
IMPROVING THE UTILITY OF COMPILER FUZZERS

by

Yang Chen

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263570?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Yang Chen 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Yang Chen

has been approved by the following supervisory committee members:

John Regehr , Chair 11/01/2013

Date Approved

Matthew Flatt , Member 11/01/2013

Date Approved

Mary Hall , Member 11/01/2013

Date Approved

Matthew Might , Member 11/01/2013

Date Approved

Alex Groce , Member 11/01/2013

Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Aggressive random testing tools, or fuzzers, are impressively effective at finding bugs

in compilers and programming language runtimes. For example, a single test-case gen-

erator has resulted in more than 460 bugs reported for a number of production-quality C

compilers. However, fuzzers can be hard to use. The first problem is that failures triggered

by random test cases can be difficult to debug because these tests are often large. To report

a compiler bug, one must often construct a small test case that triggers the bug. The existing

automated test-case reduction technique, delta debugging, is not sufficient to produce small,

reportable test cases. A second problem is that fuzzers are indiscriminate: they repeatedly

find bugs that may not be severe enough to fix right away. Third, fuzzers tend to generate a

large number of test cases that only trigger a few bugs. Some bugs are triggered much more

frequently than others, creating needle-in-the-haystack problems. Currently, users rule out

undesirable test cases using ad hoc methods such as disallowing problematic features in

tests and filtering test results.

This dissertation investigates approaches to improving the utility of compiler fuzzers.

Two components, an aggressive test-case reducer and a tamer, are added to the fuzzing

workflow to make the fuzzer more user friendly. We introduce C-Reduce, an aggressive

test-case reducer for C/C++ programs, which exploits rich domain-specific knowledge

to output test cases nearly as good as those produced by skilled humans. This reducer

produces outputs that are, on average, more than 30 times smaller than those produced

by the existing reducer that is most commonly used by compiler engineers. Second, this

dissertation formulates and addresses the fuzzer taming problem: given a potentially large

number of random test cases that trigger failures, order them such that diverse, interesting

test cases are highly ranked. Bug triage can be effectively automated, relying on techniques

from machine learning to suppress duplicate bug-triggering test cases and test cases trig-

gering known bugs. An evaluation shows the ability of this tool to solve the fuzzer taming

problem for 3,799 test cases triggering 46 bugs in a C compiler.

To my wife and my parents, for their unwavering love, support, and encouragement

CONTENTS

ABSTRACT . iii

LIST OF TABLES . vii

ACKNOWLEDGEMENTS . viii

CHAPTERS

1. INTRODUCTION . 1
1.1 Motivation . 1

1.1.1 Fuzzers are Effective at Finding Bugs in Compilers 2
1.1.2 Fuzzers Can Be Hard to Use . 2
1.1.3 Research on Improving Compiler Fuzzers’ Utility 5

1.2 Thesis Statement . 6
1.3 Research Outline . 6
1.4 Research Merits . 8
1.5 Dissertation Outline . 8

2. TEST-CASE REDUCTION . 10
2.1 Background . 11

2.1.1 Delta Debugging . 12
2.1.2 Limitation of State-of-the-art Delta Debugging 14

2.2 Avoiding Undefined and Unspecified Behaviors . 18
2.3 C-Reduce: A Better Test-case Reducer for

C/C++ Programs . 20
2.3.1 Compiler-like Source-to-source Transformation 20
2.3.2 Design Principles of Compiler-like Source-to-source

Transformation . 21
2.3.3 The Choice of Language Frontend . 22
2.3.4 Implementing Compiler-like Source-to-source Transformations 24

2.3.4.1 The Use of Clang Frontend . 24
2.3.4.2 The Structure of Compiler-like Source-to-source

Transformations . 25
2.3.4.3 Kinds of Compiler-like Source-to-source Transformations 26

2.3.5 Examples of Compiler-like Source-to-source Transformation 27

3. EVALUATION OF C-REDUCE . 33
3.1 Test Cases . 33

3.1.1 Csmith-generated Test Cases . 33
3.1.2 Test Cases from Application Code . 34

3.2 Nondeterminism in Test-case Reduction . 34

3.3 Evaluating Reducers . 36
3.3.1 Reduction Results of Csmith-generated Bug-inducing

Test Cases . 37
3.3.2 Reduction Results of Reported Test Cases . 37

3.4 Discussion . 39

4. RELATED WORK FOR TEST-CASE REDUCTION 42
4.1 Test-case Reduction for C Programs . 42
4.2 Other Test-case Reduction Techniques . 43

5. TAMING COMPILER FUZZERS . 45
5.1 Background . 45
5.2 The Fuzzer Taming Problem . 46
5.3 Our Approach to Taming Compiler Fuzzers . 49

5.3.1 Definitions . 49
5.3.2 Ranking Test Cases . 50
5.3.3 Distance Functions and Features . 51

5.3.3.1 Levenshtein Distance . 51
5.3.3.2 Euclidean Distance . 52
5.3.3.3 Normalization . 53

6. FUZZER TAMING EXPERIMENTS . 55
6.1 Test Cases . 55
6.2 Establishing Ground Truth . 56
6.3 Bug Slippage . 57
6.4 Evaluating Effectiveness using Bug Discovery Curves 57
6.5 Are These Results Any Good? . 63
6.6 Selecting a Distance Function . 63

6.6.1 Crash Bugs . 63
6.6.2 Wrong-code Bugs . 64

6.7 Avoiding Known Faults . 67
6.8 Clustering as an Alternative to Furthest Point First 70

7. RELATED WORK FOR TAMING COMPILER FUZZERS 74
7.1 Software Failure Clustering . 74
7.2 Fault Localization . 76

8. CONCLUSION . 78
8.1 Future Work . 79

REFERENCES . 80

vi

LIST OF TABLES

3.1 Test cases that triggered crash bugs in various versions of LLVM and GCC
and were attached in bug reports submitted by others 35

3.2 Compiler crash strings uncovered by those test cases attached in bug reports
submitted by others . 35

3.3 The URLs of the bug reports where the original test cases were attached 36

3.4 Averaged sizes (in bytes) of reduced test cases . 37

6.1 Runtimes for FPF versus clustering, where time is in seconds 72

ACKNOWLEDGEMENTS

First, I want to thank my advisor John Regehr, for his endless support and motivating

advice to my research and for his great patience and tolerance to my ineptitude and mistakes

over these years. I am fortunate and grateful to being supervised by John, from whom I

learned how to do research. John has always shown me how to solve research problems in

simple and effective ways and guided me to focus on the important ones. I am indebted to

the innumerous amount of time he spent on answering my research questions, sending me

insightful feedback on my research, and helping me in preparing presentation and technical

writing. Without his guidance, this dissertation would never have been completed.

I also thank my thesis committee members: Matthew Flatt, Alex Groce, Mary Hall

and Matt Might. Matthew enforced my knowledge on programming language design, from

basic lambda calculus to advanced language semantics, and various functional program-

ming techniques. Alex has been extremely helpful since we collaborated on our Swarm

Testing paper; we have co-authored three papers since then. Alex contributed immensely

to the chapters of taming compiler fuzzers in this dissertation. I learned CUDA from

Mary; her deep thoughts on GPU and CUDA had great influence on my internship work

at NVIDIA. Matt taught me how to analyze higher-order programs using advanced static

analysis techniques such as k-CFA.

I am especially indebted to Eric Eide, with whom we published five research papers.

Eric has helped me in almost all of my compiler-testing research. I always enjoy his sharp

insights and comments on the papers that we discussed in the compiler reading group.

Many thanks to Xuejun Yang, my fellow Ph.D. pal and friend. Xuejun’s work on

Csmith forms a solid basis for my dissertation research.

I also thank Jaydeep Marathe and Vinod Grover, who supervised me throughout my

internship at NVIDIA. I spent a great summer working with them.

I thank all my computer science fellow friends: Anton Burtsev, Jianjun Duan, Zhisong

Fu, Peng Li, Suying Liang, Xin Lin, Qingyu Meng, Jon Rafkind, Weibin Sun, and Lu Zhao.

Finally and foremost, I thank my wife and my parents. Nothing would have meaning

without their unwavering love, support, encouragement, and understanding.

ix

CHAPTER 1

INTRODUCTION

Compilers and programming language runtimes are part of the trusted computing base

for many software systems, and hence they need to be correct. On the other hand, modern

compilers and runtimes are complex software artifacts, and bugs are hard to avoid. Random

testing tools, or fuzzers, have shown their strength and effectiveness by finding bugs in

production-quality compilers and runtimes. However, fuzzers can be hard to use: (1) they

tend to generate large bug-inducing test cases, and (2) they repeatedly find bugs that may

not be severe enough to fix right away. This dissertation therefore addresses the following

research question:

While fuzzers are powerful bug-finding tools for compilers and language run-

times, how can we improve the utility of fuzzers and make them more user-

friendly for both fuzzer developers and fuzzer users?

1.1 Motivation
Bugs in compilers and programming language runtimes can affect the correct behaviors

of software systems. For example, it is undesirable to the developer if the compiler crashes.

Moreover, buggy compilers and runtimes can silently generate incorrect object code from a

source program. Compared to crash bugs, which cause the compiler to crash, wrong-code

bugs, which miscompile programs, may be even worse for software developers because

erroneous behavior introduced by miscompilation is often hard to reason about—even for

experienced programmers.

Bugs in compilers and runtimes can cause serious issues for security-critical and safety-

critical software. For example, crashes in a language runtime running in a web browser

could become exploitable vulnerabilities, which would compromise the host computer and

cause unwanted disclosure of private data. More importantly, miscompiling safety-critical

software, where human lives are involved, is a serious matter.

2

1.1.1 Fuzzers are Effective at Finding Bugs in Compilers

In recent years, two kinds of techniques, verification [10,43,44,69,78–80] and random

testing [21,30,53,61,74], have been advanced to improve the correctness of compilers and

programming language runtimes. For example, Compcert [2, 44], a verified C compiler

supporting almost all features of the ISO C 90/ANSI C language, relies on machine-assisted

mathematical proofs to ensure that the compiled executable conforms with the semantics

of the source program and therefore is able to guarantee the absence of miscompilation in

a rigorous way. Vellvm [78–80] aims to reason about the intermediate representation of

LLVM [39], a production-quality compiler, and its SSA-based transformations.

On the testing side, random testing, or fuzzing, has been proved as a powerful bug-

finding tool for uncovering bugs in compilers and language runtimes. For example, Csmith,

a randomized C program generator, has uncovered more than 460 previously unknown bugs

in widely used C compilers [74]. jsfunfuzz [61] has identified more than 1,700 bugs in

SpiderMonkey, the JavaScript engine used in Firefox [63]. LangFuzz [30], another fuzzer

for testing the same JavaScript engine, has led to the discovery of more than 500 previously

unknown bugs. Moreover, Google’s ClusterFuzz is built on a cluster of several hundred

virtual machines that run thousands of Chrome instances simultaneously and is able to

generate about 50 million test cases per day [9]. Within a 4-month period after it was

brought fully online at the end of 2011, ClusterFuzz had detected 95 vulnerabilities in

Chrome.

Fully verifying existing compilers such as LLVM and GCC would certainly require

tremendous amount of efforts, and by no means could be done in a short time. Thus, it is

reasonable to assume that testing will still be playing an important role in improving the

correctness of compilers and runtimes for the foreseeable future.

1.1.2 Fuzzers Can Be Hard to Use

Although fuzzers are effective bug-finding tools, they can be hard to use for three

reasons. First, bug-inducing test cases generated by fuzzers are often large. Larger test

cases are able to expose more compiler bugs [74]. One main reason is that a large test case

can trigger feature interactions and exercise implementation limits in the compiler under

test and therefore is more likely to expose more faults in the system. On the other hand,

3

a large test case makes it difficult to locate the underlying fault, and hence it needs to be

reduced to a small one that still triggers the failure. As a rule of thumb, bug reporters should

take the responsibility to reduce bug-inducing test cases, and then compiler developers

can focus their efforts on fixing bugs. In fact, the importance of test-case reduction is

emphasized by both LLVM and GCC developers [25, 40]. GCC’s documentation states

that, “Our bug reporting instructions ask for the preprocessed version of the file that triggers

the bug. Often this file is very large; there are several reasons for making it as small

as possible...” A similar description appears in LLVM’s page about how to submit bug

reports: “The bug description should contain the following information: The reduced

test-case that triggers the bug...” Manually reducing failure-inducing test cases is often

an exercise of failed and successful tries. It is error-prone and is an unnecessary waste of

human resources. As a consequence, a good automated test-case reducer is necessary to

saving human effort.

Second, fuzzers tend to generate a large number of test cases that trigger only a few

bugs, some of which are triggered many times and others only once. For example, Fig-

ure 1.1 shows two bug distributions over thousands of test cases that were generated by

Csmith. It illustrates that among 46 distinct bugs, the majority are triggered fewer than 10

times, while 16 bugs are triggered by only one test case. Reporting all of these bug-inducing

test cases is completely infeasible—a DoS attack on the bug-reporting system.

Third, fuzzers are indiscriminate. They, for example, cannot avoid generating test cases

triggering bugs that are known to developers but marked as low priority. Compilers such

as GCC or LLVM often have a large number of noncritical bugs remaining unfixed. For

instance, in June 2013, GCC’s bugzilla database still had more than 3,000 open bugs that

were considered “normal” or higher severity and tagged as priorities P1, P2, and P3. Under

the pressure of adding new features and meeting release deadlines, compiler developers

may have limited time to fix bugs. It is therefore a reasonable assumption that quite a lot

of the low-priority bugs would remain unfixed for a long time. It would be undesirable if

a fuzzer kept generating test cases triggering those known, low-priority bugs. In practice,

fuzzer users rely on a variety of ad hoc methods to rule out test cases that are noncritical

or trigger known bugs, such as turning off features in the fuzzer and using hand-coded

rules to filter out test cases triggering noninteresting bugs [27, 64]. Thus, manual work

4

1

10

100

1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

#
 o

f
T

e
s
t

C
a

s
e

s
 T

ri
g

g
e

ri
n

g
 t

h
e

 B
u

g
 (

lo
g

s
c
a

le
)

Bug Number

GCC 4.3.0 Crash Bugs
GCC 4.3.0 Wrong Code Bugs

Figure 1.1: A fuzzer tends to hit some bugs thousands of times more frequently than
others

5

is still heavily involved in determining which bug-inducing test cases are presented to

developers. In fact, Csmith has lost users not because it stopped finding bugs, but because

it is indiscriminate.

1.1.3 Research on Improving Compiler Fuzzers’ Utility

There is surprisingly only a little research work on improving the utility of compiler

fuzzers. Delta debugging, formalized by Zeller and Hildebrandt [76], is a generalized

test-case reduction approach. One of their algorithms, ddmin, aims to minimize the size

of a bug-inducing input by removing contiguous chunks of the input by greedy search.

Hierarchical Delta Debugging, or HDD, was developed by Micherghi and Su [52]. HDD

is able to remove code chunks other than lines, such as tree structures. Berkeley delta [51],

developed by McPeak and Wilkerson, is a commonly used delta debugging tool by compiler

engineers. Berkeley delta is an instance of ddmin, and operates at line granularity. One

major problem of Berkeley delta is that the reduced output is still often too large to be

directly copied into a bug report and thus, a fair amount of further manual reduction efforts

is often involved in generating small, reportable test cases from the original tests.

Furthermore, little research has addressed the problem of creating bug reports for only

new and important test cases by automatically examining a collection of failure-inducing

test cases generated by a fuzzer. Previous research has sought to detect duplicate bug

reports based on user-supplied metadata [67, 68, 72], for example, text in bug descriptions

provided by bug reporters. Clustering has also been used to separate test cases triggering

distinct bugs [1, 24, 33, 57]. However, compiler fuzzers have unique characteristics: First,

user-supplied metadata is not available for fuzzer output, unlike human-created bug reports.

Second, optimizing production-quality compilers are complex and hence, it is infeasible to

predict what bug-inducing test cases would look like. Third, the compiler under test shows

no observable behavior upon wrong-code bugs—the compiler fails “silently” without any

assertion errors. Fourth, fuzzers tend to find a small number of bugs much more frequently

than others; some rare bugs are triggered only once out of a million test cases. These

characteristics impose new research challenges that cannot be solved simply by adopting

the aforementioned techniques.

6

1.2 Thesis Statement
My dissertation research is about making compiler fuzzers more useful for a broader

audience such as compiler developers. To make compiler fuzzers more user-friendly, I

claim that a better test-case reducer needs to perform reduction aggressively. A better re-

ducer should reduce original bug-inducing inputs to small ones that are comparable to those

produced by skilled humans. Moreover, a much more sophisticated approach is feasible to

automatically suppress duplicate bug-inducing test cases and present compiler developers

only those that are important, each triggering a distinct bug that compiler developers are

willing to fix right away. Thus, the thesis statement of my dissertation is

The utility of a fuzzer can be greatly improved by first integrating automated

aggressive test-case reduction and then taming the fuzzer: a bug triage process

relying on machine learning techniques to automatically suppress duplicate

bug-inducing test cases and test cases triggering the bugs that are already

known.

1.3 Research Outline
Figure 1.2 shows the workflow for fuzzing a compiler. The oracle determines the “in-

terestingness” of each test case—whether the test case discovers some erroneous behavior

of the compiler under test. The reducer reduces each bug-triggering test case to a much

smaller one, while keeping the interestingness of the original test case. Finally, the tamer

presents the end user a list of minimized bug-triggering test cases that are ranked in such

an order that interesting test cases are early in the list. Meanwhile, the end user is able to

pass the tamer feedback, improving test-case ranking.

My dissertation research advances the techniques of test-case reduction and fuzzer

taming. First, I show that source-to-source transformations are crucial to producing small

bug-inducing test cases comparable to those produced by skilled humans. It is infeasible

to do fine-grained source-code transformation without the knowledge of language-level

syntax and semantics. For example, modifying a function signature also requires changing

every call site of the function simultaneously. Similarly, reducing the dimension of an array

needs to alter both the array definition and the corresponding array subscript expressions.

Our test-case reducer for C/C++ programs, C-Reduce, enforces modularity and is able to

7

fuzzer

compiler
under test

oracle

test
cases reducer

bug-triggering
test cases

output tamer user

reduced
bug-triggering
test cases

code coverage

ranked
reduced
bug-triggering
test cases

feedback

Figure 1.2: Workflow for fuzzing a compiler

do automated aggressive test-case reduction by invoking pluggable transformations until a

fixpoint is reached. In C-Reduce, I implemented 63 source-to-source transformations using

LLVM’s Clang front-end. For 3,799 test cases triggering bugs in a C compiler, C-Reduce

is able to produce outputs that are of 174 bytes on average, more than 500 times smaller

than 101,744 bytes, the average size of unreduced test cases. Moreover, those reduced test

cases often cannot be improved, even by skilled developers.

Second, I show that the challenge of automatic bug triage can be solved as the fuzzer

taming problem, which is phrased as the following:

Given a potentially large collection of bug-inducing test cases, each of which

triggers a bug, rank them in such a way that test cases triggering distinct bugs

are early in the list.

Based on the insight that bugs are highly diverse, we first exploit various features from

diverse resources that may assist in differentiating test cases in terms of the underlying

bugs, including test-case text, execution traces of the compiler under test running against

test cases, and the compiler’s failure outputs (if they exist). Then the tests can be ranked in

a feature-metric space using the furthest point first (FPF) technique from machine learning

[26]. Another obvious approach to fuzzer taming is clustering: given the features extracted

from the tests, we can use a clustering algorithm to generate clusters where the test cases in

the same cluster are more similar to each other than those in other clusters and then select

one test case from each cluster. However, compared with FPF ranking, clustering suffers

from some drawbacks. First, it is computationally expensive, especially when feature

vectors are large. More importantly, clustering is less effective than FPF ranking. Our

8

approach can effectively solve the fuzzer taming problem for 2,501 test cases triggering 11

distinct crash bugs in a C compiler and 1,298 test cases triggering 35 distinct wrong-code

bugs in the same C compiler. The user can see all 11 crash bugs by examining the first 15

tests ranked in the FPF order, 32 times faster than randomly looking through the tests. For

wrong-code bugs, the improvement is 2.6×. But more importantly, using our approach,

the user is able to find 12 distinct bugs by examining the first 15 tests from the list—a

substantial improvement over random inspection and clustering, which expose only 5 and

6 distinct bugs, respectively.

1.4 Research Merits
C-Reduce is the first work where compiler-like transformations are used for aggressive

test-case reduction, as far as I am aware of. These transformations are necessary to produce

test cases nearly as good as those produced by skilled developers. Moreover, C-Reduce has

shown its impact in compiler communities:

1. It is used by compiler developers;

2. It is included in GCC’s documentation page about test-case reduction [4];

3. Industrial hackers have submitted patches to us, including new transformations and

various improvements.

Second, to the best of my knowledge, the fuzzer taming problem has not been addressed

by the research community. My work has shown that we can solve this problem by applying

a lightweight FPF ranking algorithm on diverse features pertaining to bug-inducing test

cases. With these techniques, the fuzzer user can find distinct bugs by looking through

a much smaller number of bug-triggering test cases than examining test cases in random

order.

My dissertation work addresses the problem of making compiler fuzzers more user-

friendly, and shows that the problem can be solved by automated aggressive test-case

reduction and fuzzer taming.

1.5 Dissertation Outline
The rest of this dissertation is organized as follows. Chapter 2 describes C-Reduce, the

design and implementation of its compiler-like transformations. Chapter 3 gives the results

of applying C-Reduce to reduce 3,799 test cases that trigger 46 bugs in GCC 4.3.0 and 10

9

test cases that were reported to crash a variety of GCC and LLVM versions. Related work

of test-case reduction is discussed in Chapter 4. Chapters 2–4 have text from a PLDI 2012

paper [59], joint work with John Regehr, Pascal Cuoq, Eric Eide, Chucky Ellison, and

Xuejun Yang. Chapter 5 presents the approach to fuzzer taming. Chapter 6 describes the

experiments to evaluate our fuzzer taming approach, and the results are also discussed. I

survey related work for taming compiler fuzzers in Chapter 7. Chapters 5–7 contain text

from a PLDI 2013 paper [17], which was a collaboration with Alex Groce, Chaoqiang

Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John Regehr. I conclude in Chapter

8.

CHAPTER 2

TEST-CASE REDUCTION

Large test cases generated by a fuzzer tend to uncover more bugs than do small test

cases, given a fixed test budget [7, 74]. However, including a large bug-inducing test

case in a bug report is unacceptable to compiler developers because the large test case

complicates the debugging process of locating the underlying bug in the compiler under

test and unnecessarily wastes the developers’ time. Distilling a bug-triggering test case to

its essence is therefore an important step towards making an acceptable bug report. Given

a large bug-inducing test case, test-case reduction is the process of constructing a small

test case that still triggers the compiler bug. A test-case reducer automates the test-case

reduction process and can significantly save human effort. Moreover, a test-case reducer

should have more general use cases: it is not limited to reducing large test cases generated

by a fuzzer; but more importantly, it is capable of producing small bug-triggering inputs in

a more general sense—e.g., reducing a bug-triggering test case encountered when building

a large project.

Ideally, a test-case reducer should automatically reduce a large bug-triggering test case

into a reportable one: a self-contained small bug-triggering test case that can be directly

pasted into a bug report. In other words, the test-case reducer needs to produce small bug-

inducing test cases comparable to those produced by experienced developers. Figure 2.1

shows a reportable test case that demonstrates a bug in GCC 4.3.0. The test case was

produced by our test-case reducer from a 57 KB bug-inducing test case generated by Csmith

2.1.0. To the best of my knowledge, none of the contemporary reducers are able to yield

results as good as the one in Figure 2.1.

In this Chapter, I describe the design and implementation of our test-case reducer, C-

Reduce. Some of the text in this Chapter is from a PLDI 2012 paper [59], a joint work with

11

1 int printf (const char *, ...);
2 struct
3 {
4 int f5:1;
5 }
6 a;
7 int b = 1;
8 int
9 main ()

10 {
11 a.f5 = 0 != b;
12 printf ("%d\n", a.f5);
13 return 0;
14 }

Figure 2.1: A reportable test case that triggers a bug in GCC 4.3.0

John Regehr, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.1

2.1 Background
Manual test-case reduction is often an expensive exercise that requires a lot of suc-

cessful and failed attempts to alter different parts of the test case being reduced until the

test case cannot be reduced further. Given a test case triggering a compiler bug, a typical

manual reduction process works as follows:

1. turn the current test case into a new variant by removing certain components of the

code from it;

2. check if the variant still triggers the compiler bug: if it does, then save it as the current

test case and go to step (1); otherwise roll back to the previous test case and try to

remove another code component;

3. terminate if no new transformation could make the current test case smaller while

still triggering the compiler bug.

The last successful variant is the final result.

1The definitive version was published in Proceedings of the ACM SIGPLAN 2012 Confer-
ence on Programming Language Design and Implementation (PLDI), Beijing, China, Jun. 2012.
http://doi.acm.org/10.1145/2345156.2254104

12

Manually repeating those reduction steps is tedious and error-prone. For example, it

would take more than an hour for a moderately experienced user to transform a large

Csmith-generated bug-triggering test case into a reportable one. In this case, manual

test-case reduction is time-consuming but still manageable. In other cases, for example,

reducing a heavily-templated C++ program of hundreds of thousands of lines, manual test-

case reduction would be too difficult to be worth trying. For instance, the developer says, “I

first wrote delta out of necessity. Scott and I had a quarter-million line (after prepossessing)

C++ input that would crash the C++ front-end we were working on, Elsa; there was just

no way we were going to minimize that by hand” [51]. Even worse, undefined behavior is

very easy to introduce in the course of reducing test cases triggering compiler wrong-code

bugs and therefore, the final reduced test case would become invalid. Since it is often

hard to identify which reduction step brings in undefined behavior, the reduction has to be

restarted.

Due to the high cost of producing small bug-inducing inputs, a compiler user could

easily decide to just find a work-around when confronted with a compiler bug, rather

than spending significant effort to narrow it down. On the other hand, both GCC and

LLVM developers emphasize the importance of test-case reduction in their instructions for

submitting bug reports [25, 40]. It would not be hard to imagine that if the user reports

a large unreduced test case to compiler developers, the possible bug triggered by this test

case would go unfixed forever.

2.1.1 Delta Debugging

Test-case reduction needs to be automated because of the inefficiency and the difficulty

of manual test-case reduction. Delta debugging, formulated by Zeller and Hildebrandt [76],

is the most widely used technique for conducting automated test-case reduction. They

developed two delta debugging algorithms: an isolation algorithm dd and a simplification

algorithm ddmin. Dd is a general delta debugging algorithm, which tries to isolate the

difference between a failure-inducing (or failing) test case and a passing test case, i.e., a

test case that does not trigger the desired behavior in the system under test. A minimized

test case is obtained by minimizing the failing input as well as maximizing the passing

input. Ddmin is a special case of the dd algorithm, and it simplifies the failing input by

13

reducing the size of the test input.

Ddmin minimizes the size of a failing test by removing contiguous substrings, or chunks,

to generate a series of variants. Unsuccessful variants are those that fail to trigger the bug

behavior in the system and are simply discarded. Successful variants, on the other hand,

are those that still uncover the desired behavior. Each successful variant is then used as the

new basis for producing further variants. If no successful variants can be generated from

the current basis, the chunk granularity is increased by splitting the current chunks into

smaller ones. The algorithm terminates when meeting two criteria: (1) no more successful

variants can be produced and (2) the chunk granularity cannot be increased further. The

last successful variant is the final result, which is, by the nature of the search, the smallest

test case that preserves the sought-after behavior. Removing any single chunk of the final

variant would make the bug disappear.

Figure 2.2 shows a simple example that illustrates the above minimization steps. At step

(1), the entire test forms a single chunk. Because removing this chunk would obviously

make the bug disappear, it is split into two subsets. Then the algorithm checks the variants

obtained by removing either of those subsets. If neither of them is a successful variant,

the chunk size is decreased further. At step (3), removing the second chunk is able to

produce a successful variant, which then becomes the new basis for further reduction. The

algorithm continues until reaching step (7), where no successful variants could be produced

and the chunk size could not be decreased any more. The result is the test where each of

the remaining chunks is significant for preserving the faulty behavior.

Hierarchical Delta Debugging [52], or HDD, generalizes the idea of the ddmin to exploit

hierarchical structure of the input. Instead of treating the test input as a set of flat chunks,

HDD first constructs a tree structure—e.g., an abstract syntax tree—for the test input and

then applies a ddmin-like algorithm to each level of the tree, from the top to the bottom.

Handling only one level of the tree each time enables the delta debugging algorithm to only

work on a small portion of the input. Consequently, the reduction runtime can be improved

by removing irrelevant nodes in the early stage. HDD was evaluated on several XSLT files

and C programs, which crashed a Mozilla web browser and a C compiler, respectively.

Compared with ddmin, HDD was able to take many fewer minimization steps to produce

even simpler outputs.

14

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 2.2: Minimizing an input using the ddmin algorithm

Berkeley delta, implemented by McPeak and Wilkerson [51], is a variant of ddmin. It

is the de facto test-case reducer widely used by compiler developers. Berkeley delta is

line-based: it produces variants by removing one or more contiguous lines from the input

test. Topformflat, a utility tool companioned with Berkeley delta, is able to preprocess

a test input and put all nested substrings between two balanced delimiters onto a single

line. Topformflat greatly improves the effectiveness of Berkeley delta because it enables

conducting reduction based on certain hierarchical structure of the input. Berkeley delta is

simple and effective.

2.1.2 Limitation of State-of-the-art Delta Debugging

The state-of-the-art delta debugging algorithms such as dd, ddmin, and HDD are ef-

fective at minimizing failure-inducing test cases, but they are insufficient to turn them into

reportable ones. So, significant manual effort often needs to be performed on the output

from these tools in order to produce test cases nearly as good as those produced by skilled

developers. For example, for the same unreduced test case used in Figure 2.1, Berkeley

delta produces a 6.2 KB output, which is about 40 times larger than the reportable one

produced by C-Reduce.

15

There are two main reasons for the insufficiency of the existing delta debugging tech-

niques. First, ddmin, and thus Berkeley delta, cannot remove several chunks at a time

and therefore, they would fail to take any minimization opportunities that require making

multiple changes batched in a single iteration on the test input. Second, neither ddmin

nor HDD takes a full advantage of exploiting language rules: syntax and semantics of the

language in which the test case is written. In most cases, relying on balanced delimiters to

restructure lines or removing nodes at the same abstract-syntax-tree (AST) levels are not

enough to produce very small test cases.

Figures 2.3–2.5 demonstrate this limitation of the existing delta debugging techniques.

Figure 2.4 and 2.5 display some “bad” transformations—producing syntactically-ill-formed

outputs—and “good” transformations—producing syntactically correct outputs, respec-

tively, for the code shown in Figure 2.3. Line-based delta debugging tools such as Berkeley

Delta would transform the original code into the codes in Figures 2.4(a) or 2.4(b), neither of

which is able to pass compiler’s syntax checking. Figure 2.4 shows one more syntactically

incorrect code produced by another transformation that only removes the parameter and the

corresponding argument and hence leaves an undefined reference of the parameter. This

kind of code would also be rejected by the compiler’s syntax checking pass.

To the best of my knowledge, none of the existing test-case reducers for C/C++ pro-

grams would perform one-step transformations as those in Figure 2.5. For example, the

code shown in Figure 2.5(a) is obtained by making the following changes all at once:

• removing parameter p1 from function foo’s signature,

• removing any use of parameter p1 inside function foo’s body, and

• removing parameter p1’s corresponding argument at function foo’s call site at line 7.

Some compiler bugs can be triggered by syntactically incorrect code—e.g., the code

in Figure 2.4(a). However, in my experience, failing to make batched alterations while

generating syntactically correct code often prevents the reducer from making further re-

duction towards constructing smaller outputs. For example, in Figure 2.5(a), the definition

of local variable a in function bar can be removed by the simple line-based delta—if this

definition is irrelevant to the bug because now there is no more reference to variable a. On

the other hand, removing the same definition while leaving the reference of a at line 6 in the

original code results in syntactically incorrect code. This kind of dependency chain, e.g.,

16

1 int foo(int p1, int p2) {
2 return p1 + p2;
3 }
4 int bar(void) {
5 int a = 1;
6 return foo(a, 2);
7 }

Figure 2.3: Original code to be transformed

1 int foo(int p2) {
2 return p1 + p2;
3 }
4 int bar(void) {
5 int a = 1;
6 return foo(a, 2);
7 }

(a)

1 int foo(int p1, int p2) {
2 return p1 + p2;
3 }
4 int bar(void) {
5 int a = 1;
6 return foo(2);
7 }

(b)

1 int foo(int p2) {
2 return p1 + p2;
3 }
4 int bar(void) {
5 int a = 1;
6 return foo(2);
7 }

(c)

Figure 2.4: Transformations resulting in syntactically incorrect codes. (a) Code
transformed by removing parameter p1; (b) Code transformed by removing argument a;
(c) Code transformed by removing both parameter p1 and the corresponding argument a.

17

1 int foo(int p2) {
2 return p2;
3 }
4 int bar(void) {
5 int a = 1;
6 return foo(2);
7 }

(a)

1 int foo(int p2) {
2 int p1 = 0;
3 return p1 + p2;
4 }
5 int bar(void) {
6 int a = 1;
7 return foo(2);
8 }

(b)

Figure 2.5: Transformations producing syntactically correct results. (a) Code transformed
by removing parameter p1, the use of p1 and the corresponding argument a; (b) Code
transformed by removing argument a and turning parameter p1 to a local definition.

18

the removal of a’s definition depends on the removal of its use, can be quite long, leaving

outputs that are too large to be suitable for bug reports. In practice, users of Berkeley delta

run the tool multiple times, and between each run they do certain manual reduction, which

removes some obstacles that stop the tool from doing further reduction. In some cases,

manually breaking dependencies is trivial. On the other hand, operations such as manually

collapsing the class hierarchy or instantiating templates would be quite laborious. A test-

case reducer better than the existing ones should make manual interference unnecessary

during the reduction process.

2.2 Avoiding Undefined and Unspecified Behaviors
Undefined behavior is “behavior, upon use of nonportable or erroneous program con-

struct or erroneous data, for which this International Standard imposes no requirements,”

as specified in the C99 standard [32]. In other words, the compiler has no obligation upon

undefined behavior and is free to emit any kind of code, e.g., it would generate code to

erase all data on the disk. An example of undefined behavior is signed integer overflow.

Unspecified behavior, on the other hand, stands for the situation where the compiler is

allowed to choose one from a variety of implementation alternatives. The evaluation

order of a function’s arguments is an example of unspecified behavior. The C99 standard

describes more than 190 kinds of undefined and unspecified behaviors.

On one hand, compilers exploit undefined behavior to generate optimized code. They

basically assume the absence of undefined behavior in the program being compiled. On

the other hand, the execution of the program containing any undefined behavior is un-

predictable: it may exhibit faulty behavior, or it might just work with certain compiler

versions, but would suddenly fail with another compiler. Moreover, executing undefined

behavior often causes program bugs that are hard to identify and thus must be avoided.

Some detailed discussion about undefined behavior is presented in these blog posts [38,58].

Nevertheless, it is unacceptable to report a test case that exhibits wrong-code behav-

ior due to any undefined behavior because the output of the execution is meaningless.

The faulty behavior is caused by some bug in the test case, not in the compiler under

test. Similarly, submitting wrong-code test cases exercising unspecified behavior is not

appreciated by compiler engineers. In fact, Keil C compiler developers state “Fewer than

19

1% of the bug reports we receive are actually bugs” [6]. Therefore, test cases exploring

compiler wrong-code bugs must not execute any undefined behavior and must not rely on

any specified behavior. Consequently, test-case reduction for wrong-code bugs must avoid

producing final outputs that rely on undefined and unspecified behaviors. There are two

ways to achieve this goal.

First, the test-case reducer can generate only valid variants—variants that are undefined-

and unspecified-behavior free. This approach would fundamentally guarantee the absence

of invalid variants. However, implementing such a reducer for general C programs is

extremely hard. Another approach is to allow the reducer to produce both valid and

invalid variants, but leverage an external tool to filter out invalid ones. Two existing tools,

KCC [22] and Frama-C [20] are capable of detecting a large number of undefined and

unspecified behaviors in the C programming language.

KCC is a semantics-based interpreter and analysis tool for C programs. It is rooted

from a single formal semantics that accurately captures C and can catch many undefined

behaviors. KCC does not report false positives: all errors reported by KCC are guaranteed

to be real bugs in the program. Frama-C is an extensible static-analysis framework for C.

It supports a value-analysis plug-in [15] and relies on the value analysis to soundly detect

a sizable set of C’s undefined and unspecified behaviors.

Both KCC and Frama-C assume that the input programs can be compiled by the com-

piler. C-Reduce and Berkeley delta, however, are not guaranteed to produce only compil-

able variants, e.g., some line-based delta algorithm may produce variants that are not even

syntactically correct. In practice, we solve this problem by running another validity check

that invokes any convenient C compiler to compile a variant and passing this variant to

KCC or Frama-C only if it had been successfully compiled by the convenient compiler.

Test cases for compiler-crash bugs, in practice, have weaker validity requirements than

wrong-code test cases. As a matter of implementation quality, a compiler vendor usually

fixes a crash bug even if the bug-inducing test case manifests undefined or unspecified

behavior, e.g., dereferencing NULL pointers or using uninitialized variables. As a con-

sequence, reducing crash test cases often runs more rapidly and produces smaller outputs

than reducing wrong-code test cases.

20

2.3 C-Reduce: A Better Test-case Reducer for
C/C++ Programs

C-Reduce is an automated test-case reduction tool for C/C++ programs. It is inspired

by Delta Debugging and able to produce much smaller outputs than those produced by

Berkeley Delta. C-Reduce reduces a test case by performing a fixpoint computation over

a collection of pluggable transformations, each of which alters the text of the test case

and generates a variant. Similar to ddmin, C-Reduce saves a successful variant—one that

triggers the bug—as the input of the subsequent transformation and simply discards failing

ones. C-Reduce stops when the test case cannot be reduced further. The last successful

variant is the final reduced test case, which can be copied into a bug report submitted to

compiler developers. Figure 2.6 shows the workflow of C-Reduce.

C-Reduce has several kinds of transformations. For example, it includes “peephole

transformations” that simplify a contiguous sequence of tokens of a test case. These

include turning identifiers into dummy integer constants such as 0 or 1, replacing a binary

expression with one of its operands, and removing a balanced pair of curly braces and all

the text between them, etc. Following the idea of Berkeley delta, C-Reduce also supports

line-based delta transformation that removes contiguous lines at different granularity levels.

The line-based transformation is also in the help of the topformflat utility, borrowed from

Berkeley delta. When the line granularity becomes one, the transformation will invoke

topformflat to reformat the test.

2.3.1 Compiler-like Source-to-source Transformation

Among all the classes of the transformations in C-Reduce, one class is, in particular,

designed for overcoming the limitation of the existing delta debugging techniques described

in Section 2.1.2. When the reducer alters multiple parts of the test, two naı̈ve approaches do

not work. First, the reducer cannot enumerate all possible alterations that involve more than

one token because the searching space would be too large. For example, even for the trivial

program such as “int main(void) {return 0;},” there are more than 1, 000 combinations

of removing n tokens from it, where n ranges from 2 to 10. If we count other kinds

of operations, e.g., reordering or substitution, the number of possible alterations would

become much larger. Second, making blindly random changes is not acceptable. For

example, within the entire searching space for a test case, the reducer randomly modifies

21

Transformation

test
case

bug-inducing
test case

previous
bug-inducing

test case

minimized
bug-inducing

test case
fixpoint

triggers bug

bug disappears

Figure 2.6: Workflow of C-Reduce

different parts of the test and terminates after a certain number of attempts. This approach

is rarely useful because blindly altering the test would mostly produce codes that violate the

language specification. In my experience, producing such variants has little contribution

towards the goal of test-case reduction and therefore is a waste of CPU time.

Analogous to the compiler’s transformation applied on the intermediate representation

(IR), Compiler-like source-to-source transformation conducts code transformation at the

source level. It follows the syntax and semantics rules defined by the language. Con-

sequently, most of the variants produced by this transformation can be compiled by the

compiler.

2.3.2 Design Principles of Compiler-like Source-to-source
Transformation

Implementing compiler-like source-to-source transformation follows several design prin-

ciples. First, it enforces modularity. Each transformation should be independent of the

others and can be individually plugged into C-Reduce’s main delta loop. Keeping high

modularity is one of the key features of C-Reduce. It enables C-Reduce to draw a simple

and clean interface between the core delta debugging algorithm and each transformation.

Second, a transformation does not need to preserve the meaning of the code, as compiler

optimizers do. A test-case reducer aims to turn a large bug-inducing test case into a small

one that preserves the desired behavior. A reduction transformation can modify the test

text in various ways as long as the modification may produce a better result. It is even

22

acceptable to produce syntactically ill-formed code, but not too often. Consequently, the

code analysis involved in the transformation can be incomplete or unsound. For example,

the transformation that canonicalizes class methods would fail to rename some methods

due to the complexity of resolving certain kinds of class template instantiations. Another

example is that there is no real array-out-of-bound analysis nor aliasing analysis involved

in changing the size of an array or the index of accessing this array and thus, the related

transformation is unsound in the typical static analysis point of view. However, this strat-

egy simplifies the implementation of some complex transformations. In my experience,

unsoundness does not have much impact on the quality of C-Reduce in terms of reducing

failure-inducing test cases.

Third, not all transformations directly contribute to reducing the size of the test case.

The insight is that some transformations temporarily increase code size, but they could

create more reduction opportunities for other transformations and therefore improve overall

reduction ratio. The function-inlining transformation is a good example in this category.

Fourth, learning reduction tricks is an important process of improving compiler-like

transformations. To some extent, our compiler-like source-to-source transformation was

motivated by our manual reduction experience and examining the ways in which those

experienced developers produced small test cases. Our observation was that in order

to construct reduced test cases nearly as small as the ones produced by those people, a

collection of compiler-like transformations is needed. In some sense, those compiler-like

source-to-source transformations mimic the operations that could be taken by a skilled

developer to create a small test case. However, there are always cases where skilled devel-

opers can outperform automated test-case reducers such as C-Reduce. If we noticed that

C-Reduce missed certain reduction opportunities that resulted in obviously bad reduction

results, adding new transformations to handle these cases would be easy due to C-Reduce’s

high modularity.

2.3.3 The Choice of Language Frontend

Compiler-like source-to-source transformation needs support of a language frontend.

Besides doing lexing, parsing, and building an abstract syntax tree (AST) for the input pro-

gram, the frontend needs to meet several requirements for implementing efficient, effective,

23

and useful source-to-source transformation for test-case reduction.

First, the frontend must support source-to-source transformation. It should provide a

way to output a transformed program in the same language as the input program being

written, along with all modifications made to it. This requirement is fundamental and

obvious; otherwise, there is no ground for performing source-to-source transformation.

Second, the frontend should have full-fledged support for language constructs. Incomplete

support of language features can limit the use of the reducer—especially if we consider

extending the reducer to handle more general codes other than only a fuzzer’s outputs.

For example, a C language family frontend that provides support of C, C++, and Object

C is better than a frontend only targeting the C language. The reducer’s workflow can

be simplified due to integrating fewer external toolsets, and the starting cost of learning

a new frontend framework can be amortized by working with a unified interface. Third,

the frontend should facilitate AST-base program analysis. Source-to-source transformation

conformable with the language specification needs to perform certain analysis on the AST

generated from the input. For instance, renaming a variable requires changing its declared

name and also replacing each of its references with the new name. In this case, the frontend

should make it easy to traverse the AST to find all the references of the variable being

renamed. Fourth, the front-end must not add any extra modification to the source code

except for the designated pieces.

Although it may not be straightforward, the last requirement is actually important to

implement an effective reduction tool so that it needs more explanation. In general, the bug

being triggered by the test case under reduction is transparent to the reducer. The reducer

has no knowledge about how the bug would look like, and any small change that it makes

to the test could make the bug disappear. In some rare cases, even simple reformatting

could turn a bug-triggering test case into one that was unable to trigger the bug any more.

Some frontend tools pretty-print transformed code in their own way rather than keeping the

original code layout, or implicitly alter code structure at the AST level, e.g., generating a

single AST node “0” for the expression “a - a” instead of constructing separate nodes for

the operator and its operands.

Having the reducer explicitly control all modifications naturally mimics the process of

manual reduction, and makes it easy to examine what a transformation does for the given

24

test. More importantly, it eliminates the possibility that implicit changes performed by the

frontend—even if these changes preserve the semantics of the input—would cause the bug

behavior to disappear. In fact, one of the key characteristics of C-Reduce is that it is free to

change the semantics of the test being reduced as long as the transformation may contribute

to a smaller test case while preserving the desired bug-behavior. In other words, C-Reduce

has stronger bug-preserving requirement than semantics preserving.

2.3.4 Implementing Compiler-like Source-to-source Transformations

This section describes the implementation details of our compiler-like source-to-source

transformation using LLVM’s Clang frontend, which meets all the requirements described

above. Furthermore, I explain the key components provided by the Clang Frontend to

facilitate source-code transformation and the structure of our transformation framework.

Several transformation outputs are also presented to demonstrate how those transformations

work together to produce a small test case.

2.3.4.1 The Use of Clang Frontend

Clang’s modular-library-based architecture simplifies the task of writing a source-to-

source transformation tool. In particular, C-Reduce leverages three key features provided

by Clang frontend to implement compiler-like source-to-source transformation.

• Clang frontend provides a pre-order, depth-first traversal over the AST using its Re-

cursiveASTVisitor class template. The RecursiveASTVisitor implements a standard

C++ technique, Curiously Recurring Template Pattern (CRTP), where a user-defined

visitor class derives from a template instantiation that has the visitor class as its argu-

ment. In most cases, the user-defined visitor class only needs to override interesting

visit methods to handle certain types of AST nodes such as types, declarations, and

expressions. For example, overriding the VisitVarDecl method allows the user to

process all variable declarations, each at a time, in the traversal order defined in the

RecursiveASTVisitor. By default, the RecursiveASTVisitor ensures that each AST

node built from explicit part of the source code is going to be visited exact once.

• Each AST node has an encoding of its corresponding location in the source code, if

the location exists. Furthermore, the SourceManager class provides a way to retrieve

the actual string representation of the code starting from a source location. This

25

facility makes it possible to have fine-grained control over the input source.

• The Rewriter class exposes interfaces for removing, replacing and inserting text

based on given source locations. The Rewriter relies on a sophisticated rope data

structure [11], which is used for efficiently manipulating text, e.g., insertion, deletion,

and concatenation. With the source location information encoded in AST nodes, the

Rewriter enables accurate alterations to the input. Moreover, the Rewriter directly

modifies the original source code and explicitly controls every single write to the

source. In other words, the frontend does not implicitly alter the input, and every

modification to the input must have been coded by the user through some interface

provided by the Rewriter.

The combination of these features gives a simple but powerful way to implement a

source-code rewriting tool, usually in the following steps: visiting interesting AST nodes,

constructing the replacing string using certain analysis, obtaining the location to rewrite,

and firing the Rewriter to actually conduct rewriting.

2.3.4.2 The Structure of Compiler-like Source-to-source
Transformations

Figure 2.7 shows the structure of the compiler-like transformation. The driver is the

entrance to the underlying transformation infrastructure. It accepts the input program, inter-

prets the command-line options, and then passes the control to the transformation manager.

The transformation manager employs Clang’s standard APIs to create the compiler instance

and do necessary initializations, e.g., setting correct target information, creating the prepro-

cessor and AST context, specifying the AST consumer, and initializing the source manager.

Individual transformations register themselves to the transformation manager through a

unique interface. The transformation manager invokes the transformation specified at the

command line. Each transformation is a derived instance of Clang’s ASTConsumer class,

which accepts the parsed AST and performs some actions on it, e.g., visiting certain AST

nodes and rewriting the input source code. AST visitation is executed with the Recur-

siveASTVisitor provided by Clang’s runtime. The invoked transformation then performs

some analysis along with the AST visitation, determines the part of the source code to be

modified, and launches the rewriter to write the changes back to the original code.

26

Driver

Transformation Interface

Trans

Transformation Manager

Input

Rewriting Utility

register

Output

Trans Trans Trans Trans

Clang
Frontend
Runtime

Rewriter

Recursive-
ASTVisitor

Compiler-
Instance,

Figure 2.7: The structure of compiler-like source-to-source transformation

2.3.4.3 Kinds of Compiler-like Source-to-source Transformations

In total, C-Reduce has 65 compiler-like source-to-source transformations targeting var-

ious aspects of C and C++, including2

• removing an unused function, variable, or field in a struct/union;

• shortening the name of a parameter, variable, function, method, or class;

• replacing aggregates with scalars;

• replacing unions with structs;

• reducing the length or the dimension of an array;

• reducing the indirection level of a pointer variable;

• moving a local variable to global scope;

• removing a parameter from a function’s declaration and deleting the corresponding

argument at each call site of the function while adding a local variable of the same

type and name at the function scope;

2Among these 65 transformations, two were provided by Konstantin Tokarev.

27

• factoring a call expression out of a complex expression;

• making a function return void and removing all return statements in the function;

• combining multiple same-typed variable declarations into a single compound decla-

ration;

• inlining small functions;

• performing copy propagation;

• simplifying comma expressions, if-statements, or typedef declarations;

• turning a class template into a class;

• instantiating template parameters;

• replacing template arguments with integer types or values;

• removing an unused parameter of a class template from its declaration while erasing

the corresponding template argument from each of its instantiation or specialization;

• removing namespaces;

• removing an initializer from a class constructor; and

• simplifying the class hierarchy.

2.3.5 Examples of Compiler-like Source-to-source Transformation

Figures 2.8–2.12 demonstrate how the compiler-like source-to-source transformation

can benefit producing a small test case. The codes were generated during a real C-Reduce

run for reducing a test case triggering a crash bug in GCC 4.3.0.3 In each figure, the code

before the transformation is on the left, and the transformed code is on the right. The

changes made by the transformation are also highlighted in the transformed code.

The conducted transformations are summarized as follows (in the order of being in-

voked during the reduction):

1. Figure 2.8: a simple-inliner pass was performed to replace the invocation of function

foo with its body;

2. Figure 2.9: reduce-pointer-level pass changed pointer g7 to a scalar type at line 7 and

modified the corresponding pointer dereference at line 17;

3. Figure 2.10: copy-propagation pass replaced variable g6 with variable tmp at line 15;

3For better presentation, the codes were reformatted, and some intermediate results transformed by line-
based delta and peephole passes were removed.

28

1 unsigned char g1;
2 int g2;
3 int g3;
4 int foo(void)
5 {
6 return 0 % 0;
7 }
8 int g4;
9 char g5;

10 int g6;
11 int *g7;
12 void bar(void)
13 {
14
15
16
17
18 g6 = foo();
19 unsigned char l1 = g6;
20 g5 = g1 ? l1 : l1 % 0;
21 *g7 = g5;
22 for (;;) ;
23 }

(a)

1 unsigned char g1;
2 int g2;
3 int g3;
4 int foo(void)
5 {
6 return 0 % 0;
7 }
8 int g4;
9 char g5;

10 int g6;
11 int *g7;
12 void bar(void)
13 {
14 int tmp;
15 {
16 tmp = 0 % 0;
17 }
18 g6 = tmp;
19 unsigned char l1 = g6;
20 g5 = g1 ? l1 : l1 % 0;
21 *g7 = g5;
22 for (;;) ;
23 }

(b)

Figure 2.8: Code transformation by applying simple-inliner pass. (a) Before
transformation; (b) After transformation.

29

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int *g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = g6;
16 g5 = g1 ? l1 : l1 % 0;
17 *g7 = g5;
18 for (;;) ;
19 }

(a)

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = g6;
16 g5 = g1 ? l1 : l1 % 0;
17 g7 = g5;
18 for (;;) ;
19 }

(b)

Figure 2.9: Code transformation by applying reduce-pointer-level pass. (a) Before
transformation; (b) After transformation.

30

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = g6;
16 g5 = g1 ? l1 : l1 % 0;
17 g7 = g5;
18 for (;;) ;
19 }

(a)

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = tmp;
16 g5 = g1 ? l1 : l1 % 0;
17 g7 = g5;
18 for (;;) ;
19 }

(b)

Figure 2.10: Code transformation by applying copy-propagation pass. (a) Before
transformation; (b) After transformation.

31

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = tmp;
16 g5 = g1 ? l1 : l1 % 0;
17 g7 = g5;
18 for (;;) ;
19 }

(a)

1 unsigned char g1;
2 int g2;
3 int g3;
4 int g4;
5 char g5;
6 int g6;
7 int g7;
8 void bar(void)
9 {

10 int tmp;
11 {
12 tmp = 0 % 0;
13 }
14 g6 = tmp;
15 unsigned char l1 = tmp;
16 g5 = g1 ? l1 : l1 % 0;
17 g7 = g5;
18 for (;;) ;
19 }

(b)

Figure 2.11: Code transformation by applying remove-unused-var pass. (a) Before
transformation; (b) After transformation.

32

1 unsigned char g1;
2 char g5;
3 int g6;
4 int g7;
5 void bar(void)
6 {
7 int tmp;
8 {
9 tmp = 0 % 0;

10 }
11 g6 = tmp;
12 unsigned char l1 = tmp;
13 g5 = g1 ? l1 : l1 % 0;
14 g7 = g5;
15 for (;;) ;
16 }

(a)

1 int g1;
2 char g5;
3 int g6;
4 int g7;
5 void bar(void)
6 {
7 int tmp;
8 {
9 tmp = 0 % 0;

10 }
11 g6 = tmp;
12 unsigned char l1 = tmp;
13 g5 = g1 ? 0 : l1 % 0;
14 g7 = g5;
15 for (;;) ;
16 }

(b)

Figure 2.12: Code transformation by applying some line-based and peephole
passes. (a) Before transformation; (b) After transformation.

4. Figure 2.11: three unused variables, g2, g3, and g4, were removed by three consecu-

tive remove-unused-var passes;

5. Figure 2.12: several line-based and peephole passes simplified the declared type of

variable g1 at line 1, simplified the signature of function bar at line 5, removed the

balanced curly parentheses at lines 8 and 10, replaced variable l1 with constant 0 in

the ternary operator at line 13, and removed lines 3, 4, 11, and 14.

CHAPTER 3

EVALUATION OF C-REDUCE

This Chapter evaluates C-Reduce on reducing a large number of test cases, which fall

into three classes:

• 2,501 Csmith-generated test cases triggering crash bugs in GCC 4.3.0;

• 1,298 Csmith-generated test cases triggering wrong-code bugs in GCC 4.3.0;

• 10 test cases harvested from GCC and LLVM bugzilla databases, each of which

crashes a version of GCC or LLVM.

The last type of test cases are used to demonstrate that C-Reduce is not only useful for

reducing randomly-generated test cases—it can effectively reduce test cases included in

compiler bug reports submitted by others. We also compared the outputs of C-Reduce

against those produced by running Berkeley delta—the most commonly-used existing re-

ducer by compiler developers—on the same set of bug-inducing test cases. C-Reduce’s

outputs were, on average, more than 30 times smaller than those produced by Berkeley

delta. This Chapter reuses some text from our PLDI 2012 paper [59], a joint work with

John Regehr, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.

3.1 Test Cases
To thoroughly evaluate test-case reducers, one needs a number of test inputs that trigger

compiler crash bugs and wrong-code bugs. Moreover, these test cases should map to a

diverse collection of underlying defects. We obtained our test cases from two sources:

Csmith and real-life bug reports.

3.1.1 Csmith-generated Test Cases

All test cases in this category were generated using the default configuration of Csmith

2.1.0 [74], which used swarm testing [28] to improve bug detection. Each program gener-

ated by Csmith was compiled by GCC 4.3.0 at several optimization levels: -O0, -O1, -O2,

34

-Os, and -O3.

After running Csmith for a few days, we collected 2,501 test cases that crashed the

compiler and 1,298 test cases that triggered wrong-code bugs in GCC, respectively. Crash

bugs were detected by inspecting the exit code of the compiler being tested—any nonzero

value indicated a crash bug. Wrong-code bugs were detected using differential testing [50]:

a wrong-code bug was revealed if the result of the compiler’s output was different from

the result produced by a reference compiler’s output. In our experiments, the reference

compiler was simulated by running GCC 4.6.0 and Clang 3.1 at their lowest optimization

levels and considering only test cases where the executables generated by these compilers

produce the same results.

3.1.2 Test Cases from Application Code

To evaluate the effectiveness of C-Reduce on reducing C/C++ programs other than

test cases generated by Csmith, we harvested the bugzilla databases of LLVM and GCC to

collect 10 large bug-inducing test cases included in real-life bug reports, five for LLVM and

five for GCC, respectively. Each of those test cases crashed a version of LLVM or GCC;

three of them are C programs and the others are C++ codes. Tables 3.1–3.3 summarize

each of those test cases, including

• the language in which the test case is written,

• the compiler version that exhibits the faulty behavior,

• the compiler flags that trigger the bug,

• the crash string thrown by the compiler, and

• the URL of the bug report where the original test case was attached.

3.2 Nondeterminism in Test-case Reduction
Nondeterministic execution of the system under test can cause test-case reduction to

fail. In our experience, the most common sources of nondeterminism are memory-safety

bugs interacting with address space layout randomization (ASLR) and resource-exhaustion

conditions such as timeouts and memory limits.

ASLR is a technique used in operating systems to protect the host computer from certain

kinds of attacks, e.g., buffer overflow attacks. By randomly arranging the locations of a

program’s data segments such as stack and heap in a process’s address space, ASLR makes

35

Table 3.1: Test cases that triggered crash bugs in various versions of LLVM and GCC and
were attached in bug reports submitted by others

Test Case Language Compiler Flags
GCC1 C++ gcc-r199760 -O2
GCC2 C++ gcc-4.6.0 -O3
GCC3 C++ gcc-r132142 -O
GCC4 C++ gcc-r155401 -g
GCC5 C gcc-r145254 -c
LLVM1 C++ llvm-r116696 -m32 -O2
LLVM2 C llvm-r171307 -cc1 -emit-obj -O3
LLVM3 C llvm-r175960 -emit-obj -sys-header-deps -D

“HAVE CONFIG H” -O2
-fsanitize=bounds

LLVM4 C++ llvm-r145532 -emit-obj -O2 -std=gnu++0x
LLVM5 C llvm-r116097 -c

Table 3.2: Compiler crash strings uncovered by those test cases attached in bug reports
submitted by others

Test Case Crash String
GCC1 internal compiler error: in curr_insn_transform,

at lra-constraints.c:3007
GCC2 internal compiler error: Segmentation fault
GCC3 internal compiler error: in copy_to_mode_reg,

at explow.c:621
GCC4 internal compiler error: tree check: accessed

elt 3 of tree_vec with 2 elts in tsubst, at
cp/pt.c:9860

GCC5 internal compiler error: tree check: expected
integer_cst, have nop_expr in tree_int_cst_lt,
at tree.c:4963

LLVM1 Assertion ‘Node2Index[SU->NodeNum] >
Node2Index[I->getSUnit()->NodeNum] &&
"Wrong topological sorting" failed

LLVM2 Assertion ‘BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths"’ failed

LLVM3 Assertion ‘isa<X>(Val) && "cast<Ty>() argument
of incompatible type!"’ failed

LLVM4 Assertion ‘MD->isVirtual() && "Method is not
virtual!"’ failed

LLVM5 Assertion ‘NextFieldOffsetInBytes <=
FieldOffsetInBytes && "Field offset mismatch!"’
failed

36

Table 3.3: The URLs of the bug reports where the original test cases were attached

Test Case Bug Report URL
GCC1 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57447
GCC2 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=51737
GCC3 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35056
GCC4 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43087
GCC5 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=41182
LLVM1 http://llvm.org/bugs/show_bug.cgi?id=8404
LLVM2 http://llvm.org/bugs/show_bug.cgi?id=14761
LLVM3 http://llvm.org/bugs/show_bug.cgi?id=15338
LLVM4 http://llvm.org/bugs/show_bug.cgi?id=12219
LLVM5 http://llvm.org/bugs/show_bug.cgi?id=6955

it difficult for hackers to predicate the target address since the address can vary in each

program run. However, ASLR also has the side-effect of making some compiler bugs to

occur nondeterministically, e.g., certain compiler bugs caused by memory corruption. In

practice, we just simply disabled ASLR in the Ubuntu box for our experiments.

Nondeterminism caused by resource-exhaustion is hard to avoid. For example, we have

seen cases where C-Reduce transformed an original test case triggering a crash bug into one

that triggered a compiler-hanging bug, i.e., the compiler never terminated when compiling

the input. Our pragmatic approach is to set a reasonable timeout value for running the

compiler or the generated executable. For example, a good timeout value for compiler’s

execution would be one that is slightly larger than the runtime of compiling the unreduced

test case.

3.3 Evaluating Reducers
We ran C-Reduce and Berkeley delta on our corpus of bug-inducing test cases: Csmith-

generated ones and those attached in the bug reports. The inputs to C-Reduce are composed

of the test case to be reduced and a script that determines whether a variant is successful.

In addition to the test case and the script, Berkeley delta requires a “level” parameter that

specifies the nesting level of braces where its topformflat tool performs line breaks. As

suggested by the tool’s documentation, we ran the main delta script twice at level 0, twice

at level 1, twice at level 2, and twice at level 10 for our Berkeley delta reductions. We used

Frama-C as our external validity checker for wrong-code bugs because Frama-C imposed

37

less runtime overhead than KCC based on our experience.

Table 3.4 summarizes the results of reducing all Csmith-generated bug-inducing test

cases using Berkeley delta and C-Reduce. In each category, the size was averaged over all

test cases.

3.3.1 Reduction Results of Csmith-generated Bug-inducing
Test Cases

For our corpus of Csmith-generated test cases, C-Reduce produced much better outputs

than Berkeley delta did—more than 30 times smaller on average. The original sizes were

calculated on the preprocessed files, which were the inputs to the reducers. For the crash

bugs, C-Reduce was able to produce, on average, test cases of 107 bytes from the original

test cases whose average size was 121 KB. For our wrong-code bugs, the final outputs

had an average size of 236 bytes, whereas the unreduced test cases were of 82 KB on

average. Reduction ratios for crash bugs were higher than that for wrong-code bugs because

the reducers could conduct more aggressive transformations on crash test cases without

performing any validity check. Figures 3.1 and 3.2 show the median-sized reduced test

cases produced by C-Reduce for the crash and wrong-code test cases, respectively. They

are reportable test cases—we can copy and paste the codes into bug reports without any

manual modification.

3.3.2 Reduction Results of Reported Test Cases

C-Reduce was originally motivated by reducing bug-triggering test cases generated by

Csmith. It has been substantially improved to reduce large C++ programs that induce

Table 3.4: Averaged sizes (in bytes) of reduced test cases

Output Size Reduction Ratio
Original Berkeley C-Reduce Berkeley C-Reduce

Bug Kind Size Delta Delta
Csmith-generated
Crash 121,430 2,697 107 107 1,134
Csmith-generated
Wrong-code 82,058 8,686 241 9 340
Reported
Crash 960,552 34,007 335 28 2,867

38

1 struct S0
2 {
3 volatile int f4:1
4 };
5 static struct S0 a;
6 void
7 main ()
8 {
9 printf ("%d\n", a.f4);

10 }

Figure 3.1: The median-sized reduced test case produced by C-Reduce for crash bugs

1 int printf (const char *, ...);
2 unsigned short *a;
3 char b;
4 char *c = &b;
5 int d;
6 int
7 main ()
8 {
9 unsigned short **e = &a, **f = &a;

10 d = -(e == f);
11 *c = d;
12 printf ("%d\n", b);
13 return 0;
14 }

Figure 3.2: The median-sized reduced test case produced by C-Reduce for wrong-code
bugs

39

compiler bugs. The newly added transformations deal with certain complex C++ features

such as templates, classes, and namespaces, which are obstacles for Berkeley delta. With

these transformations that are specific to C++, C-Reduce can effectively reduce megabyte

C++ programs into small ones of only several hundred bytes, even for heavily-templated

codes. Figure 3.3 shows the results of reducing 10 reported test cases that crashed a variety

of GCC and LLVM versions. Among these tests, six are large C++ programs: gcc1–gcc4,

llvm1, and llvm4. Figure 3.4 is the median-sized C++ test case produced by C-Reduce

from a 2.4M bug-inducing program. Gcc4 was the worst result given by Berkeley delta,

which stopped with the output of 287K. It is not uncommon to see that Berkeley delta’s

outputs remain hundreds of kilobytes, whereas C-Reduce’s output was only 549 bytes.

3.4 Discussion
In many cases, C-Reduce is capable of producing small test cases nearly as good as

those produced by skilled developers, but extremely experienced programmers can still

outperform C-Reduce. C-Reduce can be improved by observing the way that experienced

developers conduct test-case reduction. Furthermore, C-Reduce’s support for C++ has

room for improvement. We occasionally see that C-Reduce fails to create small-enough

outputs for some complex C++ codes. For example, C-Reduce needs better support for

processing inner classes and typenames. Last, C-Reduce is slow at reducing some large

C++ programs, for which C-Reduce can take several hours to finish reduction. Improving

the efficiency of C-Reduce on large C++ codes is another piece of future work.

40

0

 10

 100

 1000

 10000

 100000

 1e+06

gcc1 gcc2 gcc3 gcc4 gcc5 llvm1 llvm2 llvm3 llvm4 llvm5

S
iz

e
 o

f
R

e
d

u
c
e

d
 T

e
s
t

C
a

s
e

 (
lo

g
s
c
a

le
)

Test Case

Berkeley Delta
C-Reduce

Figure 3.3: Sizes (in bytes) of the test cases reduced by Berkeley delta and C-Reduce

41

1 template <class T> class A {
2 public:
3 typedef T element_type;
4 ˜A() { intrusive_ptr_release(px); }
5 T *px;
6 };
7
8 template <typename T> struct B {
9 friend void intrusive_ptr_release(T *p1) {

10 if (p1->ref_count_)
11 delete p1;
12 }
13 int ref_count_;
14 };
15
16 struct C;
17 struct D;
18 struct F : B<F> {
19 A<F> parent;
20 A<C> document;
21 };
22 struct C : B<C> {
23 A<D> current_section;
24 };
25 struct D : B<D> {
26 A<D> parent;
27 };
28 void start_file() { A<F> a; }

Figure 3.4: The median-sized reduced test case produced by C-Reduce for reported bugs
triggered by C++ programs

CHAPTER 4

RELATED WORK FOR TEST-CASE

REDUCTION

This section surveys the related work for test-case reduction techniques. There is a sur-

prisingly small amount of research about test-case reduction. General reduction approaches

are also discussed in this section.

4.1 Test-case Reduction for C Programs
Test-case reduction for C programs has been studied in previous work. Bugfind, devel-

oped by Caron and Darnell [16], is able to narrow the cause of a wrong-code bug down to a

single C file and search the lowest optimization level where the bug occurs. Bugfind works

at the file granularity and only relies on object files to determine whether the program

is miscompiled or not and therefore, it can be applied to programs written in languages

other than C. The output of Bugfind consists of all files—one or more—that induce the

miscompilation.

McKeeman’s random C program generator for testing C compilers provides an auto-

mated test-case reducer that runs at a finer granularity than Bugfind [50]. McKeeman’s

test-case reducer has 23 different transformations, including removing statements and dec-

larations, simplifying constants to 1s, deleting balanced braces, etc. The reducer systemat-

ically applies all of these transformations on the test under reduction until the test cannot

be changed further. It is able to reduce randomly-generated C programs of 500 to 600 lines

to a few lines. McKeeman’s reducer appears to be similar to C-Reduce’s peephole passes.

C-Reduce, on the other hand, has a richer set of transformations than those provided by

McKeeman’s tool. To the best of my knowledge, C-Reduce is the first test-case reducer

where compiler-like transformations are used to create reportable bug-triggering test cases

for C/C++ programs.

C-Reduce is inspired by delta debugging algorithms, formalized by Zeller and Hilde-

43

brandt [76]. In their work, they abstracted the idea of delta debugging and implemented

two algorithms, dd and ddmin. McPeak and Wilkerson developed Berkeley delta [51],

a commonly-used delta debugging tool by compiler developers. Berkeley delta is line-

based and implements the ddmin algorithm. With the help of an external tool, topformflat,

Berkeley delta is able to to reduce structured input more efficiently than character-based

ddmin. We created C-Reduce as a result of our dissatisfaction with Berkeley delta’s output,

which often requires a certain amount of manual reduction effort to produce final reportable

tests. Misherghi and Su developed Hierarchical Delta Debugging (HDD) [52]. HDD

was designed to be more suitable for reducing structured input and showed its advantage

over the original ddmin algorithm by producing better reduced output for a number of

failure-inducing test cases written in C and XML.

In contrast to Berkeley delta and HDD, C-Reduce exploits deeper knowledge about the

language syntax and semantics to conduct reduction, allows nonlocalized alterations to test

input, and utilizes more reduction opportunities. As a consequence, C-Reduce produces

better output [59].

4.2 Other Test-case Reduction Techniques
Fuzzing tools are often paired with their own reducers that try to minimize the bug-

triggering test to reproduce the fault and save human effort. QuickCheck is a lightweight

random testing tool for Haskell programs, developed by Claessen and Hughes [18]. The

tool was extended to include a “smaller” method, which is used to find a smaller coun-

terexample demonstrating the faulty behavior for the counterexample being found, e.g.,

by taking a subtree of the original counterexample if it was of a tree-type data structure.

Brummayer and Biere proposed a technique to test SMT solvers using grammar-based

blackbox fuzzing [12,13]. When a randomly-generated formula triggered a bug in the SMT

solver under test, a customized delta debugger was invoked to distill the failure-inducing

formula into its essence. The customized delta debugger adapted ideas from HDD [71].

Having the knowledge of formula structures and types benefits the speed of conducting

reduction and can arrive at better reduction results.

The CERT Basic Fuzzing Framework, or BFF, is a mutation-based fuzzing tool that is

intended for finding bugs in a variety of applications [1]. BFF has been used to uncover

44

a number of bugs in production-quality software systems such as Adobe Reader, Apple

QuickTime, and FFmpeg. One of the highlighted features of BFF is its test-case reducer

that automatically minimized differences from a seed file [31]. Lithium [62], created by

the author of jsfunfuzz [61], is able to reduce jsfunfuzz-generated crash test cases of 3000

lines down to the ones of 3–10 lines in several minutes.

LLVM has a tool, Bugpoint [5], which works on LLVM bitcode and can be used for

reducing tests that trigger either crash or wrong-code bugs in the compiler’s optimizers or

code generators. Given a test input, Bugpoint tries to reduce both the list of LLVM passes

and the size of the test. Bugpoint is useful to narrow down the causes of the problems in

LLVM’s passes.

Lei and Andrews [41] presented an approach to reducing the sequences of method calls

of failing test cases based on Zeller and Hildebrandt’s delta debugging algorithm. In the

work of Leitner et al. [42], static slicing is combined with delta debugging to minimize the

sequence of failure-inducing method calls. This later approach was able to minimize failing

unit test cases by 96% on average in a case study on the EiffelBase library. It was shown to

be more efficient—11 times faster—than doing delta debugging alone based on their case

study. JINSI, presented by Burger and Zeller [14], aims for minimizing reproduction of

software failures in Java programs. Different from previous delta debugging techniques,

which require both successful and failing executions, JINSI only takes a single failing run,

where JINSI minimizes the object interactions to the sequence of calls that are relevant to

the failure. In their case study of 17 real-life bugs, the combination of delta debugging and

dynamic slicing on method calls in JINSI resulted in greater improvements than using only

dynamic slicing—the search space was reduced to 13.7% of the dynamic slice.

Artho presented Iterative Delta Debugging [8], or IDD, where delta debugging was

extended to search the revision history to generate a minimal patch that introduced the

defect. Yu et al. [75] evaluated the effectiveness of delta debugging in software evolution,

where a number of regression tests from some open source programs were used as the basis

of their study. More recently, Zhang [77] proposed SimpleTest, a technique that simplifies

the test at the semantic level. Rather than simply removing components from the test,

SimpleTest creates a smaller test that preserves certain semantic properties.

CHAPTER 5

TAMING COMPILER FUZZERS

Test-case reduction distills a large failure-inducing test case into its essence that only

contains the part relevant to the bug. Creating small test cases is the first step towards

making compiler fuzzers more useful—small test cases are easier to debug than their large

counterparts. Another problem of using fuzzers to test compilers is that they repeatedly

and indiscriminately find bugs that are already known to developers or may not be severe

enough to fix right away. An overnight run of a fuzzer may result in hundreds or thousands

of failure-inducing test cases, which may trigger only a few bugs. Moreover, these bugs

do not uniformly distribute over the test cases—some bugs tend to be triggered much more

often than others. It can be time-consuming for fuzzer users to sift through a large collection

of failure-inducing test cases to suppress duplicates and identify tests that trigger interesting

bugs. We formulate this problem as the fuzzer taming problem: given a potentially large

number of random test cases that trigger failures, rank them in such a way that diverse,

interesting test cases are highly ranked. This section describes our approach to solving the

fuzzer taming problem. Most of the text of this Chapter is from our PLDI 2013 paper [17],

which is a joint work with Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern,

Eric Eide, and John Regehr.1

5.1 Background
A typical workflow for using a fuzzer is as follows:

1. start running the fuzzer against the version of the compiler to be tested;

2. go to work on other things;

3. after a day or two, look through the new failure-inducing test cases, creating a bug

1The definitive version was published in Proceedings of the ACM SIGPLAN 2013 Conference
on Programming Language Design and Implementation (PLDI), Seattle, WA, USA, Jun. 2013.
http://doi.acm.org/10.1145/2491956.2462173

46

report for each that is novel and important.

Step 3 can be laborious and unrewarding. We know of several industrial compiler devel-

opers who stopped using Csmith not because it stopped finding bugs, but because step 3

became uneconomical. For example, Figure 5.1 shows three reduced Csmith-generated

test cases that all trigger crash bugs in GCC 4.3.0. By just looking at the text of these

test cases, one would guess that the codes in Figures 5.1(a) and 5.1(b) trigger the same

bug, whereas the code in Figure 5.1(c) triggers another one. In this case, it would be easy

for the user to decide to report two test cases, e.g., the first and the third ones, to GCC

developers. However, manually categorizing failure-inducing test cases can become quite

difficult when the number of the tests to be investigated is large. It would be very hard for

the user to manually identify the underlying bugs and suppress duplicates for hundreds or

thousands of test cases.

One solution to this problem would be to

1. report one bug-triggering test case,

2. wait until the triggered bug has been fixed,

3. run the remaining test cases against the bug-fixed version of the compiler,

4. save tests that still exhibit faulty behaviors in the compiler,

5. go to step (1).

These steps are repeated until there are no more failure-inducing tests. However, in reality,

bugs are prioritized by their severity. When resources are limited and deadlines may be

inflexible, low-priority bugs can linger unfixed for months or years. For example, in June,

2012, we found more than 2,000 open bugs in GCC’s bug database, considering priorities

P1, P2, and P3 and considering only bugs of “normal” or higher severity. The median-aged

bug in this list was well over two years old. So, this simple report-and-then-wait solution

does not work in practice because we do not have control over bug prioritization.

5.2 The Fuzzer Taming Problem
Thus far, little research has addressed the problem of making fuzzer output more useful

to developers. In a blog entry, Ruderman, the original author of the jsfunfuzz tool, reports

using a variety of heuristics to avoid looking at test cases that trigger known bugs, such

as turning off features in the test-case generator and using tools like grep to filter out test

47

1 char a;
2 int b[];
3 void
4 fn1 ()
5 {
6 a = 0;
7 for (; a < 7; a += 1)
8 b[7 + a] = 0;
9 }

(a)

1 int a[][7];
2 char b;
3 void
4 fn1 ()
5 {
6 b = 0;
7 for (; b < 7; b += 1)
8 a[1][b] = 0;
9 }

(b)

1 char a;
2 int b;
3 void
4 fn1 ()
5 {
6 b = (unsigned) ˜a >> 9;
7 }

(c)

Figure 5.1: Three example test cases that crash GCC 4.3.0. (a) The first example test; (b)
The second example test; (c) The third example test.

48

cases triggering bugs that have predictable symptoms [64]. During testing of mission file

systems at NASA [27], Groce et al. used hand-tuned rules to avoid repeatedly finding the

same bugs during random testing.

We claim that much more sophisticated automation is feasible and useful. We charac-

terize the fuzzer taming problem as follows:

Given a potentially large collection of test cases, each of which triggers a bug,

rank them in such a way that test cases triggering distinct bugs are early in the

list.

Sub-problem: If there are test cases that trigger bugs previously flagged as

undesirable, place them late in the list.

Ideally, for a collection of test cases that trigger N distinct bugs (none of which have

been flagged as undesirable), each of the first N test cases in the list would trigger a

different bug. In practice, perfection is unattainable because the problem is hard and also

because there is some subjectivity in what constitutes “distinct bugs.” Thus, our goal is

simply to improve as much as possible upon the default situation where test cases are

presented to users in effectively random order. Our rank-ordering approach was suggested

by the prevalence of ranking approaches for presenting alarms produced by static analyses

to users [36, 37].

Taming a fuzzer differs from previous efforts in duplicate bug detection [67, 68, 72]

because user-supplied metadata is not available: we must rely solely on information from

failure-inducing test cases. Compared to previous work on dealing with software contain-

ing multiple bugs [33, 47, 57], our work differs in three major parts:

• the methods used: ranking bugs as opposed to clustering that places tests into homo-

geneous groups and chooses a representative test from each group;

• the kinds of inputs to the machine learning algorithms: we exploit diverse sources

of information about bug-triggering test cases, including features of the test case

itself, features from execution of the compiler on the test case, and features from the

compiler’s output, as opposed to just predicates or coverage information; and

• our special goal: we aim for taming a fuzzer, where a large number of randomly-

generated test cases exhibit only a few bugs, some of which are triggered much more

often than others.

49

5.3 Our Approach to Taming Compiler Fuzzers
This section describes our approach to taming compiler fuzzers and gives an overview

of the tools implementing it. First, I present several important concepts used throughout

the rest of this chapter and next two chapters.

5.3.1 Definitions

A fault or bug in a compiler is a flaw in its implementation. When the execution of

a compiler is influenced by a fault—e.g., by wrong or missing code—the result may be

an error that leads to a failure detected by a test oracle. We are primarily concerned with

two kinds of failures: (1) compilation or interpretation that fails to follow the semantics

of the input source code and (2) compiler crashes. The goal of a compiler fuzzer is to

discover source programs—test cases—that lead to these failures. The goal of a fuzzer

tamer is to rank failure-inducing test cases such that any prefix of the ranked list triggers

as many different faults as possible. Faults are not directly observable, but a fuzzer tamer

can estimate which test cases are related by a common fault by making an assumption: the

more “similar” two test cases, or two executions of the compiler on those test cases, the

more likely they are to stem from the same fault [48].

A distance function maps any pair of test cases to a real number that serves as a measure

of similarity. This is useful because our goal is to present fuzzer users with a collection of

highly dissimilar test cases. Because there are many ways in which two test cases can be

similar to each other—e.g., they can be textually similar, cause similar failure output, or

lead to similar executions of the compiler—our work is based on several distance functions.

Some of our distance functions rely on features extracted from various sources relevant

to the failure-inducing test case such as test-case text, execution trace of the compiler

running on the test case, and the compiler’s crash strings. Features capture certain charac-

teristics of the source being described. Each feature can be represented as a 〈name, value〉

pair. For example, we can define a feature 〈has global, value〉 to express the appearance

of global variables in a test case—feature value “0” means that the test does not have any

global variable, whereas “1” means otherwise. Similarly, based on the compiler’s profiling

data, a feature, 〈function name, number〉 can represent the number of times that a particular

function is invoked. A set of features extracted from a source forms a feature vector, which

50

summarizes the source.

Clustering refers to a general concept of placing a set of objects into homogeneous

groups, i.e., clusters, where objects in the same cluster are more similar to each other than

to those in other clusters. Similarity between objects can be measured in various ways, e.g.,

using the distance between objects computed by certain distance function. Since clustering

is a general term, it can be implemented in different algorithms such as K-means [29].

5.3.2 Ranking Test Cases

An obvious approach to tackling the fuzzer taming problem is clustering: given a set of

feature vectors extracted from the bug-inducing test cases, apply a clustering algorithm to

generate clusters where the test cases in the same cluster are more similar to each other than

to those in other clusters and then select one test case from each cluster. Our initial attempt

was to use a clustering algorithm [56] to cluster test cases, but we quickly found some

drawbacks of using clustering. First, clustering is computationally expensive, especially

when feature vectors are large. Second, clustering results can vary a lot depending on the

parameters passed to the clustering algorithm. For example, some of the parameters of

the clustering algorithm can greatly affect the final number of clusters being generated.

Since we have no a priori knowledge about how many distinct bugs are triggered by the

test cases, it is hard to determine a “right” set of parameters. Moreover, even if we can tune

parameters for one collection of test cases, these parameters could perform badly for other

collections.

Rather than relying on a certain clustering algorithm, a better approach to solving the

fuzzer taming problem is by ranking, which is based on the following idea:

Hypothesis 1: If we (1) define a distance function between test cases that

appropriately captures their static and dynamic characteristics and then (2) sort

the list of test cases in furthest point first (FPF) order, then the resulting list will

constitute a usefully approximate solution to the fuzzer taming problem.

If this hypothesis holds, the fuzzer taming problem is reduced to defining an appropriate

distance function. The FPF ordering is one where each point in the list is the one that

maximizes the distance to the nearest of all previously listed elements; it can be computed

using a greedy algorithm [26]. We use FPF to ensure that diverse test cases appear early in

51

the list. Conversely, collections of highly similar test cases will be found towards the end

of the list.

Our approach to ignoring known bugs is based on the premise that fuzzer users will

have labeled some test cases as exemplifying these bugs.

Hypothesis 2: We can lower the rank of test cases corresponding to bugs that

are known to be uninteresting by “seeding” the FPF computation with the set

of test cases that are labeled as uninteresting.

Thus, the most highly ranked test case will be the one maximizing its minimum distance

from any labeled test case.

5.3.3 Distance Functions and Features

The fundamental problem in defining a distance function that will produce good fuzzer

taming results is that we do not know what the trigger for a generic compiler bug looks like.

For example, one C compiler bug might be triggered by a struct with a certain sequence of

bitfields; another bug might be triggered by a large number of local variables, which causes

the register allocator to spill. Our solution to this fundamental ambiguity has been to define

a variety of distance functions, each of which we believe will usefully capture some kinds

of bug triggers.

A subsequent question in using distance functions is what are the “appropriate” features

passed to various distance functions? There is no obvious answer to this question. Many

features can be abstracted to represent compiler bugs due to the high diversity of bugs.

Furthermore, it is difficult to foresee which features would be important to discriminate

one bug from others. For example, test cases that trigger the same bug can have high

textual likelihood, and then text-based features are suitable for identifying these test cases

or can lead to very similar execution traces in the compiler being tested and therefore,

features related to the compiler execution path are likely the right choice. Nevertheless, it

is necessary to investigate different feature metrics—separately and together—in terms of

their effectiveness on bug discrimination.

5.3.3.1 Levenshtein Distance

The Levenshtein distance [45], or edit distance, between two strings is the smallest

number of character additions, deletions, and replacements that suffices to turn one string

52

into the other. For every pair of test cases, we compute the Levenshtein distance between

the following, all of which can be treated as plain text strings:

• the test cases themselves;

• the output of the compiler as it crashes, if it exists; and

• the output of Valgrind [54] on a failing execution (if any).

Computing Levenshtein distance requires time proportional to the product of the string

lengths, but the constant factor is small (a few tens of instructions), so it is reasonably

efficient in practice.

5.3.3.2 Euclidean Distance

Many aspects of failure-inducing test cases, and of executions of compilers on these

test cases, lend themselves to summarization in the form of feature vectors, which we can

use to compute the Eclidean distance between each of them. Given two n-element vectors

v1 and v2, the Euclidean distance between them is√ ∑
i=1..n

(v1[i]− v2[i])2

Features can be composed of pure tokens appearing in test cases. For example, Figure 5.2

shows a reduced test case that triggers a crash bug in GCC 4.3.0. Lexing this code gives

13 tokens, and a feature vector based on these tokens contains 13 nonzero elements. The

overall vector contains one element for every token that occurs in at least one test case, but

which does not occur in every test case, out of a batch of test cases that is being processed

by the fuzzer tamer. The elements in the vector are based on the number of appearances of

each token in the test case.

For some bugs, lexical features can be used to reliably rule out test cases that cannot

trigger that bug. However, a token-wise feature vector only captures the content in the test

case but ignores its structure and meaning. In other words, we may need to characterize the

syntactic rules and semantics encoded in the test case. For this purpose, we implemented a

C-Feature extractor in Clang front-end. The tool currently extracts 45 features including

• basic syntactic components such as types, statement classes, and operator kinds;

• syntactic rules specific to aggregates such as packed structs and structs with bit-fields;

• obvious divide-by-zero operations; and

53

1 int a;
2 const volatile long b;
3 void
4 main ()
5 {
6 a = b;
7 }

Figure 5.2: A test case that has 13 tokens

• some kinds of infinite loops that can be detected statically.

In addition to constructing vectors from test cases, we also constructed feature vectors

from compiler executions. For example, the function coverage of a compiler is a list of

the functions that it executes while compiling a test case. The overall feature vector for

function coverage contains an element for every function executed while compiling at least

one test case, but that is not executed while compiling all test cases. As with token-based

vectors, the vector elements are based on how many times each function executed. We

created vectors based on the following items:

• functions covered,

• lines covered,

• tokens in the compiler’s output as it crashes (if any), and

• tokens in output from Valgrind (if any).

Function and line coverage data were obtained using Gcov [3]. In the latter two cases,

we used the same tokenization as with test cases (treating output from the execution as a

text document), except that in the case of Valgrind we abstracted some nonnull memory

addresses to a generic ADDRESS token. The overall hypothesis is that most bugs will

exhibit some kind of dynamic signature that will reveal itself in one or more kinds of

feature vectors.

5.3.3.3 Normalization

Information retrieval tasks can often benefit from normalization, which serves to de-

crease the importance of terms that occur very commonly and hence convey little informa-

tion. Before computing distances over feature vectors, we normalized the value of each

vector element using tf-idf [65]; this is a common practice in text clustering and classifica-

54

tion. Given a count of a feature (token) in a test case or its execution (the “document”), the

tf-idf is the product of the term-frequency (tf) and the inverse-document-frequency (idf)

for the token. Term-frequency is the ratio of the count of the token in the document to

the total number of tokens in the document. (For coverage we use number of times the

entity is executed.) Inverse-document-frequency is the logarithm of the ratio of the total

number of documents and the total number of documents containing the token: this results

in a uniformly zero value for tokens appearing in all documents, which are therefore not

included in the vector. We normalized Levenshtein distances by the length of the larger of

the two strings, which helped handle varying sizes for test cases or outputs.

CHAPTER 6

FUZZER TAMING EXPERIMENTS

To evaluate our work, we needed a large collection of reduced versions of randomly

generated test cases that trigger compiler bugs. Moreover, we required access to ground

truth: the actual bug triggered by each test case. This section describes our experimental

setup and the results of applying our approach to taming fuzzers. Most of the text of

this Chapter is from our PLDI 2013 paper [17], which is collaborated with Alex Groce,

Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide and John Regehr.

6.1 Test Cases
We chose to test GCC 4.3.0 running on Linux on x86-64. Our selection of this particular

version was based on several considerations. First, the version that we fuzzed had to be

buggy enough that we could generate useful statistics. Second, it was important that most of

the bugs revealed by our fuzzer had been fixed by developers. This would not be the case for

very recent compiler versions. Also, it turned out not to be the case for GCC 4.0.0, which

we initially started using and had to abandon since maintenance of its release branch—the

4.0.x series—terminated in 2007 with too many unfixed bugs.

We used the same collection of Csmith-generated test cases as in our experiments for

C-Reduce: 2,501 crash test cases and 1,298 wrong-code test cases for GCC 4.3.0. After re-

duction, some previously different tests became textually equivalent; this happens because

C-Reduce tries quite hard to reduce identifiers, constants, data types, and other constructs

to canonical values. For crash bugs, reduction produced 1,797 duplicates, leaving only 704

different test cases. Reduction was less effective at canonicalizing wrong-code test cases,

with only 23 duplicate tests removed, leaving 1,275 tests to examine. In both cases, the

typical test case was reduced in size by two to three orders of magnitude, to an average size

of 128 bytes for crash bugs and 243 bytes for wrong-code bugs.

56

6.2 Establishing Ground Truth
Perhaps the most onerous part of my work involved determining ground truth: the

actual bug triggered by each test case. Ground truth provides the identification of each test

case in terms of the bug triggered by the test case and determines whether test cases trigger

the same bug or not—test cases with the same ground truth are considered to trigger the

same bug in the compiler being tested. Ground truth is fundamental to evaluating our work

because it is the basis for interpreting the results. Thus, ground truth must be accurate:

the established ground truth for a bug must carry only the information for this bug. For

example, our evaluation would be compromised if we falsely considered some test cases to

trigger the same bug even if they did not.

It is infeasible for nondevelopers to examine the execution of a complex software

artifact such as GCC to identify the actual bug for each of the thousand bug-inducing test

cases. Instead, our goal was to create, for each of the 46 total bugs that our fuzzing efforts

revealed, a patched compiler fixing only that bug. At that point, ground-truth determination

can be automated: for each failure-inducing test case, run it through every patched version

of the compiler and see which one changes its behavior. We only partially accomplished

our goal. For a collection of arbitrary bugs in a large application that is being actively

developed, it turns out to be very hard to find a patch fixing each bug and only that bug.

For each bug, we started by performing an automated forward search over the revision

history to find the patch that fixed the bug. In some cases, this patch met the following

conditions:

• it was small;

• it clearly fixed the bug triggered by the test case, as opposed to masking it by sup-

pressing execution of the buggy code; and

• it could be backported to the version of the compiler that we tested.

In other cases, some or all of these conditions failed to hold. For example, some compiler

patches were extraordinarily complex, changing tens of thousands of lines of code. More-

over, these patches were written for compiler versions that had evolved considerably since

the GCC 4.3.0 versions that were the basis for our experiments.

Although we spent significant effort trying to create a minimal patch fixing each com-

piler bug triggered by our fuzzing effort, this was not always feasible. Our backup strategy

57

for assessing ground truth was first to approximately classify each test case based on the

revision of the compiler that fixed the bug that it triggered, and second to manually inspect

each test case in order to determine a final classification for which bug it triggered, based

on our understanding of the set of compiler bugs.

6.3 Bug Slippage
When the original and reduced versions of a test case trigger different bugs, we say that

bug slippage has occurred. Slippage is not hard to avoid for bugs that have an unambiguous

symptom (e.g., “assertion violation at line 512”), but it can be difficult to avoid for silent

bugs such as those that cause a compiler to emit incorrect code. Although slippage is

normally difficult to recognize or quantify, these tasks are easy when ground truth is

available, as it is here.

Of our 2,501 unreduced test cases that caused GCC 4.3.0 to crash, almost all triggered

the same (single) bug that was triggered by the test case’s reduced version. Thirteen of

the unreduced test cases triggered two different bugs, and in all of these cases the reduced

version triggered one of the two. Finally, we saw a single instance of actual slippage where

the original test case triggered one bug in GCC leading to a segmentation fault, and the

reduced version triggered a different bug, also leading to a segmentation fault. For the

1,298 test cases triggering wrong-code bugs in GCC, slippage during reduction occurred

15 times.

6.4 Evaluating Effectiveness using Bug Discovery Curves
Figures 6.1–6.4 present the primary results of applying our approaches to taming a

compiler fuzzer. All results are shown using bug discovery curves. A discovery curve

shows how quickly a ranking of items allows a human examining the items one by one to

view at least one representative of each different category of items [55, 70]. Thus, a curve

that climbs rapidly is better than a curve that climbs more slowly. Here, the items are test

cases and categories are the underlying compiler faults. The top of each graph represents

the point at which all faults have been presented. As shown by the y-axes of the figures,

there are 11 GCC crash bugs and 35 GCC wrong-code bugs in our study.

Each of Figures 6.1–6.4 includes a baseline: the expected bug discovery curve without

any fuzzer taming. We computed it by looking at test cases in random order, averaged over

58

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Theoretical best
Baseline (examine in random order)

FPF(Lev(test)+Lev(output))
FPF(Lev(test)+Lev(output)) frequency

Best clustering curve: C(Valgrind)+C(test)+C(C-features)

Figure 6.1: GCC 4.3.0 crash bug discovery curves, first 50 tests

59

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Baseline (examine in random order)
FPF(Lev(test)+Lev(output))

FPF(Lev(test)+Lev(output)) frequency
Best clustering curve: C(Valgrind)+C(test)+C(C-features)

Figure 6.2: GCC 4.3.0 crash bug discovery curves, all tests

60

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 0 5 10 15 20 25 30 35 40 45 50

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Theoretical best
Baseline (examine in random order)

FPF(linecov)
FPF(linecov) frequency

Best clustering curve: C(funccov)+C(C-features)

Figure 6.3: GCC 4.3.0 wrong-code bug discovery curves, first 50 tests

61

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Theoretical best
Baseline (examine in random order)

FPF(test+C-features)
FPF(test+C-features) frequency

Best clustering curve: C(funccov)+C(C-features)

Figure 6.4: GCC 4.3.0 wrong-code bug discovery curves, all tests

62

10,000 orders. We also showed the theoretical best curve where for N faults each of the

first N tests reveals a new fault.

In each graph, we showed in solid black the first method to find all bugs. For GCC

crash bugs, this method is also the method with the best area under both curves: the 50

top-ranked and all tests. For GCC wrong-code bugs, it is almost the best for the first 50

tests (and, in fact, discovers the same number of bugs as the curve with the best area);

however, for all test cases, the first method to find all bugs has a bad climb curve among

all of our methods. For this best curve, we also showed points sized by the log of the

frequency of the fault; our methods do not always find the most commonly triggered faults

first. Finally, each graph additionally shows the best result that we could obtain by ranking

test cases using clustering instead of FPF, using X-means to generate clusterings by various

features, sorting all clusterings by isolation and compactness, and using the centermost test

for each cluster.

The following items summarize the mapping from the abbreviations used in those

figures to the actual feature metrics:

• test: test-case text,

• output: the compiler’s crash string,

• funccov: functions covered,

• linecov: lines covered,

• C-features: features extracted using the Clang-based feature detector.

Furthermore, distances between test cases were computed using Levenshtein distance if

“Lev” is explicitly stated in the figures; otherwise, Euclidean distance was used. For

example, “FPF(Lev(test)+Lev(output))” is involved with the following steps:

1. compute Levenshtein distance between each test case using test-case text;

2. compute Levenshtein distance between each test case using the compiler’s crash

string;

3. for each pair of test cases, produce a new distance by adding their corresponding

distances generated by the previous two steps;

4. apply FPF on the distances obtained from step (3).

63

6.5 Are These Results Any Good?
Our efforts to tame fuzzers would have clearly failed had we been unable to significantly

improve on the baseline. On the other hand, there is plenty of room for improvement: our

bug discovery curves do not track the “theoretical best” lines in Figure 6.3 for very long.

For GCC crash bugs, however, our results are almost perfect.

Perhaps the best way to interpret our results is in terms of the value proposition they

create for compiler developers. If a GCC team member randomly examines 15 reduced

crash test cases, he or she can expect them to trigger six different bugs. In contrast, if

the developer examines the first 15 of our ranked tests, he or she will see all 11 distinct

bugs: a noticeable improvement. Similarly, the developer can only see five distinct wrong-

code bugs if he or she looks through the reduced wrong-code test cases in a random order,

whereas the developer is able to see 12 distinct bugs by examining the first 15 of our ranked

tests.

6.6 Selecting a Distance Function
In Section 5.3 we described a number of ways to compute distances between test cases.

Since we did not know which of these would work, we tried all of them individually and

together, with Figures 6.1–6.4 showing our best results. Since we did not consider enough

case studies to be able to reach a strong conclusion such as “fuzzer taming should always

use Levenshtein distance on test-case text and compiler output,” this section analyzes the

detailed results from our different distance functions, in hopes of reaching some tentative

conclusions about which functions are and are not useful.

6.6.1 Crash Bugs

GCC crash bugs were our easiest target: there are only 11 crash outputs and 11 faults.

Even so, the problem is not trivial, as the faults and outputs do not correspond perfectly—

two faults have two different outputs, and there are two outputs that are each produced by

two different faults.

For crash bugs, the best distance function to use as the basis for FPF, based on our

case studies, is the normalized Levenshtein distance between test cases plus normalized

Levenshtein distance between failure outputs. Our tentative recommendation for bugs that

(1) reduce very well and (2) have compiler-failure outputs is: use normalized Levenshtein

64

distance over test-case text plus compiler-output text and do not bother with Valgrind output

or coverage information. Given that using Levenshtein distance on the test-case text plus

compiler output worked so well for both of these bug sets, where all faults had meaningful

failure symptoms, we might expect using output or test-case text alone to also perform

acceptably. In fact, the results for Levenshtein distance functions based on test-case text

alone were uniformly mediocre at best.

Every distance function increased the area under the curve for examining less than 50

tests by a factor of four or better compared to the baseline. Clearly there is a significant

amount of redundancy in the information provided by different functions. Using compiler

output plus C-features performed nearly as well as the best distance function, suggesting

that the essential requirement is compiler output combined with a good representation of the

test case, which may not be satisfied by a simple vectorization: vectorizing the test case plus

output performed badly for GCC. All but five of the 63 distance functions we used were able

to discover all bugs within at most 90 tests: a dramatic improvement over the baseline’s 491

tests. Valgrind output alone performed extremely poorly in the long run—the only metric

that was worse than the baseline. Valgrind was of little value because most failures did

not produce any Valgrind output. The other four poorly performing methods all involved

using vectorization of the test case, with no additional information beyond Valgrind output

and/or test-case output.

In summary, for crash bugs, failure output alone provides a great deal of information

about a majority of the faults, and test-case distance completes the story.

6.6.2 Wrong-code Bugs

Wrong-code bugs in GCC were the trickiest bugs that we faced: their execution does

not provide failure output and, in the expected case where the bug is in a “middle end”

optimizer, the distance between execution of the fault and actual emission of code (and

thus exposure of failure) can be quite long.

For these bugs, the best method to use for fuzzer taming was less clear. Figures 6.5

and 6.6 show the performance of all methods that we tried, including a table of results

sorted by area under the curve up to 50 tests and the number of test cases to discover all

faults. It is clear that code coverage (line or function) is much more valuable here than

65

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 0 5 10 15 20 25 30 35 40 45 50

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Theoretical best 1155
FPF(funccov+C-features) 520

FPF(test+funccov+C-features) 502
FPF(funccov) 497

FPF(test+funccov) 483
FPF(test+linecov+C-features) 482

FPF(test+linecov) 482
FPF(funccov+linecov+C-features) 482

FPF(test+funccov+linecov) 482
FPF(test+funccov+linecov+C-features) 482

FPF(linecov+C-features) 482
FPF(linecov) 482

FPF(funccov+linecov) 482
FPF(C-features) 444

FPF(test) 400
FPF(test+C-features) 370

FPF(Lev(test) not normalized) 368
FPF(Lev(test)) 318

Baseline (examine in random order) 247

Figure 6.5: All bug discovery curves for GCC 4.3.0 wrong-code bugs, the 50 top-ranked
test cases

66

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

Theoretical best 35
FPF(test+C-features) 457

FPF(test) 475
FPF(test+linecov+C-features) 494

FPF(test+linecov) 494
FPF(funccov+linecov+C-features) 494

FPF(test+funccov+linecov) 494
FPF(test+funccov+linecov+C-features) 494

FPF(linecov+C-features) 494
FPF(linecov) 494

FPF(funccov+linecov) 494
FPF(Lev(test)) 500

FPF(Lev(test) not normalized) 605
FPF(funccov+C-features) 705

FPF(test+funccov+C-features) 705
FPF(test+funccov) 715

FPF(funccov) 718
FPF(C-features) 969

Baseline (examine in random order) 1204

Figure 6.6: All bug discovery curves for GCC 4.3.0 wrong-code bugs, all test cases

67

with crash bugs, though Levenshtein distance based on test case alone performs well in the

long run (but badly initially). Perhaps most importantly, given the difficulty of handling

GCC wrong-code bugs, all of our methods perform better than the baseline in terms of

ability to find all bugs and provide a clear advantage over the first 50 test cases. We do

not wish to overgeneralize from a few case studies, but these results provide hope that for

difficult bugs, if good reduction is possible, the exact choice of distance function used in

FPF may not be critical.

Nevertheless, with our best method, i.e., FPF(test+C-features), the GCC developer is

able to see all 35 distinct bugs by examining 457 test cases. Furthermore, with FPF(linecov),

our best method for the short run, he or she can see 12 distinct bugs by examining the first

15 test cases—it probably matters more to the developer.

6.7 Avoiding Known Faults
In Section 5.3.2, we hypothesized that FPF could be used to avoid reports about a set

of known bugs; this is accomplished by lowering the rankings of test cases that appear to

be caused by those bugs. Figures 6.7 and 6.8 show averaged bug discovery curves for our

crash and wrong-code bugs where half of the bugs were assumed to be already known,

and five test cases (or fewer, if five were not available) triggering each of those bugs that

were used to seed FPF. This experiment models the situation where, in the days or weeks

preceding the current fuzzing run, the user has flagged these test cases and does not want

to see more test cases triggering the same bugs. The curve is the average of 100 discovery

curves, each corresponding to a different randomly chosen set of known bugs.

The topmost bug discovery curve in each figure represents an idealized best case where

all test cases corresponding to known bugs are removed from the set of test cases to be

ranked. The second curve from the top is our result. The third curve from the top is also the

average of 100 discovery curves; each corresponds to the case where the five (or fewer) test

cases for each known bug are discarded instead of being used to seed the FPF algorithm,

and then the FPF algorithm proceeds normally. This serves as a baseline: our result would

have to be considered poor if it could not improve on this. Finally, the bottom curve is the

“basic baseline” where the labeled test cases are again discarded, but then the remaining

test cases are examined in random order.

68

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 5 10 15 20 25 30 35 40 45 50

#
 N

e
w

 F
a

u
lt
s
 S

e
e

n

Tests Examined

Our approach with complete avoidance of known faults (theoretical best)
Our result (using examples of known bugs)

Our technique without examples (better baseline)
Baseline (examine in random order)

Figure 6.7: Avoiding known crash bugs in GCC 4.3.0

69

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 5 10 15 20 25 30 35 40 45 50

#
 N

e
w

 F
a

u
lt
s
 S

e
e

n

Tests Examined

Our approach with complete avoidance of known faults (theoretical best)
Our result (using examples of known bugs)

Our technique without examples (better baseline)
Baseline (examine in random order)

Figure 6.8: Avoiding known wrong-code bugs in GCC 4.3.0

70

As can be seen, our current performance for crash bugs is reasonably good, but not

quite as good for wrong-code bugs. I speculate that classification, rather than clustering or

ranking, might be a better machine-learning approach for this problem if better results are

required.

6.8 Clustering as an Alternative to Furthest Point First
The problem of ranking test cases is not, essentially, a clustering problem. On the other

hand, if the goal were simply to find a single test case triggering each fault, an obvious

approach would be to cluster the test cases and then select a single test from each cluster,

as in previous approaches to the problem [24,57]. The FPF algorithm we use is itself based

on the idea of approximating optimal clusters [26]; we simply ignore the clustering aspect

and use only the ranking information.

Our initial approach to taming compiler fuzzers was to start with the feature vectors

described in Section 5.3.3.2. Instead of ranking test cases using FPF, we then used X-

means [56] to cluster test cases. A set of clusters does not itself provide a user with a set

of representative test cases, however, nor a ranking (since not all clusters are considered

equally likely to represent true categories). Our approach therefore followed clustering by

selecting the member of each cluster closest to its center as that cluster’s representative test.

We ranked each test by the quality of its cluster, as measured by compactness (whether the

distance between tests in the cluster was small) and isolation (whether the distance to tests

outside the cluster was large) [70]. This approach appeared to be promising as it improved

considerably on the baseline bug discovery curves.

We next investigated the possibility of independently clustering different feature vec-

tors, then merging the representatives from these clusterings [66], and ranking highest those

representatives appearing in clusterings based on multiple feature sets. This produced better

results than our single-vector method, and it was also more efficient, as it did not require the

use of large vectors combining multiple features. This approach is essentially a completely

unsupervised variation (with the addition of some recent advances in clustering) of earlier

approaches to clustering test cases that trigger the same bug [24]. Our approach is unsuper-

vised because we exploit test-case reduction as a way to select relevant features, rather than

relying on the previous approaches’ assumption that features useful in predicting failure or

71

success would also distinguish failures from each other.

However, in comparison to FPF for all three of our case studies, clustering was (1) sig-

nificantly more complex to use, (2) more computationally expensive, and (3) most impor-

tantly, less effective. The additional complexity of clustering should be clear from our

description of the algorithm, which omits details such as how we compute normalized

isolation and compactness, the algorithm for merging multiple views, and (especially) the

wide range of parameters that can be supplied to the underlying X-means algorithm.

Table 6.1 compares runtimes, with the time for FPF including the full end-to-end effort

of producing a ranking and the clustering column only showing the time for computing

clusters using X-means, with settings that are a compromise between speed and effective-

ness. (Increased computation time to produce “more accurate” clusters in our experience

had diminishing returns after this point, which allowed up to 40 splits and a maximum of

300 clusters.) Computing isolation and compactness of clusters and merging clusters to

produce a ranking based on multiple feature vectors adds additional significant overhead to

the X-means time shown if multiple clusterings are combined, but we have not measured

this time because our implementation is highly unoptimized Python (while X-means is a

widely used tool written in C). Because the isolation and compactness computations require

many pairwise distance results, an efficient implementation should be approximately equal

in time to running FPF. If a curve relies on multiple clusterings, its generation time is (at

least) the sum of the clustering times for each component. Note that because X-means

expects inputs in vector form, we were unable to apply our direct Levenshtein-distance

approach with clustering, but we include some runtimes for FPF Levenshtein to provide a

comparison.

That clustering is more expensive and complex than FPF is not surprising; clustering

has to perform the additional work of computing clusters, rather than simply ranking

items by distance. That FPF produces considerably better discovery curves, as shown in

Figures 6.1–6.4, is surprising. The comparative ineffectiveness of clustering is twofold: the

discovery curves do not climb as quickly as with FPF, and (perhaps even more critically)

clustering does not ever find all the faults in many cases. In general, for almost all feature

sets, clustering over those same features was worse than applying FPF to those features.

The bad performance of clustering was particularly clear for GCC wrong-code bugs: Figure

72

Table 6.1: Runtimes for FPF versus clustering, where time is in seconds

Program / Feature FPF Clustering
GCC crash bugs / output 0.08 0.71
GCC crash bugs / Valgrind 0.09 0.75
GCC crash bugs / C-Feature 0.10 1.95
GCC crash bugs / test 0.14 15.12
GCC crash bugs / funccov 1.37 162.22
GCC crash bugs / linecov 18.70 2,021.08
GCC crash bugs / Lev. test+output 75.07 N/A
GCC wrong-code bugs / C-Feature 0.49 4.26
GCC wrong-code bugs / test 0.72 67.72
GCC wrong-code bugs / funccov 4.12 1,046.07
GCC wrong-code bugs / linecov 60.60 7,127.42
GCC wrong-code bugs / Lev. test 667.21 N/A

6.9 shows all discovery curves for GCC wrong-code, with clustering results shown in

gray. Clustering at its “best” missed 15 or more bugs, and in many cases performed much

worse than the baseline, generating a small number of clusters that were not represented by

distinct faults. In fact, the few clustering results that manage to discover 20 faults also did

so more slowly than the baseline curve. Our hypothesis as to why FPF performs so much

better than clustering is that the nature of fuzzing results, with a long tail of outliers, is a

mismatch for clustering algorithm assumptions. FPF is not forced to use any assumptions

about the size of clusters and so is not “confused” by the many single-instance clusters.

73

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

#
 F

a
u

lt
s
 S

e
e

n

Tests Examined

FPF

Clustering

Baseline

Figure 6.9: GCC 4.3.0 wrong-code bug clustering comparison

CHAPTER 7

RELATED WORK FOR TAMING COMPILER

FUZZERS

A great deal of research related to fuzzer taming exists. This section surveys closely

related techniques. Some related areas such as fault localization are too large to do more

than summarize the high points.

7.1 Software Failure Clustering
Previous work focusing on the core problem of “taming” sets of redundant test cases

differs from ours in a few key ways. The differences relate to our choice of primary

algorithm, our reliance on unsupervised methods, and our focus on randomly generated

test cases.

First, the primary method used was typically clustering, as in the work of Francis

et al. [24] and Podgurski et al. [57]. In their work, test cases with the same cause were

grouped into the same cluster. In the work of Podgurski et al. [57], features were selected

under supervision among profiling data, e.g., function coverage. The selected feature

vectors, which were likely to be more relevant to causing the failures, were then used by

the underlying clustering algorithms to generate clusters, each cluster representing a group

of test cases with the same cause. The user can report to developers one failure-inducing

test case from each cluster. Francis et al. [24] later extended these techniques by using

tree-based techniques to refine the generated clusters.

Clustering at first appears to reflect the core problem of grouping test cases into equiva-

lence classes by underlying fault. However, in practice the user of a fuzzer does not usually

care about the tests in a cluster, but only about finding at least one example from each set

with no particular desire that it is a perfectly “representative” example. The core problem

that we address is therefore better considered as one of multiple output identification [23]

or rare category detection [23,70], given that many faults will be found by a single test case

75

out of thousands. This insight guides our decision to provide the first evaluation in terms

of discovery curves—the most direct measure of fuzzer taming capability we know of—for

this problem. Our results suggest that this difference in focus is also algorithmically useful,

as clustering was less effective than our (novel, to our knowledge) choice of FPF.

One caveat is that, as in the work of Jones et al. on debugging in parallel [33], clusters

may not be directly useful to users, but might assist fault localization algorithms. Jones

et al. provided an evaluation in terms of a model of debugging effort, which combines

clustering effectiveness with fault-localization effectiveness. This provides an interesting

contrast to our discovery curves: it relies on more assumptions about users’ workflow and

the debugging process and provides less direct information about the effectiveness of tam-

ing itself. In our experience, sufficiently reduced test cases make localization easy enough

for many compiler bugs that discovery is the more important problem. Unfortunately, it

is hard to compare results: cost-model results are only reported for SPACE, a program

with only around 6,200 LOC, and their tests included not only random tests from a simple

generator but 3,585 user-generated tests. In the event that clusters are needed, FPF results

for any k can be transformed into k clusters with certain optimality bounds for the chosen

distance function [26].

Furthermore, our approach is completely unsupervised. There is no expectation that

users will examine clusters, add rules, or intervene in the process. We therefore use

test-case reduction for feature selection, rather than basing it on classifying test cases as

successful or failing [24,57]. Because the number of distinct bugs found by fuzzers follows

a power law, many faults will be represented by far too few tests for a good classifier to

include their key features; this is a classic and extreme case of class imbalance in machine

learning. Reduction remains highly effective for feature selection, in that the features

selected are correct for the reduced test cases, essentially by the definition of test-case

reduction.

Finally, our expected use case and experimental results are based on a large set of

failures produced by large-scale random testing for complex programming languages im-

plemented in large, complex, modern compilers. Most previous results in failure cluster-

ing used human-reported failures or human-created regression tests, e.g., GCC regression

tests [24, 57], which are essentially different in character from the failures produced by

76

large-scale fuzzing, and/or concerned with much smaller programs with much simpler

input domains [33, 48], i.e., examples from the Siemens suite. Liblit et al. [47] in contrast

directly addressed scalability by using 32,000 random inputs (though not from an existing

industrial-strength fuzzer for a complex language) and larger programs (up to 56 KLOC),

and noted that they saw highly varying rates of failure for different bugs. Their work

addresses a somewhat different problem than ours—that of isolating bugs via sampled pred-

icate values, rather than straightforward ranking of test cases for user examination—and did

not include any systems as large as GCC.

7.2 Fault Localization
Fault localization refers to the techniques to identify the locations where bugs occur

in a software system. Fault localization has a long research history and therefore, I only

survey some closely related ones.

In early work [73], Whalley presents vpoiso, an automated tool to isolate faults in a

compiler. vpoiso performs a binary search on a sequence of optimization transforma-

tions to localize the first erroneous transformation. When another reference compiler is

given, vpoiso is also able to isolate faults in nonoptimization transformations. Renieris and

Reiss [60] proposed their techniques, Set Union, Set Intersection, and Nearest Neighbor,

all of which operate on coverage data. By measuring the similarity of the coverage data

between passed and failed test cases, Nearest Neighbor shows the best effectiveness in

terms of the ability to localize bugs, compared to two-set-based models.

Zeller and Hildebrandt [76] presented an approach to isolating a failure cause by exam-

ining the difference between the program state of a successful run and the program state of

a failing run. Using the Delta Debugging algorithm, this approach is able to automatically

narrow down the program states to a small set that is relevant to a failure. Later on, Cleve

and Zeller [19] extended the earlier work to another technique, called Cause Transitions,

which also relies on Delta Debugging to locate the program points that are likely the causes

of failures.

Liblit et al. [46, 47] described techniques to isolate bugs in deployed software systems

via program sampling. In their framework, the program under test is instrumented with

predicates that trace the program execution in a random fashion. The sampled data are

77

then collected and analyzed for locating failures in the program. SOBER, proposed by Liu

et al. [49], is another predicate-based statistical bug-localization method. In contrast to

Liblit’s work, SOBER computes predicates in both failing and successful executions and

considers that predicates with more abnormal evaluations in failing executions are more

likely to be relevant to the fault.

Jones et al. [34, 35] described the tarantula technique, which computes the suspicious-

ness of each statement in the program under test in terms of the likelihood of causing the

fault. Tarantula favors statements being primarily covered in failing runs. These statements

get higher suspiciousness values and hence are considered to be more relevant to the cause

of the fault.

Our work on taming compiler fuzzers shares a common ultimate goal with fault local-

ization: reducing the cost of manual debugging. Taming compiler fuzzers, on the other

hand, targets a narrow problem: preventing compiler fuzzer users from being overwhelmed

by a large amount of bug-inducing test cases generated by the fuzzer. Localization may

support fuzzer taming and fuzzer taming may support localization. A central question

is whether the payoff from keeping summaries of successful executions—a requirement

for many fault localizations—provides sufficient improvement to pay for its overhead in

reduced fuzzing throughput.

CHAPTER 8

CONCLUSION

Random testing, or fuzzing, has emerged as an important way to test compilers and

language runtimes. Despite their advantages, however, fuzzing creates a unique set of

challenges when compared to other testing methods. First, bug-triggering test cases pro-

duced by fuzzers are often large and make it hard to debug the faults triggered by these

random tests. Second, fuzzers indiscriminately and repeatedly find test cases triggering

bugs that have already been found and that may not be economical to fix in the short term.

Third, fuzzers tend to trigger some bugs far more often than others, creating needle-in-the-

haystack problems for engineers who are triaging failure-inducing outputs generated by

fuzzers. This dissertation addresses these challenges and improves the utility of a fuzzer

by (1) advancing the techniques to automatically generating reportable test cases and (2)

taming the fuzzer by suppressing duplicate test cases.

Previous test-case reducers based on delta debugging failed to produce test cases suf-

ficiently small to be directly inserted into compiler bug reports. C-Reduce, our new test

case reducer, is capable of producing test cases for C/C++ compilers nearly as good as

those produced by skilled developers. The main challenge for C-Reduce is that highly

structured inputs make reduction difficult. C-Reduce navigates complex input spaces by

exploiting rich and domain-specific transformations, which are beyond the capabilities of

basic delta-debugging searches. For 4,799 bug-inducing test cases generated by Csmith,

C-Reduce produces outputs that are, on average, more than 735 times smaller than the

unreduced tests and more than 30 times smaller than those produced by Berkeley delta.

In addition to reducing randomly generated C programs, C-Reduce is able to effectively

reduce general C/C++ test cases. We also evaluated C-Reduce on 10 C/C++ programs

independently reported by others (not generated by Csmith): C-Reduce was able to turn

960 KB of codes into 335 bytes, on average, whereas Berkeley delta’s outputs were of

34 KB.

79

The second contribution of this dissertation is to characterize the fuzzer taming problem

and demonstrate that the problem can be effectively solved using techniques from machine

learning to rank test cases in such a way that interesting tests are likely to be highly ranked.

Bug-triggering test cases are ranked using the furthest point first technique based on diverse

sources of information about the tests. If our rankings are good, fuzzer users will get most

of the benefit of inspecting every failure-inducing test case discovered by the fuzzer for a

fraction of the effort. For example, a user inspecting test cases that cause GCC 4.3.0 to

emit incorrect object code will see all 35 bugs 2.6 times faster than one inspecting tests in

random order. The improvement for test cases that cause GCC 4.3.0 to crash is even higher:

32×, with all 11 bugs exposed by only 15 test cases.

8.1 Future Work
In Section 6.3, we discussed bug slippage, a symptom where the reduced version of

a test case triggers a different bug than the one triggered by the original test case. One

indication of bug slippage is that test-case reducers can uncover new bugs. Thus, an

interesting direction would be to investigate the idea of turning a test-case reducer into an

effective fuzzer. One hypothesis behind this reducer-as-fuzzer idea is that reduction may

explore execution paths in the system under test that may not be covered by the test cases

generated by the fuzzer. Furthermore, some static analysis techniques or feedback such

as coverage information from the system under test may be used to guide the reducer for

generating variants that would cover more code space in the system, in hopes of uncovering

more bugs.

One of the distance functions that we used to distinguish test cases is edit distance.

We could adapt other distance metrics, especially tree distance, which naturally fits the

structure of our test inputs, i.e., C programs. Our coverage feature vectors are based only

on failing test cases. Inspired by the tarantula technique [34,35], we can investigate whether

we could benefit from using successful test cases. Analyzing the coverage data from both

failing and successful runs might produce better feature vectors because some insignificant

coverage information could be trimmed off by the analysis.

REFERENCES

[1] CERT basic fuzzing framework. http://www.cert.org/vuls/discover
y/bff.html.

[2] The CompCert C compiler. http://compcert.inria.fr/compcert-C.h
tml.

[3] gcov—a test coverage program. http://gcc.gnu.org/onlinedocs/gcc/G
cov.html.

[4] A guide to testcase reduction. http://gcc.gnu.org/wiki/A guide to t
estcase reduction.

[5] LLVM Bugpoint tool: design and usage. http://llvm.org/docs/Bugpoint
.html.

[6] Report a bug in a Keil product. http://www.keil.com/support/bugrepo
rt.asp.

[7] James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu. Random test
run length and effectiveness. In Proceedings of the 23rd International Conference on
Automated Software Engineering (L’Aquila, Italy, Sept. 2008), pp. 19–28.

[8] Cyrille Artho. Iterative delta debugging. International Journal on Software Tools for
Technology Transfer 13, 3 (June 2011), pp. 223–246.

[9] Abhishek Arya and Cris Neckar. Fuzzing for security, Apr. 2012. http://blog
.chromium.org/2012/04/fuzzing-for-security.html.

[10] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C
compiler front-end. In Proceedings of the 14th International Symposium on Formal
Methods (Hamilton, ON, Canada, Aug. 2006), pp. 460–475.

[11] Hans-J. Boehm, Russ Atkinson, and Michael Plass. Ropes: An alternative to strings.
Software: Practice and Experience 25, 12 (Dec. 1995), pp. 1315–1310.

[12] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers.
In Proceedings of the 7th International Workshop on Satisfiability Modulo Theories
(Montreal, QC, Canada, 2009), pp. 1–5.

[13] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and de-
bugging of SAT and QBF solvers. In Proceedings of the 13th international conference
on Theory and Applications of Satisfiability Testing (Edinburgh, United Kingdom,
July 2010), pp. 44–57.

81

[14] Martin Burger and Andreas Zeller. Minimizing reproduction of software failures.
In Proceedings of the the 2011 International Symposium on Software Testing and
Analysis (Toronto, ON, Canada, July 2011), pp. 221–231.

[15] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for C programs.
In Proceedings of the 9th IEEE International Working Conference on Source Code
Analysis and Manipulation (Edmonton, AB, Canada, Sept. 2009), pp. 123–124.

[16] Jacqueline M. Caron and Peter A. Darnell. Bugfind: A tool for debugging optimizing
compilers. SIGPLAN Notices 25, 1 (Jan. 1990), pp. 17–22.

[17] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. Taming compiler fuzzers. In Proceedings of the ACM
SIGPLAN 2013 Conference on Programming Language Design and Implementation
(Seattle, WA, USA, 2013), pp. 197–208.

[18] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing
of Haskell programs. In Proceedings of the 5th ACM SIGPLAN International Confer-
ence on Functional Programming (Montreal, QC, Canada, Sept. 2000), pp. 268–279.

[19] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceed-
ings of the 27th International Conference on Software Engineering (St. Louis, MO,
USA, May 2005), pp. 342–351.

[20] Pascal Cuoq, Julien Signoles, Patrick Baudin, Richard Bonichon, Géraud Canet, Loı̈c
Correnson, Benjamin Monate, Virgile Prevosto, and Armand Puccetti. Experience
report: OCaml for an industrial-strength static analysis framework. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming
(Edinburgh, United Kingdom, Aug./Sept. 2009), pp. 281–286.

[21] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it. In
Proceedings of the 8th International Conference on Embedded Software (Atlanta, GA,
USA, Oct. 2008), pp. 255–264.

[22] Chucky Ellison and Grigore Roşu. An executable formal semantics of C with
applications. In Proceedings of the 39th Symposium on Principles of Programming
Languages (Philadelphia, PA, USA, Jan. 2012), pp. 533–544.

[23] Shai Fine and Yishay Mansour. Active sampling for multiple output identification.
In Proceedings of the 19th Annual Conference on Learning Theory (Pittsburgh, PA,
USA, June 2006), pp. 620–634.

[24] Patrick Francis, David Leon, Melinda Minch, and Andy Podgurski. Tree-based meth-
ods for classifying software failures. In Proceedings of the 15th IEEE International
Symposium on Software Reliability Engineering (Washington, DC, USA, Nov. 2004),
pp. 451–462.

[25] GCC Team. GCC bugs, 2012. http://gcc.gnu.org/bugs/minimize.ht
ml.

[26] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science 38 (1985), pp. 293–306.

82

[27] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential testing as
a prelude to formal verification. In Proceedings of the 29th International Conference
on Software Engineering (Minneapolis, MN, USA, May 2007), pp. 621–631.

[28] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm
testing. In Proceedings of the the 2012 International Symposium on Software Testing
and Analysis (Minneapolis, MN, USA, July 2012), pp. 78–88.

[29] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 1 (1979),
pp. 100–108.

[30] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments. In
Security ’12: Proceedings of the 21st USENIX Conference on Security Symposium
(Bellevue, WA, USA, Aug. 2012), pp. 445–458.

[31] Allen Householder. Well there’s your problem: Isolating the crash-inducing bits
in a fuzzed file. Technical Report CMU/SEI-2012-TN-018, Software Engineering
Institute, Carnegie Mellon University, 2012.

[32] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 9899:TC3:
Programming Languages—C, 2007. http://www.open-std.org/jtc1/sc
22/wg14/www/docs/n1256.pdf.

[33] James A. Jones, James F. Bowring, and Mary Jean Harrold. Debugging in parallel.
In Proceedings of the the 2007 International Symposium on Software Testing and
Analysis (London, United Kingdom, July 2007), pp. 16–26.

[34] James A. Jones and Mary Jean Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proceedings of the 20th International
Conference on Automated Software Engineering (Long Beach, CA, USA, Nov. 2005),
pp. 273–282.

[35] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering (Orlando, FL, USA, May 2002), pp. 467–477.

[36] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false
alarms from a domain-unaware C analyzer by a Bayesian statistical post analysis.
In Proceedings of the 12th International Conference on Static Analysis Symposuim
(London, United Kingdom, Sept. 2005), pp. 203–217.

[37] Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis to counter
the impact of static analysis approximations. In Proceedings of the 10th Interna-
tional Conference on Static Analysis Symposuim (San Diego, CA, USA, June 2003),
pp. 295–315.

[38] Chris Lattner. What every C programmer should know about undefined behavior,
May 2011. http://blog.llvm.org/2011/05/what-every-c-progr
ammer-should-know.html.

83

[39] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (Palo Alto, CA, California, Mar. 2004),
pp. 75–86.

[40] Chris Lattner and Misha Brukman. How to submit an LLVM bug report, 2012. ht
tp://llvm.org/docs/HowToSubmitABug.html.

[41] Yong Lei and James H. Andrews. Minimization of randomized unit test cases.
In Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (Washington, DC, USA, 2005), pp. 267–276.

[42] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.
Efficient unit test case minimization. In Proceedings of the 22nd International Con-
ference on Automated Software Engineering (Atlanta, GA, USA, 2007), pp. 417–420.

[43] Xavier Leroy. Formal certification of a compiler back-end or: Programming a
compiler with a proof assistant. In Proceedings of the 33rd Symposium on Principles
of Programming Languages (Charleston, SC, USA, Jan. 2006), pp. 42–54.

[44] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM 52, 7 (2009), pp. 107–115.

[45] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 8 (1966), pp. 707–710.

[46] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (San Diego, CA, USA, June
2003), pp. 141–154.

[47] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable
statistical bug isolation. In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (Chicago, IL, USA, June 2005),
pp. 15–26.

[48] Chao Liu and Jiawei Han. Failure proximity: A fault localization-based approach. In
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Portland, OR, USA, Nov. 2006), pp. 46–56.

[49] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. SOBER:
Statistical model-based bug localization. In Proceedings of the 10th European Soft-
ware Engineering Conference held joint with the 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Lisbon, Portugal, Aug. 2005),
pp. 286–295.

[50] William M. McKeeman. Differential testing for software. Digital Technical Journal
10, 1 (Dec. 1998), pp. 100–107.

[51] Scott McPeak and Daniel S. Wilkerson. Delta, 2003. http://delta.tigris.o
rg/.

84

[52] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical delta debugging. In Pro-
ceedings of the 30th International Conference on Software Engineering (Shanghai,
China, May 2006), pp. 142–151.

[53] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. Compiler testing via
a theory of sound optimisations in the C11/C++11 memory model. In Proceedings
of the ACM SIGPLAN 2013 Conference on Programming Language Design and
Implementation (Seattle, WA, USA, June 2013), pp. 187–196.

[54] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation (San Diego, CA, USA,
June 2007), pp. 89–100.

[55] Dan Pelleg and Andrew Moore. Active learning for anomaly and rare-category
detection. In Advances in Neural Information Processing Systems 17 (Dec. 2005),
pp. 1073–1080.

[56] Dan Pelleg and Andrew W. Moore. X-means: Extending K-means with efficient
estimation of the number of clusters. In Proceedings of the 17th International
Conference on Machine Learning (Stanford, CA, USA, June/July 2000), pp. 727–734.

[57] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. Automated support for classifying software failure reports. In
Proceedings of the 25th International Conference on Software Engineering (Portland,
OR, USA, May 2003), pp. 465–475.

[58] John Regehr. A guide to undefined behavior in C and C++, July 2010. http:
//blog.regehr.org/archives/213.

[59] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
Test-case reduction for C compiler bugs. In Proceedings of the ACM SIGPLAN 2012
Conference on Programming Language Design and Implementation (Beijing, China,
June 2012), pp. 335–346.

[60] Manos Renieris and Steven Reiss. Fault localization with nearest neighbor queries.
In Proceedings of the 18th International Conference on Automated Software Engi-
neering (Montreal, QC, Canada, Oct. 2003), pp. 30–39.

[61] Jesse Ruderman. Introducing jsfunfuzz. http://www.squarefree.com
/2007/08/02/introducing-jsfunfuzz/.

[62] Jesse Ruderman. Introducing Lithium, a testcase reduction tool. http:
//www.squarefree.com/2007/09/15/introducing-lithium-a
-testcase-reduction-tool/.

[63] Jesse Ruderman. Mozilla bug 349611. https://bugzilla.mozilla.org/s
how bug.cgi?id=349611 (A meta-bug containing all bugs found using jsfun-
fuzz.).

85

[64] Jesse Ruderman. How my DOM fuzzer ignores known bugs, 2010.
http://www.squarefree.com/2010/11/21/how-my-dom-fuzze
r-ignores-known-bugs/.

[65] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM 18, 11 (Nov. 1975), pp. 613–620.

[66] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for
combining multiple partitions. The Journal of Machine Learning Research 3 (2003),
pp. 583–617.

[67] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more accurate
retrieval of duplicate bug reports. In Proceedings of the 26th International Conference
on Automated Software Engineering (Lawrence, KS, USA, Nov. 2011), pp. 253–262.

[68] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A
discriminative model approach for accurate duplicate bug report retrieval. In Pro-
ceedings of the 32nd International Conference on Software Engineering (Cape Town,
South Africa, May 2010), pp. 45–54.

[69] John-Baptiste Tristan, Paul Govereau, and Greg Morrisett. Evaluating value-graph
translation validation for LLVM. In Proceedings of the ACM SIGPLAN 2011 Con-
ference on Programming Language Design and Implementation (San Jose, CA, USA,
June 2011), pp. 295–305.

[70] Pavan Vatturi and Weng-Keen Wong. Category detection using hierarchical mean
shift. In Proceedings of the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (Paris, France, June/July 2009), pp. 847–856.

[71] Andreas Vida. Random Test Case Generation and Delta Debugging for Bitvector
Logic with Arrays. Master’s thesis, Johannes Kepler University, Linz, Austria, 2008.

[72] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to
detecting duplicate bug reports using natural language and execution information. In
Proceedings of the 30th International Conference on Software Engineering (Leipzig,
Germany, May 2008), pp. 461–470.

[73] David B. Whalley. Automatic isolation of compiler errors. ACM Transactions on
Programming Languages and Systems 16, 5 (Sept. 1994), pp. 1648–1659.

[74] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Proceedings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementation (San Jose, CA, USA, June
2011), pp. 283–294.

[75] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Towards automated debug-
ging in software evolution: Evaluating delta debugging on real regression bugs from
the developers’ perspectives. Journal of Systems and Software 85, 10 (Oct 2012),
pp. 2305–2317.

[76] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering 28, 2 (Feb. 2002), pp. 183–200.

86

[77] Sai Zhang. Practical semantic test simplification. In Proceedings of the 35th Interna-
tional Conference on Software Engineering, NIER track (San Francisco, CA, USA,
May 2013), pp. 1173–1176.

[78] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. For-
malizing the LLVM intermediate representation for verified program transformations.
In Proceedings of the 39th Symposium on Principles of Programming Languages
(Philadelphia, PA, USA, Jan. 2012), pp. 427–440.

[79] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. For-
mal verification of SSA-based optimizations for LLVM. In Proceedings of the ACM
SIGPLAN 2013 Conference on Programming Language Design and Implementation
(Seattle, Washington, USA, June 2013), pp. 175–186.

[80] Jianzhou Zhao and Steve Zdancewic. Mechanized verification of computing domina-
tors for formalizing compilers. In Proceedings of the 2nd International Conference
on Certified Programs and Proofs (Kyoto, Japan, Dec. 2012), pp. 27–42.

