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ABSTRACT

To minimize resource consumption and maximize performance, computer architecture

research has been investigating approaches that may compute inaccurate solutions. Such

hardware inaccuracies may induce a wide variety of program behaviors which are not observed

when the program executes on reliable hardware. Future programmers will need to reason

about these different behaviors in order to achieve efficient resource utilization without

compromising on error resilience. To ensure resilience, critical computations need to be

protected from the potentially fatal effects of hardware faults. On the other hand, to

exploit the resource-accuracy trade-offs, certain computations need to be approximated to a

tolerable extent. Effective techniques that provide insights into inaccuracy-induced changes

in application behavior are required to achieve these competing objectives.

In this thesis, we propose dynamic and symbolic program analysis techniques to profile

the inherent resilience of applications. At their core, both approaches analyze the effect of a

targeted injection of an inaccuracy on the behavior of an application in comparison with the

pristine execution. In the dynamic-analysis-based approach, the comparison is performed

by a tool that injects runtime inaccuracies into an application. The tool probabilistically

injects faults, with bit-level granularity, so as to simulate execution in an environment that

is prone to single or multibit faults. We provide the results of a comparative study of sorting

algorithm resilience using this approach. In our second approach, we provide a symbolic

control flow differencing technique to reason about control flow behavior of applications that

are subject to inaccuracies. Particularly, we define a precise symbolic encoding of control

flow equivalence using uninterpreted functions. We also provide an evaluation of a prototype

implementation on several benchmarks, showing promising results.
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CHAPTER 1

INTRODUCTION

The increasingly important concerns of power and energy consumption, along with am-

bitious performance goals, have resulted in methodologies in computer architecture research

that may compute inaccurate solutions. Depending upon the underlying application, such

inaccuracies may either exhibit fatal program behaviors (such as crashes, silent data corrup-

tions that cause unacceptable anomalous behaviors, etc.) or a range of program behaviors

with reasonable accuracy bounds. These inaccuracies may either be caused by unreliable

hardware, or introduced intentionally by developers for achieving performance and energy

gains on supporting platforms.

With the growing scale of systems and the level of integration of transistors within CPU

(Central Processing Unit) and GPU (Graphics Processor Unit) cores, undetected bit-flips

pose a serious challenge to our ability to rely upon computational results [2, 3, 4]. Recent

studies [5, 6] show that it is unaffordable to employ hardware-only solutions to detect (and

hopefully correct) hardware faults. A follow-on study [7] in fact expresses the need for

software-based solutions to be used in tandem with hardware-based solutions. One may

think of these software solutions as monitors placed within the code to trap errors. The

behavior of an application subject to transient bit-flips may resemble the behavior of the

same application with some random logical bugs. The programmer requires insight into

the behavior of an application under transient faults to address the problem of synthesizing

effective monitors to trap unacceptable behavior.

Many computations, however, can tolerate occasional runtime inaccuracies. Approximate

computation is a novel paradigm for a particular class of applications that have an inherent

trade-off between accuracy, performance, and power [8, 9]. Examples of applications that

handle inaccuracies with a level of tolerance include multimedia, machine learning, big data,

and financial computations. The approximate computation paradigm identifies the possibility

to adapt some computations in such applications to deliver inaccurate results in exchange

for relaxed correctness, while consuming substantially less power or compute time. Recent
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frameworks [10, 11] have equipped programmers with constructs to manually annotate source

code and data, which then the underlying system would use to approximate computations.

Thus, it is up to the programmer to annotate the program with care to avoid under-, over-,

and fatal approximations, and to achieve optimal energy savings.

Current techniques force programmers to manually infer the resource-accuracy trade-offs,

which is difficult, time consuming, and unreliable. Previous work [12] on application-specific

DRAM (Dynamic Random Access Memory) power-management identifies the problem of

determining criticality in applications where the critical state is tightly intertwined with the

noncritical state. Incorrectly labelling objects as noncritical would cause the corruption of

a critical state leading to application failure, whereas failure to identify noncritical regions

would lead to lost opportunities in power savings. The labelling approaches are, typically,

conservative since preventing application failure is more critical than resource-efficiency.

To provide such safe annotations and place better error detectors during the development

phase, the programmer needs to understand the changes in properties of the approximated

application with respect to the precise version. This thesis is geared towards exploring

dynamic and symbolic strategies to analyze the resilience applications and enable automation

of such program annotations, thereby providing the programmers with tools that help them

write resilient and efficient code.

1.1 Thesis Statement

We hypothesize that dynamic and symbolic analysis of deviant behaviors induced in an

application, by targeted injection of inaccuracies, can be used to profile application resilience,

therefore enabling resilient and approximate computation.

1.2 Thesis Contributions

Our main contributions are summarized as follows:

1. Dynamic analysis of applications using the KULFI fault injector.

(a) We present a new compiler-level fault injector called KULFI that conveniently

simulates faults occurring within CPU state elements. We describe how the

features of this (publicly released [13]) tool compare with existing compiler-level

fault injectors.

(b) As a case study, we run sorting algorithms under controlled fault-injection sce-

narios and empirically observe their behavior in order to determine instructions
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critical to application resilience. We plot the faulty behaviors observed and provide

evidence that our results are statistically significant.

2. Static symbolic analysis for control flow differencing.

(a) We formalize the notion of a fault affecting the control flow behavior of a program.

(b) We encode this problem into an instance of a program equivalence verification

problem.

(c) We provide a precise symbolic encoding of control flow equivalence using uninter-

preted functions.

(d) We implement a prototype tool for control-flow-based profiling of application

resilience.

1.3 Thesis Overview

In Chapter 2, we describe our approach to using dynamic analysis to profile application

resilience and the anatomy of the tool, KULFI, that performs the fault injection necessary

for the analysis. We also present the results of the case-study of comparing a family of

sorting algorithms on their resiliency. We conclude the chapter with a discussion on the

advantages and disadvantages of using dynamic analysis-based techniques for profiling ap-

plication resilience. In Chapter 3, we describe our symbolic differential program analysis

approach to detect program components that cause a control flow divergence in the presence

of inaccuracies. We also provide our encoding for precise and efficient control flow differencing

using uninterpreted functions and a comparison with traditional approaches such as taint

analysis. We discuss previous work related to dynamic and symbolic analysis for resilience

in Chapter 4. In Chapter 5, we provide our concluding remarks and outline of future work.



CHAPTER 2

DYNAMIC ANALYSIS FOR RESILIENCE

Previous studies [14] indicate a trend of increasing failure rates in the circuit level due

to factors such as dynamic variations in supply voltage, temperature, aging and radiation.

Resilience has been quoted to be one of the major roadblocks for HPC (High Performance

Computing) in future exascale systems as multiple failures are expected every day [15]. Fault-

tolerant computing has been very actively researched for decades, and forms the basis of many

practical techniques in use, including redundant designs, checkpointing, voting schemes, and

hardware-level error and correction schemes [16, 17, 18]. There have been extensive studies

to characterize the effect of faults, occuring in the circuit level, on programs implemented in

hardware and software. [19]. Fault injection has been a common methodology to evaluate

the dependability of applications [20]. Our first approach to profile resilience of a given

application is based on fault injection.

In this chapter, we first define the common terms of studies on resilience followed by the

architecture of our fault injection tool. In order to show the applicability of our dynamic

analysis to infer the resilience characteristics of applications, we conclude the chapter with

the setup and results of a case-study on sorting algorithms performed using the outlined fault

injection tool.

2.1 Preliminaries

We first define the common terms used by resilience studies in literature [4, 21]. The

rest of this document is consistent with these definitions. The manifestation of faults at the

software level can be modeled by flips (changes) in bit-values of the computational state.

Depending on the nature of these state changes, one can classify faults as follows.

1. Permanent Faults: Permanent faults are those that, once introduced into a state ele-

ment, persist for the remainder of the computation, thus modeling permanent hardware

failures.
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2. Transient Faults: Transient faults are those that may disappear as well as reoccur

during a computation. Since transient faults model rare events, such as alpha particle

strikes or marginal circuit operation (often caused by noise), it is customary to study

a given computation under a single transient fault occurrence.

When a fault occurs, the effect can be one of the following, as captured by fault filtration

that occurs across the hardware/software stack [5]:

1. The fault falls within the microarchitectural don’t-care set, thus effectively getting

filtered.

2. The fault reflects as a visible microarchitectural state effect, but is filtered by the

instruction set architecture (ISA), for example by being over-written by a good value

at the beginning of the next microarchitectural epoch.

3. The fault is reflected into a programmer visible register, but falls within the don’t-care

set of the application logic, say by affecting a variable that does not form the “answer”

returned by a function call.

4. The fault causes the machine to hang, results in a segmentation fault, or is otherwise

clearly observed (say, by tripping a built-in hardware-level error detector).

5. The fault silently corrupts the output of a computation without tripping any observer

or without being filtered.

We will use the term Benign Fault for categories 1–3 and Silent Data Corruption (SDC)

for category 5. We will assume that Segmentation Faults are the only observed category 4 of

faults.

2.2 KULFI: A Fault Injector

We have developed an open-source instruction-level fault injector named Kontrollable

Utah LLVM Fault Injector (or KULFI)1 on top of the LLVM (Low Level Virtual Machine)

compiler infrastructure [22, 23]. KULFI [1] is capable of injecting static and dynamic faults

into programs written in C. Static faults model permanent faults and are injected into a fault

site selected during compile time. Dynamic faults emulate transient faults and are injected

into a fault site selected during program execution. KULFI can inject faults into both data

and address registers, and currently it models only single-bit faults. The fault sites could be

1Available from http://github.com/soarlab/KULFI/.
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viewed as processor registers containing data or address mapped to a program state. This

provides fine-grained control over the fault injection process by allowing a user to specify

fault injection probability, injected byte location, fault site type (data, address, or both),

limit on the number of injected faults, target functions to inject faults into, etc.

Figure 2.1 shows the flowchart of the dynamic fault injection done by KULFI. At a high

level, the fault injection loop goes through all dynamic instructions. A dynamic instruction

is an instance of a static instruction at runtime. Note that there may be several dynamic

instances of a single static instruction due to the control flow characteristics of the program.

For each dynamic instruction, a type of fault to be injected is selected as either a data or

pointer fault type. First, KULFI randomly selects a C function for fault injection from a set

of user-defined target C functions. Then, it randomly selects from the chosen function an

instruction for fault injection, and determines (based on user input) whether the fault type for

the selected instruction would be a data or pointer fault type. Subsequently, KULFI checks

whether it is feasible to inject a fault with the chosen fault type into the selected instruction.

If this check passes and the provided fault injection probability is met, then a fault is

injected into the instruction. After successfully injecting a fault, KULFI checks whether

the preset limit on the number of faults has been reached. These steps are repeated for all

dynamic instructions. Once the loop is finished going through all the dynamic instructions,

the execution of KULFI terminates. If the end of the dynamic instruction sequence is not

reached, the fault injection loop is repeated; otherwise, the execution of KULFI terminates.

Given that transient faults are the main focus of this work, we describe in more detail

how KULFI models such faults. Figure 2.2 illustrates a transient fault occurring at register

level. The shown register does not contain a fault at time t1. At time t2 a fault occurs,

and then it disappears at time t3. Dynamic fault injection capability of KULFI models such

transient fault behavior. KULFI operates on the LLVM intermediate representation (IR)

level (i.e., LLVM bitcode level) in the static single assignment (SSA) form [24]. SSA ensures

that every IR variable (i.e., logical register) is assigned only once, which is an advantage

as opposed to operating at the source code level when modeling transient faults. More

specifically, injecting a fault into an SSA logical register referenced by an instruction is

a one-time occurrence affecting only the instructions that use that logical register. SSA

naturally prevents references to the same source code variable in the later instructions from

observing the injected fault. Note that the duration for which a transient fault persists in an

actual hardware register varies. Therefore, it is possible that more than one instruction could

get affected from a single transient fault. Currently we do not capture such timing-related

behaviors of transient faults in the software emulation of faults done by KULFI. However,
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Figure 2.1: Flowchart of Dynamic Fault Injection in KULFI
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Figure 2.2: Transient Fault Occurring in a Register
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KULFI still provides a reasonable model of transient fault behaviors, and similar models were

adopted by other error injectors [25, 26].

2.3 An Empirical Case-study of Sorting
Algorithms

We have performed an empirical case study that assesses the resilience of several popular

sorting algorithms. Previous work suggests that algorithms and data structures that solve a

particular problem not only vary in time and space complexity, but also in how resilient they

are to faults [27]. In that line of work, a memory (i.e., DRAM) fault model is assumed to

study the resilience of sorting algorithms [28]. However, the memory fault model is often too

restrictive since it fails to cover classes of faults not directly tied to memory, such as register

corruptions, control flow corruptions, and incorrect computation, which are prevalent in

real-world systems. In our empirical study, we choose to use a more expressive fault model

supported in KULFI. The chosen fault model considers all instructions of a program as

candidate fault occurrence locations, including memory reads and writes, register operations,

and control flow instructions.

In our case study, we consider implementations of five well-known sorting algorithms:

BubbleSort (with preemptive termination criterion), RadixSort, QuickSort, MergeSort, and

HeapSort.2 All implementations take as input an array of integers to be sorted, and they

output the sorted array. Since this is a preliminary study, we do not bias on the size and

input data, i.e., the arrays are of random size (between 2000 and 10000) and contain random

integer data. (As part of future work, we plan to experiment with various fixed data sizes

and algorithm-specific inputs.)

We perform a fault injection campaign for each sorting algorithm implementation using

KULFI. Each fault injection campaign consists of 200 fault injection experiments. A single

fault injection experiment is comprised of 100 executions of an algorithm. Therefore, each al-

gorithm is executed a total of 20000 times, which we split into 200 fault injection experiments

so that we can later compute the statistical significance of our results. In each execution,

the algorithm operates on a different randomly generated input array, while a single random

bit-flip error is injected at runtime using KULFI. We describe the details of our fault injection

strategy next.

2Source code of the examples and scripts for performing the experiments are also available from the KULFI
website.
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2.3.1 Fault Injection Strategy

Even with a fault injector such as KULFI available, selecting a realistic fault injection

probability requires careful planning; we now present our approach in this regard. As noted in

Section 2.1, fault filtration naturally occurs across the hardware/software stack where many

faults fall into the “don’t-care” sets of the higher layers. Specifically, Sanda et al. [5] report

how an IBM POWER6 processor was actually bombarded with protons and alpha particles

within an elaborate experimental setup. The authors estimated that the percentage of faults

that actually reached the application logic was 0.2% of the overall number of latch-level faults.

While this approach to fault simulation is quite realistic, such “bottom-up” fault injection

approaches (and its infrastructural overheads) are clearly out of reach to most researchers.

On the other hand, there are a number of recent approaches targeting software-level resilience

enhancing mechanisms (see Chapter 4). Therefore, we decided to focus our empirical study

only on the effects of faults that do reach the application logic since those are of a particular

interest to the software-level resilience community. We still had to devise a reasonable and

fair fault injection probability.

Given the above discussion, we now define additional notions that help us elaborate our

studies. By the term dynamic instruction we refer to a runtime instance of a static LLVM

program instruction. We define the dynamic instruction count as the actual number of

dynamic LLVM instructions executed corresponding to a specific program execution. For

example, for a simple program consisting of five static instructions in a loop that iterates

1000 times, the static instruction count is five, while the dynamic instruction count is 5000.

For our sorting algorithms, the dynamic instruction count varies depending on the algorithm

considered and the input array, which we have to take into account to ensure that all dynamic

instructions are considered for fault injection with equal probability. Table 2.1 gives various

statistics for our sorting algorithms:

• LOC is the number of lines of code,

• SIC the number of static fault site instructions,

Table 2.1: Statistics of sorting algorithms

Algorithm LOC SIC MinDIC MaxDIC AvgDIC

BubbleSort 56 13 68k 61442k 14818k
RadixSort 61 39 30k 2040k 565k
QuickSort 65 25 34k 1110k 303k
MergeSort 70 38 79k 1269k 364k
HeapSort 77 28 15k 1519k 500k
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• MinDIC the minimum dynamic instruction count,

• MaxDIC the maximum dynamic instruction count, and

• AvgDIC the average dynamic instruction count.

We initially perform a faultless run of an algorithm on an input to compute the dynamic

instruction count N for a particular execution. We then define the probability of fault

injection for each dynamic instruction to be 1/N . This ensures that all dynamic instructions

are equiprobably considered for fault injection in subsequent runs of the program on the same

input. Such a fault injection strategy models real-life faults as close as possible at this level

of abstraction.

Figure 2.3 illustrates our fault injection strategy for this case study performed using

KULFI. First, a sorting routine is compiled using LLVM’s C/C++ front-end Clang into an

LLVM bitcode file, which contains LLVM’s intermediate representation. Then, we execute

the generated bitcode file using the LLVM virtual machine (i.e., lli) and as input we provide

a randomly generated input array. We record the sorted output array for later comparison.

In the process, we also measure the dynamic instruction count N for this particular faultless

execution. Using the dynamic instruction count, we compute the probability of fault injection

for each dynamic instruction as 1/N . The original LLVM bitcode file and the computed fault

injection probability are given as inputs to KULFI. The tool generates a fault-injecting LLVM

bitcode file, i.e., an instrumented version of the original bitcode file in which a transient fault

might be injected during execution into a dynamic instruction with the computed probability.

The fault-injecting LLVM bitcode file is then executed on the same input array. We observe

the number of injected faults and log only the executions during which exactly one fault is

injected; we call such executions 1-fault executions. Executions where the number of injected

faults is not equal to one are discarded. We record the outcome of every 1-fault execution to

later analyze the effect of fault injection.

2.3.2 Experimental Results

We identify three possible outcomes of an execution of a sorting algorithm with a fault

injected at runtime.

1. Benign Fault. In general, a transient fault is benign when the program state at the

end of a faulty execution is the same as the program state obtained after a faultless

execution. In the context of sorting algorithms, the output array obtained as the result

of a faulty execution has to exactly match the sorted output array of the faultless

execution.
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2. Segmentation Fault. We classify a transient fault that causes a program to crash

due to performing an invalid memory access as a segmentation fault.

3. Silent Data Corruption (SDC). A fault is classified as an SDC when the ordering,

frequency, or the set of array elements at the output of the faulty execution is different

from that of the faultless execution.

After each fault injection experiment (i.e., 100 1-fault executions), we log the number

(i.e., fraction) of executions falling into each category. For example, here is how one such log

entry might look:

Benign: 41, Segmentation: 29, SDC: 30

In the end of every sorting algorithm fault injection campaign, we are left with 200 such

log entries, one for every fault injection experiment. We perform statistical analysis of these

logs and present our empirical results next.

From Figures 2.4–2.6, we observe that the values in log entries obtained after every fault

injection campaign are strongly clustered, and there is a statistically significant distribution

of the fractions for each outcome category. The larger shapes (e.g., triangles) in the middle of

clusters are indicative of the larger number of instances of faults that are closer to the middle.

More specifically, the fractions of every category of outcomes across the 200 fault injection

experiments follow the 68-95-99.7 (or three-sigma) rule of normal distribution. Therefore,

using our empirical data, we can draw statistically significant conclusions about the behavior

of the analyzed sorting routines in a faulty environment.

Figure 2.7 details the comparison of the sorting algorithms based on the average number

of executions in each category of fault outcomes. For example, we observe that BubbleSort,

though an algorithm with higher time complexity than HeapSort, leads to more detectable

faults. In fact, HeapSort is the least resilient with respect to SDCs and results in either

benign faults or SDCs in its fault injection campaign. QuickSort masks the majority of

injected faults and therefore its high number of benign faults. It is worthwhile to note that

the three algorithms that have the least number of detectable faults (MergeSort, QuickSort,

and HeapSort) follow a recursive divide-and-conquer algorithm design paradigm. On the

other hand, BubbleSort leads to more segmentation faults.3 We observe that approximately

85% of the executions of QuickSort and 90% of the executions of BubbleSort avoid SDCs. To

3As to the reliability and repeatability of measuring segmentation faults, one has to choose virtually
identical runtimes and memory layouts as well as mappings of user variables to memory locations. We will
address these considerations in future work.
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sum up, QuickSort is the most resilient and available algorithm of the algorithms considered.

The following summarizes the resilience-related observations, where the lower numbers are

better (lower number of faults in those categories):

SDCs : Bubble < Quick < Radix < Merge < Heap

Segmentation Faults : Heap < Quick < Merge < Radix < Bubble

In addition to logging execution outcomes, we also maintained a mapping of the dynamic

instruction where the fault was injected into the outcome that was produced in that execution.

We draw some interesting observations from this mapping. In BubbleSort, half of the faults

injected into registers that are employed in computing the index of the array access in the

expression Array[i-1] produce segmentation faults. In HeapSort, injecting faults into the

instructions executed just before and just after the recursive calls causes a high percentage

(close to 75%) of SDC faults. Such precise profiling of fault injection sites enables us to observe

critical instructions, specific to a sorting algorithm, where error injection leads to SDCs. Note

that, as an area of future work, one can potentially extend the notion of such critical regions of

an algorithm to other algorithms that follow similar design patterns. Furthermore, targeted

fault detection and recovery mechanisms can be employed around these critical regions to

provide cheap and effective means for improving resilience of programs to transient faults.

2.4 Discussion: Dynamic Analysis for
Resilience

Fault injection at the source/intermediate representation (IR)-level has been a common

approach to profiling the sensitivity of instructions to output quality. Fault injectors such as

KULFI [1], LLFI [26], PDSFIS [29] promise accurate perturbation of instructions at runtime.

These techniques perform their runtime analysis on instrumented source/IR operating on a

particular concrete input or a set of inputs. Therefore, although these techniques achieve

high levels of accuracy, there still need to be several thousands of fault injections to obtain

statistically significant inferences (see Section 2.3.2), which may be cost-prohibitive.

Dynamic fault injection-based techniques are highly scalable and can be used to study

system behavior under precisely emulated fault models. Fault injectors have been used on

real-world HPC codes operating on large workloads [30, 31, 32] for targeted fault injection

and analysis. Empirical fault injection and consequence analysis tools have been used on

scientific applications to infer, with a fine granularity, sections of the application, such

as data structures, etc., that are vulnerable to a particular class of errors [30]. Such a

runtime methodology also provides the user with information about the temporal criticality
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of a vulnerability of a specific application operating on a specific workload. Therefore, it

is conclusive that such runtime fault injection techniques are effective in the process of

associating the critical data objects to the vulnerabilities that corrupt their integrity, for

large-scale applications.

Although dynamic analysis techniques are scalable and precise, they are not generalized

since their inferences are bound to specific concrete executions on specific concrete workloads.

Therefore, in order to gain statistically significant results, one has to perform multiple fault

injections. This can be inefficient and unreliable since the parameters of the environment may

not be reproducible. To mitigate these shortcomings, certain heuristics have been applied

to provide accurate reasoning using a smaller subset of application behaviors. Offline dy-

namic analysis techniques [33, 34] provide information on dataflow and correlation difference.

Dataflow difference ranks the criticality of instructions based on the number of inaccuracies

that flow into it, whereas correlation differentiation performs a resilience profile based on

correlating the number of unacceptable outputs to the number of fault injections. The former

may be inaccurate as it is based on dataflow-based static analysis (we discuss this in detail in

Section 3.5) and the latter does not provide formal guarantees on injected faults. Although

there are optimizations for selective instruction perturbation [35], these techniques are limited

by their ability to reason only about a subset of all the possible executions of the program.

In the next chapter, we provide a symbolic approach that performs a precise differential

reasoning on all divergent behaviors of an application subject to inaccuracies, relative to its

precise execution. We will show that this symbolic approach addresses the shortcomings of

dynamic analysis-based approaches by reasoning about abstract symbolic states. Although

symbolic approaches have their limitations with respect to scalability, precision, and ap-

plicability to scientific applications, they are accurate and customizable. It is intuitive to

counteract the shortcomings of one approach with the other by employing a technique that

uses both approaches in a symbiotic manner. The symbolic and dynamic machinery nicely

complement each other, thus holding promise for future resilience studies.



CHAPTER 3

SYMBOLIC ANALYSIS FOR RESILIENCE

Our aim is to effectively facilitate automation of annotation-based programming practices

for approximate and resilient computing. We require an approach that provides a formal

reasoning about all approximated program behaviors, unlike the dynamic approaches outlined

in the previous chapter which reason about a limited set of executions. Dynamic analyses

reason about specific parameters of a concrete execution to determine the criticality of a

program component. In order to provide formal guarantees, one has to consider a level of

abstraction higher than a concrete execution. The abstraction is formalized by a relative

specification between the precise and approximated program executions. A violation of this

relative specification provides the notion of criticality to the given approximation. We intend

to provide formal classification of computations driven by such relative specifications. To do

this, we provide an approach that builds on differential static analysis techniques [36].

In this chapter, we will discuss our approach that computes a symbolic semantic difference

between an application and its approximated version, to verify if the approximation satisfies

a given relative specification. In this thesis, the semantic difference is geared towards control

flow differencing to find computations whose relaxation influences control flow, i.e., we

choose to model the relative specification in order to classify computations based on their

control flow dependency. Previous studies [37] have reported that as much as 70% of the

transient faults disturb program control flow. Control flow critical statements, when allowed

to be approximate, typically lead to serious problems in guaranteeing program termination,

unacceptably high corruptions in output data, and program crashes. By providing developers

with a list of control flow critical statements in their program, we allow them to either

inject appropriate error detection and correction mechanisms, or to avoid approximating the

computations in the listed statements.

Figure 3.1 defines the syntax of our simple programming language, which is a subset of

the Boogie language [38].
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Type ::= int | [int]int | bool

Program ::= (var Id : Type; )∗ Procedure+

Procedure ::= procedure Id((Id : Type),∗) Returns? {Body}
Returns ::= returns(Id : Type)

Body ::= (var Id : Type; )∗ BasicBlock+

BasicBlock ::= Label : Stmt ; goto Label ,+;

| Label : Stmt ; return;

Stmt ::= Stmt ; Stmt

| Id := Expr | Id [Id ] := Id

| skip

| havoc Id

| call Id(Id ,∗) | call Id := Id(Id ,∗)

| assume Expr

Figure 3.1: The Syntax of our Simple Programming Language. Id , Label , and Expr have
the usual meaning.

3.1 Preliminaries

The language supports integer type int, integer array type [int]int, and boolean type

bool. A program in our language declares a set of global variables and a set of one or

more procedures; there is one top-level entry procedure. A procedure has zero or more input

parameters and can declare an output variable; its body contains local variable declarations

and a nonempty set of basic blocks. Each basic block in a program is uniquely defined with

its Label , and consists of a block statement Stmt followed by a control flow statement (either

goto or return). We assume each procedure has a unique entry block. Program statements

have their usual meaning. Statement goto L1, . . . , Ln nondeterministically jumps to any one

of the n labels, while the return statement returns from a procedure. Statement havoc x

sets variable x to an arbitrary value, while the call-statement denotes a procedure invocation.

The assume Expr statement proceeds only when Expr evaluates to true; otherwise, it blocks

program execution. We use assume-statements in combination with goto-statements to

model conditional branching. Detailed semantics of these statements can be found in the

Boogie manual [39]. Figure 3.2 gives an example program in our simple programming

language.

Assuming that all basic blocks in a program have unique basic block identifiers/labels Li,

we define an execution of a program as follows.

Definition 3.1 An execution Γ of a program is a potentially infinite sequence of visited
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var x:int;

procedure foo(y:int) returns (r:int) {

L0:

y := x + 3;

y := y * y;

x := x * y;

goto L1,L2;

L1:

assume x > 0;

r := x + 5;

goto L3;

L2:

assume !(x > 0);

r := x + y;

goto L3;

L3:

return;

}

Figure 3.2: Our Running Example Program in our Simple Programming Language.

basic blocks L0, L1, . . . that is permissible by the language semantics. Such a sequence of

basic blocks is representative of the control flow behavior of a particular program execution.

A partial execution Γn is a finite prefix L0, L1, . . . , Ln of Γ. We use Γ(i) to denote the ith

element of Γ, ∀i ∈ [0, |Γ|]; otherwise, Γ(i) is undefined.

Next, we define the control flow equivalence between two executions.

Definition 3.2 Program executions Γ1 and Γ2 are control flow equivalent if and only if

∀n ≥ 0 . Γ1(n) = Γ2(n) and Γ1(n) is defined iff Γ2(n) is defined.

Note that two executions are said to be control flow equivalent if and only if they visit the

same basic blocks in the same order of succession.
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3.2 Capturing Control Flow Equivalence

Following the definitions of establishing a control flow footprint of program executions

and their control flow equivalence, we define, in this section, the program transformations we

propose to track control flow by storing a sequence of visited blocks. We also formally state

what it means for a fault to be control flow critical.

3.2.1 Control Flow Tracking Using Arrays

To be able to capture control flow equivalence, we propose a source-to-source program

transformation α that tracks control flow of a program execution as a part of the program’s

global state. Program transformation α takes a program as input and performs the following

steps:

• It adds global variables executionHistory (a ghost array) and count (the respective

counter). Note that executionHistory initially contains arbitrary symbolic values, while

count is initialized to 0.

• It instruments every basic block of a program with a call to procedure track(id : int)

that appends unique basic block IDs to executionHistory in their order of execution.

Figure 3.3 is an example of program transformation α applied on our running example in

Figure 3.2.

Proposition 3.1 Program transformation α does not influence control flow of program exe-

cutions.

This simply follows from the observation that the transformation only adds ghost vari-

ables, statements, and procedure calls that do not affect control flow (also, no new basic

blocks are added by these constructs).

For a partial program execution Γn, variable count after the execution of the last basic

block Γn(n) is equal to n. The updates to executionHistory follow the order of executed basic

blocks. Given that executionHistory initially contains arbitrary values and count is initialized

to 0, we inductively infer the following two propositions.

Proposition 3.2 Program transformation α precisely captures control flow of a program

execution in executionHistory.

Proposition 3.3 Control flow equivalence of partial executions is determined by comparing

the values of executionHistory in the final basic blocks of the corresponding partial executions.
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var x:int;

// *** tracking begin ***

var executionHistory :[int]int;

var count:int;

procedure track(id:int) {

executionHistory[count] := id;

count := count + 1;

}

// *** tracking end ***

procedure foo(y:int) returns (r:int) {

L0:

count := 0; // initialize count

track (0); // tracking

y := x + 3;

y := y * y;

x := x * y;

goto L1, L2;

L1:

track (1); // tracking

assume x > 0;

r := x + 5;

goto L3;

L2:

track (2); // tracking

assume !(x > 0);

r := x + y;

goto L3;

L3:

track (3); // tracking

return;

}

Figure 3.3: Our Running Example with Injected Control Flow Tracking (denoted with
tracking)

3.2.2 Fault Injection

Our main objective is to formally infer statements of a program that are control flow

critical. If a statement under a fault affects control flow behavior, then it is control flow

critical. We now discuss our approach of generating a faulty/relaxed program from its precise

counterpart. The intention of the relaxed program is to formally model potentially erroneous

or approximate computations so that we can analyze their effects on program executions.

Currently, we assume an over-approximate fault model that potentially completely corrupts
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a computation; that is, we consider the entire spectrum of approximations that are possible on

a computation. We chose this model to provide strong guarantees about worst-case behavior

of programs that operate under potentially faulty or approximate computations.

We define a source-to-source program transformation β that injects a fault into one of the

statements of the input program P . The injected fault models a runtime error/approximation

on the statement’s computation by setting the result of the computation to an arbitrary value.

We target simple assignment statements of the form Id := Expr (see Figure 3.1) as candidates

for fault injection in program P . We leverage the havoc-statement for fault injection, which

assigns an arbitrary value to its argument. Such a statement is injected just after the chosen

assignment, as illustrated in Figure 3.4.

Clearly, program transformation β used for fault injection preserves the control flow graph

of the input program. Although the tracked control flow graph remains the same between

the two program versions P and β(P ), it should be noted that the set of allowed executions

of fault-injected program β(P ) may be different from the original program P .

Proposition 3.4 If an execution Γ1 of the original and Γ2 of the fault-injected program

starting from the same initial state have differing values of the array executionHistory in any

var x:int;

procedure foo(y:int) returns (r:int) {

L0:

y := x + 3;

havoc y; // fault -injection

y := y * y;

x := x * y;

goto L1 , L2;

L1:

assume x > 0;

r := x + 5;

goto L3;

L2:

assume !(x > 0);

r := x + y;

goto L3;

L3:

return;

}

Figure 3.4: Our Running Example with Fault Injected. The fault is injected into an
assignment to variable y (denoted with fault-injection)
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of their respective partial executions Γn
1 and Γn

2 of the same length n, then the injected fault

affects control flow behavior of the original program.

It is given that the partial executions Γn
1 and Γn

2 have different values of the array storing

sequences of basic blocks (executionHistory). We know that the control flow graph does not

change due to the injected fault. Thus for the values of executionHistory to be different, the

fault must have enforced a visitation order of basic blocks in Γn
2 that is different from the

sequence of basic blocks visited in Γn
2 . That is ∃i ∈ [0, n] : Γ1(i) 6= Γ2(i) and both basic

block IDs are defined. Since both executions start from the same initial state, according

to Definition 3.2, the injected fault affects control flow behavior of the original program.

Note that a nondeterministic program is not control flow equivalent to itself. Therefore,

sound conclusions about whether a fault affects control flow cannot be drawn from inherently

nondeterministic programs.

The fault model that we consider in the transformation β mimics a completely unreliable

hardware specification. We discuss more intricate fault models that we can use and a typical

approach to encode them using Boogie in Section 5.2.

3.3 Verification Using Symbolic Differencing

In the previous section, we described our control flow tracking approach and fault-injection

strategy, and we formalized properties of relaxed program executions that deviate in control

flow compared to precise program executions. In this section, we define the notion of verifying

control flow equivalence of a precise deterministic program and its relaxed version. We then

formally define the verification problem and our approach to encode control flow equivalence

with uninterpreted functions.

3.3.1 Verification Problem

Definition 3.3 Let D be a deterministic program. Also, let P = α(D) be the precise and

Q = β(α(D)) the relaxed version of D. Then, programs P and Q are control flow equivalent

if and only if for any initial state the two respective executions are control flow equivalent.

In other words, the value of the respective executionHistory arrays is equal in both programs

for all partial executions starting from the same arbitrary initial state.

It follows from this definition and previously outlined propositions that verifying control

flow equivalence suffices to prove that a fault does not affect control flow for any program

input.
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We encode this verification problem as an instance of symbolic program equivalence. We

extend our language in Figure 3.1 with the assert Expr statement that reports a failure when

Expr evaluates to false; otherwise, it acts as the skip-statement.

We compose programs P and Q into a single procedure verifyCFEquivalence() to assert

their control flow equivalence. We illustrate (in Figure 3.5) the structure of this procedure by

applying it to verify control flow equivalence of our running example (say P ) and its imprecise

counterpart (say Q).

The program Q is executed after its initial state x, y is saved. The control flow tracking

variables executionHistory and count are empty and 0, respectively, to begin with. After P

finishes execution, the final states of variables executionHistory and count are saved. This

is the control flow footprint of program Q. After restoring the saved initial states to the

var x: int;

var executionHistory :[int]int;

var count:int;

// omitted tracking and fault -injection procedures

procedure verifyCFEquivalence(y:int) {

var x0 , x1 , count1: int;

var executionHistory0 , executionHistory1: [int]int;

// Save globals

x0 := x;

executionHistory0 := executionHistory;

call r := foo_relaxed(y); // invoke relaxed procedure

// save output globals

executionHistory1 := executionHistory;

count1 := count;

// restore globals

x := x0;

executionHistory := executionHistory0;

call r := foo_precise(y); // invoke precise procedure

// check control flow equivalence

assert(count1 == count && executionHistory1 == executionHistory );

}

Figure 3.5: Encoding of Control Flow Equivalence as Symbolic Program Equivalence
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variables x, y and reinitializing the control flow tracking variables, the control flow footprint

of program P is generated. The procedure then asserts the equality of the control flow

footprints of P and Q. Verification is performed by searching for an input state for which

the assertion fails, failing which the programs are control flow equivalent.

This algorithm of verification guarantees a partial control flow equivalence guarantee. It

is sound and complete for terminating executions, i.e., if there is a control flow deviation,

then the terminating execution will violate the assertion and vice versa. However, for

nonterminating executions, it is not the case that the assertion fails whenever there is a control

flow deviation. The checking of the assertion is contingent on the programs terminating on

the input.

3.3.2 Verification Using Uninterpreted Functions

While composed program verification by comparing the history of visited basic blocks is

sound and complete for terminating executions of deterministic programs, it is not efficient

for the underlying theorem prover that verifies the assertion. SMT solvers have an inherent

complexity blow-up when it comes to handling the theory of arrays, among a multitude

of theories employed to prove the relative correctness specifications. We also observe this

increase in complexity in our empirical case study. To handle this verification of control flow

equivalence of program versions efficiently, we propose a technique that employs uninterpreted

functions (in short, UIF). Expr in the grammar in Figure 3.1 allows for specification of

uninterpreted function symbols. Our aim is to develop a formalism that subsumes the

purpose of the global array, executionHistory , to track control flow history of program

executions, whilst being more efficient. The optimization brought in by this technique reduces

the verification of control flow equivalence from comparing basic block sequence arrays to

comparing a single value that depends on the entire history of visited basic blocks.

We propose a program transformation γ that essentially captures the control flow signa-

ture of a program execution by leveraging an uninterpreted function. Program transformation

γ performs the following operations:

• Augments the global state with the integer executionSummary .

• Instruments the basic blocks of the program with a call to an uninterpreted function

trackUIF (executionSummary , blockID)

• executionSummary is updated with a unique value which is a function of executionSummary

and blockID in the order of execution of basic blocks.
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Note that executionSummary is assigned the same uninterpreted value in the initial global

state of the program execution. Figure 3.6 is an example of program transformation γ applied

on our running example in Figure 3.2

It is clear, using arguments similar to Proposition 3.1, that the program transformation

γ does not influence the control flow behavior of the source program. In order to prove that

program transformation γ can effectively replace α in verifying control flow equivalence, we

need to establish that uninterpreted functions have the same control flow tracking semantics

as sequences of executed basic blocks.

Theorem 3.1 Two partial executions Γ1 and Γ2 (of P and Q respectively) are control flow

equivalent if and only the values of executionSummary are identical at the end of the two

var x:int;

var executionSummary:int;

function trackUIF(summary:int , id:int): int;

procedure foo(y:int) returns (r:int) {

L0:

executionSummary := trackUIF(executionSummary , 0);

y := x + 3;

y := y * y;

x := x * y;

goto L1, L2;

L1:

executionSummary := trackUIF(executionSummary , 1);

assume x > 0;

r := x + 5;

goto L3;

L2:

executionSummary := trackUIF(executionSummary , 2);

assume !(x > 0);

r := x + y;

goto L3;

L3:

executionSummary := trackUIF(executionSummary , 3);

return;

}

Figure 3.6: Our Running Example with Injected Control Flow Tracking UIFs
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executions.

Proof. We only provide a proof sketch here. First, consider the case when Γ1 and Γ2 have

different control flows; i.e., either they have different lengths, or they differ in some position.

In either case, consider the interpretation of trackUIF function where it assigns every distinct

tuple of its argument to a distinct value; this is a feasible interpretation as trackUIF is

completely unconstrained. It is easy to see that the final values of executionSummary will be

different in the two executions for such an interpretation of trackUIF . On the other hand,

if control flows are identical in Γ1 and Γ2, then the final values of executionSummary are

identical since trackUIF is a function.

With this equivalence of executionSummary and executionHistory established, the defini-

tion of the verification problem can be restated as in Definition 3.4.

Definition 3.4 Let D be a deterministic boogie program. Let P = α(D) be the precise and

Q = β(α(D)) be the relaxed version of Q. P and P ′ are control flow equivalent iff there is

no initial state for which P and Q have program executions, Γ and Γ′, that differ in control

flow behavior, i.e., the value of executionSummary is the same for all finite prefixes of Γ and

Γ′ that begin executing from the same arbitrary initial state.

3.4 Implementation

Based on the introduced techniques, we implemented a prototype tool flow for computing

the set of control flow critical computations from applications written in C. Figure 3.7 shows

our tool flow. First, HAVOC [40] translates a C program into its corresponding Boogie

program. HAVOC uses Boogie arrays to model the heap of a C program, where pointer

and field dereferences are modeled as array reads and writes. We use a modified version of

HAVOC that incorporates deterministic modeling of dynamic memory allocation [41].

Next, we automatically inject control flow tracking into the output program of HAVOC

to create two program copies (see Sections 3.2.1 and 3.3.2), and we inject a fault into one

of them (see Section 3.2.2). Loops and recursion in the two programs are now unrolled to a

user-specified depth, and all procedure calls are inlined. The formal guarantees we currently

provide are hence sound and complete only up to the particular unroll depth. We discuss a

sound proof checking technique, which we are currently working on, to avoid loop unrolling

in Section 5.2.

The inlined programs are verified for control flow equivalence using the SymDIFF tool [42]

as described in Section 3.3.1. SymDIFF uses the Satisfiability Modulo Theories (SMT) solver

Z3 [43] for discharging the final control flow tracking assertion. Violations of the control flow
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Figure 3.7: Our Tool Flow for Profiling Control Flow Resilience.

equivalence specification are captured by the counterexample traces that SymDIFF produces:

if a counterexample is generated, the fault-injected instruction is control flow critical, and vice

versa. We repeat this process for all potential fault sites of the analyzed program to obtain a

complete resilience profile with respect to fault/approximations that influence control flow.

3.5 Experiments

We performed the evaluation of our symbolic resilience profiler on several benchmarks

written in C, including sorting, image processing [44], data structure implementations, and

operations on matrices. Specifically, the benchmarks (details in Table 3.1) are:

• InsertionSort, BubbleSort, SelectionSort are standard implementations of the corre-

sponding sorting algorithms;

• Brightness Correction is used to enhance the visual appearance of an image;

• Arithmetic Mean Filter operation on an image removes short tailed noise such as

uniform and Gaussian type noise from the image at the cost of blurring the image;

• Centroid Computation is an algorithm to compute the centroid of the object within a

given image;
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Table 3.1: Characteristics of our benchmarks. LOC and #Procs are the number of lines
and the number of procedures in the sourcefile, respectively; #Faults is the total number of
potential fault sites.

Benchmark LOC #Procs. #Faults

Bubble Sort 25 2 13

Selection Sort 30 2 15

Insertion Sort 24 2 13

Brightness Correction 21 1 8

Centroid Computation 55 3 30

Arithmetic Mean Filter 27 1 13

Linked List Operations 76 5 40

Array Map Operations 78 7 35

Matrix Multiplication 38 3 17

• Matrix Multiplication performs multiplication of two square matrices using the naive

algorithm;

• Linked List Operations contains basic modules to create, modify, find, and delete

elements of a linked list data structure;

• Array Map Operations maps a function over the values of an array and updates it.

Table 3.2 gives experimental results and comparison of our proposed control flow resilience

profiling techniques.

Clearly, control flow tracking using an uninterpreted function outperforms the naive

encoding using an array, which is not surprising given often inefficient handling of the theory

Table 3.2: Experimental results and comparison of our control flow resilience profiling
techniques. Experimental results and comparison of our control flow resilience profiling
techniques. #Faults is the total number of potential fault sites; #CF-Equiv. is the reported
number of faults that do not affect control flow; Time(Array) is runtime of the array-based
control flow tracking; Time(UIF) is runtime of the UIF-based control flow tracking. All
runtimes are in minutes and timeout per fault is 30 minutes.

Benchmark #Faults #CF-Equiv. Time(Array) Time(UIF)

InsertionSort 13 1 2.8 1.3
BubbleSort 13 1 2.3 1.6
SelectionSort 15 2 3.7 1.8
Brightness Correction 8 4 1.3 1.4
Arithmetic Mean Filer 13 5 2.6 1.3
Centroid Computation 30 14 229.1 8.3
Matrix Multiplication 17 7 180.0 5.4
Linked List Operations 40 7 231.7 55.4
Array Map Operations 35 12 960.9 115.4
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of arrays by SMT solvers. In fact, we observe several timeouts in the case of Array Map

Operations and Linked List Operations when using array-based instrumentation. We safely

classify such outcomes as faults that can induce a control flow deviation.

Given such resilience profiles, we can discuss which applications are more amenable to

approximate computation. For example, applications in the domain of image processing are

more tunable to approximations that do not affect control flow, since most computations

are local to a pixel neighborhood. Our technique automatically identifies statements whose

computation can be approximated without affecting control flow as candidates for safe ap-

proximations. For example, Centroid Computation depends on the area of an object within

an image. Although the instructions to compute the area are critical to control flow, the

resultant value of the area does not affect control flow behavior. The value of the area is read

multiple times for computing the centroid within a loop of high complexity, and since our tool

determines it does not affect control flow, one can annotate it to be stored in approximate

memory (e.g., with low supply-voltage/refresh rate) for energy savings.

In general, one may assume that taint analysis is sufficient to precisely verify control flow

equivalence in the presence of hardware inaccuracies. This assumption is invalid when the

injected inaccuracy is semantically independent from the control flow behavior of the program.

For example, consider the injected relaxation in variable y in Figure 3.3. The control flow

path taken is determined by the sign of variable x, since the value of y is always nonnegative.

Therefore, there is no input state for which the two program versions take different control

flow paths. This is accurately noted by our technique and does not produce a verification

condition violation. However, traditional information flow-based taint propagation rules will

flag that the variable x is tainted and therefore the control flow paths can be arbitrary. It is

this level of precision that we aim to achieve to target control flow-critical applications, and

our experiments show promise in such techniques for profiling application resilience.

We performed a comparison of our control flow profiling technique with a taint analysis

technique available in the latest version of the SymDIFF release [45]. The results of this taint

analysis are available in Table 3.3.

We can see that the taint analysis is much faster than our approach, especially in the

benchmark instances such as centroid computation, array map operations, linked list opera-

tions, and matrix multiplication. Although our technique is slower, it has the advantage of

being more precise than taint analysis. For the benchmark instances of selection sort, linked

list operations, and array map operations, the taint analysis proves to be conservative and

therefore over-taints the set of approximable computations. This is due to the fact discussed

before that when the semantics of the statement determine the control flow path of the
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Table 3.3: Control flow profiling with taint analysis. Runtimes are in minutes.

Benchmark #Faults #CF-Equiv(Taint). Time(Taint)

InsertionSort 13 1 1.1
BubbleSort 13 1 0.8
SelectionSort 15 1 1.9
Brightness Correction 8 4 0.4
Arithmetic Mean Filer 13 5 2.5
Centroid Computation 30 14 3.3
Matrix Multiplication 17 7 2.9
Linked List Operations 40 2 0.8
Array Map Operations 35 3 2.5

program, taint analysis can tend to generalize its conclusions. For example, selection sort

is an interesting benchmark where traditional taint analysis flags a control flow independent

statement as unsafe. The selection sort algorithm sorts an array A of length n by pushing

the maximum element of the subarray A[0 . . . i − 1] to the position i after every iteration.

Therefore, the invariant of this algorithm is that once an element has been pushed to the

end, it will never play a part in determining control flow behavior. Therefore, our technique

identifies that the instruction that pushes the maximum element to the end of the array at

the end of every iteration can be annotated to store the value in an approximate memory

region. Traditional taint propagation rules will flag the whole array object as tainted after

the annotation of this instruction to be approximate. Therefore, such taint analyses may

conclude that the control flow behavior will change because the array on which the algorithm

operates is tainted. Verification of this well-known invariant of the selection sort algorithm

reinforces that our techniques are sound and complete for bounded nonblocking executions

of deterministic programs.
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RELATED WORK

In this section we explore previous work related to the different focal points of this thesis,

such as algorithmic resilience, fault injection, control flow tracking, program annatations and

reliability proofs.

1. Algorithmic Resilience: Algorithm level fault detection can be studied by focusing

either on memory faults or computational faults. Sorting algorithms and data structure

resilience have recently been studied focusing on a DRAM fault model, where faults

are assumed to occur only on the algorithm inputs [28, 27]. In this work, various

algorithms are compared based on the k-unsortedness metric. More specifically, the

lower the number of misplaced data items, the more resilient the algorithm is deemed

to be. In contrast, in our case study we assume a more fine grained fault model that

accommodates more fault categories, specifically, at the register and control flow level.

We also compare algorithms based on the number of silent data corruptions.

2. Fault Injection: One of our main contributions is the development of a fault injector

called KULFI, based on the LLVM compilation infrastructure [22, 23]. KULFI can

inject transient faults into a chosen data register of a randomly chosen program in-

struction at run time. Several previous studies have exploited fault injectors similar

to KULFI [46, 47]. There are also efforts that directly inject faults into the hardware.

Hardware-based fault injection is less flexible [48] and not as programmable. Fault

injectors can also be built by exploiting OS-level facilities [46, 47]. Other software-level

fault injectors include those based on PIN [29, 25]. Specifically, the PDSFIS fault

injector [29] uses Intel’s PIN framework.

In contrast to the above works, KULFI uses the open-source LLVM compiler infras-

tructure, similarly to other recently reported fault injectors [25, 26]. The fault injector

LLFI [26] is primarily geared towards injecting errors in soft-computing applications.

LLFI and KULFI were developed concurrently, and currently they share many similar
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features. However, when we started working on this project, KULFI was the only tool

available to us that had all of the required features. For example, KULFI provides

fine-grained error injection control (briefly discussed in the next section), which suits

well our requirements for performing the empirical evaluations described in this paper.

The fault injector used in the Relax framework [25] also uses the LLVM compiler

infrastructure. However, this fault injector is not publicly available. Furthermore, an

informal study by a Relax user suggests that KULFI is easier to control and fine-tune,

while also providing interesting command-line options not found in Relax [49].

3. Control Flow Tracking: Previous work [50, 51] has shown the applicability of control

flow signatures in tracking invalid control flow graph transitions. The techniques boil

down to computing control flow signatures on-the-fly at each node of the control flow

graph when the program counter transfers into it. Our approach to tracking control

flow behavior is based on static differential analysis and is employed predeployment of

the application, whereas these techniques are useful in detecting and correcting control

flow divergences at runtime.

4. Annotating Programs for Approximations: Recent years have seen the emergence

of frameworks that enable programmers to perform relability engineering of their source

code. EnerJ [11] is a type qualifier-based system for annotating data and computation as

approximate. Rely [10] is another framework that checks programmer-relaxed versions

of programs against a hardware reliability specification for quantifying error, while

Relax [52] allows specification of code-blocks to be approximable. Much effort that

follows this line of research has been to alleviate the burden of manual annotation

from the programmer, so that such annotation-based frameworks can be utilized effec-

tively. These efforts can be broadly classified into 2 categories: dynamic analysis-based

approaches and approaches that aim to prove relaxed reliability.

5. Proving Relaxed Reliability: Recent research has focused on proving reliability

properties of relaxed programs. An initial effort in this direction has been to provide

a static quantitative reliability analysis for sound and verified reliability engineer-

ing [10]. This work builds on the Rely framework to prove, by performing a procedural

precondition checking, if a particular relaxed program would guarantee an expected

probability of output correctness. ExPAX [53] is a framework that generates a set

of safe-to-approximate operations based on a dataflow-based taint analysis. It then

uses a genetic optimization algorithm to compute the level of approximation for each
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operation in the set so that energy consumption is minimized and reliability constraints

are satisfied. Similarly, there have been extensions to the EnerJ framework [54] to

accommodate annotation of reliability requirements in the source code. A user can

specify, for each instruction in a subset of instructions, a probability that it is correct.

Then based on the requirements on the output quality, the approximation levels of other

instructions are determined. These techniques have the common objective of tuning

the level of approximation of each computation to guarantee a particular quantitative

reliability on the output of a single program. Our technique aims to provide formal

guarantees on the reliability of a program in relative terms of the precise version rather

than an absolute quantity. Carbin et al. [55] present language constructs for developing

and specifying relaxed programs. Specifically, they provide proof rules for reasoning

about relational acceptability properties and unary acceptability properties. Though

this work also provides formal guarantees about relative program properties, our work

focuses on formally detecting relaxations that cause a control-flow difference. We have

also provided a tool-flow to verify relative properties of programs written in C, unlike

this work that enforces one to specify programs in Coq. In our future work, we aim

to make this differencing language-agnostic by working on programs written in the

intermediate verification language Boogie.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis provides two main orthogonal contributions to profile application resilience (a

dynamic runtime analysis and a static symbolic control flow analysis) in support of the thesis

statement. The techniques presented in this thesis showcase two fundamentally different

pespectives to profile resilience and the trade-offs they establish, in terms of efficiency,

accuracy and scalability.

Firstly, we presented a unique, thorough case study of resilience of several popular and

widely used sorting algorithms to hardware faults. To be able to perform such an extensive

resilience study, we first implemented a new, open source LLVM-level fault injector called

KULFI. Faults injected by KULFI at the LLVM level provide a reasonable fault model for

actual transient faults in the hardware. Using KULFI, we performed an extensive empirical

study that observed behavior of sorting algorithms when faults are being injected. Based

on the statistically significant results of this study, we drew informative conclusions about

resilience of these algorithms and specifically obtained a profile of the criticality of instructions

in the perspective of resilience.

We also proposed a symbolic technique to profile application resilience based on the

relative correctness specification of control flow equivalence, under arbitrary faults in the

computation. Specifically, we formalized the notion of control flow equivalence of precise and

relaxed program versions in the presence of faults. We presented two approaches to track

control flow behavior of programs written in Boogie. Our experimental results showed the

applicability of the techniques on representative benchmarks. The runtimes showcase the

usage of uninterpreted functions in efficient control flow equivalence proofs without the loss

of expressive power. We also outlined the higher precision provided by our approach in com-

parison to traditional taint analysis-based approaches, for proving control flow equivalence.

In summary, we have established the correctness of our thesis statement by the experimental

results and the theories presented in this document.
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5.2 Future Work

1. Dynamic Analysis with KULFI: As discussed in Section 2.4, although dynamic

analysis-based approaches can be very fine-grained, they may prove to be inefficient

and unsound. The basic shortcoming of such approaches is the limited guarantee of

code coverage that they provide. A future direction for KULFI would be to include

strategies for generating a representative set of inputs by code coverage analyses.

Another well motivated extension to KULFI would be to support parallel applications

(involving MPI, PThread, OpenMP, etc.) in order to broaden its use in the domain of

high performance computing. KULFI currently injects errors with a instruction-level

granularity. Moving to a more generic code-region based error injection strategies would

improve the usability of KULFI.

2. Symbolic Differencing for Resilience: There are four areas of future work: fault

models, relative assertions, scaling composed program verification and supporting other

data types. Firstly, we intend to move ahead with more intricate fault models. Instead

of corrupting the computation to an arbitrary value using the havoc(x ) statement, we

will use the assume statement to enforce the corruption to satisfy a particular predicate.

For example, by succeeding the havoc(x ) statement with assume(−10 ≤ x ≤ 10 ), we

control the corruption to take values in the interval [−10, 10]. Such constrained faults

will really distinguish a semantics based approach, such as ours, from taint-analysis

which typically tracks flow of information between computations.

Likewise, we plan to explore a richer set of relative assertions in the composed

program verification discussed in Section 3.3. For example, instead of placing an

assertion on the control flow tracking variables, we can specify a relative assertion

such as assert(xP − 5 ≤ xQ ≤ xP + 5 ) to verify if xQ, the output of x in the relaxed

program versionQ, is within 5 units of xP , the output of x in the precise program version

P . We believe that the framework of differential assertion checking will be useful to

discharge such proof obligations. The predicate specification language used in assert

and assume statements spans logical expressions, basic arithmetic operations, relational

operations and quantification over program variables. Thus interesting relative program

specifications, formalized in previous work [56], can be written and verified using the

same composed verification technique. Resilience can thus be profiled based on these

relative specifications.

The two main bottlenecks of efficiency when it comes to the composed program

verification are unnecessary theorem prover calls and loops/recursion. The former
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occurs when fault sites that obviously violate control flow property are still checked

by the theorem prover for control flow violations. We can use taint propagation rules

and analysis from previous work [45, 57, 58] to prune such obvious cases and reduce the

number of theorem prover calls. For the latter, we are currently working on customizing

a sound proof checker for control flow equivalence which does not require for the

loops/recursion to be unrolled/inlined to a particular depth. This proof checker obviates

the need to unroll loops by means of generating loop invariants (concise summaries of

the loop executions).

Currently, our tool flow does not support programs that operate on floating points

and bit vectors. The challenge lies in precisely encoding the semantics of floating point

and bit vector computations, and is one that we will pursue in the future.
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