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ABSTRACT

Wind conditions within the urban environment have been found to be more

turbulent than that in rural areas, due to the increased surface roughness caused

by the presence of buildings, houses, and trees. Furthermore, winds in the urban

environment are typically characterized by gusts with large fluctuations in mag-

nitude/direction that contain a substantial amount of energy. Development of a

vertical axis wind turbine (VAWT) to exploit this turbulent wind energy could

yield a significant increase in the total amount of energy captured annually, thus

making VAWTs a viable renewable energy technology in urban areas. One challenge

in the implementation of VAWTs in the built environment stems from the lack of

knowledge regarding the transient response behavior of a wind turbine operating in

unsteady winds. The overall goal of this research is to investigate the conditions

under which enhanced energy capture is possible by a VAWT operating in gusty

winds representative of an urban/suburban environment.

The transient response behavior of a Darrieus-type VAWT was modeled using

Blade Element Momentum theory applied to the conservation of angular momentum

equation about the turbine rotor. This allowed the power generated by the turbine

to be calculated as a function of input wind speed. Time-resolved wind data acquired

over a full year were used as input to the numerical model. Two different common

turbine controllers were investigated, namely the constant rotational speed and the

ideal tip speed ratio. The constant rotational speed controller drives the turbine rotor

at a fixed speed regardless of variations in the incoming wind speed while the ideal

tip speed ratio controller provides active control of the turbine, allowing the turbine

to respond instantaneously to the variation of the wind speed. The efficiency of the

VAWT was found to be strongly dependent on the mean wind speed and turbulence

intensity of the wind. For the case of the constant rotational speed controller, the



turbine should be operated at an overspeed setting (ωopt) based on the turbulence

intensity of the incoming wind in order to harvest as much energy as possible. For

the ideal tip speed ratio controller, the turbine efficiency was observed to plateau to a

maximum value when the nondimensional turbine response parameter ζ drops below

the critical value ζc.

The research also sought solutions for improving turbine energy efficiency by

investigating four different methods of wind forecasting for use with the constant

rotational speed controller. The methods examined were the persistence method

(PM), modified persistence method (MPM), autoregressive moving average (ARMA),

and weather research and forecasting (WRF). Results showed that the forecasting

models allow the VAWT to harvest approximately 78% to 85% of the ideal amount of

energy that could be harvested assuming the actual wind data were known in advance.

The modified persistence model outperformed the persistence model, autoregressive

moving average model, and weather research and forecasting model by capturing as

much as 6% more energy. When compared to the case of no forecasting, the MPM

improved the total amount of energy captured over the full year of operation as much

as 17.3%.

Finally, a parameter study was performed to determine the optimal VAWT design

configuration that yields the maximum amount of energy captured during operation

in realistic gusty wind conditions. The turbine design configuration studied in this

work is a straight blade Darrieus wind turbine that has three blades. Four design

parameters were varied including the height-to-diameter aspect ratio, blade airfoil

shape, turbine solidity, and turbine moment of inertia. The optimal turbine design

that harnessed the most amount of energy from the wind was the one with the

following features: H/D = 1.2, NACA 0015 airfoil blades, S = 12%, and c = 8 cm.

The results also suggest that for the case of operation in unsteady winds, the optimal

power coefficient (Cp) versus tip speed ratio (TSR) curve is not necessarily the one

exhibiting the highest peak Cp value, but rather the broadest shape. The economic

analysis suggested that a VAWT is economically viable when it is deployed at locations

where the local annual average wind speed is 4.2 m/s or greater.
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CHAPTER 1

INTRODUCTION

This research project stems from our vision of an energy-neutral sustainable city,

where the demand for energy is supplied by local renewable sources. We imagine the

idea of an urban wind farm as a means toward balancing the local energy budget in

urban areas, at least within the residential and commercial sectors as illustrated in

Figure 1.1. Ideally, this would be coupled with other renewable energy alternatives

where appropriate, such as solar, hydropower, geothermal, and biofuels-based on

sustainably produced biomass. This vision is not too far-fetched. In fact, the city

of Vaxjo, Sweden generates 51 percent of its energy today from non-fossil-based fuel

sources and has reduced its emissions of CO2 by 24 percent, relative to 10 years ago,

on a per capita basis (Oliver, 2007).

Wind energy harvesting has increased rapidly in the past few decades due to

the considerable advancement in wind turbine technologies (Ackermann and Söder,

2002; Kaldellis, 2002; Leung and Yang, 2012). Along with the increasing number

Figure 1.1: Envisioned urban wind farm (adapted from Green-Blog (2015)).
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of wind farms containing large horizontal axis wind turbines (HAWTs), an upsurge

in small-scale wind turbines including vertical axis wind turbines (VAWTs) has also

occurred in recent years (Azau, 2010; Stefan Gsnger, 2015). Although small-scale

wind turbines are certainly limited in the amount of overall energy that can be

produced due to size constraints, one major benefit of locating technology where

the demand is highest stems from reduced capital investment on transmission lines.

Another potential benefit stems from the hypothesis that the presence/visibility of

renewable energy technologies in the urban environment will encourage better energy

conservation practices by the people living in those areas. This idea serves as the

underlying motivation for the present work. According to a technical report by the

U.S. Energy Information Administration EIA (2017), approximately 11% of total

energy was consumed by the residential and commercial sectors in 2014 and within this

consumption, approximately about 82% of the energy came from burning fossil fuel,

8% came from nuclear power, and only 10% came from renewable energy resources.

The purpose of bringing renewable energy into an urban/suburban area is not only

to increase the amount of energy supplied by a clean renewable energy resource but

also to promote better conservation practices in high-density areas. By bringing

renewable energy into the urban/suburban environment in any form (i.e., wind energy,

solar energy, or geothermal), it is hoped that the renewable energy resources could

provide some percentage of the consumed energy while reducing the supplied energy

from burning fossil fuel. Most importantly, it is hoped that an additional percentage

of energy consumption could be conserved from an increased awareness and better

conservation practices by energy consumers.

The wind condition within typical urban/suburban environments has been found

to be more turbulent than that in rural areas, due to the increased surface roughness

caused by the presence of houses and buildings (Roth, 2000; Klipp, 2007; Bertényi

et al., 2010). Wind flow over houses/buildings is highly turbulent with rapid

fluctuations in both magnitude and direction, making it challenging to harvest wind

energy in urban/suburban areas (Bertényi et al., 2010). Compared to the HAWT, the

VAWT is a promising wind energy harvesting device for application in the urban area

because of its simple structure, high efficiency, and most importantly, insensitivity to
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wind direction. Common types of VAWTs include the eggbeater Darrieus turbine,

straight-blade Darrieus turbine, Savonius turbine and helical wind turbines (McIntosh

et al., 2007; Islam et al., 2008; Mahmoud et al., 2012; Bedon et al., 2013). Figure 1.2

illustrates the eggbeater and straight-blade Darrieus wind turbine types. Each wind

turbine type poses its own advantages and disadvantages. The eggbeater Darrieus

wind turbine provides lower bending stress on the blades; however, due to the high

manufacturing cost, this wind turbine is less preferable compared to the straight-blade

Darrieus wind turbine. The objectives of this research study are to investigate the

condition under which the Darrieus vertical axis wind turbine could enhance the

amount of energy captured available from the wind gust when the turbine is operated

in gusty wind conditions representative of an urban/suburban environment. This

research examines several different aspects of the VAWT design in order to improve

the aerodynamic performance and enhance the amount of energy harvesting from the

wind.

Understanding the transient response of a VAWT operating under gusty wind is

critical in order to improve the performance of the turbine. The wind turbine’s ability

to respond to fluctuations in wind speed depends on the aerodynamics of the blades,

the inertia of the turbine, and the time lag of the controller. Several research studies

Eggbeater Darrieus VAWT  Straight Blade Darrieus VAWT  
Figure 1.2: Two common types of vertical axis wind turbine (i) Eggbeater Darrieus
wind turbine and (ii) Straight-blade Darrieus wind turbine.
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have been done to investigate the impact of unsteady wind on the performance of a

VAWT (Hara et al., 2012; Danao et al., 2013; Shahzad et al., 2013). Danao et al.

(2013) performed CFD simulations of the performance of a VAWT under a sinusoidal

wind with 12% fluctuating amplitude and 0.5 Hz fluctuation frequency. Shahzad

et al. (2013) performed CFD simulations to analyze the performance behavior of a

VAWT under an accelerating and decelerating incoming flow. Their results show

that the power output varied significantly with the accelerated/decelerated flow;

however, the net effect on overall performance due to a cyclic combination of

accelerated/decelerated flow was not clear. Recently, experiments and simulations

were performed by Hara et al. (2012) to study the effect of turbine inertia on the

performance of a VAWT in a sinusoidally pulsating wind with amplitude ∆V and

period T . Their results implied the energy efficiency decreased as the fluctuating

amplitude ∆V increased. Further work is needed to determine whether this finding

is universal and holds in the case of realistic winds having a wide range of amplitudes

and frequencies.

The response time of the turbine and degree of unsteadiness of the wind have

shown to be important terms of the amount of energy captured by a VAWT during

unsteady wind conditions (McIntosh et al., 2007, 2008; Kooiman and Tullis, 2010).

McIntosh et al. (2008) used a characteristic time scale based on the frequency corre-

sponding to 99% of the total energy in the wind. It remains to be seen whether this is

the most relevant time scale for a gusty wind. Higher frequency turbulent motions in

the atmospheric surface layer do not contain significant energy; therefore, a time scale

based on the dominant frequency in the wind spectrum may be more appropriate.

Kooiman and Tullis (2010) found the unsteadiness of the wind, quantified in terms

of turbulent intensity (Iv), has a significant impact on the overall performance of the

wind turbine, especially for high Iv. In their recent study, McIntosh et al. (2007)

suggested that in order to increase the energy captured during unsteady wind using

a turbine operated at a constant rotational speed, an overspeed control technique

should be applied. It remains to be determined how the optimal overspeed setting

varies with turbulence intensity and whether enhanced energy capture is possible as

the turbulence intensity increases.
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Another important aspect that is worth considering to improve the wind turbine

performance is wind forecasting. Forecasting of the wind condition plays a critical

role in the optimization of the amount of energy captured by a wind turbine (Sanchez,

2006; Lei et al., 2009). Accurate wind speed prediction provides valuable information

for the wind turbine operation controller (Cadenas and Rivera, 2007). Over the

last few decades, considerable research has been conducted on forecasting the wind

speed for wind turbine applications (Watson et al., 1992; Cadenas and Rivera, 2007).

Several wind speed forecasting techniques have been developed and reported over

the years with the two most common techniques being (1) Physical Approach and

(2) Statistical Approach. The “Numeric Weather Prediction (NWP)” model uses

parameterization based on the physical descriptions of the atmosphere such as terrain,

pressure, temperature, etc. to estimate the future wind speed (Soman et al., 2010).

The NWP is often rendered on supercomputers and is computational expensive. This

model does not provide accurate results in short-term prediction (Lei et al., 2009).

One common model that uses the physical approach is the Weather Research

and Forecasting (WRF) model. Recently, the WRF model has been used to forecast

wind speed and wind power for wind turbine applications (Clifford, 2011; Deppe

et al., 2013). The WRF model is an efficient and flexible simulation program, with

grid resolutions from 1–10 km, that has been designed for a wide range of weather

forecast and research applications (Klemp, 2005; Michalakes et al., 2005). The WRF

model is maintained and supported for broad community use with over 30,000 users

in over 150 countries (WRF, 2016). Clifford (2011) used the WRF model to forecast

the near-surface wind speed and available wind power in the Altamont Pass wind

farm near Livermore, California. The results indicate that the WRF-modeled wind

speeds were close to those observed.

The statistical approach is based on a training procedure that uses the difference

between the actual data and the predicted data in order to determine coefficients in

the mathematical model. This approach is easy to model, inexpensive, and provides

fairly accurate results, especially for short-term forecasting (Lei et al., 2009; Soman

et al., 2010). Based on the Box-Jenkin methodology (Box et al., 2011), some of the

common models have been developed and reported over the years such as autore-
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gressive model (AR), moving average model (MA), autoregressive moving average

(ARMA), and autoregressive integrated moving average (ARIMA). The ARMA and

ARIMA have been widely used for short-term forecasting of wind speed (Lei et al.,

2009; Soman et al., 2010). In addition, a simple method named “Persistence Method”

has been used for predicting wind speed for very short-term forecasting. This method

is surprisingly accurate compared to most of the physical and other statistical methods

for very short-term forecasting (Soman et al., 2010). Accurate wind speed forecasting

has significant economic and technical advantages in maximizing the amount of energy

captured by a wind turbine. In their studies, Fabbri et al. (2005) suggested that the

error prediction costs could be as much as 10% of the total income from selling wind

energy. One of the goals of the present study is to determine whether forecasting

can increase the amount of energy harvested during conditions of gusty winds, and

to quantify (in economic terms) the benefit of forecasting during gusty winds.

Accurate performance modeling of vertical axis wind turbines poses a significant

challenge for scientists and engineers. Over the years, a considerable amount of

theoretical, computational, and experimental research has been conducted with the

intention of optimizing wind turbine performance (Templin, 1974; Blackwell et al.,

1976; Paraschivoiu, 2002; Beri et al., 2011; Danao et al., 2013). Most wind turbine

designers use numerical models based on the Blade Element Momentum theory

(BEM theory) to predict wind turbine performance (Templin, 1974; Strickland, 1975;

Paraschivoiu and Delclaux, 1983; Beri et al., 2011). BEM theory is a common feature

underlying many existing numerical models of VAWTs, including, for example, the

single stream tube model (Blackwell et al., 1976), the double multiple streamtubes

model (Strickland, 1975; Beri et al., 2011; Chong et al., 2013), and the 2D vortex

model (McIntosh et al., 2008). All of these numerical models are relatively inexpensive

with low computational effort, compared to Computational Fluid Dynamics (CFD)

models. The majority of numerical models that use BEM theory incorporate static

airfoil data in the model to predict wind turbine performance. It is well known that

lift and drag forces acting on an airfoil undergo hysteresis in unsteady wind conditions.

Initial work performed by Schuerich and Brown (2011) showed that at moderate tip

speed ratio, the use of dynamic stall data is more adequate to capture the behavior
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of the airfoil. It remains to be answered whether including dynamic stall data in the

model will improve the prediction of wind turbine performance in gusty winds, as it

better represents actual operating conditions.

Wind turbine design optimization poses a significant impact on turbine perfor-

mance and the amount of energy captured (Tirkey et al., 2014). It is well known that

each turbine design configuration has its own characteristic power performance curve

that is typically referred to as a Cp-TSR curve. Over the years, efforts have been

made in order to optimize this Cp-TSR curve by varying turbine design parameters

such as airfoil shape, solidity, turbine height, and diameter (Blackwell et al., 1976;

Paraschivoiu et al., 1983; Fiedler and Tullis, 2009; Brusca et al., 2014; Tirkey et al.,

2014). Most of these turbine configurations were modeled/tested either at constant

incoming velocity or constant rotational speed (Blackwell et al., 1976) that does not

well represent the actual wind condition in the urban environment. Even though

a particular turbine configuration may result in slightly better power performance

curve Cp-TSR at a fixed incoming velocity, it is not guaranteed that turbine design

will yield the most energy efficiency in realistic gusty wind conditions. It remains

to be seen whether slight adjustments in the Cp-TSR curve can result in significant

differences in the amount of energy captured by the turbine while operating in the

gusty wind conditions of an urban environment.

1.1 Research Objectives

Wind conditions within the urban environment have been found to be more

turbulent than those in rural areas, due to the increased surface roughness caused by

the presence of buildings, houses, and trees (Roth, 2000; Klipp, 2007). Winds in the

urban environment are characterized by gusts with large fluctuations in magnitude

and direction that contain a large amount of energy within the gust component.

Development of a VAWT that could exploit this turbulent wind energy would yield a

significant increase in the total amount of energy captured. The overall goal of this

research project is to investigate the conditions under which enhanced energy capture

is possible by a vertical axis wind turbine operating in gusty winds representative of an

urban/suburban environment. An economic analysis is performed to evaluate the cost
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benefits and the practical feasibility of the different control strategies investigated.

The first aim of the research is to better understand the transient behavior of a

VAWT during gusty wind conditions. It was hypothesized that the turbulent intensity

and characteristic time scale of the gusty wind in the urban environment would have

a significant impact on the overall performance of the wind turbine, thus affecting the

amount of energy captured by the turbine. To assess this hypotheses, the following

scientific questions were addressed:

● How much excess energy is contained within the gusty wind compared to the

steady wind?

● What is the relationship between the turbulence intensity and the excess energy

contained within the gust?

● How do the turbulence intensity and characteristic gust time scale affect the

amount of energy captured by the VAWT using two different control strategies:

(i) constant rotational speed (ii) ideal tip speed ratio?

● How much more energy can be captured by a VAWT using the two aforemen-

tioned controllers?

Several numerical models were utilized to address the proposed scientific questions

in the first aim. Actual wind data acquired from cup/vane and sonic anemometers

located in urban areas were used as input to the numerical models. Sonic anemometry

data collected in June 2005 from a tower located in Murray, Utah, a suburban

neighborhood in the Salt Lake Valley, was obtained from the study of Ramamurthy

and Pardyjak (2011). Cup/vane anemometry data collected during 2013 from a

wind monitor located on the roof of the William Browning Building (WBB) on

the University of Utah campus was obtained online from the MesoWest Project.

The optimal operating point of the turbine was determined for two different control

strategies: (i) constant rotational speed controller (constant–ω) and (ii) ideal tip speed

ratio (ideal–TSR) controller. The effect of turbulence intensity, gust frequency, and

turbine inertia on the overall performance of of the turbine was explored. The total

energy captured by the VAWT for the two controllers was examined and compared.
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Detail descriptions of the numerical models, analysis, and results of the first aim are

reported in Chapter 2 of this dissertation.

The second aim of the research is to better understand the benefits of accurate

forecasting on the amount of energy harvested by a vertical axis wind turbine. It was

hypothesized that accurate forecasting of the wind condition would allow for better

control of a VAWT, leading to enhanced energy captured and resulting in significant

economic benefits. To assess this hypotheses, the following scientific questions were

addressed:

● How does the sensitivity of forecasting accuracy affect the overall energy cap-

tured by a VAWT?

● How much energy can be captured by a VAWT if the future wind condition

is forecasted using the “Persistence Method” compared to the Modified Per-

sistence Method (MPM), Autoregressive Moving Average (ARMA) model, and

Weather Research, and Forecasting model (WRF)?

● What is the most accurate forecasting model between the four examined meth-

ods?

● What is the economic benefit of wind forecasting on the wind turbine in terms

of electricity price?

Several numerical models were utilized to address the proposed scientific questions in

the second aim. Sonic anemometer data collected in 2009 at different sites in Okla-

homa City were used as the input to the models. Four different forecasting models

were examined, namely: (i) Persistence Model (PM), (ii) Modified Persistence Model

(MPM), (iii) Autoregressive Moving Average (ARMA), and (iv) Weather Research

and Forecasting (WRF). The constant rotational speed (constant–ω) controller was

utilized in this study. The wind turbine performance measured in terms of the total

amount of energy captured was examined and compared. An economic analysis was

performed comparing the cost to implement a VAWT using the preferred forecasting

model versus that expected in the ideal scenario when the wind speed was available

in advance. The economic viability of the VAWT was quantified by comparing the
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Levelized Cost Of Energy (LCOE) for the VAWT with the national electricity unit

price. Detailed descriptions of the numerical models, analysis, and results of the

second aim are reported in Chapter 3 of this dissertation.

The final aim of the research is to better understand the impact of different

VAWT configurations on the amount of energy captured under gusty winds in an

urban/suburban environment. Different VAWT designs (defined by airfoil shape,

solidity, and height-to-diameter ratio) result in different performance specifications,

characterized by their power performance coefficient versus tip speed ratio curve

(Cp-TSR curve). It was hypothesized that, due to the large range of timescales

inherent in gusty winds, the amount of enhanced energy captured by a VAWT

during gusty wind conditions is relatively insensitive to the design configuration of

the turbine. To test this hypotheses, the following scientific questions were addressed:

● How do differences in the Cp-TSR curves between different turbine designs affect

the amount of energy extracted during gusty wind conditions?

● Is it possible to determine an optimal turbine configuration for a typical wind

condition in an urban/suburban environment?

● What is the economic viability of each VAWT configuration examined in the

study?

This hypotheses was tested by evaluating wind turbine performance over a range

of VAWT configurations operated under identical gusty wind conditions characteristic

of a real urban/suburban area. The ideal–TSR control strategy was utilized in this

aim. Sonic anemometer data collected in 2009 at different sites in Oklahoma City

were again used as the input to the numerical models. The performance of each

wind turbine configuration was measured in terms of the total amount of energy

captured. An economic analysis was also performed to evaluate the economic viability

of each turbine configuration by comparing the LCOE of the VAWT with the national

electricity unit price. Detailed descriptions of the numerical models, analysis, and

results of the third aim are reported in Chapter 4 of this dissertation.
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Wind resource maps of annual-averaged wind speeds, typically used in the siting of

wind turbines and wind farms, can grossly underpredict the actual wind energy

potential in areas with highly transient or gusty winds. The goal of the present

study is to quantify the additional energy capable of being harvested by a small ver-

tical axis wind turbine using control strategies that exploit the excess energy in

wind gusts. A transient-response numerical model is utilized with input from actual

wind data acquired by cup-vane and sonic anemometers located in both an urban

and suburban area. The total energy captured by the turbine during the year 2013,

along with its overall efficiency, was determined for two different control strat-

egies: constant rotational speed (x) controller and ideal tip speed ratio (TSR) con-

troller. For the case of the constant x controller, the turbine achieves maximum

efficiency when it is operated at an optimal overspeed setting, xopt. Results indicate

that xopt can be estimated from the turbulence intensity of the wind. For the case of

the ideal TSR controller, turbine efficiency was observed a plateau to a maximum

value when the nondimensional turbine response parameter f dropped below a criti-

cal value fc. This is as expected since turbines with fast response times (f< fc) are

capable of instantaneously tracking fluctuations in the wind and thus effectively

capturing the high energy content contained within each wind gust. The value of fc

exhibits a dependence on the characteristic gust time scale. Over the course of the

year, the turbine in conjunction with the constant x controller, operating at xopt,

was capable of harvesting six times the energy of a naive controller operating a

fixed x based on the annual-averaged mean wind speed. The same turbine operat-

ing in conjunction with an ideal TSR controller, however, was successful in har-

vesting nearly thirteen times the energy of that with the naive controller. This may

have significant implications on the viability of small turbines in relatively gusty

urban/suburban areas, even when the annual-averaged wind speed is below a

threshold typically considered practical for harvesting wind energy. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934585]

I. INTRODUCTION

Wind energy has been long recognized as a promising renewable energy resource because

of its abundance and ubiquity. In the past few decades, considerable advancements have been

made in wind turbine technology, which has lead to an increase in the number of wind turbines

that have been deployed around the world.17 Specifically, nameplate wind power capacity has

increased to about 5 MW for large horizontal axis wind tubines.5 Many countries, such as

Germany, USA, Spain, Denmark, and recently China and Turkey, have made substantial efforts

to develop their wind power industries.1,20 The world wind power generation capacity has been

growing rapidly with an average annual growth of about 30% over the last decade.20 It is pre-

dicted that wind energy generation will satisfy 5% of the world’s energy consumption needs by

2020.20

1941-7012/2015/7(5)/053118/22/$30.00 VC 2015 AIP Publishing LLC7, 053118-1
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Most modern wind farms often feature large horizontal axis wind turbines (HAWTs) with

megawatt capability because of their high power coefficients. This technology, however, has

encountered several economical and social barriers due to the high fabrication cost, large size,

and noise generation. Therefore, it is only possible to deploy megawatt-capacity HAWTs in

remote sites, far from consumers. In order to reduce transmission loss and promote energy con-

servation, it is desirable to collocate renewable energy harvesting machines with consumer

demand. Since urban areas consume two-thirds of the world’s energy,32 it is prudent to develop

small-scale turbines that are suitable for harvesting wind energy specifically in the built envi-

ronment and able to provide that energy in a decentralized fashion to local users. Small-scale

wind turbines have some distinct benefits over large-scale units (especially for urban areas),

including reduced capital investment on tower and transmission lines,19 faster response times to

fluctuating winds, and lower noise generation.3

The wind flow over houses/buildings is highly turbulent with rapid fluctuations in both

magnitude and direction, making it challenging to extract wind energy in the urban area. Wind

turbine design for the urban environment also encounters another difficulty because of the con-

straint on space. Although small HAWTs appear to be the first choice because of their high

power coefficients and capacities, they suffer from several drawbacks, most predominantly

being that their performance is highly dependent on the wind magnitude and direction. In other

words, small HAWTs do not perform well in the turbulent winds inherent to urban environ-

ments. In addition, small HAWTs require a large footprint to accommodate their rotors, thus

making them non-ideal wind turbine technology for the urban areas. In contrast, Vertical Axis

Wind Turbines (VAWTs) offer a critical advantage for harvesting wind energy in urban envi-

ronments, because of the ability to capture energy in any wind direction, thereby removing the

need for a wind sensing and orientation mechanism. This versatility of VAWTs makes them

ideal for installation in urban areas where wind conditions are inconsistent.

Wind conditions within the urban environment have been found to be more turbulent than

that in rural areas, due to the increased surface roughness caused by the presence of buildings,

houses, and trees.3,18,21,29,35 Winds in the urban environment are characterized by gusts with

large fluctuations in magnitude and direction that contain a large amount of energy.18,21,29,35

Wind turbines designed for rural areas, however, have been shown to be ineffective in captur-

ing the energy in a gusty wind.23,24 Development of a turbine that could exploit this turbulent

wind energy would yield a significantly increase in the total amount of energy captured.

Bert�enyi et al.3 performed an experimental study of the potential excess energy contained in an

unsteady wind (gust) compared to that of a steady wind.3 A new parameter termed gust energy

coefficient (GEC) was defined as the ratio of actual energy contained in the gusty wind inte-

grated over a period of time to the steady energy based on the mean wind speed over the same

time period. The results show an increase in the GEC of 22.7% as the turbulence intensity level

of the wind increases from 0% to 26.8%. The authors also introduced the idea of a gust-

tracking wind turbine capable of extracting the excess energy in the gusts.

The wind turbine’s ability to respond to fluctuations in the wind speed depends on the aero-

dynamics of the blades, the inertia of the turbine, and the time lag of the controller.

Computational fluid dynamics (CFD) simulations of VAWTs in unsteady winds have shed light

on the former.7,31,33 Specifically, Danao et al.7 performed the CFD simulations of the perform-

ance of a VAWT under a sinusoidal wind with 12% fluctuating amplitude and 0.5 Hz fluctua-

tion frequency. Their results showed a dependency on Reynolds number; namely, an increase in

the wind speed has more effect on the tangential component of the lift than the drag, which

helps to improve the overall performance of the turbine. Shahzad et al.33 performed CFD simu-

lations to analyze the performance behavior of a VAWT under an accelerating and decelerating

incoming flow. Their results showed that the instantaneous torque and power output varied sig-

nificantly when the incoming flow was accelerated/decelerated; however, the net effect on over-

all performance due to a cyclic combination of accelerated decelerated flow was not clear.

Recently, experiments and simulations were performed by Hara et al.12 to study the effect

of turbine inertia on the performance of a VAWT in a sinusoidally pulsating wind with ampli-

tude DV and period T. They found that the VAWT studied was not affected by changing wind
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direction, but that the overall performance was affected by variations in the wind speed.

Similar results were also found in the studies performed by Kooiman and Tullis.19 Hara et al.12

found that there was a phase delay between the rotational speed and wind variation that owes

to the effect originating from the moment of inertia. Additionally, Hara et al.12 found that the

energy efficiency of the wind turbine in a sinusoidal wind with constant DV remains nearly con-

stant regardless of the moment of inertia of the turbine and period of oscillation T, but the

energy efficiency decreases as the fluctuating amplitude DV increases. Further work is needed

to determine whether this finding is universal and holds in the case of realistic winds having a

wide range of amplitudes and frequencies.

The response time of the turbine has been shown to be important in terms of the amount of

energy captured during unsteady wind conditions.12,19,23,24 McIntosh et al.23 found that the time

scale associated with the unsteady wind was also important. They introduced a nondimensional

quantity, named the turbine response parameter, defined as the ratio of the turbine response

time to the gust period. As the turbine response parameter increases, the turbine is less able to

track changes in wind speed, resulting in decreased energy capture. However, their study only

analyzed a 300-s sample of unsteady wind. Also, using a single time scale to represent the

unsteady wind may be problematic. McIntosh et al.23 used a characteristic time scale based on

the frequency corresponding to 99% of the total energy in the wind. It remains to be seen

whether this is the most relevant time scale for a gusty wind. Higher frequency turbulent

motions in the atmospheric surface layer do not contain significant energy. Therefore, a time

scale based on the dominant frequency in the wind spectrum may be more appropriate.

The degree of unsteadiness of the wind can be quantified in terms of the turbulence inten-

sity, Iv, defined as the standard deviation divided by the mean, and has been found to have a

significant effect on the overall performance of the wind turbine.3,19,30 Kooiman and Tullis19

found that for low turbulence intensities (Iv< 0.15), turbine performance is insignificantly

affected by wind fluctuations. However, as turbulence intensity increases (Iv> 0.15), the turbine

performance coefficient decreases. This turbine power coefficient is defined as the ratio of the

actual power captured by a wind turbine to the total available power in the unsteady wind. The

degradation of turbine performance with increasing turbulence intensity of the wind has been

shown in other studies as well.3,25,30 Note, in the study of Kooiman and Tullis,19 that the turbu-

lence intensity was calculated using 10-s time interval. On the other hand, the averaging win-

dow typically used in atmospheric studies ranges from 10 min to an hour.22,38 The short averag-

ing period used by Kooiman and Tullis19 denotes that their results underpredict the actual

capability of wind turbines with response times longer than 10 s. It is also worth mentioning

that the wind turbine used by Kooiman and Tullis19 was operated at a constant rotational speed

in each experiment. The rotational speed was not optimized for the given wind conditions.

McIntosh et al.23 suggested that in order to increase the energy captured during unsteady winds

using a turbine operated at a constant rotational speed, an over-speed control technique should

be applied. It remains to be determined how the optimal over-speed setting varies with turbu-

lence intensity and whether enhanced energy capture is possible as the turbulence intensity

increases.

This paper utilizes a numerical modeling approach to investigate the conditions under

which enhanced energy capture is possible by a VAWT operating in gusty winds representative

of an urban/suburban environment. The optimal operating point of the turbine is determined for

two different control strategies: (i) constant rotational speed controller and (ii) ideal tip speed

ratio (TSR) controller. The total energy captured by the VAWT for the two different control

strategies is also compared. Finally, the effects of turbulent intensity, gust frequency, and tur-

bine inertia on the overall performance of the turbine are explored.

II. NUMERICAL MODELS

Several numerical models were utilized in this research to investigate the possibility of

enhancing the energy captured by a VAWT operating in gusty winds representative of an

urban/suburban environment. The first model “Gust Energy Coefficient Model” (Section II A)
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was developed to estimate the amount of excess energy available within the gust. This model

provides a way to compensate for the underestimation of wind resource when the mean wind

speed is used as a siting indicator. The second model “Gust Time Series Model” (Section II B)

was developed to create piecewise continuous wind speed data in substitution of the instantane-

ous wind speed data that is rarely available publicly. This time series model was later used as

an input to the transient response model. The “Turbine Model” (Section II C) simulated the aer-

odynamic performance of the wind turbine that is a necessary input in our transient model. The

“Transient Response Model” (Section II D) was developed to understand the transient behavior

of the turbine in order to accurately estimate the amount of energy that could be generated by

the turbine in the urban environment. Finally, two types of controllers, including a constant

rotational speed controller and an ideal tip-speed-ratio controller, were examined in the

“Turbine Controller Model” (Section II E) to quantify the amount of additional energy capable

of being harvested with different control schemes.

A. Gust energy coefficient model

Wind in the atmospheric surface layer contains a vast range of time scales spanning from

seconds to months. Large fluctuations at the macrometeorological scale encompass diurnal to

seasonal variations, while fluctuations at the micrometeorological scale are often on the order

of seconds.19,37 The term “gust” is used loosely in the present study to describe relatively large

fluctuations in the wind speed on the micrometeorological scale. The available energy contained

within a gust is quantified using the GEC, following the work of Bert�enyi et al.3 The GEC is

defined as the ratio of actual energy in the instantaneous wind integrated over a time period of

interest (EG) to the energy assuming a steady wind over the same time period (ES). One can

calculate GEC as follows:

GEC ¼ EG

ES
¼

1

2
qA

1

T

ðT

0

U3dt

1

2
qA �U

3
; (1)

where T denotes the averaging time period, U ð¼ �U þ u0Þ represents the instantaneous wind

speed, �U is the mean wind speed over the averaging time period 0 � t � T, and u0 denotes

the turbulent velocity. Note, u0 ¼ 0 in this framework. Physically, GEC represents the

amount of excess energy available to be captured, if a wind turbine could effectively respond

to the instantaneous wind fluctuations. It is known that a significant amount of energy is con-

tained within the frequency of the gust.23 However, most wind sitings are based on the mean

winds at a given location;8,11 therefore, current siting techniques may significantly underesti-

mate the actual wind potential at a given location. The GEC provides a mean to compensate

for the underestimation of wind resources when the mean wind speed is used as a siting indi-

cator. The expression for GEC in (1) can be written compactly as follows (see the

Appendix):

GEC ¼ 1þ 3I2
T þ SuI3

T ; (2)

where IT and Su denote the turbulence intensity and skewness of the wind speed, respectively.

Therefore, GEC is seen to depend solely on the second and third statistical moments of the

wind signal. Note, for normally distributed wind fluctuations, Su¼ 0, meaning that GEC

increases quadratically with the turbulence intensity.

Figure 1 shows the gust energy coefficient as a function of turbulence intensity, comparing

actual wind data to the prediction in Equation (2). Data were collected on June 14, 2005 from a

sonic anemometer located at a height of 36 m above the ground in a suburban neighborhood in

Utah’s Salt Lake Valley. The area surrounding the test site was mostly residential in nature.

Data from the sonic anemometer were sampled at 10 Hz. A detailed description of the site and
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instrumentation can be found by Ramamurthy and Pardyjak.28 Each data point in Figure 1 rep-

resents a statistical average over a 10-min interval. In total, 24 h of data are shown in the fig-

ure. As can be seen, a wide range of turbulence intensity values (0 < It < 0:5) are obtained on

this day. The results indicate that a significant amount of energy is contained within the gust as

the turbulent intensity increases. There is a 6.7% increase in total available energy contained in

the gust when the turbulence intensity measures 0.15. This increases to about 27% when the

turbulence intensity reaches 0.3.

The solid lines in Figure 1 are based on Equation (2) for two cases: (i) Su¼ 0, assuming

data are normally distributed, and (ii) Su ¼ �Su where �Su corresponds to the average skewness

over the entire 24 h time period. For the time period investigated, �Su ¼ 0:1614. There is almost

no difference between the two predictions except at high IT, which implies that skewness of the

wind distribution has an insignificant effect on the GEC. This follows because the skewness of

the turbulent wind at heights on the order of a few meters above ground level are expected to

be small,14 meaning that the GEC is only weakly dependent on Su. Therefore, a good model for

the excess energy contained in wind gusts predicts that the GEC increases quadratically with

turbulence intensity in the form

GEC � 1þ 3 I2
T : (3)

B. Gust time series model

An analysis of the transient response of a wind turbine under a gusty wind requires instan-

taneous wind speed data. Most of the publicly available data on wind speed, however, are typi-

cally derived from cup and vane anemometers and are often presented in the form of an aver-

age wind speed along with a maximum gust speed over a set time interval, which could vary

from a few minutes to an hour or more. A gust time series model was created to convert dis-

crete mean wind speed and gust data of this form into a piecewise continuous time series that

preserves the low frequency, large-scale features of the actual instantaneous signal. The gust

time series model was used as an input to our transient wind turbine model (presented in

Section II D), in order to study the total energy captured by a wind turbine in the presence of

real gusty wind over the course of a full year. Because the gust time series model serves as an

integral part of the present study, details of the model are described below.

Figure 2 illustrates the gust time series model compared to a sample of sonic anemometry

data. In the figure, M1 and G1 represent the measured mean speed and maximum gust speed over

FIG. 1. Gust energy coefficient as function of turbulent intensity. Each point represents a 10-min average of sonic anemom-

eter data collected on 14 June 2005.
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the first averaging block, delineated by the vertical dashed lines and labeled as TA. Similarly, M2

and G2 represent the measured mean speed and the corresponding wind gust for the second aver-

aging block. Note the Mi and Gi values for each averaging block constitute the available data. The

time series model based on Mi, Gi, and DTA utilizes the piecewise linear functions. To construct

the piecewise linear functions, each averaging block is divided into three separate subintervals,

two of which have the same period, as shown in Figure 2. The center subinterval has a duration

DTGi
, which represents the period of time that the wind velocity is above its mean value Mi. Note

the gust value Gi is assumed to occur in the center subinterval. The two other subintervals have a

period DTVi
, which represents the time when the wind velocity is below the mean value Mi. The

subintervals are related by the fact that 2 DTVi
þ DTGi

¼ DTA. The value of the wind velocity at

the end of each interval is denoted as VEi
; and the value of the wind velocity at the beginning of

the time series is denoted by VE0
. To represent the randomness of the actual wind signal, the val-

ues of VEi
for i ¼ 0; 1; 2;…;N are assigned using a random number generator that selects a value

for VEi
within a predefined range based on a fraction of the mean value Mi. Typically a range of

0:45 � VEi
=Mi � 0:95 was used, although a sensitivity analysis was performed (and is described

at the end of the section) to quantify the effect of this range on the model output. Once Mi, Gi,

and VEi
are known, one can solve for DTGi

of the ith interval by equating the area of the triangle

above the mean to the area of the two triangles below the mean to obtain

DTGi
¼ TA 2 Mi � VEi�1

� VEið Þ
2 Gi � VEi�1

� VEi

: (4)

This procedure ensures that the piecewise model time series maintains the true mean velocity

of Mi in each block.

The gust time series model described above was validated using the same sonic anemome-

try data as that in Section II A. In order to create the necessary input data for the model, the

sonic anemometry wind signal was first divided into 5-min blocks (no overlap between blocks).

The mean and maximum wind speed in each block was then used to create the Mi and Gi arrays

for the model. In this case, 1 h of sonic anemometry data is presented, which yields 12 discrete

blocks, i.e., i ¼ 0; 1;…; 12. A piecewise continuous model of the wind velocity time series was

then constructed from the Mi and Gi data using the procedure described in the preceding para-

graph. The results are shown in Figure 3 compared with the original 1-h segment of instantane-

ous sonic anemometry data. As illustrated, the gust time series model is not able to reproduce

the small scale, high frequency variations in the sonic data. In addition, the model is not always

in phase with the actual wind gusts. Overall, the gust time series model captures the trends of

the sonic data and, more importantly, shows a good representation of the large scale, low fre-

quency features in the sonic wind data.

FIG. 2. Schematic of the gust model that produces a piecewise continuous velocity time series. M and G represent the

measured mean wind velocity and wind gust, respectively, over each averaging interval delineated by the vertical dashed

lines.

053118-6 L. Nguyen and M. Metzger J. Renewable Sustainable Energy 7, 053118 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.99.155.93 On: Thu, 22 Oct 2015 16:53:53



22

Despite the observed discrepancies with the instantaneous sonic data, the gust time series

model performs surprisingly well in terms of predicting the total available energy in the wind.

For the 1 h segment of data shown in Figure 3, the total available energy, i.e., the numerator of

(1), assuming an area of 2.56 m2 and a constant fluid density of 1.12 kg/m3 is 2153 W for the

instantaneous sonic data and 2120 W for the gust time series model. This translates into a

1.56% difference in the total available energy between the actual wind and the model time se-

ries. Since the total available energy is the quantity of primary interest in the present study, the

gust time series model is deemed acceptable.

Since the gust time series model uses a random number generator to assign values of the

wind velocity at the end of each interval, VEi
, a sensitivity analysis was performed to quantify

the variation in the model output (total available energy) over 100 different realizations. In

addition, the model selects the values for VEi
within an allowable range that varies with each

block, ðVEi
Þmin � VEi

� ðVEi
Þmax, where ðVEi

Þmin and ðVEi
Þmax are prescribed based on a set

fraction of the mean wind velocity in that block Mi, i.e., ðVEi
Þmin=Mi ¼ Pmin and

ðVEi
Þmax=Mi ¼ Pmax. In order to initiate the model, the user defined values for Pmin and Pmax

which remain constant for all blocks. Different combinations were selected in the range 0:45 �
Pmin � 0:6 and 0:85 � Pmax � 0:95. The results indicate that the difference between the total

available energy calculated by the model compared to the true value remains less than 4% for

all of the test cases. The gust time series model will be used in subsequent model in conjunc-

tion with cup and vane anemometry data to investigate the ability of a wind turbine to capture

energy from gusty winds over long periods of time.

C. Turbine model

Various numerical models have been developed to predict the power performance of a

VAWT, a survey of which can be found by Paraschivoiu and Delclaux27 and Islam et al.15 For

example, Schuerich and Brown31 developed a CFD model to predict the aerodynamic perform-

ance of a VAWT based on discretizing the vorticity transport formulation of the Navier-Stokes

equations. While the CFD models can provide detailed information about the flow field, a major

drawback is the computational expense. In the present study, CFD models would have been

prohibitive. Therefore, a simpler modeling approach was preferred, which allowed the transient

response of a VAWT to be studied over the course of a full year using actual urban/suburban

wind data as an input. This would not be a straightforward task in a CFD framework. Instead,

the present study utilizes the Blade Element Momentum (BEM) theory as the backbone of the

turbine performance model. BEM is a common feature of many existing numerical models of

VAWTs, including the single streamtube model,4 the double multiple streamtubes model,2,15

and the 2D vortex model.24 Transient response can then be obtained using a 4th order Runge-

FIG. 3. Comparison of the gust time series model with a 1-h segment of instantaneous sonic anemometry data collected

from a suburban neighborhood in Utah’s Salt Lake Valley on 14th June 2005.

053118-7 L. Nguyen and M. Metzger J. Renewable Sustainable Energy 7, 053118 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.99.155.93 On: Thu, 22 Oct 2015 16:53:53



23

Kutta time integration of the pseudo-steady forces on the VAWT calculated from the BEM, fol-

lowing similar strategies of McIntosh et al.23 and Hara et al.12

1. BEM theory

BEM theory utilizes the actuator disc method10 to determine the momentum deficit down-

stream of the VAWT, in combination with empirical lift and drag coefficients for the blades in

order to calculate the power performance of the turbine. The actuator disc method is based on a

control volume analysis, in which the control surface is represented by a streamtube, as shown

in Figure 4. The rotating wind turbine is treated as a single actuator disc that creates a jump

discontinuity in pressure at the location of the disc. In this model, the actuator disc represents a

line in space; and as such, the induced velocity is assumed to be constant across the disc. In

addition, the flow is assumed to be homogeneous, incompressible, and steady; the thrust is

assumed to be uniform over the disc; and the wake is assumed to be non-rotational. Note the

latter assumption is valid in the case of a VAWT, since the rotation vector is aligned along the

axis of the turbine which remains perpendicular (or nearly perpendicular) to the mean flow

direction. Therefore, the increase in angular momentum occurs in a direction transverse to that

of the linear momentum, which means it should not affect the velocity V through the stream-

tube as it does in the case of a horizontal axis wind turbine. In addition, the static pressure far

upstream and downstream of the disc is assumed to be equal to the ambient static pressure.

Applying conservation of linear momentum to the defined control volume, the thrust force T
acting on the turbine can be expressed as

T ¼ 4a 1� að Þ½ � 1

2
qAV2

1

� �
; (5)

where V1 represents the upstream wind speed approaching the turbine and a denotes the axial

induction factor, defined as the fractional velocity deficit due to the presence of the turbine,

a ¼ V1 � V2

V1

: (6)

Details of the derivation can be found by Paraschivoiu.26

The forces acting on the blades of the turbine can be calculated using empirical lift and

drag coefficient data (CL and CD, respectively) appropriate for the airfoil shape. In order to

FIG. 4. (a) Schematic of the actuator disk model of a VAWT, where V and P denote the wind velocity and pressure, respec-

tively. (b) Schematic of the velocity and force components acting on a segment of the airfoil blade. Adapted from Figure 2

of Beri et al.2
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accomplish this, the blades are discretized into infinitesimally thin slices as shown in Figure

4(b). The differential lift and drag forces on each infinitesimal slice are calculated at the corre-

sponding angle of attack a based on a look-up table containing CL and CD data as a function of

a and Reynolds number. Note that CL and CD are defined using the velocity V2 at the location

of the actuator disc. From Figure 4(b), it is clear that a depends on the relative velocity Vr,

which is a vector sum of the disc velocity V2 and the induced velocity due to the rotation of

the turbine, Vi ð¼r xÞ where r denotes the local turbine radius (distance from the axis of rota-

tion of the turbine to the quarter chord of the blade element) and x represents the rotational

speed of the turbine. For the case of an eggbeater-shaped Darrieus VAWT as used in the pres-

ent study, the angle of attack a is calculated for a given azimuth angle, h, as follows:36

a ¼ tanh
sin h cos d
r x
V þ cos h

 !
: (7)

The local blade slope angle d accounts for the changes in the local radius r with height, and is

necessary for turbines without straight blades Templin.36

The differential lift and drag forces are then decomposed into their respective normal and

tangential components

dFn ¼
1

2
NcqVr CL cos aþ CD sin a½ � dh; (8)

dFt ¼
1

2
NcqVr CL sin a� CD cos a½ � dh; (9)

where N is the number of blades, c denotes the chord length, and dh represents the differential

height of the blade element. The total drag force D acting on the turbine, as a result of the mo-

mentum deficit across the turbine, can then be obtained by taking the component of dFn and

dFt aligned with the disc wind velocity V2 and integrating with respect to both h over the entire

height of the turbine H, and h over one full revolution of the rotor,

D ¼ 1

2p

ðH
2

�H
2

ð2p

0

sin hð Þ dFn �
cos h
cos d

� �
dFt

� �
dh dh: (10)

Note that by equating D from (10) with T from the actuator disc method (5), one can solve for

the unknown value of the axial induction factor a, which can then be used to specify the value

of V2. Once V2 is known, the resultant torque Q, output power P, and power coefficient CP of

the VAWT can be evaluated as

Q ¼ 1

2p

ðH
2

�H
2

ð2p

0

r hð Þ 1

cos d

� �
dFt

� �
dh dh; (11)

P ¼ Q x; (12)

Cp ¼
P

1
2
qAV3

1

; (13)

where A ¼ 8
3

R2 denotes the frontal area of the turbine for an eggbeater-type turbine. Here, R
denotes the maximum radius of the turbine.

2. Turbine model validation

The case study used to validate the BEM numerical model is that of a Darrieus VAWT

with 3 blades, a maximum radius of R¼ 0.98 m, and a height of H¼ 2 m. The three turbine
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blades are based on the NACA 0012 airfoil shape with a 5.88 cm chord length and 0� pitch

angle. Figure 5 shows the power coefficient (Cp) versus tip speed ratio (TSR ¼ Rx=V) for the

present BEM numerical model compared to experimental results, from both laboratory and field

data.4 The wind turbine was tested in the 4.6 m� 6.1 m Vought system division low speed wind

tunnel. A detailed description of the experimental setup can be found by Blackwell et al.4 Lift

and drag coefficient data are incorporated from two different sources, Jacobs and Sherman16 for

angle of attack less than 28� and Sheldahl and Klimas34 for angle of attack greater than 28�. In

all cases, the geometry and configuration of the VAWT are identical; however, the Reynolds

number could not be matched exactly. For purposes of the validation study, the numerical

model utilized a Reynolds number of Re¼ 150 000 (400 rpm), consistent with that of the field

experiment, while the wind tunnel experiment was run at Re¼ 154 000. It is noted that the

wind turbine was operated at 460 rpm in the field experiment and 400 rpm for the wind tunnel

experiment. As apparent from Figure 5, results from the wind tunnel and field experiments do

not completely align, despite the fact that Re is very close and the geometries of the turbines

are identical. Except for a narrow range of tip speed ratios near TSR¼ 4.25, the wind tunnel Cp

values consistently under predict those from the field experiment. Blackwell et al.4 suggested

that differences in the measured performance of a turbine tested in a wind tunnel versus in the

field could be a result of wind blockage effects or it could be a real (but unexplained)

difference.

Figure 5 also shows that the numerical model compares favorably with the results from the

field experiment for tip speed ratios greater than the peak (TSR> 5), though there are noticea-

ble deviations to the left of the peak, for TSR< 5. In the lower tip speed ratio range

(2 � TSR � 4), the numerical model underpredicts the Cp values from the field by about

9%–18%, and tends to follow the results from the wind tunnel experiment. The numerical

model correctly captures the overall shape of the power performance curve, and is able to pre-

dict the peak value of Cp to within 3.0% of the field data, as well as predict the optimum TSR,

defined as the tip speed ratio yielding the peak Cp. Therefore, the numerical model is deemed

satisfactory for purposes of the present study.

D. Transient response

Understanding the transient response of a wind turbine under gusty wind conditions is nec-

essary in order to obtain an accurate estimate of the amount of energy that can be generated by

the turbine in urban environments. Although VAWTs are unaffected by wind direction,19 varia-

tions in wind speed do significantly impact the overall performance of the wind turbine, owing

FIG. 5. Power coefficient performance curve vs. tip speed ratio comparing the present numerical model with experimental

data. In all cases, the same geometry VAWT was used. The Reynolds number for the numerical model and field experi-

ments was Re¼ 150 000, while that for the wind tunnel experiments was Re¼ 154 000.
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to the moment of inertia of the turbine, the applied loading torque, the temporal response of the

controller, and the aerodynamics of the turbine blades.12,19 The transient response of a wind tur-

bine to an unsteady wind speed can be modeled as

I
dx
dt
¼ Q� TL; (14)

where I is the moment of inertia of the wind turbine, Q is the aerodynamic torque of the tur-

bine, TL is the applied loading torque from the generator, and x is the rotational speed of the

turbine. In the transient model, the aerodynamic torque Q depends on the tip speed ratio and

incoming wind speed according to (11).

Figure 6 illustrates graphically how changes in the incoming velocity affect the power

coefficient Cp, for the case where the rotational speed x of the turbine remains constant. In the

example considered, the incoming velocity increases in a piecewise linear fashion from two

constant states, labeled as operating point 1 (OP 1) and operating point 2 (OP 2) as shown.

Because x remains constant in this example, the tip speed ratio varies inversely proportional

with V. At the same time, the turbine power coefficient CP moves along the trajectory shown in

the plot. Note that this model utilizes lift and drag coefficient data valid for steady flow.

Therefore, transient behavior in this framework is modeled as the infinitesimal change between

two pseudo-steady states. A more appropriate model to predict the aerodynamics performance

of the VAWT should include dynamic stall effects, as the cyclic motion of the blades induces

large variation in the angle of attack on the wind turbine blades.31 However, this increases the

complexity of the model, and requires unsteady lift and drag coefficient that is difficult to

obtain. Therefore, as a first step in understanding the amount of additional energy that could be

harvested by a VAWT during gusty winds, the present study opts for a more simplistic model-

ing framework.

E. Turbine controller

The ability of the turbine to respond to fluctuations in the wind speed depends on the

response characteristics of the system, an important aspect of which is the controller. Different

control methods can be used to optimize or limit the amount of energy captured by the wind

turbine. The present study only considers electrical controllers that adjust the synchronous

speed of the generator, rather than mechanical controllers such as pitch and yaw adjustment,

which cannot be used as control strategies on the VAWTs. Two types of controllers are

FIG. 6. Illustration of how the power coefficient Cp varies with a piecewise linear increase wind velocity.
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examined: (i) constant rotational speed, or constant-x and (ii) ideal tip speed ratio, or ideal-
TSR. The amount of total energy extracted by a VAWT in an urban environment using each

type of controller is quantified.

1. Constant rotational speed controller

The constant-x controller drives the turbine rotor at a fixed speed regardless of variations

in the incoming wind speed. Typically in this design, the generator is directly coupled to the

power grid, which causes the generator speed to lock to the frequency of the power line. The

actual speed of the turbine rotor is then determined by the gear ratio of the drive train connect-

ing the turbine and generator as illustrated in Figure 7. For purposes of the present study, it is

assumed that the gear ratio can be adjusted to achieve any desired x. Once set, the turbine is

forced to spin at the prescribed x, unless the gear ratio is readjusted. In this manner, the con-

stant x controller is considered to be the most practical and simplest type of wind turbine

controller.

With a constant-x controller, the TSR of the turbine is inversely proportional to the incom-

ing wind speed. Therefore, variations in the wind speed cause the wind turbine to deviate from

its most efficient operating point. The current operating point of the turbine (on a Cp versus

TSR plot) at any given time, and the amount of energy being captured, can be determined by

setting the angular acceleration term in (14) to zero, i.e., dx=dt ¼ 0. Since the inertia of the

turbine remains constant in this type of control strategy, the applied torque (TL) is equal to the

current aerodynamic torque (Q). The latter is calculated based on the BEM method as described

in Section II C 1 using the real-time wind speed as input. Once TLðtÞ is calculated as a function

of time, the total energy captured by the turbine is simply the power integrated over the time

period of interest, E ¼
Ð

x � TLðtÞ dt. Interestingly, an optimal x exists for each time period that

yields the maximum amount of energy captured using a constant speed controller. This idea is

explored further in Section III A.

2. Ideal tip speed ratio controller

The ideal-TSR controller provides active control of the turbine, allowing the turbine to

respond instantaneously to wind gusts thereby extracting the maximum amount of energy avail-

able from the wind. This type of controller instantaneously adjusts x in response to variations

of the incoming wind speed to ensure continuous operation at the ideal TSR setting of the tur-

bine. In practice, variable speed operation is achieved by power electronics that continuously

switch the connection between the generator and grid to change the synchronous speed of the

generator independently of the frequency of the grid. The digital control signal is supplied by a

microprocessor that has been programmed with the response characteristics of the specific tur-

bine. Alternatively, one might be able to achieve the same effect using a continuous variable

transmission system.6,13

The ideal-TSR control method regulates the rotational speed of the turbine to maintain an

ideal TSR setting that yields the maximum Cp at every given moment in time. In the present

study, the electronics are modeled using a proportional feedback control strategy, as illustrated

in Figure 8, where Kp represents the proportional gain constant. A realistic controller is unable

to instantaneously track fluctuations in the wind speed, due to the gain constant (Kp) of the con-

troller and the inertia (I) of the turbine which combine to produce a time lag in the response.

The following methodology was used to determine the total energy captured over any given

FIG. 7. Block diagram of constant rotational speed controller.
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time period. First, the dynamics of the system (controller and turbine) is written in the Laplace

domain by following equation:

x tð Þ
xi
¼ Kp

Isþ Kp
; (15)

where xðtÞ is time varying rotational speed of the turbine and xi is the ideal rotational speed

of the turbine. Using real-time wind speed data as input, the ideal TSR, ideal rotational speed

(xi), and maximum Cp (as well as maximum aerodynamic torque Q) are determined as a func-

tion of time from the BEM method described in Section II C 1. The time-varying rotational

speed of the turbine xðtÞ is calculated from the ideal rotational speed and substituted into

Equation (15). The loading torque TLðtÞ is subsequently calculated by solving Equation (14),

and multiplied by xðtÞ to obtain power, which is then integrated over the time period of interest

to yield the total energy captured.

III. RESULTS

The transient numerical model is applied to an example VAWT in order to examine the time

response of the turbine to gusty winds characteristic of that in a suburban/urban environment. The

total energy captured over the duration of a full year in operation is quantified for two different

types of controllers (constant-speed and ideal-TSR). The wind turbine configuration used to gener-

ate the results consists of an eggbeater Darrieus-type turbine having three blades based on the

NACA 0015 airfoil shape with a chord length of 9 cm. The solidity of the wind turbine is 0.3; the

height measures 2 m; and the maximum radius measures 1 m. The wind turbine is subjected to two

sets of actual wind speed data: (i) sonic anemometry data collected from a suburban neighborhood

in Utah’s Salt Lake Valley from 14 to 16 June, 2005 and (ii) cup and vane anemometry data col-

lected during 2013 from a MesoWest wind monitor located on the roof of the William Browning

Building (WBB) on the University of Utah campus. The sonic data were sampled at 10 Hz and

subsequently block averaged into 10-min intervals for purposes of the present analysis. This selec-

tion of time interval is typically used as the standard in wind engineering.22,38 The cup and vane

data are recorded as 5-min averages along with the corresponding 5-min gust value. These data

were subsequently used in the gust model presented in Section II B to generate a piecewise contin-

uous time series of wind speed, which was then used as input to the transient turbine model. In

order to effectively quantify the wind turbine performance in gusty conditions, the Turbine Energy

Coefficient parameter (CE) is defined as the ratio of the total energy captured by the wind turbine

over a time period of interest to the total energy available within the gusty wind,

CE ¼
Ð T

0
P tð Þ dtÐ T

0
1
2
qAV3 dt

: (16)

As such, CE can be thought of as the true efficiency of the turbine.

A. Constant rotational speed controller

The main question when employing a constant-x controller is what rotational speed should

be used. In the steady-state conditions, the obvious choice is to operate the turbine at a fixed

FIG. 8. Block diagram of ideal tip speed ratio controller.
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speed corresponding to the peak Cp value. For example, considering the turbine performance

results in Figure 6 for a steady-state wind speed of �V ¼ 5 m/s, the best performance would be

achieved with an optimal TSR of 4.2 corresponding to a peak value of Cp ¼ 0:39. This trans-

lates into an optimal steady-state rotational speed of 200 rpm. The optimal steady-state x
increases as the mean wind speed increases. However, steady-state conditions rarely exist in

reality, especially in the suburban/urban environment. It was shown in Figure 1 that the amount

of available energy in a gusty wind relative to that of a steady-state wind with the same mean

value increases quadratically with the turbulence intensity. McIntosh et al.23 found that in order

to capture the additional energy in a gusty wind, the operating speed of the turbine needs to be

set to a value greater than the steady-state rotational speed. This optimal rotational speed for

unsteady winds is referred to as an optimal overspeed setting (xopt). The value of xopt depends

both on the gust characteristics of the incoming wind as well as the performance characteristics

of the turbine, and must be calculated specifically for the time period of interest in order to re-

alize the highest efficiency. In the present study, a numerical optimization routine based on the

Golden-Section search algorithm was used to find xopt for each time period of interest. Based

on xopt, one can calculate the optimal overspeed ratio as TSRopt ¼ xoptR= �V , where �V denotes

the mean wind speed over the time period of interest. When operated at TSRopt, the wind tur-

bine is capable of more efficiently capturing the large amounts of energy contained within the

gusts.

Figure 9 illustrates the relationship between the turbulence intensity level of the incoming

wind (IT) and the optimal overspeed ratio (TSRopt) calculated based on the same data. The

black diamonds represent IT and TSRopt determined over discrete 10-min time intervals from

the sonic anemometry data, while the circles represent IT and TSRopt determined over discrete

24-h time intervals from the MesoWest wind monitor data. More scatter is observed at higher

turbulence intensity because of the longer time intervals used. The solid line denotes a quad-

ratic curve fit to the combined sonic and wind monitor data, and appears to follow faithfully

represent the general trend of the data. The ? in Figure 9 was calculated using a time interval

spanning the full year of 2013 wind monitor data, and falls close to the curve fit line (note that

the ? was not included in the curve fit analysis). This means that a turbine located at the mea-

surement site, with the same physical configuration as that used in the present study, should

have operated at TSRopt ¼ 13:3 in order to extract the most energy possible during 2013 using

a constant-x controller. Since the average annual velocity at the measurement site during 2013

FIG. 9. Influence of turbulence intensity on the optimal overspeed ratio for a constant speed controller. Each point of sonic

data represents a 10-min time interval, while each point of the MesoWest wind monitor data represents a 24-h time interval.

The star (?) was obtained using a time interval spanning the entire year of 2013 MesoWest wind monitor data. The curve fit

is based on all of the data excluding the ?.
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was 2.7 m/s, an optimal tip speed ratio of 13.3 translates into an optimal fixed speed of

xopt ¼ 334 rpm. This high operating rotational speed allows the turbine to capture the energy

contained within the wind gust more efficiently.

The influences of wind velocity, turbulent intensity, and gust frequency on the energy coef-

ficient (CE) of the turbine for a constant-x controller are shown in Figure 10. The data in

Figure 10(a) indicate that with a constant speed controller, the performance of the turbine

degrades as the turbulence intensity of the wind increases. This is as expected since gusty

winds with a high level of turbulence intensity contain more available energy than those with a

lower turbulence intensity (this effectively makes the denominator of CE much larger for gusty

winds with high IT). With a constant speed controller, however, the turbine is not able to

respond to the variations in wind speed, and therefore, is inefficient in capturing the increase in

the available energy in the gusts despite being operated at its TSRopt. Figure 10(a) also indi-

cates that the magnitude of the mean wind speed has a significant effect on the overall perform-

ance of the turbine. At the same level of turbulence intensity, the turbine is able to realize bet-

ter performance in cases with higher mean wind speed. This is due to the effect of the

Reynolds number on the aerodynamics of the turbine blades. Specifically, the lift coefficient of

the airfoil increases with the increasing Reynolds number, which allows the turbine blades to

generate more aerodynamic torque as the mean wind speed increases, thereby increasing turbine

performance. Reynolds number effect on the overall performance of wind turbines has also

been observed in the study by Kooiman and Tullis.19

The relationship between the gust frequency and energy coefficient is illustrated in Figure

10(b). The characteristic gust frequency used in this analysis is the most dominant frequency,

as obtained from a Fast Fourier Transform of each 10-min interval. The lowest frequency in

the transform corresponds to the fundamental frequency, i.e. (600 s)�1 or 1:67� 10�3 Hz. The

second harmonic in the transform corresponds to 3:33� 10�3 Hz, and so on. This explains why

the data are organized into discrete frequency bands. For a given mean wind speed, no clear

relationship between the gust frequency and the energy coefficient is observed. As the mean

wind speed increases, CE increases independent of the gust frequency due to Reynolds number

effects as discussed earlier. The present results suggest that the turbulence intensity and mean

wind speed are the primary factors affecting turbine performance when using a constant-x con-

troller, whereas the frequency content of the gusty wind is relatively insignificant.

B. Ideal tip speed ratio controller

In the ideal tip speed ratio controller, inertial effects play an important role on the response

behavior of the turbine. In order to obtain a realistic value of the moment of inertia of the tur-

bine, a Computer-Aided Design (CAD) model of the VAWT was created using Solidworks 3D

2014. The blades were assumed to be made of fiberglass; and the turbine hub and support struc-

ture were assumed to be made of Aluminum 2024. Based on the CAD model, the wind turbine

FIG. 10. Wind turbine performance using a constant speed controller. Effect of (a) turbulence intensity and (b) gust fre-

quency on the turbine energy coefficient.
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mass moment of inertia is determined to be about 10 kg m2. The actual operating speed of the

turbine is allowed to vary in time according to the governing equation provided in Section

II E 2. Due to the effect of the gain constant in the feedback controller and the turbine inertia, a

time lag exists between the wind speed and the turbine rotational speed. This time lag defines

the response time Tr of the turbine. Figure 11 shows a sample 10-min time interval from the

sonic data indicating an approximate time lag of 9.3 s (Tr ¼ 9:3 s) between the desired rota-

tional speed and the actual rotational speed. Note that a gain constant of Kp ¼ 1 was used. The

time lag was determined based on the cross correlation between the ideal (desired) and actual

rotational speeds. Naturally, Tr depends on both the mass moment of inertia of the turbine as

well as on the value of Kp used. The effect of Tr on turbine performance is explored below.

The present analysis follows the work of McIntosh et al.,23 which defined the nondimen-

sional turbine response parameter (f) as the ratio of the turbine response time Tr to the charac-

teristic gust time scale Tg, i.e., f ¼ Tr=Tg. McIntosh et al.23 further defined the gust time scale

as the inverse of the characteristic gust frequency (fc), taken to be the frequency containing

99% of the power in the wind. Note that an increase in f means the turbine is less responsive

to wind gusts (in fact, for the constant-x controller, f!1). Ideally, to capture as much

energy in the gusts as possible, one desires a low f value, i.e., f	 1. Figure 12 shows the

effect of the turbine response parameter on turbine performance for the case of the ideal tip

speed ratio controller. In Figure 12(a), the data are parameterized based on the mean wind

speed; while in Figure 12(b), data are parameterized by turbulence intensity. Each point in the

figures represents a discrete 10-min time interval from the sonic data. Importantly, in order to

FIG. 11. Sample 10-min interval of sonic data illustrating the time lag between the desired and actual rotational speeds of

the turbine. The time lag for this interval was determined to be about 9.3 s, based on an analysis of the cross-correlation

between the desired and actual speeds.

FIG. 12. Effect of turbine response parameter on performance using an ideal tip speed ratio controller. (a) Parameterization

by mean wind speed for a narrow band of turbulence intensity in the range 0:1 < IT < 0:12. (b) Parameterization by turbu-

lence intensity for a narrow band of wind speed in the range 3:9 < �V < 4:1 m/s.
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isolate the effects of mean wind speed, the data in Figure 12(a) are restricted to a narrow turbu-

lence intensity band of 0:1 < IT < 0:12. Similarly, to isolate the effects of turbulence intensity,

the data in Figure 12(b) are restricted to a narrow wind speed band of 3:9 < �V < 4:1 m/s. The

increase of CE with mean wind speed noticed in Figure 12(a) is again attributed to Reynolds

number effects.

The data suggest two general regimes: (i) constant performance, i.e., CE independent of f
for low values of f and (ii) degrading performance, i.e., CE decreasing with f for high values

of f. The transition point appears to be independent of mean wind speed and occurs near a crit-

ical value of fc � 0:3, as denoted by the vertical dashed line in Figure 12(a). The present

results support that of McIntosh et al.;23 however in the study by McIntosh et al.,23 CE

decreases more dramatically and near linearly compared to CE in the present study.

Figure 12(b) illustrates the impact of turbulence intensity on the turbine energy coefficient.

For slower responding turbines (f > fc), high levels of turbulence intensity cause a degradation

in performance, in agreement with the results for the constant-x controller. For turbines with a

fast response time (f � fc), turbulence intensity has less effect on performance. Though the

data clearly suggest that CE increases slightly with decreasing IT. Therefore, maximum effi-

ciency is achieved with the ideal tip speed ratio controller during winds with mild turbulence

intensity levels (less than 10%) when the response parameter of the turbine is less than the crit-

ical value (i.e., f � fc). These results are significant for design purposes and can help to set an

upper bound on the maximum efficiency achievable with a given turbine configuration.

Knowledge of fc for a given turbine located at a particular site can be used to set target specifi-

cations on the turbine mass moment of inertia and the gain constant of the controller in order

to achieve the best performance possible in gusty winds.

The effect of the characteristic gust time scale on turbine energy coefficient is illustrated in

Figure 13. The data in this plot are restricted to a narrow band of mean wind speed

(7:1 < �V < 7:3 m/s) and a narrow band turbulence intensity (0:13 < IT < 0:15), in order to iso-

late the effect of Tg. For fast-response turbines (low value of f), data collapse into a single pla-

teau region indicating that the characteristic gust time scale has no impact on the turbine energy

coefficient for fast-response turbines. This is as expected, highly responsive turbines are able to

faithfully track even small fluctuations in the wind, and efficiently capture a significant amount

of the energy available in all gusts. The data, however, peel away from the plateau region at f
values that appear to depend on Tg. For example, winds with a lower Tg have a longer plateau

region (i.e., higher fc). Recall that fc identifies the point at which the plateau region ends and

performance degrades. The data in Figure 13 suggest that fc decreases with increasing Tg.

Therefore, using the current definition of Tg, a universal fc cannot be identified from the present

FIG. 13. Efficiency as a function of the turbine response parameter for three cases with different characteristic gust time scales,

Tg. In each case, the mean wind speed and turbulence intensity are restricted to a narrow range of 7.1 m/s< �V < 7.3 m/s and

0.13< IT< 0.15, respectively, in order to isolate the effect of the gust time scale.
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data. In the present study, Tg is defined as the inverse frequency containing 99% of the total

energy in the wind. Other ways of defining the characteristic gust time scale may lead to uni-

versal behavior, and is left as a task for future work.

C. Controller comparison

Although turbine efficiency (referred to herein as the Turbine Energy Coefficient, CE) is an

important quantity for characterizing the performance of a turbine, ultimately one would like to

know the total amount of energy captured by the turbine during a time period of interest. This

was done using the full year of 2013 MesoWest wind monitor data for the two types of control-

lers: ideal-TSR and constant-x. For the ideal-TSR controller, the turbine moment of inertia and

proportional gain constant are set to 10 kg m2 and 1, respectively. For the constant-x controller,

three test cases were performed. In test case 1, the turbine is operated at a steady-state x based

on the annual-averaged mean wind speed and the TSR value corresponding to the peak in the

steady-state Cp curve. This is referred to as the “naive” constant-x controller because it does

not take advantage of the increased energy available in the wind gusts, but only utilizes infor-

mation about the annual-averaged mean wind speed, which was 2.7 m/s at the measurement site

for 2013. In test case 2, the turbine is operated at its optimal overspeed, where xopt is calcu-

lated from the full year of data (this test case corresponds to the ? in Figure 9). In test case 3,

the optimal overspeed setting is adjusted on a daily basis over the course of the year. This may

or may not be feasible in practice, but is presented here to demonstrate the potential perform-

ance gains if one could adapt to variations in the daily averaged turbulence intensity. The rota-

tional speed of the turbine used in test case 1 and 2 are 106 rpm and 334 rpm, respectively. The

high rotational speed of 334 rpm for test case 2 allows the turbine to take advantage of the

increased energy in the wind gusts, which are characterized by a high turbulence intensity

(IT 
 0:75) when averaged over the entire year, as shown in Figure 9. In test case 3, the rota-

tional speed varies from 45 rpm to 480 rpm as the optimal overspeed setting is adjusted daily.

Figure 14 shows the results from the comparison. More than an order of magnitude differ-

ence exists between the amounts of energy extracted by the turbine using the ideal-TSR con-

troller versus that of the naive constant-x controller. By simply operating at an appropriate

overspeed setting based on actual wind gust information at the site, one is able to capture six

times the energy of the naive controller. Operating at an optimal overspeed allows the turbine

to harvest the energy contained within the gust more efficiently. Having the capability of

adjusting the optimal overspeed setting on a daily basis, rather than using a fixed overspeed for

the entire year, allows the turbine to capture an additional 27% more energy. As expected, the

FIG. 14. Total energy captured by the turbine during the year 2013 using the constant speed and ideal tip speed ratio

controllers.
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ideal-TSR controller provides superior performance, since the turbine is capable responding

instantaneously to individual wind gusts. In 2013, the amount of energy captured by the ideal-

TSR controller is nearly thirteen times greater than the naive controller. This ideal-TSR control-

ler allows the turbine to capture an additional 106% and 62% more energy compared to the tur-

bine controllers used in test cases 2 and 3, respectively. The data indicate that a small turbine

located at this site could harness as much as 1300 MJ (360 kWh) of energy for the year of 2013

despite the low annual average wind speed, compared to about 100 MJ predicted by siting based

on the annual-averaged wind speed.

IV. CONCLUSION

The present study focuses on the performance characteristics of a VAWT in response to

gusty winds. A numerical modeling approach is developed to study the efficiency and total

energy captured by a VAWT using two different types of system controllers: (i) constant rota-

tional speed controller and (ii) ideal TSR controller. One of the main features of the study is

the use of a full year of data in the performance analysis. Another important feature of the

study relates to exploring the effect of turbulence intensity on the turbine performance.

The numerical modeling approach utilizes the actual wind time series as input data to the

semi-empirical BEM in order to calculate aerodynamic torque and rotational speed as a func-

tion of time. Wind speed data were obtained from a sonic anemometer and cup and vane ane-

mometer located at two sites in Utah’s Salt Lake Valley characterized as suburban and urban,

respectively. The sonic anemometer recorded the three components of the velocity vector at a

sampling frequency of 10 Hz; while the cup and vane anemometer recorded the mean and maxi-

mum horizontal wind speed during consecutive 5-min intervals. In order to be compatible with

the numerical framework, the discrete 5-min averaged cup and vane anemometer data were

converted into a piecewise continuous time series using a gust model that successfully repro-

duced the large scale features of the wind signal. Validation with the sonic anemometry data

showed that the gust model, while unable to track all of the instantaneous features of the wind

signal, is capable of predicting the correct available energy to within 4%, which is considered

acceptable for purposes of the present study.

Wind data from the combined sites demonstrate that the amount of available energy in a

gusty wind, relative to that of the mean wind, increases quadratically with turbulence intensity.

This provides motivation for striving to harness the energy contained in wind gusts and pro-

vides an upper bound on the amount of energy available to be harvested. For both types of sys-

tem controllers, the efficiency of the turbine was found to be strongly dependent on turbulence

intensity as well as the mean wind speed. The latter is due to Reynolds number effects on the

aerodynamics of the flow over the turbine blades, i.e., higher chord Reynolds numbers lead to

the generation of more aerodynamic torque by the airfoil blades. The effect of gust frequency

on turbine efficiency was observed to be insignificant.

For the case of the ideal TSR controller, turbine efficiency was observed to plateau to a

maximum value when the nondimensional turbine response parameter f dropped below a criti-

cal value fc. In this regime (f < fc), the turbine responds quickly to fluctuations in the wind.

As the turbine response parameter increases above the critical value (f > fc), the turbine is no

longer able to closely track the gusts, and efficiency drops. Unfortunately, the value of fc was

found to be nonuniversal. Results indicate that fc decreases as the characteristic gust time scale

increases. In the present study, the characteristic gust time scale is defined as the inverse of the

frequency containing 99% of the energy in the wind. An alternative definition for the character-

istic gust time scale may lead to a universal value of fc, though this has yet to be determined

and is suggested as future work. This has important practical ramifications, because a universal

fc value would allow engineers to calculate a target value for the turbine response time Tr that

would guarantee operation in the high efficiency regime. Based on the target specification for

Tr, the mass moment of inertia of the turbine and proportional gain constant of the controller

can then be sized appropriately for a given site.
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For the case of the constant-speed controller, it was shown that the turbine should be oper-

ated at an overspeed setting xopt based on the turbulence intensity of the incoming wind in

order to capture as much energy as possible. Using an optimal overspeed setting allowed six

times the energy to be captured during the year 2013, compared to the energy captured using a

fixed speed based naively on the annual average wind speed for 2013. An additional 27% more

energy could be captured if the optimal overspeed setting was adjusted on a daily basis. The

amount of energy captured by the ideal-TSR controller for the year 2013 was nearly thirteen

times greater than that of the naive constant speed controller, and nearly double the energy cap-

tured using the daily adjusted optimal overspeed controller. This is significant because the con-

cept of an ideal-TSR controller may provide the difference necessary in order to make wind

technology viable in some urban areas, whereas a turbine operating with a constant-x controller

would not be capable of providing enough energy to make the investment worthwhile. This

would be especially true in areas where the annual-average wind speed may be low, but large

wind gusts are common.

Note that the present implementation of the numerical model employs static airfoil data. It

is well known that the lift and drag forces acting on an airfoil undergo hysteresis in unsteady

wind conditions. Dynamic stall data exist for a few airfoil shapes.9,31 The study by Schuerich

and Brown31 indicates improved simulation results of VAWT performance with numerical mod-

els that incorporate the effect of dynamic stall. This has found to be especially true for helical

turbines, and to a lesser extent, Darrieus turbines.31 Including dynamic stall data in the present

modeling scheme is not expected to change the overarching conclusions of this work, but may

provide a more accurate evaluation of the percent increase in performance using an optimal

overspeed setting versus the ideal TSR controller. Future experimental measurements of actual

turbine performance during gusty wind conditions are also warranted to confirm the numerical

results.
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APPENDIX: GUST ENERGY COEFFICIENT MODEL CALCULATION

Expanding the numerator of (1) leads to the following expression:

GEC ¼

1
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Note that the first term in (A1) reduces to unity, since the time average of the mean wind speed is

simply the mean wind speed, i.e., �U remains independent of time over the time interval 0 � t � T.

Additionally, the second term in (A1) cancels, since the time average of the turbulent wind, by

definition, is zero, i.e., u0 ¼ 0. Finally, the definitions of turbulence intensity (IT) and skewness

(Su) are introduced,
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IT ¼
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Su ¼
1
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0

u03dt

r3
u

; (A3)

where ru denotes the standard deviation of the wind speed. Substituting these definitions into (A1)

yields the final expression

GEC ¼ 1þ 3 I2
T þ Su I3

T : (A4)
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Wind forecasting plays an important role in the economic benefit and system

reliability of wind turbine power generation. The goal of the present study is to

investigate different forecasting methods that can be used to improve the amount of

energy captured by a small-scale vertical axis wind turbine (VAWT) operating in a

gusty wind environment typical of an urban/suburban area. Four forecasting meth-

ods are studied in the present research: Persistence Method, Modified Persistence

Method, Autoregressive Moving Average (ARMA) model, and Weather Research

and Forecasting (WRF) model. The forecasting models are used to predict the wind

conditions and optimal rotational speed of VAWTs located in Oklahoma City for

data collected in 2009. In all cases, a constant rotational speed controller was used

with a forecasting horizon of 1 day. The results indicate that a 5% increase in accu-

racy of the wind forecast could increase the total amount of energy captured by the

VAWT by as much as 13%. The results also indicate that the use of a tuned speed

adjustment factor (AF) in the modified persistence method improves the overall

performance of the VAWT by as much as 6% compared to the persistence method.

The value of AF was found to be site-independent and linearly proportional to the

annual average wind speed. For the ARMA model, there exists an optimal amount

of training data and forecasting horizon that results in minimal error when the fore-

casting data are compared to the actual data. For each of the sites investigated, the

modified persistence method appears to slightly outperform the persistence,

ARMA, and WRF models. In all cases, the forecasting models allow the VAWT to

capture approximately 78%–85% of the optimal amount of energy that could be

generated assuming the actual wind data were known in advance. The economic

viability of the VAWT is also examined by comparing the Levelized Cost of

Energy (LCOE) for the VAWT with the national electricity unit price. The LCOE

of the system is competitive with the national electricity unit price at the sites where

the annual average wind speed is 4.3 m/s or greater. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978304]

I. INTRODUCTION

The deployment of wind turbine technology around the world has increased considerably

in the past few decades.17,29,37 Wind power output from a wind turbine is dependent on wind

conditions that vary with time depending on regional weather patterns and type of landscape.40

This, in turn, affects the operation of the utility system, such as regulation/loading following,

schedule planning or unit commitment.18 An accurate wind forecasting method provides one

way to overcome many of these problems. For example, accurate wind speed prediction pro-

vides valuable information for the wind turbine controller and allows for the wind turbine to be

well adjusted to increase wind power generation and reduce reverse capacity.4 In addition, the

accurate forecast of wind speed and power is extremely helpful in optimizing the wind turbine

operation with a significant penetration level from the wind that allows for minimal operating

cost and maximal system reliability.25,37,40 In a study performed by Fabbri et al.,14 it is
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suggested that the error prediction cost would be as much as 10% of the total income from sell-

ing wind energy. Considerable research over the last two decades has been conducted on fore-

casting wind conditions for wind turbine applications.24,31,37,38,43 Theoretically, there should be

no difference in the forecasting methods used for applications involving horizontal axis wind

turbines (HAWTs) versus vertical axis wind turbines (VAWTs); however, the majority of the

prior research has focused on applications of large HAWTs. It remains to be determined how

wind forecasting could help in improving the power performance of small VAWT applications.

It is hypothesized in the present study that accurate wind forecasting accompanied by daily

adjustment of the rotational speed of the turbine could enhance VAWT performance compared

to operation at a fixed rotational speed based on the annual average wind speed.

Several wind forecasting techniques have been developed and reported over the years, with

most falling into two main categories: a statistical approach and a physical approach. The statis-

tical approach is based on a training procedure that uses the difference between the actual data

and the predicted data in order to determine the coefficients in a mathematical model. This

approach is relatively inexpensive and provides fairly accurate results for short-term forecast-

ing.21,40 The physical approach uses a parameterization based on the physical description of the

atmosphere, such as terrain, pressure, and temperature to estimate the future wind condition.5,40

Models developed using this approach are often rendered on a supercomputer and are computa-

tionally expensive but can provide accurate long-term forecasts.40 Besides the two main

approaches mentioned, other methods have been developed recently for the application of wind

prediction, including the deterministic method and artificial neural networks (ANNs). In a study

performed by Drisya et al.,9 a new deterministic forecasting method was developed to forecast

short term prediction of the wind speed at locations where the wind speed dynamic was rela-

tively chaotic. The results show that the model accurately forecasts the wind speed up to a 3-h

forecasting horizon. In addition, with the development of artificial intelligence recently, a new

artificial neural network method has been developed to forecast wind speed and power for wind

turbine applications.4,5,38 The ANN model consists of a number of layers composed of artificial

neurons. The learning algorithm governing the connection between neurons in the network is

obtained through a training process. The weight applied to each artificial neuron is continually

adjusted through the training process to improve the forecasting accuracy and generalize abili-

ties.4,38 The ANN can forecast wind speed over a range of forecast horizons from hours to

years depending on the application.4,38 The present study only examines models of the first two

types mentioned: (i) statistical approach and (ii) physical approach.

The simplest method in the statistical approach is the Persistence Model (PM), which

assumes that the future value is the same as the current one.40,47 PM is fairly accurate for short-

term wind speed forecasting, such as less than 10 min.47 However, in cases with highly variable

winds, the accuracy of PM degrades rapidly when the time scale of forecasting increases. PM is

not only the simplest statistical type model but also the most economical to use in wind speed

and power forecasting.5 Electric utility and real-time grid operation use PM for ultra short-term

forecasting from a few minutes to less than an hour.5 Even though PM may not be the best fore-

casting model for wind speed and available power, it is commonly used as a reference for evalu-

ating the performance of more sophisticated forecasting methods.5,40,47 A new forecasting

method is considered to be “advanced” and worth implementation, if it outperforms PM. In a

study conducted by Milligan et al.24 investigating different forecasting methods for a wind farm,

PM was used as a reference for evaluating the performance of an Autoregressive Moving

Average (ARMA) model. Calculation of the root mean square error suggested that for the first 2

h, PM forecasted nearly as accurately as the developed ARMA model.

Among many other forecasting models, ARMA is the most popular in the time-series based

approach to predict the future value of wind speed and power.5,40 Some variations from this model

include the Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive

Integrated Moving Average (SARIMA), and fractional Autoregressive Integrated Moving Average

(f-ARIMA). The use of these models varies depending on the purpose of the application and fore-

casting time horizon, ranging from second/minute to week/month.13,18,40,47 For example, Cadenas

and Rivera4 compared two different techniques for wind forecasting in the South Coast of the state
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of Oaxaca, Mexico, in 2007. The study was performed using SARIMA and Artificial Neural

Network (ANN) methods applied to a time series based on 7 years of wind speed measurements.

The final results suggest that the SARIMA model provides better sensitivity to the prediction of

wind speed than the ANN model. It is worth mentioning that the model forecasted the monthly

averaged wind speed, which represents a very long-term forecasting horizon. This long forecasting

horizon produces useful information for long-term planning and development, such as resource

allocation, economics viability, or maintenance planning. However, it yields little or no informa-

tion on the short-term variation of the wind speed (such as minute to day), which is particularly

important for wind turbine operation and decision making, such as generator on/off decision,

reverse requirement, or regulation action.5

Much of the research on wind speed forecasting with application to wind turbines focuses

on short-term forecasting.13,18,35,43 A variety of ARMA models have been developed and stud-

ied over the years with differing results. Each model has its own advantages and limitations

that are imposed by the model parameters. For example, Erdem and Shi13 examined four differ-

ent ARMA-based approaches for short-term forecasting wind speed and direction: component

ARMA model, traditional/linked ARMA model, vector autoregressive (VAR) model, and

restricted VAR model. The models were used to forecast the hourly wind speed and direction

for two different wind observation sites in North Dakota in 2011. The results suggested that the

component ARMA model was better in predicting the wind direction than the traditional/linked

ARMA model, whereas the opposite was observed for wind speed forecasting. Similarly, Torres

et al.43 used the ARMA model to predict the hourly averaged wind speed for 10 h advanced

and compared it with the persistence model. The time series data were transformed and stan-

dardized before incorporating into the ARMA model. The results indicate that acceptable accu-

racy (root mean square error less than 1.5 m/s) may only be achieved for short-term forecasting.

The results also indicate that the persistence model outperforms the AMRA model for the first

hour, while the opposite was observed for 10 h advanced. Note that most of the research to

date using the ARMA-based approaches for wind turbine applications has focused on forecast-

ing the wind speed, rather than forecasting the appropriate turbine settings to maximize wind

power/energy captured.13,31,43 In addition, the research on wind forecasting has been mainly

used for large horizontal axis wind turbine applications.18,44 The authors are not aware of any

literature describing wind forecasting applied to small vertical axis wind turbines, especially

with regard to applications in gusty wind environments.

One of the challenges with ARMA-based models is optimizing the amount of training data

required and determining the optimal forecasting horizon.24 Often in the literature, the training

period and forecasting horizon used for an ARMA model are not well justified or simply

selected randomly.13,18,22,43 For example, in a study performed by Kavasseri and Seetharaman,18

the f-ARIMA model was used to forecast the day-ahead wind speed and power. Four weeks of

wind speed data were used in the training process of the model, and the wind speed and power

were forecasted for an interval of 24 h and 48 h. The results indicate that the f-ARIMA model

improved forecasting accuracy by 42% compared with the persistence model. However, the

research did not mention how the training data or forecasting horizon were selected, as these

could potentially affect the forecasting accuracy. Similarly, the study performed by Milligan

et al.24 compared the forecasting accuracy of the ARMA model to the persistence model. The

study forecasted hourly averaged wind speed for 6 h advanced. The model was trained using a

range of training periods; however, the results from only two training periods (of 2 weeks and 3

weeks) were presented. It is worth noting that the optimization method used to select the training

period was not clearly stated or presented. The results also suggest that the ARMA model is site

dependent, i.e., there exists one optimal ARMA model for each site.

Recently, the Weather Research and Forecasting (WRF) model has been used to forecast

wind speed and wind power for wind turbine applications.7,8 The WRF model is an efficient

and flexible simulation program, with grid resolutions from 1 to 10 km, which has been

designed for a wide range of weather forecast and research applications.19,23 The WRF model

is maintained and supported for broad community use with over 30 000 users in over 150 coun-

tries.45 Clifford7 used the WRF model to forecast the near-surface wind speed and available
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wind power in the Altamont Pass wind farm near Livermore, California. The results indicate

that the WRF-modeled wind speeds were close to those observed.

One important aspect that needs to be considered when deploying wind technology is eco-

nomic analysis. The studies on the economic analysis of wind energy that have been conducted

over the years mainly focus on wind farms containing large horizontal axis turbines.15,27,36

There is a lack of research on the economic analysis of small scale wind turbines, as would be

used in urban areas. The unit cost of electricity from a wind turbine is affected by many factors

that can be grouped into two main categories: (1) capital cost and (2) operating and mainte-

nance cost.15,27 The capital cost often consists of the system/module cost, balance of system

(BOS) cost, and financial cost.15,27 The wind turbine system cost consists of the cost associated

with the turbine blades, rotor, and generator. BOS cost consists of the equipment required to

successfully generate power and provide electricity for usage. For wind turbine applications,

BOS often consists of an inverter, electrical controller, battery storage, wiring, installation,

etc.15,27 For large horizontal axis wind turbines, the turbine, BOS, and financial costs account

for approximately 68%, 23%, and 9% of the total capital cost, respectively.27 It is expected that

these percentages will change significantly for small scale wind turbines. For example, BOS

cost comprises about 55%–60% of the total capital cost of a small residential photovoltaic sys-

tem.15 The operating and maintenance cost of large horizontal axis wind turbines typically

ranges between $0.01/kWh and $0.025/kWh,15 depending on the location.

One of the most common methods used in economic analysis of renewable energy, includ-

ing wind, solar, biomass, etc., is the Levelized Cost of Energy (LCOE).1,15,27,36 The LCOE rep-

resents the price at which energy must be sold in order to reach the break-even point in the

investment over the lifetime of the technology. For large horizontal axis wind turbines, the

LCOE ranges between $0.06/kWh and $0.14/kWh for on-shore wind turbines and $0.13/kWh

and $0.19/kWh for off-shore wind turbines.15 Ayodele et al.1 performed an economic analysis

of a small-scale wind turbine for power generation in Johannesburg, South Africa, using the

LCOE method. The analysis investigated a wide range of wind turbines from 1 kW to 60 kW

rated power. The results suggested that the LCOE varies depending on the size of the turbine.

The most cost effective turbine in the study exhibited a LCOE value ranging from $0.25 to

$0.33/kWh. It is worth mentioning that this LCOE value could change significantly for similar

sized wind turbines in the U.S. when factoring in the production tax credit (PTC) and

Investment tax credit (ITC). The PTC and ITC are recent programs approved by the U.S.

Government to support new development of renewable energy technology. The ITC allows con-

sumers to claim back 30% of the total investment, while the PTC allows consumers to claim

back $0.023/kWh of the energy production for wind energy.3

The present study utilizes a numerical modeling approach to investigate different forecast-

ing methods that can be used to improve the total energy captured by a vertical axis wind tur-

bine (VAWT) operating under gusty wind conditions representative of a typical urban/suburban

area. The study is split into two parts. First, the resultant total energy captured by the turbine

over a one-year time frame is measured to identify which forecasting method should be imple-

mented. Second, an economic analysis is performed comparing the cost to implement a VAWT

using the preferred forecasting method versus that expected in the ideal scenario where the

actual wind conditions are known in advance. The results are used to evaluate the economical

benefit of the system and to formulate a recommendation on which condition/location the small

VAWT should be deployed.

II. WIND TURBINE CONFIGURATION

The wind turbine configuration used in the present study consists of an eggbeater Darrieus-

type turbine having three blades based on the NACA 0015 airfoil shape with a chord length of

9 cm. The solidity of the turbine is 0.3. The turbine has a height of 2 m and a maximum radius

of 1 m. This turbine was chosen because (i) data exist to validate the numerical models and (ii)

the size is believed to be appropriate for application in an urban/suburban area, such as on the

rooftop of a residential home or commercial building. In the present study, the turbine
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performance model is subjected to actual wind speed time series as measured at fifteen different

sites in Oklahoma City, USA, in 2009 (see Table I and Figure 1). Data were acquired from

sonic anemometers mounted directly to traffic signals at a height of 9 m. Data were quality

assured in near real time at an interval of 1 min. A detailed description of the experiments can

be found in the study by Basara et al.2

A constant rotational speed (or constant-x) controller is examined in this study. The con-

stant-x controller drives the turbine rotor at a fixed rotational speed regardless of variations in

the incoming wind speed. A detailed description and analysis of the controller can be found in

a preceding paper by Nguyen and Metzger.29 The constant-x controller represents the tradi-

tional type of control strategy and the simplest one to employ in practice. However, because

performance is a strong function of tip speed ratio (TSR), any variations in wind speed can

have a negative impact on energy captured in the case of a constant-x controller. The work

presented herein focuses on the application of wind and performance forecasting in order to

enhance the total amount of energy captured.

One of the main considerations when employing a constant-x controller is the rotational

speed at which the turbine should be operated in order to maximize the amount of energy cap-

tured. In the study performed by Nguyen and Metzger,29 an empirical relation was found

between the turbulence intensity (IT) of the wind and the optimal tip speed ratio (TSRopt) of the

wind turbine for the case of a constant-x controller. Turbulence intensity is defined as the stan-

dard deviation of the wind speed divided by the mean wind speed over the time period of inter-

est (IT ¼ rV= �V ). The relationship between IT and TSRopt is illustrated in Figure 2 using both

our previous data from Salt Lake City in 201329 and the data from Oklahoma City in 2009.

Each point in the figure represents a calculation over either a discrete 10-min time interval or a

24-h time interval depending on the site. The turbulence intensity was calculated directly from

the measured wind data, and the optimal TSR was calculated over each interval using the

numerical methods of Nguyen and Metzger.29 For the case of steady winds (IT¼ 0), the optimal

TSR is 4, corresponding to the peak in the power coefficient Cp versus TSR curve; see Figure

5 in Nguyen and Metzger.29 However, as the turbulence intensity increases (i.e., winds becom-

ing more gusty), results indicate that the turbine should be driven at an overspeed, in order to

capture as much energy as possible. The composite data were curve fit to obtain the following

site-independent empirical relation:

TABLE I. Location of sites in Oklahoma City where wind data were acquired. The annual average wind speed and annual

average turbulence intensity were computed for year 2009.

Site name Street address Annual average wind speed (m/s) Annual average turbulence intensity

KSW 101 W Reno Ave. and S Cemetery Rd. 4.95 0.363

KSW 102 SW 5th St. and S MacArthur Blvd. 3.98 0.423

KSW 108 Amelia Earhart Ln and Terminal Dr 4.97 0.349

KSW 109 SE 66th St. and S Shields Blvd. 3.79 0.412

KSW 110 SW 74th St. and State Highway 152 3.94 0.383

KSW 111 J Lee Keels Blvd. and S May Ave. 4.32 0.401

KCB 101 NE 5th St. and N Oklahoma Ave. 3.18 0.404

KCB 110 E Reno Ave. and S Lincoln Blvd. 3.84 0.392

KNE 104 NE 10th St. and N Phillips Ave. 3.75 0.353

KNE 202 NE 18th St. and N Lincoln Blvd. 3.08 0.396

KSE 101 SE 29th St. and S Eastern Ave. 3.75 0.399

KSE 102 Embers Dr and S Sooner Rd. 3.85 0.411

KNW 103 Britton Rd. and N May Ave. 3.84 0.387

KNW 104 River Bend Blvd. and N Council Rd. 4.69 0.372

KNW 107 NW 30th St. and N May Ave. 3.47 0.422
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TSRopt ¼ 14:93I2
T � 0:54IT þ 4:27: (1)

This relation is important because, if one can predict the turbulence intensity of the wind, then

the optimal overspeed can be set according to (1).

In the present study, the constant-x controller is implemented such that the operating rota-

tional speed of the turbine can be adjusted once per day. This forecasting horizon is chosen

because it represents a natural timescale for the wind turbine application. For example, one

needs to consider the practical cost trade-off associated with changing the rotational speed of

the turbine too frequently because of the temporary interruption in energy capture during adjust-

ment that translates into lost energy production. In addition, it is reasonable to expect diurnal

fluctuations in the wind due to the inherent heating/cooling cycles of the atmosphere over the

course of a day. Therefore, the shortest forecasting horizon one might entertain is likely to be

FIG. 1. Location of sites in Oklahoma City where wind data were acquired.

FIG. 2. Influence of turbulence intensity on the optimal TSR for a constant speed controller. Each marker type represents

data from a different site. The solid line represents the curve-fit relation given in (1).
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12 h, while the longest might be a couple of days. A forecasting horizon of 24 h was thus

selected, as an average over this interval. To evaluate this choice, the effect of the forecasting

horizon on the total amount of energy captured by the wind turbine over a full year was exam-

ined at one of the sites. Three forecasting horizons of 12 h, 24 h, and 48 h were investigated.

The amount of energy captured by the wind turbine using forecasting horizons of 12 and 24 h

was nearly equivalent, while that using a forecasting horizon of 48 h was slightly less (by

approximately 6.2%). Based on this result, a forecasting horizon of 24 h was used for all test

cases in the present study.

Figure 3 illustrates the control strategy, showing that an optimal rotational speed xopt exists

for each particular day based on the measured mean wind speed �V and standard deviation rV.

Given �V and IT ð¼rV= �V ), the relation in (1) can be used to determine TSRopt, which then yields

xopt ð¼TSRopt= �V ). This ensures that the maximum amount of energy is captured each day. The

problem with the above strategy lies in the fact that �V and rV must be known in advance in

order to set the optimal overspeed at the beginning of each day. Different forecasting methods

were examined to estimate �V and IT for the next day. An alternative approach of forecasting

the optimal rotation speed directly using knowledge of the past values of xopt was also investi-

gated. Results from both approaches are presented.

A. Wind turbine performance model

The present study utilizes the Blade Element Momentum (BEM) theory to simulate the

aerodynamic performance of the VAWT. The turbine is modeled using a single actuator disk.

A detailed description of the model can be found in our preceding paper, including a validation

that shows good agreement between the model and experimental data (Nguyen and Metzger29).

The BEM model is used to calculate the power coefficient (Cp) and aerodynamic torque (Q) at

each time step in the simulation. Since the turbine is operated at a constant rotational speed

(dx=dt ¼ 0), inertia effects are negligible and a balance exists at all times between the aerody-

namic torque and the applied loading torque from the generator (TL),

Q ¼ TL : (2)

The total energy captured by the turbine is then simply the mechanical power integrated over

the time period of interest, E ¼
Ð

x � TLðtÞ dt ¼
Ð

x � Q dt. The choice of rotational speed x
impacts the value of Q (via the BEM model) as well as E. In the present study, different fore-

casting methods are examined to predict the best rotational speed (x) of the turbine to use for

the next day, based only on information from the current and previous days. Once x is

selected, the BEM model is run for the next day using the exact wind data as input to

FIG. 3. Illustration of the constant-x controller with daily adjustment of the optimal rotational speed, xopt, based on the

daily averaged mean wind speed, �V , and turbulence intensity, r= �V .
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determine the resultant energy captured by the turbine. This procedure is repeated daily over

the full year of operation.

III. FORECASTING MODELS

Four methods of forecasting the wind condition were examined in the present research:

Persistence Model (PM), Modified Persistence Model (MPM), Autoregressive Moving Average

(ARMA) model, and Weather Research and Forecasting (WRF) Model. In all cases, three

parameters (wind speed, turbulence intensity, and rotational speed of the turbine) were fore-

casted for the next day using the available data from previous days, except for the WRF model

which can only predict future wind conditions. For each of the different forecasting methods,

the forecasting parameters were input into the numerical model for the turbine, as described in

Section II A, in order to calculate the amount of energy captured during unsteady winds. Note

that this model does not account for the jump discontinuities expected at the beginning of each

day when the rotational speed is adjusted; instead, the numerical model assumes that the adjust-

ment occurs instantaneously. A full year of data were analyzed to yield good statistical conver-

gence of the results. The output from each model is compared against the ideal case where the

wind time series is known exactly in advance.

A. Persistence model

The Persistence Model (PM), also referred to as the “Native Predictor” model, uses the

simple assumption that the forecasted variable at any future time will have the same value as

the present time.40 The model is governed by the simple equation

Yk ¼ Yk�1; (3)

where Y is the variable of interest to be forecasted (i.e., mean wind speed, turbulence intensity,

and optimal rotational speed of the turbine). In this context, the future time is expressed as

tk ¼ tk�1 þ Dt, where tk�1 represents the present time and Dt ¼ 24 h in the current study. Note

that with PM there are no additional model parameters that need to be determined.

Results from PM are used as a benchmark for testing the improvement of the other forecasting

models.

B. Modified persistence model

Results from several initial tests indicated that the energy captured could be enhanced if

the turbine was operated at a rotational speed that was slightly above the forecasted rotational

speed obtained from PM. This led to the development of the modified persistence method

(MPM). In MPM, an adjustment factor, AF, is introduced as follows:

xMPM ¼ xPMð1þ AFÞ; (4)

where xPM denotes the rotational speed derived from PM, and xMPM denotes the new updated

rotational speed. This formulation of MPM is somewhat similar to the forecast model studied

by Nielsen et al.,30 in that both models introduce a tuned parameter into the Persistence Model

equation. The tuned parameter in the work of Nielsen et al.30 represents a weighting factor

between the current and mean value of the forecasting variable and can be calculated from the

correlation coefficient of the training data, whereas the adjustment factor AF appearing in (4)

represents a multiplicative scaling factor, and, as will be shown, is linearly proportional to the

value of the annual average wind speed. Note that the rationale behind the present formulation

of MPM stems from an observation that the forecasted value for xPM consistently underpredicts

the optimal rotational speed xopt during highly unsteady wind conditions. Therefore, an addi-

tional scaling factor is used to increase the rotational speed above that predicted by PM. Note

that AF constitutes a model parameter, the value of which must be determined prior to
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forecasting. In the present study, AF was tuned based on the annual average wind speed at

each site as described later in Section V B 2.

C. Autoregressive moving average

The Autoregressive Moving Average (ARMA) model is the most popular type of model in

the times-series-based approach to predicting future values of wind speed or power.40 Given a

random, discrete time series with zero mean value, Yk (describing, for example, wind speed

data as a function of time from an anemometer), the ARMA(p, q) method assumes that the

time series can be modeled as

Yk ¼
Xp

i¼1

/i Yk�i þ
Xq

j¼1

hj �k�j þ �k; (5)

where � represents the residual, p represents the order of the autoregressive (AR) process, q rep-

resents the order of the moving average (MA) processes, and ð/1;…;/pÞ and ðh1;…; hqÞ
denote the AR and MA model parameters, respectively. The model parameters are determined

by performing a nonlinear curve fit of (5) to a set of training data, fy1;…; yng, that minimizes

the sum of the square residual,

R2 ¼
XN

k¼1

�2
k ¼

XN

k¼1

yk � ð/1yk�1 þ � � � þ /pyk�pÞ � ðhk�1�k�1 þ � � � þ hq�k�qÞ
� �2

; (6)

where N denotes the sample size of the training data. The numerical method is described in fur-

ther detail in the study by Chatfield.6 The parameters f/i; hjg were calculated for a large set of

(p, q) orders up to (5, 5). From this, the optimal order of the ARMA model was selected based

on the Akaike Information Criterion (AIC) that seeks a model order, yielding a good fit to the

observed data with preference toward low order and few parameters.6 AIC is calculated as

follows:

AIC p; qð Þ ¼ �N ln
R2

N

� �
þ 2 pþ qþ 1ð Þ N

N � p� q� 2

� �
: (7)

The best ðp; qÞ order that minimized the AIC ðp; qÞ value was the one used for that particular

time series. This process was then repeated for each forecasted variable and each time series.

Note, even though the optimization strategy considered orders up to p ¼ 5 and q ¼ 5, the fit

giving the least AIC value typically consisted of an ARMA model of order 1.

Other details regarding the ARMA models used in the present study are described below.

A rolling-origin evaluation with recalibration over the fit period was used, with the initial origin

being set at January 1. A constant fit period equal to the length of the training period was used

for the entire duration of the forecast. Note, the training period varied slightly depending on

site. In this manner, the hold-in samples representing the training data continuously slide toward

the end of the data set, one day at a time, with the last value of the origin being set at

December 30. After each forecasting horizon, the rolling window is updated with the new data,

while the oldest data are pruned from the new window. The least squares regression is per-

formed to calculate the new autoregressive and moving average parameters and orders for the

new window.

One of the most important decisions in optimizing the ARMA model is the selection of the

training period and forecasting horizon. To assist in this selection, a range of training periods

(10–60 days) and forecasting horizons (1–30 days) was examined. The mean absolute error

(MAE) was used to evaluate the quality of the forecast for each combination of training period

and forecasting horizon,
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MAE ¼ 1

~N

X~N

k¼1

jYFk
� YTk

j
jYTk
j ; (8)

where YT denotes the true (observed) value, YF denotes the forecasted value, and ~N denotes the

forecasting horizon. Note that (8) was calculated using only hold-out samples. Furthermore, to

obtain an accurate value of MAE representative of the entire time series, 200 realizations were

used by randomly selecting the origin with a random number generator. The reported MAE
value is then an average over the 200 realizations. The minimum MAE was used as a criterion

to identify the optimal training period and forecasting horizon for each given time series.

Example results are shown in Section V B 3. Once the final order (p, q) and corresponding

parameters, f/i; hjg for i ¼ 1;…; p and j ¼ 1;…; q, were determined for the optimal training

period, the ARMA forecast model (5) could be used to predict the future values of the fore-

casted variable over its optimal forecasting horizon.

As shown in Figure 2, the turbulence intensity of the wind should be considered when set-

ting the optimal rotational speed of a small VAWT. This means that both the mean value of

the wind and the turbulence intensity need to be forecasted. In order to do this, one can con-

struct separate ARMA models for the mean wind and turbulence. Another option is to couple

an ARMA model with an Autoregressive Conditional Heteroskedasticity (GARCH) model to

account for stochastic volatility as described by Taylor et al.42 Neither of these strategies was

used in the present study. Instead, the optimal rotational speed was forecasted directly. In addi-

tion to simplifying the forecasting model, it was observed that this approach yields less fore-

casting error as discussed further in Section V A.

D. Weather research and forecasting model

The Weather Research and Forecasting (WRF) model used in this study is WRF Model

Version 3.7.1. The technical description of this model version is explained in a NCAR technical

report by Skamarock et al.39 The WRF model used the North American Regional Reanalysis

(NARR) input forcing data and United States Geological Survey (USGS) land use dataset with

24 land use categories. The WRF modeling schemes used in this WRF model version are

described in Table II. Four-Dimensional Data Assimilation (FDDA) in the mother domain (12-

km) using upper air and surface observations was used for nudging of the horizontal (U and V)

winds in the planetary boundary layer (PBL) and U, V, T, and Q at the surface, including soil

moisture nudging for the land surface model. Two domains were used in this study with the

outermost domain covering the continental United States (12-km horizontal grid resolution) and

a two-way nested inner domain covering the western U.S. (4-km resolution).

IV. ECONOMIC ANALYSIS MODEL

The Levelized Cost of Energy (LCOE) was used in this research to evaluate the economic

viability of using small VAWTs in Oklahoma City. The LCOE represents the price at which

TABLE II. WRF modeling schemes.

Model physic Model scheme References

Microphysics Morrison double-moment scheme 28

Shortwave radiation Dudhia shortwave radiation scheme 10

Longwave radiation Rapid radiative transfer longwave radiation scheme 26

Cumulus parameterization Kain-Fritsch scheme 16

Planetary boundary layer Asymmetric convective model of version 2 33

Land surface Pleim-Xiu scheme 46 and 34

Surface layer Pleim-Xiu scheme 32
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energy must be sold in order to achieve a break-even investment over the lifetime of the

deployed technology. The LCOE can be calculated as

LCOE $=kWhð Þ ¼
Project Cost½ � � ITC½ � þ

XN

n¼1

AO

1þ DRð Þn �
RV

1þ DRð Þn

XN

n¼1

Ea 1� SDRð Þ
1þ DRð Þn

� PTC½ �; (9)

where ITC represents investment tax credit, PTC represents the production tax credit, AO repre-

sents the annual operating and maintenance cost, RV represents the residual value of the system

based on its end-of-life asset, DR represents the discount rate, Ea represents the annual energy

production of the system, SDR represents the system degradation rate, and n represents the

number of years of the system lifetime. The project cost mainly consists of the cost associated

with the wind turbine system and the Balance of System (BOS) equipment. In this study, the

wind turbine technology is assumed to be connected to an off-grid system also referred to as a

stand-alone system. Off-grid systems are not connected to the electric grid and require the use

of battery tank storage. In this study, the BOS equipment consisted of an electrical controller, a

turbine generator, an inverter, a battery tank, and a forecasting system including instrumentation

to collect wind speed data.

The present LCOE analysis considered a small VAWT designed and manufactured by

QingDao Bofend Wind Power Generator Co. with a rated power of 1 kW. This turbine has a

similar size and equivalent rated power to the turbine used in the rest of the study. The costs

associated with the wind turbine system and BOS were obtained from the wind turbine manu-

facturer and are provided in Table III. The system has an expected lifetime of 20 years. The

annual energy production of the system (Ea) was calculated using the MPM method as

described in Section III B. The residual value of the system at the end of its lifetime is esti-

mated to be 10% of its original price. The system degradation rate is estimated to be 1% of its

efficiency, which is equivalent to the degradation rate of the large HAWT system found in a

study performed by Staffell and Green.41 The discount rate used in the analysis is 3.1%, a stan-

dard discount rate used in many projects related to energy conservation, water conservation,

and renewable energy.20 The Department of Energy (DOE) projects a longterm nominal infla-

tion rate of 0.1% for the 30-year period between 2015 and 2045.20 It is worth mentioning that

the discount rate of 3.1% used in the analysis accounts for the nominal inflation rate over the

next 20 years representing the expected lifetime of the system.

The operating and maintenance cost (AO) used in this analysis is estimated to be equal to

the average AO cost of large HAWTs.27 However, in reality, it is expected that the AO of small

VAWTs would be slightly less than the AO cost of large HAWTs due to the simplicity of the

system. The investment tax credit (ITC) allows consumers to claim back 30% of the total

TABLE III. Description of system project cost.

Component Cost

Wind turbine and generator $1366

Electrical controller $190

Electrical inverter $202

Battery storage $320

Forecasting system $450

Residual value 10% of original value

System lifetime 20 years

Degradation rate 1% efficiency/year

Discount rate 3.1%

AO cost $0.01/kW h
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investment, while the production tax credit (PTC) allows consumers to claim back $0.023/kWh

of the energy production.3 The investment tax credit is subtracted from the total project cost,

while the production tax credit is deducted from the LCOE of the system, as done in Ref. 3.

V. RESULTS

A. Sensitivity analysis

When forecasting is implemented in the operation of a wind turbine, any error in wind con-

dition forecasting can significantly affect the performance of the turbine. A sensitivity analysis

was performed to quantify the amount by which forecasting errors decrease the total energy

captured by the turbine. Note that the forecasting models were not used in the sensitivity analy-

sis. Rather, the values of mean wind ( �V ) speed, turbulence intensity (IT), and optimal rotational

speed (xopt) based on the actual measurement data were used. The true (observed) values were

randomly varied, using a uniformly distributed random number generator, by a set percentage P
ranging from 1% to 20% to obtain the “uncertain” data. For example, the uncertain mean wind

speed on the ith day is given by

~Vi ¼ �Við1þ P �i
�ViÞ; (10)

where � denotes the uncertain variable and � represents a random number between �1 and 1.

Similar expressions can be written for the uncertain turbulence intensity ( ~IT ) and optimal rota-

tional speed (~x). The relation in (10) is meant to mimic errors of a prescribed magnitude in the

forecasted variables. Two test cases were examined for the present wind turbine configuration

to quantify the sensitivity in energy captured to the uncertain variables ~V ; ~IT , and ~x.

In test case 1, ~V , and ~IT for each day were input into the empirical relation (1) in order

to calculate the effective rotational speed (~x) of the turbine, as described in Section II. This rota-

tional speed was then used in the numerical model of the wind turbine in order to calculate the

total amount of energy captured by the wind turbine. Importantly, when running the numerical

model, the turbine is subjected to the true (observed) wind data, but its rotational speed is non-

optimal due to the artificial errors that were introduced into the values of the mean wind speed

and turbulence intensity used to set its rotational speed. Results from test case 1 are shown in

Figure 4(a) for eight different test sites in Oklahoma City. A full year’s worth of data were used

to calculate each data point in the figure. The sensitivity is expressed as an energy ratio, ~E=Etrue,

where ~E represents the energy captured using the non-optimal rotational speed (~x) based on the

uncertain wind data, and Etrue represents the maximum amount of energy that can be captured

using xopt based on the true (observed) values of the wind data. The figure depicts a clear trend

independent of site; namely, as uncertainty increases, the amount of energy captured by the tur-

bine decreases. For a 10% uncertainty in both the mean wind speed and the turbulence intensity,

FIG. 4. Sensitivity of forecasting errors on the amount of energy captured by the wind turbine. (a) Test case 1: artificial

errors are introduced into the mean wind speed and turbulence intensity. (b) Test case 2: artificial errors are introduced into

the value of the optimal rotation speed.
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the amount of energy captured, compared to the maximum possible, has dropped by 6%. When

the uncertainty is increased to 17%, the energy captured drops to about 15%. These results are

encouraging for forecasting in the case of small VAWTs operating in unsteady wind conditions,

especially if the actual forecasting error can be maintained at 10% or less.

In test case 2, the optimal rotational speed xopt is first calculated based on the true

(observed) �V and IT. An artificial error is subsequently introduced into the optimal rotational

speed based on (10) to obtain the uncertain rotational speed (~x). This non-optimal rotational

speed ~x was then used in the transient response model of the wind turbine in order to calculate

the total amount of energy captured by the wind turbine, similar to test case 1. Again, when

running the numerical model, the turbine is subjected to the true (observed) wind data. Results

from test case 2 are shown in Figure 4(b). The trend looks nearly identical to that for test case

1, except with more scatter between the different test sites as the uncertainty increases. In addi-

tion, the sensitivities are noticeably less, meaning that the magnitude of the energy ratio ~E=Etrue

remains closer to 100. The results suggest that forecasting the rotational speed directly may pro-

vide better accuracy and more energy captured than forecasting the wind condition.

B. Forecasting models

1. Persistence model

The ultimate goal of the forecasting model is to enhance the energy captured by the wind

turbine by better forecasting the wind condition and wind turbine’s operating condition.

Therefore, the total energy captured by the turbine is used as a criterion in the research to eval-

uate the quality of the forecasting models. Five out of the fifteen data sets listed in Table I

were selected and analyzed with the Persistence Model (PM). Two test cases were performed

identical to those used in the sensitivity analysis from Section V A. In test case 1, the daily

average wind speed and turbulence intensity were forecasted, while in test case 2, the rotational

speed of the turbine was forecasted directly. Table IV summarizes the amount of energy cap-

tured by the wind turbine during 2009 for the two test cases using the PM forecasting approach.

The percent difference given in the fourth column of Table IV is defined as

Diff¼ (E2PM�E1PM)/E1PM * 100%, where E1 and E2 are the total energies obtained from test

cases 1 and 2, respectively. The results indicate that the approach used in test case 2 yields

about 5% more energy captured, on average over the five different test sites examined. This

would suggest that for the case of unsteady winds, the optimal rotational speed of the turbine

should be forecasted directly, rather than forecasting the wind condition. This result is some-

what expected. In the approach of test case 1, two variables defining the wind condition (mean

speed and turbulence intensity) must be forecasted simultaneously in order to determine the

optimal rotation speed, whereas in test case 2 only one variable (the optimal rotation speed) is

forecasted, which likely results in a lower value of the overall forecasting error. For this reason,

only the approach used in test case 2 will be studied for the remaining forecasting models. In

addition, since there are no tuned model parameters in the PM implementation, results from

PM will be used as the benchmark for testing the improvement of the other forecasting models

discussed in the subsequent Sections V B 2–V B 4.

TABLE IV. Total amount of energy captured by the wind turbine in 2009 using the persistence model of forecasting for

test cases 1 and 2.

Site Test case 1, E1PM (GJ) Test case 2, E2PM (GJ) Diff. (%)

KSW 101 2.669 2.760 3.41

KSW 109 1.318 1.411 7.06

KCB 101 0.714 0.772 8.12

KNW 104 2.643 2.878 5.45

KSE 101 1.334 1.399 4.87
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2. Modified persistence model

When implementing the Modified Persistence Model (MPM) in conjunction with the con-

stant-x controller, one needs to determine an appropriate value for the speed adjustment factor

(AF). A systematic approach was used in the present study in order to find the optimal AF

value, yielding the largest amount of energy captured. In this approach, AF values were varied

from 2% to 30% as discussed in Section III B. Wind data from all of the 15 sites listed in

Table I were examined, which represented a wide range of mean wind speeds and turbulence

intensity values. Figure 5 shows the sensitivity of the energy ratio EMPM/Etrue to the AF value.

Here again, Etrue represents the maximum amount of energy that could be captured by the

turbine if the actual wind conditions were known in advance. As illustrated, a parabolic curve

with a clear maximum value is observed for each data set, suggesting that an optimal site-

specific AF value exists in the MPM model. The results further indicate that MPM can improve

wind turbine performance and enhance the amount of energy captured by as much as 7% when

compared to the PM method of forecasting.

Figure 6 presents a plot of the annual average wind speed versus the optimal AF factors

for each of the 15 test sites. Note that the values of AFopt were selected based on the location

of the peak of each curve in Figure 5. The data appear to follow a linear trend. A linear least-

squares curve fit to the data yields the following empirical relationship:

AFopt ¼ 7:37 V½ � � 17:82; (11)

where ½V� denotes the annual average wind speed. This empirical relationship allows users to

operate the wind turbine at its optimal operating condition when the MPM forecasting model is

implemented. One only needs to estimate the average annual wind speed of the advanced year,

and the optimal AF can be determined from Equation (11). One fixed AFopt value is used for

the entire year. It is worth mentioning that the average annual wind speed of the advanced year

can be estimated using the Persistence Model on the data from the current year or by examin-

ing the wind speed history from previous years, if those data are available.

3. Autoregressive moving average

In both the PM and MPM methods, the implied forecasting horizon is one day in advance,

and only conditions from the previous day are used to make the forecast. The ARMA model,

on the other hand, can utilize the time history of the forecasting variable, and the forecasting

horizon remains to be determined. Therefore, when employing the ARMA model, not only

FIG. 5. The influence of rotational speed adjustment factor (AF) on the amount of energy captured by the wind turbine

when the MPM forecasting method is used. Each set of curves represents a different test site, color-coded based on the

annual average wind speed for 2009 at that site.
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must the (p, q) order of the model be specified, as described in Section III C, but also one needs

to decide on the training period and the forecasting horizon. Figure 7 illustrates the approach

used in the present study to determine reasonable values for the training period and forecasting

horizon at two test sites: KSW 101 and KSW 109. In both cases, the rotational speed of the tur-

bine is the forecasting variable of interest. A wide range of training periods and forecasting

horizons was examined, spanning from 10 to 60 days with a 5-day increment and 1–30 days

with a 1-day increment, respectively. For each training period and forecasting horizon setting,

the mean absolute error (MAE) of the rotational speed as averaged over the full year of data

was calculated.

As illustrated in Figure 7, a trough in the contour plot (dark band) exists where the ARMA

model has the lowest MAE value. It is clear from the figure that the response of the ARMA

model to the amount of training data and forecasting horizon is site dependent. At the KSW

101 site, a training period of 25 days and a forecasting horizon of 5 days (as indicated by the ?
marker) were selected as “optimal.” Note that this “optimal” training period corresponds to the

time period over which the data are correlated, as verified from calculating the autocorrelation

function of the training data (not shown).

Note that because of the way that the daily adjustment of rotational speed was performed

in the numerical model, only integer values (in units of days) for the training period and fore-

casting horizon could be used. At the KSW 109 site, a training period of 30 days and a

FIG. 6. Optimal rotational speed adjustment factor as used in MPM versus annual average wind speed from 2009 at each of

the 15 test sites.

FIG. 7. Contour plot of the mean absolute error as a function of both training period and forecasting horizon for the ARMA

model used to predict the rotational speed of the turbine. (a) Test site KSW 101 and (b) test site KSW 109. The ? marker

indicates the “optimal” training period and forecasting horizon selected for further analysis in the present study.
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forecasting horizon of 5 days were selected. Both selections have MAE values near 18%. Also

noticeable in the contour plots are regions of high MAE in both the lower left corner (short

training period and short forecasting horizon) and upper right corner (long training period and

long forecasting horizon). These results are somewhat expected. When minimal training data

are used, the model is unable to represent the essential features of the forecasting variable, thus

leading to high error in the forecasting result. On the other hand, when the training period is

too long, the model becomes “overtrained,” which tends to smooth out essential features in the

behavior of the forecasting variable, leading to large errors in the forecast. The amount of

energy captured using the ARMA model is shown in Section V B 5 in comparison to the other

forecasting methods.

4. Weather research and forecasting model

Results from the WRF model with 4 km grid resolution were used in the forecasting analy-

sis. Horizontal wind data from the WRF model were obtained at 40.7656� latitude, �111.8427�

longitude, and 1531 m elevation above sea level, whereas the location of the actual wind data

(and assumed placement of the wind turbine) is on the roof of the William Browning Building

(WBB) having coordinates 40.7663� latitude, �111.8477� longitude, and 1465 m elevation

above sea level. This corresponds to differences of approximately 0.34 km on the ground and

66 m in elevation. Figure 8 shows the comparison of wind speed from WRF with that from a

cup and vane anemometer on the roof of WBB over a sample 30-day period in June 2013.

Note that the data from WRF are available in 1-h averaged intervals. There is significant dis-

crepancy in the wind speed magnitude between the data and model. For example, the annual

average wind speed from the anemometry data at WBB in 2013 is 2.66 m/s, while the WRF

model predicts an annual average of 3.24 m/s. In addition, the daily average turbulence intensity

calculated from WRF was 33% lower than that calculated from the anemometer data. The dif-

ference in mean wind speeds is likely due to boundary layer effects, since the first grid point in

WRF resides much higher from the surface than the actual location of the data. While the dif-

ference in turbulence intensity reflects the fact that the turbulence intensity from WRF was cal-

culated based on the hourly averaged wind speeds, rather than instantaneous wind speed, it is

worth mentioning that the WRF model tends to capture the fluctuating trends of the data rela-

tively well. This suggests that a constant scaling factor could be applied to the WRF output to

compensate for the mismatch in wind speed magnitude. The scaling factor was calculated based

on the ratio of the annual average wind speeds. The scaled WRF winds were then used to com-

pute the daily averaged wind speed ( ~V ) and turbulence intensity (~IT), which were input into the

empirical relation in (1) to obtain the effective rotational speed (~x) of the turbine for each day.

Note that since the scaling factor does not change the turbulence intensity, ~x forecasted by

WRF tends to be consistently underestimated. Importantly, as with the other forecasting models,

FIG. 8. Comparison of the forecasted wind speed from the WRF model with the actual data measured on the roof of the

William Browning building on the University of Utah Campus over a 30-day period in June, 2013.
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the performance of the turbine was calculated using the numerical model of the turbine sub-

jected to the wind time series as measured by the anemometer data.

5. Forecasting model comparison

Figure 9 shows the comparison of different forecasting models over a sample 30-day period

at test site KSW 101. The “Optimal Value” represents the optimal rotational speed at which the

wind turbine would be operated if the actual wind condition was known in advance. Note that

the behavior of the forecasted rotational speed produced by the PM and MPM methods is iden-

tical to the one observed using the Optimal values with a one-day phase shift. The MPM

method used an optimal AF value of 18.6% as determined from (11). The ARMA model used

a training period of 25 days and a 5-day forecast interval, as determined from the analysis in

Section V B 3. The data suggest that for small variations in the rotational speed of the turbine

the PM method provides a better forecast than the MPM and ARMA models. This is as

expected since PM does not require any training data but assumes that the future value will be

the same as the present value. Therefore, as long as variations in the rotational speed remain

small, PM will yield fairly accurate forecasting. For large variations in the rotational speed, the

ARMA model appears to outperform both the PM and MPM methods. It was observed that

although the ARMA model might not be able to accurately forecast the exact value of the tur-

bine’s rotational speed, it tended to capture the trend of the rotational speed relatively well.

Although forecasting accuracy, as measured by the mean absolute error of the turbine’s

rotational speed, provides a useful assessment of the different forecasting methods, ultimately

one would like to know how well each forecast method performs in terms of the total amount

of energy captured by the turbine during a given time period of interest. This was done using

the full year of 2009 data at three different Oklahoma test sites (KSW 101, KSW 109, and

KNW 104) plus the full year of 2013 data at the William Browning Building (WBB) of the

University of Utah Campus. The results are shown in Figure 10. The four forecasting models

discussed herein (PM, MPM, ARMA, and WRF) were compared against results using no fore-

casting as well as results using the optimal x settings assuming that the wind conditions were

known perfectly in advance every day. The optimal x case provides the ideal amount of energy

that can be captured by a constant-x controller. For the case of no forecasting, the turbine was

rotated at a constant speed for the entire year (i.e., daily adjustment was not performed). The

constant x was determined independently at each site using the empirical relation in (1) to

obtain the optimal TSR, which was then divided by the annual average wind speed and turbine

radius to obtain the optimal x for the year. The actual values of the annual average wind speed

and yearly averaged turbulence intensity were used for convenience. In practice, however, these

would not be known in advance and would need to be forecasted. As such, the values of total

energy captured shown in Figure 10 for the “no forecasting” case overestimate what would be

FIG. 9. Sample comparison of different forecast models over a 30-day period at test site KSW 101.
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expected in practice. As can be seen, the MPM method consistently produces significantly more

energy than the case of no forecasting, exceeding the latter by as much as 17.3% (at the KNW

104 site). Note that comparison of the WRF model with the other forecasting models was only

available for the WBB site. In the results shown, the MPM models used the optimal AF value

determined from (11) assuming that the average annual mean speed is accurately estimated at

each site. The ARMA models incorporate appropriate values for the training period and fore-

casting horizon using the analysis outlined in Section V B 3. For the WRF model, a scaling fac-

tor was applied to the modelled horizontal wind speed prior to its analysis as discussed in

Section III D.

The results in Figure 10 indicate that the MPM method outperforms the PM, ARMA, and

WRF models in terms of the amount of energy captured by about 2%–6% depending on the

site. Note that these percentages are only slightly sensitive to the value of the adjustment factor

(AF) used in the MPM model. In the present study, an AF value appropriate for the actual

annual average wind speed at each site was used, based on the empirical relation in (11). Given

a 10% uncertainty in the annual average wind speed at site KSW 101, for example, and modi-

fying the AF value accordingly, the total amount of energy captured from the MPM model

would decrease to 2.887 GJ, compared to 2.933 GJ as shown in Figure 10. Even with the 10%

uncertainty in AF, MPM still captures about 4.3% more energy than the PM and ARMA mod-

els at KSW 101. There is not an appreciable difference in energy captured between the PM,

ARMA, and WRF models. However, it is expected that the WRF model could perform better if

the vertical resolution was improved such that the predicted winds were obtained at an equiva-

lent elevation as that of the turbine. In addition, the present results indicate that the wind tur-

bine operating with the MPM forecast method could capture as much as 85% of the ideal

amount of energy harvested using the optimal-x.

C. Economic analysis

The economic analysis of the wind turbine was studied using the full year of wind speed

data in Oklahoma City in 2009. The levelized cost of energy (LCOE) method outlined in

Section IV was used to compute the LCOE price for a small stand-alone, off-grid VAWT sys-

tem. Figure 11 shows the dependence of the LCOE price on the annual average wind speed for

all of the fifteen test sites in Oklahoma City. The results indicate a nearly quadratic dependence

of LCOE on the annual average wind speed. Note that, in the present economic analysis, the

annual energy production at each test site is assumed to be the same as in year 2009. The error

bars on each data point in Figure 11 represent the LCOE variation when the annual energy pro-

duction is varied between 610% of that calculated for 2009. Higher error bars are observed at

FIG. 10. Total energy captured by the turbine at four different test sites.
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higher LCOE values, which suggests that the LCOE is more sensitive to the amount of energy

produced for sites with lower annual average wind speeds.

According to the U.S. Energy Information Administration’s Electric Power Monthly Report

for August 2016 (Table 5.6.A in the report), the local (Oklahoma) and national electricity unit

price for the residential sector for August 2016 are $0.1051/kWh and $0.1290/kWh, respec-

tively.12 Note that Oklahoma is one of the few states that have the lowest selling electricity unit

price in the U.S. It is well known that the price of electricity tends to increase annually.

According to a review by the U.S. Energy Information Administration in 2014, the U.S. electric-

ity price for the residential sector increased by 17% since 2006 to 2013, which is equivalent to a

2.43% increase annually.11 Using this annual increase rate and the present electricity price of

$0.1290/kWh, the average electricity price in the next 20 years is predicted to be $0.1597/kWh,

as illustrated in Figure 11. In fact, it only makes sense to compare the LCOE price to this future

average electricity price when evaluating whether the VAWT system is economically viable.

The LCOE of turbines located at sites KSW 101, KSW 108, and KNW 104 is competitive

with the national electricity unit price. The annual average wind speeds at these sites are rela-

tively high, measuring between 4.7 m/s and 5 m/s. The LCOE of turbines located at KSW 102,

KSW109, KSW 110, KCB110, KSE 102, and KNW 103, however, is double that of the

national electricity unit price. The annual average wind speed at these locations ranges from

3.7 m/s to 4 m/s. The results also indicate that the LCOE for the turbine is sensitive to changes

in the annual average wind speed. For example, a 20% decrease in the annual average wind

speed could double the LCOE of the system. This clearly has ramifications for wind turbine sit-

ing in the urban/suburban area.

The present study examined sites covering an approximate 560 km2 area. The LCOE of the

turbine located at site KSW 102 is almost double the LCOE of the turbine located at test site

KSW 101 even though these two sites are only 14 km apart. The annual wind speed and turbu-

lence intensity at site KSW 101 are 4.95 m/s and 0.363, respectively, while those at site KSW

102 are 3.98 m/s and 0.423, respectively. The site KSW 101 lies at the western most location in

the network and is characterized by open fields with trees and residential houses in the distance

about 1 km from the measurement location, whereas site KSW 102 lies closer to the city center

at a busy intersection off of Highway 40. Several commercial buildings (1–4 story) are located

around the intersection, and a large strip mall exists approximately 1–2 blocks north. Therefore,

the increased atmospheric surface roughness at site KSW 102 is the likely reason for the

observed reduction in annual average wind speed and increase in turbulence intensity. The

results from the economic analysis suggest that, in order for the present VAWT to be economi-

cal, the system should only be deployed at locations where the average annual wind speed

FIG. 11. Comparison of the LCOE price of the implemented system at different sites in Oklahoma City based on its pro-

jected operation during the year of 2009. The lower horizontal dashed line represents the national electricity unit price as of

August 2016. The higher horizontal dashed line represents the predicted average national electricity price in 2036.
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measures 4.3 m/s or higher. For test sites including KSW 102, KSW 109, KSW 110, KCB 110,

KSE 102, and KNW 103, where the annual average wind speeds are about 3.75 m/s, the project

cost of the deployed system would have to decrease by about 45% of the current project cost in

order for the technology to exhibit a LCOE cost competitive with the national electricity unit

price. It should be mentioned that the measurements, on which the present economic analysis

was based, were acquired from instrumentation mounted to the street light signal at each site

(approximately 9 m above ground level). It would be more realistic for a turbine to be placed

on the roof of a building instead. Further work is necessary to determine the extent to which

this change in height would result in a significant reduction in the LCOE at the various sites.

VI. CONCLUSION

The present study investigates different forecasting methods to improve the overall perfor-

mance of a small VAWT operating in an urban/suburban area. Performance is measured in

terms of the total amount of energy captured over a full year of operation. Wind data acquired

in 2009 at fifteen different locations in Oklahoma City were used to drive the developed numer-

ical models. In all cases, a constant rotational speed controller is used. The rotational speed of

the turbine is adjusted daily to account for changes in the wind speed. This is especially impor-

tant during unsteady/gusty wind conditions characteristic of most urban/suburban areas in order

to correctly set the overspeed of the turbine. The economic viability of the VAWT is also

examined by comparing the LCOE for the VAWT with the national electricity unit price.

Wind data from the combined sites in Oklahoma City demonstrate that forecasting uncer-

tainty has a significant impact on the amount of energy captured by the wind turbine. The results

indicate that a 5% increase in forecasting accuracy could increase the total amount of energy

captured by the VAWT by as much as 13%. The results also showed less sensitivity to error

when the rotational speed of the turbine was forecasted directly as opposed to the wind condi-

tion. Four forecasting strategies were examined in the present study: Persistence Model (PM),

Modified Persistence Model (MPM), Autoregressive Moving Average (ARMA) model, and

Weather Research and Forecasting (WRF) model. The three statistical approaches (PM, MPM,

and ARMA) were used to forecast the optimal rotational speed of the VAWT. Since WRF repre-

sents a physical model of the atmosphere, it can only be used to predict the future wind condi-

tion. PM is the simplest approach since it does not involve any tuned model parameters. MPM

involves one parameter, an adjustment factor (AF), that was found to be site-independent and

linearly correlated with the annual average wind speed. This result has a potential practical

application. If one can estimate the average annual wind speed of the advanced year, then the

appropriate AF value may be calculated and applied to the controller. The ARMA model is a

complex forecasting model that requires optimization of many parameters. The optimal training

period and forecasting horizon in ARMA were found to be site-dependent.

With regard to forecasting the optimal rotational speed of the VAWT, results suggest that

the PM model outperforms MPM and ARMA for small variations, while for large variations in

the optimal rotational speed, ARMA appears to outperform both PM and MPM. However, in

terms of the total amount of energy captured, MPM improved wind turbine performance the

most, capturing as much as 6% more energy compared to PM and ARMA. Both PM and

ARMA exhibited nearly equivalent performance. Across all test cases, the forecasting models

allow the VAWT to capture approximately 78%–85% of the ideal amount of energy that could

be captured by a constant speed controller (with daily adjustment), assuming that the actual

wind data were known in advance. Compared to the case of no forecasting, MPM improved the

total amount of energy captured over the full year of operation by as much as 17.3%. The

WRF model performed as well as the ARMA model. It is expected that the WRF model could

perform better with enhanced grid resolution, especially in the vertical direction. Including a

model of the turbulent kinetic energy might also improve the WRF-based forecast of the daily

average turbulence intensity needed to set the optimal rotational speed of the turbine. However,

even with these improvements in the WRF model, it is not clear whether the additional compu-

tational cost would be worthwhile considering the simplicity and performance of the MPM
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model, for example. Note that, in all cases, the present study only considers a forecasting hori-

zon of 1 day. Preliminary analyses (not shown) indicate that this forecasting horizon yields the

best results in terms of maximizing the energy captured over the full year of operation. It is

suggested that future work could be done to examine in more detail the effect of forecasting

horizon on energy captured by the turbine.

In order for VAWTs to become a viable alternative in urban/suburban areas, the LCOE

from the turbine must be competitive with the average price of electricity to the residential sec-

tor. Results show that the LCOE from the present turbine decreases quadratically with annual

average wind speed. At the sites where the annual average wind speed was 4.3 m/s or higher,

the LCOE from the turbine was competitive with the national electricity unit price. It is sur-

mised that the LCOE could be reduced by implementing larger VAWT systems and/or connect-

ing multiple VAWTs together to a single controller and battery tank. It remains to be deter-

mined whether connecting the VAWT directly to the electrical grid would significantly change

the LCOE.
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CHAPTER 4

OPTIMIZATION OF A VERTICAL AXIS WIND

TURBINE FOR APPLICATION IN AN

URBAN/SUBURBAN AREA

This chapter has been submitted to the Journal of the Renewable and Sustainable

Energy as “Optimization of a Vertical Axis Wind Turbine for Application in an

Urban/Suburban Area,” Lam Nguyen and Meredith Metzger, March 2017.

The goal of the present study is to investigate the effect of various design

parameters on the performance of a Vertical Axis Wind Turbine (VAWT) subjected

to realistic unsteady wind conditions. Thirteen turbine design configurations are ex-

amined to determine if an optimal VAWT exists for application in an urban/suburban

environment. The four design parameters of interest include height-to-diameter

aspect ratio (0.83 ≤ H/D ≤ 1.34), blade airfoil shape (NACA 0012, 0015, 0018),

turbine solidity (12 ≤ S ≤ 25%), and turbine moment of inertia. The height and

diameter of the turbine varied between 1.89–2.54 m, depending on the aspect ratio.

The turbine moment of inertia was calculated using a computer-aided design drawing

of the turbine, along with realistic material properties for the blades, shaft, and

supports. The energy generated by each VAWT design configuration is simulated

using a full year of actual wind speed data collected in 2009 at 9 different locations

around Oklahoma City spanning an approximate 500 km2 area. The wind data

were acquired from the top of traffic light posts at a height of about 9 m above the

ground. In all cases, an active control strategy is used that allows the turbine to

continuously adjust its rotational speed in response to the fluctuating wind. Results

suggest that, for the case of operation in unsteady winds, the optimal power coefficient

(Cp) versus tip speed ratio (TSR) curve is not necessarily the one exhibiting the
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highest peak Cp value, but rather the broadest shape. Of the thirteen configurations

examined, the optimal wind turbine design capable of harvesting the most energy

from the gusty winds was found to have an aspect ratio of H/D = 1.2, solidity of

S = 12%, and blade shape using the NACA 0015 airfoil. This design also displayed

the lowest moment of inertia. However, when the effects of weight were removed, this

design still performed the best. The site-to-site variation in terms of energy captured

relative to the available energy in the gusty winds was only about 5% on average, and

increased slightly with turbine moment of inertia. Four of the suburban sites studies

were deemed economically viable locations for a small-scale VAWT. Results further

indicate, at one of these sites, the Levelized Cost of Energy (LCOE) associated with

the top performing turbine designs examined in the study was about 10% less than

the national electricity price, meaning that wind energy provides a cheaper alternative

to fossil fuel at this location. It is surmised that VAWTs could economically harvest

wind energy in the urban center as well, if the turbines were located higher than 9

m, such as on the rooftops of commercial/residential buildings.

4.1 Introduction

Wind energy harvesting has increased rapidly in the past few decades due to

considerable advancements in wind turbine technology (Ackermann and Söder, 2002;

Kaldellis, 2002; Leung and Yang, 2012). The U.S. Department of Energy predicts

that wind energy will provide about 20% of the electricity in the U.S. by the

year of 2030 (Lindenberg, 2009). Along with the increasing number of wind farms

containing large horizontal axis wind turbines (HAWTs), an upsurge in small-scale

wind turbines including vertical axis wind turbines (VAWTs) has also occurred in

recent years (Azau, 2010; Stefan Gsnger, 2015). The ability of small VAWTs to

operate effectively in the presence of highly fluctuating, turbulent flow makes them

ideal energy harvesting devices in the urban/suburban environment, where winds are

typically unsteady and gusty (Fiedler and Tullis, 2009; Bertényi et al., 2010; Nguyen

and Metzger, 2015). In addition, because the generator and electrical components

mount at the base, VAWTs provide a more suitable design solution, compared to

the traditional HAWT, for small-scale urban installation such as on the rooftops
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of residential/commercial buildings (Armstrong et al., 2012). Although small-scale

wind turbines are certainly limited in the amount of overall energy that can be

produced due to size constraints, one major benefit of locating technology where the

demand is highest stems from reduced capital investment on transmission lines. The

presence/visibility of renewable energy technology in densely populated areas may

also have the added potential benefit of encouraging better conservation practices

by the people living in those areas. One of the motivations for our work is the idea

of a net-zero energy building or a net-zero energy city, wherein the total amount of

energy used locally on an annual basis is roughly balanced by the amount of renewable

energy generated on site. Economically viable renewable energy technologies are an

important aspect of this mission. The present study provides results indicating that an

optimally designed VAWT system can be financially competitive with fossil-fuel-based

power plants, at least in one particular urban/suburban area (Oklahoma City), and

represents a steppingstone toward evaluating the feasibility of the net-zero energy

building/city.

A considerable amount of research has been conducted toward optimizing the

power performance of VAWTs (Templin, 1974; Islam et al., 2008; Mohamed, 2012;

Bedon et al., 2013). Design parameters affecting the performance of a VAWT include

the turbine type, airfoil shape, turbine solidity, number of blades, and height to

diameter ratio. Common types of VAWTs are the eggbeater Darrieus turbine,

straight-blade Darrieus turbine, Savonius turbine, and helical turbine (Blackwell

et al., 1976; McIntosh et al., 2007; Islam et al., 2008; Mahmoud et al., 2012; Bedon

et al., 2013). Each wind turbine type poses its own advantages and disadvantages.

In a review of different VAWT configurations, Mohamed (2012) concluded that the

eggbeater Darrieus tubines provide lower bending stresses on the blades. However,

the difficulty in manufacturing this type of wind turbine translates into high pro-

duction cost, making the eggbeater Darrieus turbine less preferable compared to its

straight-blade counterpart. The current study focuses exclusively on the performance

of the straight-blade Darrieus turbine.

Airfoil shape is another important design parameter of the VAWT. In 1981,

Sheldahl and Klimas (1981) performed wind tunnel tests on seven symmetrical
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airfoil sections (NACA 00XX) to evaluate the lift and drag coefficients through 180○

angle of attack at low Reynolds number. The results have been extensively used in

many numerical models for predicting VAWT power performance (Paraschivoiu, 2002;

Nguyen and Metzger, 2015). Roh and Kang (2013) performed a study to investigate

the effect of airfoil blade profile on the performance of a straight-blade VAWT. The

results suggest that high digit NACA 00XX airfoils provide higher power in the low tip

speed ratio (TSR) regime, compared to the low digit NACA 00XX and vice versa.

The study of McIntosh (2009) revealed that turbines with thinner airfoil sections

tend to produce higher power coefficients than those with thicker airfoil sections.

Paraschivoiu et al. (1983) performed a parametric analysis to study the effects of the

blade geometry and airfoil selection on the aerodynamic performance of the Darrieus

wind turbine. Three different airfoil sections were examined including NACA 0012,

NACA 0015, and NACA 0018. The results showed that at low TSR, the NACA 0015

and NACA 0018 blades perform better than the NACA 0012, which is more efficient

at high TSR. Paraschivoiu et al. (1983) concluded that while the symmetrical NACA

0015 is recommended for small-scale Darrieus wind turbines since it exhibits a more

favorable stall characteristic, the NACA 0018 is suggested for use based on structural

considerations, especially for large-scale turbines. Note the NACA 0018 has a larger

maximum thickness (18% of the chord length) compared to the NACA 0015 (15% of

the chord length), and thus is easier to manufacture albeit possibly more expensive

due to the increase in material required.

Turbine solidity describes the ratio of the area of the rotor blades to the swept

area of the rotor, and can significantly influence the performance of a VAWT. Templin

(1974) conducted one of the first investigations regarding the impact of solidity on

wind turbine performance using the single streamtube model. The results showed that

turbine solidity affects the shape of the power performance curve (power coefficient,

Cp, versus tip speed ratio, TSR). Specifically, the power performance curve of a

turbine with low solidity is broad and wide while that of a turbine with higher

solidity is narrow and sharp. As the turbine solidity increases, the peak value in the

power performance curve shifts toward lower TSR. In addition, the results showed

that, for a VAWT, an optimal solidity exists yielding the highest peak Cp value.
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Other researchers have used the multiple streamtube model (Strickland, 1975) and

free vortex model McIntosh (2009) to study the effect of turbine solidity on VAWT

performance, with similar results observed.

The influence of the number of turbine blades on VAWT performance has also

been documented in the literature (Castelli et al., 2012; Tirkey et al., 2014). Castelli

et al. (2012) examined VAWTs with 3–5 turbine blades on a straight-blade Darrieus

type wind turbine. The results indicated that the turbine with three blades had

the best performance, with a wide and broad power performance curve. The results

also showed that the number of turbine blades is correlated linearly with the turbine

solidity. Tirkey et al. (2014) performed a numerical analysis, adopting the multiple

streamtube method to examine the effect of number of blades (3–5 blades) on turbine

performance. The results showed that as the number of blades increase, the peak

power coefficient (Cp) decreases. The turbine with 3 blades has the highest power

coefficient curve. The most commonly used wind turbines in the industry have three

blades (Tirkey et al., 2014). For these reasons, the current study focuses exclusively

on the performance of VAWTs having three blades.

The height-to-diameter ratio (often referred to as aspect ratio) is an important

design parameter of the VAWT. Templin (1974) performed a numerical analysis using

the single streamtube model to examine the effect of aspect ratio on the power

performance of VAWTs with curved blades. Four wind turbine models with aspect

ratios H/D of 0.5, 1.0, 1.5, and 2.0 were examined. The results showed that the

turbine model with aspect ratio of 0.5 has the lowest peak power coefficient. The

power performance curves of turbine models that have aspect ratios of 1.0, 1.5, and

2.0 are nearly identical. However, the wind turbine models with aspect ratios of 1.5

and 2.0 have slightly higher peak Cp values (by about 2%) than that of the turbine

model with an aspect ratio of 1.0. Brusca et al. (2014) performed a numerical analysis

based on the multiple streamtube model to evaluate the influence of aspect ratio on

wind turbine performance for the case of a VAWT with symmetrical straight blades.

Two turbine models with aspect ratios of 1.0 and 0.2 were examined. The peak

power coefficients were 0.46 and 0.47 for the turbine models with aspect ratio of

1.0 and 0.2, respectively. Brusca et al. (2014) concluded that the difference in the
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peak power coefficient of these two models was mainly attributed to the effect of

Reynolds number. It was found that the height-to-diameter aspect ratio influenced

the Reynolds number, and as a consequence affected the power coefficient of the wind

turbine.

Despite the number of studies aimed at predicting and optimizing the performance

of VAWTs, the majority of the research to date has been based on an examination of

the power performance curves in the case of ideal wind conditions (namely, incoming

winds with a constant speed). It remains to be determined whether the optimal wind

turbine configuration for ideal wind conditions would perform as effectively if the

turbine were deployed in an environment with turbulent winds, such as that expected

in many urban/suburban areas. The present study utilizes a numerical modeling

approach to investigate the effect of various VAWT design configurations on the

overall energy captured from turbines subjected to realistic gusty wind conditions.

The total energy captured by each turbine configuration is calculated using one year

of actual wind data. Nine different locations in the metropolitan area surrounding

Oklahoma City are examined with a large range of annual average wind speeds and

turbulence intensities. The goal of this work is to determine if an optimal VAWT

turbine configuration exists for application in urban/suburban neighborhoods, and

if such an optimal design is site-independent. The results will have a significant

impact on assessing the viability of implementing wind energy technology in the built

environment.

4.2 Numerical Models

4.2.1 Turbine Power Performance Model

Various numerical models have been developed over the years to predict and

optimize the power performance of VAWTs (Strickland et al., 1980; Paraschivoiu

and Delclaux, 1983; Islam et al., 2008; Bedon et al., 2013; Alaimo et al., 2015). For

example, Alaimo et al. (2015) developed a CFD model to predict the aerodynamic

performance of a VAWT by solving the Reynolds Average Navier Stokes equations.

While CFD models provide detailed information about the flow field around the

wind turbine, computational expense remains a major drawback. For this reason,
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many wind turbine designers prefer numerical models based on the Blade Element

Momentum (BEM) theory to predict the power performance of VAWTs (Templin,

1974; Strickland, 1975; Paraschivoiu and Delclaux, 1983; Beri et al., 2011). BEM

theory utilizes the conservation of momentum law to determine the momentum deficit

across the VAWT, in combination with blade element theory based on known lift and

drag coefficients of the blades, in order to calculate the power performance of a turbine

subjected to a constant incoming wind speed (Paraschivoiu, 2002). BEM theory is a

common feature underlying many existing numerical models of VAWTs, including, for

example, the single streamtube model (Blackwell et al., 1976), the double streamtube

model (Paraschivoiu, 2002), the multiple streamtube model (Strickland, 1975; Beri

et al., 2011; Chong et al., 2013) and the 2D vortex model (McIntosh et al., 2008).

In the present implementation of BEM, static lift and drag coefficient data are used

from two different sources: Jacobs and Sherman (1937) for angles of attack less than

28○, and Sheldahl and Klimas (1981) for angles of attack greater than 28○.

Due to its simplicity and computational speed, the present study employs the

single actuator disk model based on BEM theory to simulate the aerodynamic per-

formance of the wind turbine. This particular model has shown good agreement with

experimental data for the Darrieus turbine (Nguyen and Metzger, 2015). In addition,

uncertainties in the generated power performance curves due to the simplicity of the

BEM model are not expected to have a significant impact on the main conclusions of

the study. The present study is primarily comparative in nature, comparing the total

energy captured by different turbine designs subjected to the same unsteady wind

conditions. Inaccuracies due to the BEM model should be present across all design

configurations in a likely equitable fashion, and thus should not appreciably skew the

observed differences in performance between designs. The main consideration was

computational speed because of the number of different configurations investigated,

and the fact that the simulation was run using a full year’s worth of wind data for

each configuration.
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4.2.2 Turbine Transient Response Model

Understanding the transient response of a wind turbine operating under gusty

wind conditions is critical to accurately estimating the amount of energy that can

be generated by the wind turbine in an urban environment (Nguyen and Metzger,

2015). The transient response of the wind turbine is impacted by many different

factors, namely the moment of inertia of the turbine, the unsteady nature of the

applied loading torque, the temporal response of the controller, and the unsteady

aerodynamic forces acting on the turbine blades. In this study, the transient response

of a VAWT is modeled as

I
dω

dt
= Q − TL, (4.1)

where I is the moment of inertia of the wind turbine, Q is the aerodynamic torque

of the turbine, TL is the applied loading torque from the generator, and ω is the

rotational speed of the turbine. In the transient response model, the aerodynamic

torque Q varies according to the tip speed ratio and incoming wind speed. The

aerodynamic torque used in (4.1) is calculated from the BEM model.

The ideal tip speed ratio (ideal–TSR) controller is utilized in the present study,

similar to our previous work (Nguyen and Metzger, 2015). The ideal–TSR controller

tries to maintain the wind turbine at its ideal TSR setting (peak Cp value) by

continuously adjusting the rotational speed (ω) in response to variations of the

incoming wind speed, when the wind speed remains below the rated wind speed

of the turbine. In this manner, the ideal-TSR controller provides active control that

allows the turbine to harvest the maximum amount of energy available from the wind.

When the wind speed is between the rated and cut-out wind speeds, the controller

limits the rotor speed such that the turbine operates at its rated power output. The

turbine power curve is discussed further in Section 4.3. In practice, the controller

consists of power electronics that continuously switch the connection between the

generator and grid to change the synchronous speed of generator independently of

the frequency of the grid (Nguyen and Metzger, 2015). The digital control signal to

the power electronics is supplied by a microprocessor that has been programmed with

the response characteristics of the turbine.
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In the ideal–TSR control method, the rotational speed of the turbine is regulated

continuously to maintain an ideal TSR setting that yields the maximum Cp of the

turbine at every given moment in time. In this study, the electronics are modeled

using a simple proportional feedback control strategy, represented by a proportional

gain constant Kp in the model. Due to the gain constant (Kp) of the controller and the

moment of inertia (I) of the turbine, the realistic controller exhibits a time lag, which

prevents instantaneous tracking of the fluctuations in the wind speed. To model this

time lag response of the turbine, the dynamics of the system (controller and turbine)

are written in the Laplace domain as follow

ω(t)
ω̃

= Kp

Is +Kp

, (4.2)

where ω(t) is time varying rotational speed of the turbine and ω̃ is the ideal rotational

speed of the turbine (for the case of zero time lag). At each time step in the numeric

model, the turbine is subjected to the real wind speed according to the data. Based

on this, the ideal rotational speed ω̃ and aerodynamic torque of the turbine Q can be

determined from the wind turbine aerodynamic performance model as described in

Section 4.2.1. Given the ideal rotational speed ω̃, the time-varying rotational speed

of the turbine ω(t) is calculated following the dynamic model of the controller (4.2).

The loading torque TL(t) is subsequently calculated by solving (4.1), and multiplied

by the actual rotational speed ω(t) to obtain power as a function of time t. The total

energy captured by a VAWT is calculated by integrating the power over the time

period of interest.

In the present study, the turbine transient response model is subjected to actual

wind speed time series as measured at nine different sites in Oklahoma City, USA in

2009 (see Figure 4.1 and Table 4.1). These nine locations are in the metropolitan area

surrounding Oklahoma City and exhibit a large range of annual average wind speeds

and turbulence intensities. Here, turbulence intensity is defined as the standard devia-

tion of the wind speed divided by the mean wind speed averaged over the time period

of interest (IT = σU/U). Wind speed data were acquired from sonic anemometers

mounted directly to traffic signals at a height of 9 m. Data were quality assured in

near real time at an interval of 1 minute. A detailed description of the experiments
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Figure 4.1: Location of sites in Oklahoma City where wind data were acquired.

Table 4.1: Location of sites in Oklahoma City where wind data were acquired. The
corresponding annual average wind speed and turbulence intensity are for year 2009.

Site Name Street Address

Annual-
Average
Wind
Speed
[m/s]

Annual-
Average
Turbu-
lence

Intensity
KSW 101 W Reno Ave & S Cemetery Rd 4.95 0.363
KSW 102 SW 5th St &S MacArthur Blvd 3.98 0.423
KSW 108 Amelia Earhart Ln & Terminal Dr 4.97 0.349
KSW 111 J Lee Keels Blvd & S May Ave 4.32 0.401
KCB 101 NE 5th St &N Oklahoma Ave 3.18 0.404
KCB 110 E Reno Ave & S Lincoln Blvd 3.84 0.392
KNE 104 NE 10th St & N Phillips Ave 3.75 0.353
KNW 104 River Bend Blvd & N Council Rd 4.69 0.372
KNW 107 NW 30th St & N May Ave 3.47 0.422
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can be found in the study of Basara et al. (2011). Figure 4.2 shows a sample time

segment of the instantaneous wind speed over two months of operation during July

and August, 2009 at site KSW 101. As illustrated in Figure 4.2, the wind speed

exhibits large fluctuations with a wide range of characteristic frequencies. The mean

wind speed (U) over the two-month period is 4.25 m/s, with a standard deviation

(σ) of 2.28 m/s. The corresponding turbulence intensity over this two-month period

is equal to 0.538.

4.2.3 Economic Analysis

One important aspect that needs to be considered when deploying wind technology

is economic feasibility. In the present study, an economic analysis is performed to

evaluate the cost effectiveness of implementing small-scale VAWTs at each of the

nine sites in Oklahoma City. The Levelized Cost of Energy (LCOE) is used for this

purpose, and can be calculated as
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Figure 4.2: Sample time segment of the instantaneous sonic anemometry data
collected at site KSW 101 during the months of July and August in 2009. U
and σ represent the average wind speed and standard deviation calculated over the
two-month time period shown.
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LCOE ($/kWh) =
[Project Cost] − [ITC] + ∑Nn=1 AO

(1+DR)n −
RV

(1+DR)n

∑Nn=1 Ea(1−SDR)
(1+DR)n

− [PTC], (4.3)

where ITC represents the investment tax credit, PTC represents the production tax

credit, AO represents the annual operating and maintenance cost, RV represents the

residual value of the system based on its end-of-life asset, DR represents the discount

rate, Ea represents the annual energy production of the system, SDR represents

the system degradation rate, and N represents the number of years of the system

lifetime. The project cost mainly consists of the cost associated with the wind turbine

system and the balance of system (BOS) equipment. In this study, the wind turbine

is connected to an on-grid system. The BOS equipment consists of the electrical

controller, turbine generator, inverter, and wind data instrumentation.

The present LCOE analysis considered a small VAWT designed and manufactured

by QingDao Bofend Wind Power Generator Co. with a rated power of 2.2 kW. The

cost associated with the wind turbine system and balance of the system equipment

were estimated based on two quotes for 1 kW and 3 kW turbines from the wind

turbine manufacturer. The costs are provided in Table 4.2. The total project cost of

the system is $4979, of which the BOS equipment makes up about 45%. The system

has an expected lifetime of 20 years. The residual value of the system at the end

of its lifetime is estimated to be 10% of its original value. The system degradation

Table 4.2: System project costs

Component Cost
Wind Turbine & Generator $2740
Electrical Controller $615
Electrical Inverter $1174
Wind Data Instrumentation $450
Residual Value 10% of Original Value
System Lifetime 20 years
Degradation Rate 1% Efficiency/year
Discount Rate 3.1%
AO Cost $0.01/kW⋅hr
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rate is estimated to be 1% of its efficiency, which is equivalent to the degradation

rate of large HWAT systems Staffell and Green (2014). The discount rate used in the

analysis is 3.1%, which is a standard discount rate used in many projects related to

renewable energy (Lavappa, 2015). It is worth mentioning that the discount rate of

3.1% used in the analysis accounts for the nominal inflation rate over the next 20 years

representing the expected lifetime of the system. The operating and maintenance

cost (AO) is estimated to be $0.01/kW⋅hr, which is equivalent to the AO cost of large

HAWT systems. In addition, the analysis also incorporates the investment tax credit

(ITC) and production tax credit (PTC) that are available for wind energy. According

to the latest update of the American Wind Energy Association, the investment tax

credit (ITC) allows consumers to claim back 24% of the total investment while the

production tax credit (PTC) allows consumers to claim back $0.018/kWh of the

energy production(A.W.E.A., 2017).

4.3 Turbine Design Configurations

The main objective of the present study is to determine whether an optimal VAWT

configuration exists for wind turbine applications in an urban/suburban environment.

In all cases, a straight-blade Darrieus type VAWT (also referred to as an H-rotor

turbine) with three blades is utilized. The present study examines the effects of

turbine solidity, airfoil section, height-to-diameter aspect ratio, and moment of inertia

on the overall performance of the wind turbine when it is subjected to actual gusty

wind conditions. Only blades comprised of low-digit, symmetric NACA 00XX airfoil

sections are considered in the present study. The last two digits of the airfoil section

represent the ratio of airfoil maximum thickness to chord length, e.g., the maximum

thickness of the NACA 0015 airfoil is 15% of the chord length.

A total of thirteen turbine design configurations are investigated, as listed in Table

4.3, where S, c, H, D, and I denote the solidity, chord length, turbine height, turbine

diameter, and moment of inertia of the turbine about the axis of rotation, respectively.

Design #1 serves as the baseline case. It is worth mentioning that all designs share the

same frontal area (At=H⋅D) of 4.8 m2. To explicitly study the influence of each design

parameter on VAWT performance, only one design parameter was typically varied
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Table 4.3: Turbine design configurations examined in the present study.

Design # Airfoil S [%] c [cm] H [m] D [m] H/D I [kg⋅m2]
1 0015 18 12.0 2.40 2.00 1.20 31.02
2 0015 18 11.4 2.54 1.89 1.34 27.25
3 0015 18 13.1 2.19 2.19 1.00 35.90
4 0015 18 14.3 2.00 2.40 0.83 44.77
5 0015 19 12.0 2.54 1.89 1.34 29.15
6 0015 16 12.0 2.19 2.19 1.00 31.89
7 0015 15 12.0 2.00 2.40 0.83 35.70
8 0018 18 12.0 2.40 2.00 1.20 34.80
9 0012 18 12.0 2.40 2.00 1.20 27.21
10 0015 12 8.00 2.40 2.00 1.20 18.07
11 0015 15 10.0 2.40 2.00 1.20 25.23
12 0015 21 14.0 2.40 2.00 1.20 37.86
13 0015 25 16.7 2.40 2.00 1.20 51.43

relative to the baseline case in each configuration. Imposed constraints, however,

prevent this approach in some instances. For example, varying the aspect ratio H/D
while keeping S constant sets limits on the values of H and D, and also constrains

the chord length c, as can be seen in designs #2–4, where both c and H/D must be

varied in order to maintain a constant solidity of 18%.

With the ideal tip-speed-ratio controller, inertial effects play an important role in

the wind turbine response behavior. In order to obtain a realistic value for the moment

of inertia I of each turbine design configuration, a Computer-Aided Design (CAD)

model of each VAWT was created using Solidworks 3D 2016. Figure 4.3 illustrates

the CAD model for design #13. The turbine blades are assumed to be made of

carbon fiber, whereas the turbine shaft and blade supports are assumed to be made

of Aluminum 2024. The same materials were used in all of the design configurations.

Note, since the bulk of the mass is concentrated in the blades, design configurations

with smaller diameters necessarily exhibit lower values for I. In addition, designs with

a lower chord length have less total mass in the blades, and hence a smaller value

of I. Similarly, the designs with lower NACA airfoil sections (e.g., 0012 compared

to 0015) have a lower percentage of thickness to chord length ratio, which translates

into less total mass in the blades and lower I values as well.
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2.4 m 

2.0 m 

Figure 4.3: CAD model of VAWT design configuration #13.

All of the wind turbine configurations examined in this study are assumed to have

similar wind power curves as illustrated in Figure 4.4. In particular, each turbine

model is assumed to have a cut-in speed of 3 m/s and a cut-out speed of 24 m/s.

In addition, every turbine is assumed to have an identical rated wind speed of 12

m/s and rated power of 2.2 kW. As shown in Figure 4.4, for wind speeds greater

than the cut-in speed, the turbine power rises monotonically until the rated speed is

Figure 4.4: Illustration of the wind turbine power curve highlighting the important
characteristics used for all of the design configurations.
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reached. In this range, the active controller instantaneously adjusts the rotor speed

according to the incoming wind so that the turbine operates at its optimal TSR

setting. For wind speeds beyond the rated speed, the turbine power is limited by the

capacity of the electric generator. In this regime, the controller actively maintains

the turbine at its rated power setting. At wind speeds above the cut-out speed, the

turbine is shut off to prevent the rotor and blades from damage due to the applied

load on the turbine. In practice, a braking system is employed to bring the rotor

to standstill. It is worth mentioning that due to variations in design parameters,

the turbine configurations will necessarily exhibit differences in terms of structural

integrity, which may slightly impact how the turbines perform when operated under

the wind power curve illustrated in Figure 4.4. However, for the purpose of this

study, which is to determine an optimal wind turbine design configuration based on

its power performance, all turbine configurations are assumed to behave the same

structurally.

4.4 Results

4.4.1 Wind Turbine Performance

4.4.1.1 Power Coefficient Versus Tip Speed Ratio Curves

A common method to characterize wind turbine performance is via the power

coefficient versus tip speed ratio curve (Cp–TSR curve). Wind turbine design

parameters (e.g., airfoil shape, solidity, height to diameter aspect ratio, etc.) affect

the shape and magnitude of the Cp–TSR curve in different ways. Figure 4.5 shows

the Cp–TSR curves for the thirteen wind turbine configurations investigated in the

present study (refer to Table 4.3). These curves were generated using the Turbine

Power Performance Model described in Section 4.2.1 with a constant incoming wind

speed of 7 m/s. Note, because the Cp–TSR curves are generated using a constant

wind speed, the results in Figure 4.5 are not influenced by the moment of inertia of

the turbine.

Figure 4.5a shows the effect of height-to-diameter aspect ratio (H/D) at a constant

turbine solidity (S=18%), corresponding to turbine designs #1–4. Note, in order to

achieve a constant solidity, the chord length had to be adjusted as indicated in the
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Figure 4.5: Power coefficient curve versus tip speed ratio for all thirteen turbine
designs. In all subplots, the baseline design configuration #1 is given by the black
line. (a) constant solidity (S = 18%) and airfoil shape (NACA 0015), with varying
aspect ratio and chord length; (b) constant chord length (c = 12 cm) and airfoil
shape (NACA 0015), with varying aspect ratio and solidity; (c) constant aspect ratio
(H/D = 1.2), chord length (c = 12 cm), and solidity (S = 18%), with varying airfoil
shape; (d) constant aspect ratio (H/D = 1.2), chord length (c = 12 cm), and airfoil
shape (NACA 0015), with varying solidity. The power coefficient curves shown are
all simulated at a wind speed of 7 m/s.
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legend. As illustrated, the Cp–TSR curves of these four configurations are almost

identical, especially in the high TSR regime (TSR values greater than the peak

Cp). Turbine solidity represents the amount of flow blockage due to the presence of

the turbine, and as such directly correlates with the momentum deficit in the wake

of the wind turbine. Since all four turbine configurations have the same solidity,

it is expected that the momentum deficit will be nearly identical, thus resulting in

similar Cp–TSR curves. A noticeable difference, however, does exist at low TSR.

The results indicate that turbines with lower aspect ratios produce slightly larger Cp

values, compared to those with higher aspect ratios at the same TSR. These results

are consistent with the observations of Brusca et al. (2014). The reason for this

behavior may be attributed to Reynolds number (Re) effects at low TSR. Lowering

the aspect ratio requires an increase in chord length of the turbine blade in order to

maintain the same solidity. The slight increase in the turbine chord length raises the

operating Reynolds number of the turbine blade, thus allowing the turbine blade to

generate higher lift forces, translating into higher power or Cp for a given incoming

wind speed.

Figure 4.5b illustrates the Cp–TSR curves for turbine designs #5–7 that have

different aspect ratios, but the same turbine chord length (c = 12 cm). Note, the

turbine solidity must be varied accordingly in order to maintain a constant chord

length for each H/D setting. As apparent in the figure, the peak Cp value increases

slightly with decreasing aspect ratio and shifts to higher TSR. The difference in

peak Cp between the four configurations is only 2.7%. A similar result was shown

by Templin (1974), who found an approximate 2.0% difference in peak Cp values

when comparing eggbeater-type Darrieus turbines with aspect ratios of 1.0, 1.5, and

2.0. Another important feature observed from the figure pertains to the shape of

the Cp–TSR curves. Decreasing the turbine aspect ratio causes the Cp–TSR curve

to broaden and shift toward higher TSR values. For example, the maximum TSR

value for the case of H/D = 0.83 is 5.7, compared to 4.9 for the case of H/D = 1.34.

This result can be attributed mainly to solidity effects. At a lower aspect ratio, the

solidity is smaller, meaning the turbine creates less flow blockage, thus producing less

momentum deficit in the wake of the wind turbine. As a result, the Cp–TSR curve is
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broader and wider. For the four cases examined in Figure 4.5b, the Cp–TSR curves

nearly overlie at the low TSR regime.

Figure 4.5c shows the influence of airfoil shape on the power coefficient curves.

Three different airfoil shapes are examined: NACA 0012, NACA 0015, and NACA

0018, representing the three turbine designs #9, 1, and 8, respectively. All other

design parameters are the same. The results suggest that airfoil shape has a significant

impact on the power coefficient curve of the wind turbine. The three configurations

have nearly the same operating TSR range. The turbine with the NACA 0015 airfoil

shape, however, outperforms the others, since it exhibits a much higher peak Cp

value of 0.45, compared to 0.41 for NACA 0018 and 0.35 for NACA 0012. Note, the

NACA number here indicates the maximum airfoil thickness to chord length ratio.

The results suggest that an optimum thickness to chord length ratio exists for the

case of the symmetric airfoil blades; and that this optimum ratio is around 15%.

The results are in a good agreement with the study performed by Paraschivoiu et al.

(1983) that also examined the same three airfoil shapes as in this study. A significant

difference in Cp values in the low TSR regime is observed, with the NACA 0015

and 0018 configurations exhibiting similar slopes, but the NACA 0012 configuration

displaying much lower Cp values at the same TSR. In the low TSR regime, one

may conclude that thicker airfoil blades appear to yield higher Cp values compared to

thinner airfoils. This agrees with the studies performed by Paraschivoiu et al. (1983)

and Roh and Kang (2013).

Figure 4.5d illustrates the effect of turbine solidity on the power coefficient curves

for five turbine designs #1, 10, 11, 12, and 13. The range of solidity examined here is

12% (design #10), 15% (design #11), 18% (design #1), 21% (design #12), and 25%

(design #13). As shown in the figure, the peak Cp varies slightly between the different

cases with a solidity of 18% exhibiting the highest peak Cp of 0.45. The difference

in peak Cp values between the five configurations is approximately 6.5%. Another

important feature observed is the shape of the Cp–TSR curves. Decreasing the turbine

solidity causes the curve to widen, thereby expanding the TSR operating range, and

also shifting the entire curve to the right (higher TSR values). For example, in the

case of S = 12%, the operating range of the turbine is 2.3 ≤ TSR ≤ 6.5, while for
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S = 25%, the operating range is 1.8 ≤ TSR ≤ 4.1. Similar trends were observed in the

studies performed by (Strickland, 1975) and Templin (1974). The result is expected,

as discussed earlier, due to flow blockage effects associated with increasing the solidity.

Under steady wind conditions, one would select the optimum turbine design solely

based on whichever Cp–TSR curve displayed the highest peak power coefficient (CP ).

According to the results from Figure 4.5, turbine #7 (NACA 0015, S = 15%, H/D =
0.83) satisfies this criterion. The main question of the present study is whether this

same turbine design yields the best performance during unsteady wind conditions.

In fact, it will be shown that turbine #7 performs the worst of all thirteen design

configurations in terms of total energy captured, when the turbine is implemented in

an environment with realistic gusty winds.

4.4.1.2 Total Amount of Energy Captured

Figure 4.6a shows a box plot of the energy ratio (E/Ea) for each of the thirteen

turbine design configurations listed in Table 4.3 using actual wind speed data collected

in 2009 from the nines sites in Oklahoma City listed in Table 4.1. Here, E represents

the actual amount of energy captured by the wind turbine over the entire year of

2009, using the numerical method as described in Section 4.2.2 while Ea represents

the maximum amount of energy available from the wind,

Ea = 1
2 ρAt∫

T

0
U3dt . (4.4)

In the above equation, ρ denotes the air density, At (= H ⋅D) represents the tur-

bine frontal area, and U is the time-varying wind speed as measured by the sonic

anemometer. Note, in all calculations, T = 525,600 min., i.e., the number of minutes

in the year 2009, and At = 4.8 m2. Figure 4.6b shows a box plot of the same design

configurations except with identical moment of inertia values set equal to I = 31.0

kg⋅m2 (corresponding to that of the baseline design configuration #1). Each box in

Figure 4.6 represents the variation of E/Ea over the nine different sites examined in

Oklahoma City. The horizontal line in each box represents the median value between

the sites; while the lower and upper lines on each box represent the 25% quartile and

75% quartile of the data, respectively. The two extended vertical error bars from each

box represent the minimum and maximum values in each data set. In Figure 4.6a,
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Figure 4.6: Box plot of the energy ratio for the thirteen different turbine designs
examined in the study. (a) realistic moment of inertia used for each design (b) black
boxes: moment of inertia set to the same value of I = 31.0 kg⋅m2 for each design;
gray boxes: same data as the black boxes in plot (a). Each box represents statistics
calculated over the nine sites in Oklahoma City. The labels on the horizontal axis
provide details regarding the design parameters for each configuration. The bold black
text denotes the reference (baseline) configuration (Design #1). For the other design
configurations, the black text highlights the design parameters that were varied with
respect to the baseline case, whereas the grey text represents the parameters that
remained the same with respect to the baseline case. In plot (b), ∆I represents the
percent change in moment of inertia relative to the baseline design.
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the results are plotted so that the median values of E/Ea decrease monotonically. To

facilitate interpretation of the results, the turbine design configuration corresponding

to each box is given on the x-axis in terms of its NACA airfoil, solidity, chord

length, aspect ratio, moment of inertia, and design number following Table 4.3. One

immediate conclusion from Figure 4.6b is that moment of inertia cannot be used to

explain the discrepancy in performance amongst the various design configurations. In

fact, except for two configurations (#3 and #13), the rank ordering of the turbines

with respect to the energy ratio remains unchanged when moment of inertia is

eliminated as a design parameter.

The top two performing turbine design configurations #10 and 11 have median

values for the energy ratio of 0.395 and 0.388, respectively. Both designs share the

same blade shape (NACA 0015) and aspect ratio (H/D = 1.2), but have different

solidity. The top performing turbine design (#10) has the lowest solidity (S = 12%)

of all of the configurations examined in the present study. Physically, this corresponds

to a turbine with shorter, thinner blades, and hence a lower moment of inertia, which

is desirable for responding quickly to fluctuating winds. The broad shape of the

CP–TSR curve for design #10 is also advantageous during unsteady wind conditions.

During a gust event, for example, the actual rotational speed ω of the turbine lags

behind its ideal value (due to turbine inertia and controller gain) and thus temporarily

operates off the peak Cp value. In the case of a broadly shaped power coefficient curve,

though, the actual operating Cp of the turbine at any given time does not stray too

far from its peak value, allowing the turbine to operate more efficiently and capture

more energy during the gusts. It is also not surprising that the top performing

configurations utilize blades based on the NACA 0015 airfoil, since the peak Cp value

for this case (Figure 4.5c) is significantly higher than either those using the NACA

0012 or 0018 airfoil blades.

Figure 4.6a also reveals some interesting behavior regarding the effect of aspect

ratio on the amount of energy captured by the turbine. Two sets of design config-

urations were generated to examine H/D effects. In the first set (designs #1, 2,

3, 4), the solidity remains the same while the chord length is varied; in the second

set (designs #1, 5, 6, 7), the opposite is true. In both sets, the aspect ratio ranges
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between H/D = 0.83 to 1.34. The first set of designs is described in this paragraph,

and the second set in the following paragraph. With designs #1, 2, 3, 4, the solidity

and blade shape remain constant at S = 18% and NACA 0015, respectively. The

corresponding Cp–TSR curves (shown in Figure 4.5a) are nearly identical; however,

the energy captured by these different turbines are quite disparate. For example,

designs #1 (H/D = 1.2) and #2 (H/D = 1.34) are able to capture comparable amounts

of energy with a E/Ea ratio of about 0.37, ranking them the third and fourth highest

performing turbines, whereas designs #3 (H/D = 1.0) and #4 (H/D = 0.83) have

much smaller energy ratios. This might suggest that turbines with H/D > 1 are more

efficient at capturing energy from gusty winds. However, one must also consider the

moment of inertia of the turbine. Designs #3 and #4 have relatively high moments

of inertia (23% and 53% higher, respectively, than the average moment of inertia

between designs #1 and #2). This means that they are not able to respond as

quickly to wind fluctuations, and thus are not expected to be as efficient in gusty wind

conditions despite having similar Cp–TSR curves. Note, the differences in moment

of inertia arise from two factors. First of all, the frontal area of the turbines is

constrained to be the same, which necessarily dictates the D and H values of the

turbine for a given aspect ratio. Turbines with larger diameters will clearly have

a larger moment of inertia. Secondly, for the particular case of designs #1–4, the

solidity is also constrained to be the same, which means that the chord length must

vary according to the aspect ratio. Increasing the chord length results in a larger

moment of inertia as well.

The second set of configurations used to examine the effect of aspect ratio on

energy captured by the turbine (E/Ea) is given by designs #1, 5, 6, 7. In these four

designs (see Table 4.3), the aspect ratio varies from H/D = 0.83 to 1.34, whereas

the chord length remains the same (c = 12 cm). This necessarily means the solidity

changes slightly between the four designs, as well as the moment of inertia. The energy

ratio is highest for design #1 (E/Ea = 0.369, H/D = 1.2), followed by design #5

(E/Ea = 0.358, H/D = 1.34), #6 (E/Ea = 0.333, H/D = 1.0), and #7 (E/Ea = 0.258,

H/D = 0.83). Note, design #7 displayed the lowest energy ratio of all the thirteen

configurations examined in the present study, and coincidentally had a relatively
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high moment of inertia (16% higher than the average between designs #1, 5, and

6). These results would be somewhat unexpected based solely on the behavior of the

corresponding Cp–TSR curves for these four designs, as shown in Figure 4.5b. Design

#7 displays the broadest Cp–TSR curve, while design #5 exhibits the narrowest. It

was argued earlier that a broad Cp–TSR curve allows the wind turbine to operate

more closely to its optimal TSR setting, and thus capture more energy from the

fluctuating wind. This advantage, however, is negated by the slow response time of

design #7 due to its higher moment of inertia, and hence inability to closely track

variations in the fluctuating wind speed. On the other hand, design #5 exhibits a

narrower Cp–TSR curve, but its lower moment of inertia permits more energy to be

captured during wind gusts. Because of this complicated interplay involving moment

of inertia, results from Figure 4.6a for designs #1, 5, 6, and 7 are inconclusive in

terms of the effect of aspect ratio on energy captured.

In order to unravel the effects of moment of inertia on energy captured, the

simulations used to generate Figure 4.6a were repeated using the same moment of

inertia for each design configuration (I = 31.02 kg⋅m2, i.e., the value representative

of baseline design #1). The results are presented in Figure 4.6b showing the energy

ratio assuming the same I in each design (black boxes) overlaid on top of the previous

results from Figure 4.6a (grey boxes) using the realistic I values. The ordering of the

design configurations along the x-axis is the same in plot (b) as that of plot (a). Also

displayed along the x-axis of plot (b) is the percent relative change in moment of

inertia (∆I) from its original value to the set value of I = 31.02 kg⋅m2. For example,

the change in moment of inertia associated with design #10 (having an original

moment of inertia of 18.1 kg⋅m2) is given by ∆I = (31.02−18.07)/31.02∗100 = −41.6%.

The results in Figure 4.6b indicate a clear effect of turbine aspect ratio (H/D) on

energy captured (E/Ea). The designs having an aspect ratio greater than unity (# 1,

2, 5, 8, 10, 11, 12) outperform those with H/D ≤ 1.0 (#3, 4, 6, 7, 9, 13). In addition,

when solidity or chord length are held constant, the design with an aspect ratio of

H/D = 1.2 (design #1) yields the highest energy ratio compared to the other designs.

This would suggest that an optimum aspect ratio exists of about 1.2, irrespective of

the moment of inertia of the turbine.
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The effect of airfoil shape on the amount of energy captured by the wind turbine

can be examined by comparing designs #1, 8, and 9 in Figure 4.6. In these three

designs, the NACA airfoil type is varied while the other design parameters are held

constant. Note, because the airfoil types have different thickness to chord length

ratios, the moment of inertia of the three designs is not the same. Of the three,

turbine design #1 has the highest energy ratio (NACA 0015, E/Ea = 0.367), followed

by design #8 (NACA 0018, E/Ea = 0.353) and #9 (NACA 0012, E/Ea = 0.295).

This result is somewhat expected based on the power coefficient curves shown in

Figure 4.5c, with the NACA 0015 design displaying a significantly higher peak Cp

value (10% larger than 0018 and 27% larger than 0012). Despite the fact that design

#9 (NACA 0012) has the lowest moment of inertia of the three designs due to thinner

blades, the magnitude of Cp measures much lower than the other power coefficient

curves, rendering design #9 uncompetitive in terms of energy captured. The moment

of inertia of design #8 (NACA 0018) is larger than that of design #1 (NACA 0015)

by about 12% due to its thicker blades; however, the median energy ratio of design

#1 is only 4% more than that of design #8. When accounting for moment of inertia

effects (Figure 4.6b), the difference in E/Ea between designs #1 and 8 drops to less

than 3%. This is a little surprising given the relatively large difference in peak Cp

values (10%) between the two designs. It remains to be determined why design #8

performs as well as it does, despite its inferior power coefficient curve.

In order to examine the effect of turbine solidity on the amount of energy captured,

turbine designs #1, 10–13 are compared. In these five designs, the aspect ratio is

held constant at H/D = 1.2 as well as the airfoil shape (NACA 0015), whereas the

solidity ranges from S = 12% to 25%. Physically, this is achieved by varying the

chord length linearly proportional to S, resulting in a range of chord lengths from

c = 8 cm to 16.7 cm, which also translates into a wide range of values for the turbine

moment of inertia (18.07–51.43 kg⋅m2 across the five designs). As apparent from

Figure 4.6a, when isolating these five designs, the energy ratio clearly decreases with

increasing solidity. Specifically, design #10 (S = 12%) exhibits the highest energy

ratio, measuring 55% higher than that of design #13 (S = 25%) with the lowest

energy ratio. The same trend is observed in Figure 4.6b when moment of inertia
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remains constant. Therefore, one can definitively conclude that lower solidity turbine

designs yield superior performance in terms of the amount of energy captured during

unsteady wind conditions.

Figure 4.6 also reveals a connection between the moment of inertia of the turbine

and the spread in E/Ea between the various sites. To highlight this, Figure 4.7 shows

the standard deviation of the energy ratio (σE/Ea) calculated over the nine sites in

Oklahoma City as a function of the moment of inertia (I) of the turbine for each

design configuration. Smaller values of σE/Ea indicate less site dependence in the

energy ratio. As can be seen, there is a general trend toward increasing σE/Ea with

increasing I. This makes sense because turbines with higher moment of inertia will

not respond as quickly to wind fluctuations, and thus will tend to not operate at their

ideal TSR (peak Cp) value. This means the turbine response is more susceptible to the

nature of the wind fluctuations (velocity spectra), resulting in site-specific behavior.

4.4.1.3 Effect of Blade Material

During operation, the turbine blades are the components that experience the

highest applied force due to wind loading. To ensure their structural integrity,

wind turbine blades are often made of materials characterized by high strength, high

stiffness, and long fatigue life (Babu et al., 2006). Material selection of the blades plays

an important role in wind turbine design. Technical considerations include material

properties, material reliability, safety, and performance characteristics. Other factors

are important as well, such as the response of the material to environmental conditions

and the disposability/recyclability of the material. Finally, the economic aspects of

material selection such as availability, raw material cost, and manufacturing costs will

have a significant impact on the practical viability of the turbine. The present study

examined four different materials that are commonly used for wind turbine blades

to determine how material selection (density, specifically) affects power performance,

in terms of the amount of energy that can be captured over a full year of operation

during realistic wind conditions. The four materials considered are: Aluminum 2024,

E glassfiber, Carbonfiber, and Aramid fiber. Aluminum is a low price metal that has

good reliability but low tensile strength and stiffness. Glassfiber has good stiffness,
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Figure 4.7: Standard deviation of the energy ratio E/Ea between the nine sites in
Oklahoma City as a function of moment of inertia of the turbine design.

high strength, and moderate density, whereas Carbonfiber is commonly used because

of its high stiffness, high strength, and light weight (Babu et al., 2006). Aramid

fiber has good static and dynamic fatigue resistance as well as high strength and

an extremely low density, all of which are favorable characteristics for wind turbine

blade applications. In each case, the turbine shaft and supporting bars still utilize

Aluminum 2024 as in the rest of the study.

Figure 4.8 shows the box plot of the energy ratio (E/Ea) calculated for the baseline

turbine design #1 using the four different blade materials as discussed above. Each

box represents statistics calculated over the nine sites in Oklahoma City using wind

data spanning the entire year of 2009. The disparity in performance is attributed to

differences in the mass moment of inertia of each turbine, arising from differences in

the density of each blade material. The mass moment of inertia (I) of each turbine is

given in parenthesis in the x-axis label of Figure 4.8. In order of highest to lowest I are

Aluminum 2024 (41.91 kg⋅m2), Glass fiber (40.52 kg⋅m2), Carbon fiber (31.02 kg⋅m2),

and Aramid fiber (27.58 kg⋅m2). This corresponds to a variation in I of about 40%

between the four cases. As can be seen, the energy captured by the turbine decreases

with increasing moment of inertia as expected. The variation in the median E/Ea
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Figure 4.8: Box plot of the energy ratio for the baseline test case (turbine design
#1) as a function of turbine blade material. Statistics for each box are calculated
over the nine test sites in Oklahoma City. The moment of inertia of the turbine is
shown in parenthesis for each material type in units of kg⋅m2.

over the four cases is 6%. A greater spread in E/Ea over the nine sites is also

noticeable for the two turbines with higher moments of inertia, similar to what was

observed in Figure 4.6. The present study only considers the effect of blade material

on power performance. A full strengths evaluation, using Finite Element Analysis

(FEA), for example, should be performed to assess how the structural performance

of the turbine varies with blade material. Finally, implications related to the expense

of each material should also be considered before making a final design decision.

4.4.1.4 Structural Considerations

Wind turbine blades and their supports experience different types of loadings

during operation, such as stochastic load, inertia load, and aerodynamic load, the

latter of which plays a critical role in many wind turbine blade failures (Jureczko

et al., 2005; Schubel and Crossley, 2012). Aerodynamic load is generated by the lift

and drag forces acting on the turbine blades, and is dependent on the incoming wind

speed, airfoil shape, rotor speed, and angle of attack. Due to the change in orientation
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of the blades with respect to the incoming wind as the rotor spins, the magnitude and

direction of the lift and drag forces vary significantly over the period of revolution

of the turbine. The component of aerodynamic load that primarily causes turbine

blade failure is the thrust (normal force). Therefore, understanding the response

characteristics of the normal forces (FN) acting on the turbine blades during realistic

operating conditions is crucial for making informed design decisions.

Figure 4.9 shows the normal force acting on a single turbine blade for designs #1,

10, and 13 as a function of azimuth angle during one full period of revolution for the

case of a constant 7 m/s incoming wind speed. Design #1 constitutes the baseline

case, whereas designs #10 and #13 were selected for comparison, because these two

configurations exhibit the lowest and highest normal forces, respectively, of all of the

designs examined in the present study. As can be seen in Figure 4.9, FN follows

a nearly sinusoidal trend with an amplitude in the range 78–90 N. The maximum

and minimum forces are observed at azimuth angles around 70○–90○ and 270○–290○,

respectively. At these azimuth angles, the turbine blades are nearly perpendicular to

the incoming flow. Note, all three of the turbine designs examined in Figure 4.9 (#1,

10, 13) have the same design parameters, except for solidity (chord length). For design

#10, c = 8 cm, whereas for designs #1 and 13, c = 12 cm and 16.7 cm, respectively.

Since all three designs utilize the same airfoil shape (NACA 0015), the blades share

identical characteristics for the lift and drag coefficients. The dimensional lift and

drag forces, therefore, are expected to be linearly proportional to the chord length.

The normal forces in Figure 4.9 were then normalized by the turbine blade chord

length and turbine blade weight, respectively. The normalized FN forces in Figure 4.9

did not collapse into a single curve, suggesting that the observed differences in FN

between the three designs cannot entirely be attributed to the blade chord length.

Design #13 experiences the highest FN (89.5 N); however, this design may also

be the strongest structurally due to its larger blades. The increased weight, though,

unfavorably affects power performance, as design #13 displayed the second lowest

energy ratio of all of the designs examined in the present study. The opposite can

be said about design #10. In fact, there likely exists a trade-off between power

performance and structural performance in VAWT design. The study of Paraschivoiu
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Figure 4.9: Normal force acting on a single turbine blade as a function of azimuth
angle during one period of revolution for the case of a constant incoming wind speed
of 7 m/s.

et al. (1983) recommends the symmetrical NACA 0015 for small-scale wind turbines,

due to its favorable stall characteristic, and, the NACA 0018 for large wind turbines,

to enhance the structural performance. A detailed FEA analysis should be considered

for future work in order to assess the structural viability of the designs considered in

the present study.

Figure 4.10a shows the probability density function (PDF) of the wind speed at

site KSW 101 in Oklahoma City in 2009. Also indicated are the cut-in and rated

speeds. The median value of 4.7 m/s remains close to the annual average of about 5

m/s. The solid black line in Figure 4.10a represents the best-fit gamma distribution to

the data. Figure 4.10b shows the corresponding PDF of the amplitude of the normal

force (FN) acting on a single turbine blade for the baseline design case #1 during the

full year of operation at site KSW 101 in 2009. The amplitude is determined as the

peak normal force obtained over each revolution of the turbine. The minimum and

maximum FN over the year is 15.8 N and 503.9 N, respectively. The annual average

amplitude is 69.6 N; and, the median is 51 N. The solid black line in Figure 4.10b

represents the best-fit lognormal distribution to the data. Note, a gamma distribution

did not fit the PDF of FN as well as a lognormal distribution. Since the stochastic

processes governing the normal force acting on the turbine blades and the incoming
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Figure 4.10: Probability density functions at site KSW 101 in Oklahoma City based
on data acquired over the full year of 2009: (a) wind speed and (b) amplitude of the
normal force acting on a single turbine blade for design #1. Also indicated are the
cut-in and rated wind speeds, Vin and Vrated, respectively. The black solid line in (a)
denotes the best-fit gamma distribution to the wind data; whereas the solid black line
in (b) represents the best-fit lognormal distribution to the force data.
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wind speed appear to be different, it is not clear that one could predict the expected

load on the turbine blades using a simple relationship based on the PDF of the wind

speed.

4.4.2 Economic Analysis

The performance of the thirteen turbine designs are studied from an economic

perspective by evaluating the levelized cost of energy (LCOE) using the method

outlined in Section 4.4.2. The economic analysis utilizes the full year of wind speed

data from 2009 at site KSW 101 to determine which turbine design configurations

offer a viable economic solution for harvesting wind in the urban/suburban area

surrounding Oklahoma City. Figure 4.11 shows the LCOE (in $/kWh) calculated

for each design. The designs are arranged using the same ordering as in Figure 4.6.

One can observe a direct correlation between the energy ratio results presented in

Section 4.4.1.2 and LCOE, whereby more energy produced translates into lower overall

LCOE price as expected. Note, the analysis assumes the same project cost for each

design. This may not be entirely accurate since some design configurations consist

of larger blades, which may augment the material costs slightly compared to designs

with smaller blades. Therefore, the observed differences in LCOE between the various

designs can be attributed to the disparity in energy production (E/Ea). The two

horizontal dashed lines in Figure 4.11 represent the current electricity price (as of

August 2016) and the predicted national electricity price in the next 20 years. These

values are taken as $0.1290/kWh and $0.1597/kWh, respectively, following Nguyen

and Metzger (2017). The results indicate that seven of the designs (#1, 2, 5, 8, 10,

11, 12) exhibit LCOE values at or below the current electricity price, making them

economically viable solutions. The most effective design (#10) has an LCOE equal to

0.116 $/kWh, which means that electricity produced by this turbine is 10% cheaper

than that currently generated from fossil-fuel-based power plants. The remaining

designs, except for design # 7, may become economically viable in the future as the

price of electricity increases.

The error bars on each data point in Figure 4.11 represent the uncertainty in

LCOE due to ±10% variation in the annual energy production at site KSW 101 in
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Figure 4.11: Comparison of the LCOE price for the thirteen turbine designs
implemented at site KSW 101 in Oklahoma City based on their projected operation
during the year of 2009. The lower horizontal dashed line represents the national
electricity unit price as of August 2016, whereas the higher horizontal dashed line
represents the predicted average national electricity price in 2036. The designs are
plotted left to right in the same order as in Figure 4.6.
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Oklahoma City. Sonic anemometry data do not exist to compare projected wind

energy production over multiple consecutive years, so the value of ±10% used here

should be considered arbitrary and only for illustrative purposes. Slightly longer bars

are noticeable in turbine designs exhibiting higher LCOE values, which suggests that

the LCOE is more sensitive to uncertainties in energy production in cases with higher

LCOE prices.

Note, the results shown in Figure 4.11 are only valid at test site KSW 101. Nguyen

and Metzger (2017) showed that the LCOE can vary considerably at different sites

depending on the local annual average wind speed. Figure 4.12 presents the LCOE

for each of the nine sites in Oklahoma City using turbine design #1 plotted versus the

annual average wind speed at each site. The horizontal dashed lines again represent

the current electricity price and the predicted electricity price for year 2036. The

error bars represent the uncertainty in LCOE due to ±10% variation in the annual

energy production at each site. The present data in black are compared against the

data from Nguyen and Metzger (2017) in grey calculated for the same turbine design

configuration but implemented using a constant-ω controller with daily adjustment of

turbine rotational speed set according to the modified persistence forecasting method.

As apparent, continuous adjustment of the turbine rotation speed by active control

via the ideal-TSR controller outperforms the constant-ω controller in every case,

producing lower LCOE prices. The LCOE values at sites KSW 101, KSW 108, KSW

111, and KNW 104 are lower than the average electricity price predicted between

years 2016–2036, which suggests that a wind turbine based on design configuration

#1 installed at these locations would produce electricity at a cost competitive with

that charged by public utilities. These sites exhibit annual average wind speeds

greater than 4.3 m/s, and are all located in suburban areas on the western side

of the metropolis. Because the present wind data were acquired at relatively low

heights (9 m, corresponding to the height of typical traffic signals), further work is

necessary to determine whether installation of the turbines at higher elevations, such

as on building or home rooftops, would yield more economically viable results at sites

within the urban area.
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Figure 4.12: Comparison of the LCOE price for design #1 implemented at different
sites in Oklahoma City based on the projected operation during the year 2009. Error
bars represent the uncertainty in LCOE due to ±10% variation in the annual energy
production. Gray crosses: results from our preceding paper (Nguyen and Metzger,
2017), based on using a constant-ω controller with daily adjustment of rotational
speed set according to the modified persistence forecasting method. Black circles:
present results based on continuous active adjustment of the rotational speed using
the ideal-TSR controller. Black line: cubic polynomial fit to the current data. Gray
dashed lines: current average national electricity price (lower horizontal line) and
projected average national electricity price for 2036 (upper horizontal line).
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By inspecting Figure 4.12, one can determine the cost reduction necessary to

achieve an economically viable design at test sites where the annual average wind

speed remains below the critical value of about 4.3 m/s. For example, test site KNE

104 has an annual average wind speed of 3.75 m/s compared to 4.32 m/s at KSW

111. Because of this, the LCOE value at site KNE 104 is nearly double that at site

KSW 111. However, only a 13% increase in the annual average wind speed at site

KNE 104 is necessary in order to reduce the LCOE to a value equivalent to that of

KSW 111. This clearly has ramifications for wind turbine siting in urban/suburban

areas. The LCOE may also be reduced by decreasing project costs. For test sites

such as KNE 104 and KCB 110 where the annual average wind speed measures about

3.75 m/s, the project cost of the deployed system would have to decrease by about

40% of the current project cost in order for the technology to be economically viable.

This provides an impetus for finding ways to diminish manufacturing expenses. It is

also worth mentioning that the present economic analysis utilized the baseline design

(#1), whereas Figures 4.6 and 4.11 both demonstrate that designs # 10 and 11 exhibit

superior performance. If design configuration #10 were installed at site KSW 102, for

example, instead of design #1, then the LCOE would drop 5.63% from 0.213 $/kWh

to 0.201 $/kWh. An additional reduction in the LCOE may also be realized with

design #10 due to the smaller blades; however, this remains to be verified.

The results in Figure 4.12 suggest a cubic relationship between LCOE and annual

average wind speed. This is expected since the LCOE depends strongly on the annual

energy production. Energy production, in turn, is equal to the energy ratio (E/Ea)
multiplied by the available energy, which is proportional to the cube of the velocity,

as noted in (4.4). The difference in LCOE prices between the two types of controllers

noticeably increases with increasing LCOE (or decreasing annual average wind speed).

The sensitivity of LCOE at low wind speeds may be related to the fact that, at low

wind speeds, the turbine blades spend more time (larger percentage of the rotational

cycle) at unfavorable angles of attack beyond stall. Thereby, any lag in response,

leading to operation off of the ideal TSR (peak Cp) value, is expected to have a more

pronounced effect on performance in the low wind speed regime.
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4.5 Conclusion

The present study investigates whether an optimal Vertical Axis Wind Turbine

(VAWT) design exists for application in gusty wind conditions characteristic of an

urban/suburban area. The new aspect of this work is the use of actual time-resolved

wind speed data as input to drive a numerical simulation that calculates the total

amount of energy captured by the turbine over a full year of operation. Nine different

sites, in both urban and suburban neighborhoods, spanning an approximate 500 km2

region surrounding Oklahoma City were interrogated. At each site, wind data from

the year 2009 were obtained from 3D sonic anemometers mounted on the top of traffic

light posts at a height of about 9 m above the ground. An ideal control strategy was

utilized that provides active control of the turbine rotational speed, allowing the

turbine to continuously adjust to fluctuations in wind speed. A total of thirteen wind

turbine design configurations were examined, all of them being straight-blade Darrieus

type with three blades. The baseline design consisted of the following features: height

H = 2.4 m, diameter D = 2.0 m, solidity S = 18%, blade shape comprised of the NACA

0015 airfoil, and chord length c = 12 cm. Each of the remaining twelve turbine design

configurations were obtained by varying one or more design parameters relative to the

baseline case. The following parameter ranges were investigated: three airfoil blade

shapes (NACA 0012, 0015, 0018), four aspect ratios (0.83 ≤H/D ≤ 1.34), five solidities

(12 ≤ S ≤ 25%), and eight different chord lengths (8 ≤ c ≤ 16.7). In each design

configuration, the turbine moment of inertia used in the simulation was a realistic

value based on a computer-aided-design drawing of the turbine with appropriate

material properties for the various components. The main performance measure used

to identify the optimum design configuration was the percent of energy captured by

the turbine over the course of the year relative to the available energy in the gusty

wind during the same time period.

In the case of steady incoming winds, turbine performance is typically charac-

terized via the power coefficient (Cp) versus tip speed ratio (TSR) curve. Based on

a comparison of the Cp–TSR curves at a fixed incoming wind speed of 7 m/s, the

turbine with an aspect ratio of H/D = 0.83 exhibited the maximum peak Cp value of

all the thirteen design configurations examined. In addition, for a fixed aspect ratio
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and solidity, the turbine with the NACA 0015 airfoil blades produced a higher peak Cp

value than those using the NACA 0012 or 0018 airfoils. Finally, for a fixed aspect ratio

and blade shape, the turbine with a solidity of S = 18% displayed the highest peak

Cp value compared to the other solidities. Further observations include the fact that

solidity had the greatest effect on the TSR operating range of the turbine, and the

turbine with the lowest solidity (S = 12%) exhibited the broadest Cp–TSR curve with

the largest TSR range. Results from the Cp–TSR curves were found to be somewhat

misleading, however, in determining an optimum turbine design for operation during

unsteady winds. When subjecting each of the thirteen design configurations to the

actual wind data from the nine test sites, it was discovered that the optimal turbine

design was the one with the following features: H/D = 1.2, NACA 0015 airfoil blades,

S = 12%, and c = 8 cm. This design configuration was able to extract the most

energy at each site, and therefore is considered to be a site-independent optimal

design solution. Note, this optimal design had the lowest moment of inertia of all

of the configurations studied. Importantly though, when the moment of inertia was

eliminated as a design parameter, this optimal design configuration still performed

the best. From the perspective of VAWT power performance in unsteady gusty

winds, the results suggest that an optimal turbine design should possess these three

characteristics: (i) low mass moment of inertia, (ii) high peak CP value, and (iii)

broad CP–TSR curve. Future work aims to validate these results with experimental

performance data.

The optimal turbine design identified in the present study considers power

performance as the only metric. Structural performance, however, also plays an

important role in wind turbine design. The turbine must be designed to withstand

the high forces encountered due to applied wind loading on the turbine blades and

supports. This is particularly critical for turbines implemented in urban/suburban

areas that experience highly fluctuating wind speeds. The present study illustrates

the range of forces that can be expected to act on the turbine during a full year

of operation. Future work aims to utilize this information to analyze the structural

behavior of various turbine designs. For example, increasing turbine solidity (bigger

chord length) or using a thicker airfoil shape might enhance structural integrity,
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but may simultaneously degrade the power performance of the turbine. Examining

the trade-off between power and structural performance is an essential next step

toward understanding how best to implement wind energy technology in the built

environment.

Results from an economic analysis, based on the energy produced during normal

operation at one of the test sites, show that the Levelized Cost of Energy (LCOE) for

the baseline turbine design decreases cubically with the annual average wind speed.

The LCOE value is highly sensitive to the amount of energy produced at locations

where the annual average wind speed is relatively low. At sites where the annual

average wind speed was about 4.2 m/s or higher, the LCOE of the baseline turbine

design was competitive with the national electricity price, which suggests that the

deployed VAWT system is economically viable at these sites. The LCOE of all thirteen

design configurations was calculated at one of the test sites with an annual average

wind speed of 5 m/s. It was discovered that only design configurations with H/D ≥ 1.2

were economically viable. At this site, turbine designs utilizing both the NACA

0015 and 0018 airfoil blades were found to be economically viable. Furthermore,

the optimal design configuration at this site produced electricity at a cost that was

10% less than the national electricity unit price. In all cases, the project costs were

assumed to be the same regardless of the turbine design configuration. Further work

is necessary to understand how subtle changes in the turbine design parameters, such

as solidity and airfoil thickness or chord length, might affect the project cost of the

VAWT system, and ultimately the LCOE.
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CHAPTER 5

CONCLUSION

The primary and direct impact of the work in this research is to broaden the

current understanding of the transient response of a vertical axis wind turbine oper-

ating in gusty winds representative of an urban/suburban environment and examine

the conditions under which the wind turbine would constitute an economically viable

alternative to electricity generated from fossil-fuel power plants. The present results

show that the amount of available energy in gusty wind, relative to that of the mean

wind, increases quadratically with turbulence intensity. This provides motivation for

striving to harness as much energy from wind gusts as possible. For both types of

system controllers (constant rotational speed controller and ideal TSR controller),

the efficiency of the turbine was found to be strongly dependent on the turbulence

intensity of the wind condition. The effect of gust frequency on turbine efficiency

was observed to be insignificant. The mean wind speed also had a significant impact

on the turbine efficiency due to the Reynolds number effect on the aerodynamic flow

over the turbine blades.

For the case of the constant rotational speed controller, it was shown that the

turbine should be operated at an overspeed setting (ωopt) based on the turbulence

intensity of the incoming wind in order to harvest as much energy as possible. The

optimal overspeed setting (ωopt) was found to be quadratically correlated with the

wind turbulence intensity. This has practical implications on VAWT installation in

urban areas, as one only needs an estimate of the expected turbulence intensity of the

wind in order to dial in the proper overspeed setting on the turbine to harness the

maximum amount of energy possible using a constant-ω controller. Using an optimal

overspeed setting allowed for significant energy to be captured, e.g., a factor of six
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times greater during the year of 2013 at William Browning Building compared to the

energy captured using a fixed speed based naively on the annual average wind speed.

For the case of the ideal tip speed ratio controller (ideal − TSR), the turbine

efficiency was observed to plateau to a maximum value when the nondimensional

turbine response parameter ζ drops below the critical value ζc. For the regime ζ < ζc,
the turbine responds quickly to fluctuations in the wind, allowing the wind turbine to

efficiently capture energy from the wind. As the turbine response parameter increases

above the critical value (ζ > ζc), the turbine is no longer able to closely track the

wind gust, and a decrease in turbine efficiency is observed. In addition, the results

show that a fast response VAWT is capable of harnessing an order of magnitude or

more energy during gusty wind with the ideal − TSR controller, compared to simply

operating the turbine at a TSR based on the corresponding mean wind speed. This is

significant because the concept of an ideal−TSR controller may provide the difference

necessary in order to make the wind technology viable in some urban areas, whereas a

wind turbine operating with a constant-ω controller would not be capable of providing

enough energy to make the investment worthwhile. This would be especially true

for typical wind conditions in urban areas, where the annual average wind speed is

relatively low, but the wind gusts are significant.

The study also seeks to provide solutions for improving the turbine efficiency and

energy captured by investigating different methods of wind condition forecasting.

Wind data from the combined sites in Oklahoma City demonstrate that forecasting

uncertainty has a significant impact on the amount of energy captured by the wind

turbine. Specifically, a 5% increase in forecasting accuracy could increase the total

energy captured as much as 13%. This increase could make a significant difference

in terms of the VAWT being a viable renewable technology in many urban areas.

Forecasting is only applied on the constant-ω controller as the wind condition is

required to be known in advance in order to set the operating point (rotational speed)

of the wind turbine. For all the test cases, the four examined forecasting models

allow the VAWT to capture approximately 78% to 85% of the ideal amount of energy

that could be captured assuming the actual wind data were available in real time.

The modified persistence model (MPM) outperformed the persistence model (PM),
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autoregressive moving average (ARMA), and weather research and forecasting model

(WRF) by capturing as much as 6% more energy. When compared to the case of

no forecasting, the MPM improved the total amount of energy captured over the

full year of operation as much as 17.3%. The MPM method only involves one tuned

parameter, an adjustment factor (AF), that was found to be site independent and

linearly correlated with the annual average wind speed. This empirical relationship

has a potential practical application that one can estimate the average annual average

wind speed of the advanced year, and then set an appropriate AF value for the

controller for the subsequent year. The amount of training data and forecasting

horizon in the ARMA model was found to be site dependent. In terms of the amount

of energy captured, the WRF model performed as well as the ARMA model; however,

the WRF has the potential to perform even better with enhanced grid resolution,

especially in the vertical direction.

The study also investigates the optimal VAWT design for application in gusty

wind conditions typical of an urban/suburban environment. Thirteen turbine design

configurations were examined. Four design parameters were varied, including the

height-to-diameter aspect ratio, blade airfoil shape, turbine solidity, and turbine

moment of inertia. Of the thirteen configurations examined, the optimal wind

turbine design capable of harvesting the most energy from the gusty wind was

found to have an aspect ratio of 1.2, solidity of 12%, and blade shape based on the

NACA 0015 airfoil. The results suggest that the turbine configuration with the peak

power coefficient (CP ) does not necessarily capture the most energy when exposed

to unsteady wind speeds. From the perspective of VAWT power performance in

unsteady gusty winds, the results suggest that an optimal turbine design should

possess these three characteristics: (i) low mass moment of inertia, (ii) high peak CP

value, and (iii) broad CP − TSR curve. Besides the power performance, the turbine

must also be designed to withstand the high forces encountered due to applied wind

loading on the turbine blades and supports. This is particularly critical for turbines

implemented in urban/suburban areas that experience highly fluctuating wind speeds.

To increase the turbine structural integrity, the turbine solidity or airfoil thickness

could be increased; however, this may simultaneously degrade the power performance
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of the turbine. Examining the trade-off between the power and structural performance

is essential in optimizing a VAWT design for the built environment.

An economic analysis was conducted in order to quantify the economic viability

of the VAWT system and determine the conditions under which the system should be

deployed. The economic analysis shows that the LCOE values decrease cubically with

the annual wind speed. The LCOE value is highly sensitive on the amount of energy

produced by the wind turbine at locations where the annual wind speed is relatively

low. The LCOE suggests that the ideal-TSR controller is more economical and viable

compared to the constant-ω controller. At the sites where the annual average wind

speed is about 4.2 m/s or higher, the LCOE of the system is competitive with the

national electricity price and the deployed VAWT system is economically viable at

these sites.

The research presented in this dissertation has advanced scientific knowledge in the

area of VAWT power performance when the turbine is deployed in realistic unsteady

wind conditions. Prior to this, the literature has focused on VAWT performance

under steady winds. The results provide a guide for designing small-scale VAWTs

appropriate for installation on the rooftops of houses and buildings in urban/suburban

areas. In addition, the investigation of different wind turbine configurations, turbine

controllers, and wind forecasting methods have demonstrated that the Darrieus wind

turbine is a promising (and economically competitive) renewable energy technology

for harvesting wind energy in the built environment. It is hoped that the knowledge

and findings from this study would be beneficial for the future of wind turbine design

and motivate more investment from industry and energy consumers into vertical axis

wind turbines in order to realize our vision of an energy-neutral sustainable city.

5.1 Future Works

There are certain extensions to the work presented in this dissertation that were

either beyond the scope of the study, or only briefly addressed. The work presented in

Chapter 4 only discussed the wind turbine optimization based on the power/energy

performance of the turbines. However, structural performance of the turbine is

another important factor in wind turbine design. During the operation, the turbine
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experiences a significant loading, especially on its turbine blades (Jureczko et al.,

2005; Schubel and Crossley, 2012). Therefore, the turbine design must be structurally

sound in order to sustain this loading on its blades and supports. In a study performed

by Paraschivoiu et al. (1983), airfoil shape NACA 0015 is suggested for small-scale

wind turbine in terms of power performance; while NACA 0018 is recommended

for structural purposes. Therefore, the full-strength structural evaluation should be

performed to examine the structural performance of each wind turbine configuration.

This could be performed using several available commercial software packages such

as SolidWorks, Abaqus, and Comsol in combination with Fluent. In addition, some

aspects of turbine configuration could be explored to improve the structural integrity

of the turbine such as increasing turbine solidity or airfoil thickness or material

selection of the turbine blades. However, this variation may simultaneously degrade

the power performance of the turbine. Examining the trade-off between the power

and structural performance is an essential next step toward understanding how best

to implement wind energy technology in the built environment.

Another extension of this current work is to characterize different loading forces

that act on the turbine blades during operation in gusty wind conditions. The work

presented in Chapter 4 briefly studied the aerodynamic load acting on the blades in

the form of the normal force (thrust). The results suggest the normal force increases

rapidly with the wind speed. In addition to the aerodynamic load, the turbine also

experiences different types of loading such as static load, stochastic load, and inertia

load acting on the turbine blades (Jureczko et al., 2005; Schubel and Crossley, 2012).

The stochastic load is derived from the wind turbulence and is relevant to the fatigue

response of the wind turbine structure. In fact, these loads in combination with

the aerodynamic load are the ones that can cause the most structural failure on

wind turbine blades, particularly due to fatigue. Future work aimed at quantifying

these applied loadings will be informative and useful in order to determine whether

the optimal turbine design configuration identified herein is structurally viable for

implementation in the real world.

The results from the present study suggest that the wind condition, as character-

ized by the mean wind speed and turbulence intensity, has a significant impact on
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the overall performance of the turbine and the optimal wind turbine configuration.

This is especially true for gusty wind conditions typical of the urban/suburban

environment. As apparent from Figure 4.7, a nearly linear correlation between

the turbine moment of inertia (I) and the standard deviation of the energy ratio

(σE/Ea) was observed from the thirteen wind turbine configurations examined. This

correlation suggests a relationship between the optimal wind turbine configuration

and the incoming wind characteristics. It would be convenient and easy for a wind

turbine engineer/designer if simple computational software existed that output the

optimal wind turbine configuration for a particular urban application, given the

desired location of installation and size constraints, for example. It is also preferred

that this computational software incorporate a structural analysis and modify the

optimal design accordingly, such as increasing the thickness of the airfoil or solidity,

for example. An extensive study of different wind turbine configurations and wind

conditions should be performed as part of this future work.

The numerical results presented in this dissertation require experimental valida-

tion. In particular, it remains to be determined whether use of static lift and drag

coefficients in BEM is accurate for the transient case where winds are unsteady.

Ideally, experimental validation should be performed both in the laboratory and in

the field. In the laboratory, one could conduct wind tunnel tests using a scaled

model of one of the VAWT configurations examined in Chapter 4. It would be

important to be able to vary the incoming wind speed in a manner similar to the

actual atmospheric flow observed at the Oklahoma sites. Most wind tunnel fans

utilize a frequency controller that could be programmed to vary the wind speed

with time according to a prescribed signal; however, it is unclear how quickly the

wind tunnel fan could respond. Therefore, these laboratory experiments may not be

trivial. In addition, it would be useful to conduct in situ field experiments using a

rooftop-mounted VAWT. Work is currently in progress to mount a small VAWT on the

rooftop of the Kennecott Building. In both cases, the aerodynamic torque generated

and rotational speed of the turbine rotor should be measured simultaneously in order

to calculate power as a function of time, and total energy captured by the wind

turbine. Experimental validation will help increase confidence in the results produced
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by the present numerical models. The experiments will also provide a benchmark

database against which future numerical models may be validated.

Finally, the results presented this dissertation mainly focused on the Darrieus

vertical axis wind turbine. This research should be further extended for the appli-

cation on the helical wind turbine that has been studied extensively in the recent

years (Bertényi et al., 2010; Scheurich et al., 2010; McIntosh and Babinsky, 2012).

The helical wind turbine was innovated from the Gorlov helical turbine that had

its blade twisted and covered total 360○ revolution (Gorlov, 1995). The helical wind

turbine has gained popularity in residential and urban areas because of its low starting

wind speed and fast response behavior (Bertényi et al., 2010). Many wind turbine

manufacturers have started manufacturing and selling helical wind turbine for the

industrial use with two big manufacturers: QuietRevolution and Urban Green Energy

(UGE) International. An extension of this research on the helical wind turbine would

allow the engineer to determine the practicality and viability of the system operating

in the gusty wind condition representative of an urban/suburban area.
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Bertényi, T., C. Wickins, and S. McIntosh, 2010: Enhanced energy capture through
gust-tracking in the urban wind environment. 48th AIAA Aerospace Sciences Meeting,
Orlando, Florida, USA.

Gorlov, A., 1995: The helical turbine: A new idea for low-head hydro. Hydro Review,
14 (5).

Jureczko, M., M. Pawlak, and A. Mezyk, 2005: Optimisation of wind turbine blades.
Journal of Materials Processing Technology, 167 (2), 463–471.

McIntosh, S. C. and H. Babinsky, 2012: Aerodynamic modeling of swept-bladed
vertical axis wind turbines. Journal of Propulsion and Power, 29 (1), 227–237.

Paraschivoiu, I., F. Delclaux, P. Fraunie, and C. Beguier, 1983: Aerodynamic analysis
of the darrieus rotor including secondary effects. Journal of Energy, 7 (5), 416–422.

Scheurich, F., T. Fletcher, and R. Brown, 2010: The influence of blade curvature
and helical blade twist on the performance of a vertical-axis wind turbine. 48th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, 1579.

Schubel, P. J. and R. J. Crossley, 2012: Wind turbine blade design. Energies, 5 (9),
3425–3449.



APPENDIX

DYNAMIC STALL MODEL

A.1 Introduction

The majority of numerical models based on BEM theory incorporate static airfoil

data to calculate lift and drag on the turbine blade elements. It is well known

that lift and drag forces acting on an airfoil undergo hysteresis in unsteady wind

conditions due to the phenomenon of dynamic stall. Dynamic stall is characterized

by flow separation, vortex shedding, and reattachment of the flow over the upper

lifting surface of the airfoil (Paraschivoiu, 2002; Schuerich and Brown, 2011). In the

application of wind turbines, dynamic stall occurs because the airfoil blades undergo

rapid variations in angle of attack as the blades rotate about the rotor shaft. A CFD

study performed by Schuerich and Brown (2011) showed that, at moderate tip speed

ratio, the use of dynamic stall data more accurately captures the behavior of the

normal and tangential forces on the blades of a helical VAWT compared to that using

static airfoil data. Masson et al. (1998) also showed that incorporating dynamic stall

data in a multiple streamtube BEM model yielded better agreement of the power

performance curves with experimental data, compared to the same BEM model using

static airfoil data.

The aim of the dynamic stall model is to numerically compute the dynamic lift and

drag characteristics of the airfoil from the available static coefficients. An overview of

dynamic stall models adapted for VAWT applications can be found in Paraschivoiu

(2002). Many of these models originate from the 1973 Gormont model (Gormont,

1973), derived from experimental data of the dynamic stall on helicopter blades. The

Gormont model, however, overpredicts the effect of dynamic stall in the performance

of VAWTs. Several modifications to the Gormont model have been suggested to better

predict wind turbine performance (Strickland et al., 1980; Berg, 1983; Paraschivoiu
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et al., 1988). Strickland et al. (1980) proposed an adaption to the Gormont model

that utilized a modified angle of attack. A few years later, Berg (1983) proposed a

method based on a linear interpolation between the dynamic coefficients predicted by

the Gormont model and the static coefficients. Comparison with experimental data

suggests Berg’s modification provides a more accurate prediction of wind turbine

performance (Paraschivoiu, 2002). Although incorporating the effect of dynamic stall

has been shown to improve one’s ability to model the power performance curves of

VAWTS, it remains to answer how much this alters the prediction of total energy

captured by a VAWT operating in gusty wind conditions. In the present study,

we compare the output from our numerical model using both dynamic and static

lift/drag coefficients. The dynamic lift/drag coefficients were determined from the

static coefficients using the Gormont model with the Berg correction, as described in

the next section: Numerical Model.

A.2 Numerical Model

A.2.1 Gormont Model

The Gormont model empirically mimics the hysteresis response of the airfoil blade

during dynamic stall, by defining a reference angle of attack (αref ) that is different

than the geometric angle of attack (α). The reference angle of attack is defined as

αref = α −K δα (A.1)

where

K =
⎧⎪⎪⎨⎪⎪⎩

1, for 9α ≥ 0,

−0.5, for 9α < 0.
(A.2)

Here, δα describes the delay angle of attack, K represents a delay parameter in

Gormont’s Model, and 9α is the rate of change of the angle of attack. Based on

Gormont’s empirical observations, the delay angle of attack is proportional to the

nondimensional rate parameter S,

S =
√

∣ c 9α

2Vr
∣ (A.3)

where c is the chord length and Vr is the relative velocity on the airfoil blade. Gormont

observed that for higher S values, dynamic stall is delayed to larger angles of attack.
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This delay in angle of attack can then be calculated as

δα =
⎧⎪⎪⎨⎪⎪⎩

γ1S, for S ≤ Sc,
γ1Sc + γ2(S − Sc), for S > Sc,

(A.4)

where Sc represents a critical value of S, defined as

Sc = 0.06 + 1.5(0.06 − t
c
) , (A.5)

with t denoting the airfoil thickness. The parameters γ1 and γ2 in (A.4) are

determined as follows,

γ1 =
⎧⎪⎪⎨⎪⎪⎩

γ2
2 , for lift,

0, for drag,
(A.6)

where

γ2 = γmax max(0,min [1, M −M2

M1 −M2

]) . (A.7)

M denotes the Mach number of the airfoil blade section. The Mach number is

calculated as M = Vr/Vs, where Vs represents the speed of sound (having a value

of 340.3 m/s in standard air). Other parameters, including γmax, M1 and M2, have

different specific forms for the lift and drag characteristics as listed in Table A.1.

Finally, the dynamic lift and drag coefficients are given by

Cdyn
D = CD(αref) (A.8)

and

Cdyn
L = CL(αo) +m(α − αo) (A.9)

where

m = min [CL(αref) −CL(αo)
αref − αo

,
CL(αss) −CL(αo)

αss − αo
] (A.10)

Table A.1: Specific forms for the parameters in (A.7) of the Gormont model

Parameter Lift Characteristic Drag Characteristic
M1 0.4 + 5.0(0.06 − t/c) 0.2
M2 0.9 + 2.5(0.06 − t/c) 0.7 + 2.5(0.06 − t/c)
γmax 1.4 + 6.0(0.06 − t/c) 1.0 + 2.5(0.06 − t/c)
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In the above expression, αo is any convenient angle of attack, but typically is taken

as the zero-lift angle of attack, and αss is the static stall angle of attack. It is worth

mentioning that the value for the reference angle of attack (αref ) is different for the

lift and drag characteristics. Note, the value of αref also varies with yaw angle as the

wind turbine blades rotate.

A.2.2 Berg Model

The Gormont model was developed for helicopter blades, in which the maximum

angle of attack reached is much lower than the angle of attack of VAWT blades

during operation. Therefore, Berg hypothesized that the pure Gormont model might

overpredict the dynamic lift and drag characteristic of the airfoil blades on a VAWT,

thus overpredicting the dynamic stall effect on VAWT performance. To avoid this

overprediction, Massé (1981) proposed a method to compute the modified dynamic

coefficients (Cmod
L and Cmod

D ) based on a linear interpolation between the dynamic

coefficients (Cdyn
L and Cdyn

D ) predicted by the Gormont model and the available static

coefficients (CL and CD), as follows

Cmod
L =

⎧⎪⎪⎨⎪⎪⎩

CL + [ AMαss−α
AMαss−αss

] (Cdyn
L −CL) , for α ≤ AMαss,

CL, for α > AMαss.
(A.11)

Cmod
D =

⎧⎪⎪⎨⎪⎪⎩

CD + [ AMαss−α
AMαss−αss

] (Cdyn
D −CD) , for α ≤ AMαss,

CD, for α > AMαss.
(A.12)

where AM is a Masse damping coefficient. Massé (1981) proposed a value AM = 1.8.

Starting with the above modification, Berg (1983) further proposed using AM = 6.

This new AM value gave good agreement between numerical results and experimental

data of the power performance for a 17 m Sandia eggbeater VAWT with NACA0015

airfoil blades (Shires, 2013). The optimal value of AM seemed to be dependent on the

relative thickness of the airfoil; for example, AM=∞ was found to be more appropriate

for wind turbine with NACA 0018 and SNLA 0018 airfoils (Masson et al., 1998; Shires,

2013). Berg also proposed the definition of static stall angle of attack (αss) as the angle

at which the variation of the lift coefficient with respect to the angle of attack begins

to depart from the linear behavior. In the present study, our numerical model uses

Berg’s model to calculate the dynamic lift and drag coefficients during the dynamic



114

stall phenomenon. The dynamic lift and drag coefficients are later incorporated in

the Blade Element Momentum (BEM) model to predict the power performance of the

turbine. Detailed description of the BEM model can be found in the section: Turbine

Model in Chapter 2 of this dissertation.

A.3 Preliminary Results

The main objective of this appendix is to investigate the effect of the dynamic stall

phenomena on the power performance of the wind turbine. This is done by comparing

the CP -TSR curve from the dynamic stall model to the one obtained using the static

lift and drag coefficients. For this comparison, the turbine is subjected to a steady

wind speed. A straight blade Darrieus type VAWT (also referred as an H-rotor

turbine) with three blades is examined. The turbine blades have a chord length (c) of

12 cm and are based on the NACA 0015 airfoil shape. The turbine has a height (H)

of 2.4 m and diameter (D) of 2.0 m. The turbine solidity (S), defined as the ratio of

the area of the blades (N ⋅c⋅H) to the turbine frontal area (H ⋅D), is 18%.

Figure A.1 shows the power coefficient versus tip speed ratio (CP -TSR) curves

of the examined turbine model using the static and dynamic stall models. The

power coefficient curves are all simulated at a wind speed of 7 m/s. Different delay

parameters (K1) and Masse damping coefficients (AM) are used in the dynamic

stall model as recommended by previous studies (Berg, 1983; Masson et al., 1998;

Shires, 2013). As shown in Figure A.1, in all cases, the CP -TSR curve obtained from

the static model outperforms the ones computed by the dynamic stall models. The

difference between the peak CP values between the static and dynamic stall models

is approximately 36%. The results also show that the delay parameter, K1, seems

to have little impact on the overall power performance of the turbine compared to

the impact of the Masse damping coefficient, AM . Changing the delay parameter K1

from -0.5 to 0 seems to slightly improve the power coefficient of the turbine in the

low TSR regime. For K1 = 0, changing the Masse damping coefficient from AM = 6

to AM = ∞ increases the peak CP value from 0.241 to 0.288, which represents an

approximate 20% increase.
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Figure A.1: Power coefficient versus tip speed ratio curve. The colored symbols
represent various dynamic stall models with different delay parameters (K) and Masse
damping coefficients (AM) as indicated. In all cases, the incoming wind speed is 7
m/s.

Previous researchers have identified a need to tune the Masse damping coefficient

(AM) to better define the effect of dynamic stall on the aerodynamic lift and drag

of different VAWT configurations (Shires, 2013; Berg, 1983; Masson et al., 1998).

In his original study, Massé (1981) proposed the use of AM = 1.8 for all turbine

configurations. It is well known that the dynamic stall phenomena is complex and

varies significantly with airfoil shape and Reynolds number (Shires, 2013). Therefore,

the manner in which dynamic stall affects the overall performance of a turbine is

expected to depend on the turbine configuration (blade airfoil shape, chord length,

aspect ratio, and solidity). In fact, many different values of the damping coefficient

have been proposed for different wind turbine configurations to account for these

design variations (Berg, 1983; Masson et al., 1998; Shires, 2013).

In a study performed by Berg (1983), the results suggested that the dynamic

stall model with AM = 6.0 provided good agreement with experimental results for
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the case of a 17 m eggbeater VAWT with blades in the shape of the NACA 0015

airfoil. It is questionable, however, whether this damping coefficient may be applicable

to other configurations. A study performed by Masson et al. (1998) on a 24 m

eggbeater VAWT with NACA 0018 airfoils suggested that a damping coefficient of

AM=∞ provided better simulation results compared to AM = 6. Masson et al. (1998)

further suggested that the damping coefficient is a function of blade airfoil geometry,

particularly the airfoil thickness to chord length ratio. Similarly, the results from

Shires (2013) suggested that at low rotational speed (e.g., 30 rpm), the damping

coefficient, AM = 3.6, provided good agreement with the measured power for a 24 m

eggbeater VAWT. In addition, Shires (2013) also proposed further modification to the

Gormont model that is more appropriate for H-rotor VAWTs, neglecting the dynamic

lift and drag for negative rates of change of the angle of attack ( 9α < 0). Specifically,

the model proposed a modification to equation A.2 such that K1 = 0 for 9α < 0. The

results from that study indicated that the modification provided improvement of the

simulated power compared to that obtained using the original Gormont model.

A.4 Conclusion

The present results show that the dynamic stall phenomenon (as modeled following

Berg) tends to dramatically decrease turbine performance. Unfortunately, there are

no experimental data by which to validate the present numerical findings due to the

difference in the turbine configuration used here compared to those in the literature.

Previous studies (e.g., Masson et al. (1998); Shires (2013)) indicate that the effect of

the dynamic stall model on VAWT performance can vary significantly depending on

the wind turbine configuration, including turbine solidity, chord length, and airfoil

shape. In addition, a universal value for the damping coefficient (AM) does not

exist, meaning this value must be tuned according to the turbine configuration. At

this time, it remains unclear how to select an appropriate AM for a given turbine

configuration.

Finally, whereas the dynamic stall models presented in this appendix account for

the rate of change of the angle of attack of the airfoil, they do not allow for changing

Reynolds numbers, as would be the case for a VAWT. That is, for a VAWT, both the
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magnitude and direction of the resultant velocity vector acting at the center of lift

of the airfoil blades can change considerably during one revolution depending on the

tip speed ratio and incoming wind speed. Accounting for this unsteady effect may

be needed in order to obtain the correct dynamic stall behavior on VAWT blades.

Further work beyond the scope of this dissertation is necessary in order to resolve the

discrepancy between the Cp–TSR curves observed using the static airfoil data and

those using the dynamic stall model.
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