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ABSTRACT

The purpose of this dissertation is to provide high-precision lattice quantum chro-

modynamics (QCD) simulation results for the mass splittings of low-lying charmonium

states as the test of the Standard Model, and, further, to study the nature of a higher

mass charmonium-like state called X(3872). Since the discovery of charmonium, it has

played an important role in the study of QCD. However, it had been impossible to study

charmonium energy levels at a low energy regime in QCD perturbative theory due to

color confinement, which is the consequence of the SU(3) nonabelian gauge theory in

QCD. From this point of view, numerical simulation with lattice QCD is a unique method

that provides a nonperturbative, ab initio approach for studying hadronic states governed

by the strong interactions. In this dissertation, I describe a high-precision study of the

splittings of the low-lying charmonium states, particularly the 1S and 1P states, including

a chiral-continuum extrapolation. The highly excited charmonium states, discovered in the

past decade, are much more challenging to study because their energy levels lie near or above

the D0D̄0 threshold, so they cannot be explained within the conventional quark model.

Among those, we are interested in the narrow charmonium-like state, X(3872), due to its

closeness to the DD̄∗ threshold and its possible four-quark nature. Since the X(3872) mass

is within 1 MeV of the DD̄∗ threshold, it is a strong candidate for a DD̄∗ molecular state.

Therefore, we use interpolating operators including both the conventional, excited P-wave

charmonium state, χc1, and the DD̄∗ open charm state for the isospin 0 channel. I provide

the theoretical background for the lattice calculation and the corresponding methodologies,

report on our high-precision results for the mass splittings of low-lying charmonium states,

I introduce a new methodology called the “staggered variational method”, which is a

variational method applied to the staggered fermion formalism, and finally, I present the

simulation results for the X(3872) with quantum numbers JPC = 1++ and isospin 0, using

lattice QCD, as well as the detailed analysis and our interpretation to reveal the physical

nature of X(3872).



“Nature is trying very hard to make us succeed, but nature does not depend
on us. We are not the only experiment.”

– R. Buckminster Fuller
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CHAPTER 1

INTRODUCTION

The standard model (SM) of particle physics is a field theoretical description of the

elementary particles and their interactions. Essentially all results of particle physics experi-

ments have been well explained within the SM up to energy scales of 1 TeV. The exceptions,

although tantalizing, are not strong enough to suggest revisions. In the standard model,

elementary particles are divided into fermions and gauge bosons, and there are four types

of fundamental interactions – gravitational, electromagnetic, weak, and strong. The quarks

(fermions) interact through the strong interactions as a consequence of their color-charge

together with the gluons, which are the gauge bosons mediating strong forces. The name

“strong interactions” is due to their greater strength compared with other interactions,

e.g., the electroweak interaction. The strength of the strong force is governed by the size

of strong coupling constant αS (analogous to the hyperfine constant α in electromagnetic

interaction). It varies from large to low values, namely αS ≈ 1 at scales of order one fermi

and decreases to zero at very short distances. This property allows one to use perturbation

theory for hard processes that probe short distances (momentum transfer Q→∞). On the

other hand, in the regime Q→ mhadron where αS becomes of order unity, the perturbative

method fails.

Charmonium is a meson consisting of a charm and an anti-charm quark pair. Charmo-

nium spectroscopy is a good probe of QCD hadronic physics. Early calculations based on

the nonrelativistic potential model have been fairly successful in predicting the charmonium

spectrum by treating the charmonium system as a bound state of a charm and anti-charm

quark pair. However, in this approach, there are two clear limitations. First, as mentioned

above, in the low energy regime, the potential in the nonrelativistic quark model is ad hoc

and v/c is not so small so relativistic corrections are needed. Second, above the open-charm

threshold, where the energy level is higher than M(D) + M(D), 1 the states cannot be

1D is a meson containing a charm quark and an anti-up quark. D is the anti-meson of D.
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explained by the conventional quark model. Two examples of such unexpected states are

the X(3872) and Z±c (3900), which have been confirmed by many experiments. The mass of

the X(3872) is very closed to the DD̄∗ threshold. Although many theoretical models have

been suggested, such as a hybrid meson, in which a gluon is excited, a hadronic molecular

state, in which two mesons form a bound state, and so on, its nature of structure still

remains unclear. Another state Z±c (3900) is a charged charmonium state which obviously

must contain at least four quark components, so it would be a tetraquark or molecular state,

which is not the conventional quark state. In other words, the hadronic states described

above cannot be directly studied by perturbative QCD in such a low energy regime where

the interaction of the colored quarks and gluons is very strong.

A crucial test of understanding QCD is to make a precise accounting of the hadron

spectrum as measured in experiment, regardless of the energy regime. From this point of

view, lattice QCD is the preferred choice of method. Numerical simulation with lattice

QCD uses a lattice version of quantum chromodynamics, which is a nonperturbative ab

initio method, and capable of giving accurate predictions of QCD, e.g., the mechanism for

confinement, chiral symmetry breaking, and the equilibrium properties of QCD at finite

temperature.

The purpose of this dissertation is to present our lattice-QCD simulation results of the

various charmonium states, namely the low-lying charmonium spectrum and the X(3872).

Our calculations are model-independent, nonperturbative and based on first principles. I

also provide a new lattice method for extracting highly excited hadron energies from the

lattice. This dissertation is organized as follows: In Chapter 2, I give some background

about the standard model of particle physics. In Chapter 3, I give an introduction to

lattice gauge theory. In Chapter 4, I briefly give an idea how the nonrelativistic method

works to study the charmonium spectrum and discuss its limitations. Next, I describe the

lattice methodology and report on simulation result for the low-lying charmonium spectrum

on the lattice. These results were obtained in collaboration with Fermilab Lattice and MILC

collaborations. In Chapter 5, I introduce a new methodology called “staggered variational

method” and the corresponding simulation results of the Ds spectrum. In Chapter 6, I

give a brief introduction to the X(3872) state. This state is usually considered to be a

multiquark state containing at least four quarks - two charm and two light quarks. I give a

brief summary of the experimental status and theoretical description of the state. Finally,

I present our analysis of the simulation results and report the result of X(3872) simulation.



CHAPTER 2

STANDARD MODEL

In this chapter, I give a brief description of the standard model with an introduction to

the gauge theories of quantum electrodynamics and quantum chromodynamics. Concerning

quantum chromodynamics, first, I introduce the “quark model” proposed by Gell-Mann [13]

and Zweig [14] in 1963 to explain the spectrum of strongly interacting particles phenomeno-

logically. Next, I describe why quantum chromodynamics had to be formulated, despite the

phenomenological success of the quark model. Finally, I give an introduction to quantum

chromodynamics.

2.1 Introduction

The standard model (SM) [15] of particle physics is the theoretical framework describing

the matter constituents in nature and their interactions at the 10−15 ∼ 10−19 m scale. All

known elementary particles and their interactions can be well described within the SM.

In the SM, there are two types of elementary particles – one, called “fermion”, carries

half-integer spin and is governed by Fermi-Dirac statistics, and the other, “boson”, carries

integer spin and is governed by Bose-Einstein statistics.

Fermions can be divided into two families according to their interaction types - quarks

and leptons. Each family can be further grouped into three generations according to their

masses. The quarks are of six different flavors, grouped into three generations as (up, down),

(charm, strange) and (top, bottom). The generations for the leptons are (electron, electron

neutrino), (muon, muon neutrino) and (tau, tau neutrino). See Fig. 2.1 for a graphical

representation and their abbreviations.

On the other hand, bosons, or gauge bosons, can be classified by the force types

they are carrying. In nature, there are four types of fundamental forces - gravitational,

electromagnetic, weak, and the strong forces. Their corresponding carriers are the graviton,

the photon, the weak bosons, and the gluons, respectively. However in the SM, the
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Figure 2.1. Elementary particles in the standard model [1]. The figure lists 12 fermions,
4 gauge bosons, and the Higgs boson. Fermions can be divided into two types - quarks and
leptons. Each has 6 different flavors.

gravitational force, so also the graviton, is excluded, because it is too weak to be observed

at the quantum level scale, and we do not know how to quantize gravity.

The quarks have fractional electric charges and interact through strong, electromagnetic,

and weak forces. They have charge Q = 2
3 for up-quark, −1

3 for down-quark, −1
3 for

strange-quark, 2
3 for charm-quark, −1

3 for bottom-quark, and 2
3 for top-quark, in the units

of the electron’s charge e, respectively. In addition, quarks carry an additional degree

of freedom called color. Color charges affect how quarks interact with gluons through

the strong force. QCD (quantum chromodynamics) is the theory that describes strong

interactions of quarks and gluons.

On the other hand, the leptons are the electron, e−, the muon, µ−, and the τ− with

electric charge Q = −1, in units of the elementary charge e. There are corresponding

neutral, Q = 0, neutrinos, νe, νµ, and ντ . These leptons interact with other fermions

through the electromagnetic and weak forces.
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The second type of particle, the bosons, have spin s = 1. The photon, γ, is the particle

exchanged in the electromagnetic interactions. Eight gluons gα, α = 1, ...8 mediate the

strong interactions between quarks, and finally, the three weak bosons, W±, Z, are the

intermediate bosons of the weak interactions.

Concerning the range of the three types of interactions, first, the range of electromagnetic

interactions is infinite as it corresponds to an interaction mediated by a massless gauge

boson, γ. On the other extreme, the weak interactions have an interaction range about

10−18 m corresponding to the exchange of a massive gauge particle, W± or Z, with a mass of

the order of MV ≈ 100 GeV/c2. Finally, the strong interaction range is not infinite although

the intermediate particle gluon, gα, is massless. In fact, QCD does not allow the quarks

to be free. Instead, the strong force between two quarks stays constant as the distance

between them increases. This is the consequence of the nonabelian gauge theory describing

the SU(3) color forces. Unlike U(1) gauge theory with uncharged photons, the gluons carry

color charges so they can interact with themselves. This results in so-called anti-screening.

In other words, at large inter-quark distances, it becomes energetically favorable for a new

quark-antiquark pair to be created out of the vacuum, rather than allowing the distance

between the quarks to grow. The effective range of pair creation via the strong interaction is

about 10−15 m. Thus, all observed hadrons consist of two or more quarks in a color-neutral

configuration, not as free quarks. These colorless composite particles are classified into

baryons and mesons, or combinations thereof. For example, the baryons are fermions made

of three quarks, qqq, and the mesons, bosons made of a quark-antiquark pair, qq̄.

As for the strength of the three interactions, the electromagnetic interactions are gov-

erned by the size of the electromagnetic coupling constant e or equivalently the hyperfine

structure constant α = e2/4π. The weak interactions have an effective weak strength

given by the dimensionful Fermi constant GF = 1.167 × 10−5 GeV−2, so they are weak

at energies much less than 100 GeV and comparable to the electromagnetic interaction

at higher energies. Finally, as the name suggests, the strong interaction is comparatively

stronger than the others. It is governed by the size of the strong coupling constant gS or

equivalently αS = g2
s/4π, varying from ≈ 1 at low energy to ≈ 0 at high energy.

In the following sections, we will briefly discuss these elementary particles and their

interactions via group and gauge theory.

2.2 Symmetries in particle physics

One can classify the symmetry in physics in two ways, discrete symmetries and continu-

ous symmetries [16]. Discrete symmetries are characterized by a finite symmetry group. The



6

most relevant symmetries are transformations of parity (P ), charge conjugation (C), and

time reversal (T ). The CPT theorem states that all interactions must be invariant under

the total transformation given by the product of C, P , and T , regardless of their order. The

electromagnetic and strong interactions are invariant under the separate transformation P ,

C, and T , whereas the weak interactions can violate, P , C, and PC.

Continuous symmetries can be further classified by two types - space-time symmetries

and internal symmetries. Space-time symmetries act on the space-time coordinates; they

are translations, rotations, and boosts. Such transformations are called the Poincaré

transformations. All interactions are invariant under the Poincaré transformations.

On the other hand, the internal symmetries act on the internal quantum numbers. These

symmetries can be further classified in two distinct classes. One type are global symmetries,

in which the continuous parameters of the transformation do not depend on the space-

time coordinate, such as SU(2) isospin symmetry, SU(3) flavor symmetry, etc. The other

type are local gauge symmetries in which the continuous parameters of the transformation

depend on the space-time coordinates. For example, the U(1) local gauge transformation

in electromagnetism can be performed as

ψ(x)→ eiθ(x)ψ(x) , Aµ(x)→ Aµ(x) + e−1∂µθ(x) , (2.1)

where ψ(x) is a Dirac field, Aµ(x) is a gauge field for electromagnetism, and e is the electric

charge for ψ. The phase θ depends on the space-time point x ≡ xµ, and has one associated

gauge boson field, Aµ(x).

These gauge symmetries are very important features of particle physics and play a

crucial role in the building of the SM. The quantum field theories that are based on the

existence of some gauge symmetry are called gauge theories. The gauge theory based on

U(1)em is quantum electrodynamics (QED), SU(3)C , quantum chromodynamics (QCD),

and SU(2)L × U(1)Y , electroweak theory. The SM is the gauge theory based on the total

gauge symmetry of the fundamental interactions in particle physics, SU(3)C × SU(2)L ×
U(1)Y .

2.3 Quantum electrodynamics (QED)

QED is the most successful gauge theory in particle physics and has been tested up to

a high level of precision [17]. One starts by considering a spin-1/2, mass m, a fermion of

charge e represented by a field ψ(x), and a gauge field Aµ(x). The QED Lagrangian, which

is invariant under a U(1) local gauge transformation, Eq. (2.1), is

LQED = ψ̄(iD/ −m)ψ − 1

4
F 2 , (2.2)
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where D/ ≡ γµD
µ, and D is the gauge-covariant derivative defined through Dµψ = (∂µ +

ieAµ)ψ. F 2 ≡ FµνFµν and Fµν is the field strength tensor,

Fµν = ∂µAν − ∂νAµ , (2.3)

which is also gauge invariant.

Note that the Euler-Lagrange equation of motion for a field φ in a given Lagrangian L
is

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 . (2.4)

The equation of motion for ψ and Aµ reduce to the Dirac and Maxwell equations,

(iD/ −m)ψ(x) = 0 , (2.5)

∂µF
µν = eψγνψ = ejν , (2.6)

respectively.

2.4 Quantum chromodynamics (QCD)

The critical difference between QCD and QED is the phenomenon of asymptotic freedom

[18, 19], briefly introduced in Chap. 1. In this section, first, I discuss the quark model and

introduce the additional quantum number called “color”. Next, I give a brief introduction

to QCD.

2.4.1 Quark model

In 1963, Gell-Mann [13] and Zweig [14] proposed a “quark model” that explains the

spectrum of hadrons in terms of quarks. According to the quark model, all hadrons are

made up of quarks, bound together in different ways. Each quark is assigned spin 1
2 and

baryon number, B = 1
3 . The mesons are composed of a quark-antiquark pair (qq̄) and

baryons, three quarks (qqq).

One of the important features of the quark model is that it incorporates the symmetry

of the strong interactions between quarks based on their masses. If one assumes that u and

d have the same masses and interactions, then the following SU(2) group with the unitary

transformation matrix U , (
u
d

)
−→ U

(
u
d

)
, (2.7)

must be a symmetry group of the strong interactions. In fact, the quantum number

associated with the SU(2) symmetry is called “isospin” and often represented by T . Sim-

ilarly, because the strange quark, s, has mass fairly close to u and d, one can extend the
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SU(2) multiplet to the SU(3) flavor symmetry group multiplet (u, d, s). This requires one

additional quantum number, the strangeness, S, which is 0 for u and d, and −1 for s

quarks. Or else, one can define an additional quantum number that coincides with the

center of charge of a multiplet, called “hypercharge”, Y , [13, 20]

Y ≡ Qmin +Qmax = B + S . (2.8)

The basic quark multiplet is shown in Figs. 2.2 (A) and (B). Within an SU(3) multiplet,

one can classify mesons and baryons in T3−Y plane. Since the mesons appear as composite

states of a qq̄, we can represent its flavor content as

qq̄ = 3⊗ 3̄ = 1⊕ 8 (2.9)

where the 1 is the SU(3) meson singlet. It is the η′ ∼ (uū + dd̄ + ss̄) for JP = 0−, where

J is total angular momentum and P is the parity quantum number. The 8 is the SU(3)

meson octet. For example, for 0− mesons, they are π+ ∼ ud̄, K+ ∼ us̄ ... and so on. On

the other hand, the baryon is made up of qqq, so we can decompose it as

qqq = 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 , (2.10)

where the 1 is the SU(3) baryon singlet. It is the Λ(1115). The 8 is the SU(3) baryon

octet. For the 1
2

+
baryons, they are n ∼ udd, p ∼ uud ... and so on (see Fig 2.2 (D)). The

decuplet 10 contains the 3
2

+
baryons (not shown in the figure), N∗+ ∼ uud, Σ∗+ ∼ suu,...

and so on.

Now, analogous to the extension from the SU(2) to the SU(3) multiplets, we can extend

further by including the charm quark, c, and introduce an additional quantum number,

called “charm” so that charm quark has C = 1, T = 0 and Y = 1
3 . Fig. 2.3 shows the

SU(4) multiplets. Note that the two mesons located at the singlets in Fig. 2.3 (A) and (B),

respectively, labeled by ηc and J/ψ are called charmonium whose quark constituents are cc̄.

Despite the success of the original quark model to predict new hadrons, it has critical

contradictions. First, no free particle with fractional charge has been found. Second, the

total wave function of baryons must be symmetric under the interchange of the quark spin

and flavor quantum number, which contradicts Fermi-Dirac statistics. For example, consider

the ∆++ particles whose quark components are (u, u, u), shown in Fig. 2.3 (D). For the spin

quadruplet states (S = 3/2), all four states are symmetric under the interchange of any two

quarks. Thus, for the spin quadruplet states having zero orbital angular momentum, their

total wave function becomes symmetric, which contradicts Fermi-Dirac statistics.
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Figure 2.2. Examples of SU(3) flavor multiplets as a function of hypercharge Y and
the isospin component T3. Panel (A) and (B) show the smallest nontrivial representation
of SU(3) made out of u, d, and s quarks, and panels (C) and (D), respectively, show
pseudoscalar meson and baryon octets,

These contradictions are avoided with an additional quantum number called “color”

so that the baryon wave function is totally antisymmetric in the color quantum number.

Because color symmetry has no other obvious physical role, it is natural for color symmetry

to be classified as the gauge group. Thus, if we set the quark to qc where c = 1, 2, 3 is

color index, the quarks transform under the 3 representation of the color SU(3) symmetry,

whereas the antiquark transform under the 3. The corresponding quanta of the SU(3) gauge
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Figure 2.3. Examples SU(4) multiplets made out of u, d, s, and c quarks. Panels (A) and
(B), respectively, show the pseudoscalar and vector mesons 16-plets, and panels (C) and
(D) show the 20-plet, as a function of hypercharge Y , isospin component T3, and charm C.

field are gluons. In addition, all hadrons must be singlets under the color symmetries. Now,

the required antisymmetrization of baryon and anti-baryon wavefunctions can be done by

using the Levi-Civita symbol, εabc,

εabcq
aqbqc , εabcq̄

aq̄bq̄c . (2.11)

On the other hand, because a meson consists of a pair of quark-antiquark, one can simply

write it as
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q̄cq
c , (2.12)

where both baryons and mesons appear as color-singlet.

2.4.2 QCD Lagrangian

In the previous subsection, I have discussed the representations of quark fields and

introduced an additional quantum number, color. In this subsection, I will discuss the

Lagrangian which is invariant under the color SU(3) transformations.

Quantum chromodynamics is an SU(3) nonabelian gauge theory of the color charge (gS)

[17]. The fermions, which carry color charge, are the quarks, each with field ψfc ≡ {[ψfc ]α},
where f = u, d, s, ... is the flavor label, c = 1, 2, 3 is the color index, and we suppress the

Dirac-spinor indices α = 1, 2, 3, 4. The gauge bosons, also carrying color, are the gluons,

with field Aaµ, a = 1, ..., 8. One can write the Lagrangian LQCD as

LQCD =
∑
f

ψ̄fc1(iD/ c1c2 −m
fδc1c2)ψfc2 −

1

4
Fµνa F aµν , (2.13)

where D/ ≡ γµDµ, and F aµν is the color field strength tensor,

F aµν = ∂µA
a
ν − ∂νAaµ − gSfabcAbµAcν . (2.14)

Note that we suppress the color indices ci. F
a
µν contains a bilinear term in the gluon fields, as

it corresponds to a nonabelian gauge theory with structure constants fabc(a, b, c = 1, ..., 8).

The quark covariant derivative is

Dµψ =

(
∂µ + igS

λa
2
Aaµ

)
ψ , (2.15)

With SU(3) generators, λa/2, and the rotation parameters, θa, the local SU(3) transfor-

mations of the color degree of freedom for the quark and gluon fields are given by

ψ(x)→ U(θ)ψ(x) = exp(−iθaλ
a

2
)ψ(x) , (2.16)

Aaµ → Aaµ −
1

gS
∂µθ

a + fabcθbAcµ , (2.17)

respectively. The generators, λa/2, are 3× 3 traceless, hermitian matrices and are given in

terms of Gell-Mann matrices,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

0 −i 0
i 0 0
0 0 0



λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0


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λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


As generators, they obey the commutation relations

[λa, λb] = 2ifabcλc (a, b, c = 1, ...8) , (2.18)

where the f -coefficients are totally antisymmetric structure constants of SU(3). The non-

vanishing elements are,

f123 = 1, f147 =
1

2
, f156 = −1

2
, f246 =

1

2
, f257 =

1

2

f345 =
1

2
, f367 = −1

2
, f458 =

√
3

2
, f678 =

√
3

2
.

Note that the group SU(3) has an infinite number of irreducible representations R = 1, 3,

3̄, 6, 6̄, 8, 10, 10, ... where each irreducible representation is labeled in terms of its dimen-

sionality. For example, quarks, antiquarks, and gluons are assigned to the representations

3, 3̄,8.

One can show that LQCD is invariant under the local SU(3) transformations, expressed

in Eqs. (2.16) and (2.17), respectively. Before showing the invariance of LQCD, hereafter

(so in the later chapters), we use the vector notations for Aaµ, Dµ, and F aµν , defined as

Aµ ≡ λa
2
Aaµ . (2.19)

Dµψ ≡ (∂µ + igSAµ)ψ , (2.20)

Fµν ≡ ∂µAν − ∂νAµ + i[Aµ,Aν ] , (2.21)

where the Aµ obeys the commutation relations

[Aµ,Aν ] = ifabc
λa

2
AbµA

c
ν . (2.22)

Thus, one can obtain the a-th component of the field strength tensor, Fµν = {F aµν}, by

multiplying the above equation from the left by λa/2 and taking the trace. With these

notations, the covariant derivative, Dµ, transforms under the local SU(3) transformations

as

Dµ → U(θ)Dµ , (2.23)

and next, by using Eq. (2.22), we get the commutation relation between the covariant

derivatives

[Dµ,Dν ] = igSFµν . (2.24)
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Now, from Eq. (2.24), one can easily verify that the field strength tensor, Fµν , transforms

as

Fµν → U(θ)FµνU
−1(θ) . (2.25)

Therefore, if we perform SU(3) transformation for LQCD, all U(θ) terms will be canceled,

i.e., the QCD Lagrangian, LQCD, is invariant under the local SU(3) transformations of the

color degree of freedom.

One of the important features of the QCD Lagrangian is that it is based on nonabelian

gauge group coupling to color. This nonabelian group property results in an important

phenomenon called “color confinement”, in which the coupling constant becomes strong

at long distance and weak at short distance. As mentioned in previous section, this color

confinement had been a big obstacle to the study of the hadron spectrum in the low-

energy regime, perturbatively, due to the large coupling constant. However, since Wilson’s

introduction of lattice QCD [21], which formulates QCD on a discretized Euclidean space-

time, it has been possible to study QCD nonperturbatively in the strong coupling regime.

In the next chapter, I will discuss lattice QCD.



CHAPTER 3

INTRODUCTION TO LATTICE QCD

In this chapter, I give a brief review of the lattice formulation of QCD, which forms the

basis of the research topics in Chapters 4, 5, and 6.

3.1 Feynman path integral

Feynman path integration [22] is the basic framework for the lattice gauge theory. That

is, the quantum lattice gauge theory is defined through classical lattice actions via the

Feynman path integral in a discretized Euclidean space-time, where the Euclidean space-

time can be achieved by performing a Wick rotation, t → it, to Minkowski space-time.

Therefore, rather than describing the Feynman path integral in continuous Minkowski space-

time, I discuss it in a discretized Euclidean space-time with finite lattice spacing a.

For illustration, I consider a simple quantum mechanical system for a single particle in

a potential V (x) and show how we discretize path integral. Consider a Green’s function (or

propagator) that gives the evolution of a position eigenstate |xi〉 from ti to tf controlled by

a given Hamiltonian. It can be written in terms of a Feynman path integral as

G(xf , tf ;xi, ti) = 〈xf |e−H(tf−ti)|xi〉 =

∫
Dx(t)e−S[x] (3.1)

where the integration with measure Dx(t) is the sum over all possible positions with x(ti) =

xi and x(tf ) = xf . S[x] is the classical action given by

S[x] =

∫ tf

ti

dtL(x, ẋ) ≡
∫ tf

ti

dt

[
mẋ2

2
+ V (x)

]
, (3.2)

where L is Lagrangian density. Our ultimate goal is to show how one can implement the

path integral on a computer. Consider the discretized path, in time,

tj = ti + ja for j = 0, 1, ...N (3.3)

where a is finite lattice spacing,

a ≡ tf − ti
N

. (3.4)
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Later, we take a → 0. Note that in Eq. (3.1),
∫
Dx(t) means that we integrate over all

possible paths. To define what this means as well as making the integration tractable for nu-

meric computation, we consider sets of discretized paths characterized by “configurations”,

with N + 1 “sites”,

x = {x0, x1, ..., xN} (3.5)

and the derivative

ẋ =
xj+1 − xj

a
. (3.6)

That is, the measure,
∫
Dx, now becomes∫

Dx→ A

∫
dx1...dxN−1 , (3.7)

where A is a normalization constant which depends on the lattice spacing a. We denote the

discretized lattice action as Slat, given by

Slat =
N−1∑
j=0

[m
2a

(xj+1 − xj)2 + aV (xj)
]
. (3.8)

As an example, consider the propagator 〈x|e−HT |x′〉, in which we set set x0 = x and

xN = x′ and tf − ti = T . By inserting a complete set of energy eigenstate,

1 =
∑
n

|n〉〈n| , (3.9)

where |n〉 is the energy eigenket satisfying H|n〉 = En|n〉 spanning the Hilbert space. Then

we get

〈x|e−HT |x′〉 =
∑
n

〈x|n〉e−EnT 〈n|x′〉 T→∞−−−−→ 〈x|0〉〈0|x′〉e−E0T , (3.10)

where the sum is dominated by the ground state energy, E0, when T is large. At the same

time, we can rewrite this propagator as a discrete quantum mechanical Green function

involving the discretized action, Slat, as

〈x|e−HT |x′〉 = A

∫ ∞
−∞

dx1...dxN−1e
−Slat[x] (3.11)

Now, by calculating Eq. (3.11) numerically and fitting it to the model expressed as Eq. (3.10),

we can get the ground state energy, E0, which is the vacuum energy in quantum field theory.

The path integral formulation can also provide the thermal and vacuum expectation

values of an observable, O, in a quantum mechanical system. The expectation value can be

defined through

〈O〉 ≡ TrO exp(−βH)

Z(β)
, (3.12)

where Z(β) is the quantum partition function,
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Z(β) ≡ Tr exp(−βH) , (3.13)

and the trace is taken over all spin, color, and spatial sites. Thus, unlike Eq. (3.1), by

setting xf = xi, the numerator and the denominator can be expressed as the path integral

formulation,

TrOe−βH =

∫
Dx(t)O[x] exp (−S[x]) , (3.14)

Z(β) =

∫
Dx(t) exp (−S[x]) for β =

1

T
. (3.15)

The Feynman technique allows us to calculate this expectation value numerically by multi-

dimensional integral so that we can calculate some important physical quantities such as

masses decay constants from this expectation value.

As an example, let us consider the expectation value of x(tβ)x(tα),

〈x(tβ)x(tα)〉 ≡
∫
Dx(t)x(tβ)x(tα)e−S[x]∫

Dx(t)e−S[x]
. (3.16)

Again, set tf − ti = β and tβ − tα = t. One can write the path integral, on the right-hand

side of Eq. (3.16), in its discretized version :

A′
∫ ∞
−∞

dx1...dxN−1xβxαe
−Slat[x] . (3.17)

Again, we can calculate Eq. (3.17) numerically, and fit it to Eq. (3.25) to get the first excited

state energy, E1.

One can carry out the path integration using a Monte Carlo method. We generate a

large number (Ncf ) of random path configurations,

x(ζ) = {x(ζ)
0 , x

(ζ)
1 , ..., x

(ζ)
N }, for ζ = 1, 2, ..., Ncf , (3.18)

such that the probability P [x(ζ)] to get the path x(ζ) is proportional to exp (−S(x)). This

can be done by commonly used acceptance-rejection sampling. Then, the desired propagator

is the weighted average over such paths:

〈x(tβ)x(tα)〉 ≈ O =
1

Ncf

Ncf∑
ζ=1

O(x(ζ)) . (3.19)

With the Monte Carlo method, the averaged value O is never exact unless Ncf →∞. The

uncertainty σ can be obtained from the variance,

σ2 =
O2 −O2

Ncf
. (3.20)
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Now, we can obtain the fit model to extract the physical information from the expectation

value, 〈x(tβ)x(tα)〉, by using the Heisenberg picture x(t) = eHtxe−Ht. It can be rewritten

as

〈x(tβ)x(tα)〉 =
∞∑
n=0

〈n|e−En(tf−tβ)xe−H(tβ−tα)xe−En(tα−ti)|n〉 (3.21)

=

∞∑
n=0

e−Enβ〈n|xe−(H−En)tx|n〉 . (3.22)

If we consider β →∞ limit (T → 0), only the vacuum state, E0, dominates. Therefore,

〈x(tβ)x(tα)〉 β→∞−−−→ 〈0|xe−(H−E0)tx|0〉 . (3.23)

Inserting a complete set of energy eigenstates given by Eq. (3.9), we get

〈x(tβ)x(tα)〉 =
∑
n

| 〈0|x|n〉 |2e−(En−E0)t . (3.24)

Since E0 is a constant vacuum energy, we can shift all energies by the amount E0 so that

E0 = 0. Also, because we are interested in extracting the first excited energy, E1, we take

the limit t → large, but still small enough compared with β. Then, the above equation

reduces to

〈x(tβ)x(tα)〉 t large−−−−−→ | 〈0|x|1〉 |2e−E1t . (3.25)

Therefore, to obtain the ground state, E1, we fit the numeric data obtained from the path

integral formulation to the above equation.

3.2 Lattice QCD actions

Next, I introduce the lattice QCD actions [23, 24]. In order to achieve this, we need to

discretize both space and time. The action should be gauge invariant, and for a → 0, it

should be equivalent to the continuum QCD action, expressed by Eq. (2.13).

Consider a fermion field ψ(x) on the lattice. Analogous to the continuum field as

described in Chap. 2, ψ(x) and ψ̄(x) transform under the SU(3) color gauge transformation,

U(x) as follows:

ψ(x)→ U(x)ψ(x), ψ̄(x)→ ψ̄(x)U(x)† . (3.26)

Next, we introduce a link variable involving the gauge field, Aµ(x), on the lattice,

Uµ(x) = exp(iagSAµ(x)) , (3.27)

where gS is the coupling constant and Uµ(x) is associated with a link connecting two lattice

sites along the µ direction (see Fig. 3.1). Analogous to the continuum gauge field Eq. (2.17),
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x− aµ̂ x x x+ aµ̂

U−µ(x) =Uµ(x− aµ̂) Uµ(x)

Figure 3.1. The link variables Uµ(x) and U−µ(x) connecting two lattice sites denoted as
filled dots.

it transforms as

Uµ(x)→ U(x)Uµ(x)U(x+ µ̂)† , (3.28)

in discretized space-time. With a fermion ψ and a link Uµ(x), one can write the gauge

invariant lattice QCD actions :

SQCDlat = S
(naive)
F + SG . (3.29)

S
(naive)
F is the so-called the “naive fermion action”,

S
(naive)
F [ψ, ψ̄, U ] = a4

∑
x

ψ̄(x)

 4∑
µ=1

γµ
Uµ(x)ψ(x+ aµ̂)− U−µ(x)ψ(x− aµ̂)

2a
+mψ(x)

 ,
(3.30)

and SG is the so-called “Wilson gauge action”, written as

SG[U ] =
2

g2
S

∑
x

∑
µ<ν

Re Tr[1− Uµν(x)] , (3.31)

where we used link variable property, U−µ(x) = Uµ(x − aµ̂)†, to construct the covariant

derivative on the lattice. Uµν is called the “plaquette variable”, which is a product of only

four link variables defined as

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂)

= Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)†Uν(x)† , (3.32)

where the graphical representation is shown in Fig. 3.2.

One can easily check that S
(naive)
F reduces to the continuum form of the action (fermion

parts of QCD Lagrangian) given in Eq. (2.13) in the limit a → 0. This can be done by

expanding a link variable Uµ(x) in Eq. (3.27) for small lattice spacing a,

Uµ(x) = 1 + iagSAµ(x) +O(a2) , U−µ(x) = 1− iagSAµ(x− aµ̂) +O(a2) . (3.33)
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x+ aν̂

x

x+ aµ̂+ aν̂

x+ aµ̂

Uµ(x+ aν̂)

Uµ(x)

Uν(x+ aµ̂)Uν(x)

Figure 3.2. The plaquette Uµν which consists of the four link variables. The circle indicates
the order that the link variables run through.

Then, by inserting Eq. (3.33) into Eq. (3.30), we rewrite naive action as

S
(naive)
F [ψ, ψ̄, U ] = a4

∑
x

ψ̄(x)

 4∑
µ=1

γµ

(
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

+ igs
Aµ(x)ψ(x+ aµ̂) +Aµ(x− aµ̂)ψ(x− aµ̂)

2

)
+mψ(x) +O(a)

]
.

(3.34)

As a→ 0, the derivative part of the above equation reduces to the covariant derivative and

O(a) vanishes; thus, S
(naive)
F satisfies the continuum limit.

For the Wilson gauge action, it is slightly more complex to show whether SG assumes

its continuum form. First, by using the Baker-Campbell-Hausdorff formula,

eAeB = eA+B+ 1
2

[A,B]+... , (3.35)

and performing a Taylor expansion of the gauge fields,

Aν(x+ aµ̂) = Aν(x) + a∂µAν(x) +O(a2) , (3.36)

one can easily check that the plaquette variable becomes

Uµν(x) = exp
(
ia2gS(∂µAν(x)− ∂νAµ(x) + i[Aµ(x),Aν(x)]) +O(a3)

)
(3.37)

= exp(ia2gSFµν(x) +O(a3)) (3.38)
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where we use the continuum definition of Fµν given in Eq. (2.14). Now, inserting Eq. (3.38)

into Eq. (3.31), we get

SG[U ] =
a4

2

∑
x

∑
µ,ν

Tr[Fµν(x)2] +O(a2) , (3.39)

where the Wilson gauge action is approximately the continuum QCD gauge action up to

O(a2) as shown in Eq. (2.13). Therefore, by taking a→ 0, both S
(naive)
F and SG reduce to

the continuum QCD actions.

3.3 Fermions action on the lattice

In this section, I introduce the fermion propagator given by the inverse of the Dirac

matrix. As I show below, the fermion propagator derived from the naive action suffers from

a lattice artifact called “fermion doubling” contributed from high momentum excitation at

the edges of the Brillouin zone (BZ), which has no analog in continuum. To overcome this

lattice artifact, various types of lattice actions have been developed. I give an introduction

to some of these actions.

3.3.1 Grassmann numbers

All fermion fields obey anticommutation relations. Therefore, they are represented

classically as Grassmann anticommuting numbers. Therefore to perform the fermionic path

integrals, it is useful to display two key integration formulas related to the anticommutating

numbers, η. One can find all the proofs in any related textbook, e.g., Ref. [17].

Two Grassmann variables obey the following anticommutation relation :

ηiηj = −ηjηi for i, j = 1, ..., N , (3.40)

so η2
i = 0. Grassmann variable, ηi transforms linearly,

η′i =
N∑
j=1

Mijηj , (3.41)

where M is a complex N × N matrix. One integral formula needed here is called the

“Matthews-Salam formula”,

ZF ≡
∫
dηNdη̄N ...dη1η̄1 exp

 N∑
i,j=1

η̄iMijηj

 = det[M ] , (3.42)

where η̄i is another set of Grassmann numbers satisfying Eq. (3.40) with η̄j as well as ηj .

Another useful integration formula for Grassmann numbers is called “Wick’s theorem” :
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〈ηi1 η̄j1 ...ηin η̄jn〉 ≡
1

ZF

∫ N∏
k=1

dηkdη̄kηi1 η̄j1 ...ηin exp

 N∑
l,m=1

η̄lMlmηm


= (−1)n

∑
P (1,2,...,n)

sign(P )(M−1)i1jP1 ...(M
−1)i2jP2 ...(M

−1)injPn ,(3.43)

where the sum in the second line runs over all permutations P (1, 2, ..., n) of the indices

1, 2, ..., n, and sign(P ) is the sign of the permutation P . The expectation values in Wick’s

theorem are often referred to as “n-point functions” abbreviated as “n-pt functions”. We

will use this term often in later chapters.

3.3.2 The lattice path integral and fermion propagator

On the lattice, the quantum expectation value of an observable can be calculated from

the path integral. As introduced in previous chapters, the lattice QCD action can be divided

into two parts - fermion and gauge field parts. Thus, it is convenient to write the expectation

value of an observable, O, which generally depends on both fermion fields, ψ and ψ̄, and

link variable, U , as

〈O〉 =
〈〈
O[U,ψ, ψ̄]

〉
F

〉
G

(3.44)

where 〈...〉F is fermionic part and 〈...〉G is the gauge field part of the path integral. The

fermionic part of the path integral, 〈...〉F , is defined by〈
O[U,ψ, ψ̄]

〉
F

=
1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ,ψ̄,U ]O[ψ, ψ̄, U ] , (3.45)

where D[ψ, ψ̄] is an integral over the Grassmann fields ψ and ψ̄. ZF [U ] is the fermionic

partition function,

ZF [U ] =

∫
D[ψ, ψ̄]e−SF [ψ,ψ̄,U ] . (3.46)

Using Eq. (3.42), one can perform the integral over the Grassmann fields

ZF [U ] = det[D] = exp(Tr lnD) , (3.47)

where the fermionic partition function, ZF , is also called the “fermion determinant”, and

D is Dirac matrix. For the naive fermion action, the expression of the Dirac matrix can be

obtained by rewriting the naive fermion action given in Eq. (3.30) as

S
(naive)
F [ψ, ψ̄, U ] = a4

∑
x,y

∑
a,b,α,β

ψ̄(x)aαD(y;x)a,bα,βψ(x)aβ , (3.48)

where Dirac spin (Greek) and color (Roman) indices are explicitly shown to clarify D as

matrix. Here, D(y;x) is called naive Dirac operator on the lattice and it is given by

D(y;x)a,bα,β =

4∑
µ=1

(γµ)αβ
Uµ(y)abδy+aµ̂,x − U−µ(y)abδy−aµ̂,x

2a
+mδα,βδa,bδx,y . (3.49)
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Finally, let OF [U ] ≡
〈
O[U,ψ, ψ̄]

〉
F

for an operator O. Then, we perform the gauge field

part of the path integral

〈O〉 = 〈OF [U ]〉G =
1

Z

∫
D[U ]e−SG[U ] det[D]OF [U ] , (3.50)

to obtain an expectation value of an observable, O.

One can also obtain the fermionic expectation value of a fermion and anti-fermion fields,〈
ψ(y)ψ̄(x)

〉
F

, i.e., a two-point function of fermions in terms of the Dirac matrix. From

Eq. (3.43), one can write 〈
ψ(y)aαψ̄(x)bβ

〉
F

= a−4D−1(y;x)abαβ , (3.51)

which is the inverse of the Dirac matrix.

3.3.3 Fermion doubling problem

The quark propagator, the inverse of Dirac matrix, given in Eq. (3.51), plays an impor-

tant role in calculating any observable quantities in lattice QCD. Therefore, it is interesting

to investigate the property of the fermion and anti-fermion propagator. Consider the

Fourier transformation of the propagator for the free, naive action given in Eq. (3.30)

with Uµ(x) = 1,

D−1(p) =
m1 + ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)2
. (3.52)

To investigate the poles, it is convenient to take the massless limit. Then, the inverse Dirac

matrices on the lattice and in continuum are

D−1(p) =
ia−1

∑
µ γµ sin(pµa)

a−2
∑

µ sin(pµa)2

a→0−−−→
−i∑µ γµpµ

p2
. (3.53)

In the continuum, it is obvious that the momentum-space propagator for massless fermions

has a pole at

p = (0, 0, 0) . (3.54)

This pole coincides with the pole of the single fermion propagator described by the con-

tinuum Dirac operator. On the other hand, the lattice propagator, before we take the

continuum limit, has 15 additional poles :

p =
(π
a
, 0, 0, 0

)
,
(

0,
π

a
, 0, 0

)
, ...,

(π
a
,
π

a
,
π

a
,
π

a

)
. (3.55)

Therefore, we get states on all 16 corners of the Brillouin zone (BZ) in a d = 4 hypercube.

This is called the “fermion doubling problem”. As mentioned at the beginning of this

chapter, to overcome this lattice artifact, various lattice actions have been invented. In

the following subsections, I introduce two of those actions, Wilson and staggered-fermion

actions.
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3.3.4 Wilson fermions

To solve the fermion doubling problem on the lattice, Wilson proposed adding an

“irrelevant term”, i.e., which vanishes in the continuum limit, a→ 0,

S
(W )
F = S

(naive)
F − ar

2

∑
x

∆ψ(x) (3.56)

where r is the Wilson parameter, and ∆ is the four-dimensional lattice Laplacian defined

as

∆ψ(x) =
4∑

µ=1

1

a2
[Uµ(x)ψ(x+ aµ̂) + U−µ(x)ψ(x− aµ̂)− 2ψ(x)] . (3.57)

Now the mass term, m, in the Fourier transformation given by Eq. (3.52) becomes

m→M(p) = m+
2r

a

∑
µ

sin2
(pµa

2

)
. (3.58)

Therefore as a → 0, M(p) approaches m. However, near the corners of the BZ, M(p)

diverges as a → 0. This eliminates the fermion doubling problem, but at the expense of

breaking the “chiral symmetry” of the original naive action. Here, the chiral symmetry

means the invariance of the continuum action (or Lagrangian density) under the chiral

rotation,

ψ → eiθγ5ψ , ψ̄ → ψ̄eiθγ5 , (3.59)

in the massless limit (m→ 0).

3.3.5 Hopping expansion

The Dirac matrix inverse, D−1, can be expanded for a large quark mass m. For the

Wilson action, we can rewrite the Dirac matrix as [25–27]

D = C(1− κH), with κ =
1

2(ma+ 4r)
, (3.60)

H(y;x) =

±4∑
µ=±1

(r − γµ)U(y)δy,x+aµ̂ , (3.61)

where κ is the hopping parameter and H is the hopping matrix. The constant C is irrelevant

because it can be absorbed into the fermion fields. Since κ becomes small for large mass,

D−1 can be expanded as

D−1 = (1− κH)−1 =
∞∑
j=0

κjHj , (3.62)

where the j-th power of H, Hj , can be calculated by using Eq. (3.61),

Hj(y;x) =

±4∑
µ=±1

j∏
i=1

(r − γµ)Pµ1...µj (x)δy,x+aµ̂1+...+aµ̂j . (3.63)
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Here, Pµ1...µj (x) represents the paths formed from the product of link variables connecting

the lattice sites x and y :

Pµ1...µj (x) = Uµ1(x)Uµ2(x+ aµ̂1)...Uµj (x+ aµ̂1 + ...+ aµ̂j−1) . (3.64)

The path of length j comes with a power of κj . Therefore, for a given value of x and y,

the leading term is the shortest path. In the later chapters, Chap. 4, 5 and 6, I will always

display the specific κ values, instead of the corresponding heavy quark masses that are used

for the lattice simulation.

3.3.6 Staggered fermions

The staggered fermion formulation was first suggested by Kogut and Susskind [28–30].

The idea is to eliminate the redundant fermion modes. It reduces the size of the BZ by

redistributing the spinor degrees of freedom across different lattice sites. As a result, the

sixteen-fold degenerate doublers of naive fermions becomes a four-fold degenerate species.

To achieve this, we start from the Kawamoto-Smit transformation ψ(x) = Ω(x)Φ(x) (e.g.,

Ref. [24]), where

Ω(x) = γx11 γx22 γx33 γx44 , (3.65)

and use the relations,

Ω(x)†γµΩ(x+ aµ̂) = (−)x1+x2+...+xµ−1 ≡ αµ(x) (3.66)

Ω(x)†Ω(x) = 1 . (3.67)

We then rewrite the naive action in Eq. (3.30) as

S
(naive)
F = a4

∑
x

 4∑
µ=1

αµ(x)Φ(x)
Uµ(x)Φ(x+ aµ̂)− Uµ(x− aµ̂)†Φ(x− aµ̂)

2a
+mΦ(x)Φ(x)

 ,

(3.68)

where the action becomes diagonal in spinor space. Now, let us see how this spin diagonal-

ization affects the propagator. Because the transformed Dirac matrix of Eq. (3.68) has no

explicit spin-dependence, we can drop all but one “spin”, or from Eq. (3.51), we can define

the staggered fermion propagator, Sab(y;x) as〈
Φa
α(y)Φb

β(x)
〉
F

= δαβS
ab(y;x) , (3.69)

where S(y;x) has no spin component. Then, the naive fermion 2-pt propagator in Eq. (3.51)

can be rewritten as
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〈
ψ(y)aαψ(x)bβ

〉
F

= Ω(y)αγ

〈
Φa
γ(y)Φb

δ(x)
〉
F

Ω(y)†δβ (3.70)

= Ω(y)αγδγδΩ(y)†δβS
ab(y;x) (3.71)

=
[
Ω(y)Ω(x)†

]
αβ
Sab(y;x) (3.72)

Therefore, we can reduce the multiplicity of the naive fermion propagator by a factor of

four and the spin to one Dirac component. Due to the sign alternation in αµ(x) included

in S(y;x), the natural unit cell for the staggered fermion field is the 24 hypercube. The

residual doubler degree of freedom is called “taste”. That is, a single staggered fermion

corresponds to four tastes of continuum fermions.

One can perform an inverse transform of a staggered fermion basis to the so-called

“staggered fermion spin-taste basis”,

Φρ(n) = 2 Tr
[
Ω(ρ)†ζ(n)

]
, (3.73)

where Φρ(n) ≡ Φ(2n + ρ) and n ∈ Z3 so that 2n is the the origin of a hypercube and

ρµ = 0 or 1. Ω ≡ {Ωαt} where α is a spin index and t is a taste index. Thus, the field

ζ has four Dirac spinor components as well as the four taste components and lives on the

hypercube with origin at 2n. By the inverse transform, the action can be rewrite as

S =
∑
n,µ

b4ζ̄(n)
[
(γµ ⊗ 1)Dµζ(n) + aStb,1 +O(a2) +mb4ζ̄(n)1⊗ 1ζ(n)

]
(3.74)

where the sum over n runs over all hypercubes of the lattice, b = 2a, Dµ is the covariant

derivative on the lattice and the tensor product notation is spin ⊗ taste. Stb,1 contains

dimension five fermion bilinear terms 1 , such as γ5 ⊗ γµγ5D
2
µ, (γµ − γν) ⊗ 1Fµν , and

γ5σµν ⊗ (γµ + γν)γ5Fµν where σµν = i/2[γµ, γν ]. These terms explicitly break the taste

symmetry at the nonzero lattice spacing, while in the continuum limit, taste symmetry is

restored.

3.4 Improved actions

As we discretize the derivative terms, e.g., Eqs. (3.30) and (3.8), it is inevitable to get

unwanted discretization effects. Typically, for the fermion actions, discretization effects are

1The action, S, has no dimension. Consider the mass term in the naive action, Eq. (3.30). The dimension
of a4 is fm4, thus the dimension of mψ̄ψ term should be fm−4 or MeV4. Therefore, because the dimension

of the mass is MeV, we know that the fermion field, ψ, should have dimension MeV
3
2 , so it has dimension

3/2. In the same analogy, the gauge field should have dimension one, thus the field strength tensor, Fµν , has
dimension two. The covariant derivative, D, has dimension one. Therefore, we say the terms, for example,
such as m2ψ̄(x)ψ(x) and mTr[FµνFµν ] are “dimension five terms”.
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of order O(a) and for the gauge actions O(a2). One can reduce these effects, systematically,

by adding more correction terms. For example, consider the following symmetric derivative,

f(x+ a)− f(x− a)

2a
= f ′(x) + a2C(2)(x) +O(a4) . (3.75)

By using a Taylor expansion, we can easily identify C(2)(x) = 1/6f ′′′(x). Therefore, to

eliminate the leading-order discretization effect, we need to add a correction term on the

left-hand side of the above equation,

f(x+ a)− f(x− a)

2a
+ ca2D(3)[f ](x) = f ′ +O(a4) , (3.76)

where D(3)[f ] is a discretized expression obeying D(3)[f ] ≈ f ′′′ + O(a2) and c = 1/6.

Therefore, we can achieve O(a2) improvement for the discretized symmetric derivative.

With the lattice actions, this kind of improvement is called “Symanzik improvement” [31–

33].

3.4.1 Clover action

The clover action is an O(a) improvement of the Wilson lattice action [34]. Because

the Lagrangian of the action has dimension four, the leading order of the correction term

must be dimension five. Therefore, for the Wilson lattice action, one can achieve O(a)

improvement by adding a dimension-five correction term, such as

S
(clover)
F = S

(Wilson)
F + cswa

5
∑
x

∑
µ<ν

ψ̄(x)
1

2
σµνF̂µν(x)ψ(x) , (3.77)

where σµν ≡ [γµ, γν ]/2i, and csw is called the Sheikholeslami-Wohlert coefficient [34]. The

convenient lattice representation of Fµν is

F̂µν(x) =
−i
8a2

(Qµν(x)−Qνµ(x)) (3.78)

where Qµν(x) is the sum of plaquettes Uµ,ν(x) (Eq. (3.32)),

Qµν(x) ≡ Uµ,ν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x) . (3.79)

Figure 3.3 shows a schematic plot for Qµν(x).

3.4.2 Asqtad action

The asqtad action [35–38] is an improvement to the staggered action that reduces the

taste-symmetry breaking (see Fig. 3.4) by suppressing taste changing interactions. Lattice

artifacts O(a2) are removed at tree level, and then the order of leading error becomes
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x

µ

ν

Figure 3.3. Graphical representation of the clover term, Qµν(x), which is the sum of four
plaquettes in the µ− ν plane centered at coordinate x.

O(αa2). The taste symmetry violations can happen due to the interactions between quarks

changing their tastes as they exchange high-momentum gluons (∼ π/a). Fig. 3.5 gives a

diagrammatic representation of the correction terms in the “asqtad” improved staggered

lattice gauge action. For example, the one link term is

c1

[
Uµ(x)δy,x+aµ̂ − U †µ(x− aµ̂)δy,x−aµ̂

]
, (3.80)

the staple term is

c3

∑
ν 6=µ

[{
Uν(x)Uµ(x+ ν̂)U †ν (x+ aµ̂) + U †ν (x− aν̂)Uµ(x− aν̂)Uν(x− aν̂ + aµ̂)

}
δy,x+aµ̂

−backward staple term

]
, (3.81)

and the Naik term is

cN [Uµ(x)Uµ(x+ aµ̂)Uµ(x+ 2aµ̂)δy,x+3aµ̂ − backward Naik term] . (3.82)

With these terms, one can eliminate errors at O(a2) leaving O(a4)- and O(αa2). See Ref. [35]

for the detailed explanation of the choices of constants, c1, c3, and cN .

3.4.3 HISQ action

A further improvement to the staggered fermion action is the highly improved staggered

quark (HISQ) action [2, 4, 39], an O(a2) improvement of the staggered lattice action that
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Figure 3.4. Diagrammatic expression for the taste symmetry breaking [2]. The straight
lines with different color represent different tastes of quarks. Wiggly lines represent gluons.
ζ are the four-dimensional integer vectors, where ζ = (1, 0, 0, 0), (1, 1, 0, 0).... Thus, ζπ/a
indicates the corners of the Brillouin zone

Figure 3.5. Diagrammatic expression for the improvement for the staggered lattice gauge
action - asqtad improvement [3]. From the left, the diagrams represent one link term (C1),
the staple term (C3), the five link term (C5), the seven link term (C7), Lapage link term
(CL), and Naik term (CN ), respectively.

also reduces still further the taste-symmetry breaking by suppressing even more the taste-

exchanging interactions. Furthermore, it improves the quark dispersion relation, which

enables us to simulate charm quarks on the lattice.

At tree level, by adding the O(a2) correction term, referred to as the Naik term, it

achieves an O(a2) improvement. Further, to suppress taste symmetry breaking, it replaces

the link operator Uµ(x) in quark gluon vertex, ψ̄γµUµψ, by FµUµ(x). The smearing function

Fµ is defined by [40]

Fµ ≡
∏
ρ6=µ

(
1 +

a2δ
(2)
ρ

4

)∣∣∣∣∣∣
symm.

, (3.83)

where δ
(2)
ρ approximates a covariant derivative :
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δ(2)
ρ ≡

1

a2

[
Uρ(x)Uµ(x+ aρ̂)Uµ(x+ aµ̂)− 2Uµ(x)

+U †ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)
]
. (3.84)

Fµ is called “Fat7” smearing. A schematic representation is shown in Fig. 3.6. Then, the

links are reunitarized, and the side links are smeared with asqtad. Therefore, finally the

HISQ improvement becomes Fat7R ⊗Asqtad.

The dominant taste-exchange interactions in asqtad comes from the one-loop diagrams

shown in Fig. 3.7. Again, the gluons transfer the momenta of order ζπ/a. In the HISQ

action, there are 28 terms to cancel these out. The 28 terms involves current-current

interaction terms,

2∆Lcontact = d
(5µ)
5

∣∣∣J (5µ)
5

∣∣∣2 + ... (3.85)

where repeated indices can be understood as summed over except ν 6= µ. J (n)
s is a staggered

quark operator defined as

J (n)
s (xB) =

1

16

∑
δxµ∈Z2

ψ̄(xB + δx)γn ⊗ ξsψ(xB + δx) (3.86)

and the coefficients d
(s)
n are computed by on-shell matching of the taste scattering amplitude,

A(0, 0; ζπ/a,−ζπ/a). Here, I do not list all of the correction terms. For further discussion,

refer to Ref. [4].

3.5 Meson spectroscopy on the lattice

As discussed in Chap. 2, the strong coupling constant, gS , is larger than unity in the

low energy regime. Therefore, there is no proper perturbative method to get the energy

spectrum of hadrons. However, in lattice QCD, one can calculate expectation values of

observables nonperturbatively in a regime where the strong interacting particles emerge.

These expectation values, which can be calculated numerically, often include very useful

information about the hadron spectrum. In this section, we discuss how to calculate

expectation values and extract the meson spectra on the lattice. I do not discuss baryon

spectroscopy, but one can find references in various textbooks, e.g., Ref. [24]

3.5.1 Meson interpolators and correlators

On the lattice, hadron masses are determined from the Euclidean-time correlation

functions (or “correlators”) , C(t) from time 0 to t, defined as

C(t) = 〈0|O(t)O†(0)|0〉 , (3.87)
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Figure 3.6. A schematic of Fat7 smearing in HISQ action. In the second smearing, the
original smeared links are used. [2].

Figure 3.7. The one loop taste exchange contribution from qq̄ → qq̄ for the asqtad action
[4]. In the HISQ action, these taste breaking terms are further suppressed by employing
2∆Lcontact in Eq. (3.85).

where O(t) is an “interpolating operator”, or “interpolator” for short. It is an operator that

creates the state of interest from the vacuum. In the Heisenberg picture, one can write it

as

O(t) = eHtOe−Ht (3.88)

where H is the QCD hamiltonian. Here, we assume that the time extent, T , of the lattice is

sufficiently large that we need only consider the propagation forward in time. By inserting
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a complete set of energy eigenstates (Eq. (3.9)), we can rewrite the correlator as

C(t) =
∞∑
n=0

〈0|O(0)|n〉e−Ent〈n|O†(0)|0〉 (3.89)

= A0 +A1e
−E1t +A2e

−E2t + ... , (3.90)

where An = |〈0|O|n〉|2. Therefore, we ignore this vacuum expectation value, and hereafter,

the ground state means the n = 1 state. We can perform the fitting to the multiexponential

expansion, given by Eq. (3.110). However, before fitting, one can extract an effective ground

state energy. At asymptotic times, t � 1, only the n = 1 state dominates. Thus, we can

extract the ground state energy from an “effective mass” formula,

Eeff(t) = log

[
C(t)

C(t+ 1)

]
. (3.91)

where Eeff is the effective mass in the asymptotic region. Therefore, this method can be

used for a rough guide for fitting correlators, not for an exclusive use.

In this dissertation, most of the interesting observables are mesons involving a quark

and antiquark pair. Consider measuring a meson correlator

C(t) =
∑
x

〈0|OA(t,x)O†B(0, 0)|0〉 , (3.92)

where

O[A,B](t,x) = ψ̄f1(t,x)Γ[A,B]ψ
f2(t,x) , (3.93)

where ΓA and ΓB are gamma matrices, and superscripts f1 and f2 represent flavors. The

coordinate (0,0) gives the space-time position for the “source” and (t,x), for the “sink” of

the meson. The total angular momentum and the discrete symmetries (parity and charge

conjugation) play an important role in the classification of mesons (and also baryons).

Therefore, the gamma matrices, ΓA and ΓB, should be properly chosen according to the

quantum number of the desired state.

However, concerning total angular momentum, J , the lattice spatial rotational symmetry

reduces to symmetries of a cubic lattice [41]. This group is called the “octahedral group” (or

the crystallographic point group) denoted as Oh, which is a finite subgroup of the rotation

group SO3. There are only five irreducible representations (irreps) of the octahedral group:

A1(1), T1(3), T2(3), E(2), and A2(1) where each number in the parentheses represents the

dimension of the irrep. A given Oh irrep corresponds to many J values. Therefore, there is

no unique continuum spin assignment on the lattice. Table 3.1 shows the relation between

continuum angular momentum and the lattice irreps. Table 3.2 shows commonly used local
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Table 3.1. Left block: continuum total angular momentum (J) subduced into the lattice
irreps (Oh) (left) and right block: the lattice irreps (Oh) contributing to the continuum
total angular momentum (J).

J Irreps (Oh) Irrep (Oh) J

0 A1 A1 0, 4, ...

1 T1 A2 3, 6, ...

2 T2 ⊕ E E 2, 4, 5, ...

3 T1 ⊕ T2 ⊕A2 T1 1, 3, 4, 5, ...

4 A1 ⊕ T1 ⊕ T2 ⊕ E T2 2, 3, 4, 5, ...

Table 3.2. Choices of gamma matrices for the interpolators in Eq. (3.93). From the left,
each column shows the state, total angular momentum with parity and charge conjugation,
gamma matrices, and the names of some mesons to which they couple.

State JPC Γ Particles

Pseudoscalar A−+
1 (0−+) γ5, γ4γ5 π±, π0, η,K±,K0, ηc, ...

Vector T−−1 (1−−) γi, γ4γi ρ±, ρ0, ω,K∗, φ, J/ψ

Axial vector T++
1 (1++) γ5γi a1, f1, χc1, ...

Scalar A++
1 (0++) 1, γ4 f0, a0, χc0, ...

Tensor T+−
1 (1+−) γiγj h1, b1, hc...

interpolators and the corresponding particle names. In Chaps. 4, 5, and 6, we use the lattice

irreps notation, rather than the continuum total angular momentum.

Now as an example, let us consider iso-singlet meson interpolators, O ∼ ūΓu + d̄Γd.

Then, we can write a meson correlator as〈
OA(y)O†B(x)

〉
∼ 〈ū(y)ΓAu(y)ū(x)ΓBu(x)〉+ [u↔ d]

= 2(ΓA)α1β1(ΓB)α2β2

〈
ū(y)c1α1

u(y)c1β1 ū(x)c2α2
u(x)c2β2

〉
= 2(ΓA)α1β1(ΓB)α2β2

×
[〈
ū(y)c1α1

u(y)c1β1

〉〈
ū(x)c2α2

u(x)c2β2

〉
−
〈
u(x)c2β2 ū(y)c1α1

〉〈
u(y)c1β1 ū(x)c2α2

〉]
= 2 Tr

[
D−1(y; y)ΓA

]
Tr
[
D−1(x;x)ΓB

]
− 2 Tr

[
D−1(x; y)ΓAD

−1(y;x)ΓB
]

(3.94)

where αi and βi represent Dirac spin indices, and ci color indices. All repeated indices
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can be understood as summed over. In the fourth step, I used Wick’s theorem, given in

Eqs. (3.43) and (3.51). The graphical representation of Eq. (3.94) is shown in Fig. 3.8.

Panel (A) in Fig. 3.8 represents disconnected diagram (the left-hand side in Eq. (3.94)),

and panel (B), connected diagram (the right-hand side in Eq. (3.94)).

3.5.2 Calculation of the quark propagator

In the previous subsection, I discussed how to construct meson interpolators and corre-

lators. The essential task is to calculate the correlators numerically. They include quark

propagators, so calculating the inverse Dirac matrices, D−1, is the key required task.

Consider a meson interpolator given in Eq. (3.93) in the more general form,

O(t, x) =
∑
x1x2

F (x1,x2|t,x)ψ̄(t,x1)Γψ(t,x2) . (3.95)

where F is a function depending on the lattice sites, x1, x2, and x, and specific time slice,

t. To be specific, let us write F (x1,x2|t,x) = SA(x,x1)†SB(x,x2). If SA and SB have the

same functional form as Sp(x,xi) :

SB(x,xi)
a
α = SA(x,xi)

a
α = Sp(x,xi)

a
α = δ(3)(x− xi)δα,α0δa,a0 , (3.96)

then, the interpolator O reduces to the original interpolator form in Eq. (3.93). Here, the

source Sp is called a ”point source”. In fact, the function F does not need to be a product

of two point sources. If we are mostly interested in extracting the ground-state mass, to

get a better signal-to-noise ratio, we need to suppress radially excited states as well as

all momentum excited states. To achieve this, one can implement F as an approximate

hadronic ground-state wave function. Since we do not know the wavefunction precisely,

often we simply use Gaussian. In any case, F is then called a “smearing function”.

Let us consider a connected meson correlator in Eq. (3.94) in which smearings are done

at both the source and sink. It can be written as〈
OA(t,y)O†B(0,x)

〉
= −

∑
x1x2y1y2

Tr
[
F (x1,x2|0,x)D−1(0,x1; t,y1)ΓA

× F (y1,y2|t,y)†D−1(t,y2; 0,x2)ΓB
]
. (3.97)

Here, if we write F (x1,x2|t,x) is a product of two sources,

F (x1,x2|t,x) = SA(x,x1)†SB(x,x2) , (3.98)
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Figure 3.8. Diagrammatic expression for disconnected (A) and connected (B) meson
correlators in Eq. (3.94). Each ψ or ψ̄ represents the quark field operator creating or
annihilating a quark. Each line represents the quark propagator.

then, Eq. (3.97) becomes〈
OA(t,y)O†B(0,x)

〉
= −Tr

〈 ∑
x2y2

[
SB(y2;y)†D−1(t,y2; 0,x2)SB(x2;x)

]
ΓB

×
∑
x1y1

[
SA(y1,y)†D−1(t,y1; 0,x1)SA(x1;x)

]†
ΓA
〉
.(3.99)

Therefore, to get the meson correlator, we need to evaluate∑
xi

D−1(t,yj ; 0,xi)S(xi;x), (3.100)

where for i = 1, S ≡ SA, and for i = 2, S ≡ SB, respectively.

Before discussing how to solve this equation numerically, let us go over another type of

source called “stochastic wall source”, which can be used for gaining better statistics and

assigning a specific momentum to the source. The stochastic sources are constructed on the

color space with random orientation on a single time slice. They can be considered as the

collection of point sources distributed on the entire lattice spatial sites, but satisfying the

following relation:

NR∑
j

ξa†j (x1)ξbj(x2)→ δ(x1 − x2)δab , for NR →∞ (3.101)

where a and b indicate color indices. NR is the number of stochastic sources, so that if NR

is large, it puts the sources of the quark and antiquark fields at the same location. One can

include momentum by inserting the Fourier factor, eip·x,∑
x

eip·xξ(x) . (3.102)
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Therefore, in Eq. (3.98), if we replace SB(x,x2) by eip·x2ξ(x2), we calculate the quark

propagator with momentum p,∑
x2

D−1(x, t;x2, 0)
[
eip·x2ξ(x2)

]
, (3.103)

where the square bracket in Eq. (3.103) is taken as the source term in solving the propagator.

Finally, to calculate the meson correlator, we need to solve X = D−1S, numerically,

where X is a desired solution and S is the source. D represents the Dirac matrix, which is

a large sparse matrix with many vanishing entries and F is a source. To solve the equation,

DX = F , we use a stabilized biconjugate gradient solver (Bi-CG) for clover propagators [42]

and a standard conjugate gradient solver (CG) for asqtad and HISQ propagators [43] in our

lattice simulations.

3.5.3 Lattice ensemble

An expectation value of an observable, 〈O〉, can be obtained via the path integral shown

in Eq. (3.50),

〈O〉 =
1

Z

∫
D[U ]e−SG[U ] det[D(U)]OF [U ] , (3.104)

where, again, OF [U ] is the fermionic path integral as discussed in Sec. 3.3.2. OF [U ] could

be a meson correlator resulting from integrations over only the fermion part of the path

integral, 〈...〉F .

In analogy with the discussion in Sec. 3.1, the gauge field part of the path integral

can be done by generating a large number of gauge field configurations, U (i)(x), where

i = 1, ..., Ncf . As seen in Eq. (3.104), the gauge field configurations must be randomly

distributed with probabilities,

P [U (i)] =
1

Z
e−SG[U ] det[D] . (3.105)

Then, finally, we can calculate the average value of an observable O,

O =
1

Ncf

Ncf∑
i=1

Oi . (3.106)

where Oi is an expectation value of an observable O calculated on i-th configuration. Its

variance is given by

σ2 =
O2 −O2

Ncf
. (3.107)

Note that the probability (or weighting function), P [U (i)], includes the fermion determi-

nant that describes the fermionic “Dirac sea” – the virtual pairs of quarks and antiquarks



36

that are created and annihilated. It also includes any valence quark propagators. Including

sea quark effects is expensive. Therefore, in early lattice calculation, most of results had

been acquired by setting det[D(U)] = 1 as an approximation. This approximation is called

“quenched approximation”. However, the computing technology has developed enough

to include the full effects of det[D(U)]. This type of lattice calculation is called a “full

dynamical lattice QCD calculation”. In our simulation, we perform a full dynamical lattice

QCD calculation.

The long sequence of gauge field configurations form a Markov chain, i.e., each config-

uration is correlated to some extent with the previous one, because each new configuration

is generated from the previously generated configuration. With the desired probability, the

initial gauge field configuration, φ(0) is generated through a sequence of random updates,

called “thermalizing”. The next gauge configurations are generated with the same way,

but from the previous configuration. Thus, they form a chain, φ(0), φ(1), φ(2) ... There

are various methods to generate these random field configuration, including the Metropolis

algorithm [44], the heat bath method, and the molecular dynamics [45,46] method.

This Markov chain correlation is called an “autocorrelation”. It must be taken into

account to get an unbiased variance. There are various methods to remove the autocor-

relation effect. Here, I introduce the “blocking method” [24] as an example. Suppose, we

measure an observable on N successive configurations in the chain and group the data into

blocks, such that each block includes nb successive measurements. We get the average of

observable 〈X〉 on each block represented by Bi for the i-th block. Then, the variance of

the mean over all blocks is

σ2
mean(nb) =

1

Mb(Mb − 1)

Mb∑
i=1

(Bi − 〈X〉)2 , (3.108)

whereMb = N/nb is the number of blocks. As the block size nb increases, the autocorrelation

effect is reduced, i.e., σ2
mean(nb) increases to its asymptotic, unbiased value. Therefore, if we

have enough measurements for the variance σ2
mean(nb) to be saturated at certain nb, then

the saturated variance is the real variance of the data. However, if it is not saturated, one

can extrapolate nb → ∞ within given data. As the nb increases, the variance, σ2
mean(nb),

converges to the real variance, σ2
mean, by the following relation:

σ2
mean(nb) = σ2

mean −
α

nb
, (3.109)

where σ2
mean and α are positive fit parameters and 1/nb is an independent variable. There-

fore, by linearly extrapolating 1/nb → 0, one can get the unbiased variance.
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3.5.4 Fitting correlators

The meson correlator, C(t) in Eq. (3.87) can be expanded in a multiexponential form

as in Eq. (3.90). Therefore, our fit function should be

f(t) =
N∑
n=1

An exp(−Ent) , (3.110)

where N is the maximum number of exponentials which could be determined by the fit

range and states of interest. If we are interested in the ground state of a meson, then we set

the fit range, [tmin, tmax], with a sufficiently high tmin to suppress the contribution of higher

excited states. However, if we set it too high, then we may lose useful information available

at low times. To set a proper tmin, we often start by looking for a plateau in the effective

mass as a function of t. As we reduce tmin, we may need to include more exponential terms

to get a good chi square.

3.5.5 Variational method

The variational method [47, 48] is widely used for determining the hadron spectrum

in lattice calculations. It is particularly useful for studying excited states. Consider the

hadronic correlator matrix propagating in Euclidean space-time from 0 to t,

Cij(t) = 〈0|Oi(t)O†j(0)|0〉 , (3.111)

where we are now dealing with correlator matrix generated by a set of hermitian interpo-

lating operators, Oi(t), with the same quantum numbers for i = 1...N , where N is the

number of interpolators. Each Oi(t) varies according to the QCD hamiltonian H derived

from an action with a single time-step transfer matrix T = exp(−H). Again, we assume

that the time extent of the lattice is sufficiently large that we may consider only propagation

forward in time. Then, the eigenvalues of the transfer matrix are simply given by e−En and

the correlator can be expressed in the multiexponential form

Cij(t) =

∞∑
n=1

〈0|Oi|n〉e−Ent〈n|O†j |0〉 , (3.112)

or in matrix form

C(t) = ZT tZ† , (3.113)

where Z is a matrix with an infinite number of rows (labeled by the eigenvalues) and N

columns (labeled by the interpolating operators), which can be expressed as

Zi,n = 〈0|Oi|n〉 . (3.114)
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With a finite set of interpolators, we cannot identify an infinite set of eigenvalues. We start

by truncating the infinite sum in Eq. (3.87) to a finite sum for n ∈ [1, N ] and introduce at

leastN linearly independent interpolating operatorsOi(t). Then, by multiplying Eq. (3.113)

by (Z†)−1 and inserting I = C(t0)C(t0)−1, we can reduce Eq. (3.113) to the generalized

eigenvalue problem (GEVP).

C(t)(Z†)−1 = C(t0)C(t0)−1ZT t (3.115)

= C(t0)(Z†)−1T t−t0 . (3.116)

where T t is diagonal matrix. For the n th row of the transfer matrix, we can find the n th

eigenvalue by solving the GEVP

C(t)un = λn(t, t0)C(t0)un , (3.117)

where un is the nth column of the matrix (Z†)−1, and the eigenvalues of the GEVP behave

as [47]

λn(t, t0) ∝ e−En(t−t0)(1 +O(e−t∆En)) , (3.118)

At fixed t0, ∆En is the distance of En to the closest energy level, while for the special case

of t < 2t0 and a basis of N correlators, ∆En is given by [48],

∆En = EN+1 − En . (3.119)

Therefore, at large time separations, the eigenvalues are dominated by a single state,

allowing for stable two parameter fits to the eigenvalues. The largest eigenvalue decays

with the energy of the ground state, the second largest eigenvalue with the energy of the

first excited state, and so on.

3.5.6 Continuum and chiral extrapolation on the lattice

As we discussed in Sec. 3.4, discretization effects are inevitable in the lattice QCD

calculation. The correction term of the measured hadron mass, M , with the Wilson lattice

action is of O(a):

M(a) = Mphys(1 +O(a)) . (3.120)

However, the clover-improved action reduces this dependence to O(a2). Therefore, to

overcome this lattice artifact, we need to perform lattice simulations on a number of different

ensembles that are characterized by different lattice spacings a. Then, we extrapolate M(a)

to the continuum, a→ 0, to get Mphys. This is called a “continuum extrapolation”.
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On the lattice, it is expensive to simulate at the physical light quark masses, due to the

high cost of calculating D−1(U). Often numerical simulation results are obtained for some-

what larger, unphysical quark masses. Here, the “light quarks” include both valence light

quarks and sea quarks. The valence light quarks are characterized by the quark fields in the

meson interpolators and the sea quarks result from the fermion determinant detD[U ], given

in Eq. (3.47). However, as we reduce the light quark masses, the measured hadron masses

are closer to the physical hadron masses. Therefore, as we do the continuum extrapolation,

if we run lattice simulations on a number of different ensembles characterized by different

light quark masses, and extrapolate, then we are able to get Mphys. This extrapolation is

often aided by chiral perturbation theory, which specifies an explicit dependence on light

quark masses, so the extrapolation is called the “chiral” extrapolation.

3.6 Finite volume method

In this section, I provide a brief introduction to Lüscher’s finite volume method [49,50],

which will be used for the analysis of the X(3872) in Chap. 6. At finite volume, every

observable is affected by finite size effects, not only multiparticle but also single-particle

states. On the lattice, one may consider this to be a lattice artifact that one should eliminate.

However, in fact, from finite volume effects, we can extract useful information about the

scattering states, such as the phase shift and scattering length. Here, we discuss finite

volume effects and how one can extract scattering information from them to determine the

characteristic of multiparticle states, e.g., resonances or bound states.

Consider two-particle states in the center-of-mass frame. The total energy of the system

is given by

EAB(p) =
√
m2
A + p2 +

√
m2
B + p2 , (3.121)

where p is the relative momentum of two particles labeled by A and B. In a finite box L3

on the lattice, by imposing periodic boundary conditions, all momenta are quantized and

can be labeled by an integer n(∈ Z3) as pn. If two particles do not interact with each other,

then pn is simply given by 2πn/L. However, if they do interact, the momentum p is no

longer a multiple of integer n. In the finite volume method, the basic assumption is that

the interaction range is finite and smaller than L,

V (r) = 0 for |r| > R , (3.122)

where r = rA− rB and R is the interaction range and R < L/2. In the exterior region, the

two-particle wave function satisfies
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Hfreeψfree(rA, rB) = Eψfree(rA, rB) . (3.123)

In quantum mechanics, with Hfree = p2/2m, we can describe the scattering process with

a wave function that combines incoming and outgoing waves,

ψ(r) =
1

(2π)3/2

[
eip·r +

eipr

r
f(p′,p)

]
(3.124)

where the incoming wave is a plane wave and the outgoing wave is a plane wave and a

spherical wave with amplitude f(p,p′). By inserting the expansion of a plane wave in

terms of spherical waves,

eip·r = 4π
∞∑
l=0

l∑
m=−l

iljl(pr)Y
∗
lm(p̂)Ylm(r̂) , (3.125)

into Eq. (3.124), and without loss of generality, by choosing the coordinate system such

that the p is aligned parallel to the positive z-axis so that

Ylm(p̂) =

√
2l + 1

4π
δm0 , (3.126)

we obtain the new form of the wave function, ψ(r), at a large distance, r,

ψ(r)
large r−−−−→ 1

(2π)3/2

∑
l

(2l + 1)
Pl(cos θ)

2ip

[
[1 + 2ipfl(p)]

eipr

r
− e−i(pr−lπ)

r

]
(3.127)

where Pl(cos θ) is a Legendre polynomial, and fl(p) is the partial-wave amplitude,

f(p′,p) = f(θ) =

∞∑
l=0

(2l + 1)fl(p)Pl(cos θ) . (3.128)

In this form, it is clearer to see the effects of the potential, V (r). At a large distance r,

without the scatterer, the wave function becomes simply the sum of an incoming wave,

e−i(pr−lπ)/r and an outgoing wave, eipr/r. By contrast, with scattering, the outgoing wave

amplitude changes only as

1→ 1 + 2ipfl(p) . (3.129)

Now, one can define the scattering matrix as

Sl(p) ≡ 1 + 2ipfl(p) , (3.130)

and, as a consequence of probability conservation, Sl must satisfy

|Sl(p)| = 1 . (3.131)
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As a result, in elastic scattering, the only change in the wave function at a large distance is

the phase of the outgoing waves. Therefore, by defining this phase to be 2δl, one can write

the scattering matrix

Sl = e2iδl , (3.132)

where l denotes the angular momentum of the outgoing wave, and δl is called the “scattering

phase shift”, which must be real for elastic scattering. Then, from Eqs. (3.130) and (3.132),

one can write the partial-wave amplitude fl(p) in terms of the phase shift,

fl =
e2iδl − 1

2ip
=
eiδl sin δl

p
=

1

p cot δl − ip
. (3.133)

Causality requires that p cot δl be a real analytic function of p2 in the vicinity of p = 0.

Therefore, the effect of the interaction is taken into account by a momentum-dependent

phase shift δl(p), acquired in the interaction region.

Returning to the finite volume, first, to simplify the situation, let us discuss a 1 + 1

dimensional system of finite and periodic spatial extension L, but infinite time extension.

In 1+1 dimensions, both incoming and outgoing wave functions outside the interaction range

are simple plane waves ∼ eipx. Therefore, the phase shift comes in as ψ(x) ∼ eipx+2iδ(p).

From the periodic boundary condition, the plane wave function at x = L should equal its

value at x = 0, i.e., ψ(L) = ψ(0). If there is no interaction, the phase shift becomes zero.

Thus, wave function satisfies the periodic boundary condition

eip·L = eip·0 = 1 , (3.134)

where the momentum is simply quantized as 2π/L. However, if there is an interaction, the

phase shift has nonzero value. Therefore, now, the periodic boundary condition becomes

eip·L+2iδ(p) = eip·0 = 1 . (3.135)

This gives rise to the functional form of the phase δ(pn):

δ(pn) = nπ − pnL (3.136)

On the lattice, the momenta can be obtained from the energy values of the two-particle

states determined from correlators or the correlation matrix, i.e., the variational method.

For given L, one computes the discrete energy levels of two particles labeled A and B:

E
(0)
AB, E

(1)
AB, E

(2)
AB, · · · . Then, the values of pn can be found by using the dispersion relation

given by Eq. (3.121). Therefore, from the discrete energies in a finite interval, we get the

infinite-volume phase shift at the corresponding discrete values of pn. If we change L, we
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get other values of the phase shift at other pn. In this way, we can map out the phase shift

in the region near p = 0.

In 3 + 1 dimensions, the relation between the phase shift and momentum becomes more

complicated. To get the relation between the phase shift and momentum, I follow the steps

in Ref. [50], where a more rigorous treatment is found.

The eigenvalue equation, Eq. (3.123), in the exterior region can be rewritten as the

well-known Helmholtz equation,

(∇2 + p2)ψ(r) = 0 |r| > R . (3.137)

As mentioned previously, only the phase shift, δ(p), is needed to characterize the effect of

interaction within |r| < R. At infinite volume, the solution of Eq. (3.137) is given by

ψ(r) =
∑
l,m

clmYlm(θ, φ) [αl(p)jl(pr) + βl(p)nl(pr)] , (3.138)

where jl(pr) and nl(pr) are spherical Bessel functions. The phase shift δl(p) in the contin-

uum is defined through the ratio of the amplitudes of the outgoing wave, jl − inl, to the

amplitude of the incoming wave, jl + inl,

e2iδl(p) ≡ αl(p) + iβl(p)

αl(p)− iβl(p)
. (3.139)

One can use the same phase shift definition in finite volume; however, the wave function

has a more complex form due to the boundary condition,

ψ(r + nL) = ψ(r) for all n ∈ Z3 . (3.140)

Also, the potential V (r) satisfies the periodic relation,

VL(r) =
∑
n∈Z3

V (|r + nL|) . (3.141)

Now, the Green function satisfying both the Helmholtz equation and the periodic boundary

condition is

G(r;p2) = L−3
∑
k∈Γ

eipr

p2 − k2
, (3.142)

where the sum runs over the lattice. With this Green function, we can define linearly

independent solutions,

Glm(r;p2) = Ylm(∇)G(r; p2) , (3.143)

where ∇ is the gradient and Ylm is the harmonic polynomial,

Ylm(r) = rlYlm(θ, φ) . (3.144)
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The solutions Glm form a complete basis as shown in Ref. [50], and the wave function ψ(r)

can be expanded in terms of them :

ψ(r) =
∑
lm

vlmGlm(r;p2) , |r| > R (3.145)

Now, the phase shifts δl are related to the incoming jl and outgoing spherical waves as in

the infinite volume in Eq. (3.139). Thus, we need to express Glm in terms of jl and nl [50],

Glm(r;p2) =
(−)l

4π
pl+1

{
Ylm(θ, φ)nl(pr) +

∞∑
l′=0

l′∑
m′=−l′

Mlm,l′m′Yl′m′(θ, φ)jl′(pr)

}
. (3.146)

The matrix Mlm,l′m′ plays a crucial role in the analysis of the two-particle spectrum in

finite volume. The general solution in the exterior region ψ(r) in Eq. (3.145) is obtained

by inserting Eq. (3.146) into Eq. (3.145) and by comparing this with Eq. (3.138) in order

to extract the phase shifts defined in Eq. (3.139). e.g.,

ψ(r) =
∑
lm

vlm
(−)l

4π
pl+1

{
nl(pr)Ylm(θ, φ) +

∑
l′m′

Mlm,l′m′jl′(pr)Yl′m′(θ, φ)

}
(3.147)

=
∑
l,m

clmYlm(θ, φ) {αl(p)jl(pr) + βl(p)nl(pr)] . (3.148)

Therefore, from the coefficients Ylmnl and Ylmjl, we get two relations,

vlm
(−)l

4π
pl+1 = clmβl(p) ,

∑
l′m′

vl′m′
(−)l

′

4π
pl
′+1Mlm,l′m′ = clmαl(p) (3.149)

and vlm can be formed from the first relation and inserted into the second, resulting in∑
l′m′

cl′m′
[
βl′(p)Mlm,l′m′ − αl′(p)δll′δmm′ = 0

]
. (3.150)

A nontrivial solution cl′m′ exists only if

det(BM−A) = 0 , (3.151)

where the matrices A and B are defined as diagonal matrices related to coefficients αl and

βl,

Alm,l′m′ ≡ αl(p)δll′δmm′ (3.152)

Blm,l′m′ ≡ βl(p)δll′δmm′ . (3.153)

Finally, we can replace the phase shift expression in the continuum, Eq. (3.139), with the

finite volume expression satisfying periodic boundary condition,

e2iδl(p) =
A+ iB

A− iB . (3.154)
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By dividing Eq. (3.151) by det(A−iB), we can obtain the final relation between the diagonal

matrix e2iδ and nondiagonal matrix M ,

det[e2iδ(M− i)− (M+ i)] = 0 , (3.155)

where [e2iδ]lm,l′m′ ≡ e2iδl(p)δll′δmm′ . Eq. (3.155) is the essential expression of the phase shift

relation and relates the energy E measured on the lattice to the unknown phase shifts δl(p)

via the matrix elements Mlm,l′m′ .

The final result can be obtained by applying the differential operator Y(∇) to the series

G(r; p2) and expanding Glm in terms of jl and nl in Eq. (3.146),

Mlm,l′m′ =
(−)l

π
3
2

l+l′∑
j=|l−l′|

j∑
s=−j

ij

qj+1
Zjs(1; q2)Clm,js,l′m′ , (3.156)

Clm,js,l′m′ = (−)m
′
il−j+l

′√
(2l + 1)(2j + 1)(2l′ + 1)

(
l j l′

0 0 0

)(
l j l′

m s −m′
)
,

(3.157)

where Clm,js,l′m′ is expressed in terms of the Wigner 3j-symbols and Zjs is a generalized

zeta function,

Zlm(s; q2) =
∑
n∈Z3

Ylm(n)

(n2 − q2)−s
, q =

L

2π
p . (3.158)

The following properties generally hold:

Mlm,l′m′ =Ml′m′,lm =Ml−m,l′−m′ . (3.159)

For the practical purpose of the X(3872) study discussed in Chap 6, we will use only the

formula of the S-wave phase shift, l = 0 and s = 0. However, Z00 is finite only for s > 3/2,

but the divergence is not physical, as it cancels in the difference between the finite and

infinite volume result. Indeed, Z00 can be obtained by analytic continuation from s > 3/2

to s = 1.

From Eqs. (3.155) and (3.156), the phase shift formula for S-wave scattering can be

expressed as

tan δ(pn) =
π3/2

√
q2

Z00(1; q2)
(3.160)

where Z00(s; q2) is an analytic continuation of the generalized Riemann zeta function,

Z00(s; q2) =
1√
4π

∑
n∈Z3

(n2 − q2)−s , (3.161)

from the region s > 3/2 to s = 1.
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Concerning the X(3872) study, where we consider a possible weak bound state of the

D and D̄∗ mesons, we will need an expression for Z00 for q2 < 0. Z00 can be efficiently

calculated using the method described in Ref. [51] only for q2 > 0; however, Ziwen Fu

extended it to negative q2 in the center of mass system [52],

Z00(s; q2) =
∑
n∈Z3

′ e
−(n2−q2)

n2 − q2
+
∞∑
l=0

π3/2

l − 1/2

q2l

l!
+

∫ 1

0
dteq

2t
(π
t

)3/2 ∑
n∈Z3

′e−π
2n2/t , (3.162)

where
∑′

n∈Z3 stands for a summation without n = 0.

The S-wave scattering length a0 is is defined through a0 = limp→0 tan δ0(p)/p. If the

S-wave scattering length a0 is sufficiently smaller than the spatial size L, one can make

a Taylor expansion of the phase-shift formula Eq. (3.160) around q2 = 0, and then the

asymptotic solution of Eq. (3.160) can be obtained. Under the condition p2 � m2
A and

m2
B, where mA and mB are the rest masses of two particles labeled A and B, the difference

between the interaction energy and the sum of the rest masses of the two particles in 1/L

is [49, 50]

∆Eq2=0 ≈ −
2πa0

µL3

[
1 + c1

a0

L
+ c2

(a0

L

)2
+O

(
1

L3

)]
(3.163)

which corresponds to the energy shift of the lowest (n = 0) scattering state. The coefficients

are c1 = −2.837297 and c2 = 6.375183, and µ is the reduced mass of two particles A and

B. The finite volume method, so far, has been used in a great many calculations of hadron

scattering lengths, e.g., π − π, π −K, π −N , π −D, K −D, K −N , D −D∗, N −N and

J/ψ-hadron [51,53–75].



CHAPTER 4

LOW-LYING CHARMONIUM STATES ON

THE LATTICE

The main objective of this chapter is to present our dynamical lattice calculation of

the low-lying charmonium spectrum [8, 9, 76]. In Sec. 4.1, I give a brief introduction to

charmonium and the nonrelativistic potential model. In Sec. 4.2, I discuss the lattice

methodologies to perform numerical simulation and analyze the resultant data. Finally, in

the last section, I report on our lattice simulation results of low-lying charmonium spectrum

and the corresponding analysis.

4.1 Introduction

Charmonium plays an important role in the application of QCD to hadron physics.

Physically, charmonium is analogous to positronium. Positronium consists of an electron

and positron interacting via the electromagnetic force, and charmonium, one charm quark,

and one anti-charm quark interacting via the strong force. The states are characterized

by the radial quantum number n and the relative angular momentum between quark and

antiquark L. The orbital levels are labeled by S, P,D, ... corresponding to L = 0, 1, 2... The

quark and antiquark couple to give the total spin, singlet S = 0 or triplet S = 1. S and

L couple to give the total angular momentum J . The parity of a quark-antiquark state

with angular momentum L is P = (−1)L+1, and the charge conjugation quantum number

is C = (−1)L+S . The charmonium states are generally denoted by 2S+1LJ with quantum

numbers JPC . Therefore, L = 0 states are 1S0 and 3S0 with JPC = 1−+ and 1−−. L = 1

states are 1P1, 3P0, 3P1, and 3P2 with JPC = 1+−, 0++, 1++, and 2++, respectively. All of

these states have their own names, as shown in the Fig. 4.1.

In the nonrelativistic quark model, based on the interpretation of the charmonium states

as a bound state of a pair of quark and antiquark, typically, the energy levels are found by

solving the nonrelativistic Shrödinger equation,
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Figure 4.1. Charmonium spectrum from experiment [5]. Quantum number, JPC, varies
along the horizontal axis and the energy value varies along the vertical axis. Each black
bar represents the energy level of the corresponding charmonium state. The green lines
represent the MD0 + MD0 , MD∗0 + MD∗0 thresholds, i.e., the “open charm” thresholds
above which states decay into mesons containing a single charm quark or antiquark plus
light quarks. The red line MD0 + MD∗0 is very close to the X(3872) state energy level,
which we discuss in Chap. 6.

(
p2

2µc
+ V (r)

)
ψ(r) = Eψ(r) , (4.1)

where µc = mc/2 is the reduced mass of two charm quark masses. The potential V (r)

depends on the distance r between the quark and antiquark. Relativistic effects up to the

order v2/c2 are treated as a perturbation. They come from relativistic terms in the potential

as well as in the kinetic energy. Thus, we can write potential V (r) as

V (r) = V (0)(r) + δV
(1)

rel (r) , (4.2)

where V (0)(r) is the leading nonrelativistic potential and δV
(1)

rel (r) is the relativistic effect

of order (v/c)2.

At short distance, the shape of the potential, V (0)(r), is determined by the perturbation

theory in QCD incorporating one gluon exchange. At long distance, it is determined by the

phenomenology of confining quark interactions. One of the most developed models is the

Cornell model [77–79], which builds upon the simplest potential,
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V (0)(r) = −4

3

αS
r

+ br . (4.3)

Here, the Coulomb term takes into account the attractive color-singlet quark-pair interaction

resulting from the exchange of gluons at the lowest order, and the linear term builds in

confinement with string tension, b.

Then, to first order in (v/c)2, the potential δV
(1)

rel (r) in Eq. (4.2) includes spin-dependent

interactions. There are three types of interactions terms,

δV
(1)

rel (r) = VLS(r)(L · S) + VT (r)

[
S(S + 1)− 3(S · r)(S · r)

r2

]
+ VSS(r)

[
S(S + 1)− 3

2

]
,

(4.4)

where S = (SQ+SQ̄)/2, S = σ/2, and σ is Pauli spin matrix. The spin-orbit, VLS , and the

tensor, VT , terms describe the fine structure of the states, while the spin-spin term, VSS ,

proportional to 2(sQ ·sQ̄) = S(S+1)− 3
2 , gives the hyperfine spin-singlet – triplet splittings.

These terms can be directly derived from the standard Breit-Fermi expression [80] to order

(v/c)2 with the charm quark mass mc [81] 1,

VSS(r) =
32παS
9m2

c

δ(r) , (4.5)

VLS(r) =
2αS
m2
cr

3
− b

2m2
cr
, (4.6)

VT (r) =
4αS
m2
cr

3
. (4.7)

Figure 4.2 gives an example of the charmonium spectrum resulting from the nonrela-

tivistic quark model [6, 83] compared with the experiment [5]. The parameters used are

(αS , b,mc, σ) = (0.5461, 0.1425 GeV2, 1.4794 GeV, 1.0946 GeV). 2

Despite the great success of the potential model in charmonium physics, there are obvious

limitations, because the functional forms of the QQ̄ potentials, except at long distance,

are basically deduced from a perturbative approach. The phenomenological spin-dependent

potentials based on the perturbative method would be valid only at short distances and also

in the heavy-quark-mass limit. This fact leads to uncertainties in predictions for the higher-

lying states of heavy quarkonium in potential models. In addition, the newly discovered

states above the open-charm threshold depicted in Sec. 6.2 are not simply explained as a

conventional charmonium states.

1A more direct connection to QCD is established by the modern approach of effective field theory called
potential nonrelativistic QCD (pNRQCD) [82]

2In Eq. (4.5), one can replace δ(r) with a Gaussian-smeared contact hyperfine interaction, δ̄σ(r) =

(σ/
√
π)3e−σ

2r2 .
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Figure 4.2. The energy level comparisons between experiment(solid black lines) and
potential model prediction(red dotted lines) [6].

From this point of view, lattice QCD is the only available method for getting non-

perturbative results from an ab initio calculation. In 2010, Dudek et al. [84] published results

of a lattice QCD study of the excitation spectrum of charmonium as well as low-lying states.

In order to access excited states, they introduced a large set of interpolating operators and

used a variational method introduced in Chap. 3. These results are promising, but the

calculation was done at only one lattice spacing, so a continuum and chiral extrapolation is

not possible. Although lattice QCD enables us to perform ab initio calculations, the result

is affected by lattice artifacts - finite lattice spacing, a, and light-quark masses heavier

than physical. Thus, it is essential to take the continuum and chiral limit to get the

physical values. That is the objective in our lattice calculation of the low-lying charmonium

states [8,9,76]. In this chapter, I discuss the lattice methodology as well as the results from

our high-precision calculation of the splittings between low-lying charmonium states at the

physical point.
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4.2 Methodology

As described in Chap. 3, to extract the hadron spectrum, one can use either direct

correlator fitting or the variational method. In this study, we use the variational method, de-

scribed in Sec. 3.5.5, to extract the charmonium energy levels. In the following subsections,

I describe the observables we measure, the simulation setup, our method for constructing

interpolating operators, the charm quark-mass corrections, and our chiral and continuum

fits [8, 9].

4.2.1 Observables

To isolate the leading central potentials V (0)(r) introduced in Sec. 4.1, it is often

convenient to discuss spin-averaged masses. For example, we define

M(1S) =
1

4
(M(ηc) + 3M(J/ψ)) , (4.8)

M(13P ) =
1

9
(M(χc0) + 3M(χc1) + 5M(χc2)) . (4.9)

They are insensitive to the spin-orbit or the tensor interactions from Eqs. (4.6) and (4.7).

Now let us consider spin-dependent potentials, δV
(1)

rel (r). First, from Eq. (4.5), we notice

that it is directly proportional to |ψ(0)|2, and this implies that the hyperfine splitting

between the 3S1 and 1S0 states should be proportional to the e+e− decay width of the vector

3S1 resonance, which is also proportional to |ψ(0)|2. Thus, it is interesting to consider the

1S-hyperfine splitting:

M(nSHFS) = MJ/ψ −Mηc . (4.10)

By contrast, the hyperfine splitting in the P -wave states should be extremely small because

the wave function vanishes at the origin. Thus, for P -wave states, we consider the shifts

between M(13P ) and each MχcJ . We can derive the following expression from Eq. (4.4) [81],

δMχc0 = −2〈VLS〉+ 2〈VT 〉 , δMχc1 = −〈VLS〉− 〈VT 〉 , δMχc2 = 〈VLS〉+
1

5
〈VT 〉 . (4.11)

Then, for χc0, χc1 and χc2, we get the two combination of splittings, spin-orbit, and tensor

which we are interested in

M(nPSO) =
1

9
(5M(χc2)− 2M(χc0)− 3M(χc2)) (4.12)

M(nPT) =
1

9
(3M(χc1)−M(χc2)− 2M(χc0)) (4.13)

In summary, M(nSHFS) and M(nPT) are sensitive to spin-spin and tensor interactions, and

M(nPSO), to spin-orbit interactions.
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4.2.2 Simulation setup

The calculations have been performed with the (2+1)-flavor gauge configurations pro-

vided by the MILC collaboration [85], listed in Table 4.1. We use ensembles at five lattice

spacings and two different light sea quark masses, simulated with the asqtad action [35–37].

The ensemble contains degenerate up and down sea quarks with masses approximately

1/5 and 1/10 the masses of the strange quark and with strange quark masses at close

to their physical values, respectively. We use clover charm quarks within the Fermilab

interpretation [86]. The charm-quark hopping parameter κc is tuned by matching the Ds

kinetic mass to be equal to the physical Ds meson mass. Four source time slices per gauge

configuration are used, for a total of ≈ 2000 to ≈ 4000 sources per ensemble.

4.2.3 Heavy quark formalism

I introduced the Wilson action in Chap. 3. However, with Wilson or O(a) Symanzik-

improved “clover” actions, it is hard to deal with relativistic heavy quarks due to the large

discretization lattice artifact. The Fermilab interpretation [86] was designed to overcome

these difficulties. Therefore, we implement the Fermilab version of the clover action for

charm quarks to reduce the lattice artifact in the overall simulations in this thesis. The

Fermilab actions S can be written as [86]

S = S0 + SB + SE , (4.14)

where S0 is the action for dimension-three and four interactions:

S0 =
∑
n

ψ̄nψn − κt
∑
n

[
ψ̄n(1− γ0)Un,0ψn+0̂ + ψ̄n+0̂(1 + γ0)U †n,0ψn

]
− κs

∑
n,i

[
ψ̄n(rs − γi)Un,iψn+î + ψ̄n+î(rs + γi)U

†
n,iψn

]
, (4.15)

SB is the chromomagnetic dimension-five interaction :

SB =
i

2
cBκs

∑
n;i,j,k

εijkψ̄nσijBn;kψn , (4.16)

and SE is the chromoelectric dimension-five interaction :

SE = icEκs
∑
n;i

ψ̄nσ0iEn;iψn, (4.17)

where ψ and ψ̄ denote the quark and antiquark fields and B and E are suitable functions of

the lattice gauge field U . We set the temporal and spatial hopping parameters to be same,

κt = κs = κ. Also, we set rs = 1 and cE = cB = cSW . Thus, the action reduces to the
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Table 4.1. Simulation run parameters and number of configurations of the ensembles in use
for the low-lying charmonium study. From left, listed parameters are the approximate lattice
spacing a, the ratio of the light and heavy seaquark masses ml/mh, the lattice size L3 × T ,
the total number of sources (4 time slices times the number of gauge configurations), the
tuned charm-quark hopping parameter κc, and finally, the charm-quark hopping parameter
κsim used in this simulation, respectively. Note that for the uncertainty of κc displayed in
the fifth column, the first uncertainty is statistical, the second is from the uncertainty in
the lattice scale.

≈ a [fm] ml/mh size # of sources κc κsim

0.14 0.2 163 × 48 2524 0.12237(26)(20) 0.1221

0.14 0.1 203 × 48 2416 0.12231(26)(20) 0.1221

0.114 0.2 203 × 64 4800 0.12423(15)(16) 0.12423

0.114 0.1 243 × 64 3328 0.12423(15)(16) 0.1220/0.1245/0.1280

0.082 0.2 283 × 96 1904 0.12722(9)(14) 0.12722

0.082 0.1 403 × 96 4060 0.12714(9)(14) 0.12714

0.058 0.2 483 × 144 2604 0.12960(4)(11) 0.1298

0.058 0.1 643 × 144 1984 0.12955(4)(11) 0.1296

0.043 0.2 643 × 192 3204 0.130921(16)(70) 0.1310

Sheikholeslami-Wohlert action [34]. The energy-momentum dispersion relation for a single

quark of spatial momentum p in this action is

E(p) = m1 +
p2

2m2
+O(p4) , (4.18)

where the quark rest mass is m1, and the kinetic mass is m2. At tree level in lattice QCD

perturbation theory,

m1a = log(1 +m0a) (4.19)

m2a =

(
2

m0a(2 +m0a)
+

1

m0a+ 1

)−1

, (4.20)

where m0 is the bare quark mass. It can be expressed in terms of κ and κcrit,

m0a =
1

2u0

(
1

κ
− 1

κcrit

)
, (4.21)

where κcrit is critical value of κ at which chiral symmetry is restored and the quark mass

vanishes.3 Note that m1 6= m2 unless ma� 1.

3For the case of the Wilson action, κcrit = 1/8r. See Eq. (3.61).
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4.2.4 Interpolating operators

As listed in Table 3.2, the simplest interpolators are the color-singlet local fermion

bilinears, c̄α(~x, t)Γαβcβ(~x, t), where the quantum numbers are determined by the choice of

the gamma matrix, Γ. The charm-quark fields can be replaced by a rotationally symmetric

smeared quark source field. However, as discussed in Chapter 3, to extract a highly

excited state, it is more helpful to use various interpolators involving non-local derivative

operators [70, 87–92] with appropriate quantum numbers. They can be constructed to be

both irreducible representations of the lattice rotation group (Oh) at zero momentum and

to have definite form in the continuum limit (cf. Sec. 3.5.1).

In this study, we use stochastic wall sources discussed in Sec. 3.5.2. The rotationally

symmetric smeared source can be constructed by applying successive derivative operations

to the stochastic sources. Let SW represent the smearing levels where Sp is the plain

stochastic wall source and Sg is the covariant Gaussian smearing sources constructed from

Sp :

Sg(x) = M(x)Sp(x) ,

M(x) =

(
1 +

σ2

4N
∆

)N
, (4.22)

where ∆ is the three-dimensional Laplacian operator on the lattice, defined in Eq. (3.57),

but summed over only spatial lattice sites, µ = 1, 2, and 3. From exp(a) ≈ (1 + a
N )N for

N →∞, M(x) is proportional to eσ
2∆/4 and approximates a Gaussian in coordinate space.

For the non-local derivative operators, we need to define the covariant derivatives Di on

the lattice:

Di(~x, ~y) = Ui(~x, 0)δ(~x+ aî, ~y)− Ui(~x− aî, 0)†δ(~x− aî, ~y) , (4.23)

where î runs over only spatial direction, î = 1, 2, 3. To reduce UV fluctuations in the creation

of these sources, the spatial links are smeared using nAPE steps of “APE smearing” [93],

Vi(x) = (1− α)Ui +
α

6

3∑
i 6=

Cij(x) ,

Cij(x) = Uj(x)Ui(x+ aĵ)Uj(x+ aî)† + Uj(x− aĵ)†Ui(x− aĵ)Uj(x− aĵ + aî)

with a typical weight of α = 0.1 for the staples. Notice that the original gauge links are

used for creating the quark propagator. At the sink, the order of operators is reversed in
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order to treat sources and sink symmetrically under time reversal. With this prescription,

we implement the following non-local interpolators:

~∇i = MDiSp ,

Di = M |εijk| ~Dj
~DkSp , (4.24)

Bi = εijkM
−→
D j
−→
DkSp .

For example, using these operators, one can write the interpolators classified by T−−1 as

fermion bilinear,

c̄∇ic , c̄|εijk|γjDic , c̄γ5Bic .

Finally, in this low-lying charmonium study, we consider seven channels classified by irre-

ducible representations with the corresponding interpolating operators represented by the

above equations. In Table 4.2, we list the interpolators for each irreducible representation.

Note that the interpolators without derivatives are used with both point, Sp, and Gaussian,

SG, sources and sinks.

4.2.5 Charm quark-mass corrections

Because the hopping parameter, κ, was tuned more precisely after the simulation was

done, the data must be corrected for the slightly mistuned charm-quark hopping parameter,

κsim. Consider the small shift in the mass-splitting observables, ∆M1, e.g., Eqs. (4.10),

(4.13) and (4.13). Then, the relation between corrected and simulated data is

∆M corrected
1 = ∆M sim

1 +
d∆M1

dκ
δκ . (4.25)

Therefore, to determine the correction, we need to calculate the slope, d∆M1/dκ, on each

ensemble. This is done by measuring the hopping parameter dependence of the kinetic

charm quark mass, m2, on one ensemble, a ≈ 0.11 fm for ml/mh = 0.1 with three different

kappas, where we use m2 instead of m1 because m2 controls the quark dynamics. Once we

determine the hopping parameter dependence for the all observables, then we assume that

the slope, expressed in physical quantities, is constant to a good approximation:

dM1

dm2
= const. , (4.26)

over the all lattice spacings and sea quark masses. Then, by differentiating Eqs. (4.20) and

(4.21) by κ, and by combining the resulting expressions, we get

dr1∆M1

dκ
=

d∆M1

dm2
·
(r1

a

) d(m2a)

dκ
(4.27)

=
d∆M1

dm2
·A (4.28)
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Table 4.2. Interpolating operators used for the variational analysis. The first row lists
JPC in use as the irreps. of octahedral group. The correspondence between continuum J
and irreps. of octahedral group are listed in Table 3.1. Repeated indices are summed over.
Interpolators without derivatives are used with both point (Sp) and Gaussian (Sg) sources
and sinks.

A−+
1 A++

1 T−−1 T+−
1 T++

1 T++
2 E++

γ5 · Sp 1 · Sp γi · Sp γtγ5γi · Sp γ5γi · Sp |εijk|γj∇k Qijkγj∇k
γ5 · Sg 1 · Sg γi · Sg γtγ5γi · Sg γ5γi · Sg |εijk|γtγj∇k Qijkγtγj∇k
γtγ5 · Sp γi∇i γtγi · Sp γ5∇i εijkγj∇k Di Qijkγ5γjDk
γtγ5 · Sg γtγi∇i γtγi · Sg γtγ5∇i εijkγtγj∇k |εijk|γtγ5γjBk Qijkγtγ5γjBk
γtγ5γi∇i γtγ5γiBi ∇i |εijk|γtγ5γjDk |εijk|γ5γjDk
γiBi εijkγ5γj∇k Bi γtBi
γtγiBi |εijk|γjDk εijkγ5γjBk εijkγtγ5γjBk

|εijk|γtγjDk
γ5Bi
γtγ5Bi

Thus, A is the only ensemble-dependent parameter. From Eq. (4.20), it is

A =
(r1

a

) 1

2u0κ2

4 + 12m0a+ 16(m0a)2 + 8(m0a)3 + (m0a)4

(2 + 4(m0a) + (m0a)2)2
. (4.29)

Table 4.3 displays all the values needed for the kappa correction. Once we determine the

slopes of the observables over κ on one ensemble (here the ensemble with a ≈ 0.11 fm for

ml/mh = 0.1), we can calculate all kappa tuning corrections on all other ensembles.

4.2.6 Scale setting uncertainty

Lattice quantities are measured in units of the lattice spacing. Scale setting is needed

to determine the lattice spacing in physical units (e.g., fm). This is needed to convert all

dimensionful quantities to physical unit. For example, consider the dimensionless quantity,

aM , which is the product of the lattice spacing and mass M . Then, to determine M in

physical mass units, we need to determine the lattice spacing a (or scale) in physical units.

To determine the scale, we go through an intermediate quantity that is easily measured on

the lattice. That quantity is the length r1, called the Sommer scale, of the force between

static quarks, r2
1F (r1) = 1. The values of r1/a for the asqtad ensembles can be found in [12].

Then, the scale r1 is determined from a precise lattice measurement of the pion decay

constant, and its precise experimental value. r1 has been determined to be 0.31174(216)

fm [12] in the “mass-independent scheme”. For the figures presented in Sec. 4.3, we use the
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Table 4.3. The parameters required for the charm-quark mass corrections. From left,
listed parameters show the lattice spacings, the ratio of simulation seaquark masses, the
critical κ value, the tadpole factor, the ratio of the Sommer scale r1 [11] to the lattice
spacing, the calculated bare quark mass, and the resulting factor A from Eq. (4.29). The
values of r1/a for the asqtad ensembles and an explanation for our value r1 = 0.31174(216)
can be found in Ref. [12].

≈ a ml/mh κcrit u0 r1/a m0a A

0.14 0.2 0.14243 0.8604 2.2215 0.67849 71.54

0.114 0.2 0.14091 0.8677 2.7386 0.53872 85.06

0.082 0.2 0.13912 0.8782 3.7887 0.35147 112.42

0.058 0.2 0.13763 0.8879 5.3531 0.24593 155.40

0.043 0.2 0.13664 0.8951 7.2082 0.17481 208.69

0.14 0.1 0.14236 0.8602 2.2067 0.67849 71.15

0.114 0.1 0.14096 0.8678 2.7386 0.53872 85.04

0.082 0.1 0.13917 0.8779 3.7546 0.36191 111.51

0.058 0.1 0.13768 0.8876 5.3073 0.25263 154.10

Sommer scale r1 [11]. For each observable, we first determine the result using the central

value for both r1 and κc and then repeat the procedure using the both the scale r1 = 0.3139

fm and the κc resulting from the same shift. Although the scale setting uncertainties along

with the observables are relevant, we do not include these effects in this thesis. This will

be done before we complete the journal paper.

4.2.7 Heavy quark effective field theory

To perform the continuum extrapolation, we need to understand how the heavy-quark

discretization effects behave on the lattice. To do so, one can implement an effective

Lagrangian that has manifest symmetry in the mQ → ∞. One can consider two ways

to construct such Lagrangians – one, the inverse powers of mQ appear in the effective the

Lagrangian, the other, the powers of vQQ̄/c. The former is called “heavy-quark effective

theory” (HQET), where it is appropriate to describe the systems with only one heavy quark

and the correction terms are order of the powers of 1/mQ, the latter is called “nonrelativistic

QCD” (NRQCD), where it is appropriate to describe the systems with more than one heavy

quarks and the correction terms are order of the powers of vQQ̄/c.

As long as mQ � ΛQCD, one can write both effective Lagrangians as



57

Llat=̇LHQ , (4.30)

where =̇ means they have the same matrix elements in their respective frameworks. Both

HQET and NRQCD share the same effective Lagrangian

LHQ =
∑
n

Clat
n (mQ, g

2
S ,mQa;µ/mQ)On(µ) , (4.31)

where µ is the renormalization point and mQ is heavy quark mass. The Cn are short-distance

coefficients and the operators On give the long-distance behavior. This effective Lagrangian

can be expanded in a small parameter. The expansion parameter of the HQET is 1/mQ

and of NRQCD is v/c. One can then use “power counting” to determine what terms in the

effective field theories are relevant to a given order in the small parameter, where with power

counting scheme, we match dimensionality of the operator O and determine the coefficients

C, appropriately, which is order of 1. Thus, LHQ can be expanded as

LHQ = L(0) + L(1) + L(2) + ..., (4.32)

where for HQET, L(s)
HQET contains terms of dimension 4 + s, and for NRQCD, LNRQCD

contains terms of order v2s+2, where v is the relative velocity of charm quark and charm

antiquark.

As mentioned above, NRQCD is more appropriate to describe the two heavy quark

system. Therefore, for continuum extrapolation, we use NRQCD power-counting. Thus, it

must be useful to write the first several terms of LNRQCD,

L(2)
NRQCD = −h̄(+)(D4 +m1)h(+) +

h̄(+)D2h(+)

2m2
− h̄(−)(D4 +m1)h(−) +

h̄(−)D2h(−)

2m2
,

L(4)
NRQCD =

h̄(+)iσ ·Bh(+)

2mB
+
h̄(+)iσ · (D ×E)h(+)

8m2
E

+
h̄(+)(D ·E)h(+)

8m′2E
+
h̄(+)(D2)2h(+)

8m3
4

+
h̄(−)iσ ·Bh(−)

2mB
− h̄(−)iσ · (D ×E)h(−)

8m2
E

− h̄(−)(D ·E)h(−)

8m′2E
+
h̄(−)(D2)2h(−)

8m3
4

+
1

6
a3w4h̄

(+)D4
i h

(+) +
1

6
a3w4h̄

(−)D4
i h

(−) , (4.33)

where h(+) and h(−) are a two-component heavy quark field and a two-component heavy

antiquark field, respectively. The short-distance coefficients, Clat
n in Eq. (4.31), m1, m−1

2 ,

m−1
B , m−2

E , m−2
E′ , m−3

4 and w4 depend on the bare quark masses, the bare gauge coupling,

and all other couplings of the lattice actions. As an example, the short-distance coefficient

mB is [7]
1

mBa
=

1

m2a
+

(cB − r)ζ
1 +m0a

, (4.34)
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and one of the the mass mismatching terms is

1

4m2
E

− 1

4m2
2

=
a2

(2 +m0a)(1 +m0a)
− a2

4(1 +m0a)2
, (4.35)

(4.36)

and the symmetry breaking term is

a3w4 =
2a2

m0(2 +m0a)
+

a3

4(1 +m0a)
, (4.37)

which introduces errors of order of a2m3v4 in the spin-averaged splittings.

4.2.8 Discretization effects in charmonium mass splittings

For the charmonium masses calculated on the lattice, Mlat is

Mlat = Mcont + 2(m1 −m2)− 1

3
w4a

3
∑
i

〈
p4
i

〉
−

(
1

4m3
4

− 1

4m3
2

)〈
(p2)2

〉
+

(
1

4m2
E

− 1

4m2
2

)
〈4πCFαSδ(r)〉 (4.38)

where Mcont is the charmonium mass in the continuum, and p is the relative momentum.

The last term comes from the Darwin term with CF = 4/3 for SU(3). Here, our goal is to

findMcont. Therefore, we need to understand the functional dependence of the discretization

effect on the lattice parameters, bare quark mass, lattice spacing, and gauge coupling. Once

we know it, we can extrapolate Mlat to the continuum to find Mcont.

First, consider the 1P − 1S mass splitting,

Mlat(1P )−Mlat(1S) = Mcont(1P )−Mcont(1S)− 1

w4
a3
∑
i

(〈
p4
i

〉
1P
−
〈
p4
i

〉
1S

)
−
(

1

4m3
4

− 1

4m3
2

)(〈
(p2)2

〉
1P
−
〈
(p2)2

〉
1S

)
(4.39)

+4πCFαS
(
〈δ(r)〉1P − 〈δ(r)〉1S

)
(4.40)

We can evaluate the expectation values of the momentum p from NRQCD power counting

using Coulomb wave function and the Hamiltonian [81,94],

H = − 1

m2
∇2 − CF

αS
r
. (4.41)

For charmonium, αS ∼ v ∼ 0.3. Then, the expectation values in Eq. (4.40) are given by〈
(p2)2

〉
1P
−
〈
(p2)2

〉
1S

= −233

243
m4

2α
4
S , (4.42)∑

i

(〈
p4
i

〉
1P
−
〈
p4
i

〉
2S

)
= −233

405
m4

2α
4
S , (4.43)

4πCFαS
(
〈δ(r)〉1P − 〈δ(r)〉1S

)
= −128

81
m3

2α
4
S . (4.44)

For the expression of mass mismatching terms, see Ref. [7].
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Next, consider spin-dependent splittings. Here, we briefly go over the terms. For the

full discussion, refer to Ref. [95]. The hyperfine and tensor splittings arise from the gluon

exchange interactions in the NRQCD Lagrangian given by Eq. (4.31),

h̄(+)iσ ·Bh(+)h̄(−)iσ ·Bh(−) . (4.45)

The mismatch coefficient of this interaction is of order(
1

2mB
− 1

2m2

)2

∼ αS ∼ v . (4.46)

In addition, we need to consider the higher-dimensional operators for this splitting. Re-

placing iσ ·B → {D2, iσ ·B}, where {...} indicates the anticommutator, introduces shifts

of the form v2 ∼ α2
S times

1

4m3
B′
− 1

4m3
2

, (4.47)

relative to the continuum hyperfine and tensor splittings.

The leading heavy-quark discretization effects contributing to the hyperfine and tensor

splittings come from mismatches of mB and m2. Following [7], we use NRQCD power

counting with v2
cc̄ = 0.3 and mc = 1400 MeV along with the tree level formula from [86] to

estimate the expected size of all heavy-quark discretization effects. The relevant formula

for mB is Eq. (4.22) of [7]. Notice that our fermion action includes a clover term with

the tadpole improved tree-level value cb = ce = 1
u30

, where u0 is the average link from the

plaquette. The contribution is therefore improved and the suppression with respect to the

reference scale given by mcv
2
c (the kinetic energy of the meson) contains a factor 1

2αsv
2
c .

The next smaller heavy-quark discretization effects come from mismatches of mB′ and

m2, where the relevant formula for mB′ is given by Eq. (4.23) of [7]. This mismatch is of

a higher order in the NRQCD power counting and suppressed by 1
8v

4 with respect to the

kinetic energy.

Similarly, the spin-orbit splittings arise from interactions of the form

h̄(±)iσ · (D ×E)h(±)h̄(∓)A4h
(∓) (4.48)

Again, we have set cE = cB, so that the mismatch becomes

1

2m2
E

− 1

2m2
2

. (4.49)

In the following sections, we use the terms “leading shape” and “leading + subleading

shapes”. In the former is the case we include only leading order of the discretization effect

in NRQCD when we perform a continuum extrapolation, and in the latter, we include both

leading and the next to leading order of discretization effects in NRQCD. Each figure in

Sec. 4.3 includes two plots to compare these two cases.



60

4.2.9 Chiral and continuum fits

We perform an extrapolation to the continuum as well as chiral limit of the light-quark

masses [8, 9]. For each observable, we compared continuum extrapolations with just the

leading shape (either αSa
2 or the leading heavy-quark discretization term) and using both

the leading and subleading for the shapes heavy-quark discretization terms as well as the

generic αSa
2 shape. We determine the most important mismatches arising at order v4

and/or order v6 in NRQCD power-counting.

As we discussed in the previous section, the discretization effects in the mass depends

on the mass mismatch parameters. Therefore, we can write the fit model for the combined

extrapolation as

M = M0 + c1(2xl + xh) + c2f1(a) + c3f2(a) + . . .

xl =
mud,sea −mud,phys

ms,phys
(4.50)

xh =
ms,sea −ms,phys

ms,phys

where ci are the fit parameters. mud,sea and ms,sea are the degenerate up and down mass,

and the strange sea quark masses used in simulation, respectively. Then, mud,phys, and

ms,phys are physical up, down, and strange quark masses, respectively. Their values are

displayed in Table 4.4. For the each different splitting, the functions fi are determined from

mass mismatches within the Fermilab prescription [7].

Figure 4.3 shows the expected discretization uncertainties from power counting estimates

for the splitting indicated each figure. The plotted curves corresponds to ci = 1 for all i. In

some of our fits, in order to stabilize the fits, we use Bayesian priors for ci, centered around

0 with a width of 2 as a constraint. In the fit for the 1P − 1S-splitting, we also allow for

a term from rotational symmetry breaking (w4 term). In addition to these terms, we also

allow for a generic αsa
2 term characteristic of the heavy-quark discretization effects from

the gauge action.

4.3 Results

We perform a variational analysis to extract the low-lying energy levels. Then, we

calculate the 1S hyperfine splitting as in Eq. (4.10) and spin-orbit, 1P tensor splittings as in

Eq. (4.13). Finally, we perform the chiral-continuum extrapolation according to Eq. (4.51).

In some cases, implementing the full sets of interpolating operators is not helpful to reduce

the size of the uncertainty. Tables 4.5 and 4.6 show our choices of interpolating operators

used in the variational analysis to extract energy levels. The ‘1’ in the basis column means
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Table 4.4. Nominal (sea) light and heavy quark masses compared with physical light and
strange quark masses for each ensemble. The first column shows the approximate lattice
spacing. The second and the third columns list the light and strange sea quark mass used
for the simulation, respectively. The third and the fourth columns show physical light and
strange quark masses.

≈ a mud,sea ms,sea mud,phys ms,phys

0.14 0.0097 0.0484 0.0015079 0.04185

0.114 0.01 0.05 0.0012150 0.03357

0.082 0.0062 0.031 0.0008923 0.02446

0.058 0.0036 0.018 0.0006401 0.01751

0.043 0.0024 0.014 0.0004742 0.01298

0.14 0.0048 0.0484 0.0015180 0.04213

0.114 0.005 0.05 0.0012150 0.03357

0.082 0.0031 0.031 0.0009004 0.02468

0.058 0.0018 0.018 0.0006456 0.01766

‘used’ while ‘0’ means ‘not-used’. The corresponding interpolator expressions can be found

in Table 4.2.

Concerning uncertainties, we include both statistical and chiral-continuum extrapolation

uncertainties. At this stage, we do not include uncertainties from the scale-setting proce-

dure. They will be significant for the 1S-hyperfine and 1P-1S splittings. For the 1S-hyperfine

splitting uncertainties, the autocorrelations in the Markov-chain of gauge configurations

appear to be significant, and so they are taken into account. We estimate the integrated

autocorrelation time using two methods. The first method is the blocking method that

I mentioned in Sec. 3.5.3. We construct binned data from the jackknife estimates and

extrapolated the results for bins of sizes 1 to 5 to infinite bin size using the expected scaling.

Another method is to determine the autocorrelation time from the jackknife sample using

the method and software provided by Wolff in [96]. We calculate the autocorrelation time

using both methods and check that the results are consistent. We quote results from the

first method.

Figure 4.4 shows the results for the 1S-hyperfine splitting. This splitting is sensitive

to heavy-quark discretization and charm-quark tuning effects so that the most significant

errors are from including the subleading discretization effect. The other contribution is

from the charm-annihilation [10]. These effects will be included in Ref. [9] based on the
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Figure 4.3. Shapes and sizes of the expected discretization uncertainties for charmo-
nium splittings (NRQCD power counting) in the Fermilab approach (using v2 = 0.3 and
mv2 ≈ 420 MeV≈ 1P-1S-splitting). The symbols mB, mB’3, m43, w4, mE2, and mEE3
represent mismatch coefficients for mB, m3

B′ , m
3
4, w4, m2

E , and m3
EE , respectively. These

short-distance coefficients in LNRQCD are expressed as fi(a). See Ref. [7] for the full
expressions.

estimation from [10]. Figure 4.5 shows the results for 1P-1S splittings. As in the 1S

hyperfine splitting, significant effects from mistuned strange-quark masses are visible in our

data. The chiral-continuum fits are stable with regard to the number of shapes, provided

reasonable priors are used. The P-wave spin-orbit splitting shown in Fig. 4.6 shows small

discretization uncertainties, unlike our results for the P-wave tensor splitting (Fig. 4.7)

where the dominant uncertainty arises from the choice of fit model.

Table 4.7 shows our current results for the splittings compared with the experimental

values. Except for the 1P-hyperfine splitting, our results shows excellent agreement with

experiment.
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Table 4.5. Implemented interpolating operators for the variational analysis. The first
column represents the data set we used. The labels, ‘a0.xx’ represent the approximate
lattice spacing. When letter ‘b’ follows, it means ml/mh = 0.1, otherwise ml/mh = 0.2.
For the data set used for kappa tuning, we add the additional information about the kappa
values. The ‘v#’ are the version numbers. The second column represents the quantum
number JPC as the irrep of the octahedral group. The third column represents the reference
time, t0, used for the variational analysis. The fourth column represents the interpolating
operator basis implemented in this analysis. The ‘1’ represents the interpolating operator
that was used, and ‘0’, the not-used one. They are listed in Table 4.2. For all JPC ,
each number from left to right matches the interpolator displayed in Table 4.2 from top to
bottom, respectively. The rest of the columns show the fit information – fit range, number
of exponentials in use, the fit values and the chi-squares per degree of freedoms, in turn.

Data set JPC t0 basis fit range fit type fit result χ2/d.o.f.

a0.15 v2 A−+
1 2 1111100 2-20 2exp 1.67624( 15) 0.72

a0.15b v2 A−+
1 2 1111100 2-20 2exp 1.67746( 10) 2.35

a0.12 v3 A−+
1 2 1111100 3-27 2exp 1.46897( 8) 1.50

a0.12b k1220 A−+
1 2 1111100 3-27 2exp 1.58055( 7) 0.88

a0.12b k1245 A−+
1 2 1111100 3-27 2exp 1.45278( 8) 1.06

a0.12b k1280 A−+
1 2 1111100 3-27 2exp 1.26162( 9) 1.70

a0.09 v2 A−+
1 3 1111100 4-42 2exp 1.14427( 8) 1.20

a0.09b v2 A−+
1 3 1111100 4-42 2exp 1.15211( 4) 1.31

a0.06 v2 A−+
1 5 1111100 6-64 2exp 0.83119( 4) 1.32

a0.06b v2 A−+
1 5 1111100 6-64 2exp 0.84756( 2) 1.08

a0.045 v2 A−+
1 6 1111100 8-81 2exp 0.63519( 3) 1.60

a0.15 v2 T−−1 2 1100111100 2-20 2exp 1.75241( 22) 0.50
a0.15b v2 T−−1 2 1100111100 2-20 2exp 1.75324( 16) 1.64
a0.12 v3 T−−1 2 1100111100 3-27 2exp 1.53353( 14) 1.46

a0.12b k1220 T−−1 2 1100111100 3-27 2exp 1.63834( 13) 0.92
a0.12b k1245 T−−1 2 1100111100 3-27 2exp 1.51690( 13) 1.06
a0.12b k1280 T−−1 2 1100111100 3-27 2exp 1.33715( 18) 1.31

a0.09 v2 T−−1 3 1100111100 4-42 2exp 1.19131( 20) 1.53
a0.09b v2 T−−1 3 1100111100 4-42 2exp 1.19873( 7) 1.01
a0.06 v2 T−−1 5 1100111100 6-64 2exp 0.86508( 9) 1.32
a0.06b v2 T−−1 5 1100111100 6-64 2exp 0.88092( 5) 1.18
a0.045 v2 T−−1 6 1100111100 8-81 2exp 0.66053( 6) 1.66
a0.15 v2 A++

1 3 11110 4-10 1exp 2.0434( 24) 0.20
a0.15b v2 A++

1 3 11110 4-10 1exp 2.0366( 24) 0.33
a0.12 v3 A++

1 3 11110 6-16 1exp 1.7564( 20) 0.47
a0.12b k1220 A++

1 3 11110 6-12 1exp 1.8652( 17) 0.11
a0.12b k1245 A++

1 3 11110 6-12 1exp 1.7395( 16) 0.65
a0.12b k1280 A++

1 3 11110 6-12 1exp 1.5470( 23) 0.67
a0.09 v2 A++

1 3 11110 3-19 2exp 1.3421( 13) 0.23
a0.09b v2 A++

1 3 11110 3-19 2exp 1.3481( 7) 0.45
a0.06 v2 A++

1 5 11110 6-28 2exp 0.9646( 10) 0.77
a0.06b v2 A++

1 5 11110 6-30 2exp 0.9807( 10) 0.57
a0.045 v2 A++

1 6 11110 7-31 2exp 0.7349( 8) 0.98
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Table 4.6. For an explanation, see the caption of Table 4.5.

Data set JPC t0 basis fit range fit type fit result χ2/d.o.f.

a0.15 v2 T++
1 3 1111100 4-10 1exp 2.0907( 19) 0.27

a0.15b v2 T++
1 3 1111100 4-10 1exp 2.0875( 14) 0.65

a0.12 v3 T++
1 3 1111100 6-16 1exp 1.8042( 14) 0.95

a0.12b k1220 T++
1 3 1111100 6-12 1exp 1.9043( 10) 0.81

a0.12b k1245 T++
1 3 1111100 6-17 1exp 1.7816( 13) 0.51

a0.12b k1280 T++
1 3 1111100 6-14 1exp 1.6008( 17) 0.54

a0.09 v2 T++
1 3 1111100 3-23 2exp 1.3783( 24) 1.29

a0.09b v2 T++
1 3 1111100 3-24 2exp 1.3843( 8) 1.14

a0.06 v2 T++
1 5 1111100 6-24 2exp 0.9930( 12) 0.93

a0.06b v2 T++
1 5 1111100 6-32 2exp 1.0070( 11) 0.81

a0.045 v2 T++
1 6 1111100 7-41 2exp 0.7542( 10) 0.68

a0.15 v2 T++
2 3 1111 4-10 1exp 2.1260( 24) 0.34

a0.15b v2 T++
2 3 1111 4-10 1exp 2.1231( 17) 1.46

a0.12 v3 T++
2 3 1111 6-16 1exp 1.8307( 22) 0.74

a0.12b k1220 T++
2 3 1111 6-19 1exp 1.9307( 16) 0.47

a0.12b k1245 T++
2 3 1111 6-18 1exp 1.8104( 19) 0.29

a0.12b k1280 T++
2 3 1111 6-17 1exp 1.6305( 30) 0.80

a0.09 v2 T++
2 3 1111 3-19 2exp 1.4006( 25) 0.79

a0.09b v2 T++
2 3 1111 3-23 2exp 1.4045( 11) 0.79

a0.06 v2 T++
2 5 1111 6-25 2exp 1.0082( 19) 0.92

a0.06b v2 T++
2 5 1111 6-29 2exp 1.0176( 42) 1.05

a0.045 v2 T++
2 6 1111 7-31 2exp 0.7644( 20) 0.81

a0.15 v2 E++ 3 1111 4-10 1exp 2.1269( 24) 0.14
a0.15b v2 E++ 3 1111 4-10 1exp 2.1235( 17) 1.77
a0.12 v3 E++ 3 1111 6-13 1exp 1.8303( 25) 0.32

a0.12b k1220 E++ 3 1111 6-17 1exp 1.9310( 17) 0.58
a0.12b k1245 E++ 3 1111 6-15 1exp 1.8113( 20) 0.28
a0.12b k1280 E++ 3 1111 6-17 1exp 1.6311( 31) 0.48

a0.09 v2 E++ 3 1111 3-19 2exp 1.4018( 20) 0.98
a0.09b v2 E++ 3 1111 3-23 2exp 1.4051( 11) 0.87
a0.06 v2 E++ 5 1111 6-29 2exp 1.0081( 21) 0.89
a0.06b v2 E++ 5 1111 6-24 2exp 1.0201( 35) 1.57
a0.045 v2 E++ 6 1111 7-31 2exp 0.7633( 26) 0.84
a0.15 v2 T+−

1 3 1111100 4-10 1exp 2.1017( 19) 0.27
a0.15b v2 T+−

1 3 1111100 4-10 1exp 2.1001( 12) 1.41
a0.12 v3 T+−

1 3 1111100 6-16 1exp 1.8129( 13) 0.44
a0.12b k1220 T+−

1 3 1111100 6-16 1exp 1.9133( 11) 0.77
a0.12b k1245 T+−

1 3 1111100 6-16 1exp 1.7919( 12) 0.77
a0.12b k1280 T+−

1 3 1111100 6-17 1exp 1.6124( 15) 0.55
a0.09 v2 T+−

1 3 1111100 3-21 2exp 1.3856( 29) 1.96
a0.09b v2 T+−

1 3 1111100 3-21 2exp 1.3917( 8) 0.78
a0.06 v2 T+−

1 5 1111100 6-35 2exp 0.9985( 19) 0.87
a0.06b v2 T+−

1 5 1111100 6-35 2exp 1.0115( 13) 0.84
a0.045 v2 T+−

1 6 1111100 7-42 2exp 0.7585( 11) 1.21
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Figure 4.4. Chiral and continuum fit for the 1S-hyperfine splitting using leading and
subleading shapes (left) and only the leading shape (right) in the continuum extrapolation
[8, 9]. Curves for physical (black), 0.1ms, and 0.2ms light-quark masses are plotted. The
black crosses show the fit results evaluated at the lattice parameters of the gauge ensemble.
Note that many data points are not on the fitting lines because the lines are the results of
the chiral extrapolation.
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Figure 4.5. Chiral and continuum fit for the 1P-1S-splitting [8,9]. For an explanation, see
caption of Fig. 4.4.
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Figure 4.6. Chiral and continuum fit for the 1P spin-orbit splitting [8, 9]. For an
explanation, see caption of Fig. 4.4.
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Figure 4.7. Chiral and continuum fit for the 1P tensor splitting [8,9]. For an explanation,
see caption of Fig. 4.4.

Table 4.7. Charmonium mass splittings compared with the experimental values [9]. The
first column shows the mass splittings. The second column lists the resultant chiral-con-
tinuum extrapolated mass splitting values, calculated on the lattice [9]. The third column
displays the experimental values acquired from particle data group [5].

Mass difference Lattice [MeV] [9] Experiment [MeV] [5]

1P-1S splitting 457.3± 3.6 457.5± 0.3

1S hyperfine 118.1± 2.1−1.5
−4.0 113.2± 0.7

1P spin-orbit 49.5± 2.5 46.6± 0.1
1P tensor 17.3± 2.9 16.25± 0.07

1P hyperfine −6.2± 4.1 −0.10± 0.22



CHAPTER 5

VARIATIONAL METHOD FOR

STAGGERED FERMIONS

I have introduced the conventional variational method [47, 48] in Chap. 3, used for the

action with improved Wilson fermions. However, the method has not been used for the

alternative lattice formalism that we use, namely staggered fermions, which does not have

a conventional single-time-step transfer matrix, neither has any quantitative variational

analysis been performed . Nonetheless, with a simple modification, the variational method

can be applied to the staggered action as well [97]. In this chapter, I introduce our modified

staggered variational method and analyze the Ds spectrum as a case study. This dissertation

describes the work published in Ref. [97].

5.1 Staggered fermions

Unlike clover fermions, the hadronic correlator involving staggered fermions includes

time oscillating terms in its multiexponential expansion

Cij(t) =
∑
n

〈0|Oi(t)|n〉sn(t)e−Ent〈n|O†j(0)|0〉 . (5.1)

where sn(t) = 1 for the nonoscillating states and sn(t) = (−1)t for the oscillating states.

The oscillating part is usually called the parity partner of the nonoscillating state, because

often the states appear as a pair and have opposite parities.

In this study, we are interested in the meson correlator formed from interpolating

operators involving staggered (light) and Wilson (heavy) fermions. To construct such

correlators, we first convert the staggered propagator into the “naive” propagator,

N(x′, x) = Γ†(x′)Γ(x)S(x′, x) , (5.2)

where, in one convention,

Γ(x) = γx1γx2γx3γx0 , (5.3)
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and S(x′, x) is an improved staggered fermion propagator. The naive propagator carries

both color and spin indices, so that we can use the bilinear gamma matrices ΓA and ΓB on

the source and sink, respectively. The resulting correlator is

C(t) =
∑
x

Tr[ΓBN(x′, x)Γ†AW (x, x′)] (5.4)

where the trace is over both spins and colors.

Now, consider a correlator C ′(t) in which the bilinear gamma matrices ΓA and ΓB are

replaced by ΓAγ0γ5 and ΓBγ0γ5, respectively. This transformation preserves the angular

momentum, but reverses the parity and charge conjugation. One can show that

C ′(t) = C(t)(−)t . (5.5)

because

γ0γ5N(x′, x) = (−)t
′−tN(x′, x)γ0γ5 . (5.6)

Therefore, a Wilson-plus-staggered hadronic correlator involving ΓA and ΓB at the source

and sink, respectively, is identical to the correlator involving ΓAγ0γ5 and ΓBγ0γ5, up to the

sign-oscillating factor in time. Moreover, if Oi is constructed from a hermitian bilinear with

gamma matrix ΓA, the operator constructed from ΓAγ0γ5 is antihermitian. Thus,

〈n|Oi(0)|0〉 = −〈0|O†i (0)|n〉 . (5.7)

As a result, the correlator involving staggered propagators includes an overall minus sign

due to antihermiticity as noted above when it has an oscillating factor (−)t.

Thus, the correlation matrix involving the single-time-slice Dirac-plus-staggered meson

has the form:

C(t) = ZT tgZ† , (5.8)

where T = diag[e−En ] and g = diag[sn(1)], that is, a diagonal matrix with a plus (minus)

sign for nonoscillating (oscillating) states. Then, with the same steps as in Eq. (3.116) and

(3.116), we can get the same expression of GEVP as the Wilson fermion correlator

C(t)un = λn(t, t0)C(t0)un , (5.9)

but unlike the Wilson correlation matrix, the eigenvalues can be negative. Here, we modify

the ordering convention so that the eigenvalues are in decreasing order according to their

absolute values, |λn(t, t0)| > |λn+1(t, t0)|. At large t, the eigenvalues have form,

λn(t, t0) = sn(t− t0)e−En(t−t0) . (5.10)

However, at non-asymptotic t, because the hadronic correlator calculated on the lattice can

be expanded as an infinite sum of exponentials, the eigenvalue in Eq. (5.10) must have
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correction terms. The ALPHA Collaboration quantitatively estimates the corrections to

the large time asymptotics by using perturbation theory [48]. Let N denote the number of

interpolating operators in use and separate the hadronic correlation matrix, C(t), into two

parts,

C(t) = C(N)(t) + C ′(t) , (5.11)

where C(N)(t) is the truncated correlation matrix where each matrix element has a finite

number of exponentials, N , whereas C ′(t) includes the exponentials from N + 1-th to ∞.

Then, the eigenvalues of the GEVP constructed from C(N)(t) are exactly given by Eq. (5.10).

Now, because the transfer matrix decrease exponentially, we can treat the effects of C ′(t)

perturbatively. As a result, one can show that the corrections to the large time asymptotics

due to truncation of the correlation matrix have the form [97]

λn(t, t0) ≈ sn(t− t0)(1− an(t0))e−En(t−t0)

+

N∑
m>n

bm,n(t0)sm(t− t0)e−Em(t−t0) (5.12)

−
N∑

m<n

bm,n(t0)sm(t− t0)e−(2En−Em)(t−t0) +O(e−EN+1(t−t0)) .

The coefficients an and bm,n depend only upon the reference time t0:

an(t0) ≈ An,n,N+1sn(t0)sN+1(t0)e−(EN+1−En)t0

−
[
e−2(EN+1−En)t0 |An,n,N+1|2 +

N∑
m>n

bn,m,N+1(t0)

]
(5.13)

bm,n(t0) ≈ |Am,n,N+1|2sn(t0)sm(t0)e−(2EN+1−En−Em)t0 , (5.14)

where Am,n,N+1 is given by the product of overlaps

Am,n,N+1 =

(
N∑
i=1

u∗m,iZi,N+1

)(
N∑
i=1

Z∗i,N+1un,i

)
. (5.15)

As the number N of linearly independent interpolating operators is increased with fixed t0

and t, the factors e−(EN−En)t0 decrease exponentially, so an and bn vanish exponentially.

On the other hand, with fixed N , as the reference time t0 becomes large, the coefficients

also decrease exponentially. Therefore, we can suppress the correction terms by increasing

N and t0 so that we get Eq. (5.10) at fixed time slice t.

In practice, however, for a hadronic excited state, it is challenging to get a good signal at

a large t0, and making N large is expensive. Therefore, rather than requiring the correction
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term to vanish, we propose fitting the eigenvalues to a simpler form containing oscillating

and nonoscillating correction terms,

λn(t, t0) ≈ [1− an(t0)]sn(t− t0)e−En(t−t0) + bn(t0)sn(t− t0)e−Ēn(t−t0) +

+ cn(t0)s′n(t− t0)e−E
′
n(t−t0) + dn(t0)s′n(t− t0)e−Ē

′
n(t−t0) , (5.16)

where s′n(t) oscillates if sn(t) does not, and vice versa. Thus, depending on t0, Ēn, E′n or

Ē′n could be either Em where m > n or 2En − Em where m < n. We arrange so that

the principal term, i.e., the term with the largest amplitude, is the one with coefficient

1− an(t0). Also, because λn(t0, t0) = 1, it is useful to impose the sum rule [84],

Σn ≡ 1− an(t0) + bn(t0) + cn(t0) + dn(t0) ≈ 1 . (5.17)

From Eq. (5.13), we see that the parity partner energy is either E′n = Em or E′n =

2En − Em, where Em is the energy of a nearby state. In principle, the same choices apply

to the excited state values Ēn and Ē′n, but in practice, these energies could represent a

weighted average of an array of possible states, including the lowest excluded state EN+1.

5.2 Case study: Ds meson spectrum

In this chapter, I illustrate the method by calculating Ds meson spectrum. While

the previous studies implementing the variational method have been done with only the

clover quark and antiquark formalism [98–102], in this study, we use the staggered strange

antiquark and clover (Fermilab) charm quark.

5.2.1 Simulation setup

We work with the MILC ensemble with lattice spacing a = 0.15089(17) [103] fm,

generated in the presence of 2 + 1 + 1 flavors of highly improved staggered sea quarks

(HISQ), i.e., equal up and down sea quark masses, plus strange and charm sea quarks

with all masses approximately equal to their physical values [104]. The lattice dimension

is 323 × 48. We measured the charm-strange meson correlator on 988 gauge configurations

separated by six molecular dynamics time units with eight uniformly spaced source times

per configuration. The charm-strange mesons were constructed with a clover (Fermilab)

charm quark and a strange HISQ with mass equal to the strange sea quark in the ensemble.

We also measured the charmonium correlator to set the charm quark mass. For the more

detailed charm-quark tuning description, refer to Sec. 6.3.
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To construct the charm-strange meson, we consider a variety of single-time-slice, zero-

momentum interpolating operators Oi of the form

Oi(t) =
∑
x

Q̄(x, t)Jiq(x, t) . (5.18)

where Q is the clover charm quark field and q is the HISQ field, converted by standard

methods to a “naive” Dirac field according to Eq. (5.2). Both fields carry suppressed Dirac

spin and color indices. The current operators Ji in this study are listed in Table 5.1.

We introduce three types of covariant Gaussian smearing to implement wave functions

mimicking both 1S ground state and other excited states. These Gaussian smearings are

defined in Eq. (4.22), which in terms of the gauge-covariant Dirac operator D/ and a smearing

width rx:

Sx = exp(r2
xD/

2/4) (5.19)

for x = a, b, c with widths ra = 0 (plain stochastic wall source), rb = 1.6 (only clover quark

smeared to the stochastic wall source), and rc =
√

2r2
b = 2.2 (both clover and staggered

quarks smeared).

5.2.2 Effective energies from generalized eigenvalues

As we have noted, by solving the GEVP, the states belonging to the channels charac-

terized by the opposite-parity irreducible representations (irreps) A+
1 , T+

1 , and T−2 can be

extracted as the parity partners of states in the irreps A−1 , T−1 , and T+
2 . Thus, we can

extract effective masses for two channels from a single channel eigenvalues. These effective

masses are useful from two perspectives. First, as mentioned in Sec. 3.5.1, one can roughly

estimate energy levels, En, from the eigenvalues λn at t � 1, and these are guides for

Table 5.1. Current operators Ji for constructing interpolating operators Q̄(x, t)Jiq(x, t)
for the charm-strange mesons in this study for each of the indicated irreps of the octahedral
group (with spatial inversions): Oh. All interpolating fields used here are constructed by
the same way as introduced in Chap. 4.

A−1 T−1 T+
2

γ5 · Sa,c γi · Sa,b,c |εijk| γj∇k
γtγ5 · Sa,c γtγi · Sa,b,c |εijk| γtγj∇k
γ5γi · ∇i I · ∇i
γtγ5γi · ∇i γt · ∇i

εijkγ5γj∇k
εijkγtγ5γj∇k
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the eigenvalue fitting. Second, one can identify the principal state with definite quantum

number from the eigenvalue En. To see how this works, consider the effective mass formulas

given as

E
(k)
eff (t) = log

[
λ(k) (t+ 1) /λ(k) (t)

]
Nonoscillating states (5.20)

E
(k)
eff (t) = log

[
−λ(k) (t+ 1) /λ(k) (t)

]
Oscillating states . (5.21)

In either case, we find it helpful to smooth the result:

E(k)
eff =

1

4

[
E

(k)
eff (t+ 1)− 2E

(k)
eff (t) + E

(k)
eff (t− 1)

]
. (5.22)

where the oscillating (nonoscillating) states are averaged out, if we use Eq. (5.20) (Eq. (5.21)).

In fact, including all interpolating operators in many cases permits a clean isolation of the

parity partners. That is, for a given eigenvalue, often only the oscillating or nonoscillating

component is robust, and the partner component is too weak to obtain a statistically

significant effective mass.

Figure 5.1 shows the resultant effective masses. We set the reference time t0 = 3 (4

in the case of T+
2 ), where the reference times are chosen large enough to suppress other

redundant states, but small enough to get statistically good signals for the eigenvalues. In

the variational calculation, we include all operators in the respective columns of Table 5.1,

and we examine results for all six channels A±1 , T±1 , and T±2 . These single-time-slice

operators generate states of both parities. The parity indicated in Table 5.1 is for the

nonoscillating state. The resulting effective energies (masses in our zero-momentum case)

for both parities are plotted in Fig. 5.1 as a function of t and tabulated in Table 5.2.

As mentioned in the previous section, we set the ordering convention of the eigenvalues

so that they are in decreasing order according to their magnitudes |λn(t, t0)| > |λn+1(t, t0)|
for large t and t0. As a result, for the eigenvalues of A−1 channel, the ground and the second

excited states appear as JP = A−1 (nonoscillating states), and the first excited state is

JP = A+
1 (oscillating state). For the eigenvalues of T−1 channel, the ground, the third, and

the fourth states appear as JP = T−1 (nonoscillating states) and the first and the second

excited states appear as JP = T+
1 (oscillating states). Finally, for the eigenvalues of T+

2

channel, the quantum number of the ground state is JP = T+
2 (nonoscillating) and the first

excited state is JP = T−2 (oscillating).

Finally, we can tentatively assign a continuum quantum number according to Table 3.1.

JP of the nonoscillating states extracted from A−1 , T−1 , and T+
2 are assigned to 0−, 1−,

and 2+, respectively, and JP of the oscillating states are assigned to the same total angular



73

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 6  8  10  12

E
e
ff

a

t

A
1

±

 6  8  10  12

t

T
1

±

 6  8  10  12

t

T
2

±

Figure 5.1. Smoothed effective masses Eeff from the the eigenvalues in the A±1 , T±1 , and T±2
charm-strange channels as a function of t. All interpolating operators listed in Table 5.1
are used. The reference times are t0 = 3 for A±1 , T±1 , and t0 = 4 for T±2 , which are
about 0.45 fm and 0.6 fm, respectively. For all channels, the red squares represent the
nonoscillating ground states, the blue circles represent the oscillating first excited states
(the purple triangle for the oscillating second excited in T±1 channels), and the black squares
represent nonoscillating further higher excited state. One additional nonoscillating excited
state is shown as green filled dots in T±1 channels.

momentum, but opposite parities. See the fourth column of Table 5.2 for the assignment,

and the next column shows the the corresponding hadronic states assigned according to

their quantum numbers.

5.2.3 Results

Even though we are working at only one lattice spacing with quark masses close, but

not finely tuned, to their physical values, and we have not considered effects of two-meson

channels, it is tempting to compare our results with the experimentally known masses [5].

This is done in Table 5.3 and Fig. 5.2, including tentative assignments. To extract the

energy levels, we use the all interpolating operators listed in Table 5.1 for all channels. The

resultant values of fit parameters, an, bn, cn, dn, En, Ēn, E′n, and Ē′n defined in Eq. (5.16)

are displayed in Table 5.4 and the fit information is displayed in Table 5.5.

Our study also had an interesting result. The traditional folklore is that staggered
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Table 5.2. Classification of states identified from their effective masses shown in Fig. 5.1.
Listed are the eigenvalue indices, whether the principal state is obtained from the oscillating
(O) or nonoscillating (NO) effective mass, the plot symbol, the inferred Oh irreducible
representation and continuum spin/parity, and the assigned hadronic state [5], if obvious.

n NO/O plot symbol JP assignment

A±1
0 NO red squares A−1 , 0− Ds

1 O blue circles A+
1 , 0+ D∗s0(2317)

2 NO black squares A−1 , 0− ?

T±1
0 NO red squares T−1 , 1− D∗s
1 O blue circles T+

1 , 1+ Ds1(2460)
2 O purple triangles T+

1 , 1+ Ds1(2536)
3 NO black squares T−1 , 1− D∗s1(2700)
4 NO green triangles T−1 , 1− ?

T±2
0 NO red squares T+

2 , 2+ D∗s2(2573)
1 O blue circles T−2 , 2− ?

Table 5.3. Mass splittings in the Ds spectrum. The experimental splittings are calculated
relative to the spin-averaged Ds 1S state, based on values in Ref. [5].

Experiment [MeV] Lattice [MeV]

D∗s −Ds 143.8± 0.4 134.77± 0.51

Ds − 1S −107.9± 0.5 −101.08± 0.38

D∗s − 1S 35.9± 0.6 33.69± 0.13

D∗s1(2700)− 1S 632.7± 4 698.9± 38.4

Ds0(2317)− 1S 241.5± 0.7 302.6± 6.3

Ds1(2460)− 1S 383.3± 0.7 436.2± 15.0

Ds1(2536)− 1S 458.8± 0.4 478.5± 13.1

Ds2(2573)− 1S 496.3± 1.0 508.9± 18.3

fermion correlators always have both parity partners whenever they exist. However, with

the variational method, we can isolate them, given a large enough variational basis. In

the rest of this section, we examine the progressive isolation as the dimension N of the

interpolating operator basis is increased or as the reference time t0 is increased. To do

this, we fit the eigenvalues to our preferred model Eq. (5.16), and, for each eigenvalue, we

study the effect on the principal amplitude 1 − an and mass Mn. However, here, we just

summarize the study. The detailed discussion can be found in Ref. [97].
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Figure 5.2. Comparison of our crude theoretical charm-antistrange meson spectrum
(symbols with errors) with experimental values (short horizontal lines) with tentative
assignments of the levels. Mass splittings are shown relative to the spin-averaged Ds 1S
state, namely 1S = 1

4(Ds + 3D∗s).

For both A±1 and T±1 channels, in panels (A,C) shown in Figs. 5.3 and 5.4, they show

progressive improvement in the isolation of parity partner eigenstates with the increasing

dimension N of the interpolating operator basis and with the increasing reference time t0.

We find, as expected, that as N increases in this way with fixed t0 = 3, the amplitude

1 − an approaches 1 and the mass Mn stabilizes. Also, as t0 increases at fixed N , the

amplitude 1 − an also approaches 1, and the mass Mn stabilizes. In this case, we can be

more quantitative. From Eqs. (5.13), (5.13), and (5.14), we see that the coefficient an in

Eq. (5.16) all tend to decrease exponentially with t0 at fixed N as

e−(EN+1−En)t0An,n,N+1 , (5.23)

whereas the coefficients bn, cn, and dn decrease exponentially according to

e−2(EN+1−En)t0A2
n,m,N+1 . (5.24)

We note that at fixed N , the coefficient A2
n,m,N+1 is constant. Indeed, as shown in Figs. 5.3

and 5.4 panel C, the coefficient 1−an can be fit with the exponential form 1−rn exp(−∆Mnt0),

where rn and ∆Mn are adjusted to their best fit values.
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Table 5.4. Fit results for the eigenvalues of the A±1 , T±1 , and T±2 channels with all A−1 ,
T−1 , and T+

2 operators in Table 5.1, respectively. For A±1 and T±1 channels, we use reference
time t0 = 3 and for T±2 channel, t0 = 4. The fit parameters an, bn, cn, dn, En, Ēn, E′n, and
Ē′n are defined in Eq. (5.16). The fit information is displayed in Table 5.5. Note that only
for the ground state of the A−1 channel, we use the further additional exponential term,
b̃nẼn, not shown in Eq. (5.16), which is classified by nonoscillating state.

A±1 channel

n 1− an En bn Ēn b̃n Ẽn cn E′n
0 0.889(4) 1.1274(3) 0.0144(4) 1.40(26) 0.089(11) 1.99(11) −0.0010(9) 1.67(30)
1 0.810(31) 1.4361(46) 0.173(3) 1.855(87) − − −0.0039(18) 1.67(17)
2 0.558(51) 1.723(18) 0.441(6) 2.66(28) − − −0.081(19) 2.005(86)

T±1 channel

n 1− an En bn Ēn cn E′n dn Ē′n
0 0.872(2) 1.2305(3) 0.0856(3) 1.879(35) −0.0108(8) 1.586(28) − −
1 0.774(80) 1.538(12) 0.187(6) 1.94(19) −0.012(3) 1.59(10) − −
2 0.761(47) 1.569(10) 0.256(17) 2.44(66) −0.0020(29) 1.27(25) −0.06(19) 2.6(1.8)
3 0.529(90) 1.739(31) 0.482(4) 2.34(12) −0.017(3) 1.556(68) − −
4 0.720(23) 1.8248(89) 0.504(3) 4.11(55) −0.22(5) 2.323(91) − −

T±2 channel

n 1− an En bn Ēn cn E′n dn Ē′n
0 1.01(11) 1.594(16) 0.338(6) 2.17(27) −0.34(15) 1.890(18) − −
1 1.34(3) 1.903(12) − − −0.35(4) 2.11(7) − −

Unlike the A±1 channel, the T±1 channel has two fairly closely spaced T+
1 states. There-

fore, the oscillating term in λ0 with fewer interpolators could represent a mixture of both.

Including more interpolating operators helps partly in separating the states, but λ0 for that

set still has a strong oscillating component. A nearly complete separation occurs only after

nine or more operators are included. Then, λ0 contains only the nonoscillating state and

the two oscillating states appear separately in λ1 and λ2.

On the other hand, for T±2 channel, because there are only a few interpolating operators,

the parity partners are not well separated even at t0 = 4. Thus, even at reasonably

low t0, the multiexponential fit again helps to compensate for contamination from other

unsuppressed exponential contributions.



77

Table 5.5. Fit information for the eigenvalues of the A±1 , T±1 , and T±2 channels. The sum
of amplitudes of exponentials used for fitting, Σn, represents 1 − an + bn + cn + dn as in
Eq. (5.17). The next column shows its prior central value and width for the Σn. We found
that it is close to 1, as expected from the sum rule of Eq. (5.17), as long as N is large
enough.

n NO/O Σn prior ± width fit type fit range χ2/d.o.f

A−1

0 NO 0.992(3) 1± 0.1 4-exp 4-20 5.5/9
1 O 0.978(5) 1± 0.1 3-exp 4-18 7.3/9
2 NO 0.944(87) 1± 0.1 3-exp 4-11 3.3/2

T−1

0 NO 0.962(2) 1± 0.1 3-exp 4-20 11.2/11
1 O 0.952(11) 1± 0.1 3-exp 4-17 5.2/8
2 O 0.948(58) 1± 0.1 4-exp 4-13 0.9/2
3 NO 0.994(19) 1± 0.02 3-exp 4-10 2.2/1
4 NO 0.991(99) 1± 0.1 3-exp 4-11 1.3/2

T+
2

0 NO 1.009(60) 1± 0.08 3-exp 5-15 4.1/5
1 O 0.99(1) − 2-exp 5-13 4.5/5
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Figure 5.3. Progressive isolation of the parity partner eigenstates with the increasing
dimension N of the interpolating operator basis. Improvement is demonstrated for the two
leading eigenvalues λ0 and λ1 in the A±1 channels by examining the principal coefficients
and masses from a fit to Eq. (5.16). Panels A and C show the principal fit coefficients 1−a0

and 1− a1 and panels B and D, the masses M0 = E0 and M1 = E1 as a function of (A,B)
the number of interpolating operators N and (C,D) the reference time t0. The solid lines
represent a fit to the function 1rne

−∆Mnt0 , adjusting both rn and Mn.
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Figure 5.4. As in Fig. 5.3, but for the lowest two states in the T±1 channels. The operator
sets are defined in the text.



CHAPTER 6

X(3872)

In this chapter, I briefly introduce the charmonium-like state X(3872) and report on

our lattice calculation results and analysis for the X(3872) state. The main objective of

the analysis is not to calculate the precise theoretical value to match with experimental

X(3872) rest masses, but to understand its nature.

6.1 Introduction

As introduced in Chap. 2, the quark model predicts that the minimal baryon configu-

ration is qqq with the SU(3) multiplet representation 1, 8, and 10, whereas the minimal

meson configuration is qq̄ with the representation 1 and 8. However, in QCD, the color

confinement involving the gluons enables the hadrons to have more complex configurations

like tetraquarks (qqq̄q̄). Since the first introduction of the tetraquarks by Jaffe [105],

many exotic mesons have been found experimentally which cannot be explained by the

conventional quark model. For example, in the light quark sector, the scalar mesons f0(980)

and a0(980) have been proposed to be KK̄ molecular states. However, it is challenging

to distinguish them from conventional q̄q states because the widths are large and their

resonant peaks often overlap conventional states. For rather easier sectors, there are excited

charmonium states above or near the threshold. Since excited charmonium states can decay

into pairs of D and D̄ mesons if their masses are above the threshold for that process,

in general, cc̄ states near the threshold will undergo mixing with DD (or DD̄∗, D∗D∗)

molecular or tetraquark states, through creation and annihilation of light quark-antiquark

pairs (see Fig. 6.1). Here, the DD̄ threshold is often called the “open-charm threshold”.

6.2 Charmonium-like states above the open-charm
threshold

Many excited states have been discovered that cannot be explained within the con-

ventional quark model. Among those charmonium states, the so-called XY Z mesons are
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Figure 6.1. A schematic drawing of “open meson” process. cc̄ is a charmonium state above
the threshold. cq̄ (qc̄) is D (D̄) or D∗ (D̄∗).

unusual mesons discovered during the last decade that contain heavy cc̄ pairs and are above

the open-charm threshold. Some of them are

• X(3872), discovered by the Belle Collaboration [106, 107] in 2003 and confirmed by

CDF [108] and studied with more precison by CDF [109], D0 [110], BABAR [111,112],

and LHCb [113]. Its mass is remarkably close to the DD̄∗ threshold – within 1 MeV –

and recently, the quantum numbers have been confirmed as JPC = 1++ by LHCb [114].

It decays into both J/ψ + ρ and J/ψ + ω with comparable branching fraction, which

implies a violation of isospin symmetry.

• Y (4140), discovered by the CDF Collaboration in 2009 [115] and studied with more

precision by CMS [116], D0 [117], and BaBar [118]. It decays into J/ψ + φ, a

promising signature for a spin-exotic hadron with hidden strangeness, leading to

the interpretation that Y (4140) might be a D∗sD
∗
s molecule or tetraquark state with

valence content cc̄ss̄.

• Z±c (3900), observed by the BESIII collaboration [119] in 2013 as an intermediate

resonance in an analysis of e+e− annihilation into Jψπ+π− at center-of-mass energy
√
s = 4260 MeV. This observation has been confirmed by the Belle Collaboration [120]

and by Xiao et al. using data from the CLEO-c detector [121]. However, it has

not been observed in exclusive photoproduction of J/ψ + π on protons [122] or in

conjunction with B0 decays [123, 124]. It is a charged, isospin-one charmonium-like
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state and decays into J/ψπ+, which implies that it must include at least four quarks,

i.e., a tetraquark or hadronic molecular state with constituents cc̄ud̄.

It has been more than a decade since the discovery of the X(3872). However, there

is no compelling explanation about its constituents. Theoretical models for the X(3872)

mesons can be classified according to their constituents and how they are clustered within

the meson.

• conventional quarkonium, which consists of a color singlet heavy quark-antiquark pair:

(QQ̄)1,

• quarkonium hybrid, which consists of a color octet heavy quark-antiquark pair with

an excited gluonic degree of freedom: (QQ̄)8 + g,

• meson molecule, which consists of two color singlet mesons bound by the strong

interaction: (Qq̄)1 + (Q̄q)1,

• tetraquark, which consists of a QQ̄ pair and a light quark q and antiquark q̄, bound

by inter-quark potentials into a color singlet: (QQ̄qq̄)1,

• diquarkonium, which consists of a color-antitriplet Qq diquark and a color-triplet Q̄q̄

diquark bound by the QCD color force: (Qq)3̄ + (Q̄q̄)3,

• quarkonium color-adjoint meson, which consists of a color-octet QQ̄ pair to which a

light quark-antiquark pair is bound: (QQ̄)8 + (qq̄)8.

In this list, the sub-indices 1, 3, and 8 represent the color-singlet, -triplet, and -octet

combinations, respectively. As an example, Fig. 6.2 shows a pictorial representation of a

meson-molecule state and a tetraquark. All theoretical models listed above could be an

explanation of the unusual neutral mesons and the last four of the Z±c (3900).

The goal of this study is to reveal the nature of the X(3872) state by using lattice

QCD which is nonperturbative, ab-initio method. That is, our study attempts to answer

the question - “Is the X(3872) state a the weakly bound state of DD̄∗ or not?” Due to

the proximity of its mass to the DD̄∗ threshold, very often the X(3872) state has been

conjectured to be a weakly bound state of DD̄∗, and its wave function has a significant

molecular component made out of mesons rather than out of quarks. Therefore, we have

been studying the X(3872) state on the lattice by allowing the mixing of cc̄ and DD̄∗

interpolating operators.
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Figure 6.2. Cartoons for the meson molecule and tetraquark state explained in the text.

On a finite volume, all states are discrete, so, on the lattice, bound states are difficult

to identify due to finite volume effects. In the case of infinite volume, a bound state is well

defined because the bound state spectrum is discrete and scattering states are a continuum.

There is no continuum state below the threshold. However, in a finite box on the lattice, all

states are discrete – even the lowest energy levels of the elastic scattering state can appear

below the threshold if an interaction is attractive between two particles. Therefore, it is

difficult to distinguish between the bound state and the lowest scattering state at finite

volume. To overcome these difficulties, we implement the finite-volume method [49, 50]

introduced in Sec. 3.6 and the effective range formula.

The organization of this chapter is as follows:

• I introduce the gauge configuration details used for this study,

• I describe how we construct the mixing correlation matrix, cc̄, DD̄∗ for the interpo-

lating operators, namely, the two-, three-, and four-point correlation functions on the

lattice,

• I discuss the spectrum results which are extracted from the eigenvalues of the GEVP,

based on both the standard and staggered variational method, introduced in Chap 3

and 5, respectively,

• I perform the analysis to determine the nature of the X(3872) by using scattering

theory and implementing the finite volume method.
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6.3 Simulation setup

We work with the two MILC ensembles, both with lattice spacings approximately 0.15

fm. Both ensembles are generated with highly improved staggered sea quarks (HISQ).

The ensembles include degenerate up and down sea quarks. For both ensembles, strange

and charm sea quarks have their physical masses [125]. One, ensemble “A”, has lattice

dimensions 163 × 48, and the other, ensemble “B”, 323 × 48. On ensemble “A”, the light

quark masses are approximately 1/5 the strange quark mass and, on ensemble “B”, physical

light quark masses have their physical values, approximately 1/27 the strange quark mass.

When the time separation is large enough for the correlation in a gauge configuration to

become negligible, more than one source time can be used for a full set of correlators. Thus,

to gain the necessary statistics, we use multiple time sources on each ensemble. We put

sources on each of eight time slices per gauge configuration on ensemble “A”, and with help

of the larger volume advantage, only four time slices on ensemble “B”, so in total, there

are approximately 8000 and 4000 sources for each ensemble, respectively. We use clover

charm quarks within the Fermilab interpretation [86] and HISQ valence light quarks with

the masses matching the sea quark masses.

Table 6.1 shows the parameters for both ensembles. On ensemble (A), the charm-quark

hopping parameter κc has been tuned so that the kinetic mass of the Ds meson is equal

to its physical value. On ensemble (B), we use a different charm-quark tuning scheme. It

is tuned so that the splitting between the D + D∗ and ηc rest masses, MD + MD∗ −Mηc ,

is approximately equal to its experimental value, Fig. 6.3. These different tuning schemes

result in different charm-quark masses, due to the discretization effects. In the continuum

limit, a → 0, however, the charm-quark masses will be consistent, no matter what the

tuning scheme is.

As in Chap. 4 and 5, we use (smeared) stochastic wall sources on the source positions

for all correlators to gain better statistics and construct charmed heavy-light mesons with

nonzero momentum. In addition, we use stochastic sources on the sinks to construct the

box diagrams shown in the lower-right corner of Fig. 6.4. We will discuss how we construct

the box diagram in Sec. 6.4.3.

6.4 Correlation matrix calculation

To study the X(3872) with JPC = 1++, we choose interpolating operators Oi that couple

to cc̄ as well as DD̄∗ scattering states. For DD̄∗ interpolating operators, we include states

with momentum quanta (0, 0, 0), and (0, 0,±1). See Eq. (6.8) for the zero momentum,

and Eq. (6.9) for the nonzero momentum DD̄∗ interpolating operators. The quark-line
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Table 6.1. Simulation parameters for two ensembles used for X(3872) study. The meaning
of each column have been described Chap. 4. Due to the larger volume advantage, we use
fewer sources on ensemble (B) than on ensemble (A).

a(fm) β aml/ams N3
s ×Nt κc Nconf × src

Ensemble (A) ∼ 0.15 5.80 0.013/0.065 163 × 48 0.1220 1020× 8
Ensemble (B) ∼ 0.15 5.80 0.00235/0.0647 323 × 48 0.1256 1040× 4
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Figure 6.3. The rest mass splitting MD + MD∗ −M(ηc) as a function of 1/κc, used for
tuning the charm quark mass in ensemble (B). The circles and triangles are the lattice data
of the splittings between DD̄∗ and ηc, and between DD̄∗ and J/ψ, respectively. From the
left, data are calculated for κc = 0.1320, 0.1220, and 0.1120, respectively. The green vertical
line indicates our choice of charm-quark hopping parameter, κc = 0.1256+0.0021

−0.0014.

diagrams of the whole mixing correlation matrix included in our calculation are shown in

Fig. 6.4. The different smearing levels are omitted for convenience. Black lines represent

charm quark propagators (Fermilab) and red lines light quark propagators (HISQ). The

prefactors are due to the degeneracy of light-quark (up and down) on lattice. The upper-left

corner contains cc̄ sectors, the lower-right DD̄∗ scattering sectors, and the off-diagonals

elements encode the explicit mixing between cc̄ and DD̄∗. In our simulation, we exclude
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Figure 6.4. X(3872) quark-line diagrams for the hadronic correlator matrix in this simula-
tion. Red lines represent light-quark propagators and black lines, charm-quark propagators.
Each prefactor is due to the iso-spin symmetry of up- and down-quarks on the lattice. We
do not calculate the charm-quark-annihilation diagrams on the second rows of each sector,
because charm-quark annihilation is known to be negligible at our level of precision [10].
According to Wick’s theorem introduced in subsection 3.3.1, we denote the upper-left
correlation sub-matrix as “two-point correlation functions”, the off-diagonal sub-matrices
as “three-point correlation functions”, and lower-right as “four-point correlation functions”.
For the four-point correlation functions, there are two types of diagrams. The left one is
called the “disconnected diagram”, and the right one, the “box diagram”, named by their
shapes.

charm-quark-annihilation diagrams on the second row of each matrix element, because they

are negligible at our level of precision [10]. In this section, we will explicitly show how we

construct each correlation matrix - Ccc̄→cc̄, CDD̄∗→cc̄ and CDD̄∗→DD̄∗ .

6.4.1 Two-point correlation function

In this study, we construct two types of two-point correlators: one is for charmonium and

the other heavy-light, D and D∗ charmed meson correlators. As Fig. 6.4 shows, charmonium

correlators are used in the mixing matrix directly. Heavy-light charmed meson correlators

are used in the DD̄∗ → DD̄∗ correlator in the bottom right matrix element of Fig. 6.4, and

we also need them to measure the kinetic masses of D and D∗.

6.4.1.1 Charmonium correlators

The construction of the charmonium correlation matrix is identical to the one described

in Chap. 4. So, in this section, I briefly display the interpolating operators used for this

study and mention the physical meaning.
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Table 6.2 lists the charmonium interpolating operators used for the X(3872) study.

Most of the interpolating operators used in Chap. 4 are also implemented here. Only

the Laplacian non-local operator, ∆, is newly introduced, where ∆ = ∇2, defined in

Eq. (3.57), but summed over only spatial lattice sites, µ = 1, 2, and 3. All steps of the

charmonium calculation are exactly the same as Chap. 4. Therefore, we skip the details of

the construction of the correlators. Rather, to be consistent with later sections, we simply

rewrite the charmonium correlator, Ccc̄→cc̄(t), with propagators :

Ccc̄→cc̄(t− ts) = − 1

NR

NR∑
j=1

∑
x1x2y

Tr〈W (t,y; ts,x1)ξj(x1)Γcc̄ξ
∗
j (x2)W (ts,x2; t,y)Γcc̄〉 . (6.1)

where ξ(x) is the stochastic source generated at x at time ts and Γcc̄ indicates the cc̄ inter-

polator listed in Table 6.2. W (t,y; ts,x) is the clover charm-quark propagator propagating

from the spacetime position, (ts,x), to (t,y). Together, with the stochastic source, the

propagator is defined through Eq. (3.103), where we suppress color and Dirac spinor indices

in Eq. (6.1). In addition, the antiquark propagator propagating from (t,y) to (ts,x) can

be obtained from

W (ts,x; t,y) = γ5W (t,y; ts,x)†γ5 . (6.2)

The Tr〈· · · 〉 means the trace with respect to the color and spin indices. All interpolators

listed in Table 6.2 are used throughout the Ccc̄→cc̄(t) correlators calculations.

6.4.1.2 Heavy-light meson correlators

In this section, we discuss the single D and D∗ heavy-light two-point correlator functions.

As introduced in Sec. 5.2, we construct the meson correlator in which staggered (light) and

Wilson (heavy) fermions are involved in both source and sink positions. However, unlike

Sec. 5.2, we do not implement the full-set of the interpolators. It is sufficient to use only a

plain stochastic source and covariant Gaussian smeared-quark source field for the D and D∗

correlators, because we focus more on extracting ground states with definite momentum,

rather than extracting higher excited states.

In Sec. 5.2, to obtain a unique spin-taste assignment, we use the stochastic sources in

which quark source fields reside on only the “corner subset” on the lattice, which means

the even corner sites sites with xi even. However, for the case of two particles in the finite

box, mainly due to the box-diagram in Fig. 6.4, one cannot project each particle to definite

momentum with just the corner subset quark field. Due to this reason and to construct

consistent correlators over all diagrams in Fig. 6.4, we use the “full subset” stochastic

wall sources for D and D∗ two-point correlation functions as well as the three-point and
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Table 6.2. Charmonium interpolators used for X(3872) study. Except for Lapla-
cian operator, all operators listed in this study were used in low-lying charmonium
study in Chap. 4. A−+

1 and T−−1 channels are used for getting 1S average mass,
M(1S) = (M(A−+

1 ) + 3M(T−−1 ))/4.

A−+
1 T−−1 T++

1

γ5 · Sp,g(x) γi · Sp,g(x) γ5γi · Sp,g(x)
γ4γ5 · Sp,g(x) γ4γi · Sp,g(x) εijkγj∇k
γ4γ5γi∇i ∇i εijkγ4γj∇k

∆γ5∆ εijkγ5γj∇k |εijk| γ5γjDk
∆γ4γ5∆ |εijk| γjDk ∆γ5γi∆
∇iγ5∇i |εijk| γ4γjDk ∇kγ5γi∇k
∇iγ4γ5∇i ∆γi∆

∆γ4γi∆
∇kγi∇k
∇kγ4γi∇k

four-point correlator functions, where the full subset means all lattice sites at the specific

time slice.

To see how it works, we start from meson correlator,

CAB(x, y) = Tr
cs

[ΓAW (x, y)ΓBN(y, x)] , (6.3)

where W (x, y) is the Wilson-clover propagator, and N(y, x) is the naive propagator intro-

duced in Eq. (5.2). We insert 1 = Γ†(y)Γ(y) into Eq. (6.3), where Γ(y) is introduced as

Ω(x) in Eq. (3.65),

Γ(y) = γy11 γ
y2
2 γ

y3
3 γ

y4
4 (6.4)

and use the identity,

δε′εδµ′µ =
1

4

∑
T

(ΓT )ε′µ

(
Γ†T

)
εµ′

. (6.5)

Then, the staggered-Wilson propagator CAB becomes

CAB(x, y) =
1

4

∑
T

Tr
cs

[
ΓA

(
Γ(x)Γ(y)†W (x, y)

)
Γ†TS(y, x)

]
Tr
s

[
Γ(y)ΓBΓ†(y)ΓT

]
. (6.6)

Note that with full-subset random sources, the staggered-to-naive conversion factor Γ(x)Γ(y)†

applies to the Wilson propagator, while the spin-taste operator, Trs
[
Γ(y)ΓBΓ†(y)ΓT

]
ap-

pears on the source position denoted as y. We get a nonzero value only for ΓT = ΓB.

To avoid unwanted taste-mixing, we require that accompanying smearing occurs with even

displacements. This method also allows us to construct staggered-Wilson correlators for

three-point and four-point correlators.
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With this prescription, we construct the heavy-light meson correlator in which staggered

(light) and Wilson (heavy) fermions are involved in both source and sink positions. Its

multiexponential expansion is the same as in Eq. (5.1) up to a normalization factor.

In Sec. 6.6, we perform Lüscher’s finite volume analysis; thus, we need to determine

the kinetic masses M2 of D and D∗ to extract their interacting momentum from the DD̄∗

scattering states. One can achieve this by calculating the heavy-light two-point functions

having various momentum.

To extract the interacting momentum p (or q) in Eq. (3.160), we first need to calculate

the kinetic masses of charmed mesons from the heavy quark dispersion relation. This can

be done by employing the general form of the lattice dispersion relation from [126]

E(p) = M1 +
p2

2M2
− a3w4

6

∑
i

p4
i −

(p2)2

8M3
4

+ · · · , (6.7)

where p = 2πn/L for a given spatial extent L. As seen in Fig. 6.5, the momentum square

quadratic terms, (p2)2 and p4
i , do not affect the fit very much. The curvature of the fitting

line is almost negligible. Among them, the rotational breaking terms, with coefficient w4,

can be ignored without loss of the signal quality [70]. Therefore, we determine M2 by

neglecting the rotational-symmetry-breaking terms and fitting M1, M2, and M4 only. We

implement six different momenta as independent variables, n = (0, 0, 0), (0, 0, 1), (1, 1, 0),

(1, 1, 1), (0, 0, 2), and (2, 1, 0).

The plots for the fits are shown in Fig. 6.5, and the quantitative fit results are displayed

in Table 6.3. Here, note that on ensemble (B), the kinetic masses are lighter than their

experimental values because we have used a different tuning method for the charm-quark

hopping parameter. We discuss the implications later.

6.4.2 Three-point correlation function

The quark-line diagrams contributing to DD∗ → cc̄ and cc̄ → DD∗ are shown in the

off-diagonal panels of Fig. 6.4. We start from a fifteen-dimensional operator basis containing

seven cc̄ interpolators listed in Table 6.2 with JPC = T++
1 and eight DD̄∗ scattering state

interpolators differing by their smearing levels and momentum. For the DD̄∗ interpolators,

the smearings are done only for clover quarks; hence, the implementation is quite the same

as for charmonium. To construct the generic DD̄∗ scattering-state interpolator satisfying

JPC = T++
1 , we need to arrange D and D∗ interpolators appropriately. For zero relative

momentum of DD̄∗ interpolators, we can write it as

(DD∗)(0, t) =
i

2

[
D∗(t,−0)D̄(t,0)− D̄∗(t,−0)D(t,0)

]
+
i

2
[u←→ d] . (6.8)



90

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 0  1  2  3  4  5

M
 a

(Lp/2π)
2

D
0

χ
2
/d.o.f = 3.2/3

 0  1  2  3  4  5
 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

(Lp/2π)
2

D
*0

χ
2
/d.o.f = 2.9/3

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0  1  2  3  4  5

χ
2
/d.o.f = 0.1/3

M
 a

(Lp/2π)
2

D
0

 0  1  2  3  4  5
 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

χ
2
/d.o.f = 2.3/3

(Lp/2π)
2

D
*0

Figure 6.5. Measured energies of D and D∗ as a function of n2 = (Lp/2π)2 and a fit using
the dispersion relation Eq. (6.7) without the symmetry-breaking-terms involving w4. The
left panel shows the results for ensemble (A) and right one for ensemble (B).

Table 6.3. Measured masses of D and D∗ from fits on ensembles (A) and (B). Experimental
values represent 1S average.

M1 M2 M4 M2[GeV] Exp[GeV] [5]

ensemble (A) D 1.2296(5) 1.445(21) 1.39(13) 1.853(27) 1.868
D∗ 1.3220(8) 1.591(31) 1.36(16) 2.040(40) 2.009

ensemble (B) D 1.0510(5) 1.162(11) 1.10(14) 1520(15) ”
D∗ 1.1556(9) 1.310(28) 1.16(28) 1713(37) ”

where i/2 is a normalization factor. The imaginary phase i keeps the correlation matrix

C(t) hermitian. Each D and D∗ interpolator involves both staggered and clover fermions

described by Eq. (5.18). Due to our assumed degeneracy of the u and d light quark masses,

the effect of the [u←→ d] part just results in the prefactor 2 as noted in Fig. 6.4.

To assign a nonzero relative momentum of DD̄∗ interpolators, we use a light quark

source with Fourier factor e−i0·x = 1, and a charm quark source with factors e−2πi1·x/L and

e2πi1·x/L for D and D∗ creation operators, respectively (and vice versa),

(DD∗)(1, t) =
i

2
√

2

[
D∗(t,−1)D̄(t,1)− D̄∗(t,−1)D(t,1)

+D∗(t,1)D̄(t,−1)− D̄∗(t,1)D(t,−1)
]

+
i

2
√

2
[u←→ d] . (6.9)

where 0 = (0, 0, 0) and 1 = (0, 0, 1). As with (DD∗)(0, t), the [u←→ d] part results

in the prefactor 2. The quark-line diagrams for the three-point functions are shown in

Fig. 6.6 for only DD̄∗ → cc̄ correlators. We have confirmed that the imaginary part of

DD∗ → cc̄ correlator values agrees with cc̄ → DD∗ within statistics. This is what we
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Figure 6.6. Schematic diagrams of the three-point correlation function representing the
mixing of DD̄∗ and cc̄ interpolators.

expected from time-reversal symmetry, and need to confirm it to ensure the hermiticity of

the correlation matrix. However, the statistical uncertainty of the latter is large for large t

and the calculation is more expensive. Hence, in this study, we use cc̄ → DD∗ in place of

DD∗ → cc̄ to reduce the uncertainties and save the cost. The vertices refer to the D, D∗

or charmonium state with the momentum specified in the diagrams. The red-filled circle

represents the lattice points where stochastic sources are used. The time runs to the right

in the diagrams. The off-diagonal three-point correlation function, C
(a)

DD̄∗→cc̄(t) labeled as

(a) in Fig. 6.6, can be written as

C
(a)

DD̄∗→cc̄(t− ts) = − 1

NR

NR∑
j

∑
w1w2xy

Tr〈ξ∗j (w2)eip·w2W (ts,w2; t,y)Γcc̄W (t,y; ts,x)e−ip·x

×ΓD∗N(ts,x; ts,w1)ΓDξj(w1)〉 (6.10)

where, again, W is the Wilson-clover charm-quark propagator, and N is the naive light-

quark propagator. The expression of the correlator, C
(b)

DD̄∗→cc̄(t), labeled as (b) in Fig. 6.6,

can be obtained by interchanging ΓD and Γ∗D. We calculate all possible diagrams from the

Wick contractions for the zero-relative-momentum as well as nonzero-momentum correla-

tors.

Before presenting the four-point correlation functions, I discuss briefly the physical

significance of the off-diagonal three-point correlation functions. Notice that when sea

quarks are included as they are in our calculation, physical eigenstates, such as the χc1 and

χc2, contain light sea quark-antiquark pairs as well as charm valence quarks. This means

states generated from the interpolator, cγ5γic̄, develop intrinsic cγ5q̄c̄γiq contributions

(implicit mixing [127,128]). These processes happen through quark-antiquark pair creation

and annihilation. We know such processes are weak [127]. This means that we can treat
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this as a perturbation. We can decompose the physical Hamiltonian H = H0 + λH1 + · · · ,
into a part H0 with cc̄ and DD̄∗ eigenstates, without pair creation. The small perturbation

λH1 is then responsible for the mixing, which appears in the off-diagonal elements. To first

order in λ, the X(3872) state vector would be

|X(3872)〉 = |cc̄〉+ λ
〈DD̄∗|H1|cc̄〉
E

(0)
cc̄ − E(0)

DD̄∗

|DD̄∗〉 , (6.11)

where the superscript (0) represents unperturbed energies. Assuming that the mixing

strength is not sensitive to the light quark masses, we can expect that if E
(0)
cc̄ is nearly

degenerate with E
(0)
DD∗ , then the DD̄∗ component of the X(3872) state must be large;

otherwise it becomes small. We will see this difference in the spectrum of the full mixing

correlation matrix on ensembles (A) and (B) in Sec. 6.5.

6.4.3 Four-point correlation function

The four-point DD̄∗ quark line diagrams contributing to DD̄∗ → DD̄∗ are shown in

bottom-right panel of Fig. 6.4. From the quark-field contractions, the four-point correlation

functions can be classified in two parts – the box and the disconnected diagrams, as shown

in Fig. 6.7. All vertices represent D or D∗, and at a fixed time slice, we make the total

momentum zero.

First let us consider the disconnected diagrams, which are relatively easier to construct

than box diagrams. The disconnected diagrams can be constructed by using two different

stochastic sources at a fixed time slice ts, as shown in Fig. 6.7 (a′) - (d′). One of the

correlators, e.g., C
(a′)

DD̄∗→DD̄∗(t− ts) can be written as

C
(a′)

DD̄∗→DD̄∗(t− ts) =

NR∑
j 6=k

∑
zw1w2

Tr〈W (t, z; ts,w1)eip·w1ξj(w1)ΓD∗ξ
∗
j (w2)N(ts,w2; t, z)

×e−ip′·zΓD〉
∑

yx1x2

Tr〈W (t,y; ts,x1)e−ip·x1ξk(x1)ΓD∗ξ
∗
k(x2)

×N(ts,x2; t,y)ΓDe
ip′·y〉 (6.12)

where ξ is the stochastic sources generated independently at the source time slices. The

spatial lattice sites wi, xi are located at the sources and y, z at the sinks. We first calculate

N two-point correlation functions given by Eq. (6.6) with different stochastic sources ξj ,

where j = 1, 2, ..., NR Then, we multiply the two-point correlator calculated from source ξj

by the hermitian conjugate of other correlators, calculated from ξk for k 6= j. If we perform

this procedure for all of N two-point correlation functions, then we have in total N(N−1)/2

terms. Finally, we add all these terms and divide it by N(N − 1)/2, For example, if we use
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Figure 6.7. Schematic diagrams of four-point correlation function.

three different stochastic sources, ξj , where j = 1, 2, 3, then the disconnected diagram can

be calculated as

1

3

[
C2pt(ξ1) · C2pt(ξ2)† + C2pt(ξ1) · C2pt(ξ3)† + C2pt(ξ2) · C2pt(ξ3)†

]
(6.13)

where C2pt(ξj) means two-point correlation function using stochastic source ξj . All other

disconnected correlators can be obtained by exchanging ΓD and Γ∗D, as displayed in Fig. 6.7

(b′), (c′) and (d′).

Next, consider the box diagrams shown in Fig. 6.7 (a) - (d). Unlike the disconnected

diagrams, the box diagrams require another quark propagator connecting the same time

slice at the source and sink, which makes the evaluation of these diagrams extremely

difficult and expensive. To overcome this difficulty, we construct the correlators with a

different approach. Figure 6.8 shows how we construct a box diagram. First, we generate

one stochastic source on the source, ξ(w1), and the other, on the sink, η(y1), which are

represented as magenta-filled and blue-filled circles in Fig. 6.8, respectively. From these

stochastic sources, we calculate two light-quark propagators – so one at the source time

slice (ts) with stochastic sources ξ(w1), labeled as (1) in Fig. 6.8, and the other at the

sink time slice (t) with η(y1), labeled as (1′) in Fig. 6.8, respectively. Then, we extract

two quark-source fields from each propagator at the same respective time slices, E(x) at ts

and E(z) at t, to make the light quark-antiquark annihilation / creation diagrams. From

the extracted Dirac quark fields, E(x) and E(z), we calculate the clover charm-quark
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Figure 6.8. Schematic diagrams for the box-diagram construction. Red-thick vertical
lines, labeled as (1) and (1′), represent naive propagators, and black-thick horizontal lines,
labeled as (2) and (2′), clover propagators. The magenta-filled and blue-filled circles are
represent the stochastic sources on the source and the sink, respectively. And the green-filled
circles represent the extended sources, E(x) and E(z). E(x) is generated from the naive
propagator, (1), and E(z), from the naive propagator, (2), respectively.

propagators, labeled as (2) and (2′), for all time slices. Now, for the charm propagators

starting from time slice ts and stochastic source ξ, we multiply by η†(y2) at t. On the other

hand, for the propagators starting from time slice t and stochastic source η, we multiply

by ξ†(w2) at ts. Then, we sum each propagator over all the lattice spatial sites separately.

This operation results in the propagators having a 4× 4⊗NR× 3 tensor structure, where 4

is the Dirac-spinor dimension, NR is the number of stochastic sources, and 3 is the number

of colors. Because both stochastic sources, ξ and η, satisfy Eq. (3.101), if we perform a

tensor product of these two propagators and average over stochastic sources, then we get

the box diagram correlator C(ts, t). The resultant correlator can be expressed as

C
(a)

DD̄∗→DD̄∗(t− ts) = − 1

N2
R

Tr
〈 NR∑
jk

∑
w2y1z

ξ†j (w2)eip·w2W (ts,w2; t, z)e−ip
′·zΓD∗N(t, z; t,y1)

×ηk(y1)ΓD
∑

w1xy2

η†k(y2)eip
′·y2W (t,y2; ts,x)e−ip·xΓD∗N(ts,x; ts,w1)

×ξj(w1)ΓD
〉
, (6.14)

where the spatial lattice sites w1,w2,x reside on the source time slice and y1,y2, z on the

sink time slice. As with the disconnected diagrams, we can obtain all other box diagrams
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by exchanging ΓD and ΓD∗ as displayed in Fig. 6.7 (b),(c) and (d). Note that spin-color

trace Tr〈· · · 〉 is the last step of the calculation.

We can extend this single-time-slice box diagram correlator to multiple time slices by

using lattice time-translation symmetry. For example, consider time slices (0, 1, 2) for the

sources and (4, 7, 11) for the sink. By using time-translation symmetry on the lattice, we

can perform the same operation as above for all listed times slices. When we take all pairs of

the source and sink times, we construct the box diagram correlator for all time separations

from 2 = 4 − 2 to 11 = 11 − 0. Because we always calculate the correlators by using

several different time sources per gauge configuration, we can further reduce the number of

inversions and get correlators at more time slices.

The correlator CDD̄∗→DD̄∗(t) plays a important role in the analysis. In the case of the

disconnected diagram, the two charmed heavy-light meson correlators are disconnected,

and we can expect that the leading interactions are mostly exchanging gluons or η′ mesons

from the valence light-quark lines (see the left column in Fig. 6.9). These are short-range

interactions. Thus, we expect that they must be small. On the other hand, the box diagram

contains valence light-quark annihilation / creation process. Thus, it can contain one-pion

exchange (long-range) and multiple-pion exchange (short-range) interactions as well as all

other possible interactions. (See the right column in Fig. 6.9.) Thus, we see that the box

diagrams are actually the charmonium correlators with explicit mixing with DD̄∗.

6.5 Spectrum

In the previous sections, we have discussed how to construct the mixing correlation

matrix shown in Fig. 6.4. We analyze this mixing correlation matrix by dividing it into

four parts - cc̄ only (the upper-left submatrix), cc̄+DD̄∗I=0 (the whole matrix), DD̄∗I=0 (the

lower-right submatrix) and DD̄∗I=1 (the lower-right submatrix without the box diagram).

For each submatrix, we construct the corresponding generalized eigenvalue problem and

get the corresponding eigenvalues. In this section, I provide the resulting spectrum and the

interpretation.

Figures 6.10 and 6.11 show the resulting energy levels extracted from the eigenvalues for

the ensembles (A) and (B), respectively. In the figures, the red and blue lines represents the

energy splittings between En and M(1S) = 1
4 [M(ηc)+3M(J/ψ)], the spin-averaged ground

state charmonium mass, where the Ens are the energy levels from the variational analysis.

The thickness of the lines represent the statistical errors estimated from a single-elimination

jack-knife. To get 1S, we use the A−+
1 and T−−1 interpolating operators listed in Table 6.2

and use the standard variational method. The green lines in Figs. 6.10 and 6.11 indicate
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Figure 6.9. Schematic diagrams of the leading meson-exchange interaction for the discon-
nected diagram (left) and the box diagram (right).

the DD̄∗ noninteracting energies – the lower line with relative momentum p = 0, and the

upper line, p = 1. For all channels, we use the reference time t0 = 2. The fitting details are

shown in Tables 6.4 and 6.5 for ensembles (A) and (B), respectively.

For the cc̄-only subset (T++
1 ), the correlation matrix dimension is 7× 7 which coincides

with the number of pure cc̄ interpolators listed in Table 6.2. Because this channel does not

include any of the staggered fermion interpolators, the correlation matrix Ccc̄→cc̄(t) includes

no oscillating states, so we use the standard variational method expressed in Eq. (3.117),

and fit the eigenvalue data to the form given by Eq. (3.118).

For all the other channels, cc̄ + DD̄∗I=0, DD̄∗I=0, and DD̄∗I=1, the correlation matrices

involve oscillating states, because we use HISQ light quarks to construct the D and D∗

mesons. Thus, we implement the staggered variational method described in Chap. 5, and

the generalized eigenvalue equation is given in Eq. (5.9), where the fitting formula is given

in Eq. (5.16).

First, we discuss the ensemble (A) spectrum (Fig. 6.10). In the DD̄∗I=1 channel (fourth

column), both levels are slightly pushed up from their noninteracting levels. This indicates

that in this channel, the interaction is weak, and both states are repulsive scattering states.

We find no extra states in addition to the scattering states in this channel – thus no candidate

state for an isotriplet X(3872). For the cc̄-only subset (first column), our choice of quark

masses resulted in an accidental degeneracy between the first excited state and the DD̄∗

threshold. The ground state is simply the conventional χc1(1P ), and the first excited state

may be the conventional χc1(2P ) state that implicitly mixes with the DD̄∗ components.

For the DD̄∗I=0 subset (third column), the first excited state energy level sits at the DD̄∗

threshold within its uncertainty, and thus we find no X(3872) candidate state, either. Note



97

 400

 500

 600

 700

 800

 900

 1000

E
 -

 E
(1

S
) 

M
e
V

D(0)D
*
(0)

D(-1)D
*
(1)

cc (I=0) cc+DD
*
(I=0) DD

*
(I=0) DD

*
(I=1)

Figure 6.10. Spectrum results for the simulation on ensemble (A) listed in Table 6.1. Each
bar represents energy splitting between En and 1S = 1

4(Mηc+3MJ/ψ), the spin-averaged 1S
charmonium masses. The thickness of the lines represent statistical uncertainty. The lower
and upper green lines indicate DD̄∗(0) and DD̄∗(1) threshold energies, respectively. Left
panel: the unmixed χc1(1P ) and χc1(2P ) states. Middle panel: mixed cc̄ and DD̄∗ states
resulting in a possible X(3872) and DD̄∗ scattering states. Right panel: the unmixed
DD̄∗ states with isospin 0. The lower blue bar represents the X(3872) candidate.

that the χc1(1P ) state appears without the assistance of explicit cc̄ interpolators, because

the box diagram contains cc̄ explicitly. For the cc̄+DD̄∗I=0 channel (second column), while

the ground state remains the same, compared with only cc̄ channel, the first and second

excited states, represented as two blue bars, are shifted from the threshold by about 40

MeV.

By contrast, the spectrum for the ensemble (B), shown in Fig. 6.11, develops no signif-

icant energy shifts. For the DD̄∗I=0 (third column) and DD̄∗I=1 (fourth column) subsets,

the energy level trends are not much different from the ensemble (A) cases. Note that,

in the cc̄-only subset, the first excited state is much above the DD̄∗ threshold. Thus, we

expect that cc̄ + DD̄∗ mixing effect must be much smaller than in the ensemble (A) case

(refer to Eq. (6.11)). That is the energy shifts must be tiny when all explicit mixings are

turned on. Indeed, all energy shifts in the second panel are small, compared with those in

ensemble (A).

Note that we perform a simulation on nF = 2 + 1 + 1 HISQ ensembles. As we have
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Refer to the caption of Fig. 6.10 for notations. Unlike the lower blue bar on ensemble (A),
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remarked, when the sea quarks are included, physical eigenstates, generated from the cc̄

interpolator, contain light quark-antiquark contributions as well as charm valence quarks.

Likewise, in the DD̄∗I=0 sector, obviously it contains cc̄ contributions. Therefore, the

spectrum should be same for all I = 0 sectors, cc̄, cc̄+DD̄∗(I = 0), and DD̄∗I=0. However,

as seen in Figs. 6.10 and 6.11, the spectra look different. The correct way to look at this

is that there is only one spectrum for I = 0. The reason that columns 1, 2, and 3 look

different is that we cannot see the energy splitting, with a too-small basis of interpolators,

namely the cc̄-only subset or the DD̄∗I=0-only subset. The figure is misleading! Instead,

we see just an average of two physical eigenstates, where the weighting of the average may

favor one or the other, because the interpolators involved have very poor overlap with one

or the other eigenstate. However, when the full set of operators is used, the splitting is

revealed.

Then, a question arises: what is the physical nature of these two states? Can we interpret

one of the states represented by the blue bars as a weakly bound state of DD̄∗? To answer

this question, we need to perform a further analysis by using the finite volume method

introduced in Sec. 3.6 to extract the scattering parameters, such as the scattering length
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Table 6.4. Ensemble (A) fit results for the eigenvalues over the various mixing channels for
the correlation matrix shown in Fig. 6.4. The DD̄∗ threshold with the relative momentum
p = 0 is aMD + aMD∗ = 2.5514(10) and with p = 1 is aED(1) + aED∗(−1) = 2.6503(16)
represented by the green lines in in Fig. 6.10. The corresponding spectrum results are shown
in Fig. 6.10. The reference time is t0 = 2 throughout all channels.

channel level aE fit range χ2/d.o.f

cc̄ only
e0 2.1937(28) 3-20 8.8/14

e1 2.5467(63) 3-9 3.7/3

cc̄ + DD̄∗

e0 2.1943(11) 3-20 8.7/12

e1 2.5186(78) 3-13 3.2/3

e2 2.5841(116) 4-11 3.8/2

e3 2.6401(112) 3-11 1.8/3

DD̄∗(I = 0)
e0 2.2121(99) 4-20 14.3/9

e1 2.5453(124) 3-15 8.0/5

DD̄∗(I = 1)
e0 2.5657(58) 3-16 2.9/4

e1 2.6576(81) 4-17 1.6/4

and effective range. We discuss this analysis in the next section.

6.6 Effective range and scattering length

To interpret the spectrum results involving multiple particles in a finite volume, it is

essential to extract scattering parameters with the finite-volume method. As mentioned in

the beginning of this chapter, the spectrum in a finite volume is discrete, whether the state

is bound or part of the continuum. Therefore, we need further analysis to enable us to

interpret the resulting spectrum.

Let us start from the definition of the S-wave scattering length introduced in Sec. 3.6,

a0 = lim
p→0

tan δ(p)

p
. (6.15)

If there is a bound state, the scattering amplitude, given by Eq. (3.133), has a pole at

p = iκ, where κ > 0. Therefore, at close to p = 0, one can rewrite the scattering amplitude

as

f =
1

1
a0

+ κ
. (6.16)

Thus, for small p, to get a bound-state pole, the scattering length a0 should be negative.

To go further, in the case of p � 1/R, where R is an interaction range, one can expand
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Table 6.5. Ensemble (B) fit results for the eigenvalues over the various mixing channels for
the correlation matrix shown in Fig. 6.4. The DD̄∗ threshold with the relative momentum
p = 0 is aMD + aMD∗ = 2.2060(12) and with p = 1 is aED(1) + aED∗(−1) = 2.2375(12)
represented by the green lines in in Fig. 6.11. The corresponding spectrum results are shown
in Fig. 6.11. The reference time is t0 = 2 throughout all channels.

channel level aE fit range χ2/d.o.f

cc̄ only
e0 1.9384(10) 3-19 18.9/13

e1 2.2972(115) 3-8 2.7/2

cc̄ + DD̄∗

e0 1.9390(6) 3-20 19.7/12

e1 2.2006(35) 4-16 4.6/5

e2 2.2301(59) 4-13 2.4/2

e3 2.3110(68) 4-12 5.8/3

DD̄∗(I = 0)
e0 1.9174(520) 6-19 8.2/8

e1 2.2056(76) 3-12 2.3/2

DD̄∗(I = 1)
e0 2.2075(11) 3-19 13.4/9

e1 2.2342(17) 3-17 5.7/7

p cot δ0(p) in p2,

p cot δ0(p) =
1

a0
+

1

2
r0p

2 +O(p4) . (6.17)

This is called effective range approximation. The parameter r0 is the effective range, which

must be positive [129]. Then, the quadratic equation to get a bound-state pole is

κ2 − 2

r0
κ− 2

r0a0
= 0 , (6.18)

and the solutions are given by

κ =
1

r0

(
1±

√
1 +

2r0

a0

)
, (6.19)

where we may exclude the case “+”, because it could not fit our assumption that p� 1/R.

Then, we can classify three cases as follows:

• case 1. a0 < −2r0, in which κ > 0, and we get a weakly bound-state,

• case 2. −2r0 < a0 < 0, in which we get a resonant state, because κ becomes complex

and the momentum is given by p = (i+ α)/r0, where α is real,

• case 3. a0 > 0, in which κ < 0, and we get a “virtual bound state”.
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Therefore, according to the scattering length we get from the finite volume method, we will

be able to classify the states.

Now, let us look at how the lowest elastic scattering state depends on the scattering

length. According to Eq. (3.163),

∆Eq2=0 ≈ −
2πa0

µL3

[
1 + c1

a0

L
+ c2

(a0

L

)2
+O

(
1

L3

)]
,

where ∆Eq2=0 is the energy difference between the scattering state and the continuum

threshold. This formula tells us that if a0 < 0, then ∆Eq2=0 > 0, and the lowest scattering

state energy is above the threshold. If a0 > 0, the energy level is below the threshold.

Therefore, the signature of bound state formation at finite volume depends on the shape

of the spectrum and the sign of scattering length. One such bound state scenario is that

a0 < 0 and ∆Eq2=0 < 0, which indicates that the state is not the lowest elastic scattering

state. In contrast, if a0 > 0, one cannot distinguish the scattering and bound states in the

finite volume, because even the lowest elastic scattering state could be below the threshold.

As shown in Figs. 6.10 and 6.11, two states near the DD̄∗ threshold appear to have

shifted in opposite directions relative to the threshold on both ensembles. Then, the

remaining task is to extract the scattering lengths. For convenience, we calculate p cot δ0(p),

rather than the scattering phase shift itself by using the inverse expression of Eq. (3.160),

p cot δ(p) =
2Z00(1; q2)√

πL
(6.20)

where p is the interacting momentum and q is the scaled momentum, Lp/2π. On both

ensembles (A) and (B), we extract the interacting momentum from the two states near the

threshold – the first and second excited states shown in the second panels of Figs 6.10 and

6.11. To achieve this, we employ the lattice dispersion relation [126], i.e., Eq. (6.7) for two

particles:

E(p) = M1,D+D∗ +
p2

2M2,D
+

p2

2M2,D∗
− (p2)2

8M3
4,D

− (p2)2

8M3
4,D∗

, (6.21)

where the masses M1, M2, and M4 of D and D∗ are given in Table 6.3 for both ensembles (A)

and (B). Finally, we insert these interacting momenta into Eq. (6.20), and by using the zeta

function expression given in Eq. (3.162), we get p cot δ(p). Table 6.6 lists all the relevant

values.

Now, by inserting p and p cot δ0(p) of E1 and E2 listed in Table 6.6 into Eq. (6.17), we

get the scattering length (a0), and effective range (r0) of DD̄∗,

Ensemble (A): a0 = −1.37± 0.34fm, r0 = 0.22± 0.13fm (6.22)
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Table 6.6. Energy shifts relative to DD̄∗ threshold, interacting momentum, and the
corresponding p cot δ(p) from Eq. (6.20).

ensemble level En −M1,D+D∗ [GeV] p2 [GeV2] p · cot δ(p) [GeV]

(A)
1 −0.042(10) −0.082(20) −0.189(32)

2 0.042(15) 0.082(30) −0.100(76)

(B)
1 −0.011(7) −0.017(12) −0.082(45)

2 0.028(9) 0.045(15) 0.10(15)

Ensemble (B): a0 = −6.36± 7.35fm, r0 = 1.19± 0.69fm . (6.23)

Note that on ensemble (B), although the central value of the scattering length is plausible

for the X(3872), 1 the uncertainty in the scattering length is larger than the central value.

On ensemble (A), we get a negative scattering length, a0 < −2r0, which fits the bound-

state scenario discussed at the beginning of this section (first case listed above). That is,

the lower blue bar state in Fig. 6.10 is the X(3872) candidate as a weakly bound state of

DD̄∗ and the upper blue bar state is the lowest scattering state with positive energy shift.

On ensemble (B), given the uncertainty in a0, there could be three possible interpreta-

tions. If a0 < −2r0, the weakly bound state scenario can be applied to this ensemble result,

too, so that the lower blue bar state is the X(3872) candidate. Then, this would be the

more reliable lattice calculation than the results on the ensemble (A), in that the ensemble

size is larger, and valence- and sea-light quark masses coincide with the physical light quark

masses. By contrast, if −2r0 < a0 < 0, rather than the bound state, we may able to relate

the state to a resonance. The final case is a0 > 0, where, within statistics, the maximum a0

is 1 fm, which is slightly less than the effective range r0. In this case, we may able to relate

the state to a virtual bound state, or the lowest scattering state according to Eq. (3.163).

Despite this ambiguity on ensemble (B), let us assume that it is a bound state and

find the pole mass. According to Eq. (3.133), in the infinite volume limit, the bound

state pole can be found at p cot δ0(p) = ip. Then, inserting Eqs. (6.22) and (6.23) into

Eq. (6.17), we interpolate the pole position to satisfy the condition p cot δ0(p) = ip. We find

the DD̄∗ bound state pole positions at p2
BS = −0.025 ± 0.012 GeV2 on ensemble (A) and

p2
BS = −0.0012± 0.0029 GeV2 on ensemble (B), respectively. Figs. 6.12 and 6.13 show the

1One can crudely estimate the scattering length of the X(3872) from experimental data MX(3872) −
(MD∗0 + MD0) =∼ 0.26 MeV, and, using a small binding energy, EB = 1/(2µa20) where µ is the reduced
mass of the DD̄∗. [130], we get a0 ∼ 8 fm.
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Figure 6.12. The bound state pole position on ensemble (A). The star symbol represents
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resultant interpolated pole positions in the infinite volume limit. The corresponding bound

state energies, EB, are EB = 13 ± 6 MeV on ensemble (A) and EB = 0.62± 1.53 MeV on

ensemble (B).

6.7 Conclusion and outlook

We conclude that the X(3872) may be a weakly bound state of DD̄∗, because the

emergence of both pushed-down and -up states from the threshold and the corresponding

negative scattering lengths are the indications of weakly bound state on the lattice. This

scenario coincides with the previous deuteron simulation [131, 132] and also the X(3872)

study of Prelovsek and Leskovec [74] on the lattice. In the cc̄ + DD̄∗(I = 0) channel, we

estimate the binding energies as 13±6 MeV and 0.62±1.53 MeV below the DD̄∗ threshold

on ensembles (A) and (B), respectively. In addition, we also get the corresponding scattering

lengths −1.37± 0.34 fm and −6.36± 7.35 fm, respectively.

For the results on ensemble (A), however, our lattice size, ∼ 2.4 fm, is much smaller

than the expected rms separation of DD̄∗ (∼ 6 fm) [130]; therefore, significant finite volume

effects are expected. In addition, because the light quark masses, ∼ 0.2ms, are heavier than
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Figure 6.13. The bound state pole position on ensemble (B). See the caption in Fig. 6.12
for an explanation.

physical, we expect only a qualitative result for the binding energy and the scattering length.

On the other hand, for the results on ensemble (B), the lattice size is much larger than

ensemble (B), and the light quark masses are all physical. Nevertheless, due to the small

splitting of the pushed-down state to the threshold, the uncertainty of both binding energy

and scattering length are larger than the central values. Although they are statistically

consistent, to draw any conclusions about the X(3872) state, we need to increase the

statistics to reduce the statistical errors.

Because in this and previous X(3872) lattice studies [74, 75, 133], all have been done

at a single volume, one cannot control finite size effects. To gain better control, one

needs simulations on the multiple volumes. Then, if the X(3872) candidate state is true

bound state, the pole position will not change; otherwise, the values of splittings will decay

exponentially as the volume increase [134].

However, simulations with DD̄∗ multiparticle interpolating operators on larger lattice

volumes are challenging due to the expensive nature of the box diagram calculation. In

fact, it is even almost impossible to get a good signal-to-noise-ratio if the splittings are tiny

as they are in ensemble (B).

Instead, we propose another method to achieve this without the box-diagram. Note
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that due to the proximity of X(3872) mass to the DD̄∗ threshold, we may be able to

assume that the mixing parameter, 〈χc1(2P )|Hint|DD̄∗〉, must be small enough to use a

perturbative approach. Because the interacting Hamiltonian, Hint, is completely unknown,

the lattice calculation would be the key to reveal this mixing parameter. Note the Eq. (6.11)

in Sec. 6.4.2,

|X(3872)〉 = |cc̄〉+ λ
〈DD̄∗|Hint|cc̄〉
E

(0)
cc̄ − E(0)

DD̄∗

|DD̄∗〉 .

We can extract E
(0)
cc̄ and E

(0)
DD∗ easily from the two-point correlation functions. The three-

point correlation functions depends on these two unperturbed energies and the mixing

parameter. Therefore, if we calculate the three-point functions, we can finally extract the

mixing parameter between cc̄ and DD̄∗. Without the box diagrams, the cost to perform

these simulations is much less than the full analysis. Thus, the next step is to do a calculation

to get these mixing parameters on multiple lattices with different sizes.
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