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ABSTRACT

This dissertation presents two validation/uncertainty quantification (VUQ) studies,

one on the 1.5 MWth coal fired furnace (L1500) and the other on the Reacting Particle and

Boundary Layer (RPBL) char oxidation model. A six-step methodology is used in both

cases.

In Chapters 2 and 3, the VUQ for the L1500 furnace is presented; the quantities of

interest (QOIs) are the heat removal by the cooling tubes and the wall temperature. In

Chapter 2, the Arches simulation of the L1500 base case is described in detail. From the

simulation, two models that impact the QOIs are selected for further analysis, the ash

deposition model and the char oxidation model. An input and uncertainty (I/U) map

is created from the parameters in these models and a sensitivity analysis is performed

with the five parameters that have the greatest impact on the QOIs. From the sensitivity

analysis, two parameters (thermal conductivity of the deposit and wall emissivity) are

chosen for the next steps in the VUQ cycle. In Chapter 3, an updated version of the I/U

map with two additional parameters, the coal feed rate and the swirl factor (this factor

varies the tangential component of the velocity), is presented. The thermal conductivity

of the deposit and wall emissivity are combined into one parameter, the effective thermal

conductivity. These three active parameters are then used in the consistency analysis. The

experimental uncertainty of the QOIs is estimated by adding the sampling and the system-

atic errors. Data collection for the simulation is done with 34 cases obtained by varying

the three active parameters. For each experimental QOI, a Gaussian process (GP) surrogate

model is built from the set of simulation data. The consistency analysis is performed with

the GP surrogate models and the QOIs with their estimated uncertainties; consistency is

achieved. Chapter 3 concludes with recommendations for reducing the uncertainty in the

experimental measurements and a review of model assumptions.

In Chapters 4 and 5, the VUQ for the RPBL model is presented; the QOIs are the particle

temperature and velocity. In Chapter 4, the RPBL model formulation and the associated



I/U map are given. One case is presented and explained in detail. A sensitivity analysis

with nine parameters from the I/U map is performed, and five parameters (dp, φinitial , Yc,

εp, and rin f
rp

) are selected for the next steps. In Chapter 5, the priorities of the parameters

in the I/U map are updated using the results from sensitivity analysis. To compute the

experimental uncertainty associated with the QOIs, the main contribution is assumed

to be the sampling error. The RPBL model is run with the five parameters to produce

simulation data. A polynomial chaos (PC) surrogate model is built for the set of simulation

data corresponding to each experimental QOI. The consistency analysis is performed with

the PC surrogate models and the QOIs with their estimated uncertainties. Consistency

is found for three different types of char and six different particle size ranges in two O2

environments, each with 6-14 QOIs. To conclude, Chapter 5 reviews the experimental

measurements, analyzes what is learned about the parameters in the consistency analysis,

and revisits the assumptions made in the RPBL formulation.
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CHAPTER 1

INTRODUCTION

The work described in this dissertation is part of the University of Utah’s Carbon

Capture Multidisciplinary Simulation Center (CCMSC). The main objective of CCMSC is

to use verification, validation, and uncertainty quantification (VVUQ) tools to accelerate

deployment of low-cost, low-emission, coal-fired power generation technologies such as

Ultra Super Critical (USC) and Advanced Ultra Super Critical (AUSC) boilers. To reach

this goal, we must achieve simultaneous consistency with simulation and experimental

data set across a range of scales that encompass the principal physics components of these

types of industrial boilers including large eddy simulations, multiphase flow, particle

combustion, and radiation. We are specifically computing consistency for the quantities

of interest (QOIs) in the industrial scale system(s), which are incident heat flux and tube

mid-wall temperature. This hierarchical validation approach for our application is pre-

sented in Figure 1.1. There are four scales represented in the hierarchy: bench, burner,

pilot, and industrial. The work presented in this dissertation focuses on two bricks in the

hierarchy: the 1.5 MWth oxy-coal furnace brick in the burner-scale validation level and the

char oxidation brick in the bench-scale validation level.

The 1.5 MWth oxy-coal furnace is included in the hierarchical validation for two rea-

sons. First, most of the physical phenomena present in a real boiler are also present in

this furnace. Second, this furnace is located at the University of Utah and is managed

by the CCMSC experimental group. As a result, I was able to obtain detailed informa-

tion related to the design and operating conditions. Char oxidation is included because

CCMSC researchers have performed sensitivity analysis to find what phenomena have

more influence on the QOIs, and char oxidation is one of those phenomena. It is a slow

process that takes place in the entire domain of a coal-fired boiler. An accurate computation

of char oxidation in the entire computational domain is required to predict the particle
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temperatures (needed for radiative heat flux calculations) and the particle reaction rate.

1.1 Validation and uncertainty quantification methodology
My research program uses a validation and uncertainty quantification (VUQ) method-

ology based on the six-step Simulator Assessment and Validation Engine (SAVE) frame-

work [6] coupled with a bound-to-bound consistency analysis [75, 77] to compare experi-

mental data with simulations output at two different scales. The steps of this methodology

are selection of the QOIs, construction of an input and uncertainty map, collection of

experimental and simulation data, construction of surrogate models, consistency analysis

of model output and feedback and/or feed-forward. I applied this methodology to the

L1500 furnace and to a char oxidation model.

In this VUQ methodology, the experimental data are assumed to be the true values.

However, these values have uncertainty ranges that are often overlooked. In this disserta-

tion, I present methodologies for estimating the error in the experimental data, which can

then be used in the consistency analysis.

1.2 L1500 furnace
The 1.5 MWth oxy-coal furnace or L1500 furnace is located at the University of Utah’s

Industrial Combustion and Gasification Research Facility [28, 42]. A photo of the furnace is

presented in Figure 1.2. The L1500 furnace has a low-NOx burner in which the tangential

component of the gas velocity (swirl) can be varied. The burner can be operated in air-

fired or oxy-fired modes. In oxy-fired mode, the gas composition of the oxidant stream

is determined by the relative flow rates of recycled flue gas and pure oxygen (O2). The

furnace is controlled using an OPTO 22 system; all of the operating conditions and most of

the measurements are saved every 1 s. Detailed measurements of gas phase species such

as O2, CO2, CO, NOx, and SO2 are made along the length of the furnace and at the furnace

exit. Measurements related to heat flux include heat removal by cooling tubes, heat flux

measured by narrow-angle radiometers, and wall temperatures.

I simulated the L1500 furnace with Arches, a component of the Uintah software suite

[48]. Uintah is a framework for solving partial differential equations on structured grids

using hundreds to thousands of processors. In Arches, the turbulent flow is resolved



3

by the Navier-Stokes equations [66–68, 71, 82] using a large eddy simulation (LES) ap-

proach. The direct quadrature method of moments (DQMOM) [25] is used to modeled

the solid (coal) phase. Char oxidation and devolatilization models provide the particle

contributions to the gas phase. An ash deposition model computes the effects of ash

deposition on heat transfer. Gas composition and temperature are computed with an

equilibrium approach. All Arches simulations described in this dissertation employ the

discrete ordinates method [59] to compute radiation.

1.3 Char oxidation
The reaction process of a coal particle is shown schematically in Figure 1.3. The reaction

process begins when a coal particle is injected into a hot gas environment in the presence

of an oxidizer (O2, H2, etc.). As the particle is heated by the gas, the moisture of the particle

is evaporated (drying). The particle continues heating up, releasing the volatile material

in the particle (devolatilization) [24, 41, 54, 73, 77]. After devolatilization is completed, the

remaining solid is known as char. The amount of char depends on the coal and on environ-

mental conditions such as heating rate and gas temperature. The last stage of the reaction

process is char oxidation [18, 31, 34, 35, 80]. The reaction process ends when all the carbon

has reacted and the only solid material left in the particle is ash.

I initially chose the Surface Kinetics in Porous Particles (SKIPPY) model [3, 31] and

the set of experimental data collected by Hecht [34] to perform a VUQ study for char

oxidation. However, I found that the assumption in SKIPPY of a steady state particle was

not adequate when comparing with the set of experimental data. Hence, using SKIPPY as

the starting point, I developed the transient RPBL model (described in this dissertation)

that accounts for changes in physical properties with burnout and has a time-dependent

boundary condition.

1.4 Research objectives
This dissertation addresses the following research objectives:

• Perform a VUQ analysis on the 1.5 MW (L1500) oxy-coal furnace using the Arches

simulation tool for the combustion simulations and experimental data collected dur-

ing the February 2015 experimental campaign.
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• Develop a char oxidation model that computes the transient-state conditions for a

spherical, reacting, porous particle and its reacting boundary layer.

• Perform a VUQ analysis of the char oxidation model using experimental data from

Sandia National Laboratories [34].

1.5 Overview and organization of this dissertation
I applied the six-step VUQ methodology at two scales, burner scale (L1500 furnace) and

bench-scale (RPBL char oxidation model). The results I obtained are presented as Chapters

2 through 5.

In Chapters 2 and 3, I report the L1500 furnace results. In Chapter 2, I provide detailed

information about a simulation of the L1500 using Arches. I also present a sensitivity

analysis of five parameters selected from the ash deposition and char oxidation models

on three different types of QOIs: heat removal by cooling tubes, wall temperatures, and

incident heat flux as measured by narrow angle radiometers. These QOIs are related to

the system QOIs of incident heat flux and tube mid-wall temperature. Using the sensi-

tivity indices, I select the two most sensitive parameters, the deposit thermal conductivity

(kdeposit) and deposit emissivity (εw). In Chapter 3, I complete the VUQ cycle with the

four remaining steps. I also explain how the uncertainty was computed for two types

of experimental measurements (wall temperature and heat removal). Using Gaussian

response surfaces to construct surrogate models, I perform the consistency analysis. After

reviewing the analysis, I give recommendations for improving the simulation tool and

the experimental data collection. In Chapters 4 and 5, I report the results from the char

oxidation model. In Chapter 4, I introduce the RPBL model, the transient char oxidation

model that I developed. I describe in detail all the equations used in the model and present

the results from applying the model to a specific case. I also perform a sensitivity analysis

on nine parameters with respect to particle temperature and velocity and select five of

these parameters for the consistency analysis. In Chapter 5, I describe the experimental

data set for particle temperature and velocity collected by Hecht [34] in an entrained

flow reactor at Sandia National Laboratories and calculate the uncertainty in the data.

I also present an Arches simulation of the Sandia reactor from which I obtain bulk gas

profiles for use as the boundary conditions in the char oxidation model. I then run the
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char oxidation model and construct polynomial chaos surrogate models from the outputs.

Comparing particle temperature and velocity data with model outputs, I find consistency

with most of the data. Finally, I review the analysis and give recommendations for further

improvements.
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Figure 1.1. Validation hierarchy for CCMSC.
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Figure 1.2. Photo of the L1500 reactor.
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Figure 1.3. Combustion process for a coal particle.



CHAPTER 2

A VUQ ANALYSIS FOR THE L1500 FURNACE:

SENSITIVITY ANALYSIS

Submitted to the Journal of Verification, Validation and Uncertainty Quantification, A

validation/uncertainty quantification analysis for a 1.5 MW oxy-coal fired furnace: Part

A Sensitivity Analysis. Oscar H. Dı́az-Ibarra, Jennifer Spinti, Andrew Fry, Jeremy N.

Thornock, Michal Hradisky, Sean Smith, Philip J. Smith
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This paper focuses on a validation/uncertainty quantification (VUQ) study performed

on the 1.5 MWth L1500 furnace, an oxy-coal fired facility located at the Industrial Com-

bustion and Gasification Research Facility at the University of Utah. As part of the study,

both experiments and simulations under oxy-coal combustion conditions with a swirling

burner were completed. A six-step VUQ framework is used for studying the impact of

model parameter uncertainty on heat flux, the quantity of interest (QOI) for the project.

This paper focuses on the first two steps of the framework. The first step is the selection

of model outputs in the experimental and simulation data that are related to the QOI, heat

flux. In step two, an input/uncertainty (I/U) map is developed and all the parameters

are assigned a priority. A sensitivity analysis is performed on five parameters in order to

reduce the number of parameters that must be considered in the remaining steps of the

framework.

2.1 Nomenclature
ε Emissivity [−]
qincident Incident radiation [Wm−2]
R Thermal resistance [Wm−2K−1]
ki Thermal conductivity for layer i [Wm−1K−1]
∆xi Thickness of layer i [m]
mc Coal off gas mass flow [kg s−1]
mp Primary stream mass flow [kg s−1]
ms Secondary stream mass flow [kg s−1]
η Mixture fraction see Eqn. (2.3) [−]
Fp Mixture fraction see Eqn. (2.4) [−]
F Mixture fraction see Eqn. (2.5) [−]
ρ Gas density [kg m−3]
φ Scalar
u Velocity in the flow direction [m s−1]
ratio Ratio between Arches resolution and STAR-CCM+ resolution [−]
q Radiative heat flux [Wm−2]
Ω Solid angle
Nr Number of rays
Ir Radiative intensity in each ray [Wm−2]
θr Ray polar angle [degrees]
θ View angle [degrees]
T Gas temperature [K]
k Gas absorption coefficient [m−1]
∆x Resolution [m]
Io Radiative intensity from a wall [Wm−1]
εw Wall emissivityl [−]
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Tw Wall temperature [K]
σ Stefan Boltzmann constant 5.67037x10−8 [Wm−2K−4]
Qremoval Heat removed by the cooling tubes [W]
rH,l Volumetric reaction rate of char consumed from oxidizer l reaction [kg m−3s−1]
A Particle surface area [m−2]
w Particle number density [# m−3]
c Mixture molar concentration [kmole m−3]
W Mixture molecular weight [kg kmole−1]
kl Reaction rate coefficient for reaction l [m s−1]
WH Char molecular weight [kg kmole−1]
φl Stoichiometric coefficient ratio for specie l [kmolechar kmole−1

l ]
kc Mass transfer coefficient [m s−1]
cg

O,l Molar concentration of oxidizer l in the bulk [kmole m−3]
rt Total volumetric reaction rate [kg m−2s−1]
Sh Sherwood number [−]
Re Particle reynolds number [−]
Sc Schmidt number [−]
dp Particle diameter [m]
Dom Mixture averaged diffusion coefficient of oxidizer [s m−2]
qnet Net heat flux [Wm−2]
Tshell External temperature [K]
ddeposit Deposit thickness [m]
kdeposit Deposit thermal conductivity [Wm−1K]
v Ash deposition velocity [kg s−1]
tsb Soot blowing time [s]
Tslag Slagging temperature [K]
mn Moments of the Rosin-Rammler distribution
xi Particle sizes
wi Weights

2.2 Introduction
The Carbon Capture Multidisciplinary Simulation Center (CCMSC) at the University of

Utah is demonstrating the use of exascale computing with verification, validation, and un-

certainty quantification as a means of accelerating deployment of low-cost, low-emission,

coal-fired power generation technologies [10]. This effort employs a hierarchical validation

approach to obtain simultaneous consistency among a set of selected experiments at dif-

ferent scales. The key physics components of a full-scale, oxy-fired boiler, including large

eddy simulations, multiphase flow, particle combustion, and radiation, are represented at

these various scales. The CCMSC validation hierarchy is presented in Figure 2.1.

This paper focuses on validation and uncertainty quantification (VUQ) results for the

1.5 MWth oxy-coal furnace (L1500) brick in the burner-scale validation level seen in Fig-
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ure 2.1.

There are multiple reasons for performing the analysis in the L1500. First, the L1500

has multiple access points for collecting a wide variety of data, including heat flux mea-

surements, temperature measurements, heat removal rates, and gas phase species con-

centrations. This type of data is difficult to collect and/or obtain at the industrial scale.

Second, the L1500 is located at the University of Utah, so the validation team has access

to detailed information about the geometry and operating conditions. Also, because the

simulation and experimental teams work closely together, reactor and/or data collection

modifications can be performed if necessary. As a result, the L1500 experimental data

are optimal for VUQ analysis. Third, the L1500 sits between a laboratory-scale and an

industrial-scale reactor in size. At this scale, the wall boundary conditions have significant

impact on the heat flux measurements. Therefore, the facility can provide data for studies

on ash deposition, heat removal by a cooled surface, and the impact of burner input

conditions. Fourth, many of the complex phenomena present in a full-scale, coal-fired

furnace are replicated including gas and particle phase radiation, turbulent reacting flow,

coal particle devolatilization and oxidation, and particle flow.

In this paper, we present the first phase of a VUQ analysis of the L1500 furnace. For this

study, we desired to know the impact of the char oxidation and the ash deposition models

on heat flux measurements.

2.3 Description of VUQ approach
Validation is the process of testing a model using experimental data as a reference.

Uncertainty quantification (UQ) is the process of computing the accuracy with which the

model calculates the experimental data or quantity of interest (QOI) [63]. It is also focused

on mapping uncertainty in inputs to error in the QOIs. If the model is able to reproduce

the experimental data, we say that the model represents the data and thus is validated.

With uncertainty quantification, we say that the model computes the QOI with specific

accuracy. In reality, experiments have non-negligible bias (in addition to zero-mean noise).

We almost always find it necessary to correct the bias with an instrument model.

There are several VUQ methodologies that have been published. The probability bounds

analysis (PBA) approach was developed by Ferson and coworkers [20–22] and applied by
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other researchers [5, 53, 63]. The approach developed by the American Society of Mechan-

ical Engineers (ASME) is the standard for verification and validation in computational

fluid dynamics and heat transfer [4]. The bound-to-bound consistency analysis approach

was developed by Frenklach and Packard [75] and used by [46, 47, 63, 77]. A six-step

framework for validation of computer models called Simulator Assessment and Validation

Engine (SAVE) was developed by the National Institute of Statistical Sciences group [6].

More recently, Schroeder [77] explored these VUQ tools and presented a theoretical basis

for a VUQ methodology that employs the six-step SAVE framework with the bound-to-

bound consistency analysis [75].

This analysis employs the modified version of the SAVE framework proposed by Schroeder

and is presented in Figure 2.2. In step 1, model output(s) are selected as evaluation criteria

or QOIs. This step ideally involves researchers from both the simulation and experimen-

tal teams so that the QOIs can be reasonably obtained given the available facilities and

instrumentation.

In step 2, a list of parameters (model, scenario, and numerical) that may impact the

QOIs is created and refined. This list, which also includes the parameter uncertainties,

is known as the input/uncertainty (I/U) map. A determination of the impact of each

parameter (e.g. priority) on the QOIs is made based on prior knowledge and/or sensi-

tivity analysis. Parameters with high priority are selected as active and varied during

the analysis while low priority parameters are fixed. Assuming that the uncertainty is

a probability distribution, the uncertainty of the active parameters is then propagated

through the model.

Step 3 is the collection of both experimental and simulation data and the computation

of the QOIs based on the data. It also includes the estimation of experimental error.

Step 4, model approximation or surrogate model development, is required for expen-

sive model evaluation. There are several types of surrogate models, including Gaussian

process (GP) [6], rational and quadratic surrogate [19], and polynomial chaos (PC) [13]. In

this paper, we use a PC surrogate model of first order to compute the sensitivity indices.

Step 5, analysis of model outputs is performed using various methodologies. The NISS

group [6] framework is partially based on the Kennedy and O’Hagan Bayesian method-

ology [52]. The main task is the computation of the posterior distribution, which is the
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product of the likelihood probability distribution (assumed to be a Gaussian distribution

function of the discrepancy between the model and the experimental data) and the prior

distribution functions for the parameters. Another methodology is bound-to-bound con-

sistency [75]. The basic concept of this consistency analysis is the comparison of simulation

outputs with experimental data. If their difference is less than the error in the experimental

measurement, the simulation outputs and experimental data are consistent. If the data are

not consistent, the simulation scientist must reassess whether the models and model pa-

rameter ranges are appropriate for the system being studied, and the experimentalist must

reevaluate the experimental methods and data to see if errors not previously accounted for

might result in increased uncertainty.

Step 6 is feedback and feed-forward. In this step, a review of the I/U map is performed

and based on the results, corrections are made to the model or new capabilities are added,

uncertainty in the parameters is reevaluated, and the evaluation criteria are reviewed to

see if new data should be incorporated in a new VUQ cycle.

This paper details how steps 1 and 2 are applied to the L1500 oxy-coal furnace brick

seen in Figure 2.1. A companion paper details the completion of the remaining steps.

2.4 L1500 experiments
This work focuses on data collected during a week-long experimental campaign in the

L1500 furnace in February of 2015. During this campaign, the furnace was oxy-fired with

a Utah bituminous coal (Sufco).

2.4.1 L1500 reactor

The refractory-lined L1500 reactor, shown in Figure 2.3, is 14.2 m long with a 1.05x1.05 m2

transversal area. It is divided into 10 sections. Each section has several ports through

which a variety of measurements can be taken. The reactor has eight sets of water-cooled

tubes that remove heat from the first four sections (see Figure 2.4). Additionally, there is

a water-cooled steel grid at the furnace exit to reduce the temperature of the combustion

gases prior to entering the convection section.

The L1500 can be operated in air-fired or oxy-fired modes and can burn solid, liquid,

or gaseous fuels [2, 27]. During oxy-firing, recycled flue gas (RFG) is brought from the
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exit of the convective section back into the burner’s primary/secondary oxidant registers.

Oxygen is supplied to the secondary and primary RFG streams just prior to entering the

burner.

2.4.2 Swirl burner

The swirl burner used for these tests has a range of operating modes. A schematic of

this burner is presented in Figure 2.5. There are two sets of swirl vanes in the burner, one

set for the inner secondary stream, and the other for the outer secondary stream. These

vanes are composed of two blocks: a fixed block and a moving block. To increase the

tangential velocity components (swirl), the position of the moving block is changed. In

Figure 2.6, the positions of the blocks for 0% and 100 % swirl are presented.

This work presents results for the 100% swirl operating condition. We performed de-

tailed burner simulations using STAR-CCM+ for this setting. The computed swirl numbers

for the inner and outer secondary registers were 2.3 and 3.6, respectively.

2.4.3 Coal characterization

A Utah Sufco coal was used in this experimental campaign. The ultimate analysis for

this coal is presented in Table 2.1.

To determine the particle size distribution (PSD) of the Sufco coal, the bags of coal

to be burned during the experimental campaign were sampled at different depths. Both

a sieving analysis and a Beckman-Coulter diffraction analysis were performed on the

collected samples. The collected data from both analyses are presented in Figure 2.7. From

the figure, we can see that the sieving data are close to the Beckman-Coulter diffraction

data if long sieving times are used. Therefore, in Figure 2.7, we fitted only data from

Beckman-Coulter diffraction analysis to the Rosin-Rammler distribution. The PSD distri-

bution was approximated with three particle sizes: 15 µm, 60 µm, and 200 µm. The mass

weights, 57.4 %, 26.2 %, and 16.4 %, were computed with the Eqn. (2.1).

2

∑
i=0

xn
i wi = mn f or n = 0, 1, 2 (2.1)

In this equation, mn are the moments of the Rosin-Rammler distribution presented in

Figure 2.7.
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2.4.4 Operating conditions

The L1500 operating parameters for this VUQ study are shown in Table 2.2. The coal

was fed with the primary stream. With the exception of the burner swirl setting (100 %),

all of these parameters were controlled and recorded during the experimental campaign.

These inputs were computed from the mass flow of the RFG to the primary and secondary

registers, the oxygen mass flow to the primary and secondary inlets, the coal mass flow

rate, the gas temperatures for each of these streams, and the composition of the RFG.

These operating conditions were stable during the experiment. However, there was an

air leak in the RFG stream as evidenced by the outlet CO2 concentration being lower than

expected. To compensate for this air leak in the simulations, an overall mass balance was

performed on the furnace. The leaked air and the coal moisture are included in the RFG

composition shown in Table 2.2.

Shell temperatures were measured during the experimental campaign using a surface

thermocouple. These temperatures varied by approximately 100 K depending on location.

In scoping simulations, we determined that simulation results (specifically radiative heat

flux and wall temperatures) were not sensitive to the shell temperature of the furnace

within the range of temperatures measured experimentally. Therefore, the averaged ex-

perimental values shown in Table 2.3 were used for each of the four sides of the furnace.

The thermal properties of the L1500 walls are presented in Table 2.4. With these proper-

ties, the total thermal resistance was computed using Eqn. (2.2). The average total thermal

resistance for the wall is R = 1.02 W
m2K .

R =
1

∑4
i=1

∆xi
ki

(2.2)

2.5 L1500 simulation strategy
The simulation data for the 100 % (burner) swirl experiment were obtained from the

coupling of two Large Eddy Simulations (LES), one of the burner and the other of the

main chamber (see Figure 2.8). Because the burner is equipped with swirl blocks and has

a complex geometry, the commercial software package STAR-CCM+ was used to build

a mesh and perform numerical simulations of the burner. The time averaged velocity

profile at the burner tip was then extracted, filtered, and used as the boundary condition
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(i.e. handoff file) for the simulation of the main chamber using Arches, an LES research

code developed at the University of Utah. We did not perform a simulation of the entire

reactor in STAR-CCM+ due to the lack of coal particle physics models (e.g. char oxidation,

devolatilization, ash deposition, direct quadrature method of moments) required in our

analysis.

2.5.1 STAR-CCM+ simulations

We resolved the complex geometry of the swirl burner in STAR-CCM+ with an un-

structured mesh. We used an LES approach for turbulence, and the subgrid scales were

modeled with the WALE model [62]. To model the fluid flow in the boundary layer, we

use cell sizes as small as 15 µm to fully resolve the viscous sublayer (with y+ values of

approximately one). In the energy equation, the properties of the gases were computed

assuming nonreacting, multicomponent ideal gas mixtures. We also assumed the walls of

the burner were adiabatic. Only the gas phase was resolved; the particle phase was not

included in these simulations because we were only interested in the gas velocity profiles

at the tip of the burner. We assumed that the particles would not affect the gas velocity

as there were no chemical reaction inside the burner and the particle loading was low in

comparison to the primary gas feed rate. To solve the equations, we used a second-order

implicit time solver with a fixed time step of 5x10−5s.

The burner simulations were run on a Linux cluster at the University of Utah. Each

simulation required 3,600 cores for two weeks, which was long enough to obtain 3 s of

physical time. Data were averaged over an interval of 1 s to obtain the velocity profile.

This interval was much shorter than the averaging interval for L1500 furnace data because

of the short residence time/high velocity through the burner.

2.5.2 Arches simulations

The simulations of the L1500’s main chamber were performed with Arches, a compo-

nent of the Uintah software suite [48]. Uintah is a framework for solving partial differential

equations on structured grids using hundreds to thousands of processors.

Arches is a low-Mach, pressure projection-based, variable density code solving filtered

(per the standard large eddy simulation approach) conservation equations for mass, mo-

mentum, and energy of the gas and solid phases [66–68]. For the gas phase, subgrid fluc-
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tuations in the momentum equation are modeled using a dynamic Smagorinsky closure

model. Convective terms in the momentum transport are discretized with a hybrid scheme

(a blend between first-order upwind and central differencing) [92]. A first-order, explicit

forward Euler approach is used to advance the equations forward in time. A pressure

projection ensures that continuity is strictly satisfied for each time step.

The solid (coal) phase was modeled using the direct quadrature method of moments

(DQMOM) with three environments [25]. Seven internal coordinates, including raw coal

mass, the char mass, the particle enthalpy, the maximum particle temperature, and the

particle velocity (in x, y, and z coordinates), were used to describe the PSD. In addition,

the weights and internal coordinates for the three environments were solved using a first

order upwind discretization scheme. The particle phase was coupled with the gas phase

through source terms in the equations for momentum, heat, and mass. More detail about

the DQMOM implementation in Arches is presented in [66–68].

The coal particle physics models included both devolatilization and char oxidation

models. The devolatilization model is detailed in [77]; it is based on the Chemical Per-

colation Devolatilization (CPD) model [24]. It assumes that the rate of devolatilization is a

first order reaction rate. The ultimate volatile yield is a function of the particle temperature

and the parameters in the ultimate volatile yield equation are fitted with the CPD model.

The char oxidation model is discussed in section 2.5.2.1.

The gas-phase reactions in the system were modeled using a three-stream mixture

fraction approach. The three streams were the primary stream (mp), the secondary (inner +

outer) stream (ms), and the coal off gas (mc). During char oxidation or devolatilization coal

off gas enters the gas phase with an elemental composition shown in Table 2.1. Gas com-

position and temperature are computed assuming equilibrium (with constant enthalpy

and pressure). The mixture fractions based on these three streams are defined in Eqn. (2.3),

Eqn. (2.4), and Eqn. (2.5).

η =
mc

mp + ms + mc
(2.3)

Fp =
mp

mp + ms + mc
(2.4)

F =
mp

mp + ms
(2.5)
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Transport equations were solved for η and Fp; F was computed from the other two mass

fractions as 1− Fp − η. A lookup table based on equilibrium chemistry assumptions was

tabulated a priori as a function of three independent variables: η, Fp, and the linearized

enthalpy [84]. The state space variables in the table include the gas temperature, mixture

enthalpy, species mass fractions, mixture molecular weight, and mixture density.

The discrete ordinates (DO) method was used to compute radiation in the simula-

tion [59]. For the cases in this paper, S8 quadrature, representing 80 discrete directions,

was used.

The L1500 simulations were run on two Linux clusters, one at the University of Utah

and the other at Lawrence Livermore National Laboratory. With a 15 mm mesh resolution,

the computational domain had 2,255,610 cells. The time step was ∼ 6.5e − 05 [s]. The

simulations were run on 217 cores for approximately 100 hours. This was long enough to

obtain 30 s of physical time; on average, ∼ 15 s were required to reach steady state. We

averaged the last 5 s of simulation data for our analysis.

In this study, our focus is on the impact of the char oxidation and the ash deposition

models on the QOIs. Therefore, we describe these model in the following sections.

2.5.2.1 Char oxidation

The char oxidation model implemented in Arches includes heterogeneous reaction at

the particle surface, mass transport of oxidizer from the bulk gas to the particle surface,

and mass transport of devolatilization and oxidation products away from the particle

surface. It computes the volumetric reaction rate of char consumed by the oxidizer in

global reaction l using Eqn. (2.6).

rH,l =
(Aw)2cWklWHφlkccg

O,l

AwcW(kl + kc) + rt
(2.6)

For the L1500 simulations, two global reactions were considered: one oxidation and one

gasification reaction. The oxidation reaction with O2 as oxidizer is Eqn. (2.7). The reaction

constant in Arrhenius form is kl = Ale
−El
RT . The two parameters in this equation are AO2

and EO2 . The gasification reaction with CO2 as oxidizer is Eqn. (2.8). As with the oxidation

reaction, the reaction constant kl has two parameters, ACO2 and ECO2 . The mass transfer

coefficient kc was obtained using a Sherwood number correlation with a correction factor

as shown in Eqn. (2.9).
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Cs + O2 → CO2 (2.7)

Cs + CO2 → 2CO (2.8)

Sh = 2 + 0.6Re1/2Sc1/3 =
kcdp

Dom
(2.9)

2.5.2.2 Ash deposition

Arches uses a one-dimensional wall boundary condition as shown in Eqn. (2.10). In this

equation, Tw is the internal (hot face) temperature of the wall and Tshell is the external (cold

face) temperature. For the refractory wall, Tshell is the outside wall temperature and for the

cooling tubes, it is the water temperature inside the tubes. R is the thermal resistance, ε is

the emissivity of the ash deposit, and qincident is the incident heat flux. In this model, Tw is

solved with a Newton solver every time step.

The thermal resistance R is computed with Eqn. (2.11). In this equation, the first term

is the resistance produced by the refractory and insulation layers in the furnace wall or by

the metal in the cooling tubes. The second term is the resistance caused by the ash layer.

The thermal conductivity of the deposit, kdeposit, is an input parameter.

qnet =
(Tw − Tshell)

R
= ε(qincident − σT4

w) (2.10)

R =
Nlayer

∑
i=1

∆xi

ki
+

ddeposit

kdeposit
(2.11)

This deposition model uses three regimes. In regime 1, Tw is lower than the ash fusion

temperature, Tslag, and the deposit thickness, ddeposit, is computed with Eqn. (2.12). In this

equation, the ash deposition velocity (v) is computed from a probability model [8] and tsb,

the time since the last soot blowing event, is an input parameter. In regimes 2 and 3, Tw

is equal to or greater than Tslag and ddeposit is computed with Eqn. (2.13). If the computed

value of ddeposit is greater than zero, the model is in regime 2 and Tw = Tslag. If the computed

value of ddeposit is less than zero, the model is in regime 3. In this regime, ddeposit = 0 and

Tw is computed from Eqn. (2.10).

ddeposit = vtsb (2.12)

ddeposit = kdeposit
Tslag − Tshell

qnet max − Rw
(2.13)

To compute ddeposit in Eqn. (2.13), qnet max is computed from Eqn. (2.10) with Tw replaced

with Tslag and Rw replaced with ∑
Nlayer
i=1

∆xi
ki

.
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Finally, Arches has a basic erosion model. If ddeposit computed with Eqn. (2.12) or

Eqn. (2.13) is greater than the erosion thickness, ddeposit is set equal to this value. Thus,

erosion thickness is the maximum deposit thickness allowed in the simulation.

2.5.3 Handoff plane boundary condition

Because of the difference in grid size between the STAR-CCM+ and Arches simula-

tions, the velocity field computed in STAR-CCM+ must be filtered for use in Arches. This

filtering process has six steps.

1. Extract the velocity vectors from STAR-CCM+ on a structured grid using nearest

neighbor interpolation. The number of points in the extracted grid depends on the

desired ratio (an integer) between the STAR-CCM+ and Arches resolutions (here this

value is 30) and the final resolution of the Arches simulations (15x10−3m). These

choices result in a structured grid of 419x419 points with a resolution of 5x10−4m.

2. Map the STAR-CCM+ information to a 2-D array, adding zeros to the array where

data were not extracted (outside of the burner).

3. Create a 2-D array for the fraction of the primary stream, Fp, with the condition Fp =

1 (Eqn. (2.4)) for r ≤ 0.0387m (radius of the primary inlet), and Fp = 0 for r >

0.0387m. The mixture fraction field for coal off gas, η (see Eqn. (2.3)), is zero at the

inlet because we assumed there were no coal particles reactions in the burner.

4. Obtain density, ρ, from the equilibrium chemistry lookup table described above us-

ing Fp and assuming the burner is adiabatic.

5. Compute the components of the velocity in the flow (u) and the tangential (v and w)

directions. To do this, the mass flux at the inlet, ρu (units of kg
m2s ), is filtered using

Eqn. (2.14), where φ = 1 for the u component, φ = v for the v component, φ = w for

the w component, and ρu is the product of the gas density and velocity in the flow

direction extracted from STAR-CCM+. In order to obtain u, ρu is divided by ρ. For v

and w, ρuv and ρuw are divided by ρu.

(ρuφ)i,j =
(j+1)ratio

∑
n=j∗ratio

(i+1)ratio

∑
m=i∗ratio

(ρuφ)m,n

ratio2 (2.14)
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6. Write the filtered velocities u, v, and w to an input (handoff) file that is read by

Arches.

This entire process is illustrated by the velocity fields shown in Figure 2.9. On the left

are the three velocity components from the STAR-CCM+ simulation at the exit plane of the

burner. On the right are the filtered velocity components used in the Arches simulation.

The particle inlet conditions are computed separately because the STAR-CCM+ results

are only for the gas phase. For the DQMOM inlet conditions, the velocity of the particles is

assumed equal to the gas velocity and a constant coal mass flow rate is assumed for each

cell.

To compute the flux of particles at the burner tip, we assume that the particle velocities

were the same as the gas velocity. These mass weights were converted to particles per cubic

meter using a coal density of 1300 kg/m3 and the volume corresponding to each particle

size. While the assumed density of the particle will affect the number of particles per cubic

meter, the flow rate of coal is independent of this variable.

2.5.4 Domain size and mesh resolution

In previous simulations of the entire furnace geometry at a resolution of 16 mm for the

0% swirl case, we determined that gas temperatures, velocities, and chemical compositions

were relatively constant after section 6 [17]. Also, differences between simulation results

from the full length (14.2 m) and from simulations using a shortened domain ( 7 m) were

minimal. Hence, the computational geometry for the analysis that follows is 7 m.

The shortened geometry of the L1500 with a 15 mm resolution is presented in Fig-

ure 2.10; this geometry includes the burner quarl, the cooling tubes, and the 10 cm step

up in the bottom of the furnace between sections 4 and 5. The surface area of the cooling

tubes in the computational mesh was adjusted to match the actual surface area of the tubes.

2.6 Analysis of quantities of interest
To perform a VUQ analysis, the QOIs and the system parameters (scenario, model,

numerical) that have a first order impact on the QOIs are identified. In this experimental

data set, the QOIs all relate to heat flux. The QOIs are heat flux measurements from

three narrow angle radiometers (sections 1, 2, and 3), five wall temperature measurements
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(sections 1, 2, 3, 4, 6), and heat removal by eight sets of cooling tubes.

During the experimental campaign, radiative heat flux was measured through the

center port of sections 1, 2, and 3 using a narrow angle radiometer. A cold plate was

installed in the port opposite to the radiometer to provide a known boundary condition for

the radiometer measurements. In practice, the cold surface became coated with radiating

particles, introducing uncertainty into the radiometer measurement.

Wall temperature measurements were taken in sections 1, 2, 3, 4, 6, and 8 using Type B

thermocouples encased in ceramic sheaths that were then inserted into small holes in the

furnace ceiling located in the middle of each section (see Figure 2.11). Each sheath was

inserted until it was flush with the inside wall of the furnace.

The heat removal by the cooling tubes was determined by the experimentally-measured

mass flow rates and inlet/outlet temperatures of the water flowing through the eight

cooling tubes in the first four sections.

2.7 I/U map for char oxidation and ash deposition models
Our focus in this study is on the impact of the char oxidation and the ash deposition

models on the QOIs. Model parameters and their associated uncertainty ranges are pre-

sented in Table 2.5. In this table, the overall priority means the relative importance of that

parameter on the QOIs. Because of the computational cost of an LES simulation, we must

select the most important parameters for further study in the sensitivity and consistency

analyses.

In the ideal case, a sensitivity analysis would be performed to assign a priority value

to the parameters in the I/U map. However, running a sensitivity analysis with 11 pa-

rameters is too expensive for an LES simulation, even with the L1500 coarse mesh (15 mm

resolution) case described above. If we use two simulations for each dimension and com-

bine all the parameters, a total of 211 = 2048 simulations would be needed.

Consequently, we carried out a preselection of parameters to assign priorities. In Ta-

ble 2.5, the most important parameters are assigned a priority of 6 and the less important

a priority of 3.

In the char oxidation model, the parameters are the kinetic constants for the two re-

actions, an oxidation reaction (Eqn. (2.7)) and a gasification reaction (Eqn. (2.8)). Using
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prior knowledge about char oxidation, we assigned a priority of 6 to the oxidation reaction

parameters and a priority of 3 to the gasification reaction parameters.

The erosion thickness, the maximum deposit thickness allowed in the simulation, was

given a priority of 3 because we set this value high enough that there was no limitation

on the deposit thickness (1 cm on the cooling tubes and 5 cm on other surfaces) in the time

frame of the simulation. It is difficult to assign a value to the soot blowing time (tsb) because

there was no soot blower in the L1500 and different conditions were tested throughout the

week of experiments. For these reasons, a priority of 6 was assigned to this parameter. The

shell temperature (Tshell) is the exterior shell temperature for the L1500 wall and the inside

tube temperature for the cooling tubes. This parameter was given a priority of 3 because

(1) the water temperature did not change much in the cooling tubes between the inlets and

outlets and (2) a one-dimensional heat transfer analysis through the furnace wall showed

that Tshell had a negligible impact on the internal furnace temperature.

The thermal resistance (∑
Nlayer
i=1

∆xi
ki

) due to the refractory and the insulation material

was computed using an average thermal conductivity obtained from the manufacturer’s

data. Because it could be well-characterized, a priority of 3 was assigned to this parameter.

The ash density was kept constant for the analysis. The effective thermal conductivity

kdeposit and temperature parameter Tslag were analyzed in a VUQ study of a 15 MWth

oxy-coal boiler [45] . This study concluded that the Tslag parameter was well-represented

by the ash fusion temperature. Therefore, a priority of 3 was given to Tslag, and the

ash fusion temperature for Sufco coal was used as the nominal value. For the kdeposit

parameter, a priority of 6 was assigned because of the lack of information about the thermal

conductivity of the ash deposits on the cooling tubes. The εw was given a priority of 6

because there is almost no information about this parameter in this reactor.

The active parameters for this analysis were the parameters with a priority of 6. This

set includes two parameters related to char oxidation, AO2 and EO2 , and three parameters

related to ash deposition, kdeposit, εw, and ts. The other parameters in Table 2.5 were fixed

at the nominal value in the simulations.

The uncertainty ranges for the char oxidation parameters AO2 and EO2 , which are the

reaction parameters of the oxidation reaction (Eqn. (2.7)), were taken from Smoot and

Smith [83]. Smoot and Smith reported small variations (17-20 kcal/mole) in activation
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energy, EO2 , for three U.S. coals: Wyoming subbituminous, Illinois No. 6 bituminous, and

Pittsburgh No. 8 bituminous. For AO2 , the range of 58-68 g cm−2 s−1 atm−1 O2 was selected

based on the reported value of 60 g cm−2 s−1 atm−1 O2 for Illinois No. 6 (similar coal type

and composition).

For the ash deposition model, the range for kdeposit was bounded by the maximum and

minimum values of the experimental data presented by Rezaei and coworkers [72] for coal

ash and synthetic ash. The εw range was bounded by the maximum and minimum values

reported by Wall and coworkers [87, 94] for coal ash. The parameter tsb is the interval of

time without ash removal. Since the L1500 did not have a soot blower at the time of the

experimental campaign, this value was computed as the number of hours that coal was

fed to the reactor. The maximum value was the total coal feed time for the campaign (at

night, the furnace was fired with natural gas), and the minimum value was the total coal

feed time for the campaign less the first day of experiments when the coal feed rate was

lower.

2.8 Sensitivity analysis
In the I/U map (Table 2.5), we gave five variables a priority of 6, which means these

variables are active in this study. However, a full five-dimensional VUQ study with Arches

simulations is too computationally expensive. Therefore, a sensitivity analysis was used

to reduce the number of dimensions in this study from five to two for the consistency

analysis.

In order to perform the sensitivity analysis, each QOI was computed from simulation

data as described in the following sections.

2.8.1 Computation of radiometer heat flux

Three narrow angle radiometers were used to measure the radiative heat flux in sec-

tions 1, 2, and 3 in the L1500 experiments. To compute these heat fluxes from the simula-

tion data, we used a reverse-Monte Carlo ray tracing approach that sums up the radiative

intensities over all the rays comprising the field of view, θ, of the radiometer as seen in

Eqn. (2.15). The solid angle Ω was computed using Eqn. (2.16). The radiative intensity

in each ray, Ir, was computed with Eqn. (2.17). For this analysis, Nr = 1; because of the
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coarseness of the computational mesh, one ray was sufficient to account for the narrow

angle view of the radiometer [38].

In order to compute the radiative intensity with Eqn. (2.17), the gas temperature T, the

gas absorption coefficient k, and the mesh resolution ∆x were obtained from the simula-

tions. These values were extracted along one ray that extended from the wall opposite the

radiometer to the wall where the radiometer tip was located.

Ash buildup on the cooled targets flush with the walls opposite the radiometers re-

sulted in a surface condition that was unknown. To compute Io, the intensity of the

target, simulation values for wall temperature, Tw, and wall emissivity, εw, were used;

see Eqn. (2.18).

q = Ω
1

Nr

Nr

∑
r=1

Ircos(θr) (2.15)

Ω = 2π(1− cos(θ)) (2.16)

Ir =
N−1

∑
j=0

σ

π
T4

j exp(−
j−1

∑
i=0

∆xki)(1− exp(∆xk j)) (2.17)

+ Ioexp(−
N

∑
i=0

∆xki)

Io = εw
σ

π
T4

w (2.18)

More detailed information about computation of the radiometer heat flux is found in [37,

38].

2.8.2 Computation of heat removal by cooling tubes

For each computational cell in the simulated cooling tubes, the heat removal (Qremoval)

was computed with Eqn. (2.19) and then added over the whole cooling tube to obtain the

total heat removal. Thus, in Eqn. (2.19), A corresponds to the surface area of the cell faces

that are in contact with the gas, Tw is the surface temperature of the cooling tube, qincident

is the incident heat flux, and ε is the emissivity of the tube.

Qremoval =
N

∑
n=0

ε(qincident − σT4
w)A (2.19)

This computation was performed using the visualization tool VisIt [11]. The heat removal

was calculated using the average fields of qincident and Tw.



26

2.8.3 Computation of wall temperature

For the sensitivity analysis described below, we used the wall temperature computed

in the simulation at the thermocouple location.

2.8.4 Generating PC surrogate models

The sensitivity analysis is done using the Uncertainty Quantification Toolkit (UQTk), a

set of C++ tools with a Python interface. It was developed by Debusschere and coworkers

at Sandia National Laboratories [13]. UQTk uses the app pce_sens to compute total and

main sensitivity indices using a polynomial chaos (PC) surrogate model.

Using a PC surrogate model of order 1 with a full quadrature rule, a total of 32 Arches

simulations (2n where n is the number of dimensions) were needed for this study. The

UQTk app generate_quad generated 32 quadrature points of ξi = +/− 0.58 with weights

of w = 0.0625 for each dimension. The variable ξi is mapped to physical input space for

the Arches simulations using Eqn. (2.20), where ai and bi are the bounds in the uncertainty

interval presented in the I/U map (Table 2.5).

λi =
ai + bi

2
+

bi − ai

2
ξi for i = 1, ..., d (2.20)

We ran a set of Arches simulations at the 32 quadrature points. All the simulations were

run for approximately 30 s. Only the last 5 s of data were averaged for this analysis;

simulations required at least 15 s to reach steady state, so we had a buffer of 10 s to ensure

that steady state had been reached for all simulations.

We then computed the radiative heat flux, heat removal, and wall temperatures and

generated the PC surrogate model for each of these data points.

2.8.5 Results

Our next step was to compute the main and the total sensitivity indices with the UQTk

app pce_sens using the coefficients of the PC surrogate model. In Figure 2.12, the main

sensitivity indices for the radiative heat flux are presented. The two most sensitive pa-

rameters with respect to the radiometer measurements are εw and kdeposit; both parameters

are part of the ash deposition model. It is interesting that the main sensitivity index for

tsb is low by comparison. The main sensitivity indices for the AO2 and EO2 are also low,

meaning these parameters have little influence on the radiometer measurement. Thus,
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for the radiative heat flux measurement, the five-dimensional (parameter) study can be

reduced to a two-dimensional study.

Figure 2.13 shows the main sensitivity indices for the heat removed by the cooling

tubes. The sensitivity indices have a similar behavior to those obtained in the radiometer

analysis. The εw and kdeposit parameters have bigger indices while the sensitivity index for

tsb is small for the cooling tubes. The sensitivities of the char oxidation parameters are

small as well. Just as with the radiometer measurements, this analysis shows that for the

heat removal measurements, the study can be reduced from five to two dimensions.

In Figure 2.14, the main sensitivity indices for the wall temperature at the thermocouple

locations are presented. For all locations, the biggest sensitivity index is for εw. While the

sensitivity index for kdeposit is low at location 1 (WT1), its index values are much higher at

the other locations. Thus, we conclude that the consistency analysis study can be reduced

from five to two dimensions.

The insensitivity to tsb (which determines deposit thickness) for all QOIs was unex-

pected, so the simulations were checked to look for an explanation. For all 32 simulations,

the deposit thickness was zero for all the walls except for the cooling tubes after 30 s of

simulation time. There are two reasons for this result. First, in all the simulations, the wall

temperatures were higher than Tslag in sections 1 and 2, and for some simulations, wall

temperatures exceeded Tslag for the entire length (7m) of the simulated reactor as presented

in Figure 2.15. Consequently, at least the first two sections of the L1500 are in regime 3 of

the ash deposition model where the ash deposit thickness is zero, meaning the deposit is

slagging or evaporating due to high temperatures. Second, for the 100 % swirl operating

condition, most of the ash deposition is expected in sections 1 and 2 where the model is in

regime 3.

The influence of the cooling tubes deposits can be seen in the sensitivity index of

the radiometers, where kdeposit has the second largest effect after εw and where its index

increases with the section (see Figure 2.12). This result means that the heat removal by

the cooling tubes is being impacted by the ash deposition, which in turn impacts the

gas temperature and thus the computation of the radiative heat flux. This impact of ash

deposition is also seen in Figure 2.13. In sections 1 and 4, HR1, HR2, HR7, and HR8 are the

only QOIs where the sensitivity indeces of tsb are greater than those of kdeposit. In section
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2 (HR3 and HR4), kdeposit has a bigger sensitivity index than εw. Finally, in section 3 (HR5

and HR6), kdeposit still has a strong influence.

2.9 Conclusions
The work described in this paper represents the first part of a VUQ study of simulation

and experimental measurements taken in the oxy-fired L1500 furnace at the University of

Utah. For the experiments described in this paper, the burner was set at 100% swirl. The

simulations performed in this study utilized a handoff strategy wherein the complex flow

through the burner was computed using STAR-CCM+. Averaged scalar and velocity fields

at the plane of the burner tip were then provided as inputs to the Arches simulations of

the L1500.

We discuss the first two steps of the VUQ analysis in this paper: (1) selection of QOIs

and (2) creation of an I/U map. We perform a sensitivity analysis to reduce the number

of active parameters. We conclude that of the five active parameters in the I/U map, the

most sensitive parameters across three different types of measurements (heat removal by

cooling loops, heat flux measured by radiometers, and wall temperature) are kdeposit and

εw. Therefore, we will use these two parameters for the consistency analysis, as presented

in part B.
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Table 2.1. Ultimate analysis for Utah Sufco coal. Data are averaged and normalized from
the analysis of five samples taken from the bags of coal that were burned during the testing.

Sufco Coal % Mass
C 66.89
H 4.51
N 1.17
S 0.36
O 13.60

Ash 7.89
H2O 5.58

HHV [J/kg] 27364.93

Table 2.2. L1500 operating conditions for 100 % swirl
Stream Mass flow

[kg/s]
Temperature
[K]

Coal (ash and
moisture free)

0.03534 338

Primary (mp) 0.07103 338
Inner Secondary
(ms)

0.05899 533

Outer Secondary
(ms)

0.23515 533

Mass Fraction Primary
(mp)

Inner and
Outer
Secondary
(ms)

O2 0.1684 0.2412
CO2 0.6464 0.6114
H2O 0.1314 0.0965
SO2 0.0009 0.0009
N2 0.0529 0.0500
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Table 2.3. Shell temperatures averaged over all measurements made on a side
Location Shell Temperature [K]

Quarl 434
Main chamber south side 362
Main camber north side 396

Main chamber bottom side 362
Main chamber top side 427

Table 2.4. Thermal properties obtained from the manufacturer for the L1500 walls
Layer name ∆x [m] k [ W

mK ] σ [ W
mK ] Temperature

range
[K]

Greencast-
94 Plus

0.2032 2.36 0.52 1143 -
1588

Insboard
3000

0.0508 0.19 0.10 698 -
1477

Insboard
2600

0.0254 0.1475 0.0562 589-1255

Insblock 0.0508 0.104 0.032 575-923
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Table 2.5. Input/uncertainty map for char oxidation and deposition model
Parameter Priority Range Nominal

value
Basis/Comments

min max
Char oxidation

AO2 6 58 68 Pre-exponential factor for
oxidation reaction Eqn. (2.7).
[g cm−2 s−1 atm−1 O2]

EO2 6 17 20 Activation energy for oxidation re-
action [kcal/mole]

ACO2 3 1390 Pre-exponential factor for
gasification reaction Eqn. (2.8)
[g cm−2 s−1atm−1 O2]

ECO2 3 53700 Activation energy for gasification
reaction [kcal/mole]

Ash deposition
Erosion thick-
ness

3 1 or 5 Maximum thickness: 1 cm for cool-
ing tubes, 5 cm for everything else

tsb 6 120666 137322 Soot blowing time or time since ash
was removed from cooling tubes [s]

Tshell 3 Average temperature inside cool-
ing tube or external surface temper-
ature of L1500

∑
Nlayer
i=1

∆xi
ki

3 1.02 Thermal resistance in the L1500
walls [Wm−2 s−1]

Tslag 3 1516.5 Ash fusion temperature [K] for
Sufco coal

kdeposit 6 0.1 1.8 Thermal conductivity of deposit
[W m−1K−1]

εw 6 0.3 1 Wall emissivity [-]
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Figure 2.1. Validation hierarchy for CCMSC
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Figure 2.2. Six-step methodology with consistency analysis. The yellow box corresponds
to the steps analyzed in this paper.
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Figure 2.3. Drawing of the L1500 reactor located at the Industrial Combustion and
Gasification Research Facility. a) Schematic of the L1500 multifuel combustion furnace.
b) Schematic of the first four sections of the L1500 furnace.
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Inner Secondary

Outer Secondary

Primary and 
coal

Figure 2.5. Schematic of the swirl burner used in the L1500 furnace. Inlets are labeled.

0 % swirl 100 % swirl

Figure 2.6. Swirl vanes in the burner at the 0% swirl and 100% swirl positions.

Figure 2.7. Experimental PSD and fitted Rosin-Rammler PSD. Sieving was performed
for different lengths of time to determine the effect on the resulting PSD. Based on this
analysis, only the Beckman-Coulter diffraction data were used for the Rosin-Rammler fit.
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STAR-CCM+ 
Burner

ARCHES 
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Figure 2.8. L1500 simulation coupling between Arches and STAR-CCM+

Figure 2.9. Velocities at plane of the burner tip; left are STAR-CCM+ results with a
resolution of 0.5x10−3m, right are Arches results with a resolution of 15x10−3m (ratio =
30).

Section 1 
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Section 3 

Section 4 

Section 5 

Section 6 

Quarl Cooling tubes 

Step up 

Figure 2.10. Shortened geometry for the L1500 simulations including the quarl, the eight
sets of cooling tubes, and the step change in the reactor floor. Resolution is 15 mm.
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Figure 2.11. Thermocouple placement in furnace wall. Section 4 is shown but the place-
ment is similar for all thermocouple measurements.

rad1 rad2 rad3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
e
n
si

ti
v
it

y

Ao2
EO2

kdeposit εw tsb

Figure 2.12. Main sensitivity index for radiative heat flux measured by the radiometers.
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Figure 2.13. Main sensitivity index for the heat removed by the cooling tubes.
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Figure 2.14. Main sensitivity index for wall temperature (thermocouple’s location) com-
puted with Arches.
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A VUQ ANALYSIS FOR THE L1500 FURNACE:

CONSISTENCY ANALYSIS
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This paper focuses on a validation and uncertainty quantification (VUQ) study per-

formed on the 1.5 MWth L1500 furnace, an oxy-coal fired facility located at the Industrial

Combustion and Gasification Research Facility at the University of Utah. We performed

this analysis with three types of data or quantities of interest (QOI) collected in the L1500

furnace: thermocouple temperature measurements at the wall, heat removal by cooling

tubes, and oxygen molar fraction at the furnace exit. We estimated sampling error with raw

experimental data and systematic error with instrument models for each type of measure-

ment. We ran 34 large eddy simulation (LES) cases exploring the effect of three parameters

on the QOIs: effective thermal conductivity of the ash, a burner swirl parameter, and

the coal feed rate. From these cases, we created Gaussian response surface surrogate

models that we used to perform a consistency analysis with the three QOIs. We found

consistency between the experimental QOIs and the corresponding LES simulation data

and determined that the burner inlet condition (swirl) had a significant impact on the

QOIs.

3.1 Nomenclature

b̄ Mean intercept in calibration curves[ kg
s ]

bi Slope for a calibration curve i
cp Heat capacity [ J

kgK ]
error Error in experimental measurement
fs Swirl parameter [−]
F Net heat flux [ W

m2 ]
HR Experimental heat removal [W]
k Thermal conductivity [ W

mK ]
ṁ Mass flow rate [ kg

s or lb
h ]

m̄ Mean slope in calibration curves [ kg
Hz s ]

mi Slope for a calibration curve i
N Number of calibration curves
qincident Incident heat flux [ W

m2 ]
Qremoval Simulation heat removal [W]
T Temperature [K]
ue Experimental uncertainty
x Number of revolutions [Hz]
ȳ Measured experimental value
yT True value of measured variable
β Sampling or random error
δ Systematic error
∆ Normalized discrepancy
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∆x Grid spacing in x direction [m]
∆y Grid spacing in y direction [m]
ε Emissivity [−]
ρ Density [ kg

m3 ]
σ Stefan Boltzmann constant 5.670367x10−8 [Wm−2K−4]
φhole Diameter of the thermocouple hole [m]

Subscripts
b: Bottom
coal: Coal
deposit: Ash deposit
e f f : Effective
i, j: Computational cell i,j
in: Inlet
ins: Insulation
inter f ace : Interface between thermocouple and wall
l: Left
lower: Lower bound
out: Outlet
shell: Outside wall
re f : Refractory
r: Right
std: Standard deviation
sur f ace: Surface of the internal wall
tc: Thermocouple
t: Top
upper: Upper bound
w: Wall
water: Liquid water
1: Refractory layer
2: Insulation layer

3.2 Introduction
The Carbon Capture Multidisciplinary Simulation Center (CCMSC) at the University

of Utah is demonstrating the use of exascale computing with verification, validation, and

uncertainty quantification (VUQ) as a means of accelerating deployment of low-cost, low-

emission, coal-fired power generation technologies [10]. This effort employs a hierarchical

validation approach, presented in Figure 3.1, to obtain simultaneous consistency among a

set of selected experiments and simulations at different scales with the ultimate objective

of achieving predictive capability for a full-scale, coal-fired boiler, where experimental

measurements are expensive and difficult to obtain. The key physics components in these

systems include multiphase flow, turbulence, particle combustion, radiation, as well as the
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numerical models which capture these phenomena. These components are represented at

the various scales in Figure 3.1.

This paper focuses on VUQ results for the 1.5 MWth oxy-coal furnace (L1500) brick in

the burner-scale validation level seen in Figure 3.1. The L1500 has a transversal area of 1.05

x 1.05 m2 and is 14.2 m long. It is divided into 10 sections, as seen in Figure 3.2. A cutaway

view through the middle of the burner and the first four sections of the furnace is shown

in Figure 3.3. Four additional sets of cooling tubes (not shown) are located adjacent to the

opposite interior wall. This experimental facility is discussed in greater detail in [2, 27, 28].

3.3 Description of VUQ approach
Our analysis employs a version of the Simulator Assessment and Validation Engine

(SAVE) framework, originally developed by the National Institute of Statistical Sciences [6],

and modified by Schroeder [77]; see Figure 3.4. Our focus is on data collected during a

week-long experimental campaign in February of 2015. Based on overall programmatic

goals related to incident heat flux, the quantities of interest (QOIs) in this analysis are

five wall temperature measurements (sections 1, 2, 3, 4, 6), heat removal by eight sets of

cooling tubes (one set each on north and south sides of sections 1-4), and oxygen (O2) mole

fraction in the furnace exhaust. In a previous paper [14], we described steps 1 and 2 of

the framework and identified two parameters that had a first order impact on the QOIs:

thermal conductivity (kdeposit) and emissivity (εw) of the deposit. This paper reviews step 2

and then details steps 3 through 6.

3.4 Construction of input and uncertainty map
The input and uncertainty (I/U) map is a list of parameters and their associated un-

certainty ranges that are considered in the system VUQ analysis. The list may include

numerical, scenario, and/or model parameters. An overall priority is assigned to each

parameter that signifies its relative importance on the QOIs.

3.4.1 Parameter selection

In our previous paper [14], we carried out a sensitivity analysis with five parameters

selected from the I/U map. All parameters came from the char oxidation and the ash

deposition models. Our conclusion was that the most sensitive parameters across the
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different types of measurements were kdeposit and εw and that these parameters should be

given the highest priority and made the active parameters in steps 3-6 of the VUQ analysis.

However, because of the computational time required to perform a VUQ study with

even 2-3 parameters, we performed some scoping tests to see if the sensitivity analysis

had identified the appropriate active parameters. We found via qualitative comparisons

that the wall temperature and heat removal values from the simulation were consistently

higher than the experimental values. To determine the source of this inconsistency, we

ran additional scoping simulations. First, we increased the ranges of the char oxidation

parameters. We thought that by reducing the rate of char oxidation, a lower temperature in

section 1 would result. However, this did not occur. Second, we analyzed the effect of wall

thermal conductivity (kw) on the wall temperature profile. While increasing the thermal

conductivity did reduce the section 1 temperature, it also reduced the wall temperatures

in the other sections, making those data points inconsistent. Third, we changed kw to

be a function of temperature. Using an arctangent equation with three parameters, we

produced a range of thermal conductivities in the furnace wall. The result was a lower

wall temperature in section 1 without reducing wall temperatures in sections 3, 4, and 6.

However, the thermal conductivity in the high temperature range was similar to that of

stainless steel, which is unrealistic. Fourth, we compared a movie of our LES simulation

with a video of the L1500 furnace operating in 100 % swirl mode. The L1500 video showed

a cold zone in section 1 that was not present in the L1500 simulation movie. We hypothe-

sized that our data inconsistency in section 1 resulted from not having a cold zone in the

simulation.

Based on this analysis, our objective was to reproduce this cold zone in the simula-

tion. The L1500 inlet boundary condition was a handoff plane approach as described

by Dı́az-Ibarra et al. [14]. This handoff plane included tangential and axial components

of the velocity field exiting the burner. We reduced the tangential velocity components

in the handoff plane and verified that we could produce the cold zone. As a result, we

added a swirl parameter ( fs) to our analysis. This parameter (range of 0-1) modifies the

tangential velocity components of the inlet velocity field. A factor of 0 means the inlet has

no tangential components (0% swirl) and a factor of 1 means it has the maximum tangential

velocity possible (100% swirl) from the swirl burner.
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The final parameter we added to our analysis was ṁcoal . While this parameter was

controlled during the experiments, the coal feeding system was hampered by small leaks

and did not have a high degree of accuracy. The range of this parameter is the maximum

and minimum value in the 30-minute time period described in section 3.5.1.

To reduce the size of our VUQ study, we combined the two most sensitive parameters

from the sensitivity analysis, kdeposit and εw, into one parameter, which is the effective

thermal conductivity of the ash deposit or ke f f . The range of this parameter is determined

by a range of 0.1-1.8 for kdeposit [72] and a range of 0.3-1.0 for εw [87, 94]. Table 3.1 is an

updated I/U map.

3.5 Experimental data collection and uncertainty analysis
The experimental data or QOIs used in this analysis, temperature at the wall, heat

removal by cooling tubes, and O2 mole fraction in the furnace exhaust, were collected in

the L1500 furnace (see Figure 3.3) [2, 27]. The furnace was oxy-fired with a Utah Sufco coal

(bituminous) and a mixture of recycled flue gas and O2. Two burner swirl conditions were

tested, 0 % (no swirl) and 100 % swirl (maximum swirl setting of the burner). Information

relating to the coal characterization and to the operating conditions is found in Dı́az-Ibarra

et al. [14]. Additional details about the L1500 experimental campaign are found in Fry et

al. [28].

3.5.1 Experimental data collection

Figure 3.5 shows a plot of heat removal by the section 1 north and south side cooling

tubes on February 27, 2015, during the period from 10 a.m. to 3 p.m. The burner swirl

setting was switched from 0% to 100% swirl in this interval. The heat removal increased

immediately after the switch but then decreased to pre-switch heat removal levels within

two hours due to ash deposition on the tube surfaces. For this analysis, we selected the

data interval from 3:00 - 3:30 p.m. (100 % swirl mode) because the furnace was stable and

no intrusive measurements were being made. This interval is represented by the red box

in Figure 3.5. While this figure only shows the heat removal data for two sets of cooling

tubes, the other data sets (heat removal by other sets of cooling tubes, wall temperatures,

O2 mole fraction) were extracted for this same time period.
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As seen in Figure 3.5, the heat removal on the north side of section 1 is higher than

that on the south side. We hypothesize that the burner geometry and the positions of the

cooling tubes caused this behavior. We base this hypothesis on visual observations of the

”flame” through optical access at several locations along the length of the furnace. The

“flame” was not symmetric but drifted toward the north side.

3.5.2 Experimental measurement uncertainty

There are generally two types of error in experimental data, sampling error (random)

and systematic error (bias) [63]; see Eqn. (3.1). Sampling error (β) is due to the finite

number of data points used to represent a population. Systematic error (δ) arises from the

measurement instrument, which could result from a problem with the instrument itself or

with the way the experimentalist uses the instrument.

ȳ− yT = δ + β (3.1)

We estimated the sampling error with Eqn. (3.2) using data saved every second over the

30-minute interval described in the previous section. In this equation, tα/2,v is a factor com-

puted with the t-distribution and a given confidence interval, s is the standard deviation,

and n is the number of data points (1800).

|β| ≤ tα/2,v
s√
n

(3.2)

We present the concept of instrument models as a method for analyzing potential sources

of systematic error and quantifying the magnitude of those errors. All of the QOIs recorded

by the data collection system were actually derived quantities. What was actually mea-

sured, for example a voltage signal, was then converted into the desired variable via a

calibration curve or other model. The model, or set of models, we used to convert the data

we collected (mV) into a value of interest (heat removal in W) is the instrument model.

3.5.2.1 Heat removal

3.5.2.1.1 Systematic error for heat removal. The heat removal instrument model

consisted of five equations. In Eqn. (3.3), we computed the heat removal based on the

heat capacity of water at 283 K (cp,water = 4192.1 J
kgK ), the measured water mass flow rate

(ṁwater), and the temperature increase between the water entering (Tin,water) and exiting
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(Tout,water) each set of cooling tubes as measured by type K thermocouples. Based on liter-

ature from the manufacturer [65], we used a value of ±1.1 K as an estimate of systematic

error for each thermocouple temperature measurement.

HR = cp,waterṁwater(Tout,water − Tin,water) (3.3)

GEMS RotorFlow sensors [29] measure revolutions in hertz (Hz) to determine ṁwater in-

directly. We employed a calibration procedure to convert Hz to kg/h (kilograms of water

per hour) for each set of cooling tubes. From the linear calibration curves for the north and

south cooling tubes in sections 3 and 4, we computed a single linear calibration curve from

the mean slope (m̄) and mean intercept (b̄) of these four calibrations curves. We then used

Eqn. (3.4) and Eqn. (3.5) to compute water mass flow with standard deviation for each

recorded Hz measurement in the time interval of interest. Here, x is the measurement

in Hz, N is the number of calibration curves, and ṁstd,water is the systematic error for the

water mass flow rate.

ṁmean,water = m̄x + b̄ (3.4)

ṁstd,water =
(∑N

i=1(mi − m̄)x + (bi − b̄)
N

)1/2
(3.5)

3.5.2.1.2 Sampling error for heat removal. We computed the sampling error associ-

ated with the water mass flow rate and the two temperature measurements in Eqn. (3.3)

using Eqn. (3.2) with a confidence interval of 95%.

3.5.2.1.3 Total error for heat removal. We computed the overall heat removal error

from estimates of the lower and upper bounds given in Eqn. (3.6) and Eqn. (3.7). In these

equations, errorṁ and errorT are the total errors obtained by adding the sampling and

systematic errors. These error bars are plotted in Figure 3.6 for the heat removal data

from the eight sets of cooling tubes.

HRupper = cp,water( ¯̇mwater + errorṁ) (3.6)

(Tout,water − Tin,water + errorT)

HRlower = cp,water( ¯̇mwater − errorṁ) (3.7)

(Tout,water − Tin,water − errorT)
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3.5.2.2 Wall temperature

Temperature measurements (Ttc) at the inside wall of the furnace were taken in sections

1, 2, 3, 4, and 6 using Type B thermocouples encased in ceramic sheaths. These sheaths

were inserted into small holes in the furnace ceiling located in the middle of each section.

Each sheath was inserted until it was flush with the inside wall of the furnace, as shown in

Figure 3.7. Insulation material was then stuffed in the gap (interface) between the ceramic

sheath and the refractory wall.

In the L1500 simulations, we did not resolve the refractory wall as it would have been

too computationally expensive. Rather, we computed a steady state solution for heat

transfer through the wall, including the inside wall temperatures, assuming the properties

of the refractory and insulation materials composing the wall. However, we could not

directly compare these simulation wall temperatures to the temperatures measured exper-

imentally because the heat transfer profile through the sheath and the insulation material

surrounding the sheath was different than the heat transfer profile through the refractory

wall. To compare the simulation and experimental data, we required an instrument model

to correct the experimentally-measured wall temperatures. This correction accounted for

differences in material properties between the ceramic sheath and the refractory wall, as

shown schematically in Figure 3.7.

3.5.2.2.1 Systematic error for wall temperature. The instrument model solves the

two-dimensional energy equation for a solid using the physical properties of the wall

material, the thermocouple encased in the sheath, and the interface material around the

sheath (see Figure 3.8). This model accounts for property variation with temperature in

the refractory and insulation layers of the furnace wall; the properties of the thermocou-

ple encased in the ceramic sheath and of the insulation material around the sheath are

assumed to be constant over the temperature range of the analysis. We assume that the

ash layer being deposited on the furnace wall has no impact on the heat transfer through

the wall. This assumption is based on simulation results and visual observations showing

that slagging conditions exist in sections 1 through 4. The model solves the set of ordinary

differential equations (ODE) presented in Eqn. (3.8) using the LSODA [1, 9] ODE solver.

Eqn. (3.8) is the discretized energy equation using the finite volume method. In this

equation, Ti,j is the temperature of the solid at the center of cell i, j. The density ρi,j and
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heat capacity cp(i,j) are computed based on the material in and the temperature of cell

i, j. The thermal conductivities at cell faces (kl(i,j), etc.) are computed with Eqn. (3.9). The

thermal conductivity at the cell center, ki,j, is a function of the type of material (ktc, kinter f ace,

kre f , kins) and the temperature (refractory and insulation layers only). Figure 3.8 is colored

by kr(i,j) at 300 K. Finally, ∆y and ∆x are the cell size.

ρi,jcp(i,j)
dTi,j

dt
= −kl(i,j)

Ti,j − Ti,j−1

∆y2 + kr(i,j)
−Ti,j + Ti,j+1

∆y2 (3.8)

− kb(i,j)
Ti,j − Ti−1,j

∆x2 + kt(i,j)
−Ti,j − Ti,j+1

∆x2

kb(i,j) = 0.5(ki,j + ki−1,j) (3.9)

kt(i,j) = 0.5(ki,j + ki+1,j)

kl(i,j) = 0.5(ki,j + ki,j−1)

kr(i,j) = 0.5(ki,j + ki,j+1)

The boundary conditions for Eqn. (3.8) were as follows. At the top (see Figure 3.8), we

used a shell temperature of 290 K. We tested the model with shell temperatures ranging

from 300 K to 500 K, and the results were insensitive to this parameter. At the bottom, we

computed the net heat flux at the interface from Eqn. (3.10) where Tw is the temperature at

the inside wall and ε is the emissivity. At the thermocouple location, we used ε = εtc. At

all other locations along the inside wall, we used ε = 1. We obtained the range of qincident

values shown in Table 3.2 from a simulation of the L1500. We picked a wide range to cover

all the possible qincident values along the length of the furnace. On the left and right sides

of the computational domain, we applied a Neumann boundary condition.

qnet = ε(qincident − σT4
w) (3.10)

The initial condition for the whole wall was 300 K. We ran the simulation for 60 h of

physical time in order to reach steady state.

The main goal of this instrument model was to correct the experimentally-measured

temperature (Ttc) to a surface refractory wall temperature (Tw). We determined appro-

priate ranges for model parameters by performing a consistency analysis (described in

section 3.8) with each Ttc (sections 1, 2, 3, 4, and 6) and the output of this instrument

model, Ti,j, at the location labeled “Thermocouple” in Figure 3.8.
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In Table 3.2, we present the I/U map for the thermocouple instrument model. We

explored the four parameters with the highest priority of 6 ( ktc, kinter f ace, εthemo, and qincident)

and fixed the parameters with the lowest priority of 1 (diameter of the hole where the ther-

mocouple sheath was placed, φhole, and the resolution of the computational domain, ∆x

and ∆y). For ktc, the maximum value assumes the ceramic sheath is made from “OMEGATITE

450” [64], which has a thermal conductivity of 8.65 W
mK at 1073 K. The minimum value of 2

W
mK is the thermal conductivity of the refractory material (Greencast-pu Plus) at 1588 K. The

material between the furnace wall and the thermocouple sheath is either air or insulation

(see Figure 3.7). Since kinter f ace represents this material, we used a thermal conductivity

range between that of air at 293 K and of the insulation. We assumed the insulation

material had similar thermal conductivity to the insulation layers in the refractory wall.

We did not have information regarding the range of εtc, so we used a wide range of 0.1 - 1.

The procedure to correct Ttc is presented in Figure 3.9. We identified a sample of 1296

cases within the ranges of the four active parameters from Table 3.2 using the Uncertainty

Quantification Toolkit (UQTk) [13]. We then ran the instrument model for these 1296 cases,

extracted a value Ti,j from the location labeled “Thermocouple” in Figure 3.8 (step (1) in

Figure 3.9), and created a quadratic response surface (surrogate model) from these 1296

outputs (step (2) in Figure 3.9) [19].

Next, we computed the mean values for the thermocouple measurements using the

experimental data from the selected time interval. For each measurement, we estimated

the upper and lower bounds from the sampling error; see Eqn. (3.2). With the surrogate

model and the upper and lower bounds of the thermocouple measurements, we performed

a consistency analysis following the procedure described in section 3.8 for each thermocou-

ple measurement. From the consistency analysis, we obtained a consistent sample space

of the four parameters under study for each measurement (step (3) in Figure 3.9). We then

extracted a value Ti,j from the location labeled “Wall temperature” in Figure 3.8 from the

1296 runs and created 1296 quadratic surrogate models (step (4) in Figure 3.9).

Finally, we evaluated the Tw surrogate model within the consistent sample space ob-

tained in step (3) to obtain the estimated uncertainty due to the systematic error (step (5) in

Figure 3.9). The upper and lower bounds for Tw are the maximum and minimum values

for Tw computed at each thermocouple location.
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3.5.2.2.2 Sampling error for wall temperature. We computed the sampling error

associated with Ttc using Eqn. (3.2) with a confidence interval of 95%. We obtained a

value of ±2.3 K. Because this error is small relative to the systematic error, we ignored

its contribution in the total error analysis.

3.5.2.2.3 Total error for wall temperature. The results of this analysis are presented

in Figure 3.10. The systematic error due to the difference in physical properties between

the wall and the thermocouple sheath is approximately ± 115 K. This error range is a

prior estimation for the uncertainty of the wall temperature. In section 3.8, we perform a

consistency analysis that reduces this uncertainty range.

3.5.2.3 Oxygen molar fraction.

3.5.2.3.1 Sampling error for O2 molar fraction. We computed the sampling error

associated with O2 molar fraction using Eqn. (3.2) with a confidence interval of 90%.

3.5.2.3.2 Systematic error for O2 molar fraction. We assumed a systematic error of 0

for O2 molar fraction because we have not yet developed an instrument model to compute

this error.

3.6 Simulation data collection and model development
We collected simulation data for the L1500 using Arches, a component of the Uintah

software suite [48]. Arches uses a large eddy simulation (LES) approach to resolve the

turbulent flow field of the L1500. The solid (coal) phase is modeled using the direct

quadrature method of moments with three environments [25]. We simulated the fluid flow

through the complex geometry of the burner separately using the commercial software

package STAR-CCM+. We then used handoff files to transfer data from the output of the

burner simulation to the input for the Arches simulation; see Diaz-Ibarra [14] for details

about this procedure.

We previously determined that a computational domain encompassing the first seven

sections of the L1500 delivered sufficient accuracy for this analysis [14]. Our mesh resolu-

tion for these simulations was 15 mm, resulting in a computational domain with 2,255,610

cells. Because the Uintah framework provides efficient parallelization, we performed the

simulations required for this analysis on two high-performance computing platforms, one
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at the University of Utah and the other at Lawrence Livermore National Laboratory. We

ran a typical simulation to 30 s: 25 s to reach steady state and 5 s for data averaging

(see Figure 3.12). Each simulation required approximately 750 processors for 96 hours to

complete; see Dı́az-Ibarra [14] for additional details about the L1500 furnace simulations.

3.6.1 Wall model

A new wall model has been tested and implemented in Arches for the refractory walls

of the L1500. This model allows for both negative and positive net heat flux. Negative

net heat flux occurs when a cold eddy passes by the wall surface after a hot eddy has

passed by and heated up the wall. The main goal of this model is to compute the fire-side

surface wall temperatures at steady state. The walls consist of layers of refractory and of

insulation materials (see Figure 3.7). In this model, the relaxation coefficient is given by

the properties of the wall (density and heat capacity).

The wall model solves two energy equations, one for the refractory material and the

other for the insulation material. The energy balance for the refractory material is shown in

Eqn. (3.11). In this equation, Fsur f ace is the net heat flux from the combustion environment

as computed by Eqn. (3.12), F1,2 is the net heat flux exchange between the refractory layer

(1) and the insulation layer (2) as computed by Eqn. (3.13), and L1 = 21.6 cm is the thick-

ness of the refractory layer. The thermal inertia term ρ1cp,1 = 2.0e6 J
m3K ) is computed from

density and heat capacity data obtained from the manufacturer [44]; In Eqn. (3.12), qincident

is the incident heat flux at the wall computed in the simulation, T1 is the temperature of the

refractory layer, and ε is emissivity. In Eqn. (3.13), T2 is the temperature of the insulation

layer, k1 = 2.36 W
m K is the thermal conductivity of the refractory layer, and L2 = 12.7 cm is

the thickness of the insulation layer.

dT1

dt
=

Fsur f ace − F1,2

L1ρ1cp,1
(3.11)

Fsur f ace = ε(qincident − σT4
1 ) (3.12)

F1,2 = k1
(T1 − T2)

0.5(L1 + L2)
(3.13)

The energy balance for the insulation layer is shown in Eqn. (3.14). Here, F1,2 is com-

puted with Eqn. (3.13), F2,shell is the net heat flux exchange between the insulation layer

and the external wall as computed from Eqn. (3.15), and ρ2cp,2 = 2.9e5 J
m3K is the product of
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the density and the heat capacity of the insulation layers based on data from the manufac-

turer [44]. In Eqn. (3.15), k2 = 0.15 W
mk is the thermal conductivity of the insulation layers

and Tshell is the shell temperature measured during the experimental campaign as shown

in Table 3.3).

dT2

dt
=

F1,2 − F2,shell

L2ρ2cp,2
(3.14)

F2,shell =
k2(T2 − Tshell)

0.5L2
(3.15)

This model is an energy balance on the wall with only two control volumes. Thus, our

main concern is whether the coarseness of the model affects the precision of the surface

temperature. To test the sensitivity of the model to the number of cells, we developed a ver-

sion of this model with an arbitrary number of cells. We present results from two-cell and

100-cell cases in Figure 3.11; both models were run for 12 h of physical time. We changed

the time mean (µq) and standard deviation (σq) of qincident three times to emulate the dif-

ferent firing regimes during a typical day of testing (natural gas fired overnight, coal fired

with 0 % and 100 % swirl). In the first 4 h, µq = 9.07e5 W/m2 and σq = 9.07e4 W/m2. In the

next 4 h, µq = 2.87e5 W/m2 and σq = 2.87e4 W/m2. For the last 4 h, µq = 3.72e5 W/m2 and

σq = 3.72e4 W/m2. For each firing regime, we assumed a normal distribution of qincident

and sampled from that distribution to obtain qincident at each time step. In Figure 3.11,

the blue line (100 grid points) corresponds to the surface wall temperature, and the green

line (2 grid points) corresponds to T1 (refractory layer temperature). There are some slight

differences in model behavior before the cases reach steady state. However, once steady

state is reached, the differences in surface wall temperature are negligible. Consequently,

we implemented the simpler two-grid-point model, Eqn. (3.11) and Eqn. (3.14), in Arches.

We solved the two-grid-point model using a first order scheme in time. However,

Eqn. (3.11) and Eqn. (3.14) cannot be solved using the same time step as the LES simulation

because it would take too long to reach steady state. Instead, we used a time step that

was 5000 times larger than the time step of the LES simulation. Therefore, 1 s of the LES

simulation corresponded to 5000 s in the wall model. To check whether this new model

reached steady state, we extracted wall temperatures from simulation output at the five

locations corresponding to the thermocouple measurement locations and plotted them in
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Figure 3.12. After 15 s of LES simulation time, all the thermocouple locations have reached

steady state.

The cooling tubes used the Arches wall model described in Diaz-Ibarra [14].

3.6.2 Suite of simulations for consistency analysis

We ran a suite of 34 cases in Arches in which we varied the three parameters in Ta-

ble 3.1. This suite of cases is graphically displayed in Figure 3.13 where each red point

represents a simulation that was run for a least 30 s of simulation time.

3.6.3 Data extraction and postprocessing

Using post-processing tools described in Diaz-Ibarra [14], we extracted data relating

to the QOIs from the 34 simulations and averaged the data over the last 5 s of simulation

time.

Since heat removal (Qremoval) by the cooling tubes is a derived quantity, we computed it

from Eqn. (3.16) during postprocessing. In this equation, A corresponds to the surface area

of the cell faces that are in contact with the hot gas, Tw is the surface temperature of the

cooling tube, qincident is the incident heat flux on the tube, and ε is the surface emissivity of

the tube. The averaged values of Qremoval in all the cells comprising a set of cooling tubes

were summed up to obtain the total heat removal by that set of tubes. This procedure was

repeated for all eight sets of cooling tubes.

Qremoval =
N

∑
n=0

ε(qincident − σT4
w)A (3.16)

To obtain the wall temperature simulation data, we extracted the averaged wall tempera-

tures at the five thermocouple locations. For O2 molar fraction, we performed both time

(last 5 s of simulation time) and spatial (exit plane of the simulation) averages of the mass

fractions of O2, CO2, H2O, SO2, and N2 and then computed the O2 molar fraction on a dry

basis (to match the experimental data) using this gas composition.

3.7 Construction of surrogate models
The consistency analysis performed in section 3.8 requires thousands of function eval-

uations. Since the evaluation time of our function, an LES simulation, is on the order

of days, we created surrogate models of the simulation outputs using Gaussian process
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(GP) response surfaces [70, 76, 77]. Each GP surrogate model was created with the Arches

simulation data obtained as described in section 3.6.3. The number of GP surrogate models

was equal to the number of experimental measurements. We had 14 total measurements

and thus 14 GP surrogate models: eight heat removal measurements, five corrected wall

temperatures, and one O2 mole fraction measurement.

In Figure 3.14, we present verification plots for three GP surrogate models: wall tem-

perature in section 1 (T1), heat removal by the set of cooling tubes on the north side in

section 1 (HR2), and O2 mole fraction in the exhaust. In these plots, the x axis is the

surrogate output for the variable and the y axis is the Arches simulation output for the

same variable. The green line is y = x. If the surrogate model is a good representation of

the simulation data, all the x, y pairs should be close to y = x, which they are. Thus, the

GP surrogate models do reproduce the output values from the Arches simulation.

In Figure 3.15, we performed additional verification by evaluating the same three GP

surrogate models with samples of 10,000 runs. In the first column, we used ṁcoal = 290

lb/hr and varied ke f f and fs over the ranges presented in Table 3.1. In the second column,

we used fs = 0 and varied ke f f and ṁcoal over the ranges presented in Table 3.1.

The GP surrogate model plots of T1 correspond to the first row in Figure 3.15. In the

first column, the temperature increases with increasing fs until fs = 0.4. At this point, the

temperature is approximately constant. In the second column, the temperature decreases

with increasing ke f f , which means more energy is being removed from the reactor.

The GP surrogate model plots of HR2 correspond to the second row in Figure 3.15. In

the first column, we see that the heat removal is lower in the region fs ≤ 0.4 than in the

region fs ≥ 0.4 , which corresponds to the lower temperatures seen in the T1 GP surrogate

models. In the second column, increasing ke f f increases the heat removal.

The plots of O2 molar fraction are shown in the third row of Figure 3.15. The scatter

plots in both columns show that if fs increases, the O2 molar fraction also increases, but

only by a small amount. On the other hand, if ṁcoal increases, the O2 molar fraction

decreases because more coal means more O2 is consumed during combustion.

We performed a similar verification analysis for the other GP surrogate models. Based

on these qualitative analyses, we determined that all the surrogate models demonstrated

adequate behavior.



56

3.8 Analysis of model outputs
The VUQ methodology employed for this study is a consistency measure analysis

referred as bound-to-bound consistency [75]. The basic concept of this consistency analysis

is the comparison of model outputs with experimental data using Eqn. (3.17). In this

equation, ym,e(x) is the simulation data point obtained from a simulation defined by the set

of x parameters and ye is the experimental data point. If ∆ ≤ 1, the simulation data point

using parameter set x is consistent with the experimental data point. If the simulation

outputs for a parameter set x are consistent with all the experimental measurements, x is

a consistent point in our analysis.

∆ =
|ym,e(x)− ye|

ue
(3.17)

To perform the consistency analysis, we first computed ue and ye. Here, ue is the difference

between the upper and lower bounds divided by two for each of the 14 measurements

(ue =
ye,upper−ye,lower

2 ). We estimated these bounds in section 3.5.2.2 for the thermocouple,

section 3.5.2.1 for the heat removal, and section 3.5.2.3 for the O2 mole fraction measure-

ments. We computed ye, the mean experimental value, by averaging the upper and lower

bounds of each measurement (ye =
ye,upper+ye,lower

2 ).

Next, we created a random sample of 500,000 points within the parameter space de-

fined by the ranges of the three parameters under study ( fs, ṁcoal , ke f f ) as presented in

Table 3.1 and evaluated each one of the 14 GP surrogate models at all 500,000 points. We

then applied the consistency analysis to the 14 measurements in our data set. For each

point (set of parameter values) in the 500,000 point set, we extracted the maximum ∆,

∆max, of the 14 ∆ values that we computed. From this vector of ∆max values, we extracted

the minimum ∆max, which is the most consistent point from the 500,000 points. If this

minimum ∆max < 1, then we have found at least one consistent point.

We reviewed the ∆max vector and selected all points for which ∆max < 1. From this

group of points, we obtained a new range for the three parameters by finding the global

maximum and minimum values of all the consistent points. This new range is presented

in Table 3.4. If the minimum ∆max > 1, we need to improve our models, explore other

parameters, or review ue.

Our last step in the consistency analysis was to perform a refined consistency analysis
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with the new (consistent) range. We created a random sample of 10,000 points within the

consistent range and then reevaluated the 14 GP surrogate models at these 10,000 points.

We next obtained a set of consistent points where ∆max < 1; these points are presented in

Figure 3.16. These points are simultaneously consistent with all 14 QOIs. In this figure,

the ranges for the three axes are the original ranges presented in Table 3.1 and the box

containing the points is the consistent range. The color of each point corresponds to ∆max

in the consistent samples.

The consistent ranges for the three parameters are presented in Table 3.4. These ranges

are the limits of the box that contains the consistent points (see Figure 3.16). All ranges

were reduced with the help of the experimental data. Thus, the consistency analysis

improves the simulation tool by refining (e.g. calibrating) the parameters that have a

primary effect on the QOIs. It also improves the quality of the experimental data by

reducing the uncertainty bars.

We compare the experimental (red error bar), simulation (blue error bar), and con-

sistency ranges (green error bar) for the wall temperature, heat removal, and O2 mole

fraction in Figure 3.17. In all three sets of data, the consistency range is smaller than the

experimental uncertainty range. The uncertainty in Tw was reduced from approximately

± 115 K to ± 16 - 26 K. The uncertainty in heat removal measurements prior to the

consistency analysis was approximately ± 1.05e4 W to ± 1.24e4 W. After the consistency

analysis, the uncertainty was reduced to approximately ± 0.08e3 W to ± 0.58e3 W. The

consistency analysis reduced the uncertainty in all the experimental measurements by

forcing simultaneous consistency of all 14 data points with simulation output.

3.9 Feedback and feed-forward
In this step, we review our analysis, check assumptions, and make recommendations

for the next VUQ cycle. We explored three parameters (ke f f , fs, and ṁcoal) using 14 mea-

surements (eight heat removal values, five wall temperatures, and one O2 mole fraction).

3.9.1 Parameters

The parameter ke f f has a direct impact on the heat removal by the cooling tubes and

on the wall temperatures as noted in the surrogate model scatter plots (see Figure 3.15).
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This parameter represents the thermal conductivity and the surface emissivity of the ash

layer on the cooling tubes as well as a correction for the changing external surface area of

the cooling tubes. In the simulation, we use a nominal area to compute the heat removal.

However, in the reactor, this surface area may be bigger because of the ash deposits on

the surface. The consistency analysis produces a calibrated range for ke f f of 0.97-1.51

(see Table 3.4). This range indicates that using a constant value for this parameter in

simulations is not adequate. Thus, we recommend developing a model that accounts

for the variation in this effective thermal conductivity. This analysis shows the L1500

reactor can be used to develop models related to ash deposition that have large impacts on

measurements related to heat flux such as heat removal and wall temperature.

The swirl parameter, fs, also has a direct impact on the heat removal and wall tem-

perature measurements. In Figure 3.15, the wall temperature in section 1 increases until

it reaches a maximum value at fs = 0.4. To better understand this behavior, we present

instantaneous plots of gas temperature for three Arches simulations in Figure 3.18; this

figure represents a slice through the middle of the computational domain in the y plane.

The vertical black lines show the position of the wall thermocouple in sections 1, 2, and

3. All three cases have the same ṁcoal and ke f f . For the case with fs = 1, the tangential

velocity range is 0 - 75 m/s. When fs = 0.1, the tangential velocity range is 0 - 7.5 m/s.

When fs = 0, the tangential velocity is zero.

From the figures we see that when fs = 1, the gas temperature near the wall thermocou-

ple in section 1, T1, is higher than the same temperature for the other two cases. Therefore,

if fs = 1, we have a short, wide zone of higher temperatures (red color in the figure) in

section 1. If fs = 0, the long, narrow zone of higher temperatures extends through sections

1, 2, and 3. If fs has a value between 0 and 1, the behavior is between this two extremes

as we can see when fs = 0.1. The experimental wall temperature data show a maximum

temperature in section 2 (see Figure 3.10). Since fs = 1 produces a maximum temperature

close to the burner in section 1, we need to vary fs if we want to obtain consistency. After

performing the consistency analysis, we found that the range for fs was 0. - 0.1, which is

close to the 0% swirl case.

The low range for fs indicates a potential problem with the burner inlet condition since

we were operating in 100 % swirl mode ( fs = 1 ). We performed a high-resolution LES
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simulation of the burner given the fabrication drawings for the burner and the operating

flow rates for the various inlet streams (oxidant and coal) to obtain velocity profiles at the

burner exit plane [14]. Thus, we need to review the assumptions that were made in the

simulation such as (1) no leaks in the burner, (2) the geometry in the fabrication drawings

accurately represents the actual burner, and (3) the mechanical joints such as screws do not

affect the fluid dynamics. From this analysis, we know what the tangential velocity has to

be reduced in order to obtain consistency.

The coal feed rate, ṁcoal , has a strong effect on the O2 molar fraction (see Figure 3.15,

third column). It also has an effect on Tw and heat removal because increasing or decreas-

ing ṁcoal increases or decreases the amount of energy in the reactor. The consistent range,

275 - 286 lb/h (see Table 3.4), is small and biased toward the lower feed rate. This behavior

could be due to a coal leak during the experimental campaign.

3.9.2 Measurements

The measured temperatures, Ttc, were corrected to Tw with the instrument model pre-

sented in section 3.5.2.2. While the variation in temperature measured by these thermocou-

ples was small (standard deviation ± 2 K) over the 30-minute time period under analysis,

we found that the uncertainty in Tw was ∼ ± 115 K. This case is a good example of

the importance of estimating bias (systematic) errors in experimental measurements. The

main cause of this systematic error was the difference in thermal conductivity among the

thermocouple, the insulation material that was used in the gap between the thermocouple

and the wall, and the refractory and insulation materials that made up the wall. To im-

prove this measurement, we recommend that the thermocouple be imbedded in the same

material of which the wall furnace is composed.

The large uncertainty in heat removal (see in Figure 3.6) arises from several sources.

The systematic error, corresponding to 78% - 85% of the total error, is due to calibration

and to the small difference between the inlet and outlet water temperature (∼ 20 K). The

error in two type K thermocouple measurements is ∼ 2.2 K, which is ∼ 10 % of the water

temperature difference. The sampling errors are also substantial, representing 15%-22% of

the total uncertainty. These errors were caused by ash deposits that were not controlled

during the experimental campaign.
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We assumed that the experimental data were taken when the L1500 was at steady state.

This assumption is justified for the thermocouple-temperature data because the rate of

temperature change was small; for the 30-minute time period analyzed in this study, the

standard deviation was ∼2.3 K. However, the heat removal data shows transient behavior

(see Figure 3.5), probably due to ash deposition. We tried to account for transient effects

in the experimental error estimation. To reduce the effect of ash deposits on heat removal

rates in future campaigns, we will replace four of the eight sets of cooling tubes with flat,

water-cooled panels with an accompanying soot blowing system. With this system, we

can correlate the effects of ash deposition with the time in the soot blowing cycle and thus

obtain better estimates of the error due to the transient effects.

3.9.3 Models

In the Arches simulations, we made the assumption that the temperature profile in

the furnace wall could be computed with a steady state wall model. In order to review

this assumption, we performed a simulation with the 2D wall model presented in section

3.5.2.2. We ran the model for 61 h with qincident = 5.20e5 W/m2 and then switched to

qincident = 2.87e5 W/m2 for 6.3 h to emulate the switch from natural gas to coal in this

experimental campaign. In Figure 3.19, we present three temperature profiles from this

simulation: fire-side surface of the wall (0 cm), 1.27 cm (0.5 in) in the wall, and 10.16 cm

(4 in) in the wall. The temperature at the surface reaches steady state in less than 2 h,

while the temperature 1.27 cm (0.5 in) in the wall takes ∼ 5 h, and the temperature 10.16

cm (4 in) in the wall takes 6.3 h. These long transients are due to the thermal inertia of

the refractory walls, which makes the heating process slow. Since the experimental wall

temperature measurements were near the wall surface, we conclude that our assumption

of a steady state wall condition is reasonable. However, for temperature measurements

deeper in the refractory wall (e.g. farther from the hot face), the associated instrument

model must include transient effects.

3.10 Conclusions
We presented results from our VUQ analysis of an oxy-coal data set collected in the

L1500 furnace. We employed a six-step methodology that was based on bound-to-bound
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consistency analysis. Through this analysis, we reduced the uncertainty in the experimen-

tal data and in three simulation parameters: ke f f , fs, and ṁcoal . The consistency ranges for

these parameters were: ke f f = 0.97-1.51 w
mK , fs= 0.0-0.1, and ṁcoal = 275-283 lb

h .

The ke f f parameter, which includes both εw and kdeposit, had a large impact on wall

temperatures in and heat removal from the L1500. Thus, we conclude that this reactor can

be used to perform studies on ash deposition and to develop and validate models related

to heat transfer to cool surfaces. The fs parameter, which affects the inlet condition, also

had a large impact on the L1500 measurements, making the L1500 an adequate reactor for

studying improvements to burner design and for testing swirl effects. The ṁcoal parameter

had a small effect on wall temperature and heat removal measurements; its impact on the

O2 mole fraction in the exhaust was much larger.

This methodology requires uncertainty bounds on the experimental data that include

both the sampling and systematic errors. We presented a procedure to estimate the system-

atic error in a thermocouple device through an instrument model and the application of a

VUQ methodology. The instrument was the 2D representation of the energy equation for

the wall of the L1500. With this procedure, we estimated an error of approximately ±115

K in the thermocouple measurements of wall temperature, which is much greater than the

estimated random error of ∼ ±2.3 K. We then performed the consistency analysis and

were able to reduce the experimental error from ∼ ± 115 K to ∼ ± 16-26 K.

We also estimated the systematic error in heat removal data through cooling tubes

with an instrument model. We found that the error due to calibration was ∼ 80 % of

the total error. We then performed the consistency analysis and were able to reduce the

experimental error from ∼ ± 1.06e4 W to ∼ ± 0.58e4 W.

From the wall instrument model, we found that the surface wall temperature reaches

steady state in a few hours for the conditions tested in the L1500. Therefore, performing

an LES simulation with a steady state wall model is a reasonable approach. However,

measurements of temperatures deeper in the wall need an instrument model in order to

account for transient effects.
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Table 3.1. Input/uncertainty map for consistency analysis
Parameter Range

min max
Scenario parameters

fs [−] 0. 1.
ṁcoal [

lb
h ] 275. 310.

Model parameters (ash deposition)
ke f f [Wm−1K−1] 0.1 5.

Table 3.2. Input/uncertainty map for the thermocouple instrument model
Parameter Priority Range

min max
ktc [

W
mK ] 6 2.0 8.65

kinter f ace

[ W
mK ]

6 0.0257 0.15

εtc [−] 6 0.1 1.
qincident [

W
m2 ] 6 1.88e5 5.95e5

Nominal Value
φhole [m] 1 0.05
∆x [m] 1 0.00635
∆y [m] 1 0.01
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Table 3.3. Shell temperatures averaged over all measurements made on a side
Location Shell Temperature [K]

Quarl 434
Main chamber south side 362
Main camber north side 396

Main chamber bottom side 362
Main chamber top side 427

Table 3.4. Parameter ranges after consistency analysis
Parameter Prior range Consistent

range
Nominal
value

ke f f
[ w

mK

]
0.1-5. 0.97-1.51 -

fs 0.0 - 1. 0.0- 0.1 1.
ṁcoal

[ lb
h

]
275. - 310. 275. - 283. 290.

Figure 3.1. Validation hierarchy for CCMSC.
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Figure 3.2. Schematic of the L1500 multifuel combustion furnace.
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Figure 3.3. Schematic of the first four sections of the L1500 furnace.
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Figure 3.4. Six-step methodology with consistency analysis
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0% swirl setting 100% swirl setting

Selected data

Figure 3.5. Heat removal data in section 1 on February 27, 2015. The heat removal
decreases continually in both 0% and 100% swirl modes due to ash deposition on the tube
surfaces.

Figure 3.6. Heat removal from cooling tubes with total error bars; see Eqn. (3.1).
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Figure 3.7. Thermocouple placement in furnace wall. Section 4 is shown but the placement
is similar for all thermocouple measurements.
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Figure 3.8. Representation of the instrument model to correct thermocouple measurement
in ceramic sheath to equivalent inside wall temperature.
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Figure 3.11. Wall model verification.

Steady state

Selected data

Figure 3.12. Wall temperature at thermocouple locations; section 1 is closest to the burner.

Figure 3.13. Suite of simulations that were run in Arches.
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Figure 3.14. Verification of surrogate models for T1, HR2, and O2 molar fraction
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Figure 3.15. Surrogate models for T1, HR2 and O2 molar fraction.

Figure 3.16. Consistent sample space for all 14 QOIs in L1500 simulations.
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Figure 3.17. Consistency range for heat removal (top), O2 molar fraction (middle), and
wall temperature (bottom). Data are plotted by QOI number. The eight sets of cooling
tubes are QOIs 1-8, the O2 mole fraction in the exhaust is QOI 9, and the wall temperatures
in sections 1, 2, 3, 4, and 6 are QOIs 10-14. Consistency was obtained simultaneously across
the 14 QOIs.
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fs = 0

fs = 0.1

fs = 1

T1 T2 T3

Figure 3.18. Effect of fs, ṁcoal = 275 [lb/h], ke f f = 3 [W/m/k], Blue color is 300 K, red is
2100 K

qincident = 5.20e5
h W

m2

i
qincident = 2.87e5

h W

m2

i

Figure 3.19. Transient temperature effects in the refractory wall



CHAPTER 4

REACTING PARTICLE AND BOUNDARY

LAYER MODEL: FORMULATION

In preparation for submission to Combustion and Flame, Reacting Particle and Bound-

ary Layer (RPBL) model: Formulation. Oscar H. Dı́az-Ibarra, Jennifer Spinti, Philip J.

Smith, Christopher Shaddix, Ethan Hecht.
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The Reacting Particle and Boundary Layer (RPBL) model computes the transient-state

conditions for a spherical, reacting, porous char particle and its reacting boundary layer.

RPBL computes the transport of gaseous species with a Maxwell-Stefan multicomponent

approach. Mass transfer diffusion coefficients are corrected to account for a nonstagnant

bulk flow condition using a factor based on the Sherwood number. The homogeneous gas

phase reactions are estimated with a syngas mechanism, and the heterogeneous reactions

are calculated with a six-step reaction mechanism. Both reaction mechanisms are imple-

mented in Cantera. RPBL computes carbon density (burnout) and uses the Bhatia and

Perlmutter model to estimate the evolution of the specific surface area. RPBL solves two

energy equations, one for the gas temperature and the other for the particle temperature.

The physical properties of the particle are computed from the fractions of ash and carbon

in the particle as well as the void fraction. The void fraction is computed assuming a

constant diameter particle during the reaction process. RPBL solves a particle momentum

equation in order to estimate the position of the particle in a specific reactor.

In this paper, we present the model formulation and model outputs for a char particle

in the optical entrained flow reactor at Sandia National Laboratories [34, 61]. We explore

the sensitivity of two RPBL outputs, particle temperature and velocity, to nine model

parameters. The two outputs are found to be sensitive to five of the nine parameters.

4.1 Nomenclature
Ap External surface area [m2]
A Area of the cell face (i− 1/2 or i + 1/2) [m2]
A Pre-exponential factor in units of [mol, cm2, s]
Cop Molar concentration of the oxidizer in the gas phase at the surface of

the particle [mol
m3 ]

cp Heat capacity [ J
kgK ]

Do Multicomponent diffusion coefficient (mass basis) [m2

s ]
-D Binary Maxwell-Stefan multicomponent diffusion coefficients [m2

s ]
dp Diameter of the particle [m]

E Activation energy [ kJ
mol ]

F Heat flux [ J
m2 ]

F1 Drag coefficient factor [−]
hk,i Gas enthalpy [ J

kg ]

hsolid gas Internal particle heat transfer coefficient; hsolid gas = 1 [W
K ]

jk Mass diffusion flux relative to the mass average velocity [ kg
m2s ]

kr Reaction constant for heterogeneous reaction [m
s ]
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Kg Index for last gas species
kn Convection heat transfer coefficient [ W

m2 ]
m Mass of ash [Kg]
n Apparent order of the reaction [−]
nt Total mass flux relative to stationary coordinates [ kg

m2s ]

nk Mass flux of species k relative to stationary coordinates [ kg
m2s ]

Np Number of cells inside of particle
N Number of cells in whole domain
l Length scale in reactor [m]
P Pressure [Pa]
Pr Prandtl number [−]
Re Reynolds number [−]
R Gas constant, 8.3144621 J

K mol
r Radius [m]

rk Char reaction rate [ kg
s ]

Si Heat exchange source term [ W
m3 ]

ṡk Heterogeneous molar production rate of kth species [mol
m2s ]

Sgc Specific surface area [m2

kg ]

Sh Sherwood number [−]
Sc Schmidt number [−]
t Time [s]
tr Relaxation time [s]
T Temperature [K]
V Volume [m3]
v velocity [m

s ]
vs Stoichiometric coefficient [−]
Wc Molecular weight of carbon [ kg

mol ]

Wk Molecular weight of specie k [ kg
mol ]

ẇk,i Molar production rate of species k [ kmol
m3s ]

xc Conversion of carbon [−]
xk Mole fraction of species k [−]
Y Mass fraction [−]
ξp Particle area factor to account for internal surface burning [−]
ρ Density [kg/m3]

σr Specific surface area for heterogeneous reactions, σr = Sgcρbulk,c [
m2

m3 ]
φ Void fraction [−]
τ Tortuosity [−]
µg Dynamic viscosity [Pa s]
ψ Structure parameter [−]
λ Thermal conductivity [ W

m k ]
ε Emissivity [−]

Subscripts
in f : Limit of the particle domain
g: Gas
p: Particle
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ash: Ash in particle
char: Char in particle
cond: Conduction
h: Enthalpy
inter f ace: Interface of particle
c or cb: Carbon
k: Species k
t: Total
bulk or b: Bulk gas
true: True density
solid: Solid particle
initial: Initial condition
i: Computational cell
s: Surface

4.2 Introduction
Char oxidation is a slow process that takes place in the entire domain of a coal-fired

boiler. An accurate computation of char oxidation in the entire computational domain

is required to predict the O2 and CO concentrations, particle temperatures (needed for

radiative heat flux calculations), and the carbon content of the fly ash. Because char

oxidation is a complex process, with heterogeneous and homogeneous reactions, species

transport, and the evolution of the physical properties of the porous matrix, a high-fidelity

model of the process will have many parameters, some of which have high uncertainty.

Experimental studies and modeling approaches for the oxidation of char particles have

been research topics for the last seven decades [18, 23, 35, 36, 39, 40, 49, 55, 79–81, 83, 89–91,

93, 95]. The main purpose of all this experimental and modeling work is to compute the

kinetic rates of char oxidation. One approach is the global model given in equation (4.1)

where the char oxidation rate depends on the oxygen stoichiometric coefficient (vs), the

molecular weight of carbon (Wc), a kinetic constant for the heterogeneous reaction rates

(kr), a particle area factor to account for internal surface burning (ξp), the external area of

the particle (Ap), the gas concentration of the oxidizer (Cop) at the surface of the particle,

and the reaction order (n). Murphy and Shaddix [61] presented an experimental and

modeling study where a kinetic constant was found for both a single-n th-order Arrhenius

expression and for an nth-order Langmuir-Hinshelwood kinetic equation.

rk = vsWckrξp ApCn
op (4.1)
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While this kind of approach is easy to implement, the result may only apply to the specific

conditions of the experiment. A more detailed approach is one where the intrinsic char

reaction rate is computed. This approach is based on the specific surface area of the

porous matrix; therefore, the internal diffusion and reaction of species are considered.

Additionally, the porosity, specific surface area and bulk density need to be computed.

There are two different methods for computing the pore diffusion. In the macroscopic

method, an effective diffusion coefficient is defined in terms of the molecular diffusion

and the Knudsen diffusion coefficient. This effective diffusion coefficient is multiplied by

the ratio of porosity to tortuosity. The porosity is then obtained from the density assuming

a shrinking core model [83]. In the microscopic model, the diffusion through a single pore

is solved and then a statistical approach is used to predict the porosity in the particle [7, 83].

Both mass transport of species and heterogeneous chemical reactions are important

phenomena that must be considered in char modeling. Researchers have proposed three

zones to describe the behavior of the char reaction rate with particle temperature and

size [83]. In Zone I, which occurs at low temperatures and for small particles, chemi-

cal reaction is the controlling step. The oxidizer is transported throughout the particle;

therefore, the chemical reaction rate is uniform. In this zone, the diameter of the particle

is constant and the bulk density is proportional to the mass loss rate [58, 83]. In Zone III,

which occurs at high temperatures and for large particle, mass transport of species from the

bulk to the surface of the particle is the controlling step. The reactions occur on the external

surface of the particle, the bulk density is approximately constant, and the diameter of the

particle reduces at a rate proportional to the one-third power of the mass loss. Finally, in

Zone II, both mass transport and chemical reaction are important. In this zone, there is a

partial penetration of oxidizer in the particle, leading to gradients of bulk density, specific

area, and mass loss. Both diameter and bulk density are changing in this zone. In a real

industrial boiler, most of the particles are burned under Zone II conditions.

This three-zone approach is a simplified model to understand the char oxidation phe-

nomenon. However, a more realistic approach requires that other phenomena besides

mass transport and chemical reaction be considered, including char structure variations,

particle size effects, radiation between particles, changes in specific surface area, fracturing

of char, catalytic reactions of ash, evaporation of ash, and so on.



78

Erland et al. [18] developed a comprehensive model for char particle conversion for

a volume containing multiple particles. Their model predicts the temporal variations of

mass, bulk density, and diameter for a porous particle that is surrounded by a gas mixture

of O2 and CO2. A detailed nine-step heterogeneous reaction mechanism is used to account

for the conversion of carbon. A homogeneous reaction mechanism (GRI-Mech 3.0) is used

for the gas reactions. They assume that the heterogeneous reactions are occurring on

the surface of the particle and then use a Thiele modulus strategy to correct for reactant

penetration. Additionally, they take into account the particle-wall and particle-particle

radiation effects. Equations for the mass of gas, the mass of each gas species, and the

energy are solved in a hermetic volume with a fixed number of particles. In the energy

equation, the heat of reaction as well as the convective and conductive heat fluxes are

considered. For the particle phase, an equation for the mass of the particle is solved;

this model assumes that there is no evaporation of ash. The mass loss of the particle is

computed as the product of the carbon consumption per unit of surface area multiplied

by the specific surface area. The specific surface area as a function of carbon conversion is

calculated using an expression from Bhatia and Perlmutter [7].

Mitchell et al. [58] developed a detailed model that predicts the physical changes of

a particle during the combustion process. In this approach, the particle is divided into

a number of concentric, annular volume elements. For each element, the bulk density,

mass loss rate, and specific area are computed. The model predicts the particle’s burning

rate, temperature, diameter, bulk density, and surface area. Differential equations for the

carbon mass of the particle, the O2 concentration, and the fraction of the total sites having

adsorbed oxygen atoms are solved. The model assumes an isothermal particle, and homo-

geneous gas reactions are not considered either inside of the particle or in the surrounding

gas. However, a mass balance is used to compute the flux of O2 from the surrounding

gas to the surface of the particle. A six-step heterogeneous reaction mechanism is used to

compute the consumption of carbon. The main purpose of this model is to accurately

predict the bulk density, diameter, and specific area of the particle during its lifetime.

This model can be considered a comprehensive or high-fidelity model, where information

about the diffusion process, the heterogeneous reactions, and physical properties of the

particle can be obtained and further used to produce a low-fidelity model.
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Singer and Ghoniem [80] developed a comprehensive, transient, one-dimensional char

model. This model accounts for evolution of a multimodal pore structure, computes

fluxes using a multicomponent approach, and incorporates reaction annealing, particle

shrinkage, and ash fragmentation. The model uses three heterogeneous reactions and

two homogeneous reactions, although the homogeneous reactions are confined to the

boundary layer. The model has the option of a time-dependent boundary condition. Singer

and Ghoniem compared their model output with experimental data for a synthetic char

collected in an entrained flow reactor at Sandia National Laboratories [34]. This highly

detailed model focuses on the porous matrix evolution and the transport of gas species in

the matrix. Its predictions of particle temperature and conversion closely match the data

with discrepancies in the position closest to the injection point.

The Surface Kinetics in Porous Particles (SKIPPY) model solves differential equations

for the mass fractions of species and for energy both inside the particle and in its sur-

roundings. SKIPPY was developed by Brian Haynes and coworkers at the University of

Sydney[3] and has subsequently been used by Molina and coworkers [60] and by Hecht

and coworkers [31–34]. It is similar in approach to Mitchell and coworkers [58]. However,

Mitchell uses an effective diffusion coefficient for oxygen while in SKIPPY, a Maxwell-

Stefan approach is used and multicomponent mass transfer effects are considered. There

are several differences between SKIPPY and the global reaction model shown in equa-

tion (4.1). In SKIPPY, the whole particle is resolved and carbon consumption throughout

the particle is computed ( e.g. with a six-step surface reaction mechanism [34]).

In this paper, we present the Reacting Particle and Boundary Layer (RPBL) model. This

model solves conservation equations inside the particle and in its surroundings (boundary

layer). It includes heterogeneous surface reactions, gas phase reactions, and the evolution

of physical properties with carbon burnout. This model is a transient version of SKIPPY

with some modifications. We use the same approach as SKIPPY for computing species

transport. The source terms are equivalent, but RPBL uses Cantera [30] to compute them

while SKIPPY uses CHEMKIN [74] and surface CHEMKIN [12]. RPBL allows a time-

dependent boundary condition for all the equations instead of the constant boundary used

in SKIPPY. RBPL has two energy equations, one for the particle and one for the gas, while

SKIPPY uses a combined energy equation for the gas and particle. Additionally, RPBL
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has a momentum equation to compute the velocity of the particle separately from the gas

velocity. RPBL also accounts for a flowing boundary condition by adding a correction

to the stagnant boundary condition used in SKIPPY; see equation (4.9). SKIPPY uses

Darcy’s law to compute the pressure inside of the particle; in RPBL, we assume a negligible

gradient of pressure. The reason we do not use Darcy’s law is that it is a simplification of

the momentum equation for steady state flow in a porous medium, and we are resolving

a transient state.

In the RPBL model, we focus our efforts on the detailed solution of both heterogeneous

and homogeneous reactions. We use a simple approach to compute the void fraction

and the evolution of the solid matrix. In contrast, Singer and Ghoniem [80] focus their

efforts on the detailed resolution of the solid matrix and use a simpler reaction model

than our approach. We think the evolution of the solid matrix is an important process

in char oxidation. However, adding model complexity to RPBL increases the number of

uncertain parameters. Consequently, in a companion paper, we perform a validation and

uncertainty quantification study to see if we can represent the experimental data collected

by Hecht [34] with the current formulation of RPBL. We will then decide whether to add

complexity to the evolution of the solid matrix.

4.3 Development of the RPBL model
The RPBL model is a one-dimensional model in the radial direction that computes the

transient-state conditions for a spherical, reacting, constant-diameter, porous particle and

its reacting boundary layer. The particle and its surrounding gas are considered to be

continuous media and there is transport of gas species between them (see Figure 4.1).

Therefore, the particle voids are full of gas. The porous particle surface has active carbon

sites which react heterogeneously with gas species, including O2, CO2, and H2O. These

heterogeneous reactions are presented in Table 4.1. Additionally, homogeneous reactions

can occur between the gas species. The model uses a syngas (H2/CO) reaction mechanism

with 11 species (O2, H2O2, CO, CO2, O, H, OH, HO2, HCO, H2, H2O) developed by Ranzi

and coworkers [69]. Because of the carbon molecules that are being gasified and leaving

the porous matrix, the physical properties of the particle are changing during the reaction

process.
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4.3.1 Species mass fraction equations

The mass fraction for a species k in cell i (Yk,i) is computed from equation (4.2). This

equation is obtained with a mass balance on a cell i of volume Vi. Here, ρt,i is total

mass density computed with the ideal gas equation, the subindeces i − 1/2 and i + 1/2

correspond to values at the left and right faces of the cell i, A is the area of the cell face

(i − 1/2 or i + 1/2), nk is the mass flux of species k relative to stationary coordinates

at the cell face, and the last two terms on the right-hand side are source terms from the

heterogeneous and homogeneous reactions, respectively.

dYk,i

dt
= − 1

Viρt,i

[
(Ank)i+1/2 − (Ank)i−1/2 + Vi ṡk,iσr,iWk + Viẇk,iWkφi

]
(4.2)

The value for nk in equation (4.2) is computed with equation (4.3) using a Maxwell-Stefan

multicomponent approach [86]. Here, jk is the mass diffusion flux relative to the mass

average velocity and nt is the total mass flux relative to stationary coordinates.

nk = jk + Yknt (4.3)

The value for jk is computed with equation (4.4). The total density (ρt) is computed at

the cell face using a linear approximation between i− 1 and i for the left face (i− 1/2) and

between i and i + 1 for the right face (i + 1/2). The parameter Do
k,l is the matrix of diffusion

coefficients [DDDo] computed using the Maxwell-Stefan multicomponent approach [86] as

shown in equation (4.5). In this equation, the matrix [DDD] is the inverse matrix of the matrix

B (computed with equation (4.6)), [WWW] is the diagonal matrix of mass fractions, [XXX] is the

diagonal matrix of molar fractions, and the [BBBou] matrix is computed from equation (4.7).

The gradient of mass fraction ( ∂(Y)
∂r ) is computed with a linear approximation; the gradient

at face (i − 1/2) uses node values at i − 1 and i while the gradient at face (i + 1/2) uses

node values at i and i + 1. The void fraction (φ) is computed as the combustion process

evolves (see equation (4.28)) and the tortuosity (τ) is assumed constant [26]. The ratio φ
τ is

only used inside the particle. Equation (4.4) computes Kg − 1 mass diffusion fluxes where

Kg is the total number of gas species. The mass flux for the last species (jKg ) is computed

with equation (4.8) because the sum of all jk has to be zero.

jk = −ρt

Kg−1

∑
l=1

Do
k,l

∂(Yl)

∂r
φ

τ
(4.4)
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[DDDo] = [BBBou][WWW][XXX]−1[DDD][XXX][WWW]−1[BBBou]−1 (4.5)

Bkk =
xk

-Dk,Kg

+
Kg

∑
l=1k 6=l

xl
-Dkl

(4.6)

Bkl = −xk

( 1
-Dkl
− 1

-DkKg

)

Bou
lk = δlk −Yl

(
1−

YKg xk

xKgYk

)
(4.7)

jKg = −
Kg−1

∑
k=1

jk (4.8)

The binary Maxwell-Stefan multicomponent diffusion coefficients (-D) are obtained using

Cantera. However, the Cantera output -D∗ must be corrected because the gas surrounding

the particle is flowing and the Cantera model assumes that it is stagnant. The correction is

presented in equation (4.9). In this equation, Shk,l is the Sherwood number computed with

equation (4.10). The Schmidt number (Sck,l) is in turn computed using equation (4.11),

where the dynamic viscosity (µg) and the density (ρg) of the gas are computed in each

cell. The local Reynolds number Re is computed from the difference between the gas

(vg) and particle (vp) velocities (see equation (4.12)). The correction factor (0.5Shk,l) is 1

when the difference between gas and particle velocities is zero and increases as the velocity

difference increases.

-Dk,l = 0.5Shk,l-D∗k,l (4.9)

Shk,l = 2 + Re1/5Sc1/3
k,l (4.10)

Sck,l =
µg

ρg-Dk,l
(4.11)

Re =
2rp|vg − vp|ρg

µg
(4.12)

The value for the total mass flux, nt in equation (4.3) at the right face (i + 1/2) of each cell is

computed with equation (4.13). This equation was derived using conservation of the total

mass, assuming that dρ̄t
dt ≈ 0. For cell i, the total mass flux at the left face is equal to the
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right face mass flux for the cell i− 1. Thus, the right face mass flux is computed using the

left face mass flux of the cell i− 1 beginning from i = 0 where (Ant)−1/2 = 0.

(Ant)i+1/2 = (Ant)i−1/2 + Vi

Kg

∑
i=1

ṡk,iσr,iWk (4.13)

The production or destruction of species k in cell i is estimated with the two source terms

in equation (4.2). The production or destruction at the carbon surface is represented by the

term ṡk,iσr,iWk. In this term, the molar production rate (ṡk,i ) for each species k is computed

from a general surface kinetics formalism described in [50] and adapted in Cantera [30]

that uses the surface reaction mechanism presented in Table 4.1; σr,i = Sgc,iρbulk c,i is the

product of the specific surface area (Sgc,i) and the particle bulk density of carbon (ρbulk c,i);

and Wk is the molecular weight of species k. The second source term ẇk,iWkφi is the

production or destruction of species k due to gas phase reactions. The molar production

rate (ẇk,i) is computed from Cantera using the syngas reaction mechanism from Ranzi and

coworkers [69] and the void fraction (φ) is computed from equation (4.28).

The ρbulk c,i term is computed from equation (4.14), which is the carbon mass balance

for cell i. Here, Wc is the molecular weight of carbon and ṡcb,i is the molar destruction

rate of bulk carbon. The Sgc,i term is computed with the Bhatia model [7, 58] presented

in equation (4.15). In this model, Sgc,initial is the initial specific surface area, which is

assumed to have a constant value throughout the particle. The conversion of carbon (xc)

is computed from the current and initial carbon bulk densities, xc,i = 1− ρbulk c,i
ρbulk c,initial

. The

structural parameter ψ has a value between 3 and 8 [18, 58].

d(ρbulk c,i)

dt
= ṡcb,iWcσr,i (4.14)

Sgc,i = Sgc,initial(1− xc,i)(1−
ρbulk c,i

ρbulk c,initial
)(1− ψln(1− xc,i))

1/2 (4.15)

The fixed boundary condition for equation (4.2) at rin f is the mass fraction of species k

in the bulk gas. Symmetric boundary conditions are specified at r = 0, the center of the

particle, jk,−1/2 = 0 and nt,−1/2 = 0.

4.3.2 Energy equations

The gas temperature in cell i (Tg,i) is computed from a gas phase energy balance on the

cell as shown in equation (4.16). All the physical properties of the gas such as heat capacity
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(cp g,i), enthalpy (hk,i), and thermal conductivity (λg,i) are computed with Cantera at the gas

temperature and composition of cell i using the transport data from Ranzi et al [69]. The

energy flux due to conduction (Fcond) is computed with equation (4.17) where the gradient

of gas temperature ( dTg
dr ) is computed with a linear approach in the same way that the

gradient of mass fraction is computed. The energy flux due to the transport of enthalpy

(Fh) is computed with equation (4.18). The term ρt,i ∑
Kg
k=1 hk,i

dYk,i
dt is a transient term due to

the rate of change of the species mass fractions [51]. The heat exchanged between the gas

inside the particle and the solid matrix of the particle (Si) is computed with equation (4.19).

We assume that the heat flux is proportional to the difference in temperature between the

solid and the gas. The proportionality constant, hsolid gas, is a convection coefficient. Since

the parameter hsolid gas is hard to measure or compute, we choose a value (hsolid gas = 1 [W
K ])

that forces the model to have equal particle and gas temperatures in each cell i.

dTg,i

dt
=

1
ρt,icp g,iVi

[
− [(AFcond)i+1/2 − (AFcond)i−1/2]− [(AFh)i+1/2− (4.16)

(AFh)i−1/2]−Viρt,i

Kg

∑
k=1

hk,i
dYk,i

dt
+ Si

]

Fcond = −λg
dTg

dr
(4.17)

Fh =
Kg

∑
k=1

nkhk (4.18)

Si = hsolid gas(Tp,i − Tg,i) (4.19)

The boundary condition at rin f is Tg,in f = Tg,bulk where Tg,bulk is the gas temperature in the

bulk flow. In the center of particle (r = 0), Fcond,−1/2 = 0 and Fh,−1/2 = 0, which means the

heat flux due to conduction or to the transport of enthalpy is zero at the left (−1/2) face in

the first cell.

The particle temperature in cell i (Tp,i) is computed from a particle phase energy balance

on the cell as shown in equation (4.20). In the equation, ρbulk p,i and cp p,i are the bulk

density and heat capacity of the particle at cell i, respectively. The energy flux due to

conduction (Fcond,p) is computed with equation (4.21) where λp is the thermal conductivity

of the particle computed with equation (4.22). The thermal conductivity of the solid matrix

(λs) in equation (4.22) is assumed to be constant during the combustion process. The

gradient of particle temperature dTp
dr is computed with a linear approximation in the same
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way that dTg
dr is computed. The term hcb,i ṡcb,iσr,i is the production of energy due to the

transformation of bulk carbon to the gas; hcb,i is the enthalpy of solid carbon and ṡcb,i is the

carbon consumption rate. The Si term is computed with equation (4.19).

dTp,i

dt
=

1
ρbulk p,icp p,iVi

[
− [(AFcond,p)i+1/2 − (AFcond,p)i−1/2]− hcb,i ṡcb,iσr,iVi − Si

]
(4.20)

Fcond,p = −λp
dTp

dr
(4.21)

λp,i = λs(1− φi) (4.22)

The ρbulk p,i value in equation (4.20) is computed with equation (4.23). It is assumed that

no ash leaves the particle and that the ash mass in each cell (mash,i) is constant. The

cp p,i value is computed from equation (4.24) where Yc,i is the mass fraction of carbon (see

equation (4.25)) and the heat capacities of char (cp char,i) and ash (cp ash,i) are computed with

Merrick’s mathematical model [57].

ρbulk p,i =
ρbulk c,iVi + mash,i

Vi
(4.23)

cp p,i = Yc,icp char,i + (1−Yc,i)cp ash,i (4.24)

Yc,i =
ρbulk c,iVi

ρbulk c,iVi + mash,i
(4.25)

The boundary condition at r = 0 is Fcond,p,1 = 0. The boundary condition at r = rp is

more complex because of heat exchanged between the gas and the particle and between

the particle and its surroundings. We are modeling a particle in an entrained flow re-

actor at Sandia National Laboratories [34] as described in section 4.4. Thus, at r = rp,

Fc,p = −Finter f ace. The value for Finter f ace is computed with equation (4.26), where kn is

the convection coefficient computed with equation (4.27), Re is the Reynolds number, and

Pr is the Prandtl number. The particle and gas temperatures at r = rp are Tp,rp and Tg,rp ,

respectively. The second term in equation (4.26) is the heat exchanged due to radiation

from the wall of the reactor; Tw is the reactor wall temperature, and εp is the emissivity of

the particle surface.

Finter f ace = −kn(Tp,rp − Tg,rp)− εpσ(T4
p,rp
− T4

w) (4.26)

kn =
λg

2rp
(2 + 0.6Re1/2Pr1/3) (4.27)
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With ρbulk p,i defined, the void fraction (φ) in equation (4.2) is computed with equation (4.28);

ρtrue p,i is the true density (see equation (4.29)) computed from the true density of carbon

(ρtrue c) and the true density of ash (ρtrue ash).

φi = 1− ρbulk p,i

ρtrue p,i
(4.28)

1
ρtrue p,i

=
Yc,i

ρtrue c
+

1−Yc,i

ρtrue ash
(4.29)

4.3.3 Momentum equation

The composition and temperature of the bulk gas are boundary conditions for the

species mass fraction equations (4.2) and the gas temperature equation (4.16). The bulk

gas conditions need to be computed for a specific application. Our specific application

is a set of char oxidation data from Sandia National Laboratories [34] collected in the

entrained flow reactor described in section 4.4. We performed simulations of this reac-

tor for different experimental configurations and then extracted from these simulations

the bulk gas profiles for mass fraction, temperature, density, dynamic viscosity, and gas

velocity along the particle trajectory. For additional details about the reactor simulations,

see Dı́az-Ibarra [16].

To determine the appropriate bulk phase properties, we need to know where the par-

ticle is located in the reactor. Knowing its location, we can then interpolate the bulk gas

boundary conditions. We do this by adding a momentum equation for the particle, pre-

sented in equation (4.30), to compute the velocity of the particle (vp). The first term is the

drag force contribution [56] and the second term is the buoyancy and gravity contribution.

The bulk gas velocity (vg) is imported from the reactor simulation output, F1 is computed

with equation (4.31), which is a correlation to compute the drag coefficient [56], Re is com-

puted with equation (4.12), the bulk gas density (ρg,b) and bulk gas dynamic viscosity (µg)

are imported from the reactor simulation output, and tr is computed with equation (4.32).

The total bulk density of the particle (ρbulk p,t) is computed with equation (4.33), where Vt

is total volume of the particle. In equation (4.30), the effect of the reduction of particle

mass is accounted for through ρbulk p,t, which is decreasing with carbon consumption. The

main intent of adding an equation for particle velocity is to compute the range of particle

velocities seen in the experimental data of Hecht [34].
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dvp

dt
= (vg − vp)

F1

tr
+ g
( ρg,b

ρbulk p,t
− 1
)

(4.30)

F1 = 1 + 0.15Re0.687 (4.31)

tr =
4ρbulk p,tr2

p

18µg
(4.32)

ρbulk p,t =
∑N1

i (ρbulk c,iVi + mash,i)

Vt
(4.33)

4.3.4 Solution methodology

We converted the above ordinary differential equations (ODEs) from time derivatives

to length of the reactor derivatives using the chain rule and vp as shown in equation (4.34).

dYk,i

dl
=

dYk,i

dt
1
vp

(4.34)

d(ρbulk c,i)

dl
=

d(ρbulk c,i)

dt
1
vp

dTg,i

dl
=

dTg,i

dt
1
vp

dTp,i

dl
=

dTp,i

dt
1
vp

dvp

dl
=

dvp

dt
1
vp

This set of ODEs is solved using the LSODA [1, 9] ODE solver. The number of ODEs

depends on the number of species in the gas reaction mechanism and the number of cells in

the computational domain. For the syngas (H2/CO) reaction mechanism from Ranzi and

coworkers [69], we need to solve equations (4.2) for the following 11 species: O2, H2O2,

CO, CO2, O, H, OH, HO2, HCO, H2, and H2O. This reaction mechanism has 33 reactions;

we deleted species and reactions related to N2. Thus, the number of ODEs we need to

solve is 11 times N cells. Additionally, we must solve N ODEs for Tg (see equation (4.16)),

Np (number of cells inside the particle) ODEs for Tp (see equation (4.20)), Np ODEs for

ρbulk c,i (see equation (4.14)), and one ODE for vp (see equation (4.30)). In total, we must

solve (12N + 2Np + 1) ODEs.

We used a nonuniform grid size both inside and outside of the particle and set up the

grid in such a way that r = rp is located at a cell face. We divided the volume inside the

particle into Np cells of equal volume. Hence, the grid resolution is finer close to r = rp



88

and coarser near r = 0. We employed a log scale to locate the grid cells outside of the

particle. The number of cells close to r = rp is large and decreases toward r = rin f . The

total number of cells in the boundary layer is N − Np.

4.4 Reactor description
Hecht [34] carried out a set of char oxidation experiments in an optically accessible,

laminar, entrained flow reactor at Sandia National Laboratories (see Figure 4.2). Three

types of coal were used to produce char, a high volatile bituminous coal (Illinois # 6 ), a

western bituminous coal (Utah Skyline), and Black Thunder subbituminous coal (Power

River Basin). The char was sieved into 6 narrow size bins of 53-63 µm, 63-75 µm, 75-90

µm, 90-106 µm, 106-125 µm, and 125-150 µm. Twelve different environments were tested:

O2 = 24, 36, 60 vol%, H2O = 10, 14, 16 vol%, and the balance either N2 or CO2. In these

experiments, the particle size, velocity, and temperature of approximately 100 particles

were obtained at 3-7 positions above the injection point (position 0 [m] in Figure 4.2.

For the bulk gas condition in RPBL, we considered two different experimental envi-

ronments: O2 = 24, 36 vol %, H2O = 14 vol %, and balance CO2. From computational

fluid dynamics simulations of these two environments, we obtained bulk gas profiles for

temperature, composition, and velocity [16]. The profiles were extracted from position 0

to position 0.254 m, the range of heights from which particle data were collected.

4.5 Model verification
While we could not perform a verification study for all sets of equations used by

RPBL, we did verify some components of the code. We used the method of manufactured

solutions (MMS) [63] to verify the diffusion term in the species mass fraction equation

(equation (4.2)). With MMS, a manufactured solution is applied to a differential equation.

Because this solution is not the exact solution, the remainder needs to be coded as a source

term. In this case, the differential equation was equation (4.2) with only the diffusion

term. When this method was used, the solution converged to the manufactured solution.

However, this verification was done with constant diffusion coefficients and only for the

diffusion term. Due to the discontinuity between the particle and the gas, MMS could not

be used when the solid and gas phases were coupled.
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Next, we performed code-to-code comparisons between RPBL and SKIPPY [31, 34] to

check for correct units and the correct use of the reaction mechanism. For these compar-

isons, we used the same surface reaction mechanism (see Table 4.1) and the same physical

properties related to the carbon solid in both models. Then we compared numerical values

for the source terms in the species equation (equation (4.2)) and the gas and particle phase

energy equations (equation (4.16) and equation (4.20), respectively). We also ran a prelim-

inary version of RPBL with constant properties (SKIPPY assumption) and compared the

steady state solution with the SKIPPY solution; the results were the same.

We checked grid independence for the two dependent quantities used in our sensitivity

analysis, average particle temperature and particle velocity. We ran RPBL with 5 grid

resolutions inside the particle: Np = 15, 20, 30, 50, 100. The same number of cells was used

external to the particle for a total cell count of N = 30, 40, 60, 100, 200. We tested three

particle sizes (diameter = 50 µ m, 80 µ m, 200 µ m). We obtained similar results for the three

sizes, so we only present results for the 80 µ m case in Figure 4.3 and Figure 4.4. To generate

these data, we ran RPBL and saved data every 0.0127 m from 0 (injection point) to 0.254

m above the injection point. We then computed the average temperature of the particle at

each location using the nodes inside the particle. In this figure, the x axis is the position in

the reactor, the y axis is the average particle temperature, and the dot colors correspond to

the various grid resolutions. The average temperatures with Np = 15 are similar to those

with Np = 100 with some small deviations at longer distances. We conclude that if we set

Np = 20 (N = 40) or greater, we will obtain an accurate result for the average temperature.

In Figure 4.4, we present the results of the particle velocity grid study. The effect of grid

resolution is negligible.

4.6 Results
In this paper, we present detailed results for a base case to show what type of data

is produced from RPBL. We also present a sensitivity analysis that considers the effect of

several uncertain model parameters on two quantities of interest measured by Hecht [34],

particle temperature and particle velocity. The main objective of the sensitivity analysis is

to select the most sensitive model parameters for a further validation analysis.

For the base cases presented in this section, we ran RPBL with N = 60 cells (Np = 30),
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which required the solution of 781 ODEs. For the all the cases in the sensitivity analysis,

we ran RPBL with N = 40 cells (Np = 20). We ran the simulation until the particle reached

a position of 0.254 m from the injection point.

4.6.1 Input and uncertainty map

The RPBL parameters are presented in the form of the input and uncertainty (I/U)

map in Table 4.2. Each parameter in the table is assigned a priority that represents the

importance of the parameter on the quantities of interest (particle velocity and particle

temperature). There are nine parameters with the highest priority of 6. The highest priority

parameters all have ranges while the lower priority parameters are assigned nominal

values.

Model parameter values in Table 4.2 were selected from external sources and from

nominal values used by SKIPPY [31]. The lower bound of 3 for τ is from Singer and

Ghoniem [80]. The upper bound of 6 was modified from the SKIPPY value of 5 [31]. The
rin f
rp

parameter has a value of 100 in SKIPPY [31], so we varied it from 50 to 120. The ψ

parameter was determined from surface area data; we used the value of 3 from Mitchell

and coworkers [58] as the lower bound and the value of 8 from Erland and coworkers [18]

as the upper bound. While Singer and Ghoniem [80] and SKIPPY [31] used a value for εp

of 0.85, we used a wider range (0.1 to 1.0) for our sensitivity analysis. For λp, the range was

bounded by the maximum and minimum values of the experimental data for ash deposits

presented by Rezaei and coworkers [72]. We assumed that the nominal value for ρtrue c is

921 kg
m3 . We based the nominal value for ρtrue ash on experimental correlations for the light

components of ash [85].

The scenario parameters in Table 4.2 were obtained from a variety of sources. The

dp range was based on experimental particle diameters reported by Hecht [34]. The pa-

rameters with a nominal value listed as “From reactor model” correspond to bulk gas

parameters obtained from simulations of the entrained flow reactor at Sandia National

Laboratories [34] described in section 4.4. The initial species mole fractions are based on

the fact that the carrier gas in the particle feeding system system was CO2. The nominal

value used by SKIPPY [31] for φ was 0.4. We used a wider range of φinitial for the sensitivity

analysis presented below. Due to the heterogeneous nature of the char particles, we chose
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a wide range for Yc,intial . For Sgc,initial , we computed a value of 1e4 [m2

kg ] from σr = 5.6e6 [m2

m3 ]

(σr = Sgcρbulk c) [31] and ρbulk c = 560 [ kg
m3 ]. We added 20 % to this value to obtain the upper

bound of Sgc,initial and removed 20 % to obtain the lower bound. The value for Tw reflects

the approximate temperature of the quartz walls of the Sandia reactor. The pressure is the

ambient pressure.

4.6.2 Base case

For this particular case, we assigned the following values to these parameters: τ = 5,
rin f
rp

= 53, ψ = 8, εp = 0.96, λp = 1.33, dp = 95 µm, φinitial = 0.18, Yc,initial = 0.98,

and Sgc,initial = 8000 [kgc/m2]. For the other parameters listed in Table 4.2, we used the

nominal value. The environment for this base case was O2 = 24 vol%, H2O = 14 vol%,

and balance CO2.

The initial conditions (t = 0) for the system of ODEs (see equation (4.34)) were as

follows. For the cells internal to the particle, we assumed the particle was filled with CO2

because in the Sandia experiments, the carrier gas in the particle feeding system system

was CO2. This initial condition corresponds to the nominal values listed in Table 4.2.

We computed the initial particle bulk density of carbon (ρbulk c,initial) with equation (4.35)

and assumed it was constant throughout the particle. In equation (4.35), we computed

ρtrue p,initial from equation (4.29) with Yc,initial = 0.98. The initial temperature of the particle

(800 K from the reactor model) was also assumed constant throughout the particle. The

gas temperature in the cells inside the particle was assumed to be the same as the particle

temperature. For the cells external to the particle, we assumed that xCO2 = 0.99 and that

the initial gas temperature was equal to the bulk gas temperature at position 0 m (from the

reactor model).

ρbulk c,initial = ρtrue p,initial(1− φinitial)Yc,initial (4.35)

Even though the equations are cast in terms of mass fractions, we present the results here

in molar fraction because it is easier to visualize low molecular weight species.

The mole fraction results for the entire domain are presented in Figure 4.5. Because it

is difficult to see the cells inside the particle cells in this figure, the mole fraction results for

these cells are shown in Figure 4.6. Each plot in Figure 4.5 and Figure 4.6 corresponds to

one of the 11 gas phase species. The x axis is r
rp

, which is the ratio of the distance from the
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center of the particle to the radius of the particle. The y axis is the position of the particle

in the reactor (distance above the injection point).

The plots of O2 mole fraction are located in the first column and first row in Figure 4.5

and Figure 4.6. The mole fraction of O2 is ∼ 0 in the whole domain at position 0 m. From

position 0 to ∼ 0.02 [m], O2 is transported from the bulk gas to the boundary layer and

into the particle. In this initial stage, the particle is heating up and there are no chemical

reactions (see CO plot in third column, first row and H2 plot in first column, fourth row

in Figure 4.6; both are heterogeneous reaction products). Chemical reactions are initiated

above position∼ 0.02 [m]. From position∼ 0.02 [m] to∼ 0.03 [m], the O2 that has diffused

into the particle is rapidly consumed (essentially zone III burning mode), so O2 mole

fraction inside the particle drops back to 0 and reaction products such as CO and H2 can

be seen. Above position ∼ 0.03 [m], carbon is consumed in the cells close to r
rp

= 1 (see

Figure 4.7). As carbon bulk density is reduced, O2 diffuses further into the particle (zone

II burning mode). The O2 in the boundary layer (Figure 4.5) shows a sharp gradient close

to r
rp

= 1 due to the consumption of O2 inside the particle.

The main products of the heterogeneous reaction mechanism, CO and H2 (see Ta-

ble 4.1), show similar behavior. Both species are produced inside the particle and then

react in the gas phase to produce species such as O (second column and second row ), OH

(first column and third row), and CO2 (second column and second row). Consequently,

the gas phase reactions have an impact on the heterogeneous production of CO and H2.

The particle carbon bulk density (ρbulk c) is presented in Figure 4.7. In the early stages

of particle heating (before ∼ 0.03 [m]), there is no carbon consumption. Then, from ∼
0.03 [m] to∼ 0.05 [m], there is a uniformly small reduction of ρbulk c throughout the particle

due to the initiation of reactions with O2. As char oxidation proceeds (above ∼ 0.05 [m]),

the consumption of ρbulk c begins near rp
rin f

= 1 and then moves into the particle.

The temperature inside the particle (Tp) is presented on the left side of Figure 4.8. The

temperature is relatively constant throughout the particle, so an assumption of an isother-

mal particle used by Mitchell and coworkers [58] is reasonable. This figure also illustrates

the particle heating process. At position 0 [m], the entire particle is at a low temperature.

From position 0 [m] to ∼ 0.02 [m], the particle is only heated by the gas. Above position

∼ 0.02 [m], the particle temperature increases rapidly, reaching a maximum of ∼ 1900 [K]
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at position ∼ 0.1[m]. This rapid increase indicates the onset of heterogeneous reactions.

The particle temperature then decreases above position ∼ 0.12[m] due to the decreasing

bulk gas temperature in the entrained flow reactor.

The gas temperature (Tg) both inside the particle and in its boundary layer is presented

on the right side of Figure 4.8. The bulk gas temperature is the boundary condition for

RPBL, and its effect on Tg far away from the particle is visible in this figure. The gas

temperature is also affected by the particle. When the particle is cold (0 [m] - ∼ 0.02 [m]),

the boundary layer has a temperature gradient from cold (particle) to hot (bulk gas).

When the particle reaches a maximum temperature (0.08 [m] - 0.12 [m]), there is a large

temperature gradient in the gas near the particle. Thus, under the conditions of this case,

the boundary layer has an impact on the particle and the particle has an effect on the

boundary layer.

4.6.3 Sensitivity analysis

The primary objective of this sensitivity analysis is to determine the parameters that

have the largest effect on the quantities of interest, particle temperature and particle veloc-

ity, for a subsequent validation analysis. The numerical, model, and scenario parameters

required by RPBL are listed in Table 4.2 in the form of an I/U map, which includes the

importance of the parameter to the quantities of interest (priority), the range of values

for the parameter, and/or the nominal value of the parameter used in the simulations. In

Table 4.2 there are nine parameters with the highest priority of 6; these nine parameters are

the active parameters. We performed a sensitivity analysis with eight active parameters for

three particle sizes: 50 µm, 80 µm, and 120 µm (particle size is the ninth parameter).

We performed the sensitivity analysis using the Uncertainty Quantification Toolkit

(UQTk), a set of C++ tools with a Python interface. It was developed by Debusschere and

coworkers at Sandia National Laboratories [13]. UQTk uses the app pce_sens to compute

total and main sensitivity indices using a polynomial chaos (PC) surrogate model.

Using a first order PC surrogate model with a full quadrature rule, a total of 256

RPBL cases (2n where n is the number of dimensions or parameters) were needed for

each particle size. The UQTk app generate_quad generated 256 quadrature points of

ξi = +/ − 0.577 with weights of w = 0.0625 for each dimension. The variable ξi is
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mapped to physical input space for the RPBL case using equation (4.36), where ai and

bi are the bounds of the uncertainty intervals (parameter ranges) presented in the I/U map

(Table 4.2).

λi =
ai + bi

2
+

bi − ai

2
ξi for i = 1, ..., n (4.36)

RPBL produces data along the entire length of the reactor while the experimental data

were taken at specific positions. Therefore, to create a PC surrogate model for each quan-

tity of interest (particle temperature and particle velocity) at each experimental position,

we extracted RPBL data at these positions, including particle velocity and Np temperatures

in the particle. We then computed an average particle temperature from the Np tempera-

tures.

We selected the experiment with particles in the 53− 60 µm range to represent the 50 µm

diameter particle. In this experiment, data were taken at seven positions from 0.0375 m to

0.1125 m. For the 80 µm diameter particle, we selected the experiment with particles in

the 75− 90 µm range where data were taken at five positions from 0.05 m to 0.15m. For

the 120 µm diameter particle, we selected data from the experiment with 106 − 125 µm

diameter particles. These data were taken at six positions from 0.075 m to 0.2 m.

Our next step was to compute the main sensitivity indices as defined by UQTk [13] at

each experimental position for each quantity of interest. We used the UQTk app pce_sens

with the coefficients of the PC surrogate model for each position. We present the main

sensitivity indices for the 50 µm diameter particle in Figure 4.9 (particle temperature) and

Figure 4.10 (particle velocity); this diameter represents small size particles. In these figures,

the y axis is the main sensitivity index and the x axis is the position in the reactor. For

particle temperature, the most sensitive parameter is φinitial ; this parameter is used to

compute the density of the particle. A particle with a high φinitial is a light particle while

a small φinitial indicates a heavy particle; in both cases, the carbon content is determined

by Yc, the third most sensitive parameter. Since φinitial and Yc are controlling the amount

of carbon in the particle, it makes sense that particle temperature has a high sensitivity

to them, as the carbon density determines the duration of active char burning at high

temperatures. The second most sensitive parameter is εp, which affects radiation heat loss

of the particle. The high sensitivity is at least partially due to the wide uncertainty range

of this parameter. The sensitivity index for this parameter is larger in the first and last
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positions. In these positions, the particle temperature is lower and the effect of radiant

heat loss is diminished. We expected high sensitivities for Sgc,initial and ψ, which are used

in the Bhatia and Perlmutter specific surface area model [7]. However, their impact on the

particle temperature is small.

The velocity of the particle Figure 4.10 is only sensitive to φinitial and Yc. These param-

eters determine the bulk density of the particle, which in turn affects the gravity term in

the momentum equation of the particle.

The sensitivity analysis for the 80 µm diameter particle is presented in Figure 4.11

and Figure 4.12; this diameter represents medium size particles. For particle temperature,

φinitial and Yc are the most sensitive parameters at some positions while εp is most sensitive

for the 0.05 [m] and 0.075 [m] positions. The next most sensitive parameters are τ, rin f
rp

, and

λp. As with the 50 µm diameter particle, Sgc,initial and ψ have only a small impact on the

particle temperature. The particle velocity sensitivities are similar to those for the 50 µm

diameter particle; φinitial and Yc are the most sensitive parameters.

The sensitivity analysis for the 120 µm diameter particle is presented in Figure 4.13

and Figure 4.14; this diameter represents large size particles. For particle temperature,

the most sensitive parameter is εp followed by φinitial and Yc. The parameters rin f
rp

, τ, and

λp exhibit greater sensitivity for this particle size than for the smaller particle sizes, as

expected based on the greater diffusional distance within the particle and greater flux of

oxidation products from the particle surface. Similar to the 50 µm and 80 µm diameter

particles, Sgc,initial and ψ have a small impact on the particle temperature. The particle

velocity sensitivities also follow the trend of the other two particle sizes; φinitial and Yc are

the most sensitive parameters.

We learn the following from these sensitivity analyses at the three particle sizes. The

particle velocities are only affected by φinitial and Yc. The three most sensitive parameters

for particle temperature are φinitial , Yc, and εp. For the largest particles (120 µm), εp is

the most sensitive parameter. The parameters rin f
rp

, τ and λp have a discernible impact on

particle temperature for medium and large particle sizes. However, Sgc,initial and ψ do not

affect the particle temperature in the particle size range under study.
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4.7 Conclusion
We presented RPBL, a transient model for char oxidation in a spherical particle and

in its boundary layer. This model accounts for mass transport of gas species between the

particle and the boundary layer using a time dependent boundary condition. Heteroge-

neous and homogeneous reaction rates are computed with a six-step reaction mechanism

and a syngas reaction mechanism, respectively. The burnout process is traced through the

particle as it moves through the length of the entrained flow reactor at Sandia National

Laboratories [61, 88].

We presented a base case for a 95 µm diameter char particle resolved by RPBL. We

described in detail the mole fraction plots of the 11 species and the particle and gas temper-

ature plots. Initially, the particle is cold and O2 diffuses inside of the particle. As reactions

are initiated, the O2 mole fraction inside the particle drops to zero and a measurable O2

mole fraction is only seen near r
rp

= 1 (essentially zone III burning mode). As reactions

progress, oxygen diffuses further into the particles (zone II burning mode). The model

predicts a constant temperature throughout the particle. The time dependent boundary

condition yields a boundary layer temperature that decreases with time (height in the

reactor); this effect on the particle temperature is noted as well.

We performed a sensitivity analysis for nine parameters on the particle temperature

and velocity. We evaluated eight parameters directly; for the ninth parameter, dp, we

performed the sensitivity analysis at three particle diameters. We performed the analysis

in this way because the sensitivity to dp was so high that all other parameter were insignif-

icant. For the particle temperature, φinitial , Yc, and εp are the most sensitive parameters.

Three other parameters also have an impact: rin f
rp

, τ, and λp. The velocity of the particle is

sensitive to φinitial and Yc. Neither the particle temperature nor the velocity is sensitive to

Sgc,initial and ψ.
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Table 4.1. Surface reaction mechanism [31, 34]
Reaction A[mol, cm2, s] E[kJ/mol]

Cb + Cs + O2 → CO + C(O)s 3.3× 1015 167.4
C(O)s + Cb → CO+ Cs 1.0× 108 0.0

Cs + O2 → C(O2)s 9.5× 1013 142.3
C(O2)s + Cb → CO2 +Cs 1.0× 108 0.0
Cs + CO2 → CO +C(O)s variable 251.0
Cs + H2O→ H2 +C(O)s variable 222.0

Particle

Bulk Flow

Boundary layer 
(Bulk conditions are inputs)

rp

rinf

Figure 4.1. Representation of the particle and boundary layer.
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Table 4.2. Input/uncertainty map for RPBL
Parameter Priority Range Nominal value

min max
Numerical Parameters

Np 1 15 100 30
N 1 30 200 60
rtol 1 1e-4

Model Parameters
τ [−] 6 3 6
rin f
rp

[−] 6 50 120
ψ [−] 6 3 8
εp [−] 6 0.1 1
λp [

W
mK ] 6 0.1 2

ρtrue c [
kg
m3 ] 1 921

ρtrue ash [
kg
m3 ] 1 2000

hsolid gas [
W

m2K ] 1 1
Scenario parameters

dp [µm] 6 50 160
vg [

m
s ] 3 From reactor model

Tg [K] 3 From reactor model
O2,bulk [−] 3 From reactor model
H2Obulk [−] 3 From reactor model
CO2,bulk [−] 3 From reactor model
H2,bulk [−] 3 From reactor model
CObulk [−] 3 From reactor model
O2,initial [−] 3 1.00e-3
H2Oinitial [−] 3 1.00e-3
H2,initial [−] 3 1.00e-3
COinitial [−] 3 1.00e-3
CO2,initial [−] 3 0.99
Tp,initial [K] 3 From reactor model
φinitial 6 0.15 0. 7
Yc,intial [−] 6 0.5 1
Sgc,initial [

kg
m2 ] 6 8000 12000

Tw [K] 3 500
Pressure [ kg

m2 ] 3 1.00e5
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Position 0

Char Feed

Figure 4.2. Schematic of optically accessible entrained flow reactor at Sandia National
Laboratories. Figure adapted with permission from [34]
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Figure 4.3. Grid independence study for average particle temperature, dp = 80 µ m.
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Figure 4.4. Grid independence study for particle velocity, dp = 80 µ m.
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Figure 4.5. Species mole fractions in the particle and boundary layer of 95 µm diameter
char particle.
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Figure 4.6. Species mole fractions in 95 µm diameter char particle.
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Figure 4.7. Carbon bulk density inside 95 µm diameter char particle.
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Figure 4.8. Particle temperature (left) and particle and boundary layer gas temperature
(right) for 95 µm diameter coal particle.
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Figure 4.9. Particle temperature sensitivity analysis for 50 µm diameter particle.
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Figure 4.10. Particle velocity sensitivity analysis for 50 µm diameter particle.
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Figure 4.11. Particle temperature sensitivity analysis for 80 µm diameter particle.
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Figure 4.12. Particle velocity sensitivity analysis for 80 µm diameter particle.



107

0.075 0.1 0.125 0.15 0.175 0.2
Position [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
e
n
si

ti
v
it

y

τ
rinf
rp

φinitial

Yc,initial

Sgcinitial

ψ

εp

λp

Figure 4.13. Particle temperature sensitivity analysis for 120 µm diameter particle.
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Figure 4.14. Particle velocity sensitivity analysis for 120 µm diameter particle.



CHAPTER 5

REACTING PARTICLE AND BOUNDARY

LAYER (RPBL) MODEL: VUQ

In preparation for submission to Combustion and Flame, Reacting Particle and Bound-

ary Layer (RPBL) model: Validation and uncertainty quantification. Oscar H. Dı́az-Ibarra,

Jennifer Spinti, Philip J. Smith, Christopher Shaddix, Ethan Hecht.
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The Reacting Particle and Boundary Layer (RPBL) model solves species, energy, and

carbon consumption equations for a char particle. We present a six-step validation and

uncertainty quantification (VUQ) study of RPBL with experimental measurements of sin-

gle particle temperatures and velocities. The quantities of interest (QOIs) in the analysis

are particle temperature and velocity. We explore five RPBL model parameters (particle

diameter, void fraction, carbon fraction of the particle, particle emissivity, and the non-

dimensional thickness of the boundary layer) to which the QOIs are most sensitive based

on results from a previous sensitivity analysis. The experimental data were collected in

an optically accessible, laminar, entrained flow reactor at Sandia National Laboratories.

We selected data from three chars (obtained from Utah Skyline, Illinois # 6, and Black

Thunder coals), two environments (O2 = 24, 36 vol %, H2O = 14 vol %, and the balance

CO2) and six size bins (53-63 µm, 63-75 µm, 75-90 µm, 90-106 µm, 106-125 µm, and 125-150

µm). We performed 36 bound-to-bound consistency analyses to compare the simulation

data with the experimental data. Because the consistency analysis required fast function

evaluations of the simulation data, we constructed polynomial chaos surrogate models for

the simulation data output from a suite of approximately 11,000 simulations. We found

consistency for all 36 analyses. From these analyses, we learned that the particle diameter

is the most important parameter for obtaining consistency. We were able to reproduce

the particle temperature and velocity with the RPBL model. However, we did not reduce

uncertainty in the parameters under study.

5.1 Nomenclature
dp Particle diameter [µm]
hsolid gas Convection coefficient, hsolid gas = 1 [W

K ]
N Number of cells in entire domain
Np Number of cells inside of particle
P Pressure [Pa]
r Radius [m]
rin f
rp

Ratio of rin f to rp [−]
Sgc Specific surface area [m2

kg ]

T Temperature [K]
v Velocity [m

s ]
Y Mass fraction [−]
ε Particle emissivity [−]
λp Particle thermal conductivity [ W

m k ]
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ρ Density [ kg
m3 ]

σr Specific surface area for heterogeneous reactions, σr = Sgcρbulk,c
τ Tortuosity [−]
φ Void fraction [−]
ψ Structure parameter [−]

Subscripts
ash: Ash in particle
bulk: Bulk gas
c: Carbon in particle
g: Gas
in f : Limit of the particle domain
initial: Initial condition
p: Particle
true: True density
w: Wall of the reactor

5.2 Introduction
The Surface Kinetics in Porous Particles (SKIPPY) model was developed by Brian Haynes

and coworkers at the University of Sydney [3], and subsequently used by Molina and

coworkers [60] and by Hecht and coworkers [31–34]. Our original goal was to perform a

validation and uncertainty quantification (VUQ) analysis with SKIPPY model outputs and

experimental data collected by Hecht [34]. We performed the analysis for one data point

(one location in the reactor), but we could not perform a simultaneous comparison using

transient data that were collected along the length of the reactor.

Consequently, we developed a new model form, the Reacting Particle and Boundary

Layer (RPBL) model. This model, based on SKIPPY, computes the transient-state con-

ditions for a spherical, reacting, porous char particle and its reacting boundary layer.

While SKIPPY produces detailed data relative to the char oxidation process, it assumes

the particle is at steady state. In contrast, RPBL is a transient model that includes a

time-dependent boundary condition representing the char particle’s movement through

a specified reactor. The model formulation was previously described by Dı́az-Ibarra et

al [15].

The RPBL model uses a Maxwell-Stefan multicomponent approach to compute the

mass transport of species. A syngas (H2/CO) mechanism is used to compute the homoge-

neous reaction rates; a six-step reaction mechanism is used to compute the heterogeneous

reaction rates. RPBL uses a carbon density (burnout) equation to compute the evolution
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of the carbon consumption. The physical properties of the solid matrix are computed

from the carbon, ash, and void fractions. The void fraction is computed assuming a

constant particle diameter throughout burnout. Two energy equations are solved, one

for the particle and one for the gas. RPBL uses a time-dependent boundary condition

that is obtained from the specific reactor where experimental data are collected, in this

case an entrained flow reactor at Sandia National Laboratories [61, 88]. RPBL also has a

momentum equation for computing the particle velocity along the length of the reactor.

This paper focuses on a VUQ analysis of the RPBL model. The purpose of this analysis

is to see if the RPBL model outputs can reproduce the experimental particle tempera-

ture and velocity data collected by Hecht [34]. The RPBL model is a high fidelity model

because it solves differential equations to compute particle temperatures and gas phase

composition in the particle and its boundary layer. However, this model includes many

assumptions and is prescribed by a set of parameters. Therefore, it needs to be validated.

Once validated, the RPBL model can be used to review assumptions of simpler models

relating to the effect of the boundary layer, the effect of gas phase reactions, diffusion

inside the particle, uniformity of particle temperature, and so on.

5.3 Description of VUQ approach
In validation, we test a model using experimental data, otherwise known as the quan-

tity of interest (QOI), as a reference [63]. We say that our model is validated if we can

reproduce the experimental data. In uncertainty quantification (UQ), we explore uncer-

tainty in the inputs of the model and determine the model’s accuracy in calculating the

experimental data. Our goal with the UQ analysis is to develop a model that computes the

QOIs with the degree of accuracy required for the particular application.

In this analysis, our VUQ methodology is a modified version of the Simulator As-

sessment and Validation Engine (SAVE) framework [6] as presented in Figure 5.1. This

methodology, developed by Schroeder [77], consists of the six steps. In step 1, model

output(s) are selected as evaluation criteria or QOIs. The input/uncertainty (I/U) map

that is created in step 2 consists of a list of parameters (model, scenario, and numerical)

and their uncertainties that may have an impact on the QOIs. Each parameter is assigned

a priority; those with high priority are selected as active parameters and are investigated
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further. Step 3, the collection of both experimental and simulation data, is closely tied

to steps 1 and 4. The data that are collected must allow the direct measurement or the

calculation of the QOIs. The requirements of the surrogate model determine the sim-

ulations that are performed. Step 4, surrogate model development, is required when

running the computer model is expensive. In this work, we use a polynomial chaos (PC)

surrogate model [13]. Various methodologies can be used to analyze model outputs in

step 5 [52, 75]. We use a consistency analysis methodology referred to as bound-to-bound

consistency [75]. The basic concept is that if the difference between model outputs and

experimental data is less than the error in the experimental measurement, the simulation

and experimental data are consistent. In step 6, feedback and feed-forward, the I/U map

is reviewed based on the consistency analysis outcome, models are modified, parameter

uncertainties are reevaluated, and the evaluation criteria are reviewed to see if new data

should be incorporated.

We present the application of this six-step methodology to the RPBL model output and

the Hecht experiments [34] in the following sections.

5.4 Selection of quantities of interest
The QOIs for this analysis are the particle temperature and velocity data for three char

types (char were obtained from Illinois # 6 (I6), a high volatile bituminous coal, Utah

Skyline (US), a western bituminous coal, and Black Thunder (BT), a subbituminous coal),

two O2 mole fractions (O2 = 24, 36 vol %, H2O = 14 vol %, balance CO2), and six size bins

(53-63 µm, 63-75 µm, 75-90 µm, 90-106 µm, 106-125 µm, and 125-150 µm). These QOIs were

measured by Hecht [34] as detailed in section 5.6.

5.5 Construction of input and uncertainty map
The I/U map is a list of parameters and their associated uncertainty ranges that are

being considered in the VUQ analysis. An overall priority is assigned to each parameter

that signifies its relative importance to the QOIs. The I/U map for the RPBL model is

presented in Table 5.1. A detailed explanation of all the parameters in Table 5.1 and how

their ranges were obtained is given in Dı́az-Ibarra et al [15].

In a previous sensitivity study [15], we identified five sensitive parameters for further
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analysis: particle diameter (dp), void fraction (φinitial), carbon fraction of the particle (Yc),

particle emissivity (εp), and the nondimensional thickness of the boundary layer ( rin f
rp

).

5.6 Experimental data collection and uncertainty analysis
5.6.1 Reactor description

The experimental data used in this analysis were collected in an optically accessible,

laminar, entrained flow reactor at Sandia National Laboratories [61, 88]. The Sandia reac-

tor is presented in Figure 5.2. This reactor was composed of a diffusion-flamelet-based

Hencken burner, a quartz chimney, a particle feeding system, a collection probe, and an

optical instrument for simultaneous in situ measurement of size, velocity, and temperature

of a single particle. The optical instrument was fixed; the reactor moved up and down

relative to the instrument to vary the position where the particle data were measured.

For the particle feed system, a group of particles is fluidized with carrier gas in a test

tube. A single fluidized particle then travels through a capillary tube that connects the

particle feed system to the reactor. The particle is injected into the flame at position 0

(see Figure 5.2). As the particle travels along the length of the reactor, it is surrounded

by hot gases from the Hencken burner. The optical instrument captures this moving,

incandescent particle and LabView postprocesses the transmitted light. Using the signal

recorded from the particle, the LabView software computes particle temperature with a

Wien’s law ratio of two signals [61]. The particle size is obtained by capturing a signal

onto a coded aperture [88]. Velocity is measured using the time difference between two

signals in the coded aperture [88].

A collection probe is used to sample particles to perform offline analyses such a fixed

carbon or/and specific surface area. The optical instrument is not operated when the

collection probe is in use.

5.6.2 Data collection

Hecht [34] produced I6, US, and BT chars from their parent coals in a high temperature

drop tube furnace with an environment of N2 (1473 K, 0.9 s residence time). The char

particles were sieved into six narrow size bins of 53-63 µm, 63-75 µm, 75-90 µm, 90-106

µm, 106-125 µm, and 125-150 µm. Hecht tested the sieved char samples in 12 different
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environments in the entrained flow reactor. In each environment for each size bin, Hecht

measured the size, velocity, and temperature of approximately 100 particles at 3-7 positions

in the reactor. For each environment, Hecht also measured the gas temperature along the

center line of the reactor without particles present with a type R thermocouple.

For this VUQ analysis, we focused on the set of measurements from 36 different exper-

iments comprising all six size ranges for the three chars in two environments, O2 vol % =

24 and 36, H2O vol % = 14, and the balance CO2. An experiment is defined as one char,

one environment, and one particle size at all measurement positions in the reactor. The

QOIs were the particle temperatures and velocities that were collected at various positions

along the length of the reactor.

5.6.3 Measurement uncertainty

Experimental error can be characterized as either sampling (random) error or system-

atic (bias) error [63]. As shown in equation (5.1), the difference between the true value

and the experimentally measured value is the sum of the sampling (β) and systematic (δ)

errors. Sampling error arises from uncontrolled conditions during the experiment and

produces a distribution of QOIs (see Figure 5.3). We estimate this distribution from the

finite number of data points that are collected. Systematic error results from problems with

the measurement instrument or with the way the experimentalist uses the instrument. For

this analysis, we assumed that the systematic error was much smaller than the sampling

error. Hence, the total error in the system was represented by the sampling error.

ȳ− yT = δ + β (5.1)

At each measurement position in each of the 36 experiments, we estimated the sampling

error with equation (5.2) using the temperature, velocity, and particle diameter data that

were collected. In this equation, tα/2,v is a factor computed with the t-distribution and a

given confidence interval (we used 95 %), s is the standard deviation, and n is the number

of data points ( ∼ 100).

|β| ≤ tα/2,v
s√
n

(5.2)

Figure 5.3 shows plots of the error bars for one experiment with US char in a O2 = 24 vol %,

H2O = 14 vol %, balance CO2 environment for the 75-90 µm size bin. For all three plots, the
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x axis is the position in the reactor above the injection point where the measurement was

taken. From top to bottom, the y axis is particle temperature, velocity, and diameter. We

used the particle temperature and velocity data with their associated error bars to compare

with the RPBL model temperature and velocity data. We used the particle diameter as a

prior range in our analysis (see section 5.9).

5.7 Simulation data collection
The RPBL model solves a set of differential equations to compute species mass frac-

tions, gas temperature, particle temperature, and particle velocity for a particle and its

boundary layer moving through a specified reactor. As a particle travels the length of the

reactor, it experiences different bulk gas conditions. The RPBL model uses the bulk gas

conditions as boundary conditions for the species and temperature equations. For this

reason, we required profiles of gas velocity, temperature, and composition in the Sandia

entrained flow reactor [34].

5.7.1 Reactor model

The gas velocity and mass fraction profiles were not measured during the experiment,

so the only way to estimate the data is to perform a simulation of the reactor given the

experimental operating conditions. We used centerline temperature profiles measured

with thermocouples to validate the results of the reactor simulation.

We performed simulations of the reactor for the two environments under study us-

ing the Arches component of the Uintah software suite [48]. Uintah is a framework for

solving partial differential equations on structured grids using hundreds to thousands of

processors. Arches is a large eddy simulation (LES) research code developed by University

of Utah researchers. It is a low-Mach, pressure projection-based, variable density code

solving filtered (using the standard large eddy simulation approach) conservation equa-

tions for mass, momentum, and energy of the gas and solid phases [66–68, 71, 82]. For

the simulations discussed in this paper, the gas-phase reactions were modeled using an

equilibrium approach. The discrete ordinates method with S8 quadrature, representing

80 discrete directions, was used to compute radiation [59]. The simulations did not have

particles. For the reactor wall, a quartz chimney, we used an emissivity of 0.93 and a
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wall thermal conductivity that was a function of temperature [78]. We calculated the heat

exchange between the reactor wall and the room where the reactor was located using a

heat transfer coefficient of 4 W
m2 K [43] and a room temperature of 298 K.

The reactor had a cross-sectional area of 0.0508 m x 0.0508 m and a height of 0.4572 m.

The computational mesh was ∼ 4 million cells. We ran the simulations on 360 cores using

computational resources at Lawrence Livermore National Laboratories. Steady state was

reached after 2 hours of run time.

The gas temperature and gas velocity fields in the reactor for one environment (O2 =

24 vol %, H2O = 14 vol %, balance CO2) are presented in Figure 5.4. This figure represents

a slice through the middle of the computational domain in the y plane. The flow is clearly

laminar. The carrier gas enters the reactor at position 0 on the x axis. The carrier gas

velocity is higher than that of the surrounding gas while its temperature is lower. The wall

has a large impact on the gas temperature as noted by the gradients of temperature near

the wall.

To validate this reactor model, we used center line gas temperature measurements. We

extracted two profiles of gas temperature, one representing single cell values on the center

line from the injection point to the exit of the reactor and the other representing an average

of cells around and including the center line. Both profiles are presented in Figure 5.5.

In the single cell gas profile, the initial temperature is 800 K and then rises rapidly; the

averaged profile is more homogeneous. However, the effect of the injection gas is evident

from the slight dip at 0.01 s.

We corrected the center line gas temperatures extracted from the reactor model (Figure 5.5)

to thermocouple (Ttc) measurements using equation (5.3), which is an energy balance

on the thermocouple. In this equation, the gas temperature (Tg) was extracted from the

reactor model, the thermal conductivity of the gas (kgas) was computed from simulation

outputs (gas composition and temperature), the Nusselt number was computed with a

correlation [34] (see equation (5.4)), εtc = 0.2 is the surface emissivity of the thermocouple,

and Tw = 500 K is the reactor wall temperature [34]. In equation (5.4), the Reynolds

number (Re) was computed from the diameter of the thermocouple (dtc = 2.54e − 5 m)

and the velocity of the gas (extracted from the simulation output). The Prandtl number

(Pr) was also computed from simulation outputs (gas composition and temperature).
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Ttc = Tg −
σεtcdtc(T4

g − T4
w)

Nukgas
(5.3)

Nu = 0.989Re0.33Pr0.33 (5.4)

The results of this correction are shown in Figure 5.6. The center profile Ttc values are

close to the experimental data between positions 0 m and 0.0254 m of the reactor. Both

profiles are close to the experimental data for positions greater than 0.0635 m. Because the

char particles can take different paths than just the center line, the spatially-averaged gas

temperature profile is more representative of the environment a particle may experience as

it accounts for the center line and eight other paths. Therefore, we used the average profile

in the RPBL simulations. The initial particle temperature for all the RPBL simulations was

800 K, which is the gas temperature at the center line of position 0 m. With this initial tem-

perature, we matched most of the thermocouple measurements near the injection point.

We also validated the reactor model by comparing the spatially-averaged gas velocity

profile from the reactor model with the velocities of the smallest US char particles (53 - 63

µm) in the experiment. The velocities of these small particles are a reasonable surrogate

for the gas velocity because they rapidly approach the terminal (gas) velocity. We had to

reduce the average gas velocity by 3% to be in the uncertainty range of the small particle

velocity, as shown in Figure 5.7. One reason that we could not obtain a closer match

between the two velocity profiles was that the burner geometry was not resolved in the

simulation. The Hencken burner consists of a set of small tubes, each of which holds a

small flame. We simulated the burner as a single large flame. Nevertheless, our correction

is close to the particle velocity measurement precision of ± 2% reported by Murphy and

Shaddix [61].

The spatially-averaged gas composition (averaged over the same nine points surround-

ing and including the center line) was also extracted from the reactor model, as shown in

Figure 5.8. For the initial composition, we assumed that the gas inside the particle and in

its boundary layer was 99% CO2 because that was the carrier gas.

We used the average gas temperature, velocity, and mass fraction profiles from the

reactor model as boundary conditions in the RPBL model at rin f , representing the bulk gas

condition.
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5.7.2 Data collection

With the bulk gas profiles obtained from the reactor simulations of the two environ-

ments, our next step was to run the RPBL model based on the five parameters in our study

and the requirements of the surrogate model. Given these five parameters and their ranges

as presented in Table 5.1, we used the Uncertainty Quantification Toolkit (UQTk) [13] to

produce a design of experiments. For the O2 = 24 vol%, H2O = 14 vol%, balance CO2

environment, a polynomial chaos (PC) surrogate model of order 4 with a full quadrature

rule required a total of 3125 cases to be run. For the O2 = 36 vol%, H2O = 14 vol%, balance

CO2 environment, a PC surrogate model of order 5 with a full quadrature rule required a

total of 7776 cases to be run.

We ran these RPBL model cases on a local Linux cluster at the University of Utah. We

set the total number of cells to 60 and the number of cells inside the particle to 30, which

meant we had to solve 781 ODEs. With 520 cores, it was possible to run all simulations

required for the VUQ analysis in one day.

To compare the QOIs from the RPBL model results with those from the experimental

data, we defined a procedure for computing particle velocity and temperature. Because

the velocity of the particle is resolved by the RPBL model, we only needed to extract the

velocity at the positions where data were taken. For particle temperature, we computed

the average of the 30 cells in the particle. Then, we extracted the average particle value at

the positions where data were taken.

5.8 Construction of surrogate models
We created PC surrogate models [13] for the consistency analysis with the RPBL data.

We required a surrogate model because it took more than 1 hour of computational time to

obtain output data (particle temperature and velocity) from the RPBL model for one set of

parameters. This function evaluation time is too long for the consistency analysis tool, so

we precomputed the particle temperature and velocity with the RPBL model, then built a

surrogate model with these data.

For each experiment, the number of measurement positions varied from 3 to 7. For

example, in Figure 5.3, experimental data were taken at five positions. Hence, for this

experiment, we built five PC surrogate models for particle temperature and five for ve-
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locity. We used the experimentally-measured particle diameters as the prior range in the

consistency analysis described in section 5.9.

We used a PC surrogate model of order 4 for the O2 = 24 vol%, H2O = 14 vol%, balance

CO2 environment. In Figure 5.9, we present verification plots for ten PC surrogate models,

five corresponding to the particle temperature (first column) and five to the particle veloc-

ity (second column) for the experiment presented in Figure 5.3. The rows are the position

in the reactor. The x axis is the surrogate output for the variable and the y axis is the RPBL

simulation output for the same variable. The surrogate model is a good representation of

the simulation data because all the x, y pairs are close to y = x. Thus, the PC surrogate

models reproduce the output values from the RPBL simulations.

We performed one additional verification to determine if the PC surrogate models

exhibited the behavior we expected: we evaluated the PC surrogate models for one ex-

periment with a sample of 10,000 points. We held three parameters constant (Yc,intial =0.75,
rin f
rp

= 85, εp = 0.55) and varied dp and φinitial using the ranges presented in Table 5.1. We

present the results in Figure 5.10. The particle temperature PC surrogate models are in

the first column and the particle velocity surrogate models in the second. Each row is a

location in the reactor where data were taken for the 75-90 µm size bin.

The particle temperature plots show how dp and φinitial affect the particle temperature.

In the first row (position 0.049 m), particles smaller than 40 µ m with high φinitial values

have temperatures of ∼ 1650 - 1700 K, which are close to the gas temperature. The maxi-

mum temperatures (∼ 1920 K) are observed for particles between 40 to 80 µ m, indicating

that these particles are reacting. Particles bigger than 80 µ m are cooler than the gas, which

means that these particles are being heated by the gas. Particles with low φinitial values

(heavy particles) are cooler than those with high φinitial . In the second row (position 0.0735

m), particles smaller than 40 µ m with low φinitial (heavy particles) and particles larger

than 80 µ m with a high φinitial (light particles) are close to the gas temperature (∼ 1700

K), which means these particles are composed primarily of ash. Maximum temperatures,

indicating reacting particles, are observed for heavy particles between 60 to 100 µ m and

for light particles between 70 to 120 µ m. Particles larger than 130 µ m with low φinitial are

still heating up. In the third, fourth, and fifth rows, the particles show similar behavior

to that in the first and second rows albeit with a different size of particle. The particle
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temperature plots exhibit the behavior that we expect; small particles react earlier in the

reactor than large particles.

From the particle velocity plots, we can see that small particles have larger velocities

than the large particles. For particles bigger than 60 µ m, the velocity decreases with

decreasing φinitial . This result makes sense because the particle weight increases with

decreasing φinitial .

We plotted the PC surrogate models at different positions and with varying values

for the other three parameters and observed similar behavior. We also checked the PC

surrogate models for the O2 = 36 vol%, H2O = 14 vol%, balance CO2 environment. In this

case, we used a PC surrogate model of order 5. We concluded that since the PC surrogate

models showed behavior that was similar to RBPL model results, these PC surrogate

models were adequate for the consistency analysis.

5.9 Analysis of model outputs
We employed a consistency measure analysis referred to as bound-to-bound consis-

tency [75]. In this analysis, the model outputs and experimental data are compared using

equation (5.5).

∆ =
|ym,e(x)− ye|

ue
(5.5)

Here, ym,e(x) is the model data point defined by the set of x parameters, ye is the ex-

perimental data point, and ue is the experimental uncertainty. If ∆ ≤ 1, the model data

point using parameter set x is consistent with the experimental data point. If the model

outputs for a parameter set x are consistent with all the experimental measurements, x is

a consistent point in our analysis.

We carried out a consistency analysis for each of the 36 experiments performed by

Hecht [34] as described in section 5.6. Here, we describe the consistency analysis for US

char in the O2 = 24 vol%, H2O = 14 vol%, balance CO2 environment and the 75-90 µm size

bin, but all the analyses were similar.

We first computed ue and ye for the particle temperature, velocity, and diameter. Here,

ue is the sampling error (β) and ye is the mean experimental value computed for each

position as discussed in section 5.6.3. The particle temperature and velocity are the QOIs

that we compared with the PC surrogate models. The dp uncertainty range is used as a
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prior estimate for the diameter of the particle in the next step.

Second, we created a random sample of 500,000 points within the parameter space

defined by the ranges of φinitial , Yc, εp, and rin f
rp

presented in Table 5.1. For the dp range,

we chose the maximum upper bound and the minimum lower bound computed from the

experimental data.

Third, we built the PC surrogate models for the particle temperature and velocity

measurements [13] and then evaluated each surrogate model at all 500,000 points.

Fourth, we applied the consistency analysis to the particle temperature and velocity

measurements to compute ∆ (see equation (5.5)). For each point (set of parameter values)

in the 500,000 point set, we extracted the maximum ∆, ∆max, from the ∆ values at each

measurement location. From this vector of ∆max values, we extracted the minimum ∆max,

which is the most consistent point in the set of 500,000 points. If this minimum ∆max < 1,

then we have found at least one consistent point. If the minimum ∆max > 1, we need to

improve our models, explore other parameters, or review ue.

Fifth, we reviewed the ∆max vector and selected all points for which ∆max < 1. From

this group of points, we obtained new ranges for the five model parameters by finding the

global maximum and minimum values of all the consistent points.

The last step was a refined consistency analysis with the new consistent ranges. We

created a random sample of 10,000 points within the consistent ranges and then reevalu-

ated the PC surrogate models at these 10,000 points. We obtained a set of consistent points

where ∆max < 1; these points are presented in Figure 5.11 for one experiment. In this

figure, the ranges for the three axes are the original ranges presented in Table 5.1 and the

box that contains the points is the consistent range. The color of each point corresponds to

∆max. Table 5.2 presents the prior and the consistent ranges for this particular consistency

analysis.

We compare the experimental range (red error bars), simulation (model) range (blue er-

ror bars), and consistency range (green error bars) for particle temperature and velocity in

Figure 5.12. In both plots, the consistent range is equal to or smaller than the experimental

uncertainty range. In addition, the model can reproduce the scatter of particle temperature

in all positions. We hypothesize that the large uncertainty in the particle temperatures is

due to the large range in particle diameter in a given size bin and the nonconstant physical
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and chemical properties of a single particle. We are able to span the range of experimental

particle velocities because we added a momentum equation for the particle rather than

assuming the same velocity for gas and particle.

We performed a similar consistency analysis for the other experiments and obtained

consistency with all 36 experiments. The consistent ranges of all five parameters are

shown in Table 5.3 for the O2 = 24 vol%, H2O = 14 vol%, balance CO2 environment and

in Table 5.4 for the O2 = 36 vol%, H2O = 14 vol%, balance CO2 environment. There are

two additional columns for dp. The nominal column corresponds to the size bins reported

by Hecht [34] (obtained from sieving data). The prior column corresponds to the prior

ranges used in the model. The prior range was taken from particle sizes measured in the

entrained flow reactor for a given sieving size bin. It is clear from the table data that the

particle size variability measured in the entrained flow reactor was much greater than the

size range of the unburned char particles based on sieving.

For all chars and all size bins, the consistent range for dp was reduced. With the excep-

tion of the 53-63 µ m and 63-75 µ m size bins for BT char in the O2 = 36 vol% environment

(see Table 5.4), the nominal range was contained within the consistent range. For these two

exceptions, measurements were taken close to position 0 where the effects of the injection

point are significant.

5.9.1 Effect of particle size

The results of six consistency analyses (representing the six bin sizes) for I6 char in an

O2 = 24 vol%, H2O = 14 vol%, balance CO2 environment are presented in Figure 5.13 and

Figure 5.14. Each row corresponds to a bin size. The first column is particle temperature

and the second column is particle velocity. The x axis is the position and the y axis is

particle temperature or particle velocity. In each position, the experimental error bars and

consistency ranges are slightly offset with respect to the simulation range for visualization

purposes. The actual position of the measurement corresponds to the position of the

simulation range bar. From both figures, we can see that the RPBL model outputs and

the experimental data are consistent for all the size bins. Thus, we can conclude that the

model represents the data over the range of size bins for I6 char. We obtained a similar

result for US char. For BT char, we obtained consistency for the six size bins, but the
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consistency ranges were reduced, especially for the εp parameter (see Table 5.3).

Comparing the plots in both figures, we can see that the measurements were taken at

different positions depending on the size bin. For small size bins, particles were measured

close to the injection position, while for larger size bins, particles were measured farther

from the injection point. Small particles heat up faster than big particles and have a smaller

amount of carbon than a bigger particle. Therefore, the char burnout time of a small

particle is shorter than that of a big particle. All of these effects are captured by the model.

5.9.2 Effect of char type

We compare consistency analysis results for US, I6, and BT chars in Figure 5.15. This

figure shows error plots for the 90-106 µm size bin in the O2 = 24 vol%, H2O= 24 vol%,

balance CO2 environment. The first column is particle temperature and the second column

is particle velocity; each row corresponds to a char type. Both I6 and US chars have similar

temperature ranges while BT char has a higher particle temperature. The particle velocities

are similar for the I6 and US chars but lower for BT chars at the first two positions.

The consistent and experimental data ranges for particle temperature nearly overlap in

all cases, indicating that the model is reproducing the range of the particle temperatures

for all three chars.

For BT char, we found consistency with all QOIs for all the size bins. However, the

εp parameter was reduced toward the lower bound of the prior range. This trend can

be explained by considering the particle temperatures in Figure 5.15; those for BT char

are higher than those for US and I6 chars, so to find consistency, lower values of εp (i.e.

reducing the amount of energy lost to the reactor wall) were required.

5.9.3 Effect of O2 concentration

As part of our consistency analysis, we analyzed results from two O2 mole fraction

environments, O2 = 24 and 36 vol% [34]. In Figure 5.16, we compare error bar plots in the

two environments for the 53-63 µm size bin of a US char. The model accurately reproduces

the measured particle temperatures at all positions for both environments. Also, higher

temperatures are obtained with the O2 = 36 vol% environment than with the O2 = 24

vol% environment, which makes sense because the amount of O2 available for reaction

is increased. We obtained similar results for all size bins with US, I6, and BT chars.
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5.10 Feedback and feed-forward
In this step, we review our analysis, check assumptions, and make recommendations

for the next VUQ cycle. We explored five parameters (dp, φinitial , Yc,intial ,
rin f
rp

, εp) using 36

experiments. The QOIs for our consistency analysis were particle temperature and particle

velocity measured at various positions in the Sandia entrained flow reactor. With the RPBL

model, we obtained simultaneous consistency across QOIs taken at multiple locations in

36 different experiments performing 36 consistency analyses, but we could not reduce the

uncertainty of the five parameters. We believe that this scatter in the temperature and

velocity data is due to the distribution of particle sizes and physical properties (especially

φinitial and Yc,intial) in the heterogeneous char samples.

5.10.1 Particle size and shape

The most important parameter for obtaining consistency was dp. This parameter de-

termines where the particle is located in the reactor and the amount of total carbon in the

particle. The char used in this analysis was sieved into six different size ranges. However,

no additional characterization of the particle distribution was done and only the nominal

values were reported [34]. We used a prior range of particle sizes broader than these

nominal sizes. After consistency analysis, the ranges were reduced for all size bins but

were still much larger than the nominal ranges (see Table 5.3 and Table 5.4).

We propose four possible explanations for the discrepancy. First, dp needs to be better

characterized experimentally. We recommend that particle size distribution measurements

be performed after the sieving. Second, the RPBL model assumes a constant particle

diameter during the reaction process. Since we found consistency with all the experimental

data, we think that this assumption is adequate. However, the particles may be increasing

in size due to the reaction process. Third, the particles, assumed to be spherical in the

RBPL model, may be nonspherical. The RPBL model could be improved by resolving a

cylindrical particle in addition to a spherical particle. Fourth, dp is a distribution, not a

range, and there may be bias in the experimental measurements such that the distribution

is not sampled uniformly at each measurement location. With the model, we could use a

distribution of dp rather than a range of dp as the prior. To obtain the particle phase size

distribution, the Sandia reactor could be simulated using Arches [66–68] with the direct
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quadrature method of the moments (DQMOM) [25].

5.10.2 Other model parameters

The parameters related to the particle morphology are φinitial and Yc,intial . These two

parameters are also important for computing the particle temperature and velocity. The

consistent range of φinitial was only reduced for the 53-63 µ m size bin experiment with BT

char in the O2 = 36 vol% environment. However, looking at Figure 5.11, we can see that

consistent range of dp changes depending on φinitial . Thus, if we could estimate this value

with greater accuracy, we could find a smaller range for dp. The Yc,intial parameter has not

been reduced in most of the experiments. While we use a range of values for φinitial and

Yc,intial in this study, these parameters should be estimated from a devolatilization model

prior to the onset of oxidation.

5.10.3 Model assumptions

We assumed a gradient of pressure ∼ 0 in the RPBL model. There were no data

available to test this assumption, but the model reproduced particle temperature and

velocity behavior when the O2 mole fraction was increased or when the particle diameter

was varied, so this assumption did not negatively impact RPBL model outputs.

We used the same heterogeneous reaction mechanism for all three chars. We found that

the US and I6 chars were well represented by this reaction mechanism. However, for the

BT char, this reaction mechanism may not be adequate. We base our conclusion on the εp

consistency range for BT char in Table 5.3 and Table 5.4. The low values of εp result in

higher particle temperatures because the particle is losing less energy to the reactor wall.

Particle temperature depends on the consumption of carbon, which is determined by the

reaction mechanism. If we want to have one heterogeneous reaction mechanism for all

types of char, we must explore parameters related to the reaction mechanism.

5.10.4 Uses for RPBL model

Because RPBL simulation times are on the order of hours, it cannot be implemented in

an LES code such as Arches [66–68]. However, this model can produce data for develop-

ment and validation of simpler models. RPBL can also be used to produce surrogate or

precomputed models for implementation in LES applications.
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Given that we obtained consistency with the RPBL model and Sandia char oxidation

data for three types of char, we might ask if this model can be used to perform predictions

with another type of char or with another type of reactor. In order to use RPBL as a

predictive tool, we need to eliminate as much of the bias (error) as possible from both

the model and the experimental data. We did remove some bias in the SKIPPY model by

adding new physics to create the RPBL model. However, some results indicate that other

forms of bias must still be corrected. For example, the reaction mechanism reproduced

the velocity and temperature data for I6 and US char particles, but for the BT char, the

εp parameter was reduced in order to find consistency. Thus, we think that the model

cannot be used to predict behavior from other char types until a heterogeneous reaction

mechanism is developed that differentiates among types of chars. Also, we did not look

for ways to identify and remove bias from the experimental measurements. We computed

the experimental error assuming that systematic error was small in comparison with the

sampling error. Only by removing experimental bias will we know if our model has the

necessary physics to predict char behavior in other systems.

5.11 Conclusion
We followed a six-step methodology to perform a VUQ analysis with the RPBL model

output and with experimental char oxidation data collected by Hecht [34]. The QOIs in

this analysis were the particle temperature and velocity. We selected five RPBL model

parameters that showed higher sensitivity to the QOIs for our analysis: dp, φinitial , Yc, εp,

and rin f
rp

. The uncertainty in the experimental data was computed using the approach of

Oberkampf and Roy [63] from the ∼ 100 measurements made at each position in each

experiment.

We performed consistency analyses between experimental particle temperatures and

velocities and those computed with the RPBL model for 36 experiments that corresponded

to three types of char (US, I6, and BT), two gas compositions (O2 vol% = 24, 36; H2O

vol% = 14; balance with CO2), and six size bins (53-63 µm, 63-75 µm, 75-90 µm, 90-106 µm,

106-125 µm, and 125-150 µm). Consistency was found with the 36 experimental data sets.

From the consistency analysis, we learned that the US and I6 chars exhibited similar

behavior with respect to particle temperature and velocity. However, BT char produced
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higher temperatures than either US or I6 in both O2 environments that were analyzed.

When the O2 mole fraction was increased, the experimentally-measured particle temper-

atures also increased; this behavior was captured by the RBPL model as was the effect of

varying the particle size for all three chars.

Our objectives with this analysis were to determine if the RPBL model outputs could

reproduce the experimental data collected by Hecht [34] and if we could use the experi-

mental data to estimate RPBL model parameters. From the analysis, we learned that the

RPBL model does reproduce the experimental data with three char types in two oxygen

environments. However, the most of the ranges of the five parameters we studied were

not reduced in the consistency analysis.

To answer the question of whether the RPBL model is validated and can thus be used

as a predictive tool, we need to consider whether the bias has been removed from both

the modeling the experimental data. In this analysis, we used the heterogeneous reaction

mechanism from the original SKIPPY model. We think that model bias cannot be fully ex-

amined until we apply a reaction mechanism from a different source. On the experimental

side, we did not account for any sources of error related to the experimental device. These

sources of bias need to be removed and and new VUQ studies performed before the RPBL

model can be used to perform predictions in other conditions with some known degree of

accuracy.
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Table 5.1. Input/uncertainty map for RPBL
Parameter Range

min max
Model Parameters

rin f
rp

[−] 50 120
εp [−] 0.1 1

Scenario parameters
dp [µm] 30 160
φinitial 0.15 0. 7
Yc,intial [−] 0.5 1

Table 5.2. Parameter ranges prior to and after consistency analysis for US char in an O2 =
24 vol%, H2O = 14 vol%, balance CO2 environment and 75-90 µm size bin

Parameter Prior range Consistent
range

Nominal
value

dp [µm] 36.9- 146.5 42.0-146.0 75-90
φinitial 0.15 - 0.7 0.15 - 0.7 -
Yc,intial [−] 0.5-1 0.5-1 -
rin f
rp

[−] 50-120 50-120 -
εp [−] 0.1-1 0.1-1 -
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Table 5.3. Consistent parameter ranges for US, I6, and BT chars in an O2 = 24 vol%, H2O =
14 vol%, balance CO2 environment. Prior ranges are rin f

rp
(50-120), φinitial (0.15 - 0.7), Yc,intial

(0.5-1), and εp (0.1-1); see Table 5.1.
dp [µm]

rin f
rp

[−] φinitial Yc,intial [−] εp [−]
Utah Skyline (US)

Nominal Prior Consistent Consistent
53-63 22-112 36-112 50 -120 0.15-0.70 0.5 -1.00 0.1 -1
63-75 27-119 34-120 50-120 0.15-0.70 0.5-1.00 0.1-1
75-90 37-147 42-142 50-120 0.15-0.70 0.5-1.00 0.1-1
90-106 36-140 38-148 50-120 0.15-0.70 0.5-1.00 0.1-1

106-125 53-164 70-160 50-120 0.15-0.70 0.5-1.00 0.1-1
125-150 66-199 74-160 50-120 0.15-0.70 0.5-1.00 0.1-1

Illinois # 6 (I6)
Nominal Prior Consistent Consistent

53-63 28-118 34-120 50 -120 0.15-0.70 0.5 -1.00 0.1 -1
63-75 30-119 44-120 50-120 0.15-0.70 0.5-1.00 0.1-1
75-90 29-150 30-150 50-120 0.15-0.70 0.5-1.00 0.1-1
90-106 30-130 32-132 50-120 0.15-0.70 0.5-1.00 0.1-1

106-125 67-144 74-146 50-120 0.15-0.70 0.5-1.00 0.1-1
125-150 73-165 82-160 50-120 0.15-0.70 0.5-1.00 0.1-1

Black Thunder (BT)
Nominal Prior Consistent Consistent

53-63 17-124 60-126 50 -120 0.15-0.70 0.5 -1.00 0.1 -0.69
63-75 27-138 70-120 50-115.92 0.16-0.70 0.64-1.00 0.1-0.36
75-90 21-141 70-144 50-120 0.15-0.70 0.5-1.00 0.1-0.46
90-106 33-145 88-148 50-120 0.15-0.70 0.5-1.00 0.1-0.76

106-125 36-165 102-160 50-120 0.15-0.70 0.5-1.00 0.1-0.79
125-150 58-171 96-160 50-120 0.15-0.70 0.5-1.00 0.1-1
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Table 5.4. Parameter ranges after consistency analysis for US, I6, and BT chars in an O2

= 36 vol%, H2O = 14 vol%, balance CO2 environment. Prior ranges are rin f
rp

(50-120), φinitial

(0.15 - 0.7), Yc,intial (0.5-1), and εp (0.1-1); see Table 5.1.
dp [µm]

rin f
rp

[−] φinitial Yc,intial [−] εp [−]
Utah Skyline (US)

Nominal Simulation Consistent Consistent
53-63 25-127 44-102 50 -120 0.15-0.70 0.5 -1.00 0.1 -1
63-75 32-126 52-128 50-120 0.15-0.70 0.5-1.00 0.1-1
75-90 41-149 68-152 50-120 0.15-0.70 0.5-1.00 0.1-1
90-106 37-159 70-160 50-120 0.15-0.70 0.5-1.00 0.1-1
106-125 40-192 80-160 50-120 0.15-0.70 0.5-1.00 0.1-1.0
125-150 43-203 92-158 50-120 0.15-0.70 0.5-0.750 0.1-0.55

Illinois # 6 (I6)
Nominal Simulation Consistent Consistent

53-63 31-117 46-118 50 -120 0.15-0.70 0.5 -1.00 0.1 -1
63-75 22-129 54-130 50-120 0.15-0.70 0.5-1.00 0.1-1
75-90 39-163 64-160 50-120 0.15-0.70 0.5-1.00 0.1-1
90-106 32-167 72-160 50-120 0.15-0.70 0.5-1.00 0.1-1
106-125 47-196 86-160 50-120 0.15-0.70 0.5-1.00 0.1-0.9
125-150 42-189 84-160 50-120 0.15-0.70 0.5-1.00 0.1-0.85

Black Thunder (BT)
Nominal Simulation Consistent Consistent

53-63 23-138 76-88 56-82 0.44 -0.67 0.91-1.00 0.12-0.21
63-75 24-134 76-136 50-120. 0.15-0.70 0.5-1.00 0.1-0.64
75-90 27-155 82-156 50-120 0.15-0.70 0.5-1.00 0.1-0.63
90-106 28-172 98-160 50-120 0.15-0.70 0.5-1.00 0.1-0.68
106-125 32-179 100-160 50-120 0.15-0.70 0.5-1.00 0.1-0.5
125-150 43-176 98-160 50-120 0.15-0.70 0.5-1.00 0.1-0.73
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Selection of quantities of 
interest (QOIs)
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Step 1

Step 2

Step 3
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Step 6

Figure 5.1. Six-step methodology with consistency analysis

Position 0

Char Feed

Figure 5.2. Schematic of optically accessible, entrained flow reactor at Sandia National
Laboratory. Figure adapted with permission from [34]
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Figure 5.3. Average temperature, velocity, and diameter with error bars for particles in the
75-90 µm size bin. The black dots are the experimental points, and the red error bars are
computed from equation (5.1) with a confidence interval of 95 %. These data correspond
to US char in an environment of O2 = 24 vol %, H2O = 14 vol %, and balance CO2.
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Gas velocity

Gas temperature

Figure 5.4. Pseudocolor plots of gas temperature and gas velocity in the Sandia entrained
flow reactor for O2 = 24 vol %, H2O = 14 vol % , balance CO2 environment.
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Figure 5.5. Gas temperature profiles (single cell and averaged over 9 cells) along the center
line of the entrained flow reactor.
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Figure 5.6. Thermocouple temperature profiles along the center line of the entrained flow
reactor. The profile is from position 0 [m] to position 0.254 [m].
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Figure 5.7. Comparison of spatially-averaged gas velocity profile from reactor simulation
and experimental particle velocity profile for particles in the 53 - 63 µm size range. The
average gas velocity was reduced by 3% to be in the uncertainty range of the small particle
velocity.
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Figure 5.9. Verification plots for PC surrogate models. The red line is y = x. The positions
correspond to an experiment with US char in an O2 = 24 vol%, H2O = 14 vol% balance CO2
environment and bin size of 75-90 µm.
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Figure 5.10. Scatter plots for PC surrogate models; left column is particle temperature and
right column is particle velocity. The positions (rows) correspond to an experiment with
US char in an O2 = 24 vol%, H2O = 14 vol% balance CO2 environment and bin size of
75-90 µm. Ranges for dp and φinitial are presented in Table 5.1; Yc,intial =0.75 , rin f

rp
= 85, and

εp = 0.55.
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Figure 5.11. Consistent sample for US char in an O2 = 24 vol%, H2O =14 vol%, balance
CO2 environment and 75-90 µm size bin.
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Figure 5.12. Consistent range for US char in an O2 = 24 vol%, H2O = 14 vol%, balance CO2
environment and 75-90 µm size bin.
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Figure 5.13. Consistent range for I6 char in an O2 = 24 vol%, H2O =14 vol%, balance CO2
environment for 53-63 µm, 63-75 µm, and 75-90 µm size bins.
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Figure 5.14. Consistent range for I6 char in an O2 = 24 vol%, H2O = 14 vol%, balance CO2
environment for 90-106 µm, 106-125 µm, and 125-150 µm size bins.
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Figure 5.15. Consistent ranges for I6, US, and BT chars in an O2 = 24 vol%, H2O = 14 vol%,
balance CO2 environment for 90-106 µm size bin.
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Figure 5.16. Consistent range for US char (top) O2 = 24 vol% and (bottom) O2 = 36 vol%,
both with H2O = 14 vol% and balance CO2 environments for the 53-63 µm size bin.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

I studied two bricks of different scales in the CCMSC validation hierarchy. For each

brick, I employed a six-step validation and uncertainty quantification (VUQ) methodology

that is based on a bound-to-bound consistency analysis. Chapters 2 and 3 focused on the

VUQ analysis of the 1.5 MWth oxy-coal (L1500) furnace and Chapters 4 and 5 focused on

the new Reacting Particle and Boundary Layer (RPBL) char oxidation model.

6.1 Conclusions
6.1.1 L1500 furnace

I performed the VUQ analysis for three quantities of interest (QOIs), heat removal by

cooling tubes, wall temperature, and O2 mole fraction, using experimental data from the

L1500 furnace and simulation data from Arches simulations of the furnace. I selected two

models for analysis in this study, the ash deposition model and the char oxidation model.

I created an input and uncertainty map for these models and chose five model parameters

with high priority for a sensitivity analysis.

The experimental data I selected for this analysis were collected in the L1500 furnace in

February of 2015 for the 100 % swirl burner operating condition. A STAR-CCM+ simula-

tion of the burner was performed to compute the velocity profiles at the burner tip. These

profiles were then used as an input boundary condition in the Arches simulation. The

sensitivity analysis showed that the most sensitive parameters across the three different

types of measurements were two ash deposition parameters, the thermal conductivity

(kdeposit) and emissivity (εw) of the deposit. This analysis also showed that the char oxi-

dation parameters had a small impact on the QOIs in comparison with the ash deposition

parameters.

I estimated the total error in the experimental data by adding the sampling and the

systematic errors. The sampling error was computed from 30 minutes of data using a
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t-distribution with a 95 % confidence interval [63]. I estimated the systematic error in the

wall temperature with a 2D heat transfer model of the L1500 wall. I obtained a value of

∼ ± 115 [K]. I estimated the systematic error in the heat removal data using calibration

information for the water flow rates and the errors in the temperature measurements of

the water inflow and out flow. I assumed that the total error for the O2 mole fraction was

equal to the sampling error.

I performed a consistency analysis with three parameters: ke f f (combination of kdeposit

and εw), burner swirl parameter ( fs), and coal feed rate (ṁcoal). Consistency was found be-

tween the simulation and all the QOIs. The consistent ranges for the parameters were: ke f f

= 0.97-1.51
[ w

mK

]
, fs= 0.0-0.1, and ṁcoal = 275 - 283

[ lb
h

]
. The wall temperature uncertainty

was reduced from ± 115 K to ∼ ± 16-26 [K]. The heat removal uncertainty was reduced

from ∼ ± 1.06e4 [W] to ∼ ± 0.58e4 [W]. The fact that the fs value was reduced by 90

% from the nominal value ( fs=1) to obtain consistency indicates a potential issue with the

burner inlet condition.

6.1.2 Char oxidation

I developed the new RPBL model for char oxidation. This model is based on SKIPPY

[34] but has an added transient component. RPBL solves mass, energy, and momentum

balance equations in a spherical char particle and its boundary layer. This model accounts

for mass transport of gas species between the particle and the boundary layer using a

time-dependent boundary condition. Heterogeneous and homogeneous reaction contribu-

tions are estimated with a six-step reaction mechanism and a syngas reaction mechanism

respectively. The burnout process is traced through the particle and along the length of the

entrained flow reactor at Sandia National Laboratories [61, 88].

For the VUQ analysis, I used experimental char oxidation data collected by Hecht

[34]. I performed a sensitivity analysis on the particle temperature and velocity for nine

parameters and selected five for the consistency analysis: particle diameter (dp), void

fraction (φinitial), carbon fraction of the particle (Yc), particle emissivity (εp), and boundary

layer thickness ( rin f
rp

). The particle temperature and/or velocity were most sensitive to the

first four parameters. I included the fifth parameter, rin f
rp

, because I do not have a model to

compute this value.
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I computed the uncertainty in the experimental data using the approach of Oberkampf

and Roy [63] to calculate sampling error. The ∼ 100 measurements at each position were

used to compute a particle temperature, velocity, and diameter with upper and lower

bounds. The consistency analysis between particle temperatures and velocities computed

with RPBL and the experimental values was performed for 36 groups of data that corre-

spond to three types of char (char obtained from Utah Skyline (US), Illinois # 6 (I6), and

Black Thunder (BT) coals), two gas compositions (O2 vol% = 24, 36; H2O vol% = 14; balance

CO2), and 6 size bins (53-63 µm, 63-75 µm, 75-90 µm, 90-106 µm, 106-125 µm, and 125-150

µm). I found consistency for all the 36 groups of data.

From the consistency analysis, I learned that the US and I6 chars have similar behavior

with respect to particle temperature and velocity while BT char produces higher temper-

atures. When the O2 mole fraction is increased, the measured particle temperature also

increases. This behavior is captured by the RPBL model, which also captures the effect of

varying the particle size of the three chars.

6.2 Future work
From the VUQ analysis performed on the L1500 furnace, I identified sources of un-

certainty in the wall temperature and heat removal measurements. As a result, several

changes have been made to the L1500 furnace. One, new thermocouples were installed in

the top wall of every section to measure the wall temperature, and the material that was

poured around the thermocouples had the same heat transfer properties as the materials

in the L1500 walls. Two, the cooling tubes in sections 1 and 2 were replaced with cooling

panels and a soot blowing system. With this system, better control of the ash deposits on

the cooling panels is obtained and the simpler geometry is easier to simulate with Arches.

I have the following recommendations from the L1500 VUQ analysis:

• Preliminary studies with the 2D wall heat transfer model show that steady state

conditions are reached after more than 40 h. This length of time is two orders of

magnitude higher than the simulation time for an LES simulation (approximately 30

s). Transient wall effects on measurements of interest (mid-wall temperature) should

be studied using a VUQ approach with the 2D wall heat transfer model.
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• With the changes to the L1500, wall temperatures data are available along the en-

tire length of the furnace. The entire furnace domain should be included in future

simulations.

• There are known leaks in the L1500 burner. The effect of leaks on the fluid dynam-

ics in the furnace needs to be studied. In the Arches simulation presented in this

dissertation, I included the effect of leaks only in the composition of oxidant.

• The velocity profiles of the fluid flow at the burner exit need to be experimentally

characterized. In addition, the effect of leaks between the vanes in the inner sec-

ondary and outer secondary streams should be evaluated.

In the VUQ analysis of the RPBL model, I compared RPBL data and single particle

experimental data from Sandia National Laboratories. In these experiments, only 100

particles were measured at each position, which is a relatively small sample given the

heterogeneous nature of coal. For this reason, I chose a wide range of values for the initial

mass fraction of carbon in the particle and for the initial void fraction in the VUQ analysis.

I did not use the proximate analysis data for the initial mass fraction of carbon because

char yield depends on the particle heating rate and the gas temperature, and these two

conditions are different between the proximate analysis test and the char produced in the

drop tube furnace.

Therefore, my recommendations from the RPBL model VUQ analysis include the fol-

lowing:

• The number of measurements at each position should be increased in order to reduce

the sampling error.

• Coal devolatilization that predicts void fraction and carbon mass fraction needs to

be developed.

• A better classification system for characterizing the size distribution of particles is

needed.

• In this dissertation, I did not compare RPBL outpout with offline measurements such

as fixed carbon for several reasons. First, a collection probe was used to collect
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particles for the offline analysis. This probe affects the profiles of gas temperature, ve-

locity, and composition surrounding the particle and therefore needs to be accounted

for in the reaction simulation. Second, these experiments used a higher flow rate of

char than the single particle experiments to collect sufficient char for analysis. The

RPBL model is a single particle model that does not account for the effect of other

particles. For the offline measurements, a better approach would be use Arches

with DQMOM for the particle phase to simulate the experiment. However, for this

approach, a simpler model than RPBL must be used.
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