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ABSTRACT

Nizio l proved a p-adic comparison isomorphism of semistable schemes via K-theory. In

this paper, we generalize it to integral setting; to make the classical argument work, we

need the Gysin map and Grothendieck-Riemann-Roch in the log crystalline setting, and we

generalize the method of Berthelot, and Gillet-Messing, respectively.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Rings of periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Log-syntomic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Basic property of log crystalline cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Syntomic regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. COMPARISON THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 The comparison morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. GYSIN SEQUENCE OF VERTICAL SEMISTABLE SCHEMES IN
LOG CRYSTALLINE COHOMOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Hyperextension functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Crystalline cycle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Another characterization of direct image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5. GROTHENDIECK-RIEMANN-ROCH THEOREM AND
UNIQUENESS CRITIERION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Uniqueness of p-adic period morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



ACKNOWLEDGMENTS

This work is under the supervision of Prof. Nizio l. Thanks for her steady encouragement

and inspiring conversations.



CHAPTER 1

INTRODUCTION

Let K be a complete discrete valued field of mixed characteristic (0, p) such that the

residue field k of its associated ring of integer V is perfect. Let X× be a fine and saturated

log-smooth proper vertical (V,N) scheme, i.e., the log structure is supported in the special

fiber of the canonical morphism X× → (V,N); here the log structure is defined by N →

OV , 1 → π, where π is a uniformizer of V . P -adic comparison siomorphism relates étale

cohomology with coefficient Qp to (log) crystalline cohomology. In [24], Nizio l gave a

K-theoretic proof: under some restriction on dimension and Tate twist, étale cohomology

is isomorphic to (higher) algebraic K-theory; on the other hand, on the crystalline side,

though XV ′ (V ′ is a finite extension of V with fraction field K ′) may not be reduced, by

the theorem of [23], we can blow it up to get a regular model Y . Then since log crystalline

cohomology is stable under log blow-up, we also get a morphism from (higher) algebraic

K-theory of Y to log crystalline cohomology. Since Ki(Y ) ' Ki(YK′) = K(XK′) (the first

one comes from the localization sequence), we defined a Galois equivariant morphism from

étale cohomology to crystalline cohomology. To show it is an isomorphism, notice that by

Poincaŕe duality, it suffices to show it is at top degree cohomology.

For the integral case, we can use the argument in [10]: first show that the morphism

commutes with both cycle classes, hence so does the trace map, so we can use the compat-

ibility of the trace map to define the left inverse of the morphism we constructed; to show

it is also an right inverse, since the cup product is the composite of the Künneth product

and diagonal pullback and the morphism we constructed is functorial, it suffices to show

that it commutes with diagonal classes, and that is what we show in the beginning of the

argument. Nothing essential is changed, but the Poincaré duality and the existence of the

cycle class map shall be rechecked.

Since Tate twist is involved in étale cohomology, the above argument can only guarantee

the comparison map is an almost isomorphism, namely, isomorphism after inverting the Bott

element (see the beginning of Chapter 3). In sum, we have the following theorem:
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Theorem 1.1 If pn ≥ 5, 2b − a ≥ max{2d, 2}, 2b − a ≥ 3, for d = 0 and p = 2, and

p > d+ 2b− a+ 1. For 0 ≤ a ≤ b ≤ p− 2, we have a filtered almost isomorphism

αnab : Ha
ét(XK̄ ,Z/p

n)⊗ Filb(Acrys,n)→ Filb(Ha(X×n /En, ,OXn/En)⊗En Acrys,n)

compatible with Galois and Frobenius actions.

Here Xn means the mod-pn reduction of X, the filtration of the right-hand side is defined by

the filtration of log crystalline cohomology and filtration on Acrys,n; for the definition of En,

see Section 2. In the final section, we also try to compare the comparison map with other

maps given by Faltings [11], Breuil-Tsuji [8], [28], and recently by Beilinsion and Bhatt;

since all the above maps commute with Chern class, that means under the assumption made

here, these four morphisms are the same, again up to inverting the Bott element.

In Chapter 2, we recall the basic property of log-crystalline cohomology and syntomic

regulator, and in Chapter 3, we formulate the main result and outline the proof; in Chapters

4 and 5, we prove the properties we need in the proof of our main theorem.



CHAPTER 2

PRELIMINARIES

Let V,K be as above. Let K0 be the fraction field of W (k) and K̄ be the (chosen)

algebraic closure of K. Let Xn = X/pn.

2.1 Rings of periods

For the purpose of this paper, following [9], we recall the defintions of Acrys and sketch

the definition of Âst,π. Later we will define a comparison isomorphism using Acrys and show

how to get a canonical isomorphism using Âst,π, which is the Fontaine-Jannsen conjecture.

Define

Acrys = lim←−H
0
cris(V̄ /pV̄ /Wn) ' lim←−Wn(V̄ /pV̄ )DP,

where both inverse limits are induced by the truncation map

Wn(V̄ /pV̄ )DP →Wn−1(V̄ /pV̄ )DP,

(a0, a1, . . . , an−1)→ (ap0, . . . , a
p
n−2),

and DP means divided power envelope with respect to an ideal given by the kernel of the

following surjective map

Θn : Wn(V̄ /pV̄ )DP → V̄ /pnV̄ , θ(a0, . . . , an−1) = âp
n

0 + pâp
n−1

1 + · · ·+ pn−1âpn−1,

where âi means any lifting of ai in V̄ /pnV̄ . Let Jn = ker Θn and J
[i]
n be its ith divided

power. For 0 ≤ i ≤ p− 1, we define

FiliAcrys = lim←− J [i]
n .

From the definition of Jn, we have φ(FiliAcriy) ⊂ piAcrys; in general, we define

FiliAcrys = {x ∈ Acrys|φ(x) ∈ piAcrys}.

Let t = (ξn)n be a compatible system of primitive pn-th roots of unity in OK̄ and [ξn] be

the Teichmüller representative in Wn(OK̄/p), so we get an element (which is still denoted
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by) t = ([ξn])n in Acrys; now define β = log(t). It is also an element of Acrys since the

valuation of εn − 1 is 1
p−1 ; the Taylor expansion of logarithmic function converges.

Now we turn to Âst,π. Let E be the p-adic completion of

W < u >= {Σn
i=0wiu

i/i!|wi ∈W := W (k̄), n ∈ N}.

(In [9] it is denoted by S). Define the Frobenius on E by φ(Σwiu
i/i!) = Σφ(wi)u

pi/i! and

define FiliE = p-adic completion of the ideal generated by {(u− π)j/j!, j ≥ i}. Again, we

have φ(FiliE) ⊂ piE. Now define the monodromy operation as a W-linear derivation by

N(u) = −u. The log structure of E is given by N→ E, 1→ u.

Now define

Âst,π = lim←−H
0
crys((V̄ /pV̄ )/(E/pnE)) ' lim←−Wn(V̄ /pV̄ )DP < Xπ >,

where Xπ is the chosen parameter and the last isomorphism can be found in [26] Lemma

1.6.5 (it is denoted by vβ − 1 in [26]). Now choose a compatible system {πn} such that

πpn = πn−1. This system defines an element in lim←−Wn(V̄ /pV̄ ) and we denote [π] as the

corresponding image in lim←−Wn(V̄ /pV̄ )DP ' Acrys. Then we have an identification of Âst,π

with the p-adic completion of Acrys < Xπ > and u = [π](1 +Xπ)−1.

Now define φ(Xπ) = (1 +Xπ)p − 1 and N(Xπ) = Xπ + 1 and define

FiliÂst,π = {Σ∞j=0aj
Xj
π

j!
|aj ∈ Fili−jAcrys, aj → 0}.

Again we will have φ(FiliÂst,π) ⊂ piÂst,π.

For Galois action, by definition, there is a continuous action of GK0 on Acrys that

preserves the filtration and commutes with Frobenius; for g ∈ GK0 , now we extend the

Galois action on Âst,π by defining g(Xπ) = [ε(g)]Xπ+[ε(g)]−1, where ε : GK0 → lim−→µpn(K̄)

is the continuous 1-cocycle determined by the choice of compatible system of pn-th roots of

π. This action preserves Frobenius and monodromy action.

We denote Acrys,n by Acrys/p
n, and similarly, for a fixed π, we set Âst,n = Âst,π/p

n.

2.2 Log-syntomic cohomology

Here we recall the definition of the complex Sn(r)X× for fine and saturated log smooth

scheme X× in [24].

First assume there exists an exact closed immersion X×n ↪→ Z×n such that Z×n is log

smooth over Wn(k) (whose underlying scheme is Wn(k) associated with trivial log structure)

and the Frobenius map on Wn(k) extends to Z×n . Denote D×n as the associated DP-envelope
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and by abuse of notation, we still denote by φ the Frobenius extending from Z×n . Denote

J [i]
Dn

, the ideal of ODn generated by its j− th power of ideal of the DP-thickening, for j ≥ i.

Since Dn is flat over Wn(k) by construction, JDn is flat over Wn(k); by [24] Section 2.1, for

0 ≤ r ≤ p − 1, there exists an unique φr : JDn → ODn such that the following diagram is

commutative :

JDn+r

��

φ // ODn+r

pr

��
JDn

φr // ODn .

Now define

Sn(r)X× = Cone(1− φr : J [r−·]
Dn

⊗OZn ω
·
Zn/Wn(k) → ODn ⊗OZn ω

·
Zn/Wn(k))[−1]

In general, we can choose an étale affine covering such that in each cover, we have such

log smooth lifting extending Frobenius. Then they form a double complex; the log syntomic

complex is defined as the cone of the associated double complexes.

As in [28] p. 542, for 0 ≤ r, r′, r + r′ ≤ p− 1, one can define product map

Sn(r)X× ⊗ Sn(r′)X× → Sn(r + r′)X× ,

and notice that that the natural map Sn(r)X → Sn(r)X× (the former one is a scheme

equipped with trivial log structure), which is compatible with such product structure.

2.3 Basic property of log crystalline cohomology

Now, assume X× is vertical log smooth and universally saturated over (V,N); we want

to formulate some properties of its log-crystalline cohomology over En here.

Proposition 2.1 Künneth formula holds on H i(X×n /En,OXn/En), i.e., if we have Yn,

which is vertical log smooth and universally saturated over (V,N), then we have the canonical

isomorphism:

Hk((Xn × Yn)×/En,O(Xn×Yn)×/En) ' ⊕i+j=kH i(X×n /En,OXn/En)⊗H i(Y ×n /En,OXn/En).

Proof : The proof essentially is the same as in [3] V Proposition 4.1.7.

It suffices to define the Künneth isomorphism étale locally and make sure of the compat-

ibility. Thus we assume X×n admits a lifting Z×n log smooth over En. Here we may assume

Zn affine, and since X×n is log smooth over (Vn,N), the cohomology is equal to cohomology
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of de Rham complex ω·Zn/En . Assume there is another log smooth scheme of Y ×n with local

lifting Z ′×n . In this case, the assertion is reduced to :

ω1
Zn/En

⊗OZ′n +OZ′n ⊗ ω
1
Zn/En

= ω1
Zn⊗EnZ′n/En

.

Since MZ′n⊗EnZ′n = MZn ⊗MEn
1 + 1 ⊗MEn

MZ′n (by assumption on Xn, the log structure

after fiber product is still saturated, so we do not need to worry about saturation) and the

compatibility holds, the assertion follows.

Proposition 2.2 Poincaré duality holds on H i(X×n /En,OXn/En).

Here we mainly follow the method of [3] and [27]. In fact, it is already proved in [11] p.

249; the idea is as follows: though En is not noetherian, we can first work on An := Wn[t]/ts,

where s is large enough such that we have a ring homomorphism An → En, and the log

structure is defined on t. Assume locally on Xn that we have a log smooth lifting X ′n on An,

then X ′n ⊗An En is a log smooth lifting on En and locally the associated de Rham complex

is isomorphic to ω·X′n/An
⊗An En, and the reader will see the construction of the trace map

can be deduced from the An case. First, we prove a lemma, which can help us to compute

log crystalline cohomology, using only Zariski topology:

Lemma 2.3 For log smooth and separated of finite type X×n over (Vn,N), the log crystalline

cohomology H i(X×n /En,J
[m]
Xn/En

) is invariant under log blow-up.

Proof : Denote the log scheme after log blow-up by X ′n. Choose an affine covering

(Un,i)i∈I on Xn such that it admits a log smooth lifting on En; let U ′n,i be the inverse

image of Un,i in X ′n; by the construction of Proj, it also admits smooth lifting. So the

crystalline cohomology is the cohomology associated to the double complex formed by the

Cěch complex corresponding to (Un,i)i∈I and (U ′n,i)i∈I . In particular, we have a natural map

corresponding to these two double complexes. We can form the spectral sequence associated

to these double complexes, which are both regular (i.e., fix p, q, drp,q : Ep,qr → Ep+r,q−r+1
r

is the zero map for r large enough since the double complex is in the first quadrant). It

suffices to show the isomorphism on the E1 term.

Now consider the single term C(U lift
n,i ,J

[n−j]
U lift
n,i

⊗O
U lift
n,i

/En
ωj
U lift
n,i/En

). Here U lift
n,i /En means a

smooth lifting of Un,i/En. Notice that we have a canonical morphism

J [n−j]
U lift
n,i

⊗O
U lift
n,i

/En
ωj
U lift
n,i/En

→ Rf∗(J ′[n−j]U ′liftn,i

⊗O
U′lift
n,i

/En
ωj
U ′liftn,i /En

)

(where we denote f as the blow-up map) which is an isomorphism since by [20] Theorem

11.3, the canonical map OU lift
n,i
→ Rf∗(OU ′liftn,i

) is an isomorphism. Hence, the same assertion
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holds for JU lift
n,i

since it is a DP-ideal ofOU lift
n,i

; and from the isomorphismOU lift
n,i
' Rf∗(OU ′liftn,i

),

we get Lf∗OU lift
n,i
' OU ′liftn,i

, so we have f∗ωj
U lift
n,i/En

' ωj
U ′liftn,i /En

, and hence,

Rf∗ω
j

U ′liftn,i /En
' Rf∗ ◦ Lf∗ωjU lift

n,i/En
' ωj

U lift
n,i/En

⊗L Rf∗(OU ′liftn,i
) ' ωj

U lift
n,i/En

from the projection formula; hence, each term of these double complexes are the same. In

general, this argument works on every term in the double complex; hence the proof.

Thus we reduce to the vertical semistable case. The following argument follows from [27]

with some modifications since our base is En; on the other hand, while in [27] Tsuji works

on étale site, here, first we use Lemma 2.3 to reduce the problem to Zariski topology and

illustrate the main idea. In fact, it is not necessary to do so; one of the reasons we decided

to work on Zariski topology is to simplify notation. The other reason is, as discussed in

Chapter 4, when we begin to construct the cycle class map, the argument presented here

strongly relies on the fundamental local isomorphism in [16] III Proposition 7.2, which is

Zariski in nature (again, it also works for étale topology. For example, we can first choose

an étale covering such that the scheme and the corresponding cycle admits smooth lifting on

each open covering, and we first work on the de Rham complex of each smooth lifting, and

then after checking the compatibility of the construction, we will get an extended version

of Proposition 4.12 and Proposition 4.13; hence, the cycle class). The process follows from

[3]; we will construct a trace morphism using residue complex; while using residue complex

we can reduce to local case, then locally Xn admits a smooth lifting over En; to prove the

vanishing of the residue map whose source coming from the class of lower codimension, we

follow from the method of [27], Proposition 3.1.

Since Xn is Cohen-Macaulay, locally around a closed point x we can find a smooth

lifting f ′ : X ′×n → An, (following [11], p. 249, define An = Vn[t]/ts, for s large enough

such that it maps to En) such that the X ′n is also Cohen-Macaulay. Moreover, the smooth

locus of f ′ contains all codimension 1 points of X ′n. As in [20] Theorem 11.2, we have

f ′!An = ωdX′n/An
[d], which is the dualizing complex of X ′n (see [20] (11.2) or [27] Theorem

2.21).

Thus as in [16] p. 344 Lemma 4.4, we get a morphism of An sheaves f ′∗f
′!An → An.

Tensoring with En and taking the cohomology, we get a morphism

Hd(X ′n, ωdX′n/En)
Trf ′,x→ En.

The goal is that we want to construct a trace map

H2n
crys(X

×
n /En,OXn/En)→ OEn .
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First, we show that the composition map

Hd(X ′n, ωd−1
X′n/En

)
d→ Hd(X ′n, ωdX′n/En)

Trf ′,x→ En.

is zero map. Taking the Cousin complex of ωd−1
X′n/En

and ωdX′n/En
, it suffices to show:

Lemma 2.4 For all closed points x of Xn. The composite homomorphism

Hdx(ωd−1
X′n/En

)
d−→ Hdx(ωdX′n/En)

Trf ′,x−−−−→ En

is zero.

Proof : Here we slightly modify Tsuji’s proof [27]. Consider the exact closed immersion

En ↪→ En[u] induced by the map u → t (and the log structure of An[u] is given by N →

An[u], 1 → u. Since the question is local, we may assume X ′n admits a log-smooth lifting

X ′′×n , and we denoted the closed immersion by i : X ′×n ↪→ X ′′×n . On the other hand, consider

the morphism En[u]→ E◦n (the log scheme whose underlying scheme is En with trivial log

structure) induced by the trivial map En[u]→ En, then X ′′n is (classically) smooth over En.

(We deform Wn(k)[x, y]/xy − p to Wn(k)[x, y, w]/(xy − w)). Now we hope an analogue of

Berthelot’s Proposition holds ([3] VII Proposition 1.2.6), namely the composition map

Hd+1
x′′ (Ωd

X′′n/En
)
d−→ Hd+1

x′′ (Ωd+1
X′′n/En

)
Trf ′′−−−→ En

is zero, where x′′ is defined by {the regular sequence defining x, u− t}.

To see this, it suffices to show the analogue of [3] VII Lemma 1.2.5, i.e., denote t1, . . . , td+1

the lifting of regular system of parameter of OX′′n ,x′′/mOX′′n ,x′′ in OX′′n ,x′′ , where m is the

maximal ideal of En, so we have an isomorphism lim−→k
Ωd+1
X′′n/En,x

′′/(t
k
1, . . . , t

k
d+1) ' Hd+1

x′′ (Ωd+1
X′′n/En

);

here we denote Ωd+1
X′′n/En

as the classical, not log differential then for any w ∈ Ωd+1
X′′n/En,x

′′ under

this isomorphism, we have

Trf ′′,x′′(w/t
k
1 · · · · · tkd+1) = Res

[
w

tk1, · · · , tkd+1

]
.

Denote jk : Zk ↪→ X ′′n,x the closed subscheme of OX′′nx′′ with defining ideal tk1, · · · , tkd+1,

then Res

[
w

tk1, · · · , tkd+1

]
is the composition map

f ′′∗ (Ωd+1
X′′n/En,x

′′ ⊗OX′′nx′′ Jk)→ HomEn(OZk , En)→ En,

where ωk := (∧d+1(tk1, . . . , t
k
d+1)/(tk1, . . . , t

k
d+1)2)∨. Namely, it is a linear extension of [16]

III 8 from An to En. So it suffices to show that the argument in [3] VII Lemma 1.2.5
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is compatible with extension from An to En, the answer is positive since the argument is

attributed to the following commutative diagram:

f ′′∗HomOX′′n,x′′
(OZk ,H

d+1
x′′ (Ωd+1

X′′n/En
))

� _

��

' // f ′′∗ (Ωd+1
X′′n/En,x

′′ ⊗OX′′nx′′ ωk)

TrZk
��

f ′′∗Hd+1
x′′ (Ωd+1

X′′n/En
)

Trf ′′,x′′ // En

The isomorphism in the upper horizontal arrows is valid for any smooth morphism such

that it is regular on the special fiber, and the trace morphism in [16] is defined on the

complex level, so the trace map in the En setting can be defined as linearly extension from

An to En; finally, the commutativity of the above diagram comes from the transitivity of

trace map, which is still true after linearly extending to En, so we still have the above

commutative diagram (though we did not try to define f
′′4 in this case), hence the claim.

Go back to the argument; without loss of generality, we may assume td+1 = u − t;

now denote t′i the reduction of ti in OX′n,x. On the other hand, Zariski locally ωdX′n/En
'

Ωd+1
X′′n/En

⊗ ŇX′n/X′′n , (the map is defined as ω → (dt ∧ ω)⊗ (t− u)∨). Again

Hdx(ωdX′n/En) ' lim−→ωdX′n/En/t
′k1
1 · · · t

′kd
d ,

where k1 · · · kd runs through all positive integers and the map

Hdx(ωdX′n/En) ' Hdx′′(Ωd+1
X′′n
⊗ ŇX′n/X′′n )

→ Hdx′′(HomOX′′n
(OX′n ,H

d+1
x′′ (ωd+1

X′′n
[d+ 1])))→ Hd+1

x′′ (Ωd+1
X′′n

[d+ 1])

is given by ω
t′1···t′d

→ ω
(t−u)t1···td ; denote this map by Tri,x; if we define the above map in this

way, then we have the transitivity of trace map, namely Trf ′′,x ◦ Tri,x = Trf ′,x . By direct

computation ([27] p. 26), we see :

d(
ω

t′1 · · · t′d
) =

dω

t′1 · · · t′d
− Σ1≤i≤d

dt′i ∧ ω
t′1 · · · t

′2
i · · · t′d

,

dt ∧ ω
(t− u)t′1 · · · t′d

=
dt ∧ dω

(u− t)t′1 · · · t′d
− Σ1≤i≤d

dt ∧ dt′i ∧ ω
(u− t)t′1 · · · t

′2
i · · · t′d

.

So the latter is the image of the former, by transitivity of trace map, so we reduce to

the smooth case, i.e., [3] VII Proposition 1.2.6, hence the proof.
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For the rest it is exactly the same as in Tsuji’s argument [27]; what we need to check

is that the argument is compatible with extension from An to En; it is sketched as follows:

notice that Hix(OXn/En) is a log crystal, in particular, we have

RdfXn/En,∗(H
d
x(OXn/En)) ' Hd

x(ω·X′n/En),

so after the above lemma, we can define the residue map

Resf,x : RdfXn/En,∗(H
d
x(OXn/En))→ En

as the composition map of the above isomorphism and the trace map; it is independent of

the smooth lifting we choose; (notice the objects below are all crystals on log crystalline

site)

OXn/En → H
0
X0
n/X

1
n
(OXn/En)→

H1
X1
n/X

2
n
(OXn/En)→ · · ·Hi

Xi
n/X

i+1
n

(OXn/En)→ · · ·

where we denote Xi
n the point of codimension i of Xn. First by [27] Lemma 8.7, we have

the isomorphism

⊕x∈Xi
n/X

i+1
n
RjfXn/En,∗(H

i
x(OXn/En)) ' RjfXn/En,∗(H

i
Xi
n/X

i+1
n

(OXn/En)).

That means what we need to prove is for for z ∈ Xd−1
n /Xd

n, x ∈ Xd
n∩ ¯{z}, the composition

map

RdfXn/En,∗(H
d−1
z (OXn/En))→ RdfXn/En,∗(H

d
x(OXn/En))

Trf,x→ OEn

is zero, where the last map is induced from the surjective map

Hd
x′(ω

d
X′n/En

)→ H2d
x′ (ω

·
X′n/En

)

and Lemma 2.4. If this claim is proved, consider the spectral sequence

Ei,j1 = RjfXn/En,∗(H
i
Xi
n/X

i+1
n

(OXn/En))⇒ Ri+jfXn/En,∗(Oxn/En)

and since

RjfXn/En,∗(H
i
x(OXn/En)) = 0, for j > d,

we have an exact sequence

RdfXn/En,∗H
d
Xd−1
n /Xd

n
(OXn/En)→ RdfXn/En,∗H

d
Xd
n
(OXn/En)

→ R2dfXn/En,∗(OXn/En)→ 0.
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Combined with residue theorem, we get a trace map as desired ([3] VII Theorem 1.4.6).

Now back to the claim, the composition map is equivalent to

Hd−1
z′ (ωdX′n/En)

δ→ Hd
z′(ω

d
X′n/En

)
Resf,x→ En.

On the other hand, denote Z := {z̄} and uk : W ′k ↪→ X ′n the k-th infinitesimal

neighborhood of Z in X ′n with the log structure induced from X ′n; denote h′k : W ′k → En

the canonical map, then we can consider the residue map h′k∗h
′4
k (En)x → En, which is

the linear extension of residue map in [16] to En. Denote h′k∗h
′4
k (En)i the i-th degree

of the complex h′k∗h
′4
k (En); by the transivisity of the trace map, we have the following

commutative diagram

h′k∗h
′4
k (En)−1

Tru′
k

��

δ // h′k∗h
′4
k (En)0

x

Resh′
k
,x
//

Tru′
k

��

En

=

��
Hd−1
z′ (ωdX′n/En

) δ // Hd
z′(ω

d
X′n/En

)
Resf,x // En

Now by [27] Corollary 8.13 ([3] VII Corollary 1.3.7, where the flatness of f is used),

there exists Wk over En such that for any local lifting X ′n and W ′k be as the above, we have

the En isomorphism Wk|U 'W ′k, where U := X ′n ×SpecEn SpecWn, the local neighborhood

of z. That means globally, we have the map

hk∗h
4
k (En)−1 δ→ hk∗h

4
k (En)0

x

Reshk,x→ En,

which is compatible with the commutative diagram above, now notice that

h′k∗h
′4
k (En)−1 ' HomOX′n

(OZk , i
′
z∗H

d−1
z (ωd−1

X′n/En
)),

where i′z : z → X ′n is the canonical map so that means for any element b ∈ Hd−1
z′ (ωdX′n/En

),

it will lie in the image of h′k∗h
′4
k (En)−1, for k large enough, hence in hk∗h

4
k (En)−1; then

the assertion follows from the composition map

hk∗h
4
k (En)−1 δ→ hk∗h

4
k (En)0

Reshk,x→ En,

(notice we did not localize at x) is 0, since the trace map is the morphism of complexes and

the target concentrate at the 0-th degree.
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Finally, the trace map is compatible with base change, namely we have a commutative

diagram for m ≤ n ([3], VII Proposition 1.4.8)

R2dfXn/En,∗(OXn/En)⊗En Em //

Trfn⊗Id ))TTTTTTTTTTTTTTT
R2dfXm/Em,∗(OXm/Em)

Trfmuulllllllllllll

OXm/Em

Back to the proof of Poincaré duality, for n = 1, let the Frobenius map F act on t (recall

A1 = k[t]/ts) trivially, then as a O
X
′′(p)
1

module (base change w.r.t. Frobenius map), we

still have Cartier isomorphism

ω·
X
′′(p)
1 /E1

' H∗(ω·X′′1 /E1
).

Here both sides satisfy Küneeth formula and by cohomological descent, it suffices to

treat the case X ′′1 = E1[v], which is true by direct computation.

That means when n = 1, the trace map is an isomorphism. By Nakayama lemma,

the trace map is an isomorphism for general n. Now we consider pairings. Since RHom

commutes with tensor product (for perfect complexes, which is true in this case by taking

Cěch complex), by Nakayama lemma again, we reduce to the case n = 1, which is true

again by Cartier isomorphisms. Hence we establish Poincaré duality.

2.4 Syntomic regulators

In this section, we briefly recall the construction of syntomic Chern class in [22] Section

2.2. All we need to do is to replace the rational definition to an integral one. Also we work

on syntomic cohomology Sn(i)X , i.e., with trivial log structure and then the log syntomic

regulator is induced by the natural map Sn(i)X → Sn(i)X× ; while writing Sn(i), we view it

as a functor from schemes over Wn(k) to abelian groups.

Consider the group scheme BGLm over Wn(k), and consider the projective bundle

associated to it. As in [14] Definition 2.3, now we consider the tautological divisor on it,

denoted by ξ. Since BGLm is smooth over Wn(k), Sn(i)BGLm has Dold-Thom isomorphism

([16] (4.2)). That means we can consider the universal Chern classs as the coefficient of the

following equation in the projective bundle:

ξn + p∗(C1)ξn−1 + · · ·+ p∗(Cn) = 0,

where p is the natural projection from the projective bundle to BGLm. To compute the

cohomology of Sn(i), we assume there is a functorial way to get acyclic resolutions (for
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the syntomic side we run through all affine covering which admits smooth lifting). Denote

BkGLm as the k-th level of the simplicial scheme BGLm, so H2i(BGLm/Wn(k),Sn(i)BGLm)

can be computed as the double complex whose (k, l) term is Hom(BkGLn,Sn(i)lGLm), where

Sn(i)lGLn is the l-th acyclic resolution of Sn(i)GLn .

Since for each Wn(k) morphism Xn to BGLm is equivalent to a compatible family of

Wn(k) morphism Xn to BkGLm, and through this map we have a natural Wn(k) morphism

Sn(i)lGLm to Sn(i)lX ; since HomWn(k)(Xn, BkGLm) = BkGLm(OXn), we get a compatible

family of morphisms

Hom(BkGLm,Sn(i)X)→ Hom(Xn,Sn(i)X).

Denote H2i(Xn,GL(OXn),Sn(i)X) by the right derived functor of Sn(i)
GL(OXn )
Xn

, so we

get a map

H2i(BGLm/Wn(k),Sn(i)BGLm)→ H2i(Xn,GL(OXn),Sn(i)X).

Thus we get universal classes induced by universal Chern classes through the above mor-

phism; let Ci be the map which composes the above map with the natural mapBGLn(OX)→

BGLn(OXn), it induces a map of simplicial sheaves

Ci : BGLn(OX)→ K(2i,Sn(i)X).

The right-hand side is the Dold-Puppe functor on the syntomic complex. Now for l ≥ 0,

the map proceeds as in the diagram in [14] p. 229

csyn
il : Kj(X)→ H−l(X,Z× Z∞BGL(OX))

Ci→

H−l(X,Z∞K(2i,Sn(i)X)) ' H2i−l(X,Sn(i)X).

Here, H−l(X, ) := πl(RΓ(X, )), the first map comes from a natural map in [14]

Proposition 2.15, Z∞ denotes the completion functor of Bousfield and Kan, and the final

isomorphism comes from the weak equivalence on Z∞K(2i,Sn(i)X) and K(2i,Γ(i)X), hence

induce the same homotopy.

For K-theory with coefficients, for l ≥ 2 , denote Pn be the l-dimensional mod pn Moore

space, which only exists for l ≥ 2. The Chern classes are now defined as the composition

Kl(X,Z/p
n)→H−l(X,Z× Z∞(B·GL(OX)),Z/pn)

→H−l(X,Z∞(B·GL(OX)),Z/pn)

Ci−→H−l(X,K(2i,Sn(i)X),Z/pn)

f−→H2i−l(X,Sn(i)X),
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where f is defined as the composition

H−l(X,K(2i,Sn(i)X),Z/pn) = π−l(X,K(2i,Sn(i)X),Z/pn)

hl−→ Hl(Sn(i)X [2i])

= H2i−l(X,Sn(r)X(i)),

where hl is the Hurewicz morphism.

Lemma 2.5 The syntomic Chern classes have the following properties:

(1) csynil for j > 0 is a group homomorphism;

(2) c̄synil for j ≥ 2 is a group homomorphism unless l = 2 and p = 2;

(3) c̄synil are compatible with the reduction maps Sn(i)X → Sm(i)X , n ≥ m; moreover, if

X is regular, one can consider the following γ-filtration

F kγK0(X) =

{
K0(X) if k ≤ 0,

< γi1(x1) · · · γit(xt)|ε(x1) = · · · = ε(x1) = 0, i1 + · · ·+ it ≥ k > if k > 0,

and we have the following:

(4) Let p be odd, or let p = 2, n ≥ 2, and l, q 6= 2. If α ∈ Kl(X; Z/pn) and α′ ∈

Kq(X; Z/pn), then

c̄synil (αα′) = −Σr+s=i
(i− 1)!

(r − 1)!(s− 1)!
c̄synrm (α)c̄synsq (α′)

assuming that m, q ≥ 2,m+ q = l, 2i ≥ l, i ≥ 0, p 6= 2.

(5) If α ∈ F lγK0(X), l 6= 0, and α′ ∈ F kγKq(X; Z/pn), q ≥ 2, are such that c̄synil (α′) = 0

for l 6= k, then

c̄synl+k,q(αα
′) = − (l + k − 1)!

(l − 1)!(k − 1)!
c̄synl0 (α)c̄synkq (α′).

(6) The above multiplication formulas hold also for p = 2, n ≥ 4, q = 2, and α′ such that

∂α′ ∈ K1(X) ∈ V ∗.

(7) The integral Chern-class maps csyni0 restrict to zero on F i+1
γ Kl(X; Z/pn), l ≥ 2,

unless l = 2, p = 2.

Proof : See [22] Lemma 2.1.

For XK , similarly one can also construct

cètil : Kl(XK)→ H2i−l(XK ,Z/p
n(i)), c̄ètil : Kl(XK ; Z/pn)→ H2i−l

èt (XK ,Z/p
n)

and has similar properties as the above lemma.



CHAPTER 3

COMPARISON THEOREM

Now we can establish our comparison morphism: we recall some facts from [24].

First, we recall the definition of Bott elements. For a scheme Y whose global section

contains a primitive pn-th root of unity, for pn > 2, there are compatible functorial Bott

element homomorphisms

βY : µpn(Y )→ K2(Y ; Z/pn).

Explicitly, denote ζn by a fixed primitive pn-th root of unity, denote β0 the image of ζn

under the following isomorphism:

π2(Bµpn(Y ); Z/pn) ' π1Bµpn(Y ) ' µpn(Y ),

then the Bott element βY (ζn) is the image of β0 under the natural map induced by

Bµpn(Y ) ⊂ BGL(Y )+.

Now choose ζ = (ζn), ζn ∈ Qp, ζ
pn
n = 1, ζpn+1 = ζn, take t to be the associated image in

Acrys,n, let K1 be the finite extension of K ⊂ K̄ containing ζn and V1 be its ring of integers.

Now denote βn ∈ K2(K1; Z/pn) and β̃n ∈ K2(V1; Z/pn) by βK1(ζn) and βV1(ζn). We have:

Lemma 3.1

c̄éti,2i(β
i
n) = (−1)i−1(i− 1)!ζ⊗in ∈ H0(K1,Z/p

n(i)), c̄étl,2i(β
i
n) = 0, l 6= i.

c̄syni,2i (β̃
i
n) = (−1)i−1(i− 1)!ζ⊗in ∈ H0(V1,Sn(i)X), c̄synl,2i (β̃

i
n) = 0, l 6= i.

Proof : See [24] Lemma 3.1 and [22] Lemma 4.1.

And we recall the main proposition (Proposition 3.2) in [24]:

Proposition 3.2 Let Y be a smooth scheme of dimension d over K̄, and let pn ≥ 5. Let

b ≥ max{2d, 2}, b ≥ 3, for d = 0 and p = 2, and let 2i − l ≥ 0. There exists an integer

T (d, i, l) depending only on d, i, and l such that the kernel and cokernel of the Chern classes

c̄éti,l : griγKl(Y ; Z/pn)→ H2i−l(Y,Z/pn(i))

are annihilated by T (d, i, l). An odd prime p divides T (d, i, l) if and only if p ≤ d+ i+ 1.
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Recall (see, e.g., [24] p. 158) for k,m, n ∈ N∪0, the integerM(k, i, l) is defined as follows:

Let q ∈ N and let wl be the greatest common divisor of the set of integers kP (kq − 1), as

k runs over the positive integers and P is large enough with respect to q. Let M(k) be the

product of the wq for 2q < k. Set M(k, i, l) =
∏

2i≤2q≤l+2k+1M(2l). Then T (d, i, l) in the

above proposition is defined as

T (d, i, l) = (i− 1)!M(d, i, l)M(d, i+ 1, l)M(d, i+ 1, 2l)M(d, i, 2l)M(2d)2d

Also we recall the key lemma (Lemma 3.5) in [24] to construct the comparison morphism:

Lemma 3.3 Let V1 be a discrete valuation ring with fraction field K1 and X be a regular

flat scheme over V1 , and let j : XK1 ↪→ X be the open immersion. Then the restriction

j∗ : Kl(X; Z/pn)→ Kl(XK1 ; Z/pn), l > d+ 1,

is an isomorphism, and the induced map

j∗ : griγKl(X; Z/pn)→ griγKl(XK1 ; Z/pn), l > d+ 1,

has kernel and cokernel annihilated by M(d, i+ 1, 2l) and M(d, i, 2l), respectively.

Though we will not need the following result, in fact we can go further: let X̃V1 be the

log blow up of XV1 such that it is regular, then we have the following commutative diagram:

// Kl(X̃v1 ; Z/pn) // Kl(X̃V1 ; Z/pn) // Kl(XK1 ; Z/pn) //

// Kl(Xv; Z/p
n)

OO

// Kl(X; Z/pn)

OO

// Kl(XK ; Z/pn)

OO

//

Here X̃v1 , Xv are special fibers of X̃V1 , XV , respectively. Now we claim that the map

Kl(Xv; Z/p
n) → Kl(X̃v1 ; Z/pn) is e = [V1 : V ] times the map induced by the morphism

X̃v1 → Xv. Since K-theory is the inductive limit of finite dimensional Lie group cohomology,

it suffices to show the assertion for K0; in this case, it follows from O
X̃V1
⊗OX OXv is e times

successive extensions of O
X̃v1

, as O
X̃V1

module, and hence [O
X̃V1
⊗OXOXv ] = e[O

X̃v1
], hence

the claim. The above result shows that, if by abuse of notation, we denote Kl(XV̄ ; Z/pn)

the inductive limit of Kl(X̃V1 ; Z/pn), we have Kl(XV̄ ; Z/pn) ' Kl(XK̄ ; Z/pn).

3.1 The comparison morphism

Recall we assume that for 0 ≤ i ≤ r ≤ p − 2 and n ∈ N, X× a proper, vertical log

smooth over V of relative dimension d with reduction of Cartier type, the construction of
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such map is very similar to the rational case in [24]: under the assumption of Proposition 3.2,

first we identify étale cohomology as the graded pieces of algebraic K-theory of XK̄ under

γ-filtration, so it comes from the algebraic K-theory of XK1 , where K1 is a finite extension

of K; since it is log regular, after some log blow up we can find a regular model; then use

Lemma 3.3 to map it to the K-theory of this regular model; finally use syntomic Chern

class the map to crystalline cohomology. To check this construction is an isomorphism, we

follow the approach of [10] Theorem 4.2 and [22] Lemma 4.2; on the other hand, the Gysin

map and Grothendieck Riemann-Roch can not be found in the literature yet; we will mimic

the crystalline case and establish them in the following sections.

Now define a Galois equivariant transformation

αnab : Ha
ét(XK̄ ,Z/p

n(b))→ Filb(Ha(X×n /En, ,OXn/En)⊗En Acrys,n),

where on the right-hand side, En → Acrys,n is given by u→ [π], as follows.

The filtration of the right-hand side is induced by the filtration of log crystalline coho-

mology (i.e., the image of Ha(X×n /En,J
[i]
Xn/En

) in Ha(X×n /En,OXn/En)) and filtration of

Âst,π. Let i = b, l = 2b − a satisfying the assumptions of Proposition 3.2, namely, pn ≥ 5,

2b − a ≥ max(2d, 2), 2b − a ≥ 3, for d = 0 and p = 2, and now the condition is empty.

For x ∈ Ha
ét(XK̄ ,Z/p

n(b)), by Proposition 3.2, T (d, b, 2b−a)x ∈ grbγK2b−a(XK̄ ; Z/pn), take

any preimage x1 ∈ F bγK2b−a(XK̄ ; Z/pn), then x1 ∈ F bγK2b−a(XK1 ; Z/pn) for some K1 finite

over K, denote V1 its corresponding ring of integers. Since XV1 is log regular (and finite

and saturated log scheme), by the main result of [23], after some log blow-up, we get a log

scheme Y × whose underlying scheme is regular and YK1 = XK1 ; by Lemma 3.3 we can find

x′1 ∈ F bγK2b−a(Y ; Z/pn) such that it is the preimage of M(d, b, 2(2b − a))x1, then we have

the following composition maps :

F bγK2b−a(Y ; Z/pn)
ε−→ Ha(Y,Sn(b)Y ×)

'←−
π∗

Ha(XV1 ,Sn(b)X×V1

)
f−→

Filb(Ha(X×n /En, ,OXn/En)⊗En Âst,n).

Here ε is the composition of syntomic Chern class and the natural map

Ha(Y,Sn(b)Y )→ Ha(Y,Sn(b)Y ×).

The middle isomorphism follows from the invariance of crystalline cohomology after log

blow-up; the last arrow f is the composition map

Ha(XV1 ,Sn(b)X×V1

)→ Ha((Xn ×V V1)×/Wn, ,J [b]
Xn×V V1/Wn

)→ Ha(X̄n
×
/Wn, ,J [b]

X̄n/Wn
)
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→ (Ha(X̄n
×
/En, ,J [b]

X̄n/En
))N=0 → (Filb(Ha(X×n /En, ,OXn/En)⊗En Âst,n))N=0,

the reason the above map factors through the monodromy trivial part follows from [26]

Lemma 4.3.8 and the last arrow follows from the natural isomorphism ([26] Proposition

4.5.4)

Ha(X×n /En,OXn/En)⊗En Âst,n ' Ha(X̄n
×
/En,OX̄n/En).

Now we claim we have a natural filtered isomorphism

(Ha(X×n /En,OXn/En)⊗En Âst,n)N=0 ' Ha(X×n /En,OXn/En)⊗En Acrys,n,

it is done in [25] Proposition 2.12, we repeat the argument here.

Denote Ha(X×n /En,OXn/En)⊗En,π Âst,n by the tensor product of Ha(X×n /En,OXn/En)

and Âst,n over En where the map of En to Âst,n is given by u → [π], denote N1 to be the

monodromy operator, which is the usual monodromy operator on Âst,n, but acts trivially

on Ha(X×n /En,OXn/En). We can check we still have

N(Fill(Ha(X×n /En,OXn/En)⊗En,π Âst,n)) ⊂ Fill−1(Ha(X×n /En,OXn/En)⊗En,π Âst,n),

and N1φ = pφN1. Now apply [26] Proposition 1.6.15, we have the following horizontal

(compatible with monodromy operations on both sides) filtered Âst,n linear isomorphism

(Notice that in order to make it a Galois equivariant map, now the Galois action on the

right-hand side is given as σ → exp(ε(σ)N)⊗ σ, where ε is the one cocyle which is used to

define the Galois action of Âst,π in Section 2.1)

Ha(X×n /En,OXn/En)⊗En Âst,n ' Ha(X×n /En,OXn/En)⊗En,π Âst,n

x⊗ 1→ Σi≥0(
∏

0≤l≤i−1

(N − l)(x))⊗ (
Xπ + 1

[π]
− 1)[i],

where Xπ+1
[π] exists in Âst,n by [26], Lemma 1.6.5 (where Xπ refers to vβ−1 in the statement

of [26]), then taking monodromy trivial part on both sides, we see the right-hand side is

Ha(X×n /En,OXn/En)⊗En Acrys,n, hence the claim.

Now in addition, we assume the prime p does not divide T (d, b, 2b−a) and M(d, b, 2(2b−

a)); by Proposition 3.2, it is equivalent to say p > d+ 2b− a+ 1. So we can define

αnab(x) := f(π∗)−1ε(j∗)−1c̄ét,−1
b,2b−a(x).

Now we need to show that it is well-defined; this follows from the argument in [24].

First, it is independent of the regular model Y we choose. If there is another model, say

Y1, then we can blow up XV1 with the center containing the previous two schemes, then
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by the main result of [23], blow up further and we may get a regular scheme Ỹ such that

Ỹ ×V1 K1 = XK1 , and by the construction, we have natural maps from Ỹ to Y and Y1,

hence the result.

Under the identification of Ha
ét(XK̄ ,Z/p

n(b)) and Ha
ét(XK̄ ,Z/p

n) ⊗ βb through the

logarithm map, after tensoring Acrys on the étale side, we get a Galois equivariant filtered

comparison map. Now we can state the main theorem:

Theorem 3.4 For any proper log scheme X× vertical log smooth over (V,N) of relative

dimension d with reduction of Cartier type, if pn ≥ 5, 2b− a ≥ max{2d, 2}, 2b− a ≥ 3, for

d = 0 and p = 2, and p > d+ 2b−a+ 1. For 0 ≤ a ≤ b ≤ p−2, we have a Galois equivalent

almost isomorphism

αnab : Ha
ét(XK̄ ,Z/p

n)⊗ Filb(Acrys,n)→ Filb(Ha(X×n /En, ,OXn/En)⊗En Acrys,n)

By the result of [23], after some log blow-up, for any X× with assumption in the above

theorem, we can find a vertical semistable scheme. Since our construction of comparison

map is functorial, it suffices to prove the theorem when X is vertical semistable (and then

we can work on the Zariski site instead of the étale site).

We will talk about Gysin sequence and diagonal class in the next proposition. In the

smooth case, the closed immersion between two smooth schemes must be regular immersion;

similarly the exact closed immersion between two vertical semistable schemes is regular; to

see this, locally as in the beginning of the proof of Lemma 2.4., we can lift both schemes

and morphisms to Vn[u], hence now both schems are smooth over Vn, hence we reduce to

smooth case, hence the result.

Since the diagonal embedding X ↪→ X ×X is not a regular embedding, by [19] Proposi-

tion 4.10, we can factor diagonal embedding through an exact closed immersion composed

with an log étale map, but for vertical semistable schemes, we can do it explicitly. Now,

for simplicity assume the special fiber of X consists of s Cartier divisors {D1, · · · , Ds} with

simple normal crossing; now we blow up Di × Di, i = 1, · · · , s, we get a scheme X̃ ×X,

since the pullback of the center of blow-up is (π), by universal property, we get a map

X ↪→ X̃ ×X; certainly it is an closed immersion; in order to say it is an exact closed

immersion, it suffices to show that :

Lemma 3.5 X̃ ×X is regular.

Proof : The assertion is étale local, so we may assume locally X × X is isomorphic to

SpecV [x1, x2, . . . , xd, y1, y2, yd]/(x1 · x2 · · ·xs − π, y1 · y2 · · · ys − π). Blow up it with center
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on

V((x1, y1)(x2, y2) . . . (xs, ys)),

(vanishing set with defining ideal (x1, y1)(x2, y2) . . . (xs, ys)), localize x1 · x2 · x3 · · ·xs; for

example, by direct computation the affine coordinate ring is

V [x1, x2, . . . , xd, y1, y2, · · · yd, y1/x1, y2/x2, . . . , ys/xs],

quotient (x1 ·x2 ·x3 · · ·xn−π, y1 ·y2 ·y3 · · · ys−π) then directly check this ring is isomorphic

to

V [x1, . . . , xd, y1, · · · , yd, y1/x1, · · · , ys/xs]/

(x1 · · · ·xs − π, y1/x1 · · · ys/xs − 1),

which is regular.

To check the above assertion, the general case is very similar but a bit complicated;

for simplicity, let us assume d = s = 4, and we localize x1 · x2 · y3 · y4; after quotient, the

coordinate ring will be

V [x1, x2, y3, y4, y1/x1, y2/x2, x3/y3, x4/y4]/

(x1 · x2 · y3 · y4 · x3/y3, ·x4/y4 − π, y1/x1 · y2/x2 − x3/y3 · x4/y4)

which is regular. (Quotient a regular sequence (x1, x2, y3, y4), we get

k[y1/x1, y2/x2, x3/y3, x4/y4]/(y1/x1 · y2/x2 − x3/y3 · x4/y4),

which is regular.)

Here is our main proposition, which is an analogue of [22] Lemma 4.2:

Proposition 3.6 (1) αnab commutes with products.

(2) For an exact closed immersion i : Y → X of relative dimension j with X,Y vertical

semistable, we have

αn2j,b(clét(YK)ζb−jn ) = i∗(1Yn)tb−j

where the Gysin map

i∗ : H ·(Y ×n /En,OYn/En)→ H ·+2j(X×n /En,J
[j]
Xn/En

)

is defined as the adjoint of i∗ with respect to Poincaré duality. (So i∗(1Yn) is the constant

appeared in the projection formula).
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(3) In particular, for irreducible XK̄ , the following diagram commutes:

H2d
ét (XK̄ ,Z/p

n(b))

αn
′

2d,b
��

trét
// Z/pn(b− d)

tb−d

��
Filb(H2d(X×n /En),OXn/En)⊗En Acrys,n

trcry
// Acrys,n(d− b)

Proof : As in [22], Lemma 4.2, the first assertion follows from Lemma 2.5. For (3), we

observe that commutativity of cycle class implies commutativity of trace maps: by étale

base change, we may assume the residue field of V is algebraically closed; in this case, the

trace maps on both sides can be characterized by sending each cycle class of closed point

to 1, hence the claim.

So it suffices to prove (2). First, we recall the argument in [22], Lemma 4.2, in smooth

case; first, we prove for 0 ≤ i < j, c̄syn
i0 ([i∗(OY )]) = 0, then we can apply Whitney sum

formula

c̄ét
j,2(b−j)([OYK ]βb−jn ) = (−1)b−1(b− 1)!clét(YK)ζb−jn ,

c̄syn
j,2(b−j)([OY ]βb−jn ) = (−1)b−1(b− 1)!c̄syn

j,0 ([OY ])ζb−jn .

On the other hand, by the construction of the map, [OYK ]βb−jn will map to [OY ]βb−jn ,

hence clét(YK) will map to c̄syn
j,0 ([OY ]), hence the claim.

For a vertical semistable scheme Y (we omit the subscript for simplicity) of codimension

j in X with closed immersion i : Y ↪→ X , the same argument as the above, first we show

that for 0 ≤ i < j, c̄syn
i0 ([i∗(OY )]) = 0. This result relies on the Grothendieck Riemann-Roch

type theorem (without denominators), i.e., denoted cX(−) = 1+ c̄syn
10 ([−])+ c̄syn

20 ([−])+ · · ·+

c̄syn
d0 ([−]), the total Chern class on X, we want to prove for each l, there exists an universal

power series Pl of degree l − j (which is zero if l < j), such that

c̄syn
l0 ([i∗(OY )]) = i∗(Pl(c(OY ), c(N))),

where N is the normal bundle of Y in X and i is the Gysin map generalizing the Gysin map

in crystalline cohomology (and we will show that it coincides with the definition in above

proposition), we will define the Gysin map and prove this formula in the following sections.

In order to prove Grothendieck-Riemann-Roch theorem, one crucial ingredient is the

functoriality of cycle class map under a Cartesian Tor independent diagram (Proposition

4.1.5), for this reason, the author is forced to give a down-to-earth construction of a cycle

class map; on the other hand, the proof strongly relies on the Poincaré duality, so we will

show show that this construction is compatible with the adjoint of pull back map under

Poincaré duality. Now assume we already show the existence of Gysin map, and show
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it is the adjoint of the pullback under Poincaré duality, and Grothendieck Riemann-Roch

formula. Now we are ready to give a proof. Since αab commutes with cup product by

Proposition 3.6, it has a left inverse α−1
ab . Since αab is functorial, it also commutes with

Künneth products (with respect to the diagonal immersion δ : Xn ↪→ ˜Xn ×Xn, since cup

product is the composition of Künneth product and the diagonal pullback and we have

Künneth formula by Proposition 2.1).

To prove α−1
ab is a right inverse as well, it suffices to show that α−1

ab commutes with

cup products as well. Since αab commutes with Künneth isomorphism, take its associated

Poincaré dual, α−1
ab also commutes with Künneth isomorphism. So now it suffices to show

that it commutes with ∆∗, which is equivalent to say αab commutes with ∆∗; since by

Proposition 3.6. αab commutes with cycle classes, by projection formula, it suffices to show

that ∆∗ is surjective, which follows from it admits a retraction

X
∆ //

X̃ ×X // X ×X
pr1 // X,

where pr1 means projection on the first factor, hence the proof.

Remark 3.7 The reason we can use Poincaré duality in the above argument is, on the

étale side, we identify Ha
ét(XK̄ ,Z/p

n(b)) with Ha
ét(XK̄ ,Z/p

n)⊗ βb; on the crystalline side,

JXn/En is generated by t− p, which is also in Acrys.



CHAPTER 4

GYSIN SEQUENCE OF VERTICAL

SEMISTABLE SCHEMES IN LOG

CRYSTALLINE COHOMOLOGY

In this chapter, we will develop a cycle class map for exact regular closed immersions

between log schemes smooth over En, following [3]. We honestly follow the approach of

Berthelot, and at many places, weaken the smooth condition by log-smooth or flat. To

simplify notation, since log crystalline cohomology is blow-up invariant, it suffices to show

for the vertical semistable case; then we can work on the Zariski site, instead of the étale

site.

4.1 Hyperextension functor

For a vertical semistable scheme X× over (V,N), denoted X̃ ×X blow-up of X × X

with center on the diagonal, so the canonical closed immersion X ↪→ X̃ ×X is an exact

closed immersion, denoted I by its defining ideal, so we have ω·Xn/Vn ' I/I
2.

Following [18], now we can define the log version of jet sheaves as follows, define Jm =

O ˜Xn×Xn
/Im+1. Equipped the OX algebra structure by the (induced) first projection π1,

and we have canonical differential operator Dn : OXn → Jm given by π∗2, the projection on

the second component.

Definition 4.1 Let F , G be two sheaves of OXn modules. Let F → Jm ⊗π∗2(OXn ) F be the

canonical map induced by Dm, let D : F → G be a homomorphism of OXn modules. We say

D is a differential operator of order ≤ m if there exists a homomorphism of OXn modules

u : Jm⊗π∗2(OXn )F → G (where the former one is defined as left OXn module using the OXn
module structure on Jm) such that D = u ◦ (Dm ⊗π∗2(OXn ) 1).

So now denote C(Xn) be the category of sheaves of differential operators of order ≤ 1,

i.e., a complexes of sheaves of OXn modules whose differentials are differential operators of

order ≤ 1, with morphisms are morphisms as complexes.
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Define J 0 = OXn ,J i = J1 ⊗π2(OXn ) J i−1, where π2 is the morphism induced by the

second projection of X ×X → X, we view it as a left π∗1(OXn) and right π∗2(OXn) module.

So we have the graded sheaf J · = ⊕J i, where the multiplication J i ⊗J j → J i+j is given

by

(α1 ⊗ · · · ⊗ αi ⊗ f)⊗ (β1 ⊗ · · · ⊗ βj ⊗ g)→ (α1 ⊗ · · · ⊗ αi ⊗ fβ1 ⊗ · · · ⊗ βj ⊗ g).

Denote D by the element 1 ∈ J 1, so the J · module which are complexes are exactly

C· := J ·/D⊗D modules; using the splitting C1 = J1 = OXn⊕ωXn/Vn , we have the induced

map ωXn/Vn ⊗OXn C
j → Cj+1; from this and by iteration, we get a ωXn/Vn action on C·;

by the same argument as in [18] p. 103, C· = ω·Xn/Vn/I, where I is the ideal generated by

D2 = 0, Dϕ+ (−1)i+1ϕD = 0, φ ∈ ωiX/Vn . In sum, we have:

1. ([18] (2.1)) The category of complexes with differential operators of order ≤ 1 has

enough injectives.

2. ([18] (2.4)) Every complex with differential operators of order ≤ 1 has a natural

structure of graded module over ω·Xn/Vn . Injective complexes give rise to injective

graded ω·Xn/Vn modules.

For F ·,G· ∈ C(Xn), denote Homk(F ·,G·) as all the morphisms of ω·Xn/Vn modules

F · → G·[k] (i.e., a family of maps F i → Gi+k compatible with differential structures), let

Hom·(F ·,G·) = ⊕Homk(G·,F ·) ∈ C(X), whose differential structure Dk : Homk(F ·,G·) →

Homk+1(F ·,G·) is given by formula

Dk(ϕ) = DG ◦ ϕ+ (−1)k+1ϕ ◦DF ,

where ϕ ∈ Homk(F ·,G·), DG ( resp. DF ) are corresponding differential operators of F ·,G·.

Let Ext·,qC(Xn)(F
·,G·) (resp. Ext·,qC(Xn)(F

·,G·)) be the q-th derived functor of Hom·(F ·,G·)

(resp. Γ(Hom·(F ·,G·))).

Proposition 4.2 ([3] II Proposition 5.3.2)

If I · is an injective object in the category of graded ω·Xn/Vn module, then Iq is an injective

OXn module.

Proof : It follows from the canonical isomorphism

HomA(M, Iq) ' Homq(M ⊗A ω·Xn/Vn , I
·),

since ω·Xn/Vn is a flat OXn module.
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Definition 4.3 With the notation above, define a (sheaf of) double complex K ·· by Kpq =

Homp(E·, I ·q), then the hyperext of E·, F ·, denoted by Extiω·
Xn/Vn

(E·, F ·), is the sheaf coho-

mology associated to the double complex K ··.

Note that by definition, we have a spectral sequence

Ep,q1 = Extp,qC(Xn)(E
·, F ·)⇒ Extp+qω·

Xn/Vn

(E·, F ·).

Proposition 4.4 ([3] II Proposition 5.4.2)

There is a canonical isomorphism

ExtpqC(Xn)(E
·, ω·Xn/Vn) ' ExtqOXn/Vn

(Ed−p, ωdXn/Vn).

Proof : Let I · be a injective resolution of ωXn/Vn , since ωXn/Vn is locally free OXn/Vn
module, (ωd−·Xn/Vn

)∨ ⊗ I · is a injective resolution of ω·Xn/Vn . Thus we have

ExtpqC(Xn)(E
·, ω·X/Vn) = Hq(E·, (ωd−·Xn/Vn

)∨ ⊗ I ·) = Hq(HomOXn/Vn (Ed−p, I ·)).

Hence the claim.

Proposition 4.5 ([3] II Proposition 5.4.4)

Extiω·
Xn/Vn

(ω·Xn/Vn , F
·) ' H i(F ·), Extiω·

Xn/Vn
(ω·Xn/Vn , F

·) ' H i(F ·).

Proof : Let I ·· be the injective resolution of F ·, then the first one follows from the

isomorphism

Hom·(ω·Xn/Vn , I
·q) ' I ·q.

That means the E1 term spectral sequence of both sides are isomorphic, and the spectral

sequence is regular, thus the target is also isomorphic; the same argument works for the

second one by taking the global section.

Proposition 4.6 ([3] VI Proposition 3.1.6) Let i : Y → X is an closed immersion with Y

vertical semistable over V of codimension j. Then there is an canonical isomorphism

Extiω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

) ' H i−2j(ω·Yn/Vn),

Extiω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

) ' H i−2j(ω·Yn/Vn).

In particular, that means for i < 2j, the above objects are all zero.
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Proof : Like Proposition 4.5, we consider the E1 term spectral sequence on both sides.

Recall after Definition 4.3. we have a spectral sequence

Ep,q1 = Extp,qC(Xn)(ω
·
Yn/Vn

, ω·Xn/Vn)⇒ Extp+qω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

)

and by Proposition 4.4. we have

Extp,qC(Xn)(ω
·
Yn/Vn

, ω·Xn/Vn) ' ExtqOXn/Vn
(ωd−pYn/Vn

, ωdXn/Vn)

(recall d is the rank of ω1
Xn/Vn

as an OXn/Vn module). Since Y is of locally of complete

intersection in X, by [16] III Proposition 7.2, we have

ExtqOXn
(ωd−pYn/Vn

, ωdXn/Vn) = 0, for q 6= j,

ExtjOXn
(ωd−pYn/Vn

, ωdXn/Vn) ' (ωd−pYn/Vn
)∨ ⊗ ωdXn/Vn ⊗ ωYn/Xn ' ω

p−j
Yn/Vn

,

where ωYn/Xn = ∧d(IYn/I2
Yn

)∨ and IYn is an ideal sheaf of Xn defining Yn. The last

isomorphism comes from the isomorphism

ωdXn/Vn ⊗ ωYn/Xn ' ω
d−j
Yn/Vn

.

Now it suffices to show that the differential

dp,q1 : Ep,q1 → Ep,q+1
1

is the usual differential

ωp−jYn/Vn
→ ωp+1−j

Yn/Vn

through the isomorphisms. Since the question is local, we may assume Yn is defined by a

regular sequence t1, . . . , tj ∈ Γ(Xn,OXn). Denote C ·t1,...,tj (ω
·
Xn/Vn

) the Cěch resolution of

ω·Xn/Vn , so we have an exact triangle :

0→ ω·Xn/Vn → C ·t1,...,tj (ω
·
Xn/Vn

)→ H ·jYn(ω·Xn/Vn)→ 0,

here H ·lYn(ω·Xn/Vn) is defined by Hk,l
Yn

(ω·Xn/Vn) = H l
Yn(ωkXn/Vn). Notice that C ·t1,...,tj (ω

·
Xn/Vn

)

and H ·jYn(ω·Xn/Vn) are both differential operators of order ≤ 1, so we get a resolution of

ω·Xn/Vn in the category of C(Xn). On the other hand, since we invert the defining ideal of

Yn in Xn, for all l ≥ 0

Ext·,l(ω·Yn/Vn , C
·
t1,...,tj (ω

·
Xn/Vn

)) = 0.

So that means

Ext·,l(ω·Yn/Vn , H
·j
Yn

(ω·Xn/Vn)) ' Ext·,j+l(ω·Yn/Vn , ω
·
Xn/Vn

),

and use Koszul resolution on OYn means the above is 0 unless l = 0; in sum, we have

Ext·,l(ω·Yn/Vn , H
·j
Yn

(ω·Xn/Vn)) = 0 while l > 0.
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To calculate Homp(ω·Yn/Vn , H
·j
Yn

(ω·Xn/Vn)), first notice that since for any k, ωkXn/Vn is

locally free, so for I · an injective resolution of OXn , I · ⊗ ωkXn/Vn is an injective resolution

of ωkXn/Vn , that means

H ·jYn(ω·Xn/Vn) ' Hj
Yn

(OXn)⊗ ω·Xn/Vn .

Since

Hj
Yn

(OXn) ' lim
→
OXn/I

(n)
Yn
,

where IYn is the sheaf of ideals generated by t1, . . . , tj .

So Homp(ω·Yn/Vn , H
·j
Yn

(ω·Xn/Vn)) is equivalent to a section of Hj
Yn

(OXn/Vn) ⊗ ωpXn/Vn
which is annihilated by t1, . . . , tj , dt1, . . . , dtj . So that means the isomorphism

ωp−jYn/Vn
' Homp(ω·Yn/Vn , H

j
Yn

(OXn)⊗ ω·Xn/Vn)

is given by

ω → ω ∧ dt1 ∧ · · · ∧ dtj
t1 . . . tj

and the claim follows.

For Extiω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

), by [3] VI Proposition 2.2.5, there is a E2 term spectral

sequence

Ep,q2 = Hp(X,Extqω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

))⇒ Extp+qω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

),

hence the result follows from the result of Extiω·
Xn/Vn

(ω·Yn/Vn , ω
·
Xn/Vn

).

Now we want to define crystalline version of differential complex of order ≤ 1.

Assume X×n admits a smooth lifting X ′×n on En (so the defining ideal is also a PD-ideal).

Recall that by [21] p.66, we have a log linearization functor L, which sends the category

of OX′n module with log HPD differential operators to the category of crystals of OXn/En
module. In particular, L(ω·X′n/En

) is a complex of OXn/En module. For any OX′n module E,

by [21], p. 65, define L(E)(U,T,δ) = OT×XnX′n⊗OX′n E, so we can define differential operators

of order ≤ 1 with respect to L(ω·X′n/En
) as a complex of sheaves of OX′n/En modules; on

the other hand, for another OX′n module F , L(E⊗OX′n F ) = L(E)⊗OX′n F , that means the

log linearization functor sends differential operator of order ≤ 1 to differential operators of

order ≤ 1 with respect to L(ω·X′n/En
). Now observe that we have the following:

Proposition 4.7 ([3] VI Proposition 2.3.1)
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Let the assumption be as above. For OX′n (on the Zariski site) module E and L(OX′n)

module F , we have the following adjunction formula

HomL(OX′n )(L(E), F ) ' HomOX′n
(E, uXn/En∗(F )),

where uXn/En : (Xn/En)crys → (Xn)Zar is defined as in [3] 5.18, which is given by: For F ∈

(Xn/En)crys and j : U ↪→ Xn an open immersion, uXn/En∗(F )(U) = Γ((U/En)crys, j
∗
crys(F ));

on the other hand, for E ∈ (Xn)Zar, we have

(u∗Xn/En(E))(U, T,MT , δ) = E(U).

Proof : First, we mention that there exists such morphism since

uXn/En∗(L(OX′n)) ' OX′n

Since we assume Xn admits a log-smooth lifting, Γ(Xn,HomL(OX′n )(L(E), F )) is isomor-

phic to the equalizer of the following diagram:

Ker[Γ(X ′n,Hom(L(E), F )(Xn,X′n) ⇒ Γ(DXn(X ′2n ),Hom(L(E), F )(Xn,DXn (X′2n )))]

(By abuse of notation here, we skip some data on the log crystalline site). On the other

hand, we have

Hom(L(E), F )(Xn,X′n) ' HomL(OX′n )(Xn,X
′
n)

(L(E)(Xn,X′n), F(Xn,X′n))

' HomDX′n/En
(1)(DX′n/En

(1)⊗OX′n E,F(Xn,X′n)) ' HomOX′n
(E,F(Xn,Xn)).

Similarly we have,

Hom(L(E), F )(Xn,DXn (X′2n )) ' HomOX′n
(E,F(Xn,DXn (X′2n )))

So that means

HomL(OX′n
)(L(E), F ) ' Ker[HomOX′n

(E,F(Xn,X′n))⇒ HomOX′n
(E,F(X,DXn (X′2n )))]

' HomOX′n
(E,Ker(F(Xn,X′n) ⇒ F(Xn,DXn (X′2n )))).

By the same reason, we know the following diagram

uXn/En∗(E)|Xn → E(Xn,X′n) ⇒ E(Xn,DXn (X′2n ))

is exact. Put it into the above equality, hence the claim.

Using exactly the same method, we have:
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Lemma 4.8 ([3] VI Lemma 2.3.3)

Let F be an L(OX′n) module. Then there exists an canonical isomorphism

uXn/En∗(L(DX′n/En
(1))⊗L(OX′n ) F ) ' DX′n/En

(1)⊗OX′n uXn/En∗(F ).

Combining the above proposition and lemma, we can get, let E,F be as above, then

there is natural 1-1 correspondence between the differential operators of order ≤ 1 with

respect to L(ωX′n/En) from L(E) to F , and the differential operators of order ≤ 1 from E

to uXn/En∗(F ). In particular, let E· be a complex of differential operator of order ≤ 1,

and K · be a complex of differential operator of order ≤ 1 with respect to L(ω·X′n/En
), then

there is a natural 1-1 correspondence between the homomorphism from L(E·) to K · and

homomorphism between E· and uXn/En∗(K
·). So that means for I ·, an injective object in

the category of complex of differential operators of order ≤ 1 with respect to L(ω·X′n/En
),

uXn/En∗(I
·) is an injective object in the category of complexes of differential operator of

order ≤ 1.

Theorem 4.9 ([3] VI Theorem 2.4.1)

Let E,F be two OXn/En module (on the restricted log crystalline site, we are forced to

work on it, while X ′n is log smooth over En it does not affect the cohomology). Denote

ExtiOXn/En
(E,F ) (resp. ExtiOXn/En

(E,F )) the i-th derived functor of HomOXn/En (E,F )

(resp. Γ(Xn, (HomOXn/En (E,F ))). For all i, there is canonical isomorphisms :

ExtiOXn/En (E,F )→ ExtiL(ω·
X′n/En

)(E ⊗ L(ω·X′n/En), F ⊗ L(ω·X′n/En)),

ExtiOXn/En (E,F )→ ExtiL(ω·
X′n/En

)(E ⊗ L(ω·X′n/En), F ⊗ L(ω·X′n/En)).

Proof : Here we closely follow the proof of [3] VI Theorem 2.4.1. Let (U, T,MT , i, δ) be a

restricted log crystalline site, namely it is a crystalline site equipped with an En morphism

g : T → X ′n, so we have L(OX′n)(U,T ) ' g∗(DX′n/En
(1)) , which is flat over OXn/En since

DX′n/En
(1)) is flat over OX′n (after log blow-up, étale locally it is DX′n(X ′n ×Ad)).

For K ·, an object of differential operator of order ≤ 1, we have adjunction formula

Homm(E ⊗OXn/En L(ω·X′n/En),K ·) ' HomOXn/En (E,Km).

This means for K · injective, Km is an injective OXn/En module. So that means for q ≥ 1,

Ext·q(E ⊗OXn/En L(ω·X′n/En
),K ·) is acyclic. So the above result implies one can use I ··,
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injective resolution of F ⊗OXn/En L(ω·X′n/En
), to compute ExtiL(ω·

X′n/En
)(E⊗L(ω·X′n/En

), F ⊗

L(ω·X′n/En
)). Again by adjunction formula,

Homp(E ⊗OXn/En L(ω·X′n/En), I ·q) ' HomOXn/Wn (E, Ip,q).

But Ip,· is an injective resolution of F ⊗OXn/En L(ωpX′n/En
), so the double complex I ·· is

quasi-isomorphic to F ⊗OXn/En L(ω·X′n/En
), hence by Poincaré lemma an injective resolution

of F , hence we prove the first isomorphism. The other isomorphism follows from a similar

method.

Theorem 4.10 ([3] VI Theorem 2.4.2)

There exists canonical isomorphisms

ExtiL(ωX′n/En
)(L(K ·), L(M ·)) ' ExtiωX′n/En

(K ·,M ·).

Proof : We sketch the approach in [3]. Let I ·· be a resolution of L(M ·) in the category

of differential operator of order ≤ 1 with respect to L(ω·X′n/En
), so by the discussion before

Theorem 4.9, uXn/En∗(I
·q) is an injective object in C(X ′n). Also Ip· is an injective resolution

of L(Mp). So uXn/En∗(I
·) is an injective resolution of uXn/En∗(L(Mp)), which is equal to

Mp. Finally, by adjunction formula, we have a canonical isomorphism

Homp
Xn

(L(K ·), I ·q) ' Homp
Xn

(K ·, uXn/En∗(I
·q)),

hence the result .

Since the hyperext does not always factors through derived category, in order to get a

Gysin map, we need to do something more:

Theorem 4.11 ([3] VI Theorem 3.2.1)

Let X ′×n , Y ′×n be two integral ([19] Definition 4.3) log smooth scheme over En, and let

Y ′×n ↪→ X ′×n be exact closed immersion. Then the functorial homomorphism

Extiω·
X′n/En

(ω·Y ′n/En , ω
·
X′n/En

)→ Extiω·
X′n/En

(DY ′n(X ′n)⊗OX′n ω
·
X′n/En

, ω·X′n/En)

induced from the morphism of complexes

DY ′n(X ′n)⊗OX′n ω
·
X′n/En

→ OY ′n ⊗OX′n ω
·
X′n/En

' ω·Y ′n/En ,

is an isomorphism.



31

Proof : Here we closely follow the argument in [3] and indicate where we modify the proof.

Step1. Let J · = Ker(DY ′n(X ′n)⊗OX′n ω
·
X′n/En

→ ω·Y ′n/En
). So it suffices to prove that

Extiω·
X′n/En

(J ·, ω·X′n/En) = 0.

Since p is nilpotent in En, the above statement is equivalent to

Extiω·
X′n/En

(J ·, pk · ω·X′n/En/p
k+1 · ω·X′n/En) = 0.

Assume this theorem is proved when the base scheme is of characteristic p, (i.e., the

base scheme is E1), since X ′×n is integral and log smooth over En, by [19] Corollary 4.5, the

morphism between underlying schemes is flat, hence ω1
X′n/En

is a flat OEn module. Let f

be the canonical map X ′×n → En, then we have f∗(pk · OEn/pk+1 · OEn) ⊗OX′n ω
·
X′n/En

'

pk · ω·X′n/En/p
k+1ω·X′n/En

. Now let S× be the closed subscheme of En whose defining ideal

sheaf is the kernel of the mutiplication by pk homomorphism OEn → pkOEn/pk+1OEn and

we define X ′′ and Y ′′ the associated reduction of Xn and Yn by this ideal. Then we have

pkω·X′n/En
/pk+1ω·X′n/En

' ω·X′′/S . Let

J ′· := Ker(DY ′′(X
′′)⊗OX′′ ω

·
X′′/S → ω·Y ′′/S).

Since we have a canonical ismorphism DY ′n(X ′n)⊗OEn OS ' DY ′′(X
′′), we have J ⊗OX′n

OX′′ ' J ′. Since by hypothesis Extiω·
X′′/S

(J ′·, ω·X′′/S) = 0, it suffices to show that the

canonical homomorphism

Extiω·
X′′/S

(J ′·, ω·X′′/S)→ Extiω·
X′′/S

(J ·, ω·X′′/S)

is an isomorphism, which we prove it in Step 2.

Step 2. Since both sides are the target of the spectral sequences with

Ep,q1 = Extp,q(J ′·, ω·X′′/S) (Ep,q1 = Extp,q(J ·, ω·X′n/En))

and such spectral sequence are regular, so it suffices to show that the natural homomorphism

on E1 term is an isomorphism. Since the question is local, we may assume every scheme

here is affine, and E′ = Γ(S,OS), B = Γ(X ′n, OX′n), B′ = Γ(X ′′, OX′′), J
· = Γ(X ′n,J ·)
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(resp. J
′· = Γ(X ′′,J ′·)) , since J · (resp. J ′· ) are sheaves of quasicoherent OX′n (resp.

OX′′), we have

Ext·q(J ′·, ω·X′′/E′) ' Ext·q(J ′·, ω·B′/E′), Ext·q(J ·, ω·X/En) ' Ext·q(J ·, ω·B/En).

Since ω·B′/E′ ' ω·B/En ⊗En E
′, J ′· ' J · ⊗En E′ ' J · ⊗ω·

B/En
ω·B′/E′ , so we have the

following spectral sequences of graded modules

Ext·qωB′/E′ (Tor
ω·
B/En
·p (ω·B′/E′ , J

·), ω·B′/E′)⇒ Ext·lω·
B/En

(J ·, ω·B′/E′),

Tor
ω·
B/En
·q (TorEn·p (E′, ω·B/En), J ·)⇒ TorEn·l (E′, J ·),

here TorEnml (E
′, J ·) means the l-th derived functor of the tensor product of two complexes

E′, J · with shifted m degree, i.e., degree i of the first tensor degree m + i of the second.

The second one degenerates since ωB/En is flat over En; on the other hand, ω·X/En , ω·Y/En

and DY ′(X
′) is flat over En (by [19] Corollary 4.4) by assumption, so the first one also

degenerates, hence we get the desired isomorphism.

Step 3. Now we need to prove the claim for E1; to simplify the notation, we write

X ′, Y ′, instead of X ′1, Y
′

1 . We have the following commutative diagram

Extm,q(ω·Y ′/E1
, ω·X′/E1

)

��

+3 Extm+q
ω·
X′/E1

(ω·Y ′/E1
, ω·X′/E1

)

��

Extm,q(DY ′(X
′)⊗OX′ ω

·
X′/E1

, ω·X′/E1
) +3 Extm+q

ω·
X′/E1

(DY ′(X
′)⊗OX′ ω

·
X′/E1

, ω·X′/E1
)

The horizontal morphisms are Em,q1 term of two spectral sequences. Again, since the

two spectral sequences are regular, we claim that the corresponding homomorphism is

isomorphism at E2 term. For the top horizontal row, as in the construction of de Rham

cycle class, we see for q 6= j, Em,q1 = 0, for q = d, E·,j1 ' ω·Y ′/E1
[−j]. For the bottom Ep,q1 ,

take I ·· the injective resolution of ω·X′/E1
, we have

Homm(DY ′(X
′)⊗O′X ω

·
X′/E1

, I ·q) ' HomOX′ (DY ′(X
′), Im,q).

so to show that Extm,q(DY ′(X
′) ⊗OX′ ω

·
X′/E1

, ω·X′/E1
) = 0 for q 6= j, it suffices to show

that ExtqOX′
(DY ′(X

′), ωmX′/E) = 0, for q 6= j. Now since the question is local, use the same

notation as in Step 2, now assume the definning ideal J of Y ′ in X ′ is generated by the

regular sequence t1, . . . , tj , since there is a retraction C(p) = B/Jp → C = B/J , by [3] I 4.5.1

we have DB(J) ' C < t1, . . . , tj >. Then by [3] VI Lemma 3.2.5, C < t1, . . . , tj > is a free
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module over C[t1, . . . , tj ]/(t
p
1, . . . , t

p
j ) with basis consisting of t

[pq1]
1 . . . t

[pqj ]
j , with qi ≥ 0 (pqi-

th divided power of t). So ExtqB(DB(J), ωmB/E1
) '

∏
ExtqB(C[t1, . . . , tj ]/t

p
1, . . . , t

p
j , ω

m
B/E1

),

since tp1, . . . , t
p
j is regular and ωmB/E1

is flat over B, by [16] III Proposition 7.2 we have

ExtqB(C[t1, . . . , td]/t
p
1, . . . , t

p
d, ω

m
B/E1

) = 0

for q 6= j, hence we get the desired vanishing result.

Consider the complex

C ·t1...tj (ωX′/E1
)→ H·jY ′(ωX′/E1

)→ 0,

which is a resolution of ωX′/E1
. In order to use this resolution to compute these two spectral

sequences, it suffices to show that for q ≥ 1, each term of this resolution is annihilated by

the functor Ext·q(ωY ′/E1
, ·); this is done in the proof of Proposition 4.6. Combined with the

above results, that means both spectral sequences will degenerate at E2 term. To prove the

isomorphism at E2 term, it suffices to prove the following map of the associated complexes

E·,j1 : Hom·(ω·Y ′/E1
,H·jY ′(ω

·
X′/E1

))→ Hom·(DY ′(X
′)⊗OX′ ω

·
X′/E1

,H·jY ′(ω
·
X′/E1

))

is a quasi-isomorphism. It suffices to do it locally, using notations as above, that means it

suffices to show that

Hom·(ω·C/E1
, H ·jY ′(ω

·
B/E1

))→ Hom·(DB(J)⊗B ω·B/E1
, H ·jY ′(ω

·
B/E1

))

is a quasi-isomorphism.

The rest of the argument honestly follows from the argument in [3], so we skip the

computations and sketch the main point.

First, for all k, we have

Homk(DB(J)⊗B ω·B/E1
, H ·jY ′(ω

·
B/E1

))

' HomB(DB(J), Hj
Y ′(ω

·
B/E1

)) '
∏
q

HomB(C(p) · t[pq], Hj
y(ωkB/E1

)),

where q = (q1, · · · , qj) and t[pq] = t
[pq1]
1 · · · t[pqj ]d . Since we have

Hj
Y ′(ω

k
B/E1

) ' lim−→
l

ωkB/E1
/J (l) · ωkB/E1

,

where J is the defining ideal of Y ′ in X ′. Notice that we have a canonical inclusion

C(p) ⊗B ωkB/E1
= ωkB/E1

/J (p) · ωkB/E1
↪→ lim−→

n

ωkB/A/J
(n) · ωkB/E1

,
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we can choose retraction C → C(p), so we can view HomB(DB(J), Hd
Y (ωkB/E1

)) as a C

module, then since

HomB(DB(J), Hj
Y ′(ω

k
B/E1

)) ' HomB(DB(J), Hj
Y ′(B))⊗B ωkB/E1

,

for every ϕ ∈ HomB(DB(J), Hj
Y ′(ω

k
B/E1

)),

ϕ = Σm,ωam,ω · ψm ⊗ ω

where am,ω ∈ C,ω ∈ ωkB/E1
,ψm ∈ HomB(DB(J), Hj

Y ′(B)), for m = p · q′ + r,

ψm(t[pq]) =

{
0, if q 6= q′

(−1)|m|+|r| · ψr(1) = (−1)|m|+|r| · t[p−1−r], if q = q′.

From [3] II 5.2.4, there exists a canonical isomorphism

Hom·(DB(J)⊗B ω·B/E1
, H ·jY ′(ω

·
B/E1

)) ' Hom·(DB(J)⊗B ω·B/E1
, Hj

Y ′(B)⊗B ω·B/E1
)

' HomB(DB(J), Hj
Y ′(B))⊗B ω·B/E1

.

Under this isomorphism, the differential is taken in the following way

d(Σm,ωam,ω · ψm ⊗ ω) = Σm,ωam,ω · ψm ⊗ d(ω) + O(Σm,ωam,ω · ψm) ∧ ω,

where O is the homomorphism HomB(DB(J), Hd
Y (B))→ HomB(DB(J), Hd

Y (B))⊗B ω1
B/E1

induced from the connections on DB(J) and Hd
Y (B).

Choose yl ∈ C, l = 1, . . . , n − s such that dti, i = 1, . . . , s, dyl/yl form a basis of ω1
B/E1

,

by assumption we have d
dti

(amw) = 0. On the other hand, by the definition of connection

on HomB(DB(J), Hj
Y ′(B)), we have

O(
d

dyj
)(ψm)(t[pq]) =

d

dyj
(ψm)(t[pq]))− ψm(

d

dyj
(t[pq])).

Both terms on the right-hand sides are zero by the definition of ψm, so we have d
dyj

)(ψm) =

0. For ϕ =
∑

m am · ψm, by definition we have

O(ϕ) =
∑
i

O(
d

dti
)(ϕ)⊗ dti +

∑
j

O(
d

dyj
)(ϕ)⊗ dyj .

Combined with these results above, it is equal to∑
i

(
∑
m

am · ψm+1
i
)⊗ dti +

∑
j

(
∑
m

d

dyj
(am) · ψm)⊗ dyj .

Now write ω′1B/E1
the submodule of ω1

B/E1
generated by dyl/yl and Ω′′1B/E1

the submodule

of ω1
B/E1

generated by dti. Consider the complex

HomB(DB(J), Hd
Y ′(B))⊗B ω′iB/E1

⊗B Ω′′·B/E1
,

by [3] VI Lemma 3.2.10 (notice that Ω′′1B/E1
is the ordinary, not log differential), fix i,

the associated complex is acyclic on degree 6= d, its cohomology on degree d is isomorphic
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to ωiC/E1
. Because of such acyclicity result, the spectral sequence degenerates and is quasi-

isomorphic to HomB(DB(J), Hj
Y ′(B))⊗B ω·B/E1

.

Finally, in the construction of de Rham cycle class (see the beginning of the next section),

we have a quasi-isomorphism

ω·C/E1
[−j]→ Hom·(ω·C/E1

, H ·jY ′(ω
·
B/E1

))

which is defined by ω (∈ ωkC/E1
)→ ω∧dt1∧· · ·∧dtj/t1 · · · tj . Since the kernel of DB(J)→ C

consists of t[pq], for q 6= 0, consider the composition map

ω·C/E1
[−j]→ Hom·(ω·C/E1

, H ·jY ′(ω
·
B/E1

))→ Hom·(DB(J)⊗B ω·B/E1
, H ·jY ′(ω

·
B/E1

)),

ω → (−1)j · ψ0 ⊗ ω ∧ dt1/t1 ∧ · · · ∧ dtl/tl,

which is injective by definition. Combine this map and the map above (map back to

HomB(DB(J), Hd
Y ′(B))⊗B ω′iB/E1

, then to ω·C/E1
), the image of ω in the target is (−1)jω,

hence the surjectivity and the claim.

Recall that we have a spectral sequence

Em,q2 = Hm(X ′,Extqω·
X′/En

(ω·Y ′/En , ω
·
X′/En

))⇒ Extm+q
ω·
X′/En

(ω·Y ′/En , ω
·
X′/En

)),

Em,q2 = Hm(X ′,Extqω·
X′/En

(DY ′(X ′)⊗OX′ ω
·
X′/En

, ω·X′/En))⇒

Extm+q
ω·
X′/En

(DY (X)⊗OX ω
·
X/En

, ω·X/En).

So Theorem 4.2. is also true for Ext·ω·
X′/S

.

4.2 Crystalline cycle class

We follow the approach of [3] VI 3.1. Fix a base log DP-scheme (Vn,N), X×n , Y ×n

are vertical semistable schemes over (Vn,N) with exact closed immersion i : Y ×n ↪→ X×n .

So every closed point of Xn over Vn is defined by a regular sequence. So for a differential

complex of order less or equal than 1 which is quasicoherent and flat over OXn (e.g., ω·Xn/Vn),

[3] VI (1.5.6) still holds, that means, as in Section 2, denoted X l
n by the closed points of

relative dimension l, we have

∀i 6= l,H·,i
Xl
n/X

l+1
n

(ω·Xn/Vn) = 0.

In particular, we can form a cousin complex of ω·Xn/Vn , whose (p, q) term is

Hq,pXp,n/Xp+1,n
(ω·Xn/Vn) = HpXp,n/Xp+1,n

(ωqXn/Vn),

which is a resolution of ω·Xn/Vn .
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Again, since ω·Xn/Vn is flat over OXn , we have the isomorphism

H·,iYn(ω·Xn/Vn) ' HiYn(OXn)⊗ ω·Xn/Vn .

So now let IYn be the defining ideal sheaf of Yn in Xn, since IYn/I2
Yn

is locally free of

rank j we have the short exact sequence

0→ IYn/I2
Yn → ωXn/Vn ⊗OXn OYn → ωYn/Vn → 0,

which induces a map

ωiYn/Vn → ωi+jXn/Vn
⊗OXn (∧j(IYn/I2

Yn))∨ ' ExtjOXn (OYn , ω
i+j
Xn/Vn

)→ HjYn(ωi+jXn/Vn
).

The middle isomorphism comes from [16] III, 7.2 since Yn → Xn is a regular closed

immersion, and the last one comes from the canonical map of functors

HomOXn (OYn , ·)→ ΓYn .

So locally if we assume Yn is defined by a regular sequence t1, . . . , tj , taking Koszul resolution

of OXn , by [3] VI 3.1.3, the above map is given by ω → ω ∧ dt1∧···∧dtj
t1...tj

, where ω ∈ ωiYn/Vn .

Combined with the natural map

H·,jYn(ω·Xn/Vn) ' RΓ·Yn(ω·Xn/Vn)→ ω·Xn/Vn ,

where the first isomorphism comes from the fact H·,iYn(ω·Xn/Vn) = 0, ∀i 6= j, we get the de

Rham cycle class.

Using the generalization developed in the last section, now we can handle the cycle class

map in crystalline cohomology.

Proposition 4.12 ([3] VI Proposition 3.3.1)

Let i : Y ×n → X×n are two vertical semistable schemes over Vn such that i is an exact

closed immersion, assume these two schemes have both log smooth lifting Y ′×n , X ′×n over

En with exact closed immersion i′ : Y ′×n → X ′×n extending i, then for all q, there exists

canonical isomorphisms

ExtqOX/En
(icrys*(OYn/En),OXn/En) ' Extqω·

X′n/En
(ω·Y ′n/En , ω

·
X′n/En

)

Proof : Since icrys*(OY ′/En) is a crystal on (X ′n/En)log
crys (since it is an exact closed immer-

sion, it follows from classical case), it is defined by

icrys*(OYn/En)(Xn,X′n) = DYn,γ(X ′n)

where γ is the divided power equipped on En (so this notation means the DP-structure

of DYn,γ(X ′n) is compatible with the DP-structure of En), directly checking we see it is

isomorphic to DY ′n(X ′n), applying Theorem 4.11 we get the result.
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Corollary 4.13 ([3] VI Corollary 3.3.3) Let the assumption be as above , then

∀q < 2j, ExtqOXn/En
(icrys∗(OYn/En),OXn/En) = 0;

For q = 2j, Ext2jOXn/En
(icrys∗(OYn/En),OXn/En) '

Γ(Xn,Ext2jOXn/En
(icrys ∗(OYn/En),OXn/En)).

Proof : For the first vanishing result, by Proposition 4.6, we have (since the question is

local)

ExtqOXn/En
(icrys*(OYn/En),OXn/En) ' Extqω·

X′/En
(ω·Y ′n/En , ω

·
X′n/En

),

which is isomorphic to Hi−2j(ω·Yn/En).

The second result comes from the spectral sequence, since Ep,q2 = 0 for q < 2j, then

such spectral sequence degenerates and is isomorphic to the target at Ep,2j2 .

By the above corollary, especially the second result, locally for every lifting of Yn over

En, we can define the crystalline cycle class as the way we define de Rham cycle class and

try to glue them together. We summarize the result in the following theorem.

Theorem 4.14 ([3] VI Theorem 3.3.5) For Xn, Yn vertical semistable schemes with exact

closed immersions i : Yn ↪→ Xn of relative dimension j, there exists an unique cohomological

class

sYn/Xn ∈ Ext2jOXn/En
(icrys∗(OYn/En),OXn/En)

with the following properties: if U is open in Xn such that there exists a smooth lifting U ′,

V ′ and i′ : V ′ ↪→ U ′ lifting i, then the restriction of sYn/Xn in

Ext2dOUn/En
(icrys∗(OYn|U/En),OU/En) is identified by an isomorphism as the de Rham coho-

mology class of V ′ in U ′.

Proof : It suffices to check the gluing procedure. Let U ′′×, V ′′× be another log smooth

scheme over En lifting U×, V × and i′′ : V ′′× ↪→ U ′′× be the exact closed immersion lifting

i, since the problem is local, we may assume there exists an En-isomorphism σ : U ′× →

U ′′× inducing automorphism on V ′× → V ′′×, and by Proposition 4.4, we can form the

commutative diagram:

H0(ω·V ′/En)

'
��

' // Ext2j
ω·
U′/En

(ω·V ′/En , ω
·
U ′/En

)

'
��

H0(ω·V ′′/En) ' // Ext2j
ω·
U′′/En

(ω·V ′′/En , ω
·
U ′′/En

)

hence the existence.
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Then as in [3] VI 3.3.6, we can define the cohomology class as the image of sYn/Xn (by

abuse of notation) in the composition map

Ext2j
OXn/En

(icrys∗(OYn/En),OXn/En)→ Ext2j
OXn/En

(J [j]
Xn/En

,OXn/En)

' H2j(X×n /En,J
[j]
Xn/En

)

and from the above theorem, we can define i∗ : icrys∗(OYn/En)→ J [j]
Xn/En

[2j].

Taking global sections and using this isomorphism, one gets

i∗ : Hk(Y ×n /En,OYn/En)→ Hk+2j(X×n /En,J
[j]
Xn/En

).

From the definition, we have i∗(1) = sYn/Xn . On the other hand, by [3] VI Lemma

4.1.1, one has projection formula (the proof works for any topos so we can apply here): for

x ∈ H i(X×n /En,OXn/En), y ∈ H l(Y ×n /En,OYn/En), i∗(y · i∗(x)) = i∗(y) · x.

We also need intersection formula and the compatibility of cohomological class with

respect to Künneth morphism for later use.

Proposition 4.15 ([3] VI Theorem 4.3.12)

For X, Y , T , Z smooth or vertical semistable scheme with exact closed immersions

i : Y ↪→ X, j : T ↪→ Z and a Cartesian diagram:

T
g //

� _

j

��

Y � _

i
��

Z
f // X

where f and i are transverse. Then the canonical filtered homomorphism

f∗ : H i(X×n /En,OXn/En)→ H i(Z×n /En,OZn/En)

sends the cohomology class sYn/Xn to sTn/Zn.

Proof : It exactly follows from [3] VI Theorem 4.3.12 once one replaces linearization by

log linearization and Poincaré lemma by log Poincaré lemma. Let us follow the proof here.

Since both sides are sheaves, it suffices to work locally, namely, assume Xn, Yn, Tn, Zn

both have log smooth lifting X ′n, Y
′
n, T

′
n, Z

′
n over En, and T ′n = Y ′n×X′nZ

′
n, and Y ′n are defined

by a regular sequence t1, . . . , tj of OX′n , so T ′n are defined by a regular sequence t′1, . . . , t
′
j of

OZ′n , where t′i = f ′∗(ti).

So now we go back to the de Rham cycle class case. The canonical homomorphism

f ′∗(ω·X′n/En
) → ωZ′n/En induces the corresponding morphism between H ·dY ′n(ω·X′n/En

) and
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H ·dT ′n(ω·Z′n/En
) (C ·t1,...,td(ω

·
X′n/En

) and C ·t′1,...,t′j
(ω·Z′n/En

)). Now set K ·· = C ·t1,...,tj (ω
·
X′n/En

) →

H ·dY ′(ω
·
X′n/En

)→ 0 and K ′·· = C ·t′1,...,t′j
(ω·Z′n/En

)→ H ·dT ′n(ω·Z′n/En
)→ 0.

Since K ·· and K ′·· are resolutions of ω·X′n/En
, ω·Z′n/En

, respectively, and since the log

linearization functor is exact, if we denote K · and K ′· the simple complex associated to K ··

and K ′··, LX′n(K ·n) and LZ′n(K ′·n) are resolution of OX′n/En and OZ′n/En .

From [3] IV Proposition 2.5.3, the natural map f∗crys(OXn/En) → OZn/En induces the

following commutative diagram

OXn/En

��

// fRcrys∗(OZn/En)

��
LX′n(K ·) // fRcrys∗(LZ′n(K ′·))

(where Rcrys means the restricted crystalline site) which induces the following commutative

diagram:

A

��

// B

��
C // D

where

A =uXn/En∗(HomOXn/En (icrys(OYn/En), LX′n(K ·)[2j])),

B =uXn/En∗(Ext2d
OXn/En (icrys∗(OYn/En),OXn/En)),

C =uXn/En∗(HomOXn/En (icrys(OYn/En), fRcrys∗(LZ′n(K ·)[2j]))),

D =uXn/En∗(Ext2d
OXn/En (icrys∗(OYn/En), fRcrys∗(LZ′n(K ·)[2j])).

Since we have the canonical isomorphism

uXn/En∗(HomOXn/En (icrys(OYn/En), fRcrys∗(LZ′n(K ·)[2j])))

' f∗uZn/En∗((HomOZn/En (icrys(OTn/En), fRcrys∗(LZ′n(K ·)[2j])))).

Finally, we get a commutative diagram as above, this time

A =uXn/En∗(HomOXn/En (icrys∗(OYn/En), LX′n(K ·)[2j])),

B =f∗uZn/En∗(HomOZn/En (jcrys∗(OTn/En), fRcrys∗(LZ′n(K ·)[2j])),

C =uXn/En∗(Ext2d
OXn/En (icrys∗(OYn/En),OXn/En)),

D =f∗uZn/En∗(Ext2d
Zn,OZn/En (jcrys∗(OTn/En),OZn/En))).

By definition, the crystalline cycle class, for example, on the upper left corner, is the

class such that when evaluating on Xn, it is the de Rham cycle class, so it suffices to check



40

the upper arrow maps cycle class to cycle class. That means it suffices to check the following

diagram commutes:

f∗crys(icrys∗(OYn/En))

��

∼ // jcrys∗(OTn/En)

��
f∗crys(LX′n(K ·))[2j] // LX′n(K ′·)[2j]

Since each term of the above diagram is a crystal, it suffices to verify the case when

evaluation on Z ′n, which is the diagram

f ′∗(DY ′n(X ′n)) ∼ //

��

DT ′n(Z ′n)

��
f ′∗(DX′n/En

(1)⊗K ·) // DZ′n/En
(1)⊗K ′·

But the vertical arrows are corresponding to cycle class maps; it is given by the map

DT ′n(Z ′n)→ DZ′n/En
(1)⊗OT ′n → DZ′n/Rn

(1)⊗Hj
T ′n

(ωjZ′n/En
),

where OT ′n → Hj
T ′n

(ωjZ′n/En
) is given by 1 → dt1 ∧ · · · ∧ dtj/t1 · · · tj , the same for the other

one, hence it commutes.

By the above proposition and the projection formula, we have:

Proposition 4.16 ([3] VI Corollary 4.3.15)

Let notations be as above. Assume codimension of Y (resp. T ) in X (resp. Z) is j

(resp. j′), then in H2j+2j′(X×n /En,J
[j+j′]
Xn/En

), we have

sYn/Xn · sZn/Xn = sTn/Xn .

Proof : Now by definition, sYn/Xn = i∗(1) and sZn/Xn = j∗(1). So by projection formula,

we have i∗(1) · j∗(1) = i∗(1 · i∗(j∗(1))) = i∗(1 · i∗(sZn/Xn)) = i∗(j∗(1)) = sTn/Xn , as desired.

Proposition 4.17 ([4] VI Corollary 4.3.16)

Let X Y be two vertical semistable schemes and let X ′ (resp. Y ′) be two vertical

semistable subschemes of X (resp. Y ) of codimension j (resp. j′). Let Z ′ = X ′ ×V Y ′, if

we denote

kXn,Yn : H2j(X×n /En,OXn/En)⊗OEn H
2j′(Y ×n /En,OYn/En)

→ H2j+2j′(Z×n /En,OZn/En)

as the filtered map induced by Künneth morphism, then we have

kXn,Yn(sX′n/Xn ⊗ sY ′n/Yn) = sZ′n/Zn .
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Proof : Let us sketch the original proof in [3].

By the compatibility of Künneth product and cup product, kXn,Yn(sX′n/Xn ⊗ sY ′n/Yn) =

kXn,Yn((sX′n/Xn⊗1)(1⊗sY ′n/Yn)) = kXn,Yn(sX′n/Xn⊗1)·kX,nYn(1⊗sY ′n/Yn) = sX′′n/Zn ·sY ′′n /Zn ,

where X ′′ and Y ′′ are the inverse image of X ′ and Y ′ in Z, so by Proposition 4.7, it is equal

to sZ′n/Zn .

For the convenience of the readers, we sketch the proof of the compatibility of Künneth

product and cup product. Now we have the commutative diagram

Zn = X×n ×En Y ×n
pr2 //

pr1
��

Y ×n

g

��
X×n

f // En

In the complex level, the Künneth morphism is given by the morphism

Rfcrys*(OXn/En)⊗LOEn Rgcrys∗(OYn/En)

→ Rhcrys∗(Lpr
∗
1crys(OXn/En)⊗LOEn Lpr

∗
2crys(OYn/En)),

where h is the canonical morphism from Zn to En. By adjunction, it suffices to define

Lh∗crys(Rfcrys*(OXn/En)⊗LOEn Rgcrys∗(OYn/En))

→ Lpr∗1crys(OXn/En)⊗LOEn Lpr
∗
2crys(OYn/En).

So the existence of such morphism comes from the canonical isomorphism

Lh∗crys(Rfcrys*(OXn/En)⊗LOEn Rgcrys∗(OYn/En))

' Lh∗crys(Rpr1crys*(OXn/En))⊗LOEn Lh
∗
crys(Rpr2crys∗(OYn/En))

and the canonical morphisms

Lh∗crys(Rfcrys*(OXn/En)) ' Lp∗crys(Lf
∗
crys(Rfcrys*(OXn/En)))→ Lp∗crys(OXn/En),

while the cup product is defined by the following morphism:

Rfcrys*(OXn/En)⊗LOEn Rfcrys*(OXn/En)→ Rfcrys*(OXn/En ⊗OEn OXn/En),

which commutes with the above operations, hence the proof.
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4.3 Another characterization of direct image

Now we turn back to the case H i(X×n /En,OXn/En), where X× is a log smooth scheme of

Cartier type over (V,N). As shown in the beginning, this cohomology has Poincaré duality.

For Y × another log smooth scheme of Cartier type over (V,N) with exact closed immersion

i : Y × ↪→ X× of codimension j, one can also define the direct image map

i∗ : H l(Y ×n /En,OYn/En)→ H l+2j(X×n /En,J
[j]
Xn/En

)

as the adjoint dual of i∗ with respect to Poincaré duality. In this section, we want to show

the two definitions coincide. It suffices to show that:

Proposition 4.18 ([3] VII Proposition 2.3.1)

Assme X× and Y × are vertical semistable schemes. Let m be the dimension of X1, then

we have the following diagram

H2d−2j(Y ×
n /En,OYn/En

)

Trg ))SSSSSSSSSSSSSSS

GY/X // H2d(X×
n /En,J [j]

Xn/En
)

Trfuullllllllllllll

En[−2d+ 2j]

Proof : Once this proposition is proved, then the claim follows from [3] VII Corollary 2.3.2,

i.e., i∗ is the adjoint of i∗ with respect to Poincaré duality.

First we show that there is a commutative diagram

Hd−j(Y ×
n /En,Hd−j

Y d−j
n

(OYn/En
))

��

G′Y/X // Hd(X×
n /En,Hd

Xd
n
(OXn/En

))

��
H2d−2j(Y ×

n /En,OYn/En
)

GY/X // H2d(X×
n /En,OXn/En

)

By [27] Proposition 7.6, H∗
Y d−jn

(OYn/En) is a crystal of OYn/En module. On the other hand,

by the definition of icrys∗ (resp. iRcrys∗), it commutes with Γ
Y d−jn

. SoRΓ
Y d−jn

(iRcrys∗(OYn/En)) '

iRcrys*(Hd−j
Y d−jn

(OYn/En))[−d + j]. Then G′Y/X is defined as applying the fucntor RΓ
Y d−jn

on the Gysin map iRcrys∗(OYn/En)[−2j] → OXn/En , and compose with the natural map

Hm
Y d−jn

(OXn/En) ↪→ Hd
Xd
n
(OXn/En).

The vertical lines are surjective (recall how we construct Cousin complex of OXn/En in

Proposition 2.2) And since it suffices to show it locally, for y ∈ Y , that means it suffices to

show that the following diagram is commutative:

Hd−j(Y ×
n /En,Hd−j

y (OYn/En
))

Resg,y
&&MMMMMMMMMMM

// Hd(X×
n /En,Hd−j

y (OXn/En
))

Resf,yxxrrrrrrrrrrr

En
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Since the problem is local, we assume there exists smooth lifting X ′×n , Y
′×
n of X×, Y ×

over En (with canonical map f ′, g′) and i′ : Y ′×n ↪→ X ′×n an exact regular closed immersion

extending i, defined by a regular sequennce t1, · · · , tj , and y′ ∈ OY ′n is a point lying over y

so the above diagram is equivalent to the following one

Hd−j
y′ (ωd−jY ′n/En

)

Trg′,y′ %%KKKKKKKKKK
// Hd

y′(ω
j
X′n/En

)

Trf ′,y′yytttttttttt

En

Working on the Zariski site, assume tj+1, . . . , td be a regular sequence generating the

maximal ideal of OY ′n,y′ , recall

Hd−j
y′ (ωd−jY ′n/En

) ' lim
→
ωd−jY ′n/En,y

/tkj+1 · · · tkd,

then

G′Y ′/X′(ω/t
k
j+1 · · · tkd) =

dt1 ∧ · · · ∧ dtj ∧ ω′

t1 · · · tj · tkj+1 · · · tkd
,

where ω′ is any lifting of ω ∈ ωjX′n/En
. On the other hand, using the trick as in Lemma

2.2, since we work Zariski locally, we may assume we have a log smooth lifting of X ′n on

(En[t],N) (where the log structure is given by 1→ t and the map En[t]→ En is given by

t→ u), denoted X ′′× as the log scheme such that the underlying scheme is smooth over En

(with trivial log structure) through the naive map En → En[t]. We may assume there is a

lifting Y ′′× of Y ′× which is log smooth over (En[t],N) such that the underlying scheme is

smooth over En and we have an exact closed immersion i′′ : Y ′′× ↪→ X ′′× (and let y′′ ∈ Y ′′n
a point lying over y′). So we go back to classical case ([3] VII Lemma 1.2.5); we have the

following commutative diagram:

Hd−j+1
y′′ (Ωd−j+1

Y ′′n /En
)

Trg′′,y′′ &&MMMMMMMMMMM
// Hd+1

y′′ (Ωd+1
X′′n/En

)

Trf ′′,y′′yyrrrrrrrrrrr

En

But, again in the proof of Poincaré duality, we get a map

Trs,y′ : Hd
y′(ω

d
X′n/En

)→ Hd+1
y′′ (Ωd+1

X′′n/En
),

ω

tj+1 . . . td
→ dt ∧ ω′′

(t− a) · tj+1 . . . td
,

where we denote s : X ′n ↪→ X ′′n the corresponding closed immersion. By the transitivity

of trace map, we have Trs,y′ ◦ Trf ′′,y′′ = Trf ′,y′ ; similar results hold on Yn side, hence the

compatibility.



CHAPTER 5

GROTHENDIECK-RIEMANN-ROCH

THEOREM AND UNIQUENESS

CRITIERION

Again, since log crystalline cohomology is invariant under log blow-up, we may assume

X is vertical semistable. Here we follow [15] II to give a proof about Grothendieck-Riemann-

Roch theorem without denominators.

We divide into 2 cases :

(1) N a locally free sheaf on Yn, Xn is P(N ⊕OYn) and i is the inclusion of Yn as the

zero section. In this case, we will show that cj(i∗(OYn)) = (−1)j−1(j − 1)!i∗(1Yn). Once

this is proved, by [15], Corollary 1.2.8, using projection formula in K-theory, we will have

the same formula in case (2) below.

(2) i is an arbitrary closed immersion. In this case, we want to show that, for ξ ∈

F qγK0(Y ),

If q > 0, cq+j(i∗(ξ)) = (−1)d
(q + j − 1)!

(q − 1)!
i∗(cqξ)),

If q = 0, cj(i∗(ξ)) = (−1)j−1(j − 1)!ε(ξ)l∗(1Yn).

For the definition of i, see case 1 and case 2 below, and ε(ξ) means the rank of ξ.

(Case 1) Denote π : Xn → Yn the projection. We have the standard exact sequence

0→ H→ π∗N ⊕OXn → OXn(1)→ 0. (5.1)

Over V(N) the composite map H → π∗N ⊕ OXn → π∗N is an isomorphism. So the

zero section i(Yn) defined by the ideal which is the image of the composite map H →

π∗N ⊕OXn → OXn . So i∗(OYn) has Koszul resolution

0→ ΛdH → · · · → H → OXn → i∗OYn → 0. (5.2)

From (5.1) we have c(H)(1 + ζ) = π∗c(N) (where ζ = csyn
1 (OXn(1))) by the additivity

of Chern class. So we have

cj(H) = (−1)jc0(N)ζj + (−1)j−1c1(N)ζj−1 + · · ·+ (−1)cj−1(N)ζ + cj(N)
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(Instead of writing π∗ci(N), we just write ci(N) for simplicity). By the additivity of

Chern classes again, from (5.2) we can rewrite the right-hand side as

cj(i∗OYn) = −(j − 1)!Σj
s=0(−1)j−scs(N)ζj−s. (5.3)

By projective bundle formula of crystalline Chern class, in H2∗(X×n /En,J
[∗]
Xn/En

) we can

write

i∗(1Yn) = Σj
s=0αj−sζ

s.

By (5.3) in order to get desired equality, we need to show

αj−s = (−1)j−scj−s. (5.4)

We will prove this by induction on l = j − s. Since 1Yn = π∗i∗(1Yn) = α0π∗(ζ
d) , now

we claim π∗(ζ
d) = 1Y , so α0π∗(ζ

d) equal to α0 · 1Yn . Observe that we have the following

commutative diagram:

Yn
i
↪→ Xn

π→ Yn,

where π ◦ i = 1Y . Since locally i is the map Xn ↪→ Pd ×V Xn crystalline cycle class can be

defined locally (Theorem 4.14), we can see that i∗(1Yn) = ζd, so π∗(ζ
d) = π∗(i∗(1Yn)) = 1Yn ,

hence the result.

So α0 = 1Yn . Assume αl = (−1)lcl(N) for all l < k , where k > 0. Since cj(H)ζ l = 0 by

dimension reason, we have

ζj+l − c1(N)ζj+k−1 + · · ·+ (−1)j−1cj−1(N)ζk+1 + (−1)jcj(N)ζk = 0.

So i∗(1Yn)ζk = i∗(1Yn)ζ l − cd(H)ζk, which is equal to

i∗(1Yn)ζk = Σj
i=0(αl − (−1)lcl(N))ζj+k−l.

Again, applying π∗, by the induction hypothesis and projection formula, we have

π∗(i∗(1Yn)ζk) = αk − (−1)kcl(N).

But the left-hand side is equal to π∗i∗(i
∗(ζk)) = i∗(ζk) = [(c1(i∗OXn(1)))k] = [(c1(OYn))k] =

0, hence the result.

Now we turn to the general case. For ξ ∈ FiljγK
0(Yn), first we assume q ≥ 1. By

the projection formula of crystalline cohomology, we have i∗(cq(ξ)) = i∗i
∗π∗(cq(ξ)) =

π∗(cq(ξ))i∗(1Yn) = cq(π
∗(ξ))i∗(1Yn), so we have

(−1)j
(q + j − 1)!

(q − 1)!
i∗(cq(ξ)) = − (q + j − 1)!

(q − 1)!(d− 1)!
cq(π

∗(ξ)) · (−1)j−1(d− 1)!i∗(1Yn)

= − (q + j − 1)!

(q − 1)!(d− 1)!
cq(π

∗(ξ)) · cj(i∗(O)Yn)

by the above results. By the projection formula for K-theory, we have cq+j(i∗(ξ)) =

cq+j(π
∗(ξ) · i∗(O)Yn). Notice that cl(π

∗(ξ)) = 0 for 1 ≤ l ≤ q − 1 since π∗ξ ∈ FiljγK
0(Xn).
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On the other hand, by the Koszul resolution of i∗(OYn), we also know cl(i∗(OYn)) = 0

for 1 ≤ l ≤ j − 1, combined with these two results, since the total Chern class map is a

homomorphism of λ-rings, we have

cq+j(π
∗(ξ) · i∗(OYn)) = − (q + j − 1)!

(q − 1)!(d− 1)!
cq(π

∗(ξ)) · cj(i∗(OYn))

= (−1)j
(q + j − 1)!

(q − 1)!
i∗(cq(ξ)),

hence the result. For q = 0, write ξ = ε(ξ) · OYn + ξ′, where ξ′ ∈ Fil1γK
0(Yn), the same

reason as above, we have cj(i∗(ξ)) = cj(ε(ξ)i∗(OYn)) = ε(ξ)cj(i∗(OYn)), so it follows from

the case ξ = OYn .

(Case 2) Blow up Xn ×P1 along Yn ×∞ to obtain a scheme W . We have

(1) W is flat over P1.

(2) The fiber Wt is, for t 6= ∞, isomorphic to Xn and W∞ = N̂ ∪ X̃n where N̂ =

P(N ⊕OYn), N = I/I2, and X̃ is the blow up of Xn along Yn. Both scheme theoretically

and set theoretically N̂ ∩ X̃n = P(N), hence N̂ and X̃n meet transversely.

(3) As divisors on W , W∞ = N̂ + X̃n. So W0 is linearly equivalent to N̂ + X̃n.

(4) W ′ = W − X̃n is vertical semistable over P1 (i.e., Zariski locally the spectrum of W ′

is isomorphic to A[t1, . . . , ts]/t1 . . . tu−π, where A is the spectrum of the affine open subset

of P1).

Notice that the above properties hold for smooth case (where W ′ is smooth over P1

in that case), since the assertion is local, étale locally the coordinate ring of X is isomor-

phic to Vn[x1, . . . , xd]/x1 · · ·xs − π, so we can first check the assertion on Vn[x1, . . . , xd],

and then base change to Vn[x1, . . . , xd]/x1 · · ·xs − π; in this case, the blow up proce-

dure commutes with this base change since the center of blow-up are not zero divisors

of Vn[x1, . . . , xd]/x1 · · ·xs − π.

Consider the commutative diagram :

Yn� _

l∞
��

� � s // N̂� _

k

��
Yn ×P1 � � f // W

��
r

$$IIIIIIIIII

Yn ×P1

g

��

� � j // Xn ×P1

p

��

q // Xn

λ0

ii

Y P1

where λ0 identifies X with W and thus r ◦ λ0 = idX . The upper square, in which s is the

inclusion of Y as the zero section of N̂ , is Cartesian.
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Denote ξ ∈ K0(Yn). We wish to compute cj(i∗(ξ)) in terms of i∗(cj(ξ)).

Claim : i∗(ξ) = λ∗0f∗g
∗(ξ). (5.5)

Proof : Consider the diagram

Yn ×P1 � � f // W

Yn
?�

l0

OO

� � i // Xn
?�

λ0

OO

Since f and λ0 are transverse, by [4] IV 3.1.1, i.e., the corresponding theorem of

Proposition 4.15 in K-theory, λ∗0f∗ = i∗l
∗
0, since g ◦ l0 = idYn , hence the claim.

So we have

cj(i∗(ξ)) = cj(λ
∗
0f∗g

∗(ξ)) = λ∗0cj(f∗g
∗(ξ)). (5.6)

On the other hand, let t ∈ H∗(X×n /En,OXn/En). Then λ∗0(t) = r∗λ0∗λ
∗
0(t) = r∗[t ·

λ0∗(1X)] by projection formula (in log crystalline cohomology). Combined with the above

result, we have

cj(i∗(ξ)) = r∗(cj(f∗g
∗(ξ)) · λ0∗(1X)). (5.7)

Consider the Cartesian diagram

Xn

λ0

((∼
// W0

��

� � // W

w

��
{0} cl // P1

(5.8)

By Proposition 4.15. we have λ0∗(1Xn) = w∗(cl∗({0})) . For P1, the de Rham cycle class

and Chern class coincide (the result comes from the local characterization of de Rham cycle

class). As w∗(O{0}) = OW0 , we find λ0∗(1Xn) = c1(OW0). Since W0 is linearly equivalent

to N̂ + Ŷn, we have

c1(OW0) = c1(ON̂ ) + c1(OX̃n). (5.9)

Claim : cj(f∗g
∗(ξ)) · c1(OX̃n) = 0. (5.10)

Proof : Since

cj(f∗g
∗(ξ)) ∈ Im[H2j

Yn×P1(W×/En,J [j]
W/En

)→ H2j(W/En,J [j]
W/En

)]

(For the theory of log-crystalline cohomology with support is exactly parallel with that

of crystalline cohomology, see [27] Section 6) and

c1(OX̃n) ∈ Im[H2
X̃n

(W×/En,J [1]
W/En

)→ H2(W×/En,J [1]
W/En

)].

So the product is supported on Yn ×P1 ∩ X̃n = ∅, hence the result.
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In sum, we have

cj(i∗(ξ)) = r∗[cj(f∗g
∗(ξ)) · c1(ON̂ )]. (5.11)

Claim : cj(f∗g
∗(ξ)) · c1(ON̂ ) = k∗k

∗cj(f∗g
∗(ξ)). (5.12)

Proof : Take a ∈ H2j
Yn×P1(W×/En,J [j]

W/En
) such that its image in H2j(W×/En,J [j]

W/En
) is

cj(f∗g
∗(ξ)). Since W ′ contains Yn ×P1, we have

H2j
Yn×P1(W×/En,OW/En) ' H2j

Yn×P1(W ′×/En,OW ′/En),

and N̂ ∩Yn×P1 = V(N), we can identify a · c1(ON̂ ) with a · c1(OV(N)) under the above

isomorphism. Consider the Cartesian diagram

V(N)

��

� � k′ // W ′

��
Xn × {∞} � � µ∞ // Xn ×P1

(5.13)

Since the cycle class µ∞∗(1Xn×{∞}) is induced from∞ ↪→ P1, in this case, we know it is

compatible with de Rham/crystalline Chern class, so we have µ∞∗(1Xn×{∞}) = c1(OXn×{∞}).

So by transversality of de Rham cycle class, we have k′∗(1V(N)) = c1(OV(N)). But k∗(1N̂ ) re-

stricts to k′∗(1V(N)), so a·c1(ON̂ ) = a·c1(OV(N)) in H2j
Y×P1(W×/En,J [j]

W/En
). So cj(f∗g

∗(ξ))·

c1(ON̂ ) = cj(f∗g
∗(ξ)) · k∗(1N̂ ) = k∗k

∗(cj(f∗g
∗(ξ))) by the projection formula, hence the

result.

Moreover, since f and k are transverse, we have s∗l
∗
∞ = k∗f∗ (in K0(N̂)). Combined

with (5.11) and (5.12) we have

cj(i∗(ξ)) = r∗k∗cj(s∗(ξ)). (5.14)

Finally, combined with the fact that r ◦ k ◦ s = i, but for i∗ we can use the result from

Case 1 and get the desired result. (The argument also shows that cl(i∗(ξ)) = 0 for l < j,

then replaced cj(ξ) by cl(ξ) in the above argument).

Now Following [15] II 1.4, here we explain how to derived a form in the proof of

Proposition 3.6 from the information we have.

Let notation be as the above, denoted p : N̂ = P(N ⊕ OYn) → Yn be the projection

map, and then for a vector bundle F on Y we set P (F,N) = p∗(
∏
c(
∧iH ⊗ p∗F )(−1)i).

First we observe that by Koszul resolution in (Case 1) we have

c(i∗F ) = i∗(P (F,N)).

Notice that we can use splitting principle to check P (F,N) is divisible by cj(H), by

the relation in (Case 1) (5.1), we see i∗cj(H) = [OYn ], hence the degree l − j part on the
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right-hand side corresponds to cl(F ); for the general case, in (Case 2) (5.14), working on

total Chern class, applying the result above, we get the desired result.

5.1 Uniqueness of p-adic period morphism

For the rest of the article, we try to compare the construction here with other people; as

mentioned in the beginning there are comparison isomorphisms constructed by Beilinson-

Bhatt, Breuil-Tsuji, and Faltings; now we recall the uniqueness criteria of [25], Theorem

3.1:

Theorem 5.1 Let the assumption be the same as in Theorem 3.4, there is a unique mor-

phism (up to inverting the Bott element)

Filb(Ha(X×n /En,OXn/En)⊗En Acrys,n)→ Ha
ét(XK̄ ,Z/p

n)⊗ Filb(Acrys,n)

making the following diagram commutes :

F bγKa(XV̄ ; Z/pn)
' //

c̄syn
b,2b−a

��

F bγKa(XK̄ ; Z/pn)

c̄ét
b,2b−a

��
Filb(Ha(X×n /En,OXn/En)⊗En Acrys,n) // Ha

ét(XK̄ ,Z/p
n)⊗ Filb(Acrys,n)

Proof : By the construction of Chapter 3, the bottom horizontal map is exactly the inverse

map of the comparison map we constructed in Chapter 3.

So in order to show other comparison morphisms are inverse to ours, it suffices to show

that they fit into the above diagram, by splitting principle, it suffices to show that they

sends zeroth and first crystalline (syntomic) Chern class to zeroth and first étale Chern

class.

For the first one, keep the hypothesis of Theorem 3.4 and now assume V is unramified

extension of Zp, in [8] 3.2.4.4, Breuil showed that the natural map

Ha(Xn,V̄ ,Sn(b)X×
V̄

)→ (Ha(X×
n,V̄

/En, ,OXn/En)⊗En Âst,n)N=0,φb=1

is an isomorphism. Then use Tsuji’s result [28] Theorem 5.1, the source is isomorphic to

Ha
ét(XK̄ ,Z/p

n(b)); so that means it suffices to show that Tsuji’s construction sends syntomic

Chern class to étale Chern classes; for Tsuji’s construction, since in [26] Proposition 3.2.4

(3) and [28] Proposition 2.11, Tsuji also showed that his construction maps first syntomic

Chern class to first étale Chern class, and by the construction of [26] 2.2, the construction of

syntomic Chern class is compatible with crystalline Chern class, and in the line bundle case
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crystalline Chern class can be defined using Gysin map, so by the Grothendieck-Riemann-

Roch formula the construction coincides the K-theoretic definition here, hence the result.

For Faltings and Bhatt, using different ways unconditionally they both constructs

Ha(X×n /En,OXn/En)⊗En Acrys,n → Ha
ét(XK̄ ,Z/p

n)⊗Acrys,n

(again, the Galois action on log crystalline cohomology needed to be twisted as we did in

Section 3) which admits an inverse up to βd. Their construction also maps crystalline Chern

class to étale Chern class ([1] p.47, [11] p.252), hence are the same, i.e., the inverse map of

the K-theory map.

Notice that after taking inverse limit and tensoring Q, the construction here goes back

to Nizio l’s construction in [24], now we try to compare it with Beilinson’s construction,

which is also rational. Finally we notice that in [2] it is already shown it sends de Rham

cycle class to crystalline cycle class ([3] p.16), so it suffices to show that Beilinsion’s map

sends crystalline Chern class to de Rham cycle class, and the result comes from [6] since

the inclusion of Acrys ↪→ AdR is the natural inclusion. In sum, we have the following:

Theorem 5.2 The same hypothesis as the above, the p-adic period isomorphism constructed

by Beilinson [1] and Nizio l [24] are inverse to each other.
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