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ABSTRACT 

 

 Much has been done to define and characterize the mechanisms that control the 

fate of multipotent retinal progenitors during eye development, but our understanding of 

this process is still nascent. The histone methyltransferase complex PRC2 is a key 

regulator of differentiation during the development of organs such as skin and cortex, but 

its roles in vertebrate retinogenesis have not been explored. My work focused on 

investigating the possible involvement of PRC2 in the progression of retinal progenitors 

from proliferation to differentiation during eye development in Xenopus laevis embryos.  

In the first chapter, I report the cloning of Xenopus Suz12, and determine its 

expression pattern during development. Xsuz12 is provided maternally and its expression 

persists as development progresses, particularly in the developing central nervous system. 

Comparative analysis of the PRC2 core subunits Xez, Xeed, Xsuz12 and Xrbbp4 suggests 

that their expression largely overlaps in the nervous system.  

 In the second chapter, I characterize in detail the retinal expression of the PRC2 

core subunits, and explore its potential roles during development using a loss of function 

approach. I show that the transcripts of the PRC2 core subunits are coincidently 

expressed in retinal progenitors and are downregulated upon retinal differentiation. 

Surprisingly, I found that the levels of the H3K27me3 mark that is catalyzed by PRC2 

greatly increase in terminally differentiated cells. Loss of PRC2 function led to a marked 

decrease in H3K27me3 in retinal cell types. Blocking the translation of the core subunits 



Xez or Xsuz12 caused a reduction in eye size, inhibition of differentiation genes and a 

bias toward generation of late born cell types. ChIP-seq analysis on whole embryos 

revealed that H3K27me3 transiently and selectively decorates a subset of genes 

expressed in the eye, some of which are known negative regulators of retinal 

differentiation.   

 In the third chapter, I characterize the expression pattern of the newly identified 

binding partner of PRC2, Xjarid2, in the developing nervous system of Xenopus and 

found that it is particularly expressed in differentiated cells. Preliminary loss of function 

analysis suggests that Xjarid2 is required for neural differentiation, in agreement with 

data on PRC2 core subunits. Taken together, my data indicate that the PRC2 complex is 

an important regulator of retinal neurogenesis in Xenopus and highlights the contribution 

of histone methylation to the regulation of retinal proliferation and differentiation. 
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Overview 

During development, neural tissues expand in size and eventually acquire 

consistent ratios of neurons and glia with dazzling diversity in morphology and function. 

These cells arise from pools of progenitors as a result of orchestrated developmental 

events under the control of numerous gene regulatory and signaling processes. Among the 

different components of the central nervous system, the eye presents an ideal system to 

study this process as it provides a simple model where the transition from proliferation to 

differentiation can be easily observed, temporally and spatially (Perron and Harris, 2000). 

As retinal development progresses, progenitor cells exit the cell cycle and undergo 

precise execution of a differentiation program through extensive genetic reprogramming 

that involves the silencing of proliferation genes and the activation of differentiation 

genes in a step-wise temporal manner.  

Recent years have witnessed expansion in our understanding of the genetic 

networks that contribute to neuron generation and maturation in the retina, as this is a 

crucial step toward advancing regenerative therapy research for many ocular disorders. 

Yet, the involvement of known epigenetic mechanisms in the coordination of retinal 

growth and cell fate acquisition is poorly understood. Data from embryonic stem cell 

(ESC) studies suggest that the recruitment of chromatin remodelers that work in 

complexes to mediate global repression or activation of gene expression, and dynamically 

regulate the structure of the genome and accessibility to the DNA, is essential in 

regulating the transcription switch from pluripotency/ multipotency to the acquisition of 

cell type specific features. Hence, it is possible that epigenetic mechanisms are utilized 

during tissue organogenesis at later stages of development to mediate similar functions. 
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Indeed, recent studies have demonstrated that the polycomb repressive complex 2 

(PRC2), a chromatin remodeling complex that mediates silencing of gene expression, is 

essential for the proper differentiation of skin, pancreas and vertebrate cortex tissues but 

its role in eye development remains completely unknown. This work examines the 

contribution of PRC2 in controlling the neural potential of retinal progenitors and how it 

may regulate the transition from loss of multipotency to acquiring cell type-specific 

characteristics during retinal development of Xenopus laevis.  

 

Eye Development in Vertebrates 

Ocular tissue development is initiated shortly after gastrulation as a result of 

induction of several key transcription factors that mark the area of the presumptive 

forebrain (Fig. 1A). These eye-field transcription factors (EFTFs) comprise a network of 

genes, which includes Pax6, Rx, Six3, Six6 and Lhx2, that have been shown to be 

important in promoting retinoblast proliferation and subsequent expression of factors 

essential for proper eye development, such as the proneural basic helix loop helix 

(bHLH) factors (Marquardt et al., 2001; Agathocleous and Harris, 2009; Willardsen et 

al., 2009; Bilitou and Ohnuma, 2010). The importance of this network of EFTFs is 

demonstrated by their ability to induce ectopic eye structures when collectively 

overexpressed in Xenopus embryos (Zuber et al., 2003). As the neural plate starts to fold 

to form the neural tube, the presumptive eye domain is bilaterally separated into two eye 

primordia that will emerge from the lateral walls of the developing forebrain at the level 

of the diencephalon, forming the optic vesicles (Fig. 1A, B). As eye morphogenesis 

progresses, the optic vesicle further invaginates to form the optic cup.  The optic cup  
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Figure 1. Retinal development. The three major developmental processes in 
Xenopus ocular development are shown. A: Eye-field formation and its separation 
into two optic primordia. B: Optic vesicle formation and ocular specification. C: 
Cell-fate determination and cell-cycle regulation in retinal histogenesis. Reprinted 
with permission from Developmental Dynamics, Bilitou and Ohnuma, 2010, 727-
736 volume 239, © 2010, by Wiley-Liss, Inc. 
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will eventually give rise to the neural retina while the lens is originated from the non-

neural ectoderm, the lens placode, which faces the presumptive neural retina due to 

inductive signals from the retinal neural ectoderm (Chow and Lang, 2001). 

Generally, retinal development advances through four major steps: proliferation, 

cell cycle exit, commitment and differentiation. I will discuses in brief the current 

understanding of the main aspects of proliferation and differentiation and the major 

regulatory mechanisms that control these processes. 

 

Proliferation of Retinal Progenitor Cells  

Retinal proliferation is essential to expand the tissue and generate sufficient 

number of cells that will subsequently contribute to different lineages. In humans, 

reduction of retinal proliferation has been linked to ocular diseases such as 

microphthalmia and, in severe cases, anophthalmia (Ferda Percin et al., 2000; Fantes et 

al., 2003; Taranova et al., 2006).  Studies on several vertebrates have shown that the 

speed of proliferation in retinal progenitors changes as development proceeds. Data 

suggest that initially retinoblasts divide at a lower pace to generate progeny of transit 

amplifying cells, then division is accelerated around the onset of neurogenesis, producing 

a mixture of mitotic and postmitotic cells (Alexiades and Cepko, 1996; Harris and 

Hartenstein, 1991). Finally, proliferation slows down and ceases in differentiating cells as 

the retina matures (Agathocleous and Harris, 2009; Alexiades and Cepko, 1996).  

The regulation of proliferation in ocular tissues has been studied extensively, and 

has been shown to involve many transcription factors, cell cycle activators (i.e., cyclins 

and CDKs) and signaling pathways (i.e., Shh and Notch pathways))(Agathocleous et al., 



 

 

6

2007; Barton and Levine, 2008; Ohnuma et al., 2002; Wall et al., 2009). Not surprisingly, 

EFTFs, which are important for retinal tissue specification, are also regulators of retinal 

cell division. For instance, overexpression of the transcription factor Rx in Xenopus 

enhances retinoblast proliferation and delays retinal neurogenesis while inhibition of its 

activities leads to a severe reduction in eye size (Andreazzoli et al., 1999; Casarosa et al., 

2003). EFTFs mutually activate the expression of each other, and promote proliferation 

by enhancing the expression of positive cell cycle regulators and by preventing the 

expression of cell cycle inhibitor genes (Andreazzoli, 2009; Gestri et al., 2005). For 

instance knockout of Vsx2 (Chx10) causes microphthalmia due to an abnormal 

expression of the cell cycle inhibitor p27kip1 in retinal progenitors (Burmeister et al., 

1996; Green et al., 2003). Similarly, overexpression of Six3 in Xenopus inhibits the 

expression of p27Xic1 and enhances the expression of the cell cycle activator CyclinD1 

(Gestri et al., 2005). 

 

Generation of Rtinal Neurons During Development 

As retinal differentiation begins progenitor cells drop out of the cell cycle and 

acquire the characteristics of retinal-specific cell types. Fully differentiated retinal cell 

types are functionally and morphologically distinct, and are classified into neurons 

(ganglion cells, amacrine cells, bipolar cells, horizontal cells, rods and cones) and glia 

(Müller glia) (Yan et al., 2005).  The birth date of these cell types is not random but 

rather follows a tightly controlled temporal order in a manner that is generally conserved 

among vertebrates: the first cell type to be born is ganglion cells, followed by horizontal 

cells, cone photoreceptors and amacrine cells while rods, bipolar cells and Müller glia are 
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formed later (Livesey and Cepko, 2001; Ohsawa and Kageyama, 2008). Unlike 

development in the mammalian cortex, different retinal neuronal cell types are born in 

waves during which the periods of neuron generation overlap considerably (Wang et al., 

2002). Hence, retinal cell types are often classified into early born cell types (ganglion 

cells, cones, amacrine and horizontal cells) and late born cell types (rods, bipolar cells 

and Müller glia) (Ohsawa and Kageyama, 2008). 

Because of its obvious implications in regenerative medicine, the ability of retinal 

progenitors to generate different retinal cell types has been under intensive study. By 

examining clones derived from retinoblasts, it has been shown that progenitors can 

produce all retinal cell types and are thus multipotent (Holt et al., 1988; Turner and 

Cepko, 1987; Wetts and Fraser, 1988). Experimental evidence suggests that the ability of 

retinal progenitors to produce different cell types changes as development progresses: 

early progenitors generate early born cell types while late progenitors produce late born 

cell types (Andreazzoli, 2009; Livesey and Cepko, 2001). The mechanism that drives this 

temporal change in retinoblast competence is not well understood but evidence suggests 

that both environmental cues and intrinsic factors (i.e., transcription factors) contribute 

significantly to the regulation of this process (Ahmad et al., 1998; Kanekar et al., 1997; 

Levine et al., 1997). For example, a mouse mutant in the secreted factor GDF11 displays 

increased number of retinal ganglion cells (RGCs) as a result of prolonged and increased 

expression of Math5 in progenitor cells (Kim et al., 2005). Math5 is an essential 

transcription factor for the production of ganglion cells (Brown et al., 1998).Thus it is 

likely that at a given time point during development a progenitor’s competence is defined 

by the cross talk between intrinsic factors temporally expressed by retinoblasts and 
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signals from the retinal environment that are active at this time point (Livesey and Cepko, 

2001; Ohsawa and Kageyama, 2008).  

 

Regulation of Retinal Cell Fate in Vertebrates 

Cell fate acquisition is a complex process and involves many intrinsic and 

extrinsic factors (Levine and Green, 2004). In particular, the bHLH gene family has been 

shown to play a conserved key role in the regulation of retinal cell type specification. The 

bHLH group contains members that work as activators to positively regulate neural 

differentiation (proneural bHLH factors) as well as repressor-type members that inhibit 

differentiation and promote non-neural cell fate, such as Hes1 and Hes5 (Hatakeyama 

and Kageyama, 2004; Ohsawa and Kageyama, 2008). One of the best studied bHLH 

molecules is Ath5, which is expressed transiently in retinal precursors and positively 

directs the generation of ganglion cells (Kanekar et al., 1997; Kay et al., 2001; Ohsawa 

and Kageyama, 2008; Agathocleous and Harris, 2009). Targeted expression of Ath5 in 

retinal progenitors promotes ganglion cell formation while loss of Ath5 results in severe 

reduction in ganglion cell number and an increase in the number of amacrine cells 

(Brown et al., 1998; Kanekar et al., 1997; Kay et al., 2001). Interestingly, many members 

of the proneural bHLH group participate with additional factors to drive the production of 

particular retina cell types (Akagi et al., 2004; Ohsawa and Kageyama, 2008).  For 

instance, amacrine cells can be generated by the combinatorial expression of Math3, 

NeuroD and the homeobox gene Pax6 while forced expression of Math3 or NeuroD 

alone promotes rod cell genesis (Hatakeyama et al., 2001; Inoue et al., 2002). 

Additionally, single knockout of Math3 does not affect cell fate. However, double 
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knockout of Math3 and Mash1 completely abolish the production of bipolar cells (Tomita 

et al., 2000). Thus, proneural bHLH factors function through a complex network of 

transcription factors that drives the genesis of particular cell fates based on the spatial and 

temporal expression of unique combinations of factors.  

 

Adult Retina in Fish and Amphibians 

The mature vertebrate retina contains three distinct layers: the retinal ganglion 

cell layer (GCL), the inner nuclear layer (INL) and the outer nuclear layer ONL. As the 

name suggests, the GCL contains RGCs and displaced amacrine cells. The INL is 

occupied by amacrine cells, bipolar cells, horizontal cells and Müller glia while the ONL 

contains rod and cone photoreceptors (Ohsawa and Kageyama, 2008). Retinal 

neurogenesis in amphibians and fish is unique because it persists throughout adulthood, 

adding more differentiated cells to the retina from its peripheral edge, termed the Ciliary 

Marginal Zone (CMZ). In Xenopus for example, at stage 41 of embryonic development 

(tadpole stage) differentiated cells occupy the central retina and uncommitted progenitors 

are maintained at the CMZ as illustrated in Figure 1 (Bilitou and Ohnuma, 2010). Studies 

have shown that in the CMZ different types of dividing cells are organized in a spatially 

restricted manner that reflects the sequence of embryonic retinal development: the most 

peripheral part of the CMZ is occupied by retinal stem cells while proliferative 

neuroblasts and their progeny are located more centrally (Perron et al., 1998; 

Agathocleous and Harris, 2009). Thus the mature retina in Xenopus provides an 

advantage to study the expression pattern of genes involved in embryonic retinal 
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development as it sheds light on temporal changes that occurred in the expression pattern 

of those genes during development.   

 

Chromatin Structure and Histone Modifications  

Nuclear DNA is wrapped around a disc of highly conserved proteins called 

histones to form the nucleosome, the basic unit of chromatin. Histones are classified into 

core histones, which contains four members: H2A, H2B, H3 and H4, and are the 

principle components of the nucleosome, and linker histones (H1), which bind the 

nucleosome at the cross point of DNA entry/exit sites (Luger et al., 1997; Vignali and 

Workman, 1998) .  Structurally, every nucleosome is an octamer that is composed of two 

H2A-H2B dimers and a H3-H4 tetramer (Luger et al., 1997).  

The state of chromatin structure is essential for regulation of gene expression 

since it determines accessibility to DNA. Chromatin exists in two dynamic forms: a 

condensed structure (heterochromatin) that prevents regulators of transcription from 

accessing and binding DNA, and a loosened form (euchromatin) that permits physical 

contacts with DNA sequence (Riccio, 2010).  These changes in the structure of chromatin 

are governed in part by post-translational modifications (PTMs) of histones, processes 

that are mediated by complexes that bind and covalently modify the amino acid side 

chains of histone tails that are exposed over the surface of the nucleosome. Histone 

modifications are diverse in nature and include, acetylation of lysines, methylation of 

arginines and lysines, and phosphorylation of serines and threonines, among others 

(Berger, 2007). Mechanistically, a histone tail may simultaneously harbor several 

modifications that collectively form a unique docking site that promotes the recruitment 
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of distinct protein complexes that subsequently affect chromatin structure and gene 

expression (Berger, 2007; Turner, 2007). 

The correlation between histone modifications and transcription states has been 

particularly investigated.  The current view is that under certain signaling conditions  

positive- or negative-acting histone PTMs are established on gene promoters which in 

turn can facilitate recruitment of activators or repressors of gene expression, respectively 

(Berger, 2007). For instance, a common feature of transcriptionally active promoters is 

that they are enriched with histone acetylation (Kouzarides, 2007; Turner, 2007). 

Similarly, trimethylation of lysine 4 in histone 3 (H3K4me3) is enriched on the 5’ end of 

open reading frames and correlates well with transcription activation and is thus 

considered an activating mark (Berger, 2007; Chi et al., 2010; Turner, 2007).  On the 

other hand, enrichment in modifications such as H3K9me3 and H3K27me3 label silenced 

genes (Boyer et al., 2006; Lee et al., 2006; Snowden et al., 2002). However, how well 

histone PTMs can be predictive of the state of transcription remains unclear.  

 

Chromatin Remodeling Enzymes 

Histone modifications are catalyzed by highly specialized enzymes that function 

in multimeric complexes which are specifically recruited to their target sites by DNA 

binding factors (Riccio, 2010). Examples of these enzymes include histone 

acetyltransferases (HATs) and histone deacetylases (HDACs) which catalyze the addition 

and removal of acetyl group to histone lysine residues, respectively. Several enzymes  

have been identified that promote histone methylation, including the polycomb group 

protein EZH2 that catalyzes the deposition of H3K27me3 (will be discussed later in 
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detail), and SUV3-9H1 which is responsible for H3K9me3 addition (Kuzmichev et al., 

2002; Zardo et al., 2008). Interestingly, it was initially thought that histone methylation is 

an irreversible mark (Pedersen and Helin, 2010). However, highly specialized histone 

demethylases have been recently identified. For instance, the Jumonji C-containing 

domain proteins UTX and JMJD3 have been shown to specifically and effectively erase 

H3K27me3 in zebrafish and HeLa cells, respectively (Lan et al., 2007; Xiang et al., 

2007). The discovery that H3K27me3 can be actively removed is significant because it 

implies that this mark can be involved in transient control of gene expression during 

development, and thus has the potential to play important roles in embryogenesis (Lan et 

al., 2007).  

 

Polycomb Genes and Development 

The polycomb group (PcG) genes are highly conserved factors that were initially 

identified in Drosophila as repressors of Hox genes during developmental patterning 

(Sparmann and van Lohuizen, 2006). Mutations in PcG members in Drosophila embryos 

disrupt the correct spatial and temporal expression pattern of Hox genes in body 

segmentation, leading to embryonic posteriorization (Ringrose and Paro, 2004). 

Interestingly, this function is also conserved in vertebrates: mutations in several 

polycomb factors lead to skeletal malformations as a result of disruption of Hox gene 

expression (Akasaka et al., 1996; del Mar Lorente et al., 2000). Recent studies have 

demonstrated that PcGs can mediate silencing of a broader range of genes, and are 

associated with important biological contexts such as maintenance and differentiation of 

ESCs, and cancer progression (Boyer et al., 2006; Lee et al., 2006; Schwartz et al., 2006).  
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 How PcGs repress genes is still under intensive study but evidence suggests that 

they work in complexes that antagonize the function of ATP-dependent nucleosome 

remodeling by the SWI/SNF complex and by directly preventing transcription initiation 

(Dellino et al., 2004; Francis and Kingston, 2001). Several highly conserved 

biochemically and functionally distinct complexes, termed Polycomb Repressive 

Complexes (PRCs) have been purified including, PRC1 and PRC2 (Martinez and Cavalli, 

2006; Margueron and Reinberg, 2011). PRC1 catalyzes the monoubiquitylation of lysine 

119 of histone H2A (H2A119ub) while PRC2 has methyltransferase activities and is 

responsible for H3K27me3 deposition (Kuzmichev et al., 2002; Sawarkar and Paro, 

2010). Interestingly, PRC1 binds the PRC2-mediated mark H3K27me3, providing a 

functional link between both complexes (Fischle et al., 2003). Indeed, PRC1 and PRC2 

co-occupy many target genes and both are essential for gene repression (Ringrose, 2007; 

Margueron and Reinberg, 2011). Evidence suggests that PRC2-mediated trimethylation 

of K27 facilitates the recruitment of PRC1 to the methylated region, promoting 

compaction of the chromatin and gene repression (Cao et al., 2005; Spivakov and Fisher, 

2007). However this particular recruitment order (PRC2 then PRC1) has not been firmly 

established (Margueron and Reinberg, 2011). It is noteworthy to mention that the 

function of PcGs involves catalytic and noncatalytic activities, both of which are required 

for gene repression (Surface et al., 2010). For the purpose of this thesis further discussion 

will be limited to PRC2. 
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The Polycomb Repressive Complex PRC2 

 The polycomb repressive complex PRC2 consists of four core subunits: SUZ12 

(the mammalian orthologue of Suppressor of Zeste Su (z) 12), EZH2 (the mammalian 

orthologue of Enhancer of Zeste (E (z)),  EED (Embryonic Ectoderm Development; the 

mammalian orthologue of Extra Sex Combs ESC) and Retinoblastoma associated Protein 

RbAP46/48 (also known as RBBP7/4; the mammalian orthologue of P55) (Fig. 2; 

Kuzmichev et al., 2002; Margueron and Reinberg, 2011). As mentioned before, EZH2 

bears histone methyltransferase activity through its SET domain: mutations in the SET 

domain cause loss of H3K27 me3 in Drosophila as well as in mammals (Fig. 3; 

Kuzmichev et al., 2002; Muller et al., 2002; Su et al., 2003). Interestingly, recent studies 

have identified a version of PRC2 that contains EZH1 instead of its homolog EZH2, and 

mediates methylation of H3K27 as well (Margueron et al., 2008; Shen et al., 2008). EED 

is a WD-40 repeat protein that interacts with EZH2 and is required for the EZH2 

methyltransferase activity (Ketel et al., 2005; Kuzmichev et al., 2005). It was shown 

recently that the C-terminal domain of EED interacts with H3K27me3 and is required for 

further EZH2-mediated methyltransferase activities, providing a mechanism for 

maintenance and propagation of H3K27me3 (Margueron et al., 2009). SUZ12 contains a 

zinc finger motif and is also required for EZH2 catalytic activities (Pasini et al., 2004). 

Together, EZH2, EED and SUZ12 constitute the minimal number of PRC2 subunits 

required for catalytic activity and subsequent initiation of gene repression (Ketel et al., 

2005; Sparmann and van Lohuizen, 2006). Recently, more subunits of PRC2 have been 

identified including AEBP2 , PCL and JARID2, and have been shown to occupy most of  
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Figure 2. Components of the polycomb complex PRC2. The core components are 
EZH1/2, SUZ12, EED and RbAp46/48. Other auxiliary partners include PCL, JARID2 
and AEBP2. Modified from Margueron and Reinberg, 2011. 
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PRC2 target genes (Nekrasov et al., 2007; Peng et al., 2009; Shen et al., 2009; Margueron 

and Reinberg, 2011). The exact function of these components is not well understood, but 

evidence suggests that while they are not essential for PRC2-mediated catalytic function, 

their presence optimizes PRC2 enzymatic activities (Margueron and Reinberg, 2011). 

 

Roles of PRC2 and H3K27me3 in Differentiation and Cell  

Fate Commitment 

There has been a great interest in the developmental roles of PRC2 in recent 

years. Single mouse knockouts of Suz12, Ezh2 and Eed have been generated and found to 

be lethal at early postimplantation stages, displaying severe developmental and 

proliferative defects (Faust et al., 1998; O'Carroll et al., 2001; Pasini et al., 2004). 

Although these mutations demonstrate how essential PRC2 is for development, they 

prevent further understanding of the tissue-specific roles that PRC2 might play in 

differentiation and cell fate acquisition.  

Important insights into the roles of PRC2 in development came from studies on 

ESCs. Genome wide analysis of PRC2 targets in ESCs revealed that PRC2 and its mark 

H3K27me3 occupy the promoters of key developmental regulators that are repressed in 

ESCs, suggesting a role in the maintenance of ESC pluripotency (Boyer et al., 2006; Lee 

et al., 2006). However, this role has been questioned in more recent studies (Chamberlain 

et al., 2008; Surface et al., 2010). ESCs derived from the Suz12 knockout can be 

established, but their ability to differentiate in culture is severely compromised, 

indicating that PRC2 is not strictly required for the maintenance of stem cells 
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Figure 3. The polycomb complex PRC2 functions. PRC2 recruitment to gene promoters leads to deposition of 
H3K27me3, which is associated with gene repression. PRC2 is also linked to chromatin compaction. 
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(Pasini et al., 2007). Alternatively, it is proposed that PRC2 has a prominent role in the 

proper stepwise differentiation of ESCs (Pietersen and van Lohuizen, 2008). In ESCs 

many ofthe genes involved in differentiation are co-occupied by PRC2 and its repressive 

mark H3K27me3 and the activating mark H3K4me3, forming a unique status of “bivalent 

domain” (Bernstein et al., 2006). Upon differentiation, PRC2 occupancy is lost and 

H3K27me3 is removed while H3K4me3 is maintained, allowing expression of 

differentiation genes. Thus, the PRC2-mediated repression of the developmental gene 

promoters occupied with the bivalent domain is transient and seems to prime ESCs for 

subsequent lineage commitment and cell fate decisions rather than maintaining 

pluripotency (Landeira et al., 2010; Pietersen and van Lohuizen, 2008; Surface et al., 

2010).  

Based on published data from ESC differentiation assays, it is predicted that 

tissue-specific inactivation of PRC2 core components during development should lead to 

suppression of differentiation and cell fate acquisition (Margueron and Reinberg, 2011). 

However, observed outcomes from studying the effect of PRC2 mutations on tissue 

development suggest that PRC2 function is context-specific and depends on the genes 

being targeted for repression. In blood development for example, a mutation in Eed 

causes a partial block in thymocyte differentiation (Richie et al., 2002). Similarly, 

inactivation of Ezh2 in adipose tissue impairs adipocyte differentiation because of an 

abnormal activation of canonical Wnt signaling, a major inhibitor of adipogenesis (Wang 

et al., 2010). In contrast, inhibition of Ezh2 function in the mouse epidermal progenitors 

results in accelerated skin development due to premature activation of the transcription 

factor AP-l, which directs the initiation of the late epidermal terminal differentiation 

18 



 

 

19

program (Ezhkova et al., 2009; Pirrotta, 2009). In many cases a marked reduction in 

tissue cell proliferation is also observed, suggesting an additional role of PRC2 in 

controlling the balance between proliferation and differentiation (Chen et al., 2009; 

Ezhkova et al., 2009). This is supported by data from cancer studies where upregulation 

of Ezh2 has been linked to different types of malignancies, and is used as a marker for 

aggressive prostate and breast cancer (Varambally et al., 2002; Kleer et al., 2003; 

Margueron and Reinberg, 2011). 

 

The Roles of PRC2 and H3K27me3 in Neurogenesis 

The first glimpse of possible functions of PRC2 in neural differentiation came 

from ESCs studies where it has been shown that many of the genes involved in 

neurogenesis are targets for PRC2-mediated deposition of H3K27me3 in ESCs (Boyer et 

al., 2006; Lee et al., 2006). In line with these data, a null mutation in Suz12 blocks ESC 

ability to differentiate into neurons in culture under certian differentiation conditions 

(Pasini et al., 2007). Interestingly, sustained maintenance of H3K27me3 by knocking 

down of the H3K27me3-specific demethylase Jmjd3 is also detrimental to ESC neural 

differentiation, further suggesting that dynamic regulation of H3K27me3 deposition is 

essential for the proper execution of the differentiation program (Burgold et al., 2008; 

Sen et al., 2008).  

As data from ESC culture assays were promising, several studies have 

investigated the roles of PRC2 in the differentiation of neural progenitors in vivo and in 

vitro. In line with studies on non-neural tissue development, the function of PRC2 during 

neural development is heavily context-dependent. For instance, in the mammalian cortex, 



 

 

20

Ezh2 conditional inactivation results in increased production of neurons at the expense of 

astrocytes. In this model Ezh2 restricts the ability of neural progenitors to generate 

neurons by repressing the expression of the proneural bHLH factor neurogenin1 during 

the late phase of neocortical development when the time is proper for astrocyte 

production. Thus Ezh2 plays a direct role in controlling cell fate switch from neurons to 

astrocytes (Hirabayashi and Gotoh, 2010; Hirabayashi et al., 2009). A similar model was 

proposed in  postnatal olfactory bulb neurogenesis where H3K27me3 suppresses the 

expression of neurogenic genes in neural stem cells, thus promoting gliogenesis (Lim et 

al., 2009).  This role is markedly different from Ezh2 function in  differentiation of the 

mouse embryonic neural stem cells isolated from the telencephalon at E.14 where Ezh2 

appears to control the cell fate choice between oligodendrocytes and astrocytes 

(Hirabayashi and Gotoh, 2010). Here, while Ezh2 expression is maintained in 

oligodendrocytes, downregulation of Ezh2 expression is essential to promote the 

production of astrocytes (Sher et al., 2008).  

Finally, the roles of PRC2 during eye development have been poorly investigated. 

A preliminary analysis of the expression pattern of Ezh2 in the mouse retina suggests that 

it is expressed during retinal development, mainly in the GCL, and downregulated 

postnatally (Rao et al., 2010).  High levels of H3K27me3 were also observed in the GCL 

in embryonic retina. However, unlike Ezh2, H3K27me3  persists in RGCs during the 

adult life. In Xenopus, Ezh2 and Eed are expressed in the developing CNS, including the 

eyes, but further investigation of their function during eye organogenesis was not 

reported (Barnett et al., 2001; Satijn et al., 2001; Showell and Cunliffe, 2002). 
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 The goal of this work was to examine how PRC2 may participate in eye 

development using Xenopus laevis as a model system. In Chapter 2, I describe the 

cloning of XSuz12 and investigate its expression pattern, along with the other PRC2 core 

subunits, in Xenopus embryos. The principle conclusion here is that all the major 

components of PRC2 are coincidently expressed in retinal progenitors during eye 

development.  In Chapter 3, I examine the functional contribution of Ezh2 and Suz12 to 

different aspects of eye development using a loss of function strategy. Additionally, in 

collaboration with Dr. Gert Veenstra’s group, I identify potential targets for the histone 

methylation mark H3K27me in the retina.  The data demonstrate that PRC2 is required 

for the proper transition from proliferation to differentiation, and is involved in the 

regulation of important regulators of retinal development, including homeodomain 

containing genes. In Chapter 4, I explore the expression and the function of the newly 

identified component of PRC2, Jarid2 during retinal neurogenesis. The data revealed that 

Jarid2 has a distinct expression pattern, as it is abundant in postmitotic retinal neurons 

rather than progenitors, and is important in the regulation of retinal neurogenesis. 

Collectively, these findings establish PRC2 as a major player in retinal neurogenesis and 

suggest that it may have multiple roles during eye development. 
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Abstract 

The Polycomb repressive complex 2 is a multimeric aggregate that mediates 

silencing of a broad range of genes, and is associated with important biological contexts 

such as stem cell maintenance and cancer progression. PRC2 mainly trimethylates lysine 

27 of histone H3 and is composed of three essential core subunits: EZH2, EED and 

SUZ12.  The Xenopus orthologs of PRC2 subunits Ezh2 and Eed have been described but 

Suz12 remained unidentified. Here, we report the cloning of the Xenopus Suz12, and 

determine its spatiotemporal expression during development. Xsuz12 transcript is 

provided maternally and continues to be expressed throughout development, particularly 

in the anterior part of the developing central nervous system. Importantly, comparative 

analysis of the expression of the PRC2 subunits Xez, Xeed and Xrbbp4 indicates that their 

expression largely coincides with Xsuz12 in the nervous system, suggesting that PRC2 

may have unexplored functions in the development of the frog central nervous system. 

 

Introduction 

The polycomb group (PcG) genes are highly conserved factors that were initially 

identified in Drosophila as repressors of Hox genes during developmental patterning 

(Sparmann and van Lohuizen, 2006). Studies have demonstrated that PcG-mediated 

repression is not restricted to Hox genes, and has been implicated in the biology of 

embryonic stem cells and cancer (Boyer et al., 2006; Lee et al., 2006; Schwartz et al., 

2006).  How PcGs repress gene expression is not well understood but evidence suggests 

that they work in complexes that can directly interfere with transcription initiation or 

antagonize the function of the chromatin remodeling complex SWI/SNF ((Dellino et al., 
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2004; Francis and Kingston, 2001). Three complexes with distinct biochemical and 

functional properties, termed Polycomb Repressive Complexes (PRCs), have been 

purified thus far: PRC1, PRC2 and PHORC ((Saurin et al., 2001; Shao et al., 1999; 

Sparmann and van Lohuizen, 2006).  

The polycomb repressive complex PRC2 consists of three core subunits: Suz12 

(the mammalian ortholog of the Drosophila Suppressor of Zest Su(z)12), Ehz1/2 (the 

mammalian orthologs of the Drosophila Enhancer of zeste E(z)) and Eed (the mammalian 

ortholog of the Drosophila Extra Sex Combs Esc) (Kuzmichev et al., 2002). EZH2 bears 

a histone methyltransferase (HMTase) activity through its SET domain that catalyzes the 

trimethylation of H3K27 in vitro as well as in vivo (Kuzmichev et al., 2002; Muller et al., 

2002; Su et al., 2005). H3K27 is a histone mark that is associated with the maintenance 

of gene repression in multiple developmental processes (Barski et al., 2007; Boyer et al., 

2006; Schuettengruber et al., 2007). EZH2 can also interact with DNA methyltransferases 

thus directly controlling DNA methylation (Vire et al., 2006). The exact functions of 

SUZ12 and EED are largely unknown, but both proteins are required for the EZH1/2 

methyltransferase activity (Ketel et al., 2005; Kuzmichev et al., 2005; Margueron et al., 

2008; Pasini et al., 2004; Shen et al., 2008). EZH2, EED and SUZ12 constitute the 

minimal PRC2 subunits required for HMTase activity and subsequent initiation of gene 

repression(Ketel et al., 2005; Sparmann and van Lohuizen, 2006). PRC2 also contains 

other subunits that have been shown to be important for its function. For instance, the 

Drosophila NURF55 and its vertebrate ortholog RbAP48 (also named RBBP4) enhances 

the catalytic activity of PRC2 and is required for its nucleosome binding (Cao and Zhang, 

2004; Nekrasov et al., 2005). 
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The roles of SUZ12 in development have been poorly explored in part because 

the mouse knockout of Suz12 suffers severe developmental abnormalities and dies shortly 

after gastrulation (Pasini et al., 2004). One of the emerging roles of Suz12 is its 

involvement in the mammalian embryonic stem (ES) cell pluripotency.  In ES cells 

SUZ12 mediates repression of a large set of developmental genes that are implicated in 

differentiation and cell fate decisions (Boyer et al., 2006; Lee et al., 2006). In agreement 

with these findings, ES cells derived from mouse Suz12 knockout display a loss of 

H3K27me3 mark and upregulation of differentiation-specific genes, impairing ES cell 

differentiation in culture (Pasini et al., 2007).  

To study the possible roles of PRC2 in X. laevis development it is necessary to 

characterize all subunits that are important for the complex to function properly. To date 

only two of the core subunits (Xez and Xeed) have been cloned in X. laevis and their 

expression patterns have been only partially explored. Thus, cloning the Suz12 gene and 

comparing its expression pattern to other PRC2 subunits in Xenopus is essential for 

understanding how this complex may function in proliferation, tissue specification and/or 

subsequent differentiation throughout the frog development.  In this study we report the 

cloning of the X. laevis ortholog of Suz12 (named Xsuz12 hereafter) and characterize its 

spatiotemporal expression during development.  

 

Methods and Materials 

Cloning of Xsuz12 

Primers were designed based on available X. laevis Suz12 ESTs found in the 

NCBI database (BU907606.1 and CA791061.1). The following primers were used to 
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amplify Suz12 from a cDNA library prepared from whole embryos at stage 17-18: 

forward, 5’- TAATTACCCCGTATGGCC- CCTCAGAAGCAC-3’, reverse, 3’-

ACACAGCAAAAAGCAGAAGCCCTGAAGG-5’. PCR was performed using Pfu turbo 

polymerase (Stratagene), and a band of 2.1 kb, corresponding to the predicted molecular 

weight of XSuz12 full length cDNA (as compared to the molecular weight of its X. 

tropicalis orthologue) was isolated and sequenced by the University of Utah Sequencing 

Core Facility. Final Xsuz12 sequence was submitted to GenBank (accession number 

FJ905047). qRT-PCR and data analyses were performed as was previously described 

(Logan et al., 2005b). 

Alignment and phylogenetic analyses were performed using MacVector and CLC 

Sequence Viewer software (http://www.clcbio.com/index.php?id=28), respectively. 

Neighbor-joining algorithm was used to construct SUZ12 phylogenetic tree, and 

reproducibility of branching points was determined by performing 100 bootstrap 

reiterations. EF1  was used as a loading control for PCR, using the following primers, 

forward, 5 -CAGATTGGTGCTGGATA- TGC-3 ; reverse, 5 -

ACTGCCTTGATGACTCCTAG-3 . 

 

In situ hybridization 

 Digoxigenin-labeled antisense probes that span the first 700 bp and 744 bp of 

Xsuz12 and Xrbbp4 cDNA, respectively, were transcribed using T7 RNA polymerase 

after plasmid linearization. Xrbbp4 probe was synthesized from a full length cDNA clone 

(accession number BC077257) that was purchased from Open Biosystems. Xez and Xeed 

probes were generous gifts from Dr Elizabeth A. Jones and Dr Vincent T. Cunliffe, 
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respectively. Embryos were fixed with 4% paraformaldehyde (PFA) in phosphate buffer 

solution (PBS). In situ hybridization was performed as previously described (Hutcheson 

and Vetter, 2001).  

 

Results and Discussion 

Cloning Xsuz12 

To isolate the full length cDNA of Xsuz12, we first identified Xenopus EST 

sequences in the NCBI database that showed high similarities to the mammalian Suz12. 

We designed forward and reverse primers based on two of these EST sequences, 

BU907606.1 and CA791061.1, respectively, and used them to amplify the full length 

Xsuz12 from a cDNA library prepared from whole embryos at stage 17/18 using PCR. 

We obtained a band of 2.1 kb, corresponding to the predicted molecular weight of Xsuz12 

full length cDNA as compared to the molecular weight of its X. tropicalis ortholog. The 

band was sequenced and found to encode for a protein that is composed of 696 amino 

acids. Sequence alignment shows that the predicted protein is highly similar to its 

vertebrate orthologs, and contains two well conserved domains: a zinc finger motif and a 

VEFS box, which are characteristics of the SUZ12 protein, spanning amino acids 405-

428 and 501-638, respectively (See supplementary data). Evidence suggests that both 

domains are important for SUZ12 function. For instance, the VEFS box of SUZ12 is 

required for SUZ12-EZH2 interaction (Yamamoto et al., 2004).  Construction of a 

phylogenetic tree confirmed that Xsuz12 is closely related to its vertebrate orthologs (see 

supplementary data).  
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Expression pattern of Xsuz12 

We first examined temporal expression of Xsuz12 by performing reverse 

transcriptase-polymerase chain reaction (RT-PCR) using RNA extracted from different 

developmental stages up to stage 41 (tadpole stage). We detected Xsuz12 expression at 

all stages examined, starting as early as fertilized egg (see supplementary data). This 

indicates that Xsuz12 transcript is maternally supplied then zygotic expression is initiated 

later on, in agreement with the expression data of the PRC2 subunits, Xeed and Xez 

(Satijn et al., 2001; Showell and Cunliffe, 2002). We confirmed these results by real time 

quantitative RT-PCR (qRT-PCR), which also showed robust Xsuz12 expression after 

neural induction in neurula and tail bud stage embryos (see supplementary data). 

 To define tissues where Xsuz12 is expressed we performed whole-mount in situ 

hybridization analysis. Generally, Xsuz12 was mainly detectable in the developing central 

nervous system along the anterior-posterior axis with a particularly strong signal in the 

anterior part of the embryo (Fig. 4). Expression starts to become apparent in the open 

neural plate at around stage 15 (Fig. 4A, B). By stage 20-22 Xsuz12 transcript is seen in 

the developing spinal cord and in the head region of the embryo including the developing 

optic vesicles (Fig. 4C-F). From stage 24 onward, Xsuz12 expression is well defined in 

the head region, including developing eye, branchial arches, otic vesicles and in the 

forebrain (Fig. 4G-L). We also noticed the presence of a recognizable signal in the tail 

region that is obvious in the tail bud stages (Fig. 4I, K). Further, we performed in situ 

hybridization analysis on several cross sections taken along the anterior posterior axis 

of embryos at stage 41 (tadpole stage). We found that Xsuz12 expression was particularly 

robust in areas surrounding the ventricular zones in the brain (Fig. 4M, N) and in the 
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spinal cord (Fig. 4O). Brain and spinal cord expression of Xsuz12 is also detected in 

cross sections made at tailbud stages (data not shown). In situ hybridization signal cannot 

be detected when a sense probe is used (Fig. 4K inset).  

 

Expression of Xeed, Xez and Xrbbp4 

 If the PRC2 complex is active and plays important roles in the developing 

nervous system in Xenopus, then we should expect that the expression pattern of its 

subunits largely, if not fully, coincide. Accordingly, we first sought to compare the 

spatial expression of Xsuz12 to those of Xez and Xeed, as both genes have been 

previously cloned but their expression was not fully characterized (Barnett et al., 2001; 

Satijn et al., 2001; Showell and Cunliffe, 2002).  Xez and Xeed expression can be clearly 

seen at stage 16 in the anterior open neural plate (Fig. 5A, C). We found that Xez is 

expressed along the anterior-posterior axis and is not restricted to the anterior embryo as 

was previously reported (Fig.5, B, E; Barnett et al, 2001). At stage 19, Xez and Xeed 

transcripts are obvious in the presumptive spinal cord and by stage 24 both transcripts are  

expressed in the head region, including the emerging optic vesicle, as well as in the 

developing spinal cord (Fig. 5B-H). In the tail bud stages, Xeed and Xez expression 

persists anteriorly in the branchial arches, the otic vesicle, the forebrain and the 

developing eyes (Fig. 5I-Q). As the case of Xsuz12 a weak but detectable staining can be 

seen in the tail region (Fig. 5I, K, M and P). Finally, we sought to characterize the 

expression of Xrbbp4, a vertebrate ortholog of the Drosophila Nurf55. This subunit has 

been purified from the PRC2 complex in Drosophila embryos and from HeLa cells, and 

is required for H3 binding (Cao et al., 2002; Czermin et al., 2002; Nekrasov et al., 2005). 
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Figure 4. (A-L) Whole mount in situ hybridization analysis of Xsuz12 expression starting 
from stage 15 (neurula). A, B, C and G are dorsal views.  D, F and H are anterior views. 
E, I, G, K and L are lateral views. G and L are magnifications of the head region as 
viewed laterally at stage 26 and 34, respectively. Inset in K shows an example of a whole 
mount in situ hybridization that was performed with Xsuz12 sense probe. (M-O) In situ 
hybridization analysis performed on traverse sections from the head region at stage 41. M 
and N sections are at the levels of forebrain and hindbrain, respectively. O is a traverse 
section in the spinal cord. Stages are indicated at the lower right corner of each image. ot, 
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Figure 5. Comparison of Xez and Xeed spatial expression during frog development as 
assessed by whole mount in situ hybridization. A B, C, D, E and G are dorsal views.  F 
and H are anterior views. I, K, M and P are lateral views. J, L, N and O are magnifications 
of the head region in I, K, M and P, respectively. ot, otic vesicle; ba, branchial arches; e, 
eye.   
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RBBP4 is also known to interact with other protein complexes as well, such as the N-

CoR complex (Jones et al., 2001). Xrbbp4 has been cloned but its expression pattern in 

the frog was not determined (Vermaak et al., 1999).  Therefore, we performed a whole 

mount in situ hybridization analysis on different embryonic stages of Xenopus and found 

that Xrbbp4 expression in the developing nervous system is virtually identical to that of 

Xsuz12, Xeed and Xez. Xrbbp4 is expressed in the developing eyes, branchial arches, otic 

vesicles and in the brain (Fig. 6A-L). Taken together we conclude that PRC2 principle 

components are expressed in the developing nervous system, suggesting an important 

role in neural tissue proliferation and/or differentiation. 

Because polycomb genes are highly conserved among species, we speculate that 

some of the physiological roles of PRC2, at least in certain developmental processes, may 

also be conserved. To date, the developmental expression pattern of mammalian PRC2 

genes has not been thoroughly investigated but available data suggest that they may be 

expressed in neural tissues in a pattern similar to that of the frog Xenopus. For instance, 

mouse Ezh2 is expressed during embryogenesis and is detected in the neural tube, optic 

vesicle, branchial arches and in the developing brain in general (Caretti et al., 2004; 

Laible et al., 1997).This may indicate that at least some of the biological functions of 

PRC2 in neural tissues are evolutionarily conserved.   
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Figure 6. Expression of Xrbbp4 by whole mount in situ hybridization analysis.  
A B, C and G are dorsal views.  D, F and H are anterior views. I, K, M and P are lateral 
views. Whole mount in situ hybridization performed with a sense probe is shown as 
inset in 3K. ot, otic vesicle; ba, branchial arches; e, eye.  
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THE POLYCOMB REPRESSIVE COMPLEX PRC2 REGULATES  

RETINAL DIFFERENTIATION IN XENOPUS 
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Abstract 

The mechanisms that govern the transition of retinal progenitors from 

proliferation to differentiation are not fully understood. Recent studies have established 

that the chromatin remodeling complex PRC2 is a key switch required for dividing cells 

to execute correct genetic reprogramming as they exit the cell cycle and undergo cellular 

differentiation in a variety of biological contexts, including in embryonic stem cells and 

during cortex development. PRC2 is involved in the initiation of gene repression mainly 

by trimethylating lysine 27 of histone 3 tail (H3K27 me3), a known histone mark that is 

associated with chromatin compaction. However, the role of PRC2 and its catalytic 

activities in vertebrate eye development has not been investigated.  

Here we report the involvement of PRC2 in regulating the transition from 

proliferation to differentiation during eye development. Using in situ hybridization 

analysis and BrdU labeling, we show that the transcripts of the core components of PRC2 

are coincidently expressed in retinal progenitors and are downregulated concomitant with 

retinal differentiation. Surprisingly, the levels of the methylation mark H3K27me3 that is 

catalyzed by PRC2 greatly increase in terminally differentiated cells. Inhibition of Xez, 

the catalytic subunit of PRC2 (the Xenopus homologue of Ezh2) using a translation 

blocking morpholino leads to a marked decrease in H3K27me3 in retinal cell types, 

indicating that PRC2 is required for this modification in Xenopus retina. Blocking Xez 

causes a reduction in eye size and inhibition of retinal differentiation genes. Importantly, 

targeted knockdown of Xez in retinal progenitors biases cell fate toward late born cell 

types, suggesting that retinal differentiation is delayed or inhibited.  In line with these 

data, H3K27me3 specifically decorates a subset of important regulators of retinal 
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development, some of which are known negative regulators of retinal differentiation.  

Taken together, our data establishes PRC2 as a major player in retinal neurogenesis and 

suggests that it may have multiple roles in eye development, including regulation of 

retinal proliferation and/or differentiation.  

 

Introduction 

In vertebrate retina, differentiation results in the formation of seven major cell 

types that are born in a highly conserved order (Ohsawa and Kageyama, 2008). Evidence 

suggests that retinal cell fate decisions are largely independent of cell lineage, but how 

multipotent retinal progenitor cells lose their multipotency and become committed to give 

rise to fully differentiated retinal cells remains unclear (Livesey and Cepko, 2001). The 

transition from proliferation to differentiation is a highly coordinated process, and 

involves downregulation of cell cycle genes, and activation of the retinal cell fate 

specification machinery (Agathocleous and Harris, 2009; Agathocleous et al., 2009). This 

switch from a genetic program that sustains proliferation to another that initiates neural 

differentiation is regulated by cross talk between transcription factors and signaling 

pathways, and requires extensive chromatin reorganization and general changes in gene 

expression (Hsieh and Gage, 2004; Ohsawa and Kageyama, 2008). Thus it is likely that 

mechanisms that regulate chromatin structure and global gene expression orchestrate 

critical transitional steps during neural development, including retinal differentiation 

(Lessard and Crabtree, 2010; Yamaguchi et al., 2005). 

Chromatin remodelers are complexes that dynamically regulate the condensation 

state of chromatin by governing posttranslational modifications of certain amino acids on 
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the N-termini of histones associated with the DNA (Turner, 2010). This is a critical 

function because transcription factors can only access DNA when chromatin is 

decondensed.  

The Polycomb group proteins have been shown to form distinct chromatin 

remodeling complexes that play fundamental roles during development (Lessard and 

Crabtree, 2010; Margueron and Reinberg, 2011). In particular, the function of PRC2 is 

essential in regulating the balance between proliferation and differentiation in a variety of 

contexts (Ezhkova et al., 2009; Yu et al., 2007). PRC2 mediates gene repression mainly 

through its methyltransferase activity that catalyzes the addition of H3K27 methylation to 

specific genomic loci, which act as docking sites for recruiting additional repressive 

complexes (Fischle et al., 2003; Kuzmichev et al., 2002; Rajasekhar and Begemann, 

2007). PRC2 consists of four core subunits: EZH2, SUZ12, EED and RBBP4/7, in which 

the catalytic activity is conferred by EZH2 (Margueron and Reinberg, 2011; Pietersen 

and van Lohuizen, 2008). RBBP4 is a homologue of the Drosophila Nurf55 which is 

required for nucleosome binding (Nekrasov et al., 2005). The exact functions of SUZ12 

and EED remain poorly understood, but both proteins are required for the EZH2 

enzymatic function (Pasini et al., 2007). 

 The roles of PRC2 in retinal development have not been explored because single 

mouse knockouts of the core PRC2 subunits are lethal at early postimplantation stages, 

and eye-specific conditional mutants have not been reported (Faust et al., 1998; O'Carroll 

et al., 2001; Pasini et al., 2004). In embryonic stem cells (ESCs), the PRC2-mediated 

mark H3K27me3 decorates many developmental regulators and cell fate genes, which 

contributes to their repression and primes the cells for subsequent lineage differentiation 
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and cell fate choices (Boyer et al., 2006; Lee et al., 2006; Pietersen and van Lohuizen, 

2008). Indeed, ESCs derived from the Suz12 mouse knockout fail to differentiate into 

neurons in culture conditions (Pasini et al., 2007). In the developing cortex, PRC2 

suppresses expression of the proneural bHLH gene Ngn1 in neural precursor cells to 

promote formation of astrocytes (nonneural cell fate) when the time is appropriate 

(Hirabayashi et al., 2009). PRC2 is also important for maintaining cell division in 

progenitors during skin development, and supports proliferation of metastatic cells in 

prostate cancer (Ezhkova et al., 2009; Varambally et al., 2002).  

Whether PRC2 and its components are required for eye development and 

underlying cell fate decisions is entirely unknown. A recent study has demonstrated that 

Ezh2 and its mark H3K27me3 are expressed during mouse retinal development but the 

significance of this finding has not been explored (Rao et al., 2010). We hypothesize that 

PRC2 functions in retinoblasts to regulate the transition from proliferation to 

differentiation. Exploring the functions of PRC2 in vertebrate eye development may 

provide insight into regulation of the genetic network that controls the neural potential of 

retinoblasts and how it leads to the generation of neurons.  

 

Materials and Methods 

Microinjections of mRNAs  

Capped mRNAs were synthesized in vitro using Message Machine kit (Ambion). 

mRNAs were injected alone or in combination with antisense morpholino (MO) in one 

animal dorsal blastomere of 8 cell stage Xenopus embryos (Huang and Moody, 1993). 

The following mRNAs were used in injections: GFP (500 pg), β-galactosidase (β-gal; 
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200 pg); Bcl-xl (450 pg). Embryos were collected at the appropriate developmental 

stages (according to Nieuwkoop and Faber, 1965), fixed and selected for expression of 

GFP or presence of X-gal staining in the anterior central nervous system. X-gal staining 

was performed on β-gal injected embryos as previously described (Turner and Weintraub, 

1994).  

 

In situ hybridization analysis 

In situ hybridization was performed on whole embryos and retinal sections as 

previously described (Hutcheson and Vetter, 2001). The following Digoxigenin (DIG)-

labeled riboprobes were used for the analysis: Xash1(Ferreiro et al., 1993), Xath5 

(Kanekar et al., 1997), Xfz5 (Sumanas and Ekker, 2001), CyclinD1 (Vernon and Philpott, 

2003), Xngnr-1 (Ma et al., 1996),  Xash3 (Zimmerman et al., 1993),  Vsx1 (D'Autilia et 

al., 2006), Sox2 (Mizuseki et al., 1998), Pax6 (Hirsch and Harris, 1997), NeuroD (Lee et 

al., 1995), Six3 (Zhou et al., 2000), Xrx1 (Mathers et al., 1997), En-2 (Hemmati-

Brivanlou et al., 1991), Hermes (Patterson et al., 2000) and Sbt1 (Logan et al., 2005a).  

 

Morpholinos 

Translation blocking morpholinos were engineered and purchased from Gene 

Tool LLC (Philomath, OR). The following MO sequences and their amounts were used 

in the eight cell injections: 

Xez ATG MO: 5’- CAGATTTCTTCCCCGTCTGGCCCAT-3’ (5ng) 

Xez UTR MO: 5’- TATCCAAAGGATGAATGGTCGCTCA-3’ (20-25ng) 

Xez control MO (scrambled sequence of Xez ATG MO):  
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5’- CGAATTCTTCTCCGCTTCGCGCACT-3’ (5ng) 

Suz12 MO: 5’- CCATGCGGGATACTACGAGTGATAA-3’ (15ng) 

 

Immunohistochemistry, TUNEL analysis and BrdU labeling 

Immunostaining was performed using previously described methods. In brief, 

embryos were grown to stage 41 in 0.1X MMR, fixed in 4% PFA for 45 minutes, 

embedded in OCT and cryosectioned at 14 microns.  After blocking (5% goat serum and 

0.1% Triton in PBS) for 30 minutes, sections were incubated with primary rabbit anti-

H3K27me3 antibody (Millipore, 1:100) overnight at 4 °C. Then, slides were washed and 

secondary Alexa Fluor 568-conjugated goat anti-rabbit antibody (Molecular Probes, 

1:2000) was added for 2 hours at room temperature. Sections were counterstained with 

Hoechst (1:15000) to visualize nuclei. BrdU and TUNEL labeling were performed as 

previously described (Agathocleous et al., 2009; Hensey and Gautier, 1998). 

Quantification in the TUNEL analysis was performed by dividing the number of TUNEL 

positive cells in the eye field of the injected side on those in the uninjected eye of the 

same embryo.   

 

Retinal analysis 

Morpholinos were injected in one dorsal blastomere of 32 cell stage embryos 

along with 300 pg of GFP mRNA (Huang and Moody, 1993). Embryos were grown to 

stage 41 and then fixed with 4% PFA for 45 minute. After sectioning, GFP positive cells 

were scored for cell type based on cell position and morphology as previously described 

(Moore et al., 2002).  
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Detection of H3K27me3 enriched regions 

ChIP-seq was performed as described for the stages indicated (Akkers et al., 

2009). Sequencing libraries were based on three biological replicate ChIP samples with 

similar recoveries and enrichment. Only sequence reads that map to unique positions in 

the genome were included for analysis. To compare developmental stages, for each data 

type/antibody the data were normalized for the number of sequence reads by randomly 

deleting reads from tracks with more sequence reads. To identify chromatin 

modifications around the 5' ends of genes of interest, a custom python script was used to 

determine read counts in 40 bins in a region of -10 to +10 kb surrounding the annotated 

transcription start sites of curated Xenbase genes. The X. tropicalis expression database 

was downloaded from Xenbase (xenbase.org), and genes expressed in the eye were 

selected for analysis. Clustering was performed using TMEV4.5 (tmev.org).  

 

Results 

PRC2 components are abundantly expressed in retinal progenitors 

Several studies have shown that multiple polycomb group genes are broadly 

expressed in the developing central nervous of Xenopus embryos, including the eyes 

(Reijnen et al., 1995; Showell and Cunliffe, 2002; Yoshitake et al., 1999). Indeed, 

expression of the PRC2 components is detected in the earliest period of eye development 

in the region of the eye field in the anterior neural plate, and persists during optic vesicle 

and optic cup stages (Aldiri and Vetter, 2009). We further characterized the expression 

patterns of Xez and other PRC2 core components in the mature eye at stage 41 (tadpole 

stage; Fig. 7C) using in situ hybridization analysis. At this stage, the differentiated retinal  
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Figure 7. The PRC2 core components are abundant in the CMZ region of mature 
retina at stage 41. (A, B, D and E) Expression of the PRC2 core subunits Xez, Xeed, 
Xsuz12 and Xrbbp4 in retinal sections by in situ hybridization. Notice that retinal stem 
cell domain is negative for staining (bracket in D as an example). (C) Stage 41 frog 
embryo with the section plain shown as a line. (F) schematic representation of different 
domains in the frog Xenopus eye at stage 41. CMZ: Ciliary Marginal Zone. RPE: Retinal 
Pigmented Epithelium.
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cells occupy the central part of the retina, while undifferentiated proliferating cells reside 

in the peripheral region, termed the Ciliary Marginal Zone (CMZ) (Perron et al., 1998).  

Several studies have shown that the temporal sequence of embryonic events during  

retinal development are reflected in the spatial distribution of cells in the CMZ region: 

the peripheral edge of the CMZ contains a small population of retinal stem cells while 

proliferating retinoblasts are located more centrally (Agathocleous and Harris, 2009). The 

most central part of the CMZ harbors differentiating retinal precursors (Fig.7F). Notably, 

all transcripts of PRC2 core subunits are abundantly expressed in the CMZ region, and 

are not detected in terminally differentiated cells (Fig. 7A-D).  Interestingly, the 

expression of PRC2 seems to be excluded from the retinal stem cell compartment (Fig. 

7D).  

To confirm that PRC2 components are expressed in actively dividing cells we 

pulsed stage 41 embryos with BrdU for 30 minutes then fixed for 1 hour and performed 

BrdU immunostaining and in situ hybridization analysis for Xez, XSuz12 or Rbbp4 on 

processed retinal sections. Indeed, most of the BrdU-labeled cells are also positive for 

PRC2 transcripts (Fig. 8). In summary, these data demonstrate that the expression of the 

PRC2 components is transient, and predominantly restricted to the retinal progenitor 

cells.  

 

H3K27me3 levels are elevated in postmitotic cells 

Since PRC2 catalyzes the addition of H3K27me3, a highly conserved function 

across species, we examined the distribution pattern of H3K27me3 by immunostaining of  
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Figure 8. The expression of the PRC2 components is abundant in retinal progenitors. 
The mRNA level of Xez, Xsuz12 and Xrbbp4 was assayed by in situ hybridization analysis 
on retinal sections at the tadpole stage (stage 41). Then immunostaining for BrdU was 
performed. Notice that the in situ hybridization signals largely coincide with BrdU staining in 
the CMZ region.   
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the retina at stage 41. Surprisingly, we found that global H3K27me3 levels correlate 

positively with retinal differentiation as H3K27me3 levels are clearly enriched in 

postmitotic retinal cells, in direct contrast to the expression pattern of PRC2 core genes 

(Fig. 9). It is possible that while PRC2 core subunits are actively transcribed in progenitor 

cells, their transcription is shut down or greatly reduced as progenitors progress toward 

differentiation while protein levels are maintained in postmitotic cells. We will return to 

this issue later.  

 

Knockdown of PRC2 function disrupts eye development 

The expression pattern of PRC2 components indicates a possible role in 

proliferation and/or differentiation of retinal progenitor cells. To determine whether  

PRC2 is involved in eye development we chose a loss of function approach. We designed 

an antisense oligonucleotide morpholino that blocks the translation of Xez mRNA 

(termed Xez ATG MO hereafter) and injected it in one dorsal cell of 8 cell stage embryos 

along with GFP mRNA as a tracer, and observed the overall effect on eye development at 

the tadpole stage (stage 41). We found that Xez ATG MO caused a dose-dependent 

reduction in the brain and eye size on the injected side (Fig. 10A,B). Injection of Xez 

control MO (a scrambled sequence of Xez ATG MO) had a minimal effect (Fig. 10B).   

A possible explanation for the observed tissue reduction on the injected side is 

that Xez MO may promote cell death. To investigate this possibility we first performed 

TUNEL analysis on Xez ATG MO injected embryos at stage 24 and found that these 

embryos do not show increased levels of apoptosis in the developing eye when compared 

to embryos injected with control MO (fold change in the number of TUNEL positive  
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Figure 9. H3K27 me3 levels are elevated in differentiated retinal cells. 
(A-C) Immunostaining of a retinal section with antibody against H3K27me3. (D-F) A 
magnification of the peripheral part of the retina showing a sharp increase in H3K27me3 
staining (green) as cells becomes fully differentiated. Retinal cells were counter stained with 
Hoechst (red) to reveal nuclei. Scale bar 40 μm.  
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Figure 10. Xez knockdown causes reduction in the eye size in a dose 
dependent manner. 
 (A) Quantification of number of embryos with a small eye at the injected side 
when increasing doses of Xez morpholino was injected. (B) Representative 
embryos injected with GFP only, Xez MO or Control MO along with GFP 
mRNA. 
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cells in the injected eye: 1.5 ± 2.5 SEM, n= 43 for Xez ATG MO injected; 2.2 ± 0.8 

SEM, n=21 for control MO and data not shown). Second, we reasoned that if this 

phenotype was primarily due to apoptosis then we should be able to rescue it by co-

injecting the mRNA encoding the Xenopus homologue of the anti apoptotic factor Bcl-xl 

along with Xez ATG MO (Tribulo et al., 2004). In agreement with the TUNEL data, 

injection of Bcl-xl mRNA was unable to rescue the Xez MO-induced microphthalmia 

(embryos with microphthalmia: 76% n= 45 for Xez ATG MO injected embryos; 79% n= 

84 for control MO + Bcl-xl mRNA injected embryos; Fig. 11). Taken together, we rule 

out apoptosis as a primary factor in Xez MO inducing eye malformation. 

 We were able to reproduce the effect on eye size by injecting either a morpholino 

that targets the 5’ UTR region of Xez (termed Xez UTR MO hereafter), or a previously 

characterized Suz12 MO that inhibits the translation of the PRC2 core subunit Suz12 

(Peng et al., 2009).  However, the effect of either morpholino was less penetrant than that 

of Xez ATG MO (embryos with reduced eye size: UTR MO 17% n = 36; SUZ12 MO 

41% n= 34; Fig. 12). In summary, PRC2 function is required for the formation of normal 

eye size in apoptosis-independent manner. We speculate that this effect is due to reduced 

proliferation, since it has been shown that PRC2 is required for cell proliferation in a 

variety of tissues (Ezhkova et al., 2009; Margueron and Reinberg, 2011). This hypothesis 

will be tested in future studies. 
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Figure 11. Apoptosis is unlikely to be responsible for 
microphthalmia. Coinjection of Bcl-xl mRNA with Xez MO cannot 
rescue the effect on eye size. B and D are the embryos shown in A and 
C, respectively, under green channel to highlight injected side. 



 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Knockdown of Xsuz12 phenocopies inhibition of Xez. 
Injection of a translation blocking MO against Suz12 produces a small eye 
phenotype, mimicking the effect of Xez knockdown. An independent MO 
against the UTR region of Xez also affects eye size.  
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Knockdown of PRC2 does not affect retinal progenitor specification or  

cell cycle genes 

Next we characterized the molecular effect of inhibiting Xez on eye development. 

We first tested whether Xez MO disrupts retinal progenitor specification by injecting one 

dorsal blastomere of 8-cell stage embryos with Xez ATG MO or control MO plus β-gal  

mRNA as a tracer and investigating the expression of Rx, Pax6, Six3 and Vsx1 by in situ 

hybridization analysis at stage 20. There was no apparent change in the expression 

intensity of all of the tested genes though there was a clear reduction in the size of the 

expression domain on the injected side, in agreement with our previous observation of a 

reduced eye size (Fig. 13A-D; embryos with a reduced expression domain 70% n= 90 for 

Rx, 85% n= 47 for Pax6, 81% n= 43 for Six3, 82% n = 74 for Vsx1). Similarly, we saw 

no effect on the expression intensity of Frz5, Sox2 and CyclinD1, while the expression 

domain was smaller (82% n=76 for Frz5, 81% n=62 for Sox2 and 81% n=16 for 

CyclinD1; Fig. 13E-G). Embryos injected with control MO showed no or minimal effect 

on the expression of the tested genes (embryos with normal expression: 100% n= 13 for 

Rx, 100% n= 19 for Pax6, 91% n= 11 for Six3, 93% n = 14 for Vsx1, 94% n=16 for Frz5, 

100% n=15 for Sox2 and 93% n=15 for CyclinD1; Fig. 14). Taken together, we conclude 

that blocking Xez does not inhibit the expression of factors required for the specification 

of the retinal progenitors or the expression of proliferation genes. 

 

Knockdown of PRC2 blocks expression of retinal differentiation genes 

The bHLH genes are major regulators of retinogenesis and shown to be heavily 

involved in retinal cell type specification (Hatakeyama and Kageyama, 2004).  
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Figure 13. Inhibition of Xez does not affect the expression levels of retinal 
progenitor genes.  Anterior view of stage 20 embryos after injection of Xez MO and 
β-gal to label injected side. The expression of Rx as well as all other markers revealed 
a relatively normal levels of expression, even though the eye is smaller. Dorsal side is 
up. 
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Figure 14. The expression domain of retinal progenitor markers is not affected in 
control MO injected embryos.  Frontal view of stage 20 embryos injected with Xez 
control MO. Injected side is highlighted in blue (β-gal staining). Dorsal side is up.  
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Interestingly, previous work demonstrated that PRC2 can mediate repression of neural 

differentiation genes, including proneural bHLH factors (Boyer et al., 2006; Hirabayashi 

et al., 2009).  The expression of the core subunits of PRC2 is observed before and during 

retinal neurogenesis in the optic cup stage, when proneural bHLH factors are active, 

suggesting that PRC2 may be involved in regulating retinal neural differentiation (Aldiri 

and Vetter, 2009). We therefore tested the effect of blocking the function of Xez on 

retinal neurogenesis by injecting XEZ ATG MO along with β-gal or GFP mRNA as a 

tracer in one dorsal blastomere at 8-cell stage embryos and determine the expression of 

several retinal differentiation factors by in situ hybridization analysis. We found that the 

expression of the proneural bHLH genes, Xath5, Xash1, Xash3, NgnR1 and NeuroD was 

lost or dramatically reduced on the Xez ATG MO injected side (55% n= 53 for Xath5, 

57% n=52 for Xash1, 47% n = 19 for NeuroD, 40% n=16 for Xash3, 43% n=30 for 

NgnR1; Fig. 15A-N). Further, the expression of Sbt1, a downstream target of Xath5 and 

NeuroD, as well as Hermes, a ganglion cell marker was suppressed (67% n=14 for Sbt1, 

84% n=31 for Hermes; Fig. 15G-L) (Patterson et al., 2000; Logan et al., 2005). The 

expression levels of Rx, Vsx1 and Sox2 at this stage were not affected (Fig. 15O-P and 

data not shown).  

Additionally, injection of Xsuz12 MO or Xez UTR MO mirrored the effect of 

Xez ATG MO, thought the effect was weaker (Fig. 16A-N). Thus, while PRC2 does not 

disrupt the specification of retinal progenitors it is essential for the upregulation of retinal 

differentiation genes, suggesting that PRC2 ensures the proper execution of the 

transcription program that governs progression from proliferation to differentiation.  
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Figure 15. The initiation of the expression of retinal differentiation genes is 
blocked by Xez inhibition. (A-P) Lateral view of embryos injected with Xez MO 
along with β-gal mRNA to mark the injected side. The levels of bHLH gene 
expression and their target Sbt1 is markedly reduced on the injected side, while the 
expression of Rx remains unaffected. At stage 34, the expression of the ganglion cell 
marker Hermes is reduced as well. (Q-W) The expression of proneural bHLH genes in 
embryos injected with control MO is largely unaffected. 
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Figure 16. Inhibition of Suz12 mimics the effect of Xez knockdown during the 
transition from proliferation to differentiation. (A-F) Front view of stage 20 
embryos injected with the indicated MOs after performing in situ hybridization for 
Rx+En, Vsx1 and Frz5. (G-N) Lateral view of stage 26 embryos.  
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Knockdown of PRC2 biases cell fate toward late born cell types 

Since Xez is required for the initiation of the proneural bHLH genes, a major 

determinant of cell fate decisions, we reasoned that blocking PRC2 may affect 

subsequent cell fate decision as well. In principle, blocking of Xez function in retinoblasts 

might lead to inhibition or delay in the genesis of neuronal cell types and/or promotion of 

nonneural cell fate. To address this we injected one dorsal blastomere at the 16 cell stage 

with Xez UTR MO or Suz12 MO along with GFP mRNA and counted the number of 

each retinal cell type that are positive for GFP in stage 41 retinal sections. Retinal cells 

were identified based on morphology and laminar position (Moore et al., 2002). When 

compared to control, inhibition of Xez or Suz12 caused a significant decrease in the 

percentage of early born cell types (e.g., ganglion cells), and an increase in the late born 

retinal cells, including nonneural cell types (Fig. 17). A preliminary analysis suggests that 

these non-neural retinal cells are positive for CRALBP, a Müller glia marker (data not 

shown).  

 

PRC2 is required for H3K27me3 in Xenopus retina 

The presence of high levels of H3K27me3 in retinal postmitotic cells contradicts 

the mRNA expression pattern of PRC2 subunits, raising the possibility that XEZ does not 

mediate the addition of H3K27me3 in Xenopus. Ezh2 has two mammalian paralogues; 

Ezh1 and Ezh2, both of which can catalyze the addition of H3K27me3 (Shen et al., 

2008). Although not identified in Xenopus, it is still possible that EZH1 but not EZH2 is 

active in postmitotic retinal cells. Thus we wanted to know whether Xenopus Ezh2 (Xez) 

is a factor in trimethylating H3K27 in the retina.  To address this question, we injected  
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Figure 17. Blocking Xez or Xsuz12 inhibits early born retinal cell types. 
Upper panel: retinal analysis after injection of Xez or Xsuz12 MOs. In both case 
there is an increase in later born cell types (i.e., Muller glia) at the expense of 
early born cell types (e.g., ganglion cells). Lower panel: representative images 
of retinal sections after injection of GFP mRNA only or with Xez UTR MO. 
Asterisks indicate degree of statistical significance when compared to injection 
of GFP mRNA only. Abbreviations: GC, ganglion cells; HC, horizontal cells; 
AM, amacrine cells; BP, bipolar cells; PR, photoreceptors; MG, Müller glia; 
ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. 
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XEZ ATG MO or SUZ12 MO with GFP mRNA in one cell of 32 cell stage embryos and 

immunostained retinal sections at stage 41 with an antibody that specifically recognizes 

H3K27 trimethylation. We found that GFP positive cells exhibit a marked reduction in 

the levels of H3K27me3, indicating that PRC2 function during development is required 

for H3K27me3 (Fig. 18A-D). Control MO does not affect H3K27me3 in Xenopus retina 

(Fig. 18E-F). Similarly, we found that Suz12 MO also causes a reduction in HEK27me3 

levels (Fig. 19A-D). We conclude that XEZ and XSUZ12 contribute to trimethylating 

H3K27 in Xenopus retina. However, these data could not rule out the chance that a 

Xenopus homologue of Ezh1 is present and has residual activity in postmitotic retinal 

cells. 

 

H3K27me3 is dynamic and selectively decorates a subset of Xenopus genes 

 Given that PRC2 is essential for retinal neurogenesis, we sought to understand the 

molecular mechanism underlying its function by defining retinal genes that are targeted 

for PRC2-mediated H3K27me3 deposition. For this purpose we collaborated with Dr 

Gert Veenstra’s group who has previously analyzed the dynamics of H3K27me3, RNA 

Polymerase II (RNAPII) and H3K4me3 occupancy during development of Xenopus 

tropicalis using chromatin immunoprecipitation (ChIP-seq) and RNA-seq technology 

(Akkers et al., 2009). Here, they analyzed the dynamics of H3K27me3 deposition on 

1841 genes that are known to be expressed in Xenopus eye based on Xenbase expression 

database of X. tropicalis. He compared the signal intensities of DNA methylation 

(DNAme; assessed by methyl-cap-sequencing; indicative of silencing), H3K4me3 

(activation mark), RNAP II and RNA levels (indicating active transcription) to that of  
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Figure 18. Xez is required for H3K27me3 deposition in Xenopus retina. 
Immunostaining of H3K27me3 (red) after co-injection of GFP mRNA with 
Xez ATG MO (A-D) or Control MO (E-F). Hoechst labels nuclei (blue). 
Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; GCL, 
ganglion cell layer. Scale bar 10 μm. 
 



 

73

 

 

 

 

 

 

 

 

 

Figure 19. Suz12 is required for H3K27me3 deposition in Xenopus retina.  
Immunostaining of H3K27me3 (red) after coinjection of GFP mRNA with 
Xsuz12 ATG MO. Hoechst labels nuclei (blue). Abbreviations: ONL, outer nuclear  
layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar 10 μm. 
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H3K27me3 across blastula (stage 9), early neurulation (stage 12), open neural plate 

(stage 16) and optic cup stages (stage 30). Occupancy was examined across ±10 kb from 

the transcription start site (TSS), and the data were hierarchy clustered and visualized in a 

heat map.  

 Remarkably, his analysis revealed that only 43 of the examined genes showed a 

considerable enrichment with H3K27me3 (see supplementary data; Table 1, and data not 

shown). Many genes that are expressed in the eye might have been excluded from this 

analysis in part because the Xenbase database is not complete, and many genes that are 

expressed in the retina are not represented. Therefore, we prepared a list of specific 

candidate genes that are expressed in the retina and known to have important functions 

during retinogenesis, such as components of Wnt and Notch signaling pathways, EFTFs 

and Sox2 (Dorsky et al., 1995; Van Raay et al., 2005; Zuber et al., 2003). The analysis 

was then repeated for the genes on this list. Among those, only a group of 11 genes are 

highly decorated with H3K27me3, further suggesting target selectivity of PRC2 (see 

supplementary data; Table 2).  

Overall, the analysis has revealed several aspects regarding the mode of action of 

PRC2 and the dynamics of its mark H3K27me3 (see supplementary data). First, we found 

that H3K27me3 abundantly marks only a fraction of the examined genes, suggesting that 

PRC2 recruitment to retinal gene promoters during development is selective. 

Interestingly, some promoters (i.e., Vsx1) seem to be repressed even when they are not 

highlighted with appreciable levels of H3K27me3 (compare RNA and H3K27me3 levels 

at stage 9 in supplementary data), indicating that H3K27me3-mediated repression is not 

the only mechanism for negative regulation of gene expression in Xenopus. Second, the 
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levels of H3K27me3 deposition on promoters fluctuate during development, suggesting 

that they  

are temporally regulated (Akkers et al., 2009). For instance, the bHLH factor NeuroD2 is 

enriched with H3K27me3 only during neurulation stages (stage 12-16) then methylation 

is drastically decreased during later stages, indicating that H3K27me3 deposition is 

exquisitely dynamic (see supplementary data). Third, many of the H3K27me3-labled loci 

belong to the homeodomain gene family, suggesting a possible evolutionarily conserved 

role of the polycomb proteins in the regulation of homeodomain gene transcription (see 

supplementary data). Fourth, some known negative regulators of neurogenesis are targets 

for H3K27me3 methylation. For instance, the bHLH gene Hes2 is strongly labeled with 

H3K27me3, and thus is a possible target for PRC2-mediated repression (see 

supplementary data). This may provide an explanation for why loss of Xez inhibits retinal 

differentiation since HES2 negatively  

regulates retinal neurogenesis and has been shown to promote glial cell fate when 

overexpressed in Xenopus (Solter et al., 2006). Finally, we noticed that H3K27me3 does 

not label the PRC2 core components Xez, Xeed, Suz12 or Rbbp4, suggesting that the 

catalytic function of PRC2 does not mediate repression of its own subunit expression 

during development (see supplementary data).  

 

Discussion 

Expression of PRC2 core subunits and H3K27me3 in Xenopus retina 

 The roles of the PRC2-mediated repression in the maintenance and differentiation
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Table 1. List of genes that are expressed in Xenopus eye and are targets for H3K27me3
 H3K27me3-marked genes  H3K27me3-marked genes 
1 lhx8|scaffold_187:638982-658982 23 tfap2b|scaffold_63:1588694-1608694 
2 tal1|scaffold_1:2814226-2834226 24 six2|scaffold_25:1417565-1437565 
3 slc32a1|scaffold_38:1173751-1193751 25 tbx5|scaffold_455:561233-581233 
4 gsx2|scaffold_107:798886-818886 26 pitx2|scaffold_89:421117-441117 
5 pax6|scaffold_399:634691-654691 27 isl2|scaffold_103:2341623-2361623 
6 neurod1|scaffold_15:4573788-4593788 28 fst|scaffold_700:467993-487993 
7 cldn5|scaffold_12:3162643-3182643 29 mab21l1|scaffold_80:320869-340869 
8 neurod2|scaffold_610:667037-687037 30 lhx1|scaffold_516:532853-552853 
9 dio3|scaffold_222:331385-351385 31 tbx2|scaffold_72:2271992-2291992 
10 tfap2e|scaffold_411:848848-868848 32 foxc1|scaffold_95:2476171-2496171 
11 fezf1|scaffold_121:2284147-2304147 33 foxd1|scaffold_113:1104930-1124930 
12 grem1|scaffold_37:3633915-3653915 34 otx2|scaffold_68:1506061-1526061 
13 nr2f1|scaffold_58:509696-529696 35 sox2|scaffold_245:1116801-1136801 
14 dll1|scaffold_2:6640524-6660524 36 meis2|scaffold_37:3122165-3142165 
15 nrp1|scaffold_503:281227-301227 37 pcdhl8|scaffold_16:2610731-2630731 
16 cpeb1|scaffold_417:460548..496578 38 rbpms2|scaffold_417:601773-621773 
17 tfap2a|scaffold_ 33:1101278..1120447 39 irx3|scaffold_146:2180665-2200665 
18 ppm1l|scaffold_ 50:1000058-1020058 40 neurog2|scaffold_ 89:985047-986929 
19 cyp26a1|scaffold_444:52089-72089 41 mrps30|scaffold_43:2621484..2629876 
20 fam43a|scaffold_319:1098866-1118866 42 h1f0|scaffold_88:869330-889330 
21 crx|scaffold_481:937053-957053 43 hes4|scaffold_207:1135429-1155429 
22 fnta|scaffold_79:998022-1018022   

 

76



 

77

 

 

 

 

 

 

 

 

 

 

 

 

 H3K27me3-marked genes 
1 fzd5|scaffold_264:931001-951001 
2 msx1|scaffold_441:684861-704861 
3 hes1|scaffold_245:61668-81668 
4 dll1|scaffold_2:6640524-6660524 
5 id3|scaffold_106:2568946-2588946 
6 sox2|scaffold_245:1116801-1136801 
7 six3|scaffold_25:1488110-1508110 
8 hes2|scaffold_73:304903-324903 
9 lhx2|scaffold_405:715299-735299 
10 six6|scaffold_68:3076029-3096029 
11 vsx2|scaffold_389:612128-632128 

 

Table 2. List of genes that are expressed in Xenopus eye and are targets for H3K27me3.



Discussion 

Expression of PRC2 core subunits and H3K27me3 in Xenopus retina 

 The roles of the PRC2-mediated repression in the maintenance and differentiation 

of ESCs, and during the development of several organs have been reported but its role 

underlying eye development remains unclear (Margueron and Reinberg, 2011). We 

reasoned that if PRC2 regulates some aspects of progression from retinal proliferation to 

differentiation then its components should be expressed in retinal progenitors during 

development. Indeed, in the retina the transcripts of PRC2 core subunits are transiently 

enriched in retinal progenitors in the CMZ region and downregulated in differentiated  

cells, in line with previously published data on skin and cortex development (Ezhkova et 

al., 2009; Pereira et al., 2010). This suggests the presence of a precise mechanism that 

tightly controls the maintenance of PRC2 transcription in retinal progenitors and shuts it 

off concomitant with differentiation. One possibility is that early transcription factors that 

drive eye specification control the expression of PRC2 and regulate its activities. 

Alternatively, PRC2 expression might be regulated by active signaling pathways in the 

retina such as Wnt signaling. Interestingly, loss of the Wnt component Frz5 partially 

mimics the effect of PRC2 inhibition, raising the possibility that retinal PRC2 expression 

is maintained by Wnt signaling (Van Raay et al., 2005).  

The global level of the H3K27me3 mark is clearly elevated in postmitotic cells, 

which, though surprising, is still in agreement with the overall pattern of H3K27me3 in 

several tissues, including mouse retina and chick spinal cord (Akizu et al., 2010; Rao et 

al., 2010). The inverse correlation between PRC2 transcription levels and H3K27me3 

depositions in Xenopus retina is puzzling, but may suggest that PRC2 proteins persist 
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during neural differentiation to modify chromatin in postmitotic cells. In support of this 

hypothesis, blocking translation of Xez in retinal progenitors negatively affects 

H3K27me3 levels in postmitotic cells. Yet, it remains necessary to directly investigate 

the presence of PRC2 proteins in mature retina by western blot or immunostaining. PRC2 

protein functions might also be modulated in postmitotic cells by association with 

binding partners or by posttranslational modifications such as phosphorylation. Indeed 

EZH2 contains several phosphorylation sites that inhibit or enhance EZH2 catalytic 

function (Margueron and Reinberg, 2011).  

Why H3K27me3 is enriched in retinal differentiated cells remains unclear but it is 

possible that it is used to stabilize terminal cell fate decisions by permanently suppressing 

the expression of all genes that are not related to the homeostasis of the fully 

differentiated cells. We speculate that H3K27me3 deposition in postmitotic cells is very 

stable and persists throughout adult life, unlike the case during development as will be 

discussed later. 

 

Possible involvement of PRC2 in retinal proliferation 

It has been shown that PRC2 is involved in controlling the proliferation capacity 

of cells during development and in cancer. For instance, skin and pancreas cells 

harboring Ezh2 mutants are less proliferative due to derepression of tumor suppressor 

loci, which are known polycomb group targets (Bracken et al., 2007; Chen et al., 2009; 

Ezhkova et al., 2009). In cancer, altered levels of Ezh2 have been associated with the 

progression and aggressiveness of many cancer types, underscoring the importance of 

PRC2 in proliferation (Bryant et al., 2007; Margueron and Reinberg, 2011; Varambally et 



 

80

al., 2002). We found that there is a marked reduction in eye size upon inhibition of PRC2 

function, an indicator of a possible effect on proliferation. Initial assessment suggests that 

this microphthalmia is not due to increased levels of apoptosis or to a major alteration of 

eye patterning but it still remains unclear whether progenitors retain their ability to divide 

or are proliferating more slowly. Further analysis of BrdU uptake and proliferation 

markers is required. 

PRC2 regulates retinal differentiation in Xenopus 

Given that PRC2 mediates the repression of differentiation genes in ESCs it was 

initially predicted that the removal of PRC2 should lead to premature cellular 

differentiation. However, it has become increasingly clear that PRC2 is essential for the 

differentiation of ESCs in culture, as knockout of PRC2 function negatively affects the 

ability of ESCs to differentiate (Boyer et al., 2006; Chamberlain et al., 2008; Pasini et al., 

2007). During organogenesis, the effect of Ezh2 conditional knockouts is context-

dependent, but in certain cases it leads to accelerated differentiation and premature 

upregulation of late terminal differentiation genes such as during epidermal development 

(Ezhkova et al., 2009). In our model system, we found no evidence for premature 

expression of retinal differentiation genes upon inhibition of PRC2 function. Rather, loss 

of PRC2 inhibited the expression of the proneural bHLH genes, while retinal progenitor 

specification genes were largely unaffected. Additionally, knocking down of PRC2 core 

subunits altered subsequent cell fate choices by promoting a nonneural cell fate at the 

expense of early born cell types, consistent with loss of proneural gene expression. Thus 

our data support a model in which PRC2 is required for the proper activation of the 

retinal differentiation program during the transition from proliferation to differentiation 
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and do not support a role of PRC2 in preventing premature differentiation in retinal 

progenitors.  

Given that H3K27me3 levels increase concomitant with retinal differentiation, it 

is tempting to speculate that PRC2 may orchestrate several steps during neurogenesis. 

For instance, PRC2 might participate in coordinating the retinal differentiation programs 

executed by the proneural bHLH proteins. It will be interesting to examine whether 

proneural bHLH factors retain their ability to promote cell fate specification when PRC2 

function is blocked.  

 

H3K27me3 deposition during development 

Understanding the mechanism by which PRC2 is regulating progression from 

proliferation to differentiation relies in part on identifying the retinal target genes of 

H3K27me3 during development. We found that the pattern of H3K27me3 deposition on 

retinal gene promoters is selective, where only a subgroup of the investigated genes are 

decorated with H3K27me3, suggesting that PRC2 is selectively recruited to the 

promoters of certain genes during retinal development. Interestingly, many of the 

H3K27me3 targets in our list belong to the homeodomain-containing group, a major 

regulator of eye development. However, whole mount in situ data upon knockdown of 

Xez does not indicate a major effect on homeodomain gene expression during the optic 

vesicle stage, although we saw a modest expansion in the expression of Rx domain during 

neurulation (data not shown). We do not know whether inhibition of PRC2 function 

affects homeodomain gene expression during the optic cup stage and/or later stages. A 
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quantitative PCR analysis might be necessary to accurately assess changes in the gene 

expression of H3K27me3-occupied genes after inhibition of PRC2 function.  

Some of the identified H3K27me3 targets include negative regulators of 

neurogenesis such as the transcription factor Hes2 (Fig. 24). This is interesting because it 

provides a possible mechanism by which PRC2 functions during eye development since 

overexpression of Hes2 blocks proneural gene expression, and promotes Müller glia 

formation in Xenopus (Solter et al., 2006).  In this model PRC2 functions to prevent the 

premature expression of negative regulators of retinogenesis, thus promoting the 

progression of neural differentiation by preserving the neural potential of retinal 

progenitors. Consequently, blocking PRC2 function could lead to misexpression of 

negative regulators of retinogenesis, which would disrupt the progression from 

proliferation to differentiation.  

Alternatively, since H3K27me3 also decorates non-neural genes (Akkers et al., 

2009), blocking PRC2 may lead to a global misexpression of a large group of genes that 

ultimately disrupts the progression of neurogenesis. We do not favor this model because 

previous studies have shown that while PRC2 occupies the promoters of large number of 

genes in ESCs, its inhibition led to derepression of only a minority of those (Boyer et al., 

2006; Ezhkova et al., 2009).  Additionally, the overall effect of PRC2 conditional 

mutants on organ development is relatively mild, further supporting the hypothesis that 

PRC2 function is essential for the transcriptional regulation of a selective group of genes 

(Ezhkova et al., 2009; Hirabayashi et al., 2009).  Eventually, determination of the 

H3K27me3-occupied genes that show significant changes in the expression level after 
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blocking PRC2 function may provide insights into the mechanism by which PRC2 

operates during retinal development. 

How PRC2 is recruited to certain retinal gene promoters remains unknown but 

this might occur because of the presence of unique DNA elements in the targeted 

promoters that facilitate this recruitment. Such unique sequences, termed  Polycomb 

Response Elements (PRE), have been previously identified in mouse and Drosophila and 

shown to bind PRC2 via association with the polycomb protein YY1 (Bracken and Helin, 

2009; Sing et al., 2009). Interestingly, YY1 expression in the nervous system during 

development of Xenopus mimics that of PRC2 subunits (Kwon and Chung, 2003). 

Whether PRE like elements exist in the promoters of retinal genes has not been 

determined. 

Alternatively, PRC2 selective recruitment to retinal promoters may require the 

binding of factors that direct retinal development. This is a plausible hypothesis given 

that PRC2 is involved in the development of diverse organs including skin, muscle and 

cortex, and in every case it mediates the repression of a subset of organ-specific genes 

(Caretti et al., 2004; Ezhkova et al., 2009; Hirabayashi et al., 2009). A possible candidate 

is the canonical Wnt signaling effector β-catenin which has been shown to bind EZH2 in 

mammary epithelial cells and in MCF-7 cells (Li et al., 2009; Shi et al., 2007) . Canonical 

Wnt signaling is essential for retinal neural differentiation during Xenopus eye 

development (Agathocleous et al., 2009; Van Raay et al., 2005). Candidate transcription 

factors might themselves be targets for PRC2 (i.e., EFTFs), which could provide a 

potential feedback loop mechanism to regulate organ development (Bracken and Helin, 

2009; Wang et al., 2010). Thus, to better understand the mechanism by which PRC2 
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operates during eye development it remains necessary to test whether PRC2 binds to 

retinal-specific factors by doing tissue-specific pull-down experiments or by performing 

screens using cDNA libraries extracted from retinal tissue.   

Interestingly, we noticed that H3K27me3 deposition on retinal promoters changes 

during development, indicating that H3K27me3 addition is dynamic and thus may be 

used transiently to regulate retinal gene expression. This suggests the involvement of a 

H3K27me3 demethylase that is active during retinal development and catalyzes the 

removal of HEK27me3 in a temporal step-wise manner. Again this also may imply the 

involvement of retinal-specific signaling pathways or transcription factors that regulate 

demethylase expression and target selectivity.  H3K27me3 demethylases have been 

identified in mammals and zebrafish, and have been implicated in neural differentiation 

but their characterization in Xenopus has not yet been reported (Burgold et al., 2008; Lan 

et al., 2007).  

Finally, it is worth considering some limitations to the ChIP-seq analysis 

performed here. First we assumed that the pattern and targets for H3K27me3 depositions 

in X. tropicalis will be similar to those of X.laevis but this will need to be confirmed. 

Second, the ChIP was done using whole embryos and is not limited to retinal tissues, so 

we do not have a detailed picture of H3K27me3 changes specifically during eye 

development. Third, the analysis missed several developmental stages that would have 

revealed a more comprehensive view of H3K27me3 deposition during development.   
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The model 

Based on current experimental data we propose a working model for PRC2 

function during retinal development in Xenopus. PRC2 core subunits are provided 

maternally but their transcription is maintained in retinal progenitors by retinal-specific 

transcription factors and/or signaling pathways that are active in retinal tissue. During 

this period of development PRC2 catalyzes the addition of H3K27me3 to a select group 

of retinal genes, including negative regulators of neurogenesis, and thus mediates their 

repression. This allows retinal neurogenesis to proceed, and when the time is proper 

expression of the repressors is initiated to stop neural differentiation and/or promote 

Müller glia formation. Then, PRC2 transcription is shut down in postmitotic cells but 

protein levels are maintained to promote a permanent repression of genes irrelevant to the 

homeostasis of terminally differentiated cells.  

 

 

 

 

 

 

 

 

 

 

 



 

86

References 

Agathocleous, M., Harris, W. A., 2009. From progenitors to differentiated cells in the 
vertebrate retina. Annu Rev Cell Dev Biol. 25, 45-69. 

 
Agathocleous, M., Iordanova, I., Willardsen, M. I., Xue, X. Y., Vetter, M. L., Harris, W. 

A., Moore, K. B., 2009. A directional Wnt/beta-catenin-Sox2-proneural pathway 
regulates the transition from proliferation to differentiation in the Xenopus retina. 
Development. 136, 3289-99. 

 
Akizu, N., Estaras, C., Guerrero, L., Marti, E., Martinez-Balbas, M. A., 2010. H3K27me3 

regulates BMP activity in developing spinal cord. Development. 137, 2915-25. 
 
Akkers, R. C., van Heeringen, S. J., Jacobi, U. G., Janssen-Megens, E. M., Francoijs, K. 

J., Stunnenberg, H. G., Veenstra, G. J., 2009. A hierarchy of H3K4me3 and 
H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell. 
17, 425-34. 

 
Aldiri, I., Vetter, M. L., 2009. Characterization of the expression pattern of the PRC2 

core subunit Suz12 during embryonic development of Xenopus laevis. Dev Dyn. 
238, 3185-92. 

 
Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, 

S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., 
Gifford, D. K., Young, R. A., Jaenisch, R., 2006. Polycomb complexes repress 
developmental regulators in murine embryonic stem cells. Nature. 441, 349-53. 

 
Bracken, A. P., Helin, K., 2009. Polycomb group proteins: navigators of lineage 

pathways led astray in cancer. Nat Rev Cancer. 9, 773-84. 
 
Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, 

C., Theilgaard-Monch, K., Minucci, S., Porse, B. T., Marine, J. C., Hansen, K. H., 
Helin, K., 2007. The Polycomb group proteins bind throughout the INK4A-ARF 
locus and are disassociated in senescent cells. Genes Dev. 21, 525-30. 

 
Bryant, R. J., Cross, N. A., Eaton, C. L., Hamdy, F. C., Cunliffe, V. T., 2007. EZH2 

promotes proliferation and invasiveness of prostate cancer cells. Prostate. 67, 547-
56. 

 
Burgold, T., Spreafico, F., De Santa, F., Totaro, M. G., Prosperini, E., Natoli, G., Testa, 

G., 2008. The histone H3 lysine 27-specific demethylase Jmjd3 is required for 
neural commitment. PLoS One. 3, e3034. 

 
Caretti, G., Di Padova, M., Micales, B., Lyons, G. E., Sartorelli, V., 2004. The Polycomb 

Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle 
differentiation. Genes Dev. 18, 2627-38. 



 

87

Chamberlain, S. J., Yee, D., Magnuson, T., 2008. Polycomb repressive complex 2 is 
dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells. 26, 
1496-505. 

 
Chen, H., Gu, X., Su, I. H., Bottino, R., Contreras, J. L., Tarakhovsky, A., Kim, S. K., 

2009. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression 
and regeneration in diabetes mellitus. Genes Dev. 23, 975-85. 

 
D'Autilia, S., Decembrini, S., Casarosa, S., He, R. Q., Barsacchi, G., Cremisi, F., 

Andreazzoli, M., 2006. Cloning and developmental expression of the Xenopus 
homeobox gene Xvsx1. Dev Genes Evol. 216, 829-34. 

 
Dorsky, R. I., Rapaport, D. H., Harris, W. A., 1995. Xotch inhibits cell differentiation in 

the Xenopus retina. Neuron. 14, 487-96. 
 
Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., Tarakhovsky, 

A., Fuchs, E., 2009. Ezh2 orchestrates gene expression for the stepwise 
differentiation of tissue-specific stem cells. Cell. 136, 1122-35. 

 
Faust, C., Lawson, K. A., Schork, N. J., Thiel, B., Magnuson, T., 1998. The Polycomb-

group gene eed is required for normal morphogenetic movements during 
gastrulation in the mouse embryo. Development. 125, 4495-506. 

 
Ferreiro, B., Skoglund, P., Bailey, A., Dorsky, R., Harris, W. A., 1993. XASH1, a 

Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the 
vertebrate CNS. Mech Dev. 40, 25-36. 

 
Fischle, W., Wang, Y., Jacobs, S. A., Kim, Y., Allis, C. D., Khorasanizadeh, S., 2003. 

Molecular basis for the discrimination of repressive methyl-lysine marks in 
histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870-81. 

 
Hatakeyama, J., Kageyama, R., 2004. Retinal cell fate determination and bHLH factors. 

Semin Cell Dev Biol. 15, 83-9. 
 
Hemmati-Brivanlou, A., de la Torre, J. R., Holt, C., Harland, R. M., 1991. Cephalic 

expression and molecular characterization of Xenopus En-2. Development. 111, 
715-24. 

 
Hensey, C., Gautier, J., 1998. Programmed cell death during Xenopus development: a 

spatio-temporal analysis. Dev Biol. 203, 36-48. 
 
Hirabayashi, Y., Suzki, N., Tsuboi, M., Endo, T. A., Toyoda, T., Shinga, J., Koseki, H., 

Vidal, M., Gotoh, Y., 2009. Polycomb limits the neurogenic competence of neural 
precursor cells to promote astrogenic fate transition. Neuron. 63, 600-13. 

 



 

88

Hirsch, N., Harris, W. A., 1997. Xenopus Pax-6 and retinal development. J Neurobiol. 
32, 45-61. 

 
Hsieh, J., Gage, F. H., 2004. Epigenetic control of neural stem cell fate. Curr Opin Genet 

Dev. 14, 461-9. 
 
Huang, S., Moody, S. A., 1993. The retinal fate of Xenopus cleavage stage progenitors is 

dependent upon blastomere position and competence: studies of normal and 
regulated clones. J Neurosci. 13, 3193-210. 

 
Hutcheson, D. A., Vetter, M. L., 2001. The bHLH factors Xath5 and XNeuroD can 

upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. 
Dev Biol. 232, 327-38. 

 
Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N., Vetter, M. L., 

1997. Xath5 participates in a network of bHLH genes in the developing Xenopus 
retina. Neuron. 19, 981-94. 

 
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., Reinberg, D., 2002. 

Histone methyltransferase activity associated with a human multiprotein complex 
containing the Enhancer of Zeste protein. Genes Dev. 16, 2893-905. 

 
Kwon, H. J., Chung, H. M., 2003. Yin Yang 1, a vertebrate polycomb group gene, 

regulates antero-posterior neural patterning. Biochem Biophys Res Commun. 306, 
1008-13. 

 
Lan, F., Bayliss, P. E., Rinn, J. L., Whetstine, J. R., Wang, J. K., Chen, S., Iwase, S., 

Alpatov, R., Issaeva, I., Canaani, E., Roberts, T. M., Chang, H. Y., Shi, Y., 2007. 
A histone H3 lysine 27 demethylase regulates animal posterior development. 
Nature. 449, 689-94. 

 
Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N., Weintraub, H., 1995. 

Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-
helix protein. Science. 268, 836-44. 

 
Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., 

Chevalier, B., Johnstone, S. E., Cole, M. F., Isono, K., Koseki, H., Fuchikami, T., 
Abe, K., Murray, H. L., Zucker, J. P., Yuan, B., Bell, G. W., Herbolsheimer, E., 
Hannett, N. M., Sun, K., Odom, D. T., Otte, A. P., Volkert, T. L., Bartel, D. P., 
Melton, D. A., Gifford, D. K., Jaenisch, R., Young, R. A., 2006. Control of 
developmental regulators by Polycomb in human embryonic stem cells. Cell. 125, 
301-13. 

 
Lessard, J. A., Crabtree, G. R., 2010. Chromatin regulatory mechanisms in pluripotency. 

Annu Rev Cell Dev Biol. 26, 503-32. 



 

89

Li, X., Gonzalez, M. E., Toy, K., Filzen, T., Merajver, S. D., Kleer, C. G., 2009. Targeted 
overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis 
and causes epithelial hyperplasia. Am J Pathol. 175, 1246-54. 

 
Livesey, F. J., Cepko, C. L., 2001. Vertebrate neural cell-fate determination: lessons from 

the retina. Nat Rev Neurosci. 2, 109-18. 
 
Logan, M. A., Steele, M. R., Van Raay, T. J., Vetter, M. L., 2005. Identification of shared 

transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD. Dev 
Biol. 285, 570-83. 

 
Ma, Q., Kintner, C., Anderson, D. J., 1996. Identification of neurogenin, a vertebrate 

neuronal determination gene. Cell. 87, 43-52. 
 
Margueron, R., Reinberg, D., 2011. The Polycomb complex PRC2 and its mark in life. 

Nature. 469, 343-9. 
 
Mathers, P. H., Grinberg, A., Mahon, K. A., Jamrich, M., 1997. The Rx homeobox gene 

is essential for vertebrate eye development. Nature. 387, 603-7. 
 
Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., Sasai, Y., 1998. Xenopus Zic-related-

1 and Sox-2, two factors induced by chordin, have distinct activities in the 
initiation of neural induction. Development. 125, 579-87. 

 
Nekrasov, M., Wild, B., Muller, J., 2005. Nucleosome binding and histone 

methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348-53. 
 
O'Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., Jenuwein, T., 2001. 

The polycomb-group gene Ezh2 is required for early mouse development. Mol 
Cell Biol. 21, 4330-6. 

 
Ohsawa, R., Kageyama, R., 2008. Regulation of retinal cell fate specification by multiple 

transcription factors. Brain Res. 1192, 90-8. 
 
Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M., Helin, K., 2007. The polycomb 

group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell 
Biol. 27, 3769-79. 

 
Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E., Helin, K., 2004. Suz12 is 

essential for mouse development and for EZH2 histone methyltransferase activity. 
Embo J. 23, 4061-71. 

 
Patterson, K. D., Cleaver, O., Gerber, W. V., White, F. G., Krieg, P. A., 2000. Distinct 

expression patterns for two Xenopus Bar homeobox genes. Dev Genes Evol. 210, 
140-4. 



 

90

Peng, J. C., Valouev, A., Swigut, T., Zhang, J., Zhao, Y., Sidow, A., Wysocka, J., 2009. 
Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene 
occupancy in pluripotent cells. Cell. 139, 1290-302. 

 
Pereira, J. D., Sansom, S. N., Smith, J., Dobenecker, M. W., Tarakhovsky, A., Livesey, F. 

J., 2010. Ezh2, the histone methyltransferase of PRC2, regulates the balance 
between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad 
Sci U S A. 107, 15957-62. 

 
Perron, M., Kanekar, S., Vetter, M. L., Harris, W. A., 1998. The genetic sequence of 

retinal development in the ciliary margin of the Xenopus eye. Dev Biol. 199, 185-
200. 

 
Pietersen, A. M., van Lohuizen, M., 2008. Stem cell regulation by polycomb repressors: 

postponing commitment. Curr Opin Cell Biol. 20, 201-7. 
 
Rajasekhar, V. K., Begemann, M., 2007. Concise review: roles of polycomb group 

proteins in development and disease: a stem cell perspective. Stem Cells. 25, 
2498-510. 

 
Rao, R. C., Tchedre, K. T., Malik, M. T., Coleman, N., Fang, Y., Marquez, V. E., Chen, 

D. F., 2010. Dynamic patterns of histone lysine methylation in the developing 
retina. Invest Ophthalmol Vis Sci. 51, 6784-92. 

 
Reijnen, M. J., Hamer, K. M., den Blaauwen, J. L., Lambrechts, C., Schoneveld, I., van 

Driel, R., Otte, A. P., 1995. Polycomb and bmi-1 homologs are expressed in 
overlapping patterns in Xenopus embryos and are able to interact with each other. 
Mech Dev. 53, 35-46. 

 
Shen, X., Liu, Y., Hsu, Y. J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G. C., Orkin, S. H., 

2008. EZH1 mediates methylation on histone H3 lysine 27 and complements 
EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 32, 
491-502. 

 
Shi, B., Liang, J., Yang, X., Wang, Y., Zhao, Y., Wu, H., Sun, L., Zhang, Y., Chen, Y., 

Li, R., Zhang, Y., Hong, M., Shang, Y., 2007. Integration of estrogen and Wnt 
signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol 
Cell Biol. 27, 5105-19. 

 
Showell, C., Cunliffe, V. T., 2002. Identification of putative interaction partners for the 

Xenopus Polycomb-group protein Xeed. Gene. 291, 95-104. 
 
Sing, A., Pannell, D., Karaiskakis, A., Sturgeon, K., Djabali, M., Ellis, J., Lipshitz, H. D., 

Cordes, S. P., 2009. A vertebrate Polycomb response element governs 
segmentation of the posterior hindbrain. Cell. 138, 885-97. 



 

91

Solter, M., Locker, M., Boy, S., Taelman, V., Bellefroid, E. J., Perron, M., Pieler, T., 
2006. Characterization and function of the bHLH-O protein XHes2: insight into 
the mechanisms controlling retinal cell fate decision. Development. 133, 4097-
108. 

 
Sumanas, S., Ekker, S. C., 2001. Xenopus frizzled-5: a frizzled family member expressed 

exclusively in the neural retina of the developing eye. Mech Dev. 103, 133-6. 
 
Turner, B. M., 2010. Environmental sensing by chromatin: An epigenetic contribution to 

evolutionary change. FEBS Lett. 
 
Van Raay, T. J., Moore, K. B., Iordanova, I., Steele, M., Jamrich, M., Harris, W. A., 

Vetter, M. L., 2005. Frizzled 5 signaling governs the neural potential of 
progenitors in the developing Xenopus retina. Neuron. 46, 23-36. 

 
Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, 

M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., 
Chinnaiyan, A. M., 2002. The polycomb group protein EZH2 is involved in 
progression of prostate cancer. Nature. 419, 624-9. 

 
Vernon, A. E., Philpott, A., 2003. The developmental expression of cell cycle regulators 

in Xenopus laevis. Gene Expr Patterns. 3, 179-92. 
 
Wang, L., Jin, Q., Lee, J. E., Su, I. H., Ge, K., 2010. Histone H3K27 methyltransferase 

Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci U S A. 
107, 7317-22. 

 
Yamaguchi, M., Tonou-Fujimori, N., Komori, A., Maeda, R., Nojima, Y., Li, H., 

Okamoto, H., Masai, I., 2005. Histone deacetylase 1 regulates retinal 
neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. 
Development. 132, 3027-43. 

 
Yoshitake, Y., Howard, T. L., Christian, J. L., Hollenberg, S. M., 1999. Misexpression of 

Polycomb-group proteins in Xenopus alters anterior neural development and 
represses neural target genes. Dev Biol. 215, 375-87. 

 
Yu, J., Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., Mehra, R., Wang, X., 

Ghosh, D., Shah, R. B., Varambally, S., Pienta, K. J., Chinnaiyan, A. M., 2007. A 
polycomb repression signature in metastatic prostate cancer predicts cancer 
outcome. Cancer Res. 67, 10657-63. 

 
Zhou, X., Hollemann, T., Pieler, T., Gruss, P., 2000. Cloning and expression of xSix3, 

the Xenopus homologue of murine Six3. Mech Dev. 91, 327-30. 
 
Zimmerman, K., Shih, J., Bars, J., Collazo, A., Anderson, D. J., 1993. XASH-3, a novel 

Xenopus achaete-scute homolog, provides an early marker of planar neural 



 

92

induction and position along the mediolateral axis of the neural plate. 
Development. 119, 221-32. 

 
Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., Harris, W. A., 2003. Specification 

of the vertebrate eye by a network of eye field transcription factors. Development. 
130, 5155-67. 

 
 



CHAPTER 4 

 

ANLYSIS OF Jarid2 EXPRESSION AND FUNCTION IN  

THE DEVELOPING CNS OF XENOPUS 

 



 

 

94

Abstract 

The Polycomb Repressive Complex PRC2 is essential for the regulation of key 

developmental events during organogenesis, including the proper progression from 

proliferation to differentiation in the developing Xenopus retina.  However, the molecular 

mechanism underlying PRC2 function during eye development remains poorly 

understood. Recently, several studies found that JARID2, a member of the Jumonji C 

domain protein family, associates with PRC2 and modulates its DNA binding and 

catalytic activity. The expression pattern of the PRC2 core subunits has been 

characterized but Jarid2 expression and its contribution to eye development in Xenopus is 

unknown. Here we show that Jarid2 is maternally supplied and continues to be expressed 

throughout Xenopus development, including in the developing central nervous system. 

Surprisingly, Jarid2 is highly transcribed in retinal and brain postmitotic neurons, in 

direct contrast to the expression pattern of the PRC2 core subunits. Given that JARID2 is 

associated with H3K9me2 deposition, we also characterized the levels of this 

modification in the developing central nervous system and found that H3K9me2 

enrichment positively correlates with the expression of Jarid2 in postmitotic cells. 

Knockdown of Jarid2 function by a translation blocking morpholino suppresses retinal 

differentiation but does not affect retinoblast specification or H3K27me3 levels in retinal 

differentiated cells. Taken together, our data indicate that the expression pattern of Jarid2 

is distinct from that of the PRC2 core subunits and suggests a unique role for Jarid2 in 

retinal differentiation.  
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Introduction 

Jarid2 (also known as Jumonji) is the founding member of the Jumonji C (Jmj C) 

domain containing protein family, and was initially identified in a mouse gene trap screen 

to define factors important for murine development (Motoyama and Takeuchi, 1995; 

Takeuchi et al., 2006).  JmjC domain has been shown to bear a histone demethylase 

activity, however JARID2 is catalytically dead because its Jmj C domain lacks key 

residues necessary for the enzymatic activity (Klose et al., 2006; Takeuchi et al., 2006; 

Herz and Shilatifard, 2010). JARID2 has been associated with transcription repression 

due to the presence of distinct DNA binding, protein interaction and nuclear localization 

motifs (Fig. 20A) (Jung et al., 2005). Interestingly, the repression activity of JARID2 has 

been mapped to a small motif near its N-terminus, away from its characteristic domains 

(Li et al., 2010; Pasini et al., 2010; Fig. 20A). 

How JARID2 represses genes is not fully understood, but data suggest that it may 

do so by association with chromatin remodeling factors that control histone 

posttranslational modifications. As mentioned, JARID2 does not bear histone 

demethylase activity, yet it can interact with the G9A-GLP complex and enhances its 

ability to deposit the repressive mark H3K9me2 on selected promoters (Kato et al., 2008; 

Shirato et al., 2009). More recently, JARID2 has been identified as a binding partner for 

the PRC2 complex that mediates its recruitment to DNA (Li et al., 2010; Pasini et al., 

2010; Peng et al., 2009; Shen et al., 2009). As previously discussed, PRC2 complex is a 

histone methyltransferase that catalyzes the addition of the repressive mark H3K27me3 

(Kuzmichev et al., 2002). Interestingly, JARID2 and PRC2 co-occupy a large set of 

promoters in embryonic stem cells (ESCs), suggesting that JARID2 association with  
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Figure 20. Expression of Xjarid2 during Xenopus development. A) schematic 
representation of different domains in JARID2 (modified from Jung el al., 2005). B) 
RT-PCR analysis of Xjarid2 expression during development. C-D) In situ analysis 
using Xjarid2 anti-sense probe during stage 20 (C) and stage 32 (D). E) Xjarid2 
sense probe shows minimal signal. Abbreviations; PBD, PRC2 binding domain 
(also the repression domain); DBD, DNA binding domain; jmjN, jumonji N; ARID, 
AT-rich interacting domain; jmjC, jumonjiC.  
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PRC2 is important for the PRC2-mediated repression (Li et al., 2010; Shen et al., 2009). 

However, the exact function of JARID2 remains controversial as JARID2 does not seem 

to be required for global H3K27me3 deposition, and there are conflicting reports 

regarding its effect on PRC2 catalytic activity in vitro (Li et al., 2010; Peng et al., 2009). 

JARID2 can also interact with the tumor suppressor protein RB and enhance its ability to 

suppress E2F transcription in vitro (Jung et al., 2005). 

Jarid2 is expressed during embryogenesis where it plays critical roles in the 

organogenesis of several tissues such as liver, brain and heart (Motoyama and Takeuchi, 

1995; Motoyama et al., 1997; Takahashi et al., 2004; Takeuchi et al., 2006). Homozygous 

mutants for Jarid2 are lethal mainly due to developmental defects in heart formation 

(Takahashi et al., 2004). Interestingly, the expression of Jarid2 in multiple tissues during 

mouse development tends to increase concomitant with the onset of tissue differentiation, 

suggesting a possible conserved role in the transition from proliferation to differentiation 

(Takeuchi et al., 2006). For example, during heart development, Jarid2 is expressed in 

differentiating cardiac myocytes where it negatively regulates proliferation by repressing 

the expression of the cell cycle gene CyclinD1 (Shirato et al., 2009; Toyoda et al., 2003). 

In the brain, Jarid2 is detected in neurons after final mitosis in the cerebrum and 

cerebellum, and is required to suppress CyclinD1 expression in the hindbrain (Takahashi 

et al., 2007). Jarid2 is also involved in the differentiation of the liver where it is critical 

for the proper maturation of fetal hepatocytes (Anzai et al., 2003). Jarid2 may also have 

unique functions that are context-dependent. For instance, ESCs depleted of Jarid2 have 

no proliferation defects, but their ability to differentiate into neural or mesodermal 

lineages is compromised (Landeira et al., 2010; Pasini et al., 2010). Finally, Jarid2 is 
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required for the proper gastrulation in Xenopus embryos and the activin-dependent 

induction of mesoderm markers (Peng et al., 2009).   

The above data underscore the importance of Jarid2 in the progression from 

proliferation to differentiation during development of several tissues, but its possible 

roles in eye organogenesis have not been investigated. Given that PRC2 is expressed 

during Xenopus development and is involved in the proper differentiation of retinal 

progenitors (Chapter 3), we reasoned that Xjarid2 may also contribute to this process. 

This study has the potential to uncover unexplored roles of Jarid2 during eye 

development and shed light on the mechanism by which PRC2 may regulate retinal 

differentiation in Xenopus. 

 

Methods and Materials 

Microinjections of morpholinos and mRNAs 

Capped mRNAs were synthesized in vitro using Message Machine kit (Ambion). 

mRNAs were injected alone or in combination with antisense morpholino (MO) in one 

animal dorsal blastomere of 8 or 32 cell stage Xenopus embryos. The following mRNAs 

were used in injections: eGFP (500 pg), β-galactosidase (β-gal; 200 pg). Embryos were 

collected at the appropriate developmental stages and fixed with 4% PFA, and embryos 

marked with expression of eGFP or X-gal staining in the anterior part of the CNS were 

isolated for whole mount in situ hybridization analysis. X-gal staining was performed on 

β-gal injected embryos as previously described (Turner and Weintraub, 1994). Xjarid2 

MO was previously described (Peng et al., 2009).  
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In situ hybridization analysis 

In situ hybridization was performed using whole embryos and brain sections as 

previously described (Hutcheson et al., 2005). The following DIG-labeled riboprobes 

were used for the analysis: Xash1 (Ferreiro et al., 1993), Xath5 (Kanekar et al., 1997), 

Xfz5 (Sumanas and Ekker, 2001), CyclinD1 (Vernon and Philpott, 2003), Six3 (Zhou et 

al., 2000), Xrx1 (Mathers et al., 1997), En-2 (Hemmati-Brivanlou et al., 1991), Hermes 

(Patterson et al., 2000).  

To make Xjarid2 probe, a cDNA fragment that spans the first 699 bp was 

amplified from a cDNA library prepared from whole embryos at stage 17-18 using the 

following primers: Forward: 5’-CCCCGAATTCATGAGCAAGGAAAGGCC-3’; 

Reverse: 5’-CCCCCTCGAGTCACCCATTGAAAAC-3’ 

The cDNA fragment was cloned into a BleuScript (BS) plasmid, and after linearization, 

DIG-labeled sense- and anti-sense probes were made using T7 and T3 RNA polymerase, 

respectively. 

 

RT-PCR analysis 

Total RNA was isolated from different stages of Xenopus embryos using Trizol 

(Inivtrogen) and was further purified by RNeasy Mini kit (Qiagen). First strand cDNA 

was synthesized as was previously described (Logan et al., 2005b). RT-PCR analysis for 

Xjarid2 was performed using the following primers:  

Forward: 5’-ATGGTCGGAAGAAAGGGTGG-3’ 

Reverse: 5’-ACTGTTTGGCTGGGATTGGG. 
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Immunohistochemistry 

Immunostaining was performed using previously described methods. In brief, 

embryos were grown to stage 41 in 0.1X MMR, fixed in 4% PFA for 45 minutes, 

embedded in OCT and 14 micron sections were made using a cryostat.  After blocking 

(5% goat serum and 0.1% Triton in PBS) for 30 minutes, sections were incubated with 

primary rabbit anti-H3K27me3 (Millipore, 1:100) or rabbit anti-H3K27me3 (Active 

Motif, 1:100) antibodies overnight at 4 °C. Then, slides were washed and a secondary 

Alexa Fluor 568-conjugated goat anti-rabbit antibody (Molecular Probes, 1:2000) was 

added for 2 hours at room temperature. Sections were counter stained with Hoechst 

(1:15000) to visualize nuclei. 

 

Results 

Jarid2 is expressed during Xenopus development 

 Given that PRC2 core subunits are expressed in the developing CNS of Xenopus, 

we reasoned that its binding partner, Xjarid2, might also have a similar expression pattern 

(Aldiri and Vetter, 2009). Thus, we first examined the temporal expression of Xjarid2 by 

performing RT-PCR using RNA extracted from different developmental stages up to 

stage 41 (tadpole stage). Xjarid2 expression was detected in the fertilized egg as well as 

in all developmental stages examined, suggesting that Xjarid2 may have multiple roles 

during early and late stages of development (Fig. 20B and data not shown). To determine 

the spatial distribution of Xjarid2 in postneurulation stages during development we 

performed whole-mount in situ hybridization analysis on selected stages using a probe 

that spans the first 699 bp of Xjarid2 cDNA. At stage 20 (shortly after neural plate 
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closure), Xjarid2 expression was weakly detectable in the presumptive spinal cord and 

head region (Fig. 20C). By stage 32 (tailbud stage), Xjarid2 expression was observed in 

the developing central nervous system along the dorsoventral axis and in the head region, 

including the developing eye, branchial arches, otic vesicles and in the forebrain (Fig. 

20D). These results are in agreement with the expression data of the PRC2 core subunits, 

Xsuz12, Xeed, Rbbp4 and Xez, suggesting that Xjarid2 and the core subunits of PRC2 

may be coincidently expressed in neural tissues (Aldiri and Vetter, 2009).  

 To better define the expression domains of Xjarid2 in the central nervous system, 

we performed in situ hybridization analysis of Xjarid2 on retina, hindbrain and spinal 

cord sections at tadpole stage. We found that Xjarid2 transcript in the nervous system is 

highly enriched in postmitotic cells and less detectable in proliferative zones (Fig. 21 and 

22). For instance, in the retina, Xjarid2 levels seem to be ubiquitously expressed in the 

ganglion cell layer (GCL), inner nuclear layer (INL) and, to a lesser extent, in the outer 

nuclear later (ONL) while expression in the Ciliary Marginal Zone (CMZ; the retinal 

proliferative zone) is hardly detectable (Fig. 21A-C). Similar results were found in the 

hindbrain and spinal cord: Xjarid2 transcripts are downregulated in the ventricular wall 

region (where progenitors reside) and are highly expressed in postmitotic cells (Fig. 22A 

and C). These results are in stark contrast to the expression pattern of the core PRC2 

subunits (i.e., Xsuz12) in the nervous system, which are primarily located in proliferative 

zones and downregulated upon neural differentiation (Fig. 22B, D; Chapter 3 and data 

not shown). Taken together, these data indicate that the expression of Xjarid2 is distinct 

from that of the PRC2 core subunits, and suggest that Xjarid2 function in the nervous 

system might be unique.     
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Figure 21. Expression of Xjarid2 in mature retina at stage 41. A) Xjarid2 is 
expressed in retinal postmitotic cells. B) The CMZ region of the retina shows reduced 
Xjarid2 expression (compare the two areas flanking the dashed line). C) No staining is 
observed when retina is stained with Xjarid2 sense probe.  
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Figure 22. Comparative analysis of the expression of Xjarid2 and Xsuz12 in the 
brain and spinal cord. A and C) expression of Xjarid2 is increased as cells 
differentiate. Note that in the spinal cord Xjarid2 expression seems to be more apparent 
in the ventral side. B and D) Unlike Xjarid2, the expression of the PRC2 core subunit 
Xsuz12 is enriched in the ventricular zone.   
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Xjarid2 is required for retinal differentiation 

  To determine the importance of Xjarid2 during retinal development, we injected a 

previously characterized Xjarid2 MO in one dorsal blastomere of 8 cell stage embryos 

along with β-gal mRNA (to mark the injected side) and assayed the effect on eye 

development by performing in situ hybridization analysis (Peng et al., 2009). First, we 

analyzed the expression of the retinal progenitor specification and proliferation markers 

Rx, Frz5, Six3 and CyclinD1 at stage 20 and found that Xjarid2 MO does not alter the 

expression intensity of these genes (embryos with normal intensity: 100% n=48 for Rx, 

100% n=19 for Six3, 100% n=14 for Frz5 and 100% n=14 for cycline D1; Fig. 23). 

However, we noticed that the expression domains of these markers tended to be a slightly 

larger on the injected side (embryos with larger expression domain: 42% n=48 for Rx, 

37% n=19 for Six3, 50% n=14 for Frz5 and 57% n=14 for cyclinD1; Fig. 23). These data 

suggest that inhibition of Xjarid2 function does not disrupt retinal progenitor 

specification.  

 Next we tested the effect of Xjarid2 MO on retinal differentiation by examining 

the expression of the proneural differentiation genes Xath5 and Xash,1 and the ganglion 

cell marker Hermes. We noticed a marked reduced in the expression of these markers on 

the injected side (embryos with reduced expression: 67% n=12 for Xath5, 41% n=22 for 

Xash1, 79% n=19 for Hermes; Fig. 24). Collectively, while retinal progenitor 

specification seems to proceed normally in Jarid2 morphant embryos, expression of 

retinal differentiation genes is inhibited or delayed, suggesting that Jarid2 is essential for 

retinal differentiation. 
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Figure 23. Xjarid2 is not required for retinal progenitor specification. 
The relative levels of expression of the indicated markers are unchanged. 
Marker domains on the injected side tend to be a little larger. 
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Figure 24. Inhibition of Xjarid2 blocks retinal neural differentiation. 
The expression of proneural bHLH genes (A-D) and the ganglion cell 
marker Hermes (E-F) is lost or reduced upon injection of Xjarid2 MO. 
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The expression of H3K9me2 

Jarid2 function has been linked to chromatin regulation primarily through 

association with the methyltransferases responsible for H3K9me2 and H3K27me3 

deposition (Pasini et al., 2010; Peng et al., 2009; Shirato et al., 2009). We have 

previously determined the global H3K27me3 levels in the mature retina and found that 

they are increased in retinal postmitotic cells (Chapter 3). However, the expression of 

H3K9me2 in Xenopus retina has not been characterized. We examined the distribution 

pattern of H3K9me2 by immunostaining using an antibody that specifically recognizes 

this mark, and similar to the expression of Xjarid2 and HEK27me3, H3K29me2 levels 

were highly enriched in postmitotic cells in the nervous system (Fig. 25 and 26). In the 

retina, high levels of H3K9me2 were observed in the GCL and ONL and were weakly 

detectable in the ONL and the CMZ (Fig. 25A-F). Similar pattern was observed by 

examining sections from the brain and spinal cord (Fig. 26A-F). Collectively, we 

conclude that the global levels of H3K9me2 and H3K27me3 correlate positively with the 

expression of Xjarid2 in the nervous system, suggesting that Xjarid2 may be involved in 

the regulation of these marks.  

 

Xjarid2 is not required for global H3K27me3 levels in the retina 

  How JARID2 contributes to the PRC2-mediated addition of H3K27me3 remains 

inconclusive. In vitro data from different groups suggest that the addition of JARID2 to 

PRC2 can inhibit or enhance its catalytic function (Li et al., 2010; Peng et al., 2009).  
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Figure 25. H3K9me2 levels are elevated in differentiated retinal cells. 
(A-C) Immunostaining of a retinal section with antibody against H3K9me2. (D-F) A 
magnification of the peripheral part of the retina showing a sharp increase in 
H3K27me3 staining (green) as cells differentiate. Notice that the signal in the 
photoreceptor layer is not as strong as in other layers. Retinal cells were counter stained 
with Hoechst (red) to reveal nuclei. Scale bar 40 μm.  
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Figure 26. H3K9me2 levels are elevated in postmitotic cells in the brain and  
spinal cord. (A-C) Immunostaining of a retinal section with antibody against  
H3K9me2 (green) in the forebrain. (D-F) H3K9me2 staining in the spinal cord.  
Notice that signal is decreased in the areas adjacent to the ventricles. Sections  
were counter stained with Hoechst (red) to reveals nuclei. Scale bar 40 μm.  
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Similarly, levels of H3K27me3 on promoters are decreased (Li et al., 2010; Pasini et al., 

2010) or increased (Peng et al., 2009; Shen et al., 2009) upon knockdown of Jarid2 in 

ESCs. A common agreement among those studies is that JARID2 knockdown does not 

affect bulk H3K27me3 levels. To test whether this hypothesis is correct in Xenopus retina 

we injected one dorsal blastomere of 32 cell embryos with Xjarid2 MO and mRNA for 

GFP (to trace MO injected cells) and immunoassayed GFP-labeled retina with the 

H3K27me3 antibody. We did not observe any reduction in H3K27me3 levels in GFP 

positive cells, supporting the evidence that JARID2 is not required for global H3K27me3 

in Xenopus (Fig. 27A-D). It remains to be determined whether it regulates H3K9me2 

levels. 

 

Discussion 

 Although the roles of the PRC2 core components during development have been 

under attention, the biological functions of its auxiliary subunits have been poorly 

characterized. Here we show that the PRC2 binding partner Jarid2 is expressed during 

Xenopus development including in the CNS. Given that PRC2 core factors are largely 

transcribed in progenitor domains of the CNS (Chapter 3), we predicted that Jarid2 

expression would have a similar pattern. It was surprising to discover that Jarid2 

expression correlates positively with neural differentiation, suggesting that the 

mechanisms that control the transcription of Jarid2 and the PRC2 core subunits might be 

distinct. We hypothesize that Jarid2 expression in differentiated cells might be 

upregulated by factors that direct retinal neural differentiation programs such as the 
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Figure 27. Xjarid2 is not required for global H3K27me3 deposition in Xenopus retina.  
(A-D) Immunostaining of H3K27me3 (red) after co-injection of GFP mRNA  
with Xjarid2 MO. Hoechst labels nuclei (blue). Abbreviations: ONL, outer nuclear  
layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar 10 μm. 
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proneural bHLH proteins. Whether Jarid2 is a downstream target of the proneural bHLH 

factors remains to be addressed.  

Why Jarid2 is expressed in differentiated cells remains unclear but we speculate 

that one of its primary roles is to repress proliferation by downregulating the expression 

of positive cell cycle regulators such as CyclinD1.This is a plausible hypothesis given 

that this function is conserved during hindbrain and heart development, and JARID2 

directly binds and represses CyclinD1 promoter (Toyoda et al., 2003; Takahashi et al., 

2007). Our initial analysis suggests that blocking Jarid2 function in the open neural plate 

and in the optic vesicle causes a mild expansion in the expression domain of CyclinD1, 

but the expression intensity does not seem to change (Fig. 22 and data not shown). 

Further analysis of the effect of blocking Jarid2 on retinal proliferation and the 

expression of cell cycle genes is required to test this hypothesis.  

Alternatively, JARID2 may be cooperating with PRC2 in repressing a large group 

of genes irrelevant to the homeostasis of fully differentiated cells. We do not favor this 

model in part because Jarid2 is not required for bulk H3K27me3 in the retina. It is still 

possible that JARID2 associates with PRC2 proteins only on a limited number of 

promoters (will be discussed later).  Interestingly, JARID2 might also be involved in the 

transcriptional repression of the PRC2 core subunits themselves given the inverse 

correlation between the expression of Jarid2 and PRC2 core subunits in the mature 

retina. Mechanistically, a possible regulatory mechanism for the JARID2-mediated 

repression of PRC2 might be the RB-E2F pathway (Hallstrom and Nevins, 2009). It has 

been shown that E2F induces the expression of the PRC2 core subunits Eed and Ezh2 in 

tumor cells and in fibroblasts (Muller et al., 2001; Bracken et al., 2003). E2F activities 
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are repressed by RB, a process that is potentiated by the interaction between JARID2 and 

RB (Jung et al., 2005; Swiss and Casaccia, 2010). Thus JARID2 might negatively control 

the expression of core PRC2 subunits in postmitotic cells by enhancing the repressive 

activity of RB on E2F which acts upstream of PRC2 core subunits.  

Finally, there is a likelihood that JARID2 might be participating in coordinating 

the neural differentiation programs directed by the proneural bHLH factors. Evidence 

from the open neural plate stage suggests that Jarid2 is required for NeuroD’s ability to 

promote primary neurogenesis (data not shown). Whether this is true during retinal 

development remains to be tested. 

 Based on RT-PCR analysis and in situ hybridization data we cannot rule out that 

low levels of Jarid2 are expressed in retinal progenitors where it is actively cooperating 

with PRC2 core subunits to promote retinal differentiation. In support of this model, our 

preliminary loss of function data show that Jarid2, like PRC2, is not required for eye 

specification but is essential for the initiation of retinal differentiation genes, suggesting 

that Jarid2 is important for the proper progression from proliferation to differentiation. 

Interestingly, Jarid2 function in promoting neurogenesis seems to be conserved in other 

parts of the CNS as we observed that blocking of Jarid2 function inhibited primary 

neurogenesis at the open neural plate stage and blocked the expression of the proneural 

bHLH genes NeuroD and NgnR1 (data not shown). It remains to be determined whether 

JARID2 interacts with PRC2 in retinal progenitors and whether both co-occupy similar 

targets during retinal development.  

The relationship between JARID2 and H3K27me3 deposition is not well 

understood. Paradoxically, JARID2 is bona a fide binding partner of PRC2 but it does not 
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seem to be required for bulk H3K27me3 in either Xenopus or in ESCs (Peng et al., 2009; 

Shen et al., 2009).  It has been proposed that PRC2 might exist in two modules: a 

JARID2-independent PRC2 that is responsible for the global deposition of H3K27me3 

and a JARID2-containing PRC2 that works on selected promoters to fine tune 

H3K27me3 (Herz and Shilatifard, 2010). Therefore although Jarid2 is not required for 

global H3K27me3 in the retina it might still function by modulating PRC2 activities on 

selected targets. It will be interesting to define target promoters that are occupied by 

PRC2 and JARID2 in retinal progenitors and in postmitotic cells.   

Alternatively, JARID2 function in retinal development could be PRC2-

independent. It was reported that JARID2 functions in promoting H3K9 methylation 

through binding the GLP-G9A complex, raising the possibility that JARID2 mediates 

retinal gene repression through H3K9me2. In support of this hypothesis, H3K9me2 

deposition increases concomitant with retinal differentiation (Fig. 30). A third possibility 

is that JARID2 repressive ability requires the involvement of both H3K27me3 and 

H3K9me2 (Herz and Shilatifard, 2010). Distinguishing between these different 

possibilities can be addressed in part by comparing H3K9me2 targets to those occupied 

by H3K27me3 in wild type versus Jarid2 morphant embryos.  
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 The role of chromatin remodeling factors during tissue-specific development has 

not been fully explored in part because loss of many of these factors is embryonic lethal 

at early stages of development. Inspired by data from ESCs, we focused on one of the 

complexes involved in mediating global gene repression, the PRC2 complex. In ESCs, 

PRC2 contributes to promoter repression of many developmental regulators, including 

genes that are essential for retinal differentiation (Lee et al., 2006). Hypothesizing that 

PRC2 might function in eye development we initially determined the expression of its 

components during Xenopus development. 

 

PRC2 Expression During Xenopus Development  

In total the expression pattern of five components of PRC2 has been characterized 

by in situ hybridization analysis, four of which are considered essential for its function. 

We found that the PRC2 core components, Xez, Xeed, Xsuz12 and Xrbbp4 are 

coincidently expressed in the developing CNS (Aldiri and Vetter, 2009). Developing 

organs that show high levels of PRC2 transcripts include eye, brain, spinal cord and 

branchial arches. During eye development, PRC2 genes are expressed in retinal 

progenitors and downregulated upon neural differentiation. One caveat to this analysis is 

that it was limited to detection of PRC2 transcripts and did not incorporate analysis of the 

protein levels. Future experiments will include using immunostaining and western blot to 

detect different components of PRC2 proteins during development. 
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Possible Regulatory Mechanisms of PRC2 Expression  

The mechanism that controls the maintenance of PRC2 transcription in retinal 

progenitors has not been investigated but a possible candidate is the canonical Wnt 

signaling pathway which is active in retinal progenitors and is required for the 

progression from proliferation to differentiation (Agathocleous et al., 2009; Van Raay et 

al., 2005). In support of this hypothesis, loss of the canonical Wnt signaling partially 

mimics the effect of Xez inhibition on retinal differentiation, as it reduces retinal 

proliferation, blocks the expression of the proneural bHLH genes and biases cells toward 

late born cell fates (Van Raay et al., 2005). However, unlike the case in the canonical 

Wnt signaling, Xez is not required for the expression of Sox2 (Chapter 3).  

Alternatively, retinal expression of PRC2 components might be maintained by 

EFTFs, which control eye specification and proliferation (Zuber et al., 2003). A third 

candidate is the transcription factor E2F, which has been shown to control the expression 

of PRC2 subunits Eed and Ezh2 in tumor cells and in fibroblasts (Bracken et al., 2003; 

Muller et al., 2001). It will be interesting to determine whether any of these candidates is 

necessary for the expression of PRC2 components in retinal progenitors. 

 

PRC2 Is Required for Retinal Differentiation 

Previously published studies on PRC2 during development indicated that PRC2 is 

involved in the regulation of cellular proliferation and/or differentiation in a context-

dependent manner (Margueron and Reinberg, 2011; Surface et al., 2010). One model 

derived from studies on skin development suggests that PRC2 prevents premature 

activation of a late differentiation program, while another from ESCs postulates that 
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PRC2 is required for differentiation (Pasini et al., 2008; Pirrotta, 2009). Based on these 

models, we predicted that loss of PRC2 function could lead to either 1) premature 

differentiation of retinal progenitors, which can be manifested in the overproduction of 

early born retinal cell types, or 2) inhibition of retinal differentiation, which would be 

characterized by loss or delay in the expression of proneural bHLH factors and a bias 

toward generation of late born retinal cell types. We found that PRC2 is required for the 

expression of retinal differentiation genes, which is in agreement with the published data 

on roles of PRC2 in ESC differentiation (Pasini et al., 2008). Additionally, we found that 

loss of PRC2 function biases retinal cells toward late born cell fates. These data further 

demonstrate that PRC2 is utilized in a tissue-specific manner to perform distinct 

functions.  

The molecular mechanism underlying PRC2 function during retinal development is 

not clear, but we hypothesize that PRC2 cooperates with known regulators of eye 

development to orchestrate the progression from proliferation to differentiation by 

promoting the neural potential of retinal progenitors. One of the candidate molecules that 

PRC2 function might be associated with is SOX2 which is an important transcription 

factor for the proper differentiation of the retina (Taranova et al., 2006; Van Raay et al., 

2005). Sox2 is expressed in retinal progenitors under the control of the canonical Wnt 

signaling (in Xenopus), and is required for the expression of the proneural bHLH genes. 

SOX2 blocks the ability of proneural bHLH factors to induce the expression of retinal 

downstream targets, suggesting that SOX2 promotes the neural identity of progenitors but 

prevents further differentiation (Agathocleous et al., 2009; Van Raay et al., 2005). 

Interestingly, a genome wide analysis of promoter occupancy in ESCs revealed that 
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SOX2 and SUZ12 co-occupy the promoters of many genes that are important for 

specification and differentiation of retinal cell types such as Vsx1, Pax6, Ngn, NeuroD, 

Nrl, Isl-1, Prox-1and Ebf3 (Lee et al., 2006). Thus PRC2 might function in retinal 

progenitors to promote neural differentiation by regulating the transcription of target 

genes in association with SOX2. Whether SOX2 and PRC2 share some of the retinal 

targets genes during Xenopus development, and are functionally linked remains to be 

addressed. 

It is also possible that PRC2 is essential for orchestrating the proneural bHLH 

retinal differentiation programs. Future experiments will test whether overexpression of 

the proneural bHLH factors can promote cell fate specification when PRC2 function is 

blocked. 

 

Possible Involvement of PRC2 in Retinal Proliferation  

Although preliminary, our data suggest that loss of PRC2 might also be affecting 

retinal proliferation. This effect comes to no surprise as the role of PRC2 core 

components in controlling cellular proliferation during development and cancer 

progression is well documented (Margueron and Reinberg, 2011). For example, during 

skin development Ezh2 is required to repress the tumor suppressor locus Ink4A-Ink4B in 

basal progenitors, and thus maintain their proliferative potential (Ezhkova et al., 2009). 

Given that Ezh2 is a downstream target for the RB-E2F pathway in certain cancer types, 

it will be interesting to test whether Ezh2 gain or loss of function mutants are associated 

with human eye malignancies and microphthalmia, respectively (Bracken et al., 2003; 

Muller et al., 2001). 
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Developmental H3K27me3 Deposition Is Selective and Dynamic 

In an effort to understand how PRC2 functions during retinal differentiation, we 

characterized the levels of its mark H3K27me3 using immunohistochemistry. The 

analysis revealed that global H3K27me3 is enriched in retinal postmitotic cells, which 

was surprising given that the PRC2 core components are transcribed in retinal 

progenitors. It is possible that polycomb proteins are maintained during differentiation 

while their transcription is inhibited. In the future, experiments will be performed to test 

whether PRC2 proteins are expressed in postmitotic cells using immunostaining and/or 

western blot.  

The presence of high levels of H3K27me3 in differentiated cells is intriguing and 

raises questions about its roles during adult life. One possible function is that H3K27me3 

is involved in permanently repressing the expression of cell cycle genes in neurons, 

which prevents the cell from re-entering the cell cycle and allows stabilization of terminal 

cell fate.  A second possibility is that deposition of H3K27me3 plays a role in regulating 

the expression of genes involved in visual processing and other physiological roles of 

adult retina. Interestingly, a previous study has shown that eliminating the repressive 

mark H3K9me2 from the mouse adult brain by conditionally deleting the GLP-G9A 

complex leads to complex behavioral defects and cognitive impairment (Schaefer et al., 

2009).  

 To determine why PRC2 is required for retinal differentiation, a genome wide 

analysis to define H3K27me3 targets during development was performed. These data 

indicate that H3K27me3 decorates a small group of retinal genes, suggesting that the 

deposition of H3K27me3 is selective. The specific decoration of a limited number of 
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genes raises questions about the mechanism that mediates selective recruitment of PRC2 

to its target genes. This process might involve association between PRC2 and eye-

specific factors that recruit PRC2 to its intended targets and/or the presence of a DNA 

motif in the targeted promoters that facilitate recruitment.  

Our data indicate H3K27me3 deposition changes during development, suggesting 

that H3K27me3 addition is dynamic and thus might be used transiently to regulate retinal 

gene expression. The loss of H3K27me3 during Xenopus development might indicate the 

presence of a demethylase that specifically catalyzes H3K27me3 removal, but such an 

enzyme has not been cloned yet in Xenopus. The presence of H3K27me3 demethylases in 

Xenopus is almost certain given that H3K27me3-specific demethylases have been 

identified in other vertebrates (Lan et al., 2007; Burgold et al., 2008). 

 

H3K27me3 targets Negative Regulators of Retinal Differentiation 

It is interesting to find that the list of H3K27me3 targets include factors that inhibit 

neural differentiation. This might suggest that one of the primary roles of PRC2 during 

retinal development is to facilitate the onset of neural differentiation by shutting off the 

expression of negative regulators of retinogenesis to allow differentiation to proceed (Fig. 

33). If true, then blocking the expression of these genes should rescue (at least partially) 

loss of PRC2 function. It will be interesting to test whether the expression of candidate 

negative regulators of neurogenesis is unregulated upon knocking down of PRC2 

function. Further, investigating the global consequences of loss of PRC2 function on 

retinal gene expression using ChIP-seq and microarray profiling could help in identifying 

such genes.  
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PRC2 Roles in Eye Development Might Be Conserved  

Given that polycomb genes are evolutionarily conserved, we speculate that some of 

its biological functions might also be conserved. In support of this view, a mutation in the 

Drosophila E(z) ( Ezh2 homologue) causes a delay in photoreceptor differentiation during 

eye development (Janody et al., 2004). In mammals, Ezh2 is expressed during eye 

development but further analysis of the expression pattern of the other PRC2 components 

has not been performed (Rao et al., 2010). Future studies will focus on characterizing the 

retinal expression of PRC2 genes and exploring the effect of loss of PRC2 function on 

murine retinal neurogenesis by generating eye-specific Ezh2 conditional knockouts. 

It has been shown that PRC1 is recruited to the H3K27me3-occupied territories, 

and is required for the PRC2-mediated repression, suggesting that PRC1 may also be 

involved in eye development. However, the expression of its components Polycomb, 

Bmi1, Ph and Ring1 is not fully addressed in vertebrate retina. Characterization of the 

expression and the function of PRC1 may provide some insights into the functional link 

between PRC2 and PRC1 and how they might contribute to the proper development of 

vertebrate retina. 
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Figure. 28. A possible model for PRC2 function during retinal development. 
PRC2 might be required to suppress the expression of negative regulators of 
retinal neural differentiation to allow the initiation of proneural bHLH gene 
expression and subsequent cell fate acquisition to proceed. 
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Possible Nonhistone Modifying Roles of PRC2 Components 

Most studies on the roles of PRC2 during tissue organogenesis have assumed that 

its loss of function effect is mediated by the lack of its repressive mark H3K27me3. 

However, evidence suggests that PRC2 components can mediate non-histone modifying 

functions as well. For instance, PRC2 can localize to the cytoplasm in T-cells, where it is 

essential for the T-cell antigen receptor (TCR)-mediated actin polymerization through its 

methyltransferase activity (Su et al., 2005). Further, individual PRC2 subunits have been 

reported to have PRC2-independent functions, and thus might mediate distinct biological 

roles. EZH2, for example, can bind the Wnt effector beta-catenin and enhance the 

transactivation of beta-catenin targets independent of its SET domain (Shi et al., 2007). 

Interestingly, this function does not require the expression of the other PRC2 core 

subunits (Shi et al., 2007).  These studies highlight the need for an examination of the 

cellular localization of different PRC2 components during development and whether they 

have roles that can be uncoupled from the methyltransferase activities. 

 

Jarid2 Is Uniquely Expressed During Xenopus Development  

Given that PRC2 plays important biological roles, we wondered how its auxiliary 

subunits might contribute to its function. We have characterized the expression pattern of 

a newly identified partner of PRC2, JARID2 (Herz and Shilatifard, 2010).  We found that 

Jarid2 is expressed in all stages of Xenopus development but is highly enriched in 

postmitotic cells of the CNS, suggesting that Jarid2 may have distinct functions during 

neural differentiation. It has been shown that JARID2 contributes to the regulation of 

H3K27me3 and H3K9me2, and in agreement with these data, we found that both marks 
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are elevated in differentiated cells concomitant with the increase in the expression of 

Jarid2 (Herz and Shilatifard, 2010). The biological functions of Jarid2 in the nervous 

system remain largely unknown but previous data suggest it might be important in 

suppressing proliferation in differentiated cells. Our preliminary data indicate that Jarid2 

is essential for neural differentiation but is not required for global H3K27me3 in 

postmitotic cells. However, whether it is required to recruit PRC2 to positive regulators 

of cell cycle in retinal postmitotic cells remains unknown. Similarly, it is not clear 

whether JARID2 coordinates deposition of both H3K27me3 and H3K9me2 on the same 

targets or whether it regulates the addition of these marks on independent sets of 

promoters. 

 

Concluding Remark  

Although the biochemical functions of the polycomb group proteins have been 

extensively studied, much remains to be learned about how they are utilized in vertebrate 

development. We have revealed an unexplored role of PRC2 during eye development in 

Xenopus. PRC2 components are expressed during retinal development and are essential 

for the expression of the proneural bHLH factors during retinogenesis and for subsequent 

cell fate decisions. This study adds a new component to the network that controls the 

transcriptional reprogramming that occurs during cell transition from proliferation to 

differentiation in the retina. 
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