO)4) or divalent (as in Ni(C≡CR)2L2).  Nevertheless, in 

order to obtain an improved understanding of the nickel-acetylide bond, we have

undertaken a study of the electronic spectroscopy of NiCCH, where nickel is monovalent 

(Ni
+
).  This work complements and extends our previous studies of the transition metal 

acetylides CuCCH 
17

 and CrCCH.
18-19

 

 Prior to this work, neutralization-reionization mass spectrometric studies had 

proved that neutral NiCCH is physically stable as a chemically bound molecule with a 

lifetime greater than 1 μs.
20

 Further, fragmentation patterns from the collision-induced 

dissociation measurements strongly suggested a linear NiCCH structure, rather than a 

vinylidene structure.
20

 This result is confirmed in the present investigation. 

 Regardless of whether one considers the molecule to be ionic, as Ni
+
 CCH

‒
, or 

covalent, as Ni-C≡C-H, the singly ligated nickel atom may be considered to have a 

valence of one and to have an open 3d
9
 subshell.  Thus, NiCCH joins a long list of 

monoligated, monovalent nickel molecules that have been spectroscopically investigated 

by this group and others.
21-69

 In order of increasing electronegativity of the ligand 

(provided on the Allred-Pauling
70

 scale in parentheses), these previously studied species 

include NiAl (1.61),
21-22

 NiCu (1.90),
23-26

 NiH (2.20),
27-33

 NiAu (2.54),
22, 34

 NiI (2.66),
35-

39
 NiBr (2.96),

40-43
 NiCl (3.16),

43-52
 and NiF (3.98).

53-67
 In addition to these diatomic 

species, NiCN has also been investigated.
68-69

 Nickel acetylide is expected to be similar 
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to NiCN, as the group electronegativities of CN and CCH are similar, although the 

precise values of this quantity depend on the procedure employed in its estimation.  Both 

ligands are also similar in having empty π* orbitals that are available to receive nickel dπ 

electron density.  In a recent computation and critical evaluation of group 

electronegativities, the electronegativities of CCH and CN are listed as 3.11 and 3.19 on 

the Pauling scale, respectively, placing NiCCH and NiCN on either side of NiCl in the 

ordered list above.
71

 

The hole in the nickel 3d
9
 subshell in these molecules can be located in the 3dσ, 

3dπ, or 3dδ orbitals, leading to 
2
Σ

+
, 

2
Π, or 

2
Δ states.  The spin-orbit interaction then 

causes the 
2
Π and 

2
Δ states to split into 

2
Π1/2, 

2
Π3/2, 

2
Δ3/2, and 

2
Δ5/2 levels, and spin-orbit 

mixing between the 
2
Σ

+
 and 

2
Π1/2 states and between the 

2
Π3/2 and 

2
Δ3/2 states causes the 

Λ value to become ill-defined in these states.  It is only in the 
2
Δ5/2 state that Λ is 

expected to remain a good quantum number.  Previous experiments have shown that the 

ground state for the systems with relatively electropositive ligands (NiAl through NiI, 

and NiCN) have 
2
Δ5/2 ground states while the more electronegative ligands cause NiBr, 

NiCl, and NiF to have ground states of mixed 
2
Π and 

2
Δ character, with Ω=3/2.  

Theoretical investigations of the splitting of the 3d
9
 core in the field of a ligand have been 

provided by several research groups.
32, 72-74

 

 Section 3.2 describes the experimental methods used to investigate NiCCH, while 

Section 3.3 presents computational and experimental results. These are discussed and 

compared to related molecules in Section 3.4, and the most important conclusions from 

this work are summarized in Section 3.5. 
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3.2 Experimental 

 In the current work, nickel acetylide, NiCCH, was investigated using resonant 

two-photon ionization spectroscopy (R2PI). The instrument employed is identical to that 

used in previous studies.
17-19, 75-77

 Molecular NiCCH is produced by focusing the third 

harmonic radiation from a Q-switched Nd:YAG laser (355 nm) onto a 1:1 nickel-gold 

sample at a point that is 1.3 cm upstream from the expansion orifice of a pulsed 

supersonic expansion of helium (40-60 psig backing pressure) that is seeded with 

0.0025% acetylene.  The NiAu sample was used in previous experiments,
22, 34

 and was 

convenient for the present study; there is no reason why a pure nickel sample would not 

have worked equally well. The sample is rotated and translated to prevent holes from 

being drilled; this provides a relatively constant signal intensity. The products of the laser 

ablation process are entrained in the carrier gas and travel through a 1.3 cm long reaction 

zone prior to expansion through a 2 mm orifice into a vacuum. The supersonic expansion 

into the vacuum chamber cools the ablation products to a rotational temperature of 

approximately 6 K.  The molecular beam is then roughly collimated by a 1 cm diameter 

skimmer and enters the Wiley-McLaren ion source of a reflectron time-of-flight mass 

spectrometer.
78-79

 In the ion source, the molecular beam is exposed to tunable dye laser 

radiation that is counterpropagated along the beam path.  Following a delay of about 20 

ns, the molecules are exposed to the output radiation of an F2 excimer laser (157 nm, 7.87 

eV) that intersects the molecular beam at right angles. Any ions produced are accelerated 

in a static electric field into a time-of-flight tube, and are reflected down a second flight 

tube to a dual microchannel plate detector. The ion signal is preamplified, digitized, and 

the ion signals of interest are stored for subsequent analysis on a personal computer. The 
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entire experiment is repeated at a rate of 10 Hz. 

 Low-resolution spectra of 
58

NiCCH (mass 83 Da) and 
60

NiCCH (mass 85 Da) 

were recorded from 15400 cm
-1

 to 18800 cm
-1

. To reveal the rotational structure of the 

observed bands, high-resolution scans were performed by inserting an air-spaced étalon 

into the oscillator cavity of the dye laser, which was then pressure scanned using SF6.  

Calibration of the rotationally resolved bands was accomplished using two partial 

reflections of the dye laser light.  One was directed through a cell containing gaseous I2, 

and the transmission spectrum was recorded using a photodiode detector.  The other was 

directed to a 0.22 cm
-1

 free spectral range étalon, and the transmission fringes were 

recorded.  The spectra obtained were linearized using the transmission fringes and then 

calibrated using the I2 atlas of Gerstenkorn and Luc.
80-81

 Corrections were made to 

account for the error in the I2 atlas, -0.0056 cm
-1

,
81

 and for the Doppler shift experienced 

by the molecules as they approach the radiation source at the beam velocity of helium, 

1.77 x 10
5
 cm/s.

82
 Combined, the two corrections amount to about 0.10 cm

-1
 for the bands 

examined here. 

 Along with high-resolution spectra, excited state lifetimes were also collected for 

selected bands by firing the ionization laser at the time of peak NiCCH signal intensity, 

while the dye laser was scanned in time as the NiCCH
+
 ion signal was monitored. The 

resulting decay curves measure the number of NiCCH molecules that remain in states 

that are readily ionized as a function of time.  The measured curves were fitted to an 

exponential decay model using the Levenberg-Marquardt nonlinear least-squares 

algorithm.
83

 Three independent lifetime curves were collected and fitted for each band; 

the standard deviation of the three values is reported as the 1σ error limit. 
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3.3 Results 

3.3.1 Computations on NiCCH 

To aid in the assignment of the spectra, density functional calculations employing 

the B3LYP hybrid density functional method in combination with the aug-cc-pVTC 

Dunning correlation consistent basis set
84

 were undertaken for the 
2
Σ

+
, 

2
Π, and 

2
Δ states 

of NiCCH that arise from the 3d
9
 occupation on nickel.  These were performed using the 

Gaussian 09W suite of programs.
85

 At this level of theory, the 
2
Δ state was found to be 

the ground state.  The 
2
Σ

+
 and 

2
Π states are calculated to lie 384 and 1282 cm

-1
 above the 

2
Δ state, respectively.  Calculated energies, bond lengths, vibrational frequencies, and 

dipole moments of the three low-lying states are provided in Table 3.1.  The vibrational 

frequencies deduced from the spectra that are described below are also provided for 

comparison. 

When a group of states are as closely spaced as these three states, spin-orbit 

interaction can be important in determining the absolute ordering of the states.  If we treat 

the partially occupied orbitals as having pure Ni 3d character, it is straightforward to 

approximate the effects of spin-orbit interaction using the spin-orbit Hamiltonian 

matrices provided by Spain and Morse.
72

 For the 
2
Δ5/2 level, which undergoes no spin-

orbit coupling with the other states, the energy is given by 

 

 E(
2
Δ5/2) = T(

2
Δ) – ζ3d(Ni), (3.1) 

 

where T(
2
Δ) is the term energy of the 

2
Δ state, as obtained from the computational 

results, and ζ3d(Ni) is the atomic spin-orbit parameter for the 3d orbitals of nickel, which
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Table 3.1 Computed and measured results on 
58

NiCCH
a
 

 

a
 As described in the text, all computations were done using the Gaussian 09W suite of 

programs.  The molecule was found to be linear in all calculations, although the different

frequencies for the bending modes in the 
2
Π term indicates that a Renner-Teller effect is 

expected.  See text for details.  

b
 Given in cm

-1
 units. 

c
 Given in Å units. 

 

  

Property 
2
Δ 

2
Σ

+
 

2
Π �̃� 

2
Δ (exp)

 �̃� 
2
Δ (exp)

 

Energy
b 

0 383.86 1282.45 0 15940.041(56

1) 
r(Ni-C)

 c 
1.8312 1.8502 1.8550   

r(C≡C)
 c
 1.2121 1.2133 1.2139   

r(C-H)
 c
 1.0625 1.0624 1.0628   

ν1 (σ
+
, C-H 

stretch)
b
 

3451.09 3451.18 3447.37   

ν2 (σ
+
, C≡C 

stretch)
b
 

2080.58 2071.66 2053.08  2001.9(1.4) 

ν3 (σ
+
, Ni-C 

stretch)
b
 

496.94 476.63 474.17  458.4(1.0) 

ν4 (π, C≡C-H 

bend)
b
 

675.02 667.63 
652.30 

712.56 
 636.5(0.9) 

ν5 (π, Ni-C≡C 

bend)
b
 

225.04 207.99 
208.72 

222.22 
209.5(0.6) 221.2(2.2) 

dipole moment 3.474 D 3.910 D 3.454 D   
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is tabulated as 670 cm
-1

.
86

   For the remaining levels, states with the same value of Ω are 

mixed by the spin-orbit interaction, leading to Hamiltonian matrices that must be 

diagonalized to obtain the final predicted energy levels.  These matrices are 

 

  (
𝑇( 𝛱) −

𝜁3𝑑(𝑁𝑖)

2

2 −𝜁3𝑑(𝑁𝑖)

−𝜁3𝑑(𝑁𝑖) 𝑇( 𝛥) + 𝜁3𝑑(𝑁𝑖)
2

)   for Ω =  
3

2
 levels (3.2) 

 

and  

 

 

(

 
𝑇( 𝛴+)2 −√

3

2
 𝜁3𝑑(𝑁𝑖)

−√
3

2
 𝜁3𝑑(𝑁𝑖) 𝑇( 𝛱) +

𝜁3𝑑(𝑁𝑖)

2

2

)

   for Ω =  
1

2
 levels. (3.3) 

 

Using the term energies obtained from the B3LYP calculations, in combination with the 

value ζ3d(Ni) = 670 cm
-1

, we obtain a final predicted set of low-lying states in NiCCH as 

given in Table 3.2.  These bear a striking similarity to the known low-lying states in the 

closely related NiCN molecule, also listed in Table 3.2.  The close correspondence 

between the calculated levels of NiCCH and the measured levels of NiCN shows that the 

two molecules are electronically very similar. 

 From the point of view of analyzing the spectra obtained in this study, the 

vibrational frequencies calculated in NiCCH are particularly important.  As was found in 

our studies of CuCCH
17

 and CrCCH,
18

 the calculated vibrational frequencies are well 

separated and are expected to be readily distinguished in the spectra.  This is very helpful 

for making vibronic assignments. 
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Table 3.2 Calculated spin-orbit levels of the 3d
9
 states of NiCCH, compared to measured 

states of NiCN. 

 

Calculated states of NiCCH Measured states of NiCN
a
 

Ω Energy (cm
-1

) Composition Designation Energy(cm
-1

) 

5/2 0 100% 
2
Δ5/2 

2
Δ5/2 0 

1/2 644 80% 
2
Σ

+
 ; 20% 

2
Π1/2   

3/2 795 60% 
2
Δ3/2 ; 40% 

2
Π3/2 

2
Δ3/2 830 

3/2 2163 60% 
2
Π3/2 ; 40% 

2
Δ3/2 

2
Π3/2 2238 

1/2 2697 80% 
2
Π1/2 ; 20% 

2
Σ

+
   

 
a
 From Reference [68]. 
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3.3.2 Vibronic Spectrum 

The vibronically resolved spectrum of 
58

NiCCH is displayed in Figure 3.1, and 

the locations of the observed bands are listed in Table 3.2.  The spectrum is dominated by 

one electronic band system, designated as the �̃�  ← �̃� system, although a few additional 

features are observed.  The most intense feature in the spectrum, near 15910 cm
-1

, is 

assigned as the 00
0 band based on isotopic shift measurements (see below).  A series of 

bands spaced by roughly 450 cm
-1

 extends toward higher wavenumbers.  Based on the 

correspondence between this value, the computed results for the Ni-CCH stretching 

mode, and the excited state frequencies of the Cr-CCH (425.6 cm
-1

)
18

 and Cu-CCH (479, 

466.8, and 462 cm
-1

)
17 stretching modes, the progression is assigned to mode ν3, the Ni-

CCH stretch.  A corresponding series of weaker features, shifted to lower wavenumbers 

by 209.5 cm
-1

, are assigned as hot bands arising from ground state molecules in which the 

Ni-C≡C bending mode (ν5) is singly excited.  Because this mode carries one unit of 

vibrational angular momentum, transitions to levels lacking vibrational angular 

momentum (as is the case here) have vanishing Franck-Condon factors.  Thus, these 

bands have a different source of oscillator strength than the main progression, gaining 

intensity by vibronic coupling with another state. 

It proved more difficult than expected to measure accurate isotope shifts between 

the more abundant isotopologue, 
58

NiCCH (83 Da, 66.75%), and the less abundant one, 

60
NiCCH (85 Da, 25.53%), because of large fluctuating background signals at the mass of 

60
NiCCH.  These large fluctuating signals also appeared at a significantly reduced 

intensity in mass 87 Da, leading us to suspect that they may be due to AlNi molecules, 

for which the abundant species have masses of 85 (68.3% abundance) and 87 Da (26.1%  
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Figure 3.1 Vibronically resolved spectrum of 
58

NiCCH, showing the �̃� 𝛥2 5/2 ← �̃� 𝛥2 5/2 

band system. 
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abundance).  This species has an ionization energy of 6.95±0.09 eV,
21

 making it readily 

one-photon ionized by the F2 excimer laser (7.89 eV), so even small amounts of AlNi 

produced via Al impurities can easily overwhelm the signal due to 
60

NiCCH.  The fact 

that these features became much more intense when we polished the sample with Al2O3 

sandpaper reinforces this assignment.  Apart from the rotationally resolved work on the 

Ã − �̃� 30
1 band, all of the isotope shift measurements were obtained from low-resolution 

scans conducted prior to polishing the sample. 

To verify the vibrational assignment, the molecule was treated as a 

pseudodiatomic, and the isotope shift was modeled by fitting the progression in the ν3 

mode for the 
58

NiCCH isotopologue to the diatomic formula, 

 

 νv′-0 = T0 + υ′ ωe′  -  (υ′
2
 + υ′) ωe′xe′  . (3.4) 

 

The fitted molecular constants ωe′ and ωe′xe′ could then be used to calculate the predicted 

isotope shift using the formula
87

 

 

 ν(
58

NiCCH) – ν(
60

NiCCH)  = (ρ-1)[ωe′(υ′+½)–ωe″(½)]–(ρ
2
-1)[ωe′xe′(υ′+½)

2
–ωe″xe″(½)

2
 ], (3.5) 

 

where the dimensionless parameter, ρ, is given as 𝜌 =  √
𝜇(60𝑁𝑖−𝐶𝐶𝐻)

𝜇(58𝑁𝑖−𝐶𝐶𝐻)
= 1.00506.   By 

treating equations (3.1) and (3.2) as functions of a continuous parameter, υ′, it was 

possible to plot the predicted isotope shift, ν(
58

NiCCH) – ν(
60

NiCCH), as a function of 

the band frequency, νv′-0, for various assignments of the bands.  The resulting curves were 

then compared to the measured isotope shifts to identify the correct vibrational 
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numbering.  To do so, the ground state vibrational frequency, ωe″, was taken as 497 cm
-1

 

from the DFT calculations using the B3LYP/ cc-pVTZ basis set, and the anharmonicity, 

ωe″xe″, was neglected.  The result, displayed in Figure 3.2, shows clearly that the  

15910 cm
-1

 band is the 00
0 band.  This assignment gives a pseudodiatomic vibrational 

frequency of 454.6 ± 0.4 cm
-1

 and an anharmonicity of 0.98 ± 0.07 cm
-1 

in the excited 

electronic state. 

 A weaker series of bands, occurring at 16544.1, 16994.8, 17443.4, 17886.2, and 

18329.1 cm
-1

, also form a progression with a pseudodiatomic vibrational frequency of 

453.8 ± 1.3 cm
-1

 and an anharmonicity of 1.5 ± 0.3 cm
-1

.  A plot of the measured isotope 

shifts is displayed in Figure 3.3, confirming that the first of these bands, at 16544.1 cm
-1

, 

has no quanta of the Ni-CCH vibrational mode excited.  Although it is possible that these 

features could correspond to a different excited state of NiCCH, the similarity between 

the vibrational frequency of this progression (453.8 cm
-1

) and that of the �̃� state  

(454.6 cm
-1

) strongly suggests that the new progression also corresponds to a set of 

vibrational levels in the �̃� state.  The first band in this progression is found 634.0 cm
-1

 to 

the blue of the Ã − �̃� 00
0 band, which is in reasonably good agreement with the calculated 

frequencies of the C≡C-H bending mode, ν4.  Accordingly, we assign these features to the 

40
1, 30

140
1, 30

240
1, 30

340
1, and 30

440
1 bands of the Ã − X̃ system.   

As demonstrated in rotationally resolved studies below, the main progression of 

30
𝑛 bands are Ω′=5/2 ← Ω″=5/2 parallel transitions while these 30

𝑛40
1 features have one 

unit of vibrational angular momentum in the upper state due to the excitation of the π-

symmetry ν4 mode, making them perpendicular transitions. Defining the quantum number 

P as the combined electronic and vibrational angular momentum around the axis, given 
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Figure 3.2 Isotope shift of the bands of the �̃� 𝛥2 5/2 ← �̃� 𝛥2 5/2  band system, 

demonstrating that the 15 910 cm
-1

 band is the 00
0 band of this system. 
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Figure 3.3 Isotope shift of the weak bands beginning at 16 544.1 cm
-1

.  This plot 

demonstrates that these bands form a progression, and that the 16 544.1 cm
-1

 band has no 

quanta excited in the Ni-CCH stretching mode, ν3. 
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by P ≡ Λ + ℓ + Σ = Ω + ℓ, the 30
𝑛40
1 features are P′=7/2 ← P″=Ω″=5/2 transitions.  The 

other expected set of vibronic levels arising from coupling of the ν4 bending mode (ℓ = 

±1) to the electronic angular momentum of Ω′=5/2, giving an upper state P′= 3/2, is not 

observed.  This implies that the 30
𝑛40
1  progression gains intensity through vibronic 

coupling with an electronic state with Ω′=7/2, but that vibronic coupling to states with 

Ω′=3/2 is much weaker, preventing the observation of the P′=3/2 set of vibronic levels.  

 Another vibrational progression is evident in the data in the weak bands at 

17037.8, 17487.0, and 17934.1 cm
-1

.  Fitting these features as the 00
0, 30

1, and 30
2 bands of 

a new band system yields a pseudodiatomic vibrational frequency and anharmonicity of 

451.4 cm
-1

 and 1.07 cm
-1

, again quite close to that found for the �̃� − �̃�  system.  

Rotational resolution of the weak feature at 17037.8 cm
-1

 shows that this transition has a 

symmetry of P′=7/2 ← P″=Ω″=5/2.  Again, these features could arise from a totally 

different excited state, but the close similarity in the pseudodiatomic vibrational 

frequency is evidence that this progression also belongs to the �̃� − �̃� system.  These three 

bands are found 224.5 ± 0.6 cm
-1

 to the blue of the 30
2, 30

3, and 30
4 bands, respectively, 

consistent with an assignment as combination bands involving one unit of the Ni-C≡C π-

bending mode, ν5.  This assignment shows a slight stiffening of the Ni-C≡C bending 

mode upon electronic excitation, from a frequency of ν5″ = 209.5 cm
-1

 to ν5′ = 224.5 cm
-1

, 

which is not unreasonable.  As a comparison, excitation of CuCCH from the �̃�1
Σ

+
 ground 

state to the �̃� 
1
Σ

+
 and �̃� 

1
Π states increased the frequency of the ν5 Cu-C≡C bending 

mode from 242.9 cm
-1

 to 284.4 and 267 cm
-1

, respectively.
17

 Therefore, these bands are 

assigned as the 30
250
1 , 30

350
1 , and 30

450
1  bands of the �̃� − �̃�  system.  Again, the 

combination of one unit of vibrational angular momentum (ℓ = ±1) from ν5′ with the 
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upper state Ω′=5/2 can lead to either P′=3/2 or P′=7/2, but the bands with P′=7/2 show 

significantly greater oscillator strength, and are observed.  The bands with P′=3/2 are 

presumably too weak to observe in our experiments.  This is again presumably due to 

vibronic coupling with an excited electronic state with Ω′=7/2. 

 Two features are found at 17910.5 cm
-1

 and 18360.9 cm
-1

 with isotope shifts of    

-0.1 and 2.0 cm
-1

, respectively.  These are consistent with transitions in which mode 3, 

the Ni-C stretching mode, has no excitation and one unit of excitation, respectively.  

These could correspond to the 00
0 and 30

1 bands of a completely different band system, 

but their separation, 450.4 cm
-1

, is again close to that found for other ν3 excitations in the 

�̃� state.  These bands are separated from the 00
0 and 30

1 bands by 2000.4 and 1998.0 cm
-1

, 

respectively.  These intervals are close to what might be expected for excitation of ν2, the 

C≡C stretch.  Because of the close match between the 450.4 cm
-1

 interval found here and 

the other ν3 intervals found in the spectrum, we assign these features to the 20
1 and 20

130
1 

bands of the �̃� − �̃� system. 

 In addition to these 18 bands that are assigned to the �̃� − �̃� system, 5 additional 

bands were observed that could not be classified into this system.  These are also listed in 

Table 3.3.  These weak features likely correspond to excitations to other electronic states 

that have lower oscillator strength.  A large number of excited electronic states are 

expected for NiCCH in this region, arising from the 3d
8
4s

1
, 

2
F and 

4
F states of Ni

+
 

interacting with CCH
‒
.  Although one of these bands was rotationally resolved, we have 

little additional information about these features. They were generally too weak to 

warrant further study at this time. 

 The vibronic bands that are assigned to the �̃� 𝛥5/2
2 − �̃� 𝛥5/2

2  system were fitted 
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to the anharmonic energy expression 

 

 𝜈 = 𝑇0 − 𝜔2v2 + 𝜔2′𝑣2
′ + 𝜔3

′ 𝑣3
′ + 𝜔4′𝑣4

′ + 𝜔5
′ 𝑣5
′ + 𝑥33

′ (𝑣3′
2 + 𝑣3

′ ) 

 + 𝑥23
′ (𝑣2

′𝑣3
′ +

𝑣2
′+𝑣3

′

2
) +  𝑥34

′ (𝑣3
′𝑣4
′ +

𝑣3
′+𝑣4

′

2
) +  𝑥35

′ (𝑣3
′𝑣5
′ +

𝑣3
′+𝑣5

′

2
) .  (3.6) 

 

The fitted wavenumbers and residuals in the fit are given in Table 3.3.  The resulting 

molecular constants are provided, along with their 1σ error limits, in Table 3.4. 

 

3.3.3 Rotationally Resolved Spectra of NiCCH 

A rotationally resolved scan over the 30
1 band of the �̃�  ← �̃� system is displayed in Figure 

3.4, along with a negative-going simulation of the spectrum, computed using the 

PGopher program,
88

 in blue.  The band shows obvious R, Q, and P branches, with a band 

head in the R branch, indicating that the rotational constant decreases upon electronic 

excitation, corresponding to a lengthening of the Ni-C bond.  In addition, the large gap 

between the first R and P lines indicates large Ω values in both the upper and lower 

states.  Analysis of the spectrum shows that it arises from an Ω′ = 5/2 ← Ω″ = 5/2 

transition, with first lines of R(2.5), Q(2.5), and P(3.5).  Given that the only state with Ω″ 

= 5/2 that arises from the d
9
 configuration is the 

2
Δ5/2 state, this spectrum proves that the 

ground state is of 
2
Δ5/2 symmetry.  As should be expected, the ground state of NiCCH is 

electronically analogous to that of the isoelectronic molecule, NiCN.
68-69

 This is also 

consistent with the B3LYP/aug-cc-pVTZ calculations. 

The decay lifetime of the �̃� state, measured for various vibronic levels, varies 

in the range from 0.72 to 1.8 μs. In a polyatomic molecule such as NiCCH, the decay 
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Table 3.3 Bands measured for 
58

NiCCH 

Band 
Measured ν0 

(cm
-1

) 

Fitted ν0 

(cm
-1

) 

Residu

al in fit 

(cm
-1

) 

Isotope 

shift 

ν(
58

NiCC

H)-

ν(
60

NiCC

H) (cm
-1

) 

B′ (cm
-1

) P′ τ (μs) 

�̃�
− �̃� 51

0 
15701.2

b
 

15701.5

31 
0.669

d
     

�̃�
− �̃� 00

0 
15910.1

b
 

15910.0

41 
0.059

d
 0.1   

0.725(

15)
c
 

�̃�
− �̃� 30

151
0 

16153.6
b
 

16153.7

95 
-0.195

d
 1.7   

0.739(

74) 

�̃� −
�̃� 30

1  

16362.8830(2

7)
c
 

16363.3

05 
-0.422

d
 1.96 

0.12931(1

0)
c
 

5/

2 

0.802(

18)
c
 

�̃� −
�̃� 40

1  
16544.1

b
 

16544.8

17 
-0.717

d
     

�̃�
− �̃� 30

2 
16813.8

b
 

16814.1

52 
-0.352

d
 3.8   

0.820(

47)
c
 

�̃� −
�̃� 30

140
1  

16994.7834(2

7)
c
 

16994.5

78 
0.205

d
 1.8 

0.12878(1

1)
c
 

7/

2 

1.243(

29)
c
 

�̃� −
�̃� 30

250
1  

17037.7539(3

0)
c
 

17037.7

09 
0.045

d
 1.9 

0.12893(8)
c
 

7/

2 

1.456(

63)
c
 

�̃�
− �̃� 30

351
0 

17052.6
b
 

17053.0

74 
-0.474

d
     

�̃�
− �̃� 30

3 
17262.7

b
 

17262.5

84 
0.116

d
 5.9    

U
a
 17437.2

b
       

�̃�
− �̃� 30

240
1 

17443.4
b
 

17441.9

23 
1.477

d
 3.9    

�̃�
− �̃� 30

350
1 

17487.0
b
 

17487.0

90 
-0.090

d
 4.0   

1.74(1

9) 

U
a
 

17594.2704(6

8)
c
 

   
0.12820(1

4)
c
 

5/

2 

7.98(1.

08)
c
 

U
a
 17680.3

b
   7.1   

18.7(1.

2) 

�̃�
− �̃� 30

4 
17709.2

b
 

17708.6

01 
0.599

d
 7.1    

�̃� −
�̃� 30

340
1  

17886.1530(9

0)
c
 

17886.8

52 
-0.699

d
 5.9 

0.12869(1

4)
c
 

7/

2 
 

�̃� 20
1 17910.5

b
 

17910.5

00 
0.000

d
 -0.1    

U
a
 17927.1

b
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Table 3.3 Continued 

�̃�
− �̃� 30

450
1 

17934.1
b
 17934.055 0.045

d
     

U
a
 17946.1

b
       

�̃�
− �̃� 30

440
1 

18329.1
b
 18329.365 

-

0.265
d
 

7.5    

�̃�
− �̃� 20

130
1 

18360.9
b
 18360.900 0.000

d
 2.0    

a
 Unidentified band 

b
 Estimated band origin location, measured in low resolution, expected accuracy ± 1 cm

-1
. 

c
 Error limits (1σ) are provided in parentheses, in units of the last digits quoted. 

d
 Residual is defined as measured value minus fitted value.  The least-squares fit of the 

measured vibronic levels to equation (3.3) provides the values listed in Table 3.4. 
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Table 3.4 Fitted vibrational constants for the �̃� 𝛥2 5/2 ← �̃� 𝛥2 5/2 system of NiCCH. 

 

Constant Value (cm
-1

) Constant Value (cm
-1

) 

ν0 15940.041 ± 0.561 ω5′ 221.184 ± 2.299 

ω5″ 209.510 ± 0.576 x33′ -1.208 ± 0.132 

ω2′ 2001.891 ± 1.405 x23′ -2.864 ± 1.160 

ω3′ 458.388 ± 1.019 x34′ -3.503 ± 0.316 

ω4′ 636.528 ± 0.928 x35′ 0.949 ± 0.651 
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Figure 3.4 Rotationally resolved scan over the 30
1 band of the �̃� 𝛥2 5/2  ← �̃� 𝛥2 5/2 band 

system.  The first lines prove that both upper and lower states have Ω=5/2. 
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process could include nonradiative decay mechanisms in addition to fluorescence. 

However, under the collision-free conditions of the experiment, nonradiative decay 

mechanisms would produce a vibrationally hot NiCCH molecule in a lower electronic 

state; the total energy would be conserved.  It is possible that the molecule would remain 

ionizable using the F2 laser, but with reduced efficiency.  This could lead to a bi-

exponential decay curve, with the initial depopulation of the pumped state showing a 

rapid decay, followed by a slower decay as the nonradiatively populated state decays 

further.  When all of the excitation energy is degraded into vibrational motion on the 

ground electronic state, poor Franck-Condon factors would likely prevent efficient 

ionization, giving only background signal levels.  For aromatic organic molecules with 

rapid singlet to triplet intersystem crossing, followed by a slower triplet to ground state 

singlet intersystem crossing process, this process has been observed.  The time-delayed 

resonant two-photon ionization method has been used to measure the vibrationally 

excited triplet state lifetime as a function of vibrational energy content.
89-90

  

 We believe that the measured excited state lifetimes found for NiCCH are true 

fluorescence lifetimes, without complications due to nonradiative decay.  An example of 

the measured lifetime and the quality of the fit is given in Figure 3.5, which displays no 

evidence of biexponential behavior.  In addition, the measured lifetimes (0.72 to 1.8 μs, 

depending on vibronic level; 8.0 μs for a level that belongs to a different electronic state) 

are comparable to those found for diatomic nickel species, where the density of states is 

certainly inadequate for radiationless decay under collision-free conditions.  Examples 

include molecules whose lifetimes have been measured in the ranges 3.6 to over 40 

μs(NiCu, with the longest lifetimes corresponding to quartet states),
23-24

 6 to 10 μs  
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Figure 3.5 Exponential decay of the 0
0
 level of the �̃� 𝛥2 5/2 state, measured by the time-

delayed resonant two-photon ionization method.  The fit of this decay curve gives  

τ = 0.730 μs; combined with two other measurements, a value of τ = 0.725 ± 0.015 μs is 

obtained. 

  



77 
 

 

 

(NiAu),
34

 0.17 to 10 μs (NiSi),
91

 and 0.07 to 0.6 μs (NiC),
92

 respectively. It should be 

noted that the transitions in these diatomic nickel species (and in NiCCH) are primarily 

3d ← 3d or 4s ← 3d excitations that are forbidden in the atom, but become allowed 

through mixing with 4p orbitals in the molecules.  As a result, fully allowed excitations in 

these molecules tend to have lifetimes on the order of 500 ns to 2 μs.  Because the 4p 

orbitals lie significantly above the 3d or 4s orbitals, there is a strong correlation of 

fluorescence lifetime with the excitation energy of the band system, with higher energy 

excited states generally having significantly shorter lifetimes.  This is due to the greater 

contribution of 4p character in the higher energy states, along with the shortening of the 

lifetimes by the ν
3
 factor that appears in the Einstein A coefficient.  

Given that the low-lying electronic states are all doublets arising from the 3d
9
 

configuration on the nickel core, the ~1 μs fluorescence lifetime establishes that the upper 

state is primarily doublet in character.  Doublet states that have Ω′=5/2 are 
2
Δ5/2 and 

2
Φ5/2, 

but a 
2
Φ5/2 ← �̃� 

2
Δ5/2 transition is forbidden by the ΔΣ=0 selection rule.  Therefore, the 

upper state is assigned as a 
2
Δ5/2 state.  The band system is assigned as the   

�̃� 
2
Δ5/2 ← �̃� 

2
Δ5/2 system. 

 Figure 3.6 displays the rotationally resolved scan over the 30
140
1 band near 16695 

cm
-1

.  The intense R branch shows that the quantum number P increases in this excitation, 

and the first lines demonstrate that P′=7/2, P″=Ω″=5/2.  The upper state P′ value includes 

the vibrational angular momentum of the ν4 C≡C-H bending mode and provides strong 

evidence that the band has been properly assigned as having one excitation of a bending 

mode.  A rotationally resolved scan over the 30
340
1  band near 17886 cm

-1
 displays the 

same intensity pattern and first lines, as expected, so it is not reproduced here.  The scan,  
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Figure 3.6 Rotationally resolved scan over the 30
140
1 band of the �̃� 𝛥2 5/2  ← �̃� 𝛥2 5/2 band 

system.  The intense R branch is evidence that ΔΩ = 1 in this band, and the first lines of 

R(2.5) and Q(3.5) prove that Ω″=5/2, P′=7/2. 
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along with a simulated spectrum, is available in Appendix A. 

Figure 3.7 displays a scan over the 30
250
1 band near 17038 cm

-1
, which is similar in 

appearance to the 30
140
1 band shown in Figure 3.6.  Again, the band is clearly a  

P′=7/2 ← Ω″=5/2 band, confirming that a bending mode has been excited in this 

transition.  In this case, it is the low-frequency Ni-C≡C ν5 mode that is excited in 

combination with two quanta of the Ni-C stretching vibration. 

 The remaining band that was rotationally resolved is a band near 17594 cm
-1

 that 

has a much longer fluorescence lifetime (τ = 7.98 ± 1.08 μs) and appears to belong to a 

different band system.  It is an Ω′=5/2 ←Ω″=5/2 band that probably gains oscillator 

strength through mixing between its upper state and the �̃� 𝛥2 5/2 state investigated here.  

Assuming that the upper state arises from the d
8
(
3
F)s

1
, 

2, 4
F configuration of Ni

+
, as is 

known in the examples of NiCu and NiH, this state could be of 
2
Φ5/2, 

4
Φ5/2, 

4
Δ5/2, or 

4
Π5/2 

symmetry.
72

 In NiCu,
72

 NiH,
72

 and NiCN
68

 the 
2
Φ5/2 state lies 1645, 2446, and 2520 cm

-1
 

above the �̃� 𝛥2 5/2  state, respectively.  The unknown band in NiCCH lies 1684 cm
-1

 

above the �̃� 𝛥2 5/2  state, which is a bit low in energy if we consider NiCCH to be 

electronically similar to NiCN.  An alternative possibility is a state dominated by 
4
Φ5/2 

character, which lies lower than the equivalent of the �̃� 𝛥2 5/2 state of NiCu and NiH by 

383 and 464 cm
-1

, respectively.
72

 If this is the case, it is likely that the unknown band 

corresponds to a vibrationally excited level of the 
4
Φ5/2 state.  Further speculation is not 

warranted at this time.  The rotationally resolved spectrum of the 17594 cm
-1

 band, along 

with a simulated spectrum and measured and fitted line positions, is provided in 

Appendix A. 

 All of the rotationally resolved bands originate from a lower level with Ω″=5/2 
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Figure 3.7 Rotationally resolved scan over the 30
250
1 band of the �̃� 𝛥2 5/2  ← �̃� 𝛥2 5/2 band 

system.  The intense R branch is evidence that ΔΩ = 1 in this band, and the first lines of 

R(2.5) and Q(3.5) prove that Ω″=5/2, P′=7/2. 
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and are found to have very similar rotational constants.  Therefore, it seems clear that 

they arise from the same vibronic level.  Although in principle this might be a metastable 

state that remains populated in the molecular beam, the only example in which we have 

found a metastable state of a nickel-containing molecule is in Ni2.
93-94

 In our experiments 

on NiCu,
23-24

 NiAu,
34

, AlNi,
21

 NiC,
92

 NiSi,
91

 NiPd,
95

 and NiPt,
96

 we have found only one 

electronic state to be populated.  Thus we assign the ground state as the �̃� 𝛥2 5/2 state, 

deriving from a d
9
 configuration on the nickel atom.   

Accordingly, all rotationally resolved bands were constrained to have the same 

lower state rotational constant in a combined fit, allowing a more precise value of this 

quantity to be determined.  In the fit, all of the bands were fitted to the Hund’s case (a) or 

(c) formula
87

 

 

 𝜈 = 𝜈0 + 𝐵
′𝐽′(𝐽′ + 1) − 𝐵"𝐽"(𝐽" + 1) . (3.7)  

 

The resulting molecular constants are provided in Table 3.5.  The line positions are 

provided in the Appendix A.  The fitted value of B″ obtained for 
58

NiCCH is 0.14080(11) 

cm
-1

.  Here, as elsewhere in this report, the value in parentheses represents the 1σ error 

limit, in units of the last digits quoted. 

 

3.4 Discussion 

 As in all of the known monovalent, monoligated nickel molecules, the ground 

state of NiCCH derives from a 3d
9
 configuration on nickel.  Like NiAl,

21-22
 NiCu,

23-26
 

NiH,
27-33

 NiAu,
22, 34

 NiI,
35-39

 and NiCN,
68-69

 NiCCH preferentially places the 3d hole  
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Table 3.5 Fitted molecular constants of resolved bands of 
58

NiCCH.
a
 

Band �̃� − �̃� 30
1  �̃� − �̃� 30

140
1 �̃� − �̃� 30

250
1 

[17.59]5/2 - 

�̃� 00 

�̃�
− �̃� 30

340
1 

T0 16362.8830(27) 16994.7834(27) 17037.7539(30) 17594.2704(68) 
17886.1530(

90) 

B′ 0.12931(10) 0.12878(11) 0.12893(8) 0.12820(14) 0.12869(14) 

P′ 5/2 7/2 7/2 5/2 7/2 

B″ 0.14080(11) 0.14080(11) 0.14080(11) 0.14080(11) 0.14080(11) 

Ω″ 5/2 5/2 5/2 5/2 5/2 

a
 All values are in cm

-1
 units; residuals in the fit (calculated – measured) are provided in 

parentheses, in units of 0.001 cm
-1

. Error limits in the fitted molecular constants (1σ) are 

provided in parentheses after each constant, in units of the last digit quoted.  In the fit all 

of the bands were constrained to have the same value of B″. 
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the 3dδ orbital, leading to an �̃� 
2
Δ5/2 ground state.  This differs from the ground state 

when more electronegative ligands are present, which has Ω=3/2 for NiCl
43-52

 and NiF.
53-

67
 

If we consider the 3d orbitals of Ni
+
 to be too contracted to bond significantly 

with the orbitals of the ligand, and instead consider the 3d orbital splitting to be governed 

by electrostatic interactions, it is only possible to obtain a 
2
Δ ground term by assigning 

the ligand a positive effective charge.  A negative ligand charge would cause the 3dσ 

orbital, which points toward the ligand, to be destabilized, causing the Ni 3d orbitals to 

fall in the order of increasing energy as 3dδ < 3dπ < 3dσ.  This favors placement of the 

3d hole in the 3dσ orbital, leading to a term ordering of 
2
Σ

+
 < 

2
Π < 

2
Δ, in contradiction to 

experiment, which shows a 
2
Δ5/2 ground state.  Although a positive ligand charge is 

counterintuitive, reasonably good fits to the calculated
72

 or measured
26

 electronic levels 

of the 3d
9
 configuration of NiCu are obtained when a ligand charge of ZCu = +1 is 

employed.  A positive ligand charge would also be required to account for the energy 

ordering of the 3d
9
 states in NiH, which follows the same pattern found in NiCu.  This 

result may be rationalized by recognizing that in these molecules, which are more 

covalent than ionic, the σ bonding electrons lie in a relatively diffuse orbital with 

substantial 4sNi character.  To whatever extent that the σ
2
 electrons occupy a diffuse, 

nearly spherical orbital around the Ni atom, they are not effective in splitting the 3dσ, 

3dπ, and 3dδ orbitals.  Instead, it is the underlying +1 ion core on the ligand that favors 

placement of the hole in the 3dδ orbital. 

 In NiH,
32, 72

 NiCN,
68

 and NiCu,
72

 the manifold of excited states in the 10,000-

20000 cm
-1

 range arises from the 3d
8
4s

1
, 

2
F, and 

4
F states of the Ni

+
 ion, combined with 
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an H
‒
, CN

‒
, or Cu

‒
 anion.  The known electronic states of all three molecules show 

identical energy orderings, to the extent that they are experimentally known, as displayed 

in Figure 3.8.  For this group of states the energy levels in NiCu and NiH can be well 

fitted by a ligand field model in which the ligand carries a negative charge of -0.666 for 

NiCu and -0.439 for NiH.
72

 In both NiCu and NiH, the pattern of 3d
8
4s

1
 states is mainly 

governed by the exchange interaction between the 4s
1
 electron and the 3d

8
 core and by 

the spin-orbit interaction within the 3d
8
 core.

72
 These effects are expected to be largely 

independent of the ligand, although the exchange effects can be reduced if the ligand is 

able to delocalize the 4s
1
 electron significantly.  To the extent that the CN

‒
 anion acts as a 

non-interacting negatively charged ligand, a similar pattern of states would be expected.  

Figure 3.8 shows that this is apparently the case, with the NiCN excited states closely 

following the NiH pattern of states, as was originally observed by Kingston, Merer, and 

Varberg.
68

 Given that we have only identified one of the expected 3d
8
4s

1
 excited states in 

the NiCCH molecule, we are unable to prove that it will also follow the same pattern, but 

we see no reason to expect otherwise. 

 The NiCCH molecule is isoelectronic with NiCN, differing only by the 

replacement of the nitrogen atom with a CH group.  Thus, the two molecules are not 

merely isoelectronic; they differ only in the replacement of a triply bonded N atom by a 

triply bonded CH group.  This allows the vibrational motions of the two species to be 

usefully compared.  The Ni-C≡N bending mode in the �̃� 
2
Δ5/2 ground state exhibits a first 

excited level that is 243.4 cm
-1

 above the ground level,
68

 while in NiCCH the ground 

state Ni-C≡C bending interval is somewhat reduced from this value, 209.5 cm
-1

.  One 

might expect the two molecules to have quite similar Ni-C stretching frequencies, but we 
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Figure 3.8 Experimentally known electronic states of Ni
+
, NiCu, NiH, NiCCH, and 

NiCN.  In this figure, states with Ω=0.5 are displayed using green horizontal lines, while 

states with Ω=3/2 are indicated in red.  States with Ω=5/2 are indicated with blue 

horizontal lines, and states with Ω=7/2 are indicated by purple.  Although many of the 

states are strongly mixed by spin-orbit interaction, the dominant Hund’s case (a) term is 

listed above.  Labels that are provided next to the NiCN column correlate all the way 

across the table, as shown.  Labels provided next to the NiH column correlate in some 

cases to NiCu, as shown by the dotted correlation lines.  The 
4
Φ7/2 and the nearly 

degenerate 
4
Π5/2 and Σ3/2

‒4  states are only known in NiCu and are found in the 10,000-

11,000 cm
-1

 region.  
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unfortunately have not measured this quantity for the ground state.  The �̃� 
2
Δ5/2 state of 

NiCN differs from that of NiCCH, however, in that the vibrational intervals 

corresponding to excitation of the Ni-CN stretch exhibit a negative anharmonicity, with 

intervals ranging from 433 cm
-1

 to 450 cm
-1

.  This probably results from perturbations by 

the nearby �̃� 
2
Π3/2 state, which lies only 79 cm

-1
 above the �̃� 

2
Δ5/2 state.  In contrast, the 

Ni-CCH stretching progression observed in the �̃� 𝛥2 5/2  ← �̃� 𝛥2 5/2 band system is quite 

regular, with intervals in the 30
𝑛 progression dropping smoothly from 452.8 cm

-1
 to  

446.5 cm
-1

 as one moves from the 00
0 band to the 30

4 band.  Likewise, in the �̃� 𝛥2 5/2state 

of NiCN, the Ni-C≡N bending mode is strongly anharmonic, with the first excited level 

lying 180.2 cm
-1

 above the ground level.  This compares to a value of 224 cm
-1

 in the 

case of NiCCH.  These results show that the vibrational frequencies of the two molecules 

are quite similar, overall. 

 It is worth noting that the ν2′ excited state C≡C vibrational frequency is now 

known for two transition metal monoacetylides, NiCCH and CrCCH.  In these species the 

ground state corresponds to a d
9
 Ni

+
 ion and a d

5
 Cr

+
 ion, respectively, interacting with a 

C2H
‒
 anion.  In the excited states, these metal ions are excited to d

8
s

1
 and d

4
s

1
 

configurations, respectively.  The C≡C vibrational frequency in the �̃� 𝛥2 5/2 and �̃� 𝛴6 + 

states of NiCCH and CrCCH are 2001.9 cm
-1

 and 1944.3 cm
-118

, respectively.  The large 

decrease in excited state C≡C vibrational frequency in moving from NiCCH to CrCCH is 

consistent with a model in which there is a more significant transfer of metal dπ electron 

density into the C≡C π antibonding orbital in the case of CrCCH as compared to NiCCH, 

leading to a more significant weakening of the C≡C bond.  This would be favored by the 

more electropositive nature of Cr compared to Ni, and by the larger size and greater 
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accessibility of the 3d orbitals of Cr as compared to Ni.  It would be interesting to see if 

this trend is followed in the other transition metal acetylides, both in the excited states 

and in the ground state. 

 

3.5 Conclusions 

 The first spectroscopic investigation of NiCCH has been performed using the 

resonant two-photon ionization method.  The molecule has been shown to be linear, with 

a ground state of �̃� 𝛥2 5/2 symmetry.  The electronic transition to the �̃� 𝛥2 5/2 state has 

been extensively studied, allowing the rotational constants of both the upper and lower 

states to be measured, and permitting vibrational levels associated with excitations in the 

ν2, ν3, ν4, and ν5 modes in the upper state to be identified.  The Ni-C≡C bending 

frequency in the ground state has also been measured through the observation of hot 

bands.  The �̃� 𝛥2 5/2- �̃� 𝛥2 5/2 excitation is found to lie quite close to the corresponding 

excitation in NiCN, and the vibrational frequencies of NiCCH are found to be similar to 

the analogous vibrational frequencies of NiCN.  Further, it is suggested that the overall 

pattern of electronic states deriving from the 3d
9
 and 3d

8
4s

1
 manifolds will be quite 

similar to that found in NiCN and NiH. 
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CHAPTER 4 

 

RESONANT TWO-PHOTON IONIZATION SPECTROSCOPY OF  

JET-COOLED OsSi 

 

Reproduced from Johnson, E. L.; Morse, M. D., Resonant two-photon ionization 

spectroscopy of jet-cooled OsSi J. Chem. Phys. 2015, 143, 104303/1-104303/12, with the 

permission of AIP Publishing. 

 

4.1 Introduction 

 Transition metal silicides have been of interest in the electronics industry for 

many years due to their hardness, resistance to oxidation, useful electronic properties, and 

compatibility with silicon-based microelectronics. In particular, osmium silicide has 

received interest from scientists working with semiconductors1-4 and thin films.5-7 Prior to 

the present study, however, diatomic OsSi had not been spectroscopically investigated. 

 Although OsSi has not been previously studied, many of the other diatomic 

transition metal silicides have been investigated.  Bond dissociation energies have been 

measured for ScSi,8 YSi,9 FeSi,10 RuSi,11 CoSi,10 RhSi,11 IrSi,11 NiSi,10 PdSi,11-12 PtSi,11 

CuSi,13 AgSi,13 and AuSi11, 14 using Knudsen effusion mass spectrometry. Guided ion 



 97 

beam mass spectrometry has been used to determine the bond dissociation energies of 

ScSi+,15 YSi+,15 LaSi+,15 LuSi+,15 TiSi+,16 VSi+,16 CrSi+,16 FeSi+,17 CoSi+,17 NiSi+,17 

CuSi+,18 and ZnSi+.18 Diatomic VSi and NbSi have been studied using matrix isolation 

ESR spectroscopy.19 Spectra of diatomic transition metal silicides have also been 

recorded in the gas phase.  Cavity ringdown laser spectroscopy was used to record the 

spectra of CuSi,20 AgSi,21 AuSi,22 and PtSi.23 Along with cavity ringdown spectroscopy, 

emission spectroscopy has been used to study CuSi,24 and the bond length and dipole 

moment have been determined for PtSi using pure rotational spectroscopy.25 

Photoelectron spectroscopy has also been used to investigate the electronic structure of 

ZrSi,26-27 NbSi,27 MoSi,27 PdSi,27 and WSi,27 by first mass-selecting the anions of these 

species, then measuring their photoelectron spectra. 

 Diatomic OsSi is a transition metal molecule with 12 valence electrons, eight 

from Os and four from Si.  A number of other 12-electron transition metal molecules 

have been previously investigated and a variety of ground states have been found.  These 

ground configurations and terms include the 1σ22σ21π41δ4, X Σ0+
+1  term in RuC;28-31 the 

1σ2 2σ2 1π4 1δ3 3σ1, X 3Δ3 term in FeC,32-36 OsC,37-38 and RuSi;39-40 the 1σ2 2σ2 1π4 3σ2 

1δ2, X Σ0+
−3  term in tungsten oxide, WO,41-49 and ReN;33, 50-53 and the 1σ2 2σ2 1π4 1δ2 3σ1 

2π1, X 5Π-1 term in CrO54-61, CrS62-63, and MoO.57, 64-67 One of the purposes of this study 

was to determine the ground configuration and term of OsSi and to compare the result to 

the findings for other 12-electron transition metal molecules. 

Transition metal silicides have also been extensively investigated by this group 

using resonant two-photon ionization (R2PI) spectroscopy.  For example, the Morse 

group has performed the first spectroscopic characterizations of NiSi,68 PdSi,69 RuSi,40 
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and IrSi,70-71 and also reported on the spectrum of PtSi.72 No spectroscopic work has been 

previously done on OsSi; Wu and Su, however, have calculated that the ground state is of 

3Σ‒ symmetry, deriving from the 1σ2 2σ2 1π4 3σ21δ2 electronic configuration.39 

 

4.2 Experimental 

 In the current work, OsSi was investigated using resonant two-photon ionization 

(R2PI) spectroscopy. The instrument employed is identical to that used in many previous 

studies.40, 69, 72-74 The OsSi molecule is produced by focusing the third harmonic radiation 

from a Q-switched Nd:YAG laser (355 nm) onto a 1:1 osmium-vanadium alloy disk in 

the path of a pulsed supersonic expansion of helium (160 psig backing pressure) seeded 

with 0.13% silane, SiH4. The alloy disk is rotated and translated to prevent the drilling of 

holes and to maintain a stable source of diatomic OsSi.  The products of ablation and 

subsequent reaction then travel down a 1.3 cm long reaction zone and expand 

supersonically through a 5 mm orifice into a vacuum chamber, causing them to be cooled 

to approximately 10 K. The molecular beam is then roughly collimated by a 1 cm 

diameter skimmer and enters the Wiley-McLaren ion source of a reflectron time of flight 

mass spectrometer,75-76 where it is exposed to a pulse of tunable dye laser radiation that is 

counterpropagated along the molecular beam path. After a delay of about 20 ns, the 

output radiation of an ArF excimer laser (193 nm, 6.42 eV) intersects the molecular beam 

at right angles, ionizing molecules that have been excited by the dye laser radiation. The 

resulting ions are accelerated into the flight tube and enter a reflectron,76 which causes 

them to reverse their motion, directing them down a second flight tube to a dual 

microchannel plate detector. The resulting ion signal is then preamplified, digitized, and 



 99 

stored for analysis at a later time. The entire experiment is repeated at a rate of 10 Hz. 

 Low-resolution spectra of OsSi at mass 217 (15.52% natural abundance), 218 

(25.51% natural abundance), and 220 (38.63% natural abundance) were recorded from 15 

350 cm-1 to 20 400 cm-1. The three masses that were monitored are dominated by a single 

isotopologue: mass 217 consists primarily (95.68%) of 189Os28Si; mass 218 primarily 

(95.44%) of 190Os28Si; and mass 220 primarily (97.88%) of 192Os28Si. Features due to the 

minor isotopologues that have these same masses were not observed in the spectrum. To 

reveal the rotational structure of the observed bands, high resolution scans were 

performed by inserting an air-spaced intracavity étalon into the dye laser, which was then 

pressure-scanned using SF6. To calibrate the rotationally resolved bands, partial 

reflections of the dye laser radiation were sent through a cell containing gaseous I2 and 

through a 0.22 cm-1 free spectral range étalon, and the transmitted intensity was 

monitored with a photodiode.  Fringes from the étalon were used to linearize the recorded 

spectrum, and the recorded I2 spectrum was compared to the I2 atlas77 to obtain an 

absolute calibration.  A correction was made to account for the Doppler shift of the 

spectrum that results from the fact that the molecules approach the radiation source at the 

beam velocity of helium (1.77 × 105 cm/s).78 A final correction for the error in the I2 atlas 

(-0.0056 cm-1) was also made.79 The total correction for these two effects amounted to 

about 0.10 cm-1 for the bands examined. 

Excited state lifetimes were also measured for selected bands by firing the 

ionization laser when OsSi had the greatest signal intensity and scanning the firing time 

of the dye laser.  A plot of the OsSi+ ion signal as a function of the firing time of the dye 

laser displayed an exponential decay curve that was fitted using the Levenberg-
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Marquardt nonlinear least-squares algorithm80 to extract the exponential decay time, τ.  

Three independent lifetime curves were collected and fitted for each band and the 

standard deviation of the three values is reported as the 1σ error limit. 

 

4.3 Results 

4.3.1 Vibronic Spectrum 

Survey scans of OsSi were recorded in the 15 350 – 20 400 cm-1 region, resulting 

in the observation of 39 vibronic bands. The low-resolution spectrum of 192Os28Si is 

displayed in Figure 4.1; wavenumbers of the observed bands are listed in Table 4.1. 

Progressions of bands belonging to the same electronic state were identified by finding 

bands of similar intensity separated by nearly constant intervals, allowing 20 of the bands 

to be grouped into two band systems, designated as the A-X and B-X systems.  The A-X 

system is quite extensive, while the B-X system only exhibits two bands within the range 

that was scanned.  More detailed vibronically resolved spectra, along with rotationally 

resolved spectra, vibronic band positions, rotational line positions, and details of the 

least-squares fits are provided in Appendix B. 

To determine the vibrational assignment, the isotope shift was modeled by fitting 

the progression in 192Os28Si to the formula81 

 

 νv′-0 = T0 + υ′ ωe′  -  (υ′2 + υ′) ωe′xe′ . (4.1) 

 

The fitted molecular constants ωe′ and ωe′xe′ were then used to calculate the expected 

isotope shift using81 
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Figure 4.1 Vibronically resolved spectrum of 192Os28Si, with vibronic transitions 
belonging to the A1 ← X Σ0+

‒3  and B1 ← X Σ0+
‒3  band systems indicated. 
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Table 4.1 Measured vibronic bands of OsSi.a  

Band Measured ν0 for  
192Os28Si b 

Isotope shift  
ν(190Os28Si)-ν(192Os28Si) b B′ Ω′ τ (μs) c 

A-X 0-1 15210.74 -0.19    
A-X 1-1 15607.63 -0.11    
A-X 0-0 15727.2143(20) -0.0095(26) 0.13783(6) 1 1.07(12) 
A-X 2-1 15989.69 1.42    
A-X 1-0 16123.7918(21) 0.2555(25) 0.13709(6) 1 1.06(3) 
A-X 3-1 16395.73 0.44    
A-X 2-0 16518.40 0.15    
A-X 4-1 16776.23 0.89    
A-X 3-0 16912.45 0.91    
A-X 5-1 17170.38 1.05    
A-X 4-0 17292.51 1.30    
A-X 6-1 17558.2584(39) 1.2195(48) 0.13432(22) 1 1.05(4) 
A-X 5-0 17686.7884(53) 1.3835(65) 0.13888(10) 1  
A-X 7-1 17943.3179(37) 1.4402(47) 0.13382(20) 1 1.18(3) 
A-X 6-0 18074.5689(28) 1.5562(39) 0.13442(6) 1 1.14(21) 
A-X 8-1 18326.64 1.46    
A-X 7-0 18459.6389(42) 1.7605(59) 0.13306(9) 1  
A-X 9-1 18714.20 1.70    
B-X 0-0 18468.7147(32) 0.0305(41) 0.14263(7) 1 8.31(33) 
B-X 1-0 18792.8211(16) 0.1734(26) 0.14174(8) 1 6.16(60) 

Ud 15384.33 0.57    
Ud 15431.78 0.79    
Ud 15484.17 0.42    
Ud 15489.03 -0.17    
Ud 15753.06 0.18    
Ud 15833.10 0.65    
Ud 15882.47 0.08    
Ud 15947.26 0.90    
Ud 16026.89 0.13    
Ud 16412.92 0.90    
Ud 16863.19 1.36    
Ud 17044.37 1.30    
Ud 17242.17 0.49    
Ud 17813.78 1.30    
Ud 17922.72 -0.10    
Ud 18193.66 2.19    
Ud 18287.99 1.07    
Ud 18338.03 0.13    
Ud 18406.75 0.11    
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Table 4.1 Continued 

a All values are in cm-1 units unless otherwise specified; 1σ error limits are provided in 
parentheses, in units of the last digit quoted. b Band origins that have been determined in 
rotationally resolved scans are given to four digits after the decimal, with the 1σ error 
provided.  Band origins quoted to only two digits are estimated from low resolution 
measurements, and are thought to be accurate to better than 1 cm-1.  Similarly, isotope 
shifts measured in low resolution are quoted to two digits.  These are generally accurate 
to 0.1 cm-1, based on comparisons to high resolution measurements.  Weaker features 
may have larger errors.  When four digits and an error estimate are provided, the feature 
was measured in a well-calibrated high resolution scan. c Excited state exponential decay 
lifetime. dUnclassified band. 
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ν(190Os28Si) – ν(192Os28Si) = (ρ-1)[ωe′(υ′+½)–ωe″(½)]–(ρ2-1)[ωe′xe′(υ′+½)2–ωe″xe″(½)2 ],  (4.2) 

 

where ρ is given as 𝜌 = √𝜇( 𝑂𝑠 𝑆𝑖28 )192

𝜇( 𝑂𝑠 𝑆𝑖28 )190 = 1.00067.  By treating equations (4.1) and (4.2) 

as functions of a continuous parameter, v′, it was possible to plot the expected isotope 

shift, ν(190Os28Si) – ν(192Os28Si), as a function of the band frequency, νv′-0, for various 

assignments of the bands. The resulting nearly linear curves were compared to the 

measured isotope shifts to identify the correct vibrational numbering. In equation (4.2), 

the ground state vibrational frequency, ωe″, was taken as 516.32 cm-1 based on the 

separation between cold bands and their corresponding hot bands (see below), and the 

anharmonicity, ωe″xe″, was neglected. The result, displayed in Figure 4.2, shows clearly 

that the 15 927 cm-1 band is the 0-0 band of the A-X system.  This assignment gives 

vibrational constants of the A state of ωe′=396.97(75) and ωe′xe′=0.839(95) cm-1 for the 

192Os28Si isotopologue. 

 Also evident in Figure 4.1 is a progression of weaker features displaced to the red 

of the main bands of the A-X system by approximately 516 cm-1.  To verify that these are 

hot bands arising from v″=1, the assigned 6-0, 6-1, 7-0, and 7-1 bands were examined 

with rotational resolution to verify that the ΔG1/2″ values, obtained as ν6-0 - ν6-1 and ν7-0 – 

ν7-1, were the same.  The ΔG1/2″(192Os28Si) values were in good agreement, 516.3105(48) 

and 516.3210(56) cm-1, confirming the assignment of the v′-1 hot bands.  Similar 

agreement was found for ΔG1/2″(190Os28Si), but the quality of the data did not permit 

similar measurements for ΔG1/2″(189Os28Si). 

 Excited state lifetimes were measured for several bands belonging to the A-X 

system, and all were found to be in the range from 1.05 to 1.18 μs.  These values are 
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Figure 4.2 Isotope shift plot for the A1 ← X Σ0+

‒3  system of OsSi.  The lines provide the 
expected isotope shifts based on various assignments.  The filled data points give the 
measured isotope shifts for v′-0 bands; the open symbols for v′-1 bands.  It is apparent 
that the 15 727 cm-1 band is the 0-0 band for this system. 
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typical of allowed transitions in transition metal diatomics in the red portion of the 

spectrum. Figure 4.3 displays a measured set of data points for the decay lifetime of the 

v′=1 level of the A state along with the fitted decay curve.  

Near the blue end of the scanned region there are two bands, near 18 469 cm-1 and 

18 790 cm-1, that are assigned to the B-X system. At first we thought that the 18 469 cm-1 

band was the 7-0 band of the A-X system, but its band origin is displaced about 10 cm-1 

from the expected position, and its upper state lifetime is about a factor of 7 longer than 

the lifetimes of the other bands in the A-X system.  The A-X 7-0 band was subsequently 

found as a much weaker feature, which was successfully rotationally resolved.  The two 

bands near 18 469 and 18 790 cm-1 have similar upper state rotational constants and 

lifetimes, and exhibit isotope shifts that are consistent with assignments as the 0-0 and 1-

0 bands of a new system.  Therefore, they are assigned as the 0-0 and 1-0 bands of the B-

X system.  The strong spin-orbit interaction that is operative in this molecule makes it 

likely that the B-X system borrows its intensity from the nearby A-X system.  

 

4.3.2 Rotationally Resolved Spectra of OsSi 

Figure 4.4 displays a rotationally resolved scan over the 1-0 band of the A-X 

system, along with a negative-going simulation of the spectrum that was computed using 

the PGopher program,82 in blue. The band displays P, Q, and R branches with a small gap 

between the first Q and R lines, indicative of small Ω values in the upper and lower 

states. There is also a band head in the R branch, establishing that the rotational constant 

decreases upon electronic excitation, corresponding to a lengthening of the Os-Si bond. 

The first lines were found to be R(0), Q(1), and P(2), thereby identifying the band as an  
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Figure 4.3 Lifetime measurement for the v′=1 level of the A state.  From three datasets 
similar in quality to this one, a value of τ = 1.06(3) μs is obtained. 
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Figure 4.4 Rotationally resolved scan over the 1-0 band of the A1 ← X Σ0+
‒3  system of 

192Os28Si.  
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Ω′ = 1 ← Ω″ = 0 transition, which is consistent with the other rotationally resolved bands 

of the A-X system. 

The 1-0 band of the B-X system, located near 18 793 cm-1, is displayed in Figure 

4.5.  This band has the same general characteristics as the 1-0 band of the A-X system: a 

band head in the R-branch and first lines of R(0), Q(1), and P(2).  It is likewise an  

Ω′=1 ← Ω″=0 transition, in which the upper state bond length is longer than the ground 

state bond length. 

All bands in the A-X and B-X systems that were rotationally resolved were fitted 

to the Hund’s case (a) or (c) formula81 

 

 𝜈 = 𝜈0 + 𝐵′𝐽′(𝐽′ + 1) − 𝐵"𝐽"(𝐽" + 1). (4.3) 

 

In doing so, bands originating from the same lower level were simultaneously fitted to 

extract the most accurate values of B0″ and B1″ for the ground state.  Any lambda 

doubling that may be present is beyond our ability to resolve, so that equation (4.3) is 

adequate for the description of the levels.  Measured line positions, residuals, and 

molecular constants are provided in Appendix B, along with graphs of the recorded 

spectra and band positions measured in low-resolution scans.  In Table 4.2 fitted vibronic 

and rotational constants for the X, A, and B states are provided for the 192Os28Si, 

190Os28Si, and 189Os28Si isotopologues.  Here, as elsewhere in this report, the value in 

parentheses represents the 1σ error limit, in units of the last digits quoted.  These error 

limits reflect the error in the least-squares fitting procedure and do not reflect any other 

sources of error.  During these studies, we noted a significant variation in signal intensity   
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Figure 4.5 Rotationally resolved scan over the 1-0 band of the B1 ← X Σ0+
‒3  system of 

192Os28Si. 
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Table 4.2 Molecular constants of OsSi. 

 
Electronic 

State 
Molecular 
constant 

192Os28Si 190Os28Si 189Os28Si 

X Σ0+
‒3  

ΔG1/2 516.3149(36) 516.6450(31) 516.8333(55) 
B0″ 0.15332(8) 0.15317(6) 0.15350(8) 
B1″ 0.15242(21) 0.15297(14) 0.15248(17) 
Be″ 0.15377(14) 0.15327(10) 0.15401(12) 
αe″ 0.00090(22) 0.00020(15) 0.00102(19) 
re″ 2.1189(10) 2.1238(7) 2.1194(8) 

Recommended re″ 2.1207(27) 

A1 

T0 15727.734(702) 15727.702(672) 15727.205 
ωe′ 396.97(75) 397.31(72) 399.06 

ωe′xe′ 0.839(95) 0.849(91) 1.042 
Be′ 0.13804(20) 0.13724(164) 0.13817(18) 
αe′ 0.00035(78) 0.00025(66) 0.00053(7) 
re′ 2.236(16) 2.244(13) 2.2376(15) 

Recommended re′ 2.2394(43) 

B1 

T0 18468.7147(32) 18468.7452(26) 18468.7644(24) 
ΔG1/2 324.1064(36) 324.2493(33) 324.3268(31) 

Be′ 0.14308(10) 0.14275(12) 0.14308(9) 
αe′ 0.00089(11) 0.00074(13) 0.00077(11) 
re′ 2.1966(8) 2.2006(9) 2.1988(7) 

Recommended re′ 2.1987(20) 
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during the scans, which ultimately was determined to result from the build-up of 

powdered SiO2 in the body of the pulsed supersonic valve, due to the reaction of 

SiH4with residual atmosphere. This variation made it more difficult to pick out the 

rotational lines for some of the bands, due to the lines lying upon a randomly fluctuating 

background signal.  As a result, the variations in re bond lengths between the different 

isotopologues should not be considered significant, and these values have been averaged 

to provide recommended values of the re bond length of the X, A, and B states. 

 

4.4 Discussion 

 As noted above, all of the rotationally resolved bands arise from the same lower 

electronic state, characterized by Ω″ = 0. To deduce the molecular configuration and term 

that leads to this ground level, it is useful to review the valence molecular orbitals of 

diatomics composed of a transition metal and a p-block element.  Considering only the 

valence 5d and 6s orbitals of osmium, and the 3s and 3p orbitals of silicon, the molecular 

orbitals, in order of qualitatively increasing energy are the following: 

 1σ – composed primarily of Si 3s character 

 2σ – a bonding combination of primarily Si 3pσ and Os 5dσ character 

 1π – a bonding combination of Si 3pπ and Os 5dπ orbitals 

 3σ – a mostly nonbonding orbital composed primarily of Os 6s character 

 1δ – nonbonding orbitals of nearly pure Os 5d character 

 2π – antibonding orbitals composed of Os 5dπ and Si 3pπ character 

 4σ – antibonding orbital of mainly Os 5dσ and Si 3pσ character. 

In most of the diatomic molecules composed of a transition metal and a p-block 
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element, the nonbonding 3σ and 1δ orbitals lie quite close in energy and their ordering 

varies from molecule to molecule.  A major issue in the electronic structure of 12-

electron molecules like OsSi centers on the occupation numbers of these orbitals in the 

ground state. 

Comparing to other known 12-electron transition metal-p block diatomic 

molecules, the possible ground configurations, terms, and levels are 1σ22σ21π41δ4, 

X Σ0+
+1 , as found in RuC;28-31 1σ2 2σ2 1π4 1δ3 3σ1, X 3Δ3, as found in FeC,32-36 OsC,37-38 

and RuSi;39-40 1σ2 2σ2 1π4 3σ21δ2, X Σ0+
−3 , as found in WO41-49 and ReN;33, 50-53 and 1σ2 

2σ2 1π4 1δ2 3σ1 2π1, X 5Π-1, as found in CrO54-61, CrS62-63, and MoO.57, 64-67 Of these, only 

the 1σ2 2σ2 1π4 1δ4, X Σ0+
+1  and 1σ2 2σ2 1π4 3σ21δ2, X Σ0+

−3  possibilities are consistent 

with a ground state Ω″ value of 0.  Our experiments do not distinguish between these 

possibilities, but the relativistic stabilization of the 6s orbital in osmium strongly favors 

the assignment as the 1σ2 2σ2 1π4 3σ21δ2, X Σ0+
−3  configuration and term.   

This assignment is made even more likely by the strong second-order spin-orbit 

interaction between the 1σ2 2σ2 1π4 3σ21δ2, Σ0+
−3  level and the higher-lying 1σ2 2σ2 1π4 

3σ21δ2, Σ0+
+1  level, which causes the Σ0+

−3  level to be significantly lowered relative to 

the Σ1
−3  level.  A straightforward two-state treatment of the interaction between these 

levels using the matrix Hamiltonian83 

 

 𝐇 =  (
T( Σ0+

‒3 ) 2ζ5d(Os)
2ζ5d(Os) T( Σ0+

+1 )
) (4.4) 

 

using the value ζ5d(Os) = 3045 cm-1 (Ref. 84) shows that for zeroth-order energy 
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differences between the Σ0+
+1  and Σ0+

‒3  levels, T( Σ0+
+1 ) - T( Σ0+

‒3 ), of 5 000 to 15 000 

cm-1, the resulting lowering of the Σ0+
‒3  level ranges from 4083 to 2161 cm-1.  This is a 

significant drop in the Σ0+
‒3  energy that is above and beyond the stabilization of the 1σ2 

2σ2 1π4 3σ21δ2 configuration that results from the relativistic stabilization of the 6s-like 3σ 

orbital.  In the isoelectronic ReN molecule, the lowering of the Σ0+
‒3  level relative to the 

Σ1
‒3  level is 2616 cm-1;51-52 in OsSi the Σ0+

‒3  level is expected to be stabilized by a 

similar amount.    

The 1σ2 2σ2 1π4 3σ21δ2, X Σ0+
−3  state is also calculated to be the ground state in 

B3LYP density functional calculations using the LANL2DZ basis set by Wu and Su.39 

Their values of re (2.139 Å) and ωe (520 cm-1) are also in good agreement with our 

measured values of re (2.121 Å) and ΔG1/2 (516 cm-1).  For all of these reasons, we assign 

the OsSi ground state to be 1σ2 2σ2 1π4 3σ21δ2, X Σ0+
−3 . 

 The well-known relativistic stabilization of the 6s orbital in the 5d series of 

transition metals and in the 6p elements explains many aspects of the chemistry of these 

heavy metal species.  For example, the stabilization of the 6s orbital (i) causes Ir, Pt, and 

Au to be noble metals with high ionization energies, (ii) is responsible for the 

stabilization of low-valent oxidation states in the 6p elements, leading to stable oxidation 

states such as Tl+, and Pb2+, and (iii) increases the bond energies of systems dominated by 

6s-6s bonding so that Au2 has a much greater bond energy than Ag2, and gives Hg2
2+

 a 

bond energy that is sufficient to stabilize the diatomic dication in aqueous solution.84-86 

The relativistic increase in the 6p ← 6s excitation energy due to the stabilization of the 6s 

orbital is also responsible for the low melting point of mercury, making it a liquid metal 

at room temperature.84-87 
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In the diatomic transition metal carbides and silicides, the relativistic stabilization 

of the 6s atomic orbital leads to a stabilization of the 3σ molecular orbital, which is then 

preferentially populated in the diatomics composed of 5d series metals.  This is illustrated 

in Tables 4.3 and 4.4, which summarize the current experimental and computational 

knowledge of the diatomic transition metal silicides and carbides, respectively.  In 

comparing the 4d series to the 5d series, the effect of the relativistic stabilization of the 

3σ orbital is obvious.  In each of the 5d transition metal molecules TaC, WC, OsC, IrC, 

AuC, TaSi, IrSi, and now OsSi, the number of electrons in the 3σ orbital in the ground 

state is found to be one greater than in the isovalent 4d transition metal molecules NbC, 

MoC, RuC, RhC, AgC, NbSi, RhSi, and RuSi.  The preferential population of the 3σ 

orbital in the 5d series leads to different ground terms in the two groups of molecules. 

The A1 electronic state of OsSi displays a fluorescence lifetime that ranges between 1.05 

and 1.18 μs, depending on the vibrational level that is probed.  Assuming that 

fluorescence returns the molecule to the X Σ0+
−3  ground state, this lifetime implies an 

absorption oscillator strength of f ≈ 0.005, a value that is typical of allowed transitions in 

transition metal diatomics in the red region of the spectrum.  If we assume that the Σ1
−3 -

Σ0+
−3  splitting in OsSi matches the 2616 cm-1 splitting found in ReN, analysis of the the 

two-state matrix Hamiltonian (4.1) provides that the ground Ω=0+ level has 85% 1σ2 2σ2 

1π4 3σ21δ2, Σ0+
−3  character and 15% 1σ2 2σ2 1π4 3σ21δ2, Σ0+

+1 character.  An allowed 

transition to an upper state with Ω′=1 then suggests that the upper state is primarily of 3Π1 

symmetry. On this basis we tentatively suggest that the A1 state is dominated by 3Π1 

character.
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Table 4.3 Experimental and [computational] data on the ground states of the diatomic transition metal silicides.a 

ScSi 
[1π23σ1,4Σ‒] 
[2.519 Å]c 
[348 cm-1]d 
2.32(15) eV 

8, 39 

TiSi 
[1π23σ11δ1,5Δ] 

[2.447 Å] c 
[359 cm-1] d 
[2.28 eV] 

39, 88 

VSif 
1π41δ1, 2Δ 
[2.399 Å] c 
[362 cm-1] d 
[1.98 eV] 

19, 39 

CrSi 
[1π31δ23σ1,5Π] 

[2.425 Å] c 
[294 cm-1] d 
[1.54 eV] 

39 

MnSi 
[1δ2 3σ1,4Σ-] 
[2.308 Å] c 
[325 cm-1] d 
[1.76 eV] 

39 

FeSi 
[1δ2 3σ2,3Σ-] 
[2.170 Å] c 
[382 cm-1] d 
3.04(26) eV 

10, 39 

CoSi 
[1δ4 3σ1,2Σ+] 
[2.123 Å] c 
[392 cm-1] d 
2.81(18) eV 

10, 39 

NiSi 
1δ4 3σ2, 1Σ+ 

2.0316(4) Å b 
467.4 cm-1 d 
3.26(18) eV 

10, 39, 68 

CuSi 
3σ22π1, 2Π1/2 

[2.242 Å] 
330(15) cm-1 

e 
2.21(6) eV 

13, 20, 24, 39, 89-93 
YSi 

[1π23σ1,4Σ‒] 
[2.677 Å] c 
[305 cm-1] d 
2.63(18) eV 

9, 39 

ZrSi 
[1π23σ11δ1,5Δ] 

[2.554 Å] c 
[350 cm-1] d 
[2.72 eV] 
26-27, 39, 94 

 

NbSif 
1π41δ1, 2Δ 
[2.365 Å] c 
[386 cm-1] d 
[2.59 eV] 

19, 27, 39 

MoSi 
[1π31δ23σ1,5Π] 

[2.359 Å] c 
[336 cm-1] d 
[2.06 eV] 

27, 39 

TcSi 
[1δ2 3σ1,4Σ-] 
[2.177 Å] c 

 
[3.69 eV] 

39 

RuSi 
1δ3 3σ1,3Δ3 

2.0921(4) Åb 
[493 cm-1] d 
4.08(22) eV 

11, 39-40 

RhSi 
1δ4 3σ1,2Σ+  
2.0425 Åb 
522 cm-1 d 

4.05(19) eV 
11, 39, 95 

PdSi 
1δ4 3σ2, 1Σ+ 

2.0824(3) Åb 
[473 cm-1] 

2.66(12) eV 
11-12, 27, 39, 69 

AgSi 
[3σ22π1, 

2Π1/2] 
[2.428 Å] 

296.9 cm-1 d 

1.77(10) eV 
13, 21, 39, 92-93 

 
LaSi 

[2σ11π4,2Σ+] 
[2.532 Å] c 
[377 cm-1] d 
[2.46 eV] 

39 

HfSi 
[1π33σ1,3Π] 
[2.406 Å] c 
[390 cm-1] d 
[2.68 eV] 

39 

TaSi 
[1π31δ13σ1, 

4Φ] 
[2.356 Å] c 
[404 cm-1] d 
[2.68 eV] 

39 

WSi 
[1π31δ23σ1,5Π] 

[2.329 Å] c 
[391 cm-1] d 
[2.96 eV] 

27, 39 

ReSi 
[1δ2 3σ1,4Σ-] 
[2.194 Å] c 
[461 cm-1] d 
[3.12 eV] 

39 

OsSi 
3σ21δ2,3Σ- 

2.121(3) Åc 
516.3 cm-1 e 
[4.14 eV] 

39  

IrSi 
3σ21δ3, 𝛥5/2

2  
2.0899(1) Åb 
533.4 cm-1 e 
4.76(22) eV 

11, 39, 70-71  

PtSi 
1δ4 3σ2, 1Σ+ 
2.06149 Åb 

549.0(3) cm-1 d 
5.15(19) eV 

11, 23, 39, 72  

AuSi 
[3σ22π1, 

2Π1/2] 
[2.290 Å] 

400(2) cm-1 d 

3.06(6) eV 
11, 14, 22, 39, 92-

93, 96-97 
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Table 4.3 Continued 

aMolecules for which the ground configuration and term are experimentally known are 
indicated in bold. Quantities in square brackets are obtained from computational studies.  
The first entry provides the dominant electronic configuration and term, followed by the 
bond length (Å), vibrational frequency (cm-1), dissociation energy (D0, eV), and 
references.  Here, D0 is defined as the difference in energy between the ground state of 
the separated atoms and the v=0 level of the ground state of the molecule.  When 
computational results are provided, they are from the DFT study by Wu and Su 
(reference 39). b r0 value; c re value; d ωe value; eΔG1/2 value; f In the cases of VSi and 
NbSi, matrix isolation studies have been interpreted as indicating a 2Δ ground state in 
which the orbital angular momentum is significantly quenched by the matrix.  This 
differs from the computational work, which finds a 1π23σ11δ2, 6Σ+ ground term for VSi 
and a 1π31δ13σ1, 4Φ ground term for NbSi.  The reported bond lengths, vibrational 
frequencies, and dissociation energies are for the computed 6Σ+ and 4Φ states, 
respectively.
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Table 4.4 Experimental and [computational] data on the ground states of the diatomic transition metal carbides. 
ScC 

[2σ2 1π3, 
2Π] 

[1.988 Å]c 
[690 cm-

1]d 

<4.47(21) 
eV 

98-102 

TiC 
2σ1 3σ1,3Σ+  
1.695(2) Åb 
889(1) cm-1 d 

3.82(24) eV 
103-107 

VC 
1π41δ1, Δ3/2

2  
1.6167(3) Å 
[925 cm-1]d 
[3.97 eV] 

108-111 

CrC 
1δ2 3σ0,3Σ‒

(0+)  
1.6188(6)Åb 
[833 cm-1]d 
[4.068 eV] 

112-113 

MnC 
[1δ2 3σ1,4Σ‒] 
[1.640 Å]c 

[627 cm-1] 
[3.03 eV] 

114-115 

FeC 
1δ3 3σ1,3Δ3  
1.58885 Åc 

863(6) cm-1 d 

3.80(30) eV 
32, 35-36, 116-123 

CoC 
1δ4 3σ1,2Σ+  
1.5612 Åb 
955 cm-1 d 

3.75(30) eV 
116, 124-130 

NiC 
1δ4 3σ2,1Σ+  
1.627 Åc 

875.2 cm-1 d 

[4.048 eV] 
127, 131-132 

CuC 
[3σ22π1, 

2Π1/2] 
[1.749 Å]c 

[683.2 cm-1] d 

[2.56 eV] 
133-134 

YC 
1π3 2σ1 

3σ1,4Πi 
2.05 Åb 
686(20) 

cm-1d 

4.35(20) 
eV 

30, 135-137 

ZrC 
2σ1 3σ1,3Σ+  
1.8066 Åb 

888.8(8) cm-1 

d 

<5.76 eV 
30, 103, 138-139 

NbC 
1π41δ1, Δ3/2

2  
1.7003 Åb 

980(15) cm-1 d 
5.39(15) eV 

19, 30, 108, 140-141 

MoC 
1δ2 3σ0,3Σ‒

(0+)  
1.688 Å b 

1008(7) cm-1 d 

5.01(13) eV 
30, 108, 142-144 

TcC 
[1δ2 3σ1,4Σ‒] 
[1.664 Å]c 

[1051 cm-1]d 

6.07(9) eV 
30, 145 

RuC 
1δ4,1Σ+  

1.608 Åb 

1100(2) cm-1 d 

6.22(11) eV 
28-31, 144, 146-153 

RhC 
1δ4 3σ1,2Σ+  
1.6134 Å c 

1049.87 cm-1 

d 

5.97(4) eV 
30, 154-163 

PdC 
1δ4 3σ2,1Σ+  
1.712 Åb 

848(2) cm-1 d 

[3.01 eV] 
30, 144, 164-167 

AgC 
[3σ12π2, 4Σ‒] 
[1.936 Å]c 

[539.4 cm-1]d 

[2.01 eV] 
30, 134 

LaC 
[2σ1,2Σ+] 

[2.030 Å]c 
[718 cm-

1]d 
4.65(20) 

eV 
37, 168 

HfC 
[2σ1 3σ1,3Σ+] 
[1.739 Å]c 
[960 cm-1]d 
<5.55 eV 

37, 103 

TaC 
2σ21π43σ1,2Σ+  

1.7490(1) Åb 
[944 cm-1]d 
[4.53 eV] 

37, 169 

WC 
1δ1 3σ1,3Δ1  

1.7143(2) Åb 
983(4) cm-1 d 

[5.16 eV] 
37, 170-175 

ReC 
[1δ2 3σ1,4Σ‒] 
[1.692 Å]c 
[1046 cm-1] 
[5.40 eV] 

37 

OsC 
1δ3 3σ1,3Δ3  
1.6727 Åb 

[1110 cm-1]c 
6.15(14) eV 

37-38, 176-177 

IrC 
3σ21δ3, Δ5/2

2  
1.6858 Åb  

1060(1) cm-1 d 

6.50(5) eV 
37, 146, 178-184 

PtC 
1δ4 3σ2,1Σ+  
1.6767 Åc 

1051.1 cm-1 d 

6.30(7) eV 
37, 156, 185-192 

AuC 
[3σ22π1, 

2Π1/2] 
[1.805 Å]c 

[781.7 cm-1]d 
[3.36 eV] 

37, 134 
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Table 4.4 Continued 

a Molecules for which the ground configuration and term are experimentally known are 
indicated in bold. Quantities in square brackets are obtained from computational studies.  
The first entry provides the dominant electronic configuration and term, followed by the 
bond length (Å), vibrational frequency (cm-1), dissociation energy (D0, eV), and 
references.  Here, D0 is defined as the difference in energy between the ground state of 
the separated atoms and the v=0 level of the ground state of the molecule. b r0 value; c re 
value; d ωe value; eΔG1/2 value
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The B1 electronic state exhibits a fluorescence lifetime of 6.1 to 8.3 μs. Again, if 

we assume that the fluorescence is dominated by fluorescence to the ground state, this 

implies an absorption oscillator strength of f ≈ 0.0006, an order of magnitude weaker than 

the A-X system.  This suggests that the B-X transition may be spin-forbidden, induced by 

the approximately 15% Σ0+
+1  character in the ground state wavefunction.  If so, this 

would imply that the B1 state is dominated by 1Π1 character. 

In the isoelectronic WO molecule, 3Π and 1Π states arising from the 2σ2 1π4 3σ2 

1δ1 2π1 configuration have been calculated to lie 12 141 and 16 609 cm-1 above the 1σ2 

2σ2 1π4 3σ2 1δ2, X Σ0+
−3  ground state, respectively, neglecting spin-orbit interaction.193 

This is similar to the energies of the A1 and B1 states of OsSi, which are 15728 and 

18469 cm-1, respectively. Based on this correspondence, we tentatively suggest that the 

A1 and B1 states observed in the present study correspond to the 2σ2 1π4 3σ2 1δ1 2π1, 3Π1 

and 1Π1 states, respectively. 

The transition metal carbides and silicides share a trend of decreasing bond length 

as one proceeds left to right in the periodic table, until the coinage metal molecules are 

reached.  The major contributor to this trend is the decrease in both nd and (n+1)s orbital 

size as the nuclear charge of the metal atom is increased.  This allows shorter bond 

lengths to be achieved as one moves to the right, which in turn leads to greater bond 

energies, in general.  A sharp increase in bond length and corresponding decrease in bond 

energy occurs in the coinage group metal silicides and carbides (CuSi, CuC, and their 

congeners), because the antibonding 2π orbital is occupied for the first time in this group.  

For most of the transition metal series, it is the relatively nonbonding 1δ and 3σ orbitals 

that are being filled in the metal carbide, MC, and metal silicide, MSi, molecules; the fact 
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that these are primarily nonbonding in character allows the change in bond length to be 

dominated by the decrease in atomic orbital size rather than by changes in bond order. 

In Tables 4.3 and 4.4, experimental results are presented when available; 

computational results are provided in square brackets when experimental results are 

absent.  Another trend that is readily apparent is that there is much more experimental 

information available for the metal silicides on the right side of the table than for those on 

the left.  The metal carbides on the right side of the table have likewise been far more 

thoroughly investigated than those on the left, although at least some experimental 

information is available for most of the carbides on the left side of the table.  There are 

several reasons for the comparative lack of studies of the species from the left side of the 

transition metal series (the “early” transition metals).  First, the species on the left are not 

as strongly bound as those on the right, so they are experimentally more difficult to 

produce.  More importantly, however, other species exist that are more strongly bound 

that compete with the formation of the diatomic carbides and silicides.  The “early” 

transition metals are much more oxophilic than the “late” transition metals, so laser 

ablation sources tend to produce copious quantities of the early transition metal oxides 

and far fewer carbides or silicides unless extreme care is taken to exclude oxygen from 

the source.  In the late transition metals, the oxides are less strongly bound due to the 

occupation of the antibonding 2π and/or 4σ orbitals, and the carbides have similar or 

greater bond energies than the oxides. Thus, carbides such as FeC, NiC, RuC, RhC, OsC, 

IrC, and PtC are easily produced.   

Another reason for the paucity of studies on the early transition metal carbides is 

that C2 has a high electron affinity (3.269(6) eV)194 and forms highly stable ionic adducts 
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with the more electropositive metals such as Sc, Y, La, Hf, and Ta.  This is evidenced by 

the successful spectroscopic work that has been published on ScC2 and YC2.195-198 In fact, 

Knudsen effusion mass spectrometric studies have demonstrated that the electropositive 

transition metal dicarbides such as ScC2, TiC2, and VC2 (and many others) have M-C2 

bond energies that are typically 85-95% of the corresponding MO bond energy.199 It is 

likely that a significant contribution of M2+C2
2- character is present in these strongly 

bound species, accounting for the similarity of their bond energies to those of the oxides.  

In contrast, the electron affinity of C is only 1.263 eV.200  As a result, the diatomic early 

transition metal carbides can only be formed using highly dilute single carbon sources 

(such as dilute CH4) or short reaction times.  For these metals, species such as ScC2 are 

much more readily produced, severely limiting the concentration of the diatomic carbide 

(ScC) that can be formed.  Experimentally, it is also found that the early transition metal 

carbides cluster far more readily than the late metal carbides.  If the reaction time and 

concentration of the carbon source are not sufficiently limited, production of large 

clusters such as the metallocarbohedrenes occurs,201-203 and this leads to negligible 

concentrations of the diatomic carbides. 

The weaker bond dissociation energies of the transition metal silicides make 

oxygen impurities even more problematic in studying the diatomic transition metal 

silicides from the left side of the table.  In addition, clustering of silicon atoms around the 

early transition metals occurs quite readily,204-205 requiring the use of extremely low 

concentrations of the silicon source, typically SiH4.  The combination of these effects 

makes it progressively more difficult to study the diatomic transition metal silicides as 

one moves to the left in the periodic table. 
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The lack of experimental data on the early transition metal silicides makes it 

difficult to judge the quality of computational results, which frequently differ from one 

calculation to another for the early transition metal silicides.  In the cases of ZrSi, NbSi, 

MoSi, and WSi, photoelectron spectra of the mass-selected negative ions have been used 

to assign ground states,26-27 however these studies also differ from the computational 

results and leave room for uncertainty in the assignments.  At this point in time, the 

ground states of the MSi species to the left of the column headed by FeSi remain rather 

uncertain.  We have not attempted to evaluate the various calculations for these species, 

but have simply reported the results of the comprehensive DFT calculation by Wu and Su 

for reference.39 

  

4.5 Conclusion 

 The first spectroscopic investigation of OsSi has been performed using the 

resonant two-photon ionization method. The molecule has been shown to have a ground 

state of X Σ0+
−3  arising from the 1σ2 1π4 2σ2 3σ2 1δ2 electronic configuration. Two 

electronic band systems have been observed, designated as the A1 ← X Σ0+
−3  and the B1 

← X Σ0+
−3  systems.  By analogy to the isoelectronic WO molecule, the A1 state is 

tentatively assigned as having primarily 2σ2 1π4 3σ2 1δ1 2π1, 3Π1 character, while the B1 

state is tentatively assigned as having primarily 2σ2 1π4 3σ2 1δ1 2π1, 1Π1 character.  

Rotationally resolved spectroscopy has permitted the rotational constants and bond 

lengths of all three states to be measured, and hot bands have provided the vibrational 

interval in the X Σ0+
−3  ground state. 
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CHAPTER 5 

 

PREDISSOCIATION MEASUREMENTS OF BOND DISSOCIATION ENERGIES: 

VC, VN, AND VS 

 

Reproduced from Johnson, E. L.; Davis, Q. C.; Morse, M. D., Predissociation 

measurements of bond dissociation energies: VC, VN, and VS. J. Chem. Phys. 2016, 144, 

234306/1-234306/9, with the permission of AIP Publishing. 

 

5.1 Introduction 

Chemical bonding between transition metals and main group elements is of great 

interest to many fields of chemistry, including catalysis, bioinorganic chemistry, and 

organometallic chemistry. Much of the interest in these species derives from their ability 

to catalyze chemical rearrangements, allowing synthetic organic chemists to produce the 

molecules they desire selectively, and permitting living organisms to do likewise.  In 

such processes, chemical bonds between main group elements and transition metals are 

broken and new ones are formed, so bond dissociation energies lie at the heart of these 

phenomena.   

An important goal of computational chemistry is to predict accurately the 

thermochemistry and activation energy of chemical reactions, in order to develop a better
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understanding of reaction kinetics and mechanisms and to enable the design of better 

catalysts.  To model reactions accurately, computational methods are needed that provide 

the energies of the reactants and products, as well as the energies of transition states that 

occur along the reaction path. At the transition state, bonds are partially formed and 

partially broken, and methods that can accurately calculate the energetics of these 

processes are crucial for this. An analog to the transition state, with its partially formed 

and partially broken bonds, is the dissociation process, in which bonds are completely 

broken.  One would expect that a computational method that fails to obtain accurate bond 

dissociation energies (BDEs) might also be unlikely to obtain accurate transition state 

energies, at least in some cases. 

Among the most important quantities that computational chemistry can provide 

are BDEs, but these are also among the most difficult to calculate to high accuracy.  This 

is because of the need to treat electron correlation to the same level of accuracy in the 

initial molecule and in its dissociated fragments. While current computational methods 

succeed well for the main group elements, the d- and f-block metals still present 

difficulties.1-22 To make solid advances toward accurate computational chemistry of 

transition metal species, precise measurements of BDEs are needed. These precise values 

can provide a set of benchmarks that may be used to test the accuracy of various 

theoretical methods.7-22 Theoretical methods have improved so much in recent years that 

“chemical accuracy” may now be regularly obtained for many main group molecules. 

“Chemical accuracy” for main-group-containing molecules has been defined as when the 

computed thermochemical property is within 1.0 kcal mol-1 (0.04 eV) of the experimental 

value.11 For the more difficult transition-metal-containing molecules, “chemical 
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accuracy” is considered achieved when the error is 3.0 kcal mol-1 (0.13 eV) or less.11 

In addition to computational methods, several experimental methods have been 

used to measure BDEs. A useful review of methods that have been employed for main 

group metals is provided in reference 23. For transition metal molecules, one method that 

is frequently used employs high-temperature Knudsen effusion mass spectrometry to 

measure equilibrium constants for gas phase reactions. The equilibrium constants are 

determined from the partial pressures of the reactants and products under equilibrium 

conditions.  The equilibrium constants are then used to calculate thermodynamic 

properties using either second- or third-law methods.24 The second-law method uses the 

relationship 

 

 𝑑 ln 𝐾𝑒𝑞(𝑇) 𝑑(1 𝑇⁄ )⁄ = −𝛥𝐻𝑇
0 𝑅⁄ , (5.1) 

 

where T is the temperature,  Keq(T) is the equilibrium constant at temperature T, 𝛥𝐻𝑇
0 is 

the standard enthalpy change of the reaction at temperature T, and R is the gas constant.  

From the measured temperature dependence of the equilibrium constant, 𝛥𝐻𝑇
0 may be 

determined.  The third-law method uses 

 

 𝛥𝐻0
0 = −𝑅𝑇 ln 𝐾𝑒𝑞(𝑇) + 𝑇Δ[(𝐺𝑇

0 − 𝐻0
0)/𝑇] , (5.2) 

 

where 𝛥𝐻0
0 is the standard enthalpy change of the reaction at 0 K and (𝐺𝑇

0 − 𝐻0
0)/𝑇 is the 

free energy function, which is closely related to the entropy.25-26 In both methods, 

statistical thermodynamics is required.  In the second-law method, it is used to 
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extrapolate 𝛥𝐻𝑇
0 to 0 K to find the BDE. In the third-law method, it is used to obtain the 

absolute entropies and free energy functions of the reactants and products as functions of 

temperature.  As a result, the third-law method is sometimes called the absolute entropy 

method. In either case, information about the electronic states of the reactants and 

products is required in order to complete the statistical thermodynamic calculations. 

Another method that has been used to derive BDEs utilizes the ionization energy 

of the molecule, which can be measured either by monitoring the ion signal while 

scanning in the vacuum ultraviolet (VUV) to observe the photoionization threshold or by 

using more sophisticated pulsed-field ionization zero electron kinetic energy (PFI-ZEKE) 

methods. A thermochemical cycle then relates the BDEs of the neutral and ionized 

molecules to the ionization energies of the molecule and its fragment, according to 

 

 𝐼𝐸(𝐴𝐵) + 𝐷0(𝐴+―𝐵) = 𝐷0(𝐴―𝐵) + 𝐼𝐸(𝐴). (5.3) 

 

Here D0(A―B) is the BDE of the neutral molecule, D0(A+―B) is the BDE of the 

molecular ion dissociating to the fragments A+ + B, IE(A) is the ionization energy of 

fragment A, and IE(AB) is the adiabatic ionization energy of the neutral molecule at 0 

K.27-28 Solving for D0(A―B) gives 

 

 𝐷0(𝐴―𝐵) = 𝐷0(𝐴+―𝐵) + 𝐼𝐸(𝐴𝐵) − 𝐼𝐸(𝐴), (5.4) 

 

which demonstrates that knowledge of the two ionization energies may be combined with 

the BDE of the ion to obtain the BDE of the neutral molecule.  For MX molecules such 
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as the VC, VN, and VS species studied here, the lowest dissociation pathway of the 

molecular ion produces the metal atomic cation, so (5.4) becomes 

 

 𝐷0(𝑀 − 𝑋) = 𝐷0(𝑀+―𝑋) + 𝐼𝐸(𝑀𝑋) − 𝐼𝐸(𝑀). (5.5) 

 

Ionization energies of the atoms are known to extremely high precision,29 and many MX 

species have now been studied by PFI-ZEKE methods, giving ionization energies to an 

accuracy of 0.001 eV or better.  Thus, if the BDE of the cation is known, this relation 

allows the BDE of the neutral molecule to be determined, often to the same accuracy as 

that of the cationic bond energy. 

One of the most effective methods of determining the BDE of cations such as 

MX+ employs guided ion beam mass spectrometry, in combination with collision-

induced dissociation (CID) or endothermic reaction.  In CID, ions are created and 

collisionally thermalized, accelerated to a desired kinetic energy, and then radially 

trapped by an octopole ion guide. The ions are then passed through a cell containing a 

gaseous collision partner. The fragment ions and unreacted ions then travel through a 

quadrupole mass filter and are detected.  From the ion intensities, the cross section, σ, for 

dissociation is determined as a function of the collision energy, E.  Analysis of the 

resulting σ(E) curves permits the BDE of the MX+ cation to be determined, often to an 

uncertainty in the range of 0.05-0.15 eV.30-31 Similar methods are used to obtain the 

endothermic reaction cross section as a function of collision energy, and these data may 

be used to extract the BDE of the ion of interest. Although guided ion beam mass 

spectrometry can give accurate BDEs, the internal energy of the parent molecular ion 
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must be well known, which is not always the case. 

 In this article, we advocate the use of predissociation thresholds in a dense 

manifold of vibronic states observed in the spectrum of a jet-cooled molecule as a means 

of providing precise BDEs for d-block and f-block metal-containing molecules, and 

illustrate its application with the vanadium-main group molecules VC, VN, and VS.  The 

use of photodissociation thresholds for the measurement of BDEs in transition-metal-

containing ions was pioneered by C. J. Cassidy, R. L. Hettich, and B. S. Freiser, who 

employed a low-resolution (arc-lamp and monochromator) light source and ion cyclotron 

resonance mass spectrometry to measure the photodissociation threshold for a number of 

different M+-X systems.32-35  Their results were unfortunately limited by the low 

resolution and low fluence of the light source. Since then, the method has been used to 

measure bond energies in diatomic transition metal molecules such as V2,36-37 Ni2,38-39 

Pt2,40 VNi,36-37 NiPt,41 TiV,37 TiCo,37 Zr2,42 YCo,42 YNi,42 ZrCo,42 ZrNi,42 NbCo,42 

NbNi,42 TiZr,43 TiNb,43 ZrV,43 Rh2,44 NbCr,45 and VNb.46  It has also been used to obtain 

the BDEs of the main group-transition metal molecules AlV,47 AlCr,47 AlCo,47 and 

AlNi,48 and Al3,49 a p-block metal trimer. It has been similarly applied to transition metal 

cations to measure the bond energies of Co2
+,50 Ti2+,51 V2

+,51 Co3
+,51 TiO+-Mn,49 V2

+-V,49 

Zr2
+,52 Nb2

+,52 and Nb3
+-Nb.52  

The onset of predissociation provides in all cases an upper limit to the BDE, 

provided the molecule under examination is cold.  When there is a sharp, well-defined 

predissociation threshold in a dense vibronic spectrum, however, it is very likely that the 

threshold corresponds to the true thermochemical dissociation energy, that is, the 

difference between the energy of the ground state separated atoms and the zero-point 
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ground level of the molecule.  Two criteria have been proposed for predissociation 

thresholds to correspond to the thermochemical BDE: (1) the molecule must have a 

sufficiently large density of electronic states, and (2) the lowest separated atom limit must 

generate repulsive potential energy curves.36, 37 In addition, it is required that the spin-

orbit coupling between the various potential curves must be sufficiently large to allow the 

molecule to hop readily from one potential curve to another. These conditions are readily 

satisfied for the vast majority of transition metal MX molecules. 

 To validate the idea that transition metal species rapidly dissociate as soon as the 

dissociation limit is exceeded, we may consider the example of V2, for which all of the 

quantities appearing in Eqns (5.3)-(5.5) have been independently measured to high 

accuracy. The BDE of V2 was measured by the onset of predissociation and found to be 

2.753(1) eV.36, 37 In independent studies the BDE of V2
+ was found to be 3.140(2) eV,51 

the ionization energy of V2 was measured as 6.3568(1) eV,53 and the ionization energy of 

vanadium atom is 6.74619(2) eV.46 Employing Eqn. (5.5), the dissociation energy of V2 

may be calculated from the three remaining quantities to be 2.751(2) eV. Such superb 

agreement between the directly measured D0(V2) and that calculated by the 

thermochemical cycle shows that when the density of states is sufficiently high, and 

repulsive states correlate to the ground separated atom limit (both of which occur in V2), 

predissociation does occur promptly as soon as the ground separated atom limit is 

exceeded. 

 Although in the past we have concentrated on the BDEs of diatomic transition 

metals, the need to calibrate computational methods for transition metal-main group 

bonds impels us to attempt this method on these types of molecules. In this article, we 
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present results on VC, VN, and VS. In the case of VC, the BDE has been measured using 

Knudsen effusion mass spectrometry,54 the ionization energy is known through PFI-

ZEKE studies,55 and a number of computational studies have been performed.4, 56-60 The 

first spectroscopic study of the molecule was a matrix isolation ESR study, which found 

the ground state to be of 26+ symmetry.61 In a subsequent ESR reinvestigation, the ground 

state assignment was revised to 2'3/2.62 The ground state has now been confirmed as 1δ1, 

2Δ3/2 by theoretical58, 63 and spectroscopic methods.55, 64 For VN, the BDE has been 

measured using Knudsen effusion mass spectrometry,65-66 proton-transfer experiments,67 

and has been obtained using computational chemistry.5, 9, 68 The electronic structure of 

VN is very well known through spectroscopic studies, which have determined the ground 

electronic state to be 3'1, deriving from the 1δ13σ1 configuration.69-79 The ground state of 

VN has also been calculated to be 3'1 using density functional theory (DFT)5, 9 and 

multireference configuration interaction methods.68, 80 Although VS is not as thoroughly 

studied as VC and VN, the BDE of VS has been measured by Knudsen effusion mass 

spectrometry81-84 and has been estimated computationally.2, 6, 85-88 One electronic band 

system has been observed using laser-induced fluorescence,89 and this has demonstrated 

that the ground state is of 4Σ‒ symmetry, deriving from the 1δ23σ1 electronic 

configuration.  The electric dipole moment has been measured by Steimle et al.,90 and 

DeVore and Franzen have reported the matrix isolation infrared and near-infrared 

spectra.91 Multiple computational studies confirm that the ground electronic state of VS is 

1δ23σ1, 46-.2, 6, 85, 88 
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5.2 Experimental 

In the current work, VC, VN, and VS were investigated using resonant two-

photon ionization spectroscopy (R2PI). The instrument employed is identical to that used 

in previous studies.92-93 The molecules are produced by focusing the third harmonic 

radiation from a Q-switched Nd:YAG laser (355 nm) onto a 1:1 vanadium-molybdenum 

alloy disk in the path of a pulsed supersonic expansion of helium (20 psig backing 

pressure) seeded with 0.1% CH4 for VC, 0.8% NH3 for VN, and 0.67% H2S for VS. The 

alloy disk is rotated and translated to prevent the drilling of holes and to maintain a stable 

source of the desired diatomic molecule. The products of ablation and subsequent 

reaction then travel down a 1.3 cm long reaction zone and expand supersonically through 

a 5 mm orifice into a vacuum chamber, causing them to be cooled to approximately 10 K. 

The molecular beam is then roughly collimated by a 1 cm diameter skimmer and enters 

the Wiley-McLaren ion source of a reflectron time-of-flight mass spectrometer.94-95 In the 

ion source the molecules are exposed to a pulse of tunable UV radiation generated by an 

OPO laser, which is counterpropagated along the molecular beam path. After a delay of 

about 20 ns, the output radiation of a KrF excimer laser (248 nm, 5.00 eV) intersects the 

molecular beam at right angles, ionizing molecules that have been excited by the OPO 

laser radiation.  Some ions are also produced by the absorption of two UV photons 

produced by the OPO laser, but these show up slightly earlier in the mass spectrum due to 

the time delay between the two lasers.  Thus, ion signals produced by the absorption of 

two OPO laser photons are distinguishable from those produced by one OPO photon and 

one KrF excimer photon. Although ionization by absorption of two KrF photons is 

another ionization mechanism, this process is greatly inhibited by filtering the KrF 
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excimer output to reduce its fluence. This leads to background ion signals that are nearly 

zero.  Ions produced by either process are accelerated into the flight tube and enter the 

reflectron,95 which causes them to reverse their motion, directing them down a second 

flight tube to a dual microchannel plate detector. The resulting ion signal is then 

preamplified, digitized, and stored for subsequent analysis. The entire experiment is 

repeated at a rate of 10 Hz. 

Vibronic spectra of 51V12C at mass 63 (98.65% natural abundance) were recorded 

from 25 000 cm-1 to 34 247 cm-1.  In separate experiments, vibronic spectra of 51V32S 

(mass 83; 94.78% abundance) and 51V34S (mass 85; 4.20% abundance) were recorded 

from 25 000 cm-1 to 38 168 cm-1 and spectra of 51V14N at mass 65 (99.39% abundance) 

were recorded from 35 086 cm-1 to 42 736 cm-1. To calibrate the spectra, the 

simultaneously recorded atomic transitions of vanadium and molybdenum were 

compared to the known transition wavenumbers to obtain an absolute calibration.29 

Excited-state lifetimes were also measured for selected transitions to verify that levels 

just below the sharp predissociation threshold exhibit lifetimes that are similar to those of 

levels at lower wavenumbers.  This was done to verify that predissociation sets in at a 

sharply defined threshold, rather than occurring with a gradual onset. The lifetimes were 

collected by firing the KrF ionization laser when VC, VN, or VS had the greatest signal 

intensity and scanning the firing time of the OPO laser. A plot of the VC+, VN+, or VS+ 

ion signal as a function of the firing time of the OPO laser displayed an exponential 

decay curve that was fitted using the Levenberg-Marquardt nonlinear least-square 

algorithm96 to extract the exponential decay time, W.  Because we are only interested in 

verifying a sharp drop in lifetime at the predissociation threshold, and not in obtaining a 
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particularly accurate measurement of the lifetime, only one lifetime curve was collected 

and fitted for each excitation energy that was measured. 

 

5.3 Results 

5.3.1 The Bond Dissociation Energy of VC 

The R2PI spectrum of VC is displayed in Figure 5.1, along with the R2PI spectra 

of atomic vanadium and molybdenum, which were used for calibration. The VC spectrum 

below 33 138 cm-1 is a modulated continuous absorption; nowhere in the spectrum below 

33 138 cm-1 does the intensity drop to the background level that is observed above 33 138 

cm-1.  The sharp drop in signal to background levels indicates that a predissociation 

threshold occurs at this energy. 

Kalemos et al. has conducted high-level MRCI calculations on 29 molecular 

terms of VC, all of which lie below 20 000 cm-1.58  When spin-orbit interaction is 

considered, these 29 molecular terms lead to 108 different Ω-levels, and this is still more 

than 13 000 cm-1 below the observed predissociation threshold.  Far more Ω potential 

curves will be accessible at 33 138 cm-1.  Clearly, VC satisfies the criterion of having a 

large density of states at the observed predissociation threshold.  The abrupt termination 

of the spectrum cannot be due to a lack of accessible states above 33 138 cm-1, but 

instead must be due to the onset of rapid predissociation at this wavenumber. The ground 

separated atom limit for VC is is V, d3s2, 4F3/2g + C, s2p2, , 3P0g,29 from which molecular 

levels arise with Ω = 1/2 and 3/2.  The ground term of VC is 1δ1, 2Δ3/2,64 which can 

undergo excitations to dipole-allowed states with Ω′ = 1/2, 3/2, and 5/2.  Of these, the Ω′ 

= 1/2 and 3/2 states can undergo nonadiabatic coupling to potential curves that dissociate 
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Figure 5.1 Predissociation threshold in VC (blue), Mo atomic signal (red), and V atomic 
signal (black). The dense continuum of transitions terminates at 33 138 cm-1, giving 
D0(VC) = 4.1086(25) eV and Δf, 0 KHº(VC(g)) = 827.0 ± 8 kJ ∙ mol-1. 
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to ground state atoms, but the Ω′ = 5/2 states may have difficulty in doing so.  It is 

conceivable that the Ω′ = 5/2 states that are excited may be unable to predissociate until 

the first spin-orbit excited separated atom limit, V, d3s2, 4F3/2g + C, s2p2, 3P1g, is reached, 

16.40 cm-1 above ground-state atoms.29  No evidence of a second predissociation 

threshold is observed, however.  The V, d3s2, 4F3/2g + C, s2p2, 3P1g limit generates the 

required potential curves with Ω=5/2, allowing predissociation by nonadiabatic coupling 

to occur.  Rotationally induced coupling of the Ω′ = 5/2 levels to curves with Ω = 3/2 is 

possible, however, through the L- and S-uncoupling operators,97 and this process will 

permit the Ω′ = 5/2 states to predissociate to ground-state atoms.  Thus, it is likely that 

any states with Ω′ = 5/2 that are excited will also be able to predissociate as soon as the 

ground separated atom limit is exceeded in energy. 

In order to verify that the states observed just below the sharp predissociation 

threshold are not predissociating with a slow rate that still permits them to be observed 

via the R2PI process, the time-delayed R2PI technique was used to measure their 

lifetimes.  Lifetimes for the intense features at 32 972 and 33 110 cm-1 were found to be 

479 and 536 ns, respectively.  These are typical values for allowed transitions in this 

spectral range, and show no evidence of predissociation below the observed threshold. 

Based on these considerations, we assign the observed sharp predissociation 

threshold as the true bond dissociation energy of VC.  Consideration of the errors 

obtained in the calibration of the atomic transitions, combined with the line width of the 

ultraviolet laser, forces us to place an uncertainty of ±20 cm-1 on this result.  Our final 

assigned BDE for VC is D0(VC) = 33 138(20) cm-1 or 4.1086(25) eV.  Employing the 

standard enthalpy of formation values, Δf, 0 KHº(V(g)) and Δf, 0 KHº(C(g)), from the fourth 
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edition JANAF tables,98 512.2 ± 8 and 711.19 ± 0.45 kJ ∙ mol-1, respectively, this value of 

the bond dissociation energy provides the enthalpy of formation of VC(g) as                  

Δf, 0 KHº(VC(g)) = 827.0 ± 8 kJ ∙ mol-1. Employing Eqn (5.5) and the precisely measured 

ionization energies IE(V) and IE(VC),46, 55 we obtain a value of D0(V+-C) = 3.7242(25) 

eV. 

 

5.3.2 The Bond Dissociation Energy of VN 

The R2PI spectrum of VN near the predissociation threshold is displayed in 

Figure 5.2, along with the spectra of atomic V and Mo, which were used for calibration.  

As was found for VC, a structured continuous absorption is found below 40 302 cm-1, 

followed by a sharp drop to baseline at this wavenumber.  In this case, the ground level of 

VN is known to be of 3Δ1 symmetry, so upper states with Ω′ = 0+, 0‒, 1, and 2 may be 

reached in dipole-allowed transitions.  The ground separated atom limit of V, d3s2, 4F3/2g 

+ N, s2p3, 4S3/2u, however, generates Ω values of 0+, 0‒, 1, 2, and 3, so all states reached in 

dipole-allowed transitions can dissociate to ground-state atoms while preserving Ω.  This 

leads us to suspect that again, the sharp drop to baseline occurs at the thermochemical 

threshold for dissociation to ground-state atoms. 

In the case of VN, there is a gradual diminution in transition intensity as the 

threshold is approached, so we again checked to see if the observed features showed 

shortened lifetimes as the threshold was approached.  The lifetimes of 9 features lying 

between 37 800 and 40 300 cm-1 were measured; all were found to lie in the range of 350 

to 900 ns.  No evidence of predissociation below the apparent threshold was found. 

Based on these results, the BDE of VN is assigned as D0(VN) = 40 302(16) cm-1 
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Figure 5.2 Predissociation threshold in VN (blue), Mo atomic signal (red), and V atomic 
signal (black). The dense continuum of transitions terminates at 40 302(16) cm-1, giving 
D0(VN) = 4.9968(20) eV and Δf, 0 KHº(VN(g)) = 500.9 ± 8 kJ ∙ mol-1. 
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or 4.9968(20) eV.  Again, employing the JANAF tables,98 this corresponds to an enthalpy 

of formation of Δf, 0 KHº(VN(g)) = 500.9 ± 8 kJ ∙ mol-1. Employing Eqn (5.5) and the  

precisely measured ionization energies of IE(V) and IE(VN),46, 78 we obtain a value of 

D0(V+-N) = 4.6871(20) eV. 

 

5.3.3 The Bond Dissociation Energy of VS 

The R2PI spectrum of VS is displayed in Figure 5.3 over the range from 34 000 to 

38 000 cm-1, along with the spectrum of atomic vanadium that was used for calibration.  

The VS spectrum exhibits a continuous absorption that gradually decreases in intensity as 

one moves to higher wavenumbers, and abruptly terminates at 36 580 cm-1.  Because the 

gradual decrease in intensity could result from a predissociation process that sets in 

gradually, excited state lifetimes were measured at seven different wavenumbers between 

34 361 cm-1 and 36 486 cm-1.  All of the measured upper state lifetimes fall within the 

range of 380 to 550 ns, with no obvious trend.  These lifetimes are much longer than 

expected if predissociation were occurring.  Instead, the observed pattern of decreasing 

signal intensity with increasing wavenumber must be a result of either reduced electronic 

transition moments or reduced Franck-Condon factors as the predissociation threshold is 

approached, or both. 

The ground state of VS is 1δ2 3σ1, 4Σ‒,89 which has Ω″= 1/2 and 3/2.  Therefore, 

excited states may be populated under dipole selection rules having Ω′ = 1/2, 3/2, or 5/2. 

The ground separated atom limit, V d3s2, 4F3/2g + S s2p4, 3P2g, generates molecular 

potential curves with Ω = 1/2, 3/2, 5/2, and 7/2, so any states excited from the VS ground 

term can predissociate to ground-state atoms while preserving Ω. Therefore, given the 
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Figure 5.3 Predissociation threshold in VS (blue) and V atomic signal (red). The dense 
continuum of transitions terminates at 36 580(20) cm-1, giving D0(VS) = 4.5353(25) eV 
and Δf, 0 KHº(VS(g)) = 349.3 ± 8 kJ ∙ mol-1. 
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high density of states expected in this molecule, we expect predissociation to occur as 

soon as the energy of the ground separated atom limit is exceeded.  On this basis, we 

assign the sharp drop in signal at 36 580 cm-1 as the bond dissociation energy of VS.  

Adopting a similar error limit as in the other molecules, again based on the errors in the 

fits of the atomic lines and the linewidth of the ultraviolet laser, leads to a BDE of VS of 

D0(VS) = 36 580(20) cm-1 or 4.5353(25) eV.  Employing the enthalpies of formation of 

V(g) and S(g) from the JANAF tables,98 this gives a 0 K enthalpy of formation of VS(g) 

of  Δf, 0 KHº(VS(g)) = 349.3 ± 8 kJ ∙ mol-1. Employing Eqn (5.5) and the precisely 

measured ionization energy of IE(V) and the precisely measured dissociation energy of 

D0(V+-S),46, 99 we obtain a value of IE(VS) = 7.50(10) eV. 

 

5.4 Discussion 

5.4.1 D0(VC) – Comparison to Previous Experimental and Computational Results 

Previously measured or calculated BDEs of gaseous VC are listed in Table 5.1, 

with experimental results in bold.  To our knowledge, there has been only one direct 

measurement of the BDE of VC, a third-law measurement of the high-temperature 

equilibrium 

 

 V(g) + C(g) ⇌ VC(g), (4.6) 

 

which provided the value D0(VC) = 4.34(25) eV.54  Our result, 4.1086(25) eV, is within 

the error limit of this value, but reduces the error limit by a factor of 100.  An indirect 

measurement is provided via the thermochemical cycle, Eqn. (5.5), using the 
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Table 5.1 Bond dissociation energies measured or calculated for VC.a 

Investigators Referenc
e Method D0(VC) 

(eV) 

This work  Predissociation 
threshold 

4.1086 
(25) 

Gupta and Gingerich (1981) 54 High-temperature 
equilibria 4.34(25) 

Mattar (1993) 56 LDA-LCAO  
DFT calculation 6.70 

Maclagan and Scuseria (1996) 57 MRCI calculation 2.87b 
Gutsev, Andrews, and 
Bauschlicher (2003) 4 BPW91 DFT 

calculation 4.39 

Majumdar and Balasubramanian 
(2003) 63 CASMCSCF-MRSDCI 3.29c 

Kalemos, Dunning, and Mavridis 
(2005) 58 MRCI – very large 

basis 4.04 

Redondo, Barrientos, and Largo 
(2006) 59 B3LYP DFT 

calculation 3.84 

Goel and Masunov (2011) 60 M05-2x:DKH  
DFT calculation 4.43 

Ng et al. (2015) 55 CCSDTQ/CBS 
calculation 4.023 

Ng et al. (2015); Aristov (1984) 55, 100 D0(V+-C)+IE(VC)-
IE(V) 4.20(21) 

Ng et al. (2015); Aristov (1986) 55, 101 D0(V+-C)+IE(VC)-
IE(V) 4.33(4)  

Ng et al. (2015); Clemmer (1991) 55, 102 D0(V+-C)+IE(VC)-
IE(V) 4.25(14) 

 
a Experimental values are given in boldface. 
b Corrected from De to D0 using the calculated vibrational frequency. 
c Corrected from De to D0 using the calculated vibrational frequency, and corrected for 
spin-orbit effects. 
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independently measured values of D0(V+-C), IE(VC), and IE(V).  The ionization energy  

of vanadium is 6.76.746187(21) eV,46 and the ionization energy of VC has been 

measured by PFI-ZEKE spectroscopy as IE(VC) = 7.13058(10) eV.55  The BDE of V+-C 

has been measured in three different experiments using guided ion beam CID methods, 

providing D0(V+-C) = 3.82(21) eV,100 3.95(4) eV,101 and 3.87(14) eV.102  Using the 

thermochemical cycle, these results give D0(VC) = 4.20(21), 4.33(4), and 4.25(14) eV, 

respectively.  Our result lies within the error limits of the first and last of these, but is 

substantially less than the 4.33(4) eV value.  It appears that the error limit for this 

measurement may have been underestimated, because in the very worst case, our result is 

an upper limit on the true BDE. 

Two computational studies stand out as the highest-level calculations on the VC 

molecule. The multireference configuration interaction study by Kalemos et al.58 obtained 

D0(VC) = 4.04 eV when the estimated effects of core-valence correlation, scalar 

relativistic, and basis set superposition errors were included.  The CCSDTQ/CBS result 

of Ng et al.55 obtained D0(VC) = 4.023 eV.  Both results are within 0.1 eV of our 

measurement. 

 

5.4.2 D0(VN) – Comparison to Previous Experimental and Computational Results 

Previous experimental and computational results for the BDE of VN are provided 

in Table 5.2.  A study of the high-temperature equilibria over a heated sample of solid 

VN has provided a value of D0(VN) = 4.91(9) eV,66 in agreement with our value of 

4.9968(20) eV.  In another study, the proton affinity of VN has been bracketed using 

ioncyclotron resonance mass spectrometry, and this result has been combined with other  
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Table 5.2 Bond dissociation energies measured or calculated for VN.a 

Investigators Reference Method D0(VN) 
(eV) 

This work  Predissociation 
threshold 

4.9968 
(20) 

Gingerich (1968) 65 
Estimated by 
comparison to UN, 
ThN, and ZrN 

4.99 b 

Farber and Srivastava (1973) 66 High-temperature 
equilibria 

4.91(9) b 

Buckner, Gord, and Freiser (1988) 67 Proton affinity 
bracketing 

5.42(39)  

Harrison (1996) 68 MCSCF calculation 3.68c 
Furche and Perdew (2006) 9 TPSSh DFT 

calculation 
4.741c 

Wu (2006) 5 B3LYP DFT 
calculation 

4.62 c 

Huang (2013); Clemmer (1993) 78, 103 D0(V+-N)+IE(VN)-
IE(V) 

4.96(6)  

a Experimental values are given in boldface. 
b Corrected from DT

o, as provided in the original work, to D0
o. 

c Corrected from De to D0 using the calculated vibrational frequency. 
 
  



161 
 

 
 

data to give D0(VN) = 5.42(39) eV.67  Our value falls slightly below the range spanned by 

the uncertainty in this measurement.  Using the observation that the BDEs of the diatomic 

nitrides UN, ThN, and ZrN are proportional to the atomization energy of the bulk solid 

metal nitrides, the BDE of molecular VN has been estimated to be 4.99 eV,65 matching 

our result nearly exactly.  Finally, the BDE of VN may also be derived using the 

thermochemical cycle (5.5), combined with the ionization energy of VN, obtained using 

PFI-ZEKE spectroscopy as IE(VN)= 7.05588(10) eV,78 the BDE of VN+, obtained 

through a guided ion beam mass spectrometric study as 4.65(6) eV,103 and the previously 

cited IE(V).  The result is 4.96(6) eV, in good agreement with our result. 

On the computational side, an MCSCF calculation has significantly 

underestimated the bond energy at 3.68 eV.68  Density functional theory using either the 

B3LYP functional or the TPSSh functional give significantly better values,5, 9 but still 

underestimate the bond energy of VN by 0.25 eV or more.  Other functionals gave a wide 

range of values, many of which are in error by more than 0.5 eV.5, 9 

   

5.4.3 D0(VS) – Comparison to Previous Experimental and Computational Results 

Previous measurements and computations of the BDE of VS are given in Table 

5.3.  Four different studies of high-temperature equilibria have provided values of D0(VS) 

ranging from 4.61(15) eV to 5.03(17) eV.81-84  All are higher than our result, D0(VS) = 

4.5353(25) eV.  For three of the four measurements, our value lies outside of the quoted 

error limit.  We do not believe that the error lies in our study, which at the very least 

provides an upper limit on D0(VS). 

A number of computational studies on VS have also been undertaken, providing
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Table 5.3 Bond dissociation energies measured or calculated for VS.a 

Investigators Reference Method D0(VS) 
(eV) 

This work  Predissociation threshold 4.5353(25) 
Drowart, Pattoret, and Smoes 
(1967) 81 High-temperature 

equilibria 
4.61(15)  

Owzarski and Franzen (1974) 82 High-temperature 
equilibria 

5.03(17)  

Edwards, Pelino, and 
Starzynski (1983) 83 High-temperature 

equilibria 
4.966(34) b  

Botor and Edwards (1984) 84 High-temperature 
equilibria 

4.898(20) b  

Bauschlicher and Langhoff 
(1986) 85 CPF calculation 3.90 

Anderson, Hong, and Smialek 
(1987) 86 ASED-MO calculation 5.86 or 

4.60 
Bauschlicher and Maitre 
(1995) 2 RCCSDT calculation 4.02 

Bridgeman and Rothery 
(2000) 87 Non-local DFT calculation 5.36 

Wu, Wang, and Su (2006) 6 B3LYP DFT calculation 4.21c 
Petz and Lüchow (2011) 88 DMC/PPII calculation 4.482(7) 

a Experimental values are given in boldface. 
b Corrected from DT

o, as provided in the original work, to D0
o. 

c Corrected from De to D0 using the calculated vibrational frequency. 
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values of D0(VS) ranging from 3.90 to 5.86 eV.2, 6, 85-88  The most accurate result is 

obtained using the diffusion quantum Monte Carlo method, employing pseudopotentials 

to model the core electrons.88  With this method, a value of D0(VS) = 4.482(7) eV is 

obtained, a value that differs from our result by only 0.053 eV.  

 

5.4.4 Recommended Bond Dissociation Energies for Vanadium Species 

 Table 5.4 provides a list of dissociation energies for vanadium-containing species 

that have been determined by the observation of predissociation thresholds, in some cases 

combined with the thermochemical cycle (5.5).  These are the most precisely known 

BDEs for vanadium-containing species, and are reproduced here to provide a set of 

benchmark molecules for the testing of computational methods.  As we continue our 

work measuring BDEs by the onset of predissociation for other transition metal species, 

we will continue to compile lists of the most accurately known BDEs for a variety of 

transition metal molecules, in the hope that this effort will be useful to computational 

chemists in honing their methods to obtain greater accuracy. 

 

5.5 Conclusion 

Abrupt predissociation thresholds have been observed in the resonant two-photon 

ionization spectra of VC, VN, and VS.  This has allowed bond dissociation energies and 

enthalpies of formation to be obtained for these molecules as follows: D0(VC) = 

4.1086(25) eV and Δf, 0 KHº(VC(g)) = 827.0 ± 8 kJ ∙ mol-1; D0(VN) = 4.9968(20) eV and 

Δf, 0 KHº(VN(g)) = 500.9 ± 8 kJ ∙ mol-1; D0(VS) = 4.5353(25) eV and Δf, 0 KHº(VS(g)) =  
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349.3 ± 8 kJ ∙ mol-1. These values have been compared to previous bond dissociation 

measurements and the results of calculations. 
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Table 5.4 Recommended bond dissociation energies of vanadium-containing molecules 
and ions 

Molecule Reference Method BDE (eV) 
VC This work Predissociation threshold 4.1086(25) 
VN This work Predissociation threshold 4.9968(20) 
VS This work Predissociation threshold 4.5353(25) 
AlV 47 Predissociation threshold 1.489(10) 
V2 36-37 Predissociation threshold 2.753(1) 
TiV 37 Predissociation threshold 2.068(2) 
VNi 36-37 Predissociation threshold 2.100(1) 
ZrV 43 Predissociation threshold 2.663(3) 
VNb 46 Predissociation threshold 3.7892(12) 
V+-C 46, 78, this work D0(VC)-IE(VC)+IE(V) 3.7424(25) 
V+-N 46, 55, this work D0(VN)-IE(VN)+IE(V) 4.687(20) 

V2
+ 36-37, 46, 51, 51 Predissociation or  

D0(V2)-IE(V2)+IE(V) 
3.140(2) 
3.142(1) 

V+-Nb 46 D0(VNb)-IE(VNb)+IE(V) 4.1433(17) 
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Introduction 

In this dissertation, resonant two-photon ionization spectroscopy was used to 

investigate NiCCH, OsSi, VC, VN, and VS. For NiCCH, the molecule has a ground state 

of X̃ 𝛥5/2
2  symmetry. The electronic transition to the Ã 𝛥5/2

2  state has been extensively 

studied. The rotational constant for the ground state is 0.14080(11) cm-1 for 58NiCCH and 

the rotational constant for the excited level was approximately 0.129 cm-1. The 

vibrational frequencies for the ν2, ν3, ν4, and ν5 modes were determined for the upper state 

and the vibrational frequency for the ν5 mode was determined for the ground state. The 

Ã 𝛥5/2
2 ← X ̃ 𝛥5/2

2  excitation is found to lie quite close to the corresponding excitation 

in NiCN, and the vibrational frequencies of NiCCH are found to be similar to the 

analogous vibrational frequencies of NiCN. These results suggest that the interactions 

between transition metals and acetylide (or cyanide) ligands are dominated by ionic 

interactions, a result that was demonstrated clearly in the previous work on CuCCH.1 

However, covalent effects are not completely absent.  A comparison of the C≡C 

stretching frequency in the Ã 𝛥5/2
2  excited state of NiCCH to that of the Ã 𝛴+6  state of 

CrCCH shows a significant reduction in vibrational frequency, from 2001.9 cm-1 to 
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1944.3 cm-1.2-3 This result suggests that a significant π-backbonding interaction is 

weakening the C≡C π-bond in CrCCH compared to NiCCH.  Such an effect makes sense, 

given that the 3d orbitals of Cr are significantly larger than those of Ni. Since the 

interaction between nickel and the acetylide ligand is dominated by ionic interactions, the 

results can be compared to previous experiments performed on NiCu, NiH, and NiCN. 

The energy of the Ã 2Δ5/2 state in NiCCH is similar to the energy of the 2Δ5/2 excited state 

in NiH and NiCN. This proves that the main interaction in NiCCH is ionic. Therefore, 

despite the fact that only one excited state was found in NiCCH, the placement of other 

excited states can be predicted based on their locations in NiH and NiCN. 

 For OsSi, the molecule has been shown to have a ground state of X 𝛴0+
−3 . Two 

electronic band systems have been observed, designated as the A1 ← X 𝛴0+
−3  and the  

B1 ← X 𝛴3
0+
−  systems. The bond length for the ground state was found to be 2.1207(27) 

Å, 2.236(16) Å for the A1 state, and 2.1987(20) Å for the B1 state. My work on OsSi 

provides rotationally resolved spectroscopic data and the ground electronic state 

determination of only the third 5d metal silicide ever studied.  Together with previous 

work on IrSi, the present study shows that the diatomic silicides of the 4d and 5d 

transition metals have significantly different properties.  In particular, their ground states 

are different.  While RuSi has a 1δ33σ1, 3Δ3 ground state, OsSi has a 3σ21δ2, 3Σ- ground 

state.4 Similarly, RhSi has a 1δ43σ1, 2Σ+ ground state,5 while its isovalent analog IrSi has 

a 1δ33σ2, 2Δ5/2 ground state.6 These results demonstrate the relativistic stabilization of the 

6s-dominated 3σ orbital, a result that will certainly affect the chemistry of the 5d metals 

in other contexts. The results from the OsSi investigation also demonstrate the 

importance of spin-orbit interaction. All of the rotationally resolved bands I studied in 



177 
 

OsSi arose from the same electronic state, characterized by Ω" = 0. Since OsSi is a 12-

electron transition metal-p block diatomic molecule, there were two possible ground-state 

configurations: 1σ22σ21π41δ4, X Σ0+
+1  or 1σ22σ21π43σ21δ2, X Σ0+

−3 . Although the 

relativistic stablilization of the 6s orbital favors the 1σ22σ21π41δ4, X Σ0+
+1  configuration 

and term, the second-order spin-orbit interaction between 1σ22σ21π43σ21δ2, Σ0+
−3  level 

and the higher-lying 1σ22σ21π43σ21δ2, Σ0+
+1  level causes the Σ0+

−3  level to be 

significantly lowered and further confirms that it is the ground electronic state. 

Abrupt predissociation thresholds have been observed in the resonant two-photon 

ionization spectra of VC, VN, and VS. This has allowed bond dissociation energies for 

these molecules to be measured as follows: D0(VC) = 4.1086(25) eV; D0(VN) = 

4.9968(20) eV; and D0(VS) = 4.5353(25) eV. Although the values for VC and VN are 

close to previous measurements performed on these molecules, the results of this 

investigation are much more precise. In the case of VS, our results demonstrate that the 

previously accepted value of the bond dissociation energy is in error by 0.36 eV, a quite 

significant amount.  Given that computational chemists are using dissociation energies to 

select appropriate parameterizations of density functional theories, it is crucial that 

accurate values are available for these comparisons.   Otherwise, an optimized density 

functional theory will be optimized to give erroneous results. 

 

6.2 Research Outlook 

The work performed in this dissertation naturally leads in a number of new and 

promising directions. For example, a natural direction to take the studies of NiCCH 

would be to investigate other excited electronic states of the molecule, to further confirm 
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(or deny) its electronic similarity to NiH and NiCN.  If enough of the expected excited 

electronic states could be found, it might be possible to develop a ligand field model to 

predict additional electronic states, as has been done for NiH and NiCu.7-8 Another 

natural extension of the work on NiCCH would be to move to FeCCH.  This is a 

molecule that could reasonably be expected to be present in the interstellar medium, in 

regions where carbon clusters are abundant and Fe compounds have been found.  To 

identify FeCCH in the interstellar medium would of course require that a high-quality 

terrestrial spectrum be available.  Resonant two-photon ionization studies can provide 

such a spectrum, along with values of the rotational constants that could be refined in 

microwave/millimeter wave studies.  

The investigation of OsSi shows that there can be significant differences between 

the 4d and 5d diatomic silicides, owing to the relativistic stabilization of the 6s orbital.  

Our work has identified the ground state as 3σ21δ2, 3Σ-, but it has not measured the 

energy of the 1δ33σ1, 3Δ3 state that is the ground state of RuSi.  To understand the 

magnitude of the relativistic stabilization of the 3σ orbital, the energy of the 1δ33σ1, 3Δ3 

state should be measured.  This, and similar measurements for related molecules, would 

permit the electronic structures of the 5d compounds to be more precisely understood.  In 

addition, the diatomic transition metal silicides are a poorly understood class of transition 

metal molecules in general, despite their potential relevance to the bulk metallic silicides 

that have useful electronic properties.  A large number of molecules of this type have 

never been spectroscopically investigated, and these would be natural follow-up studies 

to the present work. 

Finally, the bond dissociation energy measurements on VC, VN, and VS represent 
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the first time the Morse group has applied predissociation threshold measurements to 

transition-metal main group compounds (except for the previous studies of transition-

metal aluminum diatomics).  Here there is a real opportunity to make a major advance in 

our knowledge of bond energies, since a great many transition-metal main group bond 

energies are unknown or poorly characterized.  We anticipate that the 0.36 eV error found 

in the bond dissociation energy of VS will recur in many other small molecules.  By 

amassing a database of accurate bond dissociation energies of small molecules such as 

these, we will provide computational chemists with the data they need to develop more 

accurate methods for computational thermochemistry of the transition metals.  Our future 

contributions to this effort may be the most significant result of the present work.  Along 

these lines, since the completion of experimental work on the bond dissociation energies 

of VC, VN, and VS in January, 2016, subsequent studies in the Morse group have already 

led to precise determinations of the bond dissociation energies of TiC, TiN, TiS, TiSi, 

ZrSi, HfSi, VSi, NbSi, and TaSi.  This is a powerful experimental method that can be 

extended to a broad set of molecules. 

 As mentioned above, the OPO laser is a new addition to the Morse lab that allows 

convenient access to a broad range of wavelengths, enabling the group to study species 

that could not previously be investigated.  Of particular interest are studies of the R2PI 

spectra of boron and silicon clusters. These have received a great deal of interest 

following the discovery of C60 in 1985.9 The boron clusters are particularly interesting 

because they exhibit aromaticity akin to some aromatic hydrocarbons,10-11 even though 

the clusters are thought to be built on an architecture of equilateral (or nearly equilateral) 

B3 units that share edges in common.  Another interesting aspect is that the boron clusters 
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are calculated to remain planar up to quite large cluster sizes, unlike the better known 

boron hydrides.12-13 Although photoelectron spectra are known of many of the boron 

clusters, we anticipate that the OPO laser will permit much better resolved spectra to be 

recorded, allowing computational predictions of these species to be better verified.  This 

will be the work of future Morse group members.  
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Figure A.1 Vibronically resolved spectrum of the �̃� 𝛥2
5/2 ← �̃� 𝛥2

5/2  band system of 
58

NiCCH over the 15500-16600 cm
-1

 range.  The bands are identified by wavenumber 

and vibronic assignment.   
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Figure A.2 Vibronically resolved spectrum of the �̃� 𝛥2
5/2 ← �̃� 𝛥2

5/2  band system of 
58

NiCCH over the 16500-17600 cm
-1

 range.  The bands are identified by wavenumber 

and vibronic assignment.  Unidentified bands are labeled “U”.   
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Figure A.3 Vibronically resolved spectrum of the �̃� 𝛥2
5/2 ← �̃� 𝛥2

5/2  band system of 
58

NiCCH over the 17500-18600 cm
-1

 range.  The bands are identified by wavenumber 

and vibronic assignment.  Unidentified bands are labeled “U”. 
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Table A.1 Bands measured for 
58

NiCCH 

Band 
Measured ν0 

(cm
-1

) 

Fitted ν0 

(cm
-1

) 

Residu

al in fit 

(cm
-1

) 

Isotope 

shift 

ν(
58

NiCC

H)-

ν(
60

NiCC

H) (cm
-1

) 

B′ (cm
-1

) P′ τ (μs) 

�̃�
− �̃� 51

0 
15701.2

b
 

15701.5

31 
0.669

d
     

�̃�
− �̃� 00

0 
15910.1

b
 

15910.0

41 
0.059

d
 0.1   

0.725(15

)
c
 

�̃�
− �̃� 30

151
0 

16153.6
b
 

16153.7

95 
-0.195

d
 1.7   

0.739(74

) 

�̃� −
�̃� 30

1  

16362.8830(2

7)
c
 

16363.3

05 
-0.422

d
 1.96 

0.12931(1

0)
c
 

5/

2 

0.802(18

)
c
 

�̃� −
�̃� 40

1  
16544.1

b
 

16544.8

17 
-0.717

d
     

�̃�
− �̃� 30

2 
16813.8

b
 

16814.1

52 
-0.352

d
 3.8   

0.820(47

)
c
 

�̃� −
�̃� 30

140
1  

16994.7834(2

7)
c
 

16994.5

78 
0.205

d
 1.8 

0.12878(1

1)
c
 

7/

2 

1.243(29

)
c
 

�̃� −
�̃� 30

250
1  

17037.7539(3

0)
c
 

17037.7

09 
0.045

d
 1.9 

0.12893(8

)
c
 

7/

2 

1.456(63

)
c
 

�̃�
− �̃� 30

351
0 

17052.6
b
 

17053.0

74 
-0.474

d
     

�̃�
− �̃� 30

3 
17262.7

b
 

17262.5

84 
0.116

d
 5.9    

U
a
 17437.2

b
       

�̃�
− �̃� 30

240
1 

17443.4
b
 

17441.9

23 
1.477

d
 3.9    

�̃�
− �̃� 30

350
1 

17487.0
b
 

17487.0

90 
-0.090

d
 4.0   1.74(19) 

U
a
 

17594.2704(6

8)
c
 

   
0.12820(1

4)
c
 

5/

2 

7.98(1.0

8)
c
 

U
a
 17680.3

b
   7.1   18.7(1.2) 

�̃�
− �̃� 30

4 
17709.2

b
 

17708.6

01 
0.599

d
 7.1    

�̃� −
�̃� 30

340
1  

17886.1530(9

0)
c
 

17886.8

52 
-0.699

d
 5.9 

0.12869(1

4)
c
 

7/

2 
 

�̃� 20
1 17910.5

b
 

17910.5

00 
0.000

d
 -0.1    

U
a
 17927.1

b
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Table A. 1 Continued 

�̃�
− �̃� 30

450
1 

17934.1
b
 17934.055 0.045

d
     

U
a
 17946.1

b
       

�̃�
− �̃� 30

440
1 

18329.1
b
 18329.365 

-

0.265
d
 

7.5    

�̃�
− �̃� 20

130
1 

18360.9
b
 18360.900 0.000

d
 2.0    

a
 Unidentified band 

b
 Estimated band origin location, measured in low resolution, expected accuracy ± 1 cm

-1
. 

c
 Error limits (1σ) are provided in parentheses, in units of the last digits quoted. 

d
 Residual is defined as measured value minus fitted value.  The least-squares fit of the 

measured vibronic levels to equation (3.3) provides the values listed in Table 3.3. 
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Table A.2 Fitted vibrational constants for the �̃� 𝛥2
5/2 ← �̃� 𝛥2

5/2 system of NiCCH. 

 

Constant Value (cm
-1

) Constant Value (cm
-1

) 

ν0 15940.041 ± 0.561 ω5′ 221.184 ± 2.299 

ω5″ 209.510 ± 0.576 x33′ -1.208 ± 0.132 

ω2′ 2001.891 ± 1.405 x23′ -2.864 ± 1.160 

ω3′ 458.388 ± 1.019 x34′ -3.503 ± 0.316 

ω4′ 636.528 ± 0.928 x35′ 0.949 ± 0.651 
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Figure A.4 Rotationally resolved spectrum of the 30
1 band of the �̃� 𝛥2

5/2 ← �̃� 𝛥2
5/2 band 

system of 
58

NiCCH.  The simulated spectrum is provided in blue.  
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Figure A.5 Rotationally resolved spectrum of the 30
140

1  band of the �̃� 𝛥2
5/2 ←

�̃� 𝛥2
5/2 band system of 

58
NiCCH.  The simulated spectrum is provided in blue.  
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Figure A.6 Rotationally resolved spectrum of the 30
250

1  band of the �̃� 𝛥2
5/2 ←

�̃� 𝛥2
5/2 band system of 

58
NiCCH.  The simulated spectrum is provided in blue.  
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Figure A.7 Rotationally resolved spectrum of the unidentified band of 
58

NiCCH near 

17594 cm
-1

.  The simulated spectrum is provided in blue.  
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Figure A.8 Rotationally resolved spectrum of the 30
340

1  band of the �̃� 𝛥2
5/2 ←

�̃� 𝛥2
5/2 band system of 

58
NiCCH.  The simulated spectrum is provided in blue. 
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Table A.3 Rotational lines of resolved bands of 
58

NiCCH.
a
 

Rotation

al Line 
�̃� − �̃� 30

1 �̃� − �̃� 30
140

1 �̃� − �̃� 30
250

1 
[17.59]5/2 - 

�̃� 00 
�̃� − �̃� 30

340
1 

P(3.5) 16361.800(-3) 

  

17593.165(9) 

 
P(4.5) 

16361.434(1) 

  

17592.816(-

11) 

 
P(5.5) 

16361.056(-7) 

 

17035.925(-

14) 17592.413(-3) 

 
P(6.5) 

16360.660(-

18) 

 

17035.497(2) 17591.972(17) 

 
P(7.5) 

16360.193(18

) 

 

17035.061(2) 

  P(10.5) 16358.779(1) 

    Q(2.5) 16362.778(5) 

  

17594.162(-1) 

 
Q(3.5) 

16362.701(0) 16994.591(3) 17037.565(2) 17594.076(-4) 

17885.977(-

15) 

Q(4.5) 
16362.595(4) 16994.487(-1) 17037.456(4) 

17593.970(-

12) 17885.849(4) 

Q(5.5) 16362.474(-2) 16994.359(-6) 17037.325(4) 17593.812(8) 17885.715(5) 

Q(6.5) 16362.323(0) 16994.205(-8) 17037.174(1) 

 

17885.571(-8) 

Q(7.5) 
16362.146(5) 16994.014(2) 

17037.005(-

8) 

  Q(9.5) 

 

16993.581(3) 17036.561(8) 

  Q(11.5) 

 

16993.055(-1) 

   R(2.5) 16363.687(1) 16995.578(2) 17038.551(1) 17595.059(-2) 17886.951(-3) 

R(3.5) 16363.866(0) 16995.752(1) 17038.727(0) 17595.218(8) 17887.117(4) 

R(4.5) 16364.020(1) 16995.905(-2) 17038.878(0) 17595.363(6) 17887.254(15) 

R(5.5) 
16364.150(4) 

16996.016(11

) 17039.004(1) 

17595.501(-

15) 17887.382(11) 

R(6.5) 
16364.261(1) 16996.132(-4) 17039.108(1) 

 

17887.504(-

12) 

R(7.5) 16364.356(-7) 

 

17039.185(4) 

  
R(8.5) 

16364.416(-4) 

 

17039.254(-

10) 

  R(9.5) 16364.450(2) 

    Fitted spectroscopic constants (cm
-1

) 

T0 
16362.8830(2

7) 

16994.7834(2

7) 17037.7539(30) 

17594.2704(6

8) 

17886.1530(

90) 

B′ 0.12931(10) 0.12878(11) 0.12893(8) 0.12820(14) 0.12869(14) 

P′ 5/2 7/2 7/2 5/2 7/2 

B″ 0.14080(11) 0.14080(11) 0.14080(11) 0.14080(11) 0.14080(11) 

Ω″ 5/2 5/2 5/2 5/2 5/2 
a
 All values are in cm

-1
 units; residuals in the fit (calculated – measured) are provided in 

parentheses, in units of 0.001 cm
-1

. Error limits in the fitted spectroscopic constants (1σ) 

are provided in parentheses after each constant, in units of the last digit quoted. 
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ROTATIONALLY RESOLVED SPECTRA, TABULATED LINE POSITIONS, AND 

FITTED PARAMETERS OF OsSi 
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Figure B.1 Vibronically resolved spectrum of OsSi over the 15000-16100 cm
-1

 range.  

The bands are identified by wavenumber and vibronic assignment.  Unclassified bands 

are labeled “U” followed by the estimated band origin in cm
-1

 units. 
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Figure B.2 Vibronically resolved spectrum of OsSi over the 16000-17100 cm
-1

 range.  

The bands are identified by wavenumber and vibronic assignment.  Unclassified bands 

are labeled “U” followed by the estimated band origin in cm
-1

 units. 
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Figure B.3 Vibronically resolved spectrum of OsSi over the 17000-18100 cm
-1

 range.  

The bands are identified by wavenumber and vibronic assignment.  Unclassified bands 

are labeled “U” followed by the estimated band origin in cm
-1

 units. 
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Figure B.4 Vibronically resolved spectrum of OsSi over the 18000-19100 cm
-1

 range.  

The bands are identified by wavenumber and vibronic assignment.  Unclassified bands 

are labeled “U” followed by the estimated band origin in cm
-1

 units. 
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Table B.1 Measured vibronic bands of OsSi.
a
  

Band 
Measured ν0 for  

192
Os

28
Si 

b
 

Isotope shift  

ν(
190

Os
28

Si)-ν(
192

Os
28

Si) 
b
 

B′ Ω′ τ (μs)
 c
 

A-X 0-1 15210.74 -0.19 
   

A-X 1-1 15607.63 -0.11 
   

A-X 0-0 15727.2143(20) -0.0095(26) 0.13783(6) 1 1.07(12) 

A-X 2-1 15989.69 1.42 
   

A-X 1-0 16123.7918(21) 0.2555(25) 0.13709(6) 1 1.06(3) 

A-X 3-1 16395.73 0.44 
   

A-X 2-0 16518.40 0.15 
   

A-X 4-1 16776.23 0.89 
   

A-X 3-0 16912.45 0.91 
   

A-X 5-1 17170.38 1.05 
   

A-X 4-0 17292.51 1.30 
   

A-X 6-1 17558.2584(39) 1.2195(48) 0.13432(22) 1 1.05(4) 

A-X 5-0 17686.7884(53) 1.3835(65) 0.13888(10) 1 
 

A-X 7-1 17943.3179(37) 1.4402(47) 0.13382(20) 1 1.18(3) 

A-X 6-0 18074.5689(28) 1.5562(39) 0.13442(6) 1 1.14(21) 

A-X 8-1 18326.64 1.46 
   

A-X 7-0 18459.6389(42) 1.7605(59) 0.13306(9) 1 
 

A-X 9-1 18714.20 1.70 
   

B-X 0-0 18468.7147(32) 0.0305(41) 0.14263(7) 1 8.31(33) 

B-X 1-0 18792.8211(16) 0.1734(26) 0.14174(8) 1 6.16(60) 

U
d
 15384.33 0.57 

   
U

d 
15431.78 0.79 

   
U

d
 15484.17 0.42 

   
U

d
 15489.03 -0.17 

   
U

d
 15753.06 0.18    

U
d
 15833.10 0.65    

U
d
 15882.47 0.08    

U
d
 15947.26 0.90    

U
d
 16026.89 0.13    

U
d
 16412.92 0.90    

U
d
 16863.19 1.36    

U
d
 17044.37 1.30    

U
d
 17242.17 0.49    

U
d
 17813.78 1.30    

U
d
 17922.72 -0.10    

U
d
 18193.66 2.19    

U
d
 18287.99 1.07    

U
d
 18338.03 0.13    

U
d
 18406.75 0.11    



202 
 

Table B.1 Continued 

a
 All values are in cm

-1
 units unless otherwise specified; 1σ error limits are provided in 

parentheses, in units of the last digit quoted. 
b
 Band origins that have been determined in 

rotationally resolved scans are given to four digits after the decimal, with the 1σ error 

provided.  Band origins quoted to only two digits are estimated from low resolution 

measurements, and are thought to be accurate to better than 1 cm
-1

.  Similarly, isotope 

shifts measured in low resolution are quoted to two digits.  These are generally accurate 

to 0.1 cm
-1

, based on comparisons to high resolution measurements.  Weaker features 

may have larger errors.  When four digits and an error estimate are provided, the feature 

was measured in a well-calibrated high resolution scan. 
c
 Excited state exponential decay 

lifetime. 
d
Unclassified band. 
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Table B.2 Molecular constants of OsSi. 

Electronic 

State 

Molecular 

constant 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

X Σ0+
‒3  

ΔG1/2 516.3149(36) 516.6450(31) 516.8333(55) 

B0″ 0.15332(8) 0.15317(6) 0.15350(8) 

B1″ 0.15242(21) 0.15297(14) 0.15248(17) 

Be″ 0.15377(14) 0.15327(10) 0.15401(12) 

αe″ 0.00090(22) 0.00020(15) 0.00102(19) 

re″ 2.1189(10) 2.1238(7) 2.1194(8) 

Recommended re″ 2.1207(27) 

A1 

T0 15727.734(702) 15727.702(672) 15727.205 

ωe′ 396.97(75) 397.31(72) 399.06 

ωe′xe′ 0.839(95) 0.849(91) 1.042 

Be′ 0.13804(20) 0.13724(164) 0.13817(18) 

αe′ 0.00035(78) 0.00025(66) 0.00053(7) 

re′ 2.236(16) 2.244(13) 2.2376(15) 

Recommended re′ 2.2394(43) 

B1 

T0 18468.7147(32) 18468.7452(26) 18468.7644(24) 

ΔG1/2 324.1064(36) 324.2493(33) 324.3268(31) 

Be′ 0.14308(10) 0.14275(12) 0.14308(9) 

αe′ 0.00089(11) 0.00074(13) 0.00077(11) 

re′ 2.1966(8) 2.2006(9) 2.1988(7) 

Recommended re′ 2.1987(20) 
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Figure B.5 Rotationally resolved spectrum of the 0-0 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.3  Rotational Lines of the 0-0 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2) 15726.565(5) 15726.563(-2) 15726.559(0) 

P(3) 15726.202(-1) 15726.186(6) 15726.185(6) 

P(4) 15725.810(-8) 15725.790(3) 15725.786(5) 

P(5) 15725.379(-7) 15725.354(7) 15725.364(-4) 

P(6) 15724.920(-10)   

P(7) 15724.411(7)   

P(8) 15723.879(15) 15723.876(7) 15723.878(3) 

P(9) 15723.358(-19) 15723.327(1) 15723.324(3) 

P(10) 15722.754(0) 15722.743(-1)  

P(11) 15722.141(-4)  15722.131(-7) 

Q(1) 15727.180(3) 15727.174(0) 15727.173(1) 

Q(2) 15727.118(4) 15727.113(-2) 15727.108(3) 

Q(3) 15727.031(-2) 15727.020(-2) 15727.026(-7) 

Q(4) 15726.912(-7) 15726.898(-5) 15726.902(-7) 

Q(5) 15726.746(3) 15726.738(0) 15726.735(5) 

Q(6) 15726.565(-1) 15726.563(-11) 15726.559(-5) 

Q(7) 15726.353(-6) 15726.339(-6) 15726.326(12) 

Q(8) 15726.100(-1) 15726.098(-13) 15726.098(-8) 

Q(11) 15725.162(8) 15725.159(-7) 15725.163(-4) 

Q(12) 15724.807(-9)   

Q(13)  15724.387(-13) 15724.377(9) 

R(1) 15727.727(7)  15727.723(3) 

R(2) 15727.949(-1) 15727.937(0) 15727.934(6) 

R(3) 15728.131(0) 15728.120(0) 15728.128(-5) 

R(4) 15728.276(7) 15728.272(-3) 15728.268(7) 

R(5)  15728.374(15) 15728.410(-13) 

R(6) 15728.488(5) 15728.481(-3) 15728.489(-3) 

R(7) 15728.552(0) 15728.531(5)  

R(8) 15728.577(3) 15728.553(9)  

R(9) 15728.577(0) 15728.553(4)  

R(10) 15728.534(9)   

R(13)  15728.226(1)  

R(14)  15728.059(8)  

R(15)  15727.877(-1)  

R(16)  15727.650(3)  

Spectroscopic Constants (cm
-1

) 

ν0 15727.2143(20) 15727.2048(17) 15727.2047(19) 

B0'(A1) 0.13783(6) 0.13762(5) 0.13801(8) 

B0ʺ(X) 0.15333(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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Figure B.6 Rotationally resolved spectrum of the 1-0 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.4 Rotational Lines of the 1-0 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2)  16123.401(1)  

P(3) 16122.778(-3) 16123.027(4) 16123.169(-4) 

P(4) 16122.366(4) 16122.625(2) 16122.768(-8) 

P(5) 16121.937(-2) 16122.179(10) 16122.323(0) 

P(6) 16121.459(7) 16121.720(0)  

P(7) 16120.960(4) 16121.219(-1) 16121.356(-5) 

P(8) 16120.415(15) 16120.679(5)  

P(9) 16119.860(4) 16120.119(-3) 16120.245(3) 

P(10) 16119.267(-1)   

P(11)  16118.884(0)  

P(12) 16117.965(6)   

Q(1) 16123.760(0) 16124.013(2) 16124.152(0) 

Q(2) 16123.696(-2) 16123.955(-5) 16124.090(-4) 

Q(3) 16123.602(-5) 16123.853(-1) 16123.987(1) 

Q(4) 16123.462(5) 16123.716(6) 16123.860(-2) 

Q(5) 16123.315(-10) 16123.557(1) 16123.690(5) 

Q(6) 16123.121(-11) 16123.369(-6) 16123.490(10) 

Q(7) 16122.899(-15) 16123.134(1) 16123.268(3) 

Q(8) 16122.620(4) 16122.873(1) 16123.023(-12) 

Q(9) 16122.335(-3) 16122.577(3)  

Q(10) 16122.015(-8) 16122.263(-8) 16122.408(-15) 

Q(11) 16121.641(9) 16121.897(0)  

Q(12) 16121.258(3) 16121.512(-7) 16121.636(8) 

Q(13) 16120.835(4)   

Q(14) 16120.376(9) 16120.610(15)  

Q(15) 16119.892(7) 16120.141(-5)  

Q(16) 16119.380(0)   

R(0) 16124.065(1) 16124.324(-3) 16124.455(3) 

R(1) 16124.313(-5) 16124.568(-6) 16124.696(4) 

R(2) 16124.516(1) 16124.775(-4) 16124.914(-5) 

R(3) 16124.684(10) 16124.940(7) 16125.077(9) 

R(4) 16124.839(-1) 16125.097(-7) 16125.234(-4) 

R(5) 16124.942(8) 16125.191(10) 16125.331(11) 

R(6) 16125.038(-9) 16125.286(-7) 16125.419(2) 

R(7)   16125.467(0) 

R(8)  16125.336(1) 16125.480(1) 

R(12)  16125.068(-4) 16125.211(0) 

R(13) 16124.705(-27) 16124.924(-10)  

R(15)  16124.508(8)  

Spectroscopic Constants (cm
-1

) 

ν0 16123.7918(21) 16124.0473(14) 16124.1836(19) 

B1'(A1) 0.13709(6) 0.13688(5) 0.13722(7) 

B0ʺ(X) 0.15332(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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Figure B.7 Rotationally resolved spectrum of the 5-0 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue. 
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Table B.5  Rotational Lines of the 5-0 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(3)  17687.147(-2)  

P(4)  17686.749(-18)  

P(5)  17686.283(-2)  

P(8)  17684.700(17)  

Q(1) 17686.747(13) 17688.115(21)  

Q(2) 17686.712(-10) 17688.055(9)  

Q(3) 17686.618(-3) 17687.956(0)  

Q(4) 17686.498(1) 17687.801(12)  

Q(5)  17687.643(-9)  

Q(6)  17687.419(-1)  

Q(7)  17687.176(-8)  

Q(8)  17686.874(7)  

Q(9) 17685.497(-7)   

Q(10) 17685.195(6) 17686.188(11)  

R(2)  17688.889(-13)  

R(3)  17689.036(2)  

R(4)  17689.174(-9)  

R(5)  17689.275(-19)  

R(6)  17689.304(8)  

R(7)  17689.331(0)  

R(11)  17689.058(-8)  

Spectroscopic Constants (cm
-1

) 

ν0 17686.7884(53) 17688.1719(38)  

B5'(A1) 0.13888(10) 0.13524(5)  

B0ʺ(X) 0.15332(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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Figure B.8 Rotationally resolved spectrum of the 6-0 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue. 
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Table B.6  Rotational Lines of the 6-0 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2)  18075.479(-4)  

P(3) 18073.531(4) 18075.097(-4)  

P(4) 18073.102(13) 18074.664(10)  

P(5) 18072.652(5) 18074.209(8)  

P(6) 18072.151(11) 18073.726(-3)  

P(7) 18071.637(-8) 18073.190(1)  

P(8)  18072.647(-25)  

P(9) 18070.426(23)   

P(10)  18071.369(0)  

Q(1) 18074.551(-20) 18076.078(10)  

Q(2) 18074.463(-7) 18076.001(12)  

Q(3) 18074.350(-8) 18075.886(13)  

Q(4) 18074.195(-4) 18075.754(-5)  

Q(5) 18074.016(-14) 18075.568(-7)  

Q(6) 18073.789(-13) 18075.328(7)  

Q(7) 18073.502(8) 18075.076(-4)  

Q(8) 18073.200(8) 18074.790(-19)  

Q(9) 18072.877(-9) 18074.429(4)  

Q(11)  18073.629(14)  

Q(12) 18071.622(-1)   

R(0) 18074.825(13) 18076.394(0)  

R(1) 18075.074(-5) 18076.628(-3)  

R(2) 18075.267(-5) 18076.818(0)  

R(3) 18075.430(-13) 18076.987(-13)  

R(4) 18075.523(12) 18077.088(5)  

R(5) 18075.618(-3)   

R(6) 18075.650(7)   

R(7) 18075.650(11)   

R(9) 18075.548(8) 18077.119(1)  

R(11) 18075.303(-3)   

R(12) 18075.117(-2)   

R(13) 18074.902(-9) 18076.463(2)  

Spectroscopic Constants (cm
-1

) 

ν0 18074.5689(28) 18076.1251(27)  

B6'(A1) 0.13442(6) 0.13437(5)  

B0ʺ(X) 0.15332(8) 0.15317(6)  

χ
2
 9.92E-05 7.37E-05  
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Figure B.9 Rotationally resolved spectrum of the 7-0 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue. 
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Table B.7 Rotational Lines of the 7-0 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(3) 18458.581(16)  18461.265(-10) 

P(4) 18458.177(-8) 18459.969(-26)  

P(5) 18457.696(5) 18459.480(2)  

P(6) 18457.185(6)   

P(7) 18456.607(34)   

P(8)  18457.861(8)  

P(10)  18456.619(-18)  

Q(1) 18459.601(-2) 18461.361(0) 18462.253(0) 

Q(2) 18459.520(-3) 18461.290(-7) 18462.185(-9) 

Q(3) 18459.398(-2) 18461.149(19) 18462.061(0) 

Q(4) 18459.247(-13) 18461.010(4)  

Q(5) 18459.041(-10) 18460.826(-5) 18461.700(16) 

Q(6) 18458.819(-31) 18460.581(9) 18461.485(0) 

Q(7)  18460.327(-7)  

Q(8) 18458.177(3)   

Q(9)  18459.660(5)  

R(0) 18459.900(5)   

R(1) 18460.137(-7) 18461.905(-8) 18462.783(8) 

R(2) 18460.310(6) 18462.088(-1) 18462.986(-4) 

R(3) 18460.462(-2) 18462.230(10) 18463.127(8) 

R(4) 18460.568(-4) 18462.344(9)  

R(5)  18462.431(-3) 18463.332(-5) 

R(6) 18460.642(9) 18462.458(6) 18463.371(-6) 

R(7)  18462.458(4)  

R(10) 18460.341(-3)   

Spectroscopic Constants (cm
-1

) 

ν0 18459.6389(42) 18461.3994(41) 18462.2921(39) 

B7'(A1) 0.13306(9) 0.13390(13) 0.13429(12) 

B0ʺ(X) 0.15332(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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Figure B.10 Rotationally resolved spectrum of the 6-1 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.8 Rotational Lines of the 6-1 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(3)  17558.446(4)  

P(4) 17556.835(-13)  17558.630(3) 

P(5) 17556.380(-8) 17557.584(-2)  

P(6) 17555.897(-11)  17557.697(10) 

P(7) 17555.362(3)   

P(8)   17556.607(33) 

P(9)   17556.041(12) 

Q(1) 17558.207(15) 17559.430(11)  

Q(2) 17558.168(-18) 17559.360(8)  

Q(3)  17559.256(2) 17559.867(-14) 

Q(4) 17557.871(26) 17559.105(7) 17559.727(-14) 

Q(5) 17557.723(-8) 17558.945(-16) 17559.554(-17) 

Q(6) 17557.511(-13)  17559.324(1) 

Q(7) 17557.245(0) 17558.446(7)  

Q(8) 17556.940(15) 17558.173(-13)  

Q(9) 17556.622(7)   

Q(10) 17556.278(-11) 17557.480(-15)  

Q(11)  17557.054(9)  

Q(13) 17554.968(-4) 17556.160(-12)  

Q(14)  17555.637(-1)  

R(1)  17559.985(-5)  

R(2) 17558.951(4) 17560.175(1)  

R(3) 17559.118(-2) 17560.326(9) 17560.943(-11) 

R(4) 17559.239(0) 17560.455(4) 17561.048(14) 

R(5) 17559.325(2) 17560.557(-12) 17561.162(-7) 

R(6) 17559.370(9) 17560.603(-9) 17561.218(-4) 

R(7) 17559.386(8)  17561.227(10) 

R(8)   17561.218(7) 

R(9)  17560.519(5) 17561.183(-5) 

R(10)  17560.425(3) 17561.103(-7) 

R(11)   17560.990(-11) 

R(14)  17559.662(14)  

Spectroscopic Constants (cm
-1

) 

ν0 17558.2584(39) 17559.4779(28) 17560.0645(57) 

B6'(A1) 0.13432(22) 0.13467(13) 0.13488(17) 

B1ʺ(X) 0.15242(21) 0.15297(14) 0.15248(17) 

χ
2
 1.38E-04 1.00E-04 1.62E-04 
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Figure B.11 Rotationally resolved spectrum of the 7-1 band of the A1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.9 Rotational Lines of the 7-1 band of the A1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2) 17942.685(-14)  17944.818(-7) 

P(3) 17942.285(7) 17943.719(9) 17944.413(19) 

P(4) 17941.889(-13) 17943.301(8) 17944.010(6) 

P(5) 17941.400(21) 17942.859(-7)  

P(6)  17942.350(8) 17943.067(6) 

P(7) 17940.399(3) 17941.815(12) 17942.560(-14) 

P(8) 17939.835(3) 17941.270(-12) 17941.967(14) 

P(9)   17941.393(-13) 

P(10)  17940.007(-1) 17940.756(-14) 

P(11)  17939.316(8)  

Q(1) 17943.264(17) 17944.711(10)  

Q(2)  17944.648(-2)  

Q(3) 17943.096(-1) 17944.526(7) 17945.241(-4) 

Q(4) 17942.951(-5) 17944.368(14) 17945.076(12) 

Q(5) 17942.766(-6) 17944.211(-17) 17944.919(-16) 

Q(6) 17942.554(-18) 17943.984(-16) 17944.676(5) 

Q(7) 17942.285(-9) 17943.719(-14) 17944.413(7) 

Q(8) 17941.976(3) 17943.410(-6) 17944.128(-4) 

Q(9) 17941.639(5) 17943.062(4) 17943.794(-3) 

Q(10)  17942.674(15) 17943.433(-13) 

Q(11) 17940.844(18) 17942.274(1)  

Q(12)  17941.829(-5) 17942.560(8) 

Q(13)   17942.105(-19) 

R(0)  17945.036(-9)  

R(1) 17943.808(7) 17945.240(17) 17945.977(-19) 

R(2) 17944.010(-1) 17945.458(-8)  

R(3) 17944.161(4) 17945.604(2) 17946.312(-4) 

R(4) 17944.275(9) 17945.726(-2) 17946.422(6) 

R(5) 17944.376(-11) 17945.817(-13) 17946.521(-11) 

R(6) 17944.411(-1) 17945.850(-3) 17946.550(5) 

R(7)  17945.850(2) 17946.550(14) 

R(8)  17945.836(-17) 17946.521(14) 

R(9) 17944.344(-24) 17945.737(12) 17946.469(1) 

R(10) 17944.211(4)  17946.367(0) 

R(11)  17945.492(3) 17946.206(21) 

Spectroscopic Constants (cm
-1

) 

ν0 17943.3179(37) 17944.7581(29) 17945.4588(38) 

B7'(A1) 0.13382(20) 0.13416(13) 0.13394(18) 

B1ʺ(X) 0.15242(21) 0.15297(14) 0.15248(17) 

χ
2
 1.38E-04 1.00E-04 1.62E-04 
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Figure B.12 Rotationally resolved spectrum of the 0-0 band of the B1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.10  Rotational Lines of the 0-0 band of the B1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2)   18468.115(14) 

P(3)  18467.769(-8) 18467.782(-3) 

P(4) 18467.346(14) 18467.382(9) 18467.407(-1) 

P(5) 18467.007(-39) 18467.030(-33) 18467.024(-11) 

P(6) 18466.561(-7) 18466.577(7) 18466.592(6) 

P(7) 18466.149(-29) 18466.156(-9) 18466.170(-8) 

P(8) 18465.666(-3) 18465.691(-1) 18465.704(-1) 

P(9) 18465.176(10) 18465.206(4) 18465.215(8) 

P(10) 18464.708(-21) 18464.696(14) 18464.715(7) 

P(11)   18464.216(-18) 

P(12)  18463.645(-1) 18463.651(3) 

P(13) 18463.067(-6) 18463.072(6)  

Q(1) 18468.670(23) 18468.719(4)  

Q(2)  18468.680(0)  

Q(3)  18468.614(2)  

Q(4)  18468.523(7) 18468.567(-19) 

Q(5) 18468.384(10) 18468.432(-10) 18468.448(-8) 

Q(6) 18468.281(-15) 18468.296(-4) 18468.323(-12) 

Q(7) 18468.109(7) 18468.133(8) 18468.168(-9) 

Q(8) 18467.943(2) 18467.973(-5) 18467.985(1) 

Q(9) 18467.743(10) 18467.769(4) 18467.782(10) 

Q(10) 18467.535(4)  18467.563(13) 

Q(11)  18467.335(-15)  

Q(12) 18467.050(-3)   

Q(13) 18466.775(-6) 18466.778(3) 18466.806(-9) 

Q(14)   18466.491(3) 

Q(15) 18466.143(6)  18466.170(1) 

Q(17)   18465.455(2) 

Q(19) 18464.656(-3)   

Q(22) 18463.301(5)   

R(0) 18469.001(-1) 18469.023(7) 18469.045(5) 

R(1) 18469.261(3) 18469.288(5) 18469.309(4) 

R(2) 18469.500(7) 18469.534(1) 18469.551(4) 

R(3) 18469.718(9) 18469.755(0) 18469.773(3) 

R(4) 18469.920(7) 18469.948(5) 18469.960(15) 

R(5) 18470.098(7) 18470.130(0) 18470.154(-2) 

R(6) 18470.264(-1) 18470.279(6) 18470.296(13) 

R(7) 18470.393(6) 18470.419(0) 18470.453(-11) 

R(8) 18470.504(8) 18470.523(8)  

R(9)  18470.635(-14)  

Spectroscopic Constants (cm
-1

) 

ν0 18468.7147(32) 18468.7452(26) 18468.7644(24) 

B0'(B1) 0.14263(7) 0.14238(10) 0.14269(7) 

B0ʺ(X) 0.15332(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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Figure B.13 Rotationally resolved spectrum of the 1-0 band of the B1 ← X Σ0+
‒3  band 

system of 
192

Os
28

Si.  The simulated spectrum is provided in blue.  
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Table B.11 Rotational Lines of the 1-0 band of the B1 – X Σ− (0+)3  system of OsSi. 

Rotational Line 
192

Os
28

Si 
190

Os
28

Si 
189

Os
28

Si 

P(2) 18792.178(7) 18792.362(-3) 18792.443(11) 

P(3) 18791.819(12) 18791.996(10) 18792.095(6) 

P(4) 18791.465(-10) 18791.635(-5) 18791.716(8) 

P(5) 18791.052(4) 18791.235(-3) 18791.319(6) 

P(6) 18790.634(0) 18790.813(-2) 18790.905(-3) 

P(7) 18790.193(-5) 18790.359(7) 18790.451(4) 

P(8) 18789.700(20) 18789.884(14) 18789.980(7) 

P(9) 18789.247(-20) 18789.411(-4) 18789.494(1) 

Q(1) 18792.790(8) 18792.962(10) 18793.065(3) 

Q(2) 18792.742(10) 18792.925(0) 18793.036(-14) 

Q(3) 18792.679(3) 18792.850(6) 18792.968(-16) 

Q(4) 18792.585(5) 18792.765(-1) 18792.855(5) 

Q(5) 18792.474(0) 18792.647(1) 18792.743(1) 

Q(6) 18792.340(-5) 18792.505(5) 18792.603(2) 

Q(7) 18792.178(-5) 18792.362(-13) 18792.443(-1) 

Q(8) 18791.979(9) 18792.164(0)  

Q(9) 18791.787(-8) 18791.947(9)  

Q(10) 18791.543(4) 18791.717(9) 18791.813(4) 

Q(11) 18791.290(2) 18791.479(-6)  

Q(13) 18790.713(1)  18790.985(-1) 

Q(14) 18790.392(-2)   

Q(15) 18790.049(-7)   

R(0) 18793.105(0) 18793.272(6) 18793.380(-5) 

R(1) 18793.370(-5) 18793.547(-9) 18793.643(-7) 

R(2) 18793.604(-2) 18793.782(-7) 18793.871(2) 

R(3) 18793.816(0) 18793.994(-5) 18794.091(-3) 

R(4) 18794.012(-5) 18794.190(-10) 18794.282(-3) 

R(5) 18794.180(-5) 18794.352(-3) 18794.446(0) 

R(6) 18794.317(2) 18794.491(3) 18794.587(4) 

R(7) 18794.442(-1) 18794.616(-1) 18794.713(1) 

R(8) 18794.553(-14) 18794.721(-7) 18794.827(-15) 

R(9) 18794.618(-4) 18794.784(5) 18794.876(11) 

R(10) 18794.666(0) 18794.846(-4) 18794.948(-8) 

R(11) 18794.697(-3)   

R(16) 18794.483(8)   

R(18) 18794.241(6)   

R(19) 18794.091(0)   

Spectroscopic Constants (cm
-1

) 

ν0 18792.8211(16) 18792.9945(20) 18793.0912(20) 

B1'(B1) 0.14174(8) 0.14164(8) 0.14192(8) 

B0ʺ(X) 0.15332(8) 0.15317(6) 0.15350(8) 

χ
2
 9.92E-05 7.37E-05 5.97E-05 
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