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ABSTRACT 

Electrostatics are a major driving force for many phenomena at the 

molecular level, where tuning polarity is vital for achieving control of assembly 

properties. For example, micelle formation and manipulation are governed by 

these forces. Negatively charged DNA can act as the polar headgroup of a 

monomer and, when attached to a hydrophobic polymer, the DNA can be 

responsive to a complementary sequence, nuclease, or molecular target. Using 

multiplier DNA-tocopherol conjugates, we designed micelles and characterized 

these structures. Micelle stability was monitored through the exchange of a FRET 

pair, DiI and DiO. We found that the presence of the highly charged DNA corona 

slows guest exchange compared to SDS or Tween80.  

While characterizing the CMCs with the commonly used NR dye, we 

observed inconsistent results. Working with DiO, we found that its emission 

spectrum changes upon sequestration in a micelle, and consequently decided to 

test its efficiency in CMC measurement. In a parallel experiments using a variety 

of surfactants, we found that DiO and NR give accurate CMCs; however, DiO 

was more reproducible and user-friendly.  

Next we investigated aptameric biosensor function in micelle solutions and 

found that target binding is maintained in the presence of neutral and negatively 

charged surfactants. Further, we found that the presence of micelles can
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modulate substrate binding. We hypothesize that hydrophobic molecules are 

taken into the micelle core, preventing them from binding to the aptamer. 

Concurrently, aptamer binding with more hydrophilic molecules is only slightly 

affected. 

 Finally, we explored the ability of DNA to stabilize PNA-AuNP conjugates. 

Since the PNA backbone is neutral, it causes agglomeration when conjugated to 

AuNP. We found that if DNA is attached to the AuNPs, PNA can then be 

hybridized to the DNA-AuNP without causing agglomerates. Electrostatics 

remain important since the inclusion of a single positively charged lysine reside 

can cause AuNP aggregation despite the highly negatively charged DNA. We 

determined that PNA can gives a dose-dependent response to a target nucleic 

acid, and these conjugates can enter cells. Additionally, since PNA is not 

degraded by proteases or nucleases, this provides biological stability.   
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CHAPTER 1 

CONTROLLING SELF-ASSEMBLY OF DNA-POLYMER 

CONJUGATES FOR APPLICATIONS IN  

IMAGING AND DRUG DELIVERY 

Introduction 

DNA is virtually unrivaled in its capacity for digital information storage.1 

One copy of human genomic DNA weighs only a few picograms, but encodes 

nearly all of the information necessary for life. Given this highly information-rich 

architecture, it is not surprising that researchers have found numerous 

applications for DNA that extend beyond its canonical biological role. These 

tasks include the construction of nanoscale objects in two and three dimensions, 

the detection of protein and small-molecule analytes, and the programming of 

computation and logic operations.2-4 In many cases, these applications utilize 

unfunctionalized or minimally funtionalized DNA and rely on Watson-Crick or 

Hoogsteen base pairing interactions to drive assembly and function. However,  

_______________________ 

1 Reprinted with permission from Peterson, A. M.; Heemstra, J. M. Controlling 
self-assembly of DNA-polymer conjugates for applications in imaging and drug 
delivery. WIREs Nanomed. Nanobiotechnol. 2014, 282-297. Copyright 2014 
John Wiley & Sons, Inc 



DNA can also be attached to organic polymers or lipids to provide DNA-polymer 

conjugates (DPCs), which combine the information storage capability of DNA 

with the unique chemical properties of the polymer, opening the door to new 

modes of assembly and function.5 DPCs functionalized with a water-soluble 

polymer such as poly(ethylene glycol) (PEG) or poly-L-lysine remain dispersed in 

solution, and have been used for antiviral activity,6 nucleotide separation,7 DNA 

detection,8 and antisense delivery.9 In contrast, this review will primarily focus on 

DPCs having moderately to strongly hydrophobic polymers or lipids, as these 

amphiphilic macromolecules are capable of assembling into nanoscale 

architectures such as micelles, tubes, and vesicles (Figure 1.1).10 Each of these 

assembled structures has unique properties, and the type of assembly formed is 

largely defined by the three-dimensional shape of the monomer units. Micelles 

and tubes are composed of a single amphiphile layer, and in aqueous 

environments assemble to display a hydrophilic corona surrounding an internal 

hydrophobic pocket. In contrast, vesicles are composed of an amphiphilic bilayer, 

in which the internal and external surfaces are hydrophilic and a hydrophobic 

layer exists between the two hydrophilic regions. Micelles and tubes primarily 

bind hydrophobic guest molecules. However, vesicles are capable of binding to 

both hydrophobic and hydrophilic guest molecules, as hydrophilic molecules can 

be sequestered in the aqueous interior pocket, and hydrophobic molecules can 

bind in the interior of the bilayer. In these DPC architectures, the DNA serves not 

only as the hydrophilic portion of the amphiphile, but also stores information that 

can be used to further direct assembly, change the structure of the assembly, or 

trigger guest release.11  

2



self-assembly

DNA hydrophobic
polymer or 

lipid

micelle vesicle tube

Figure 1.1. DPC monomers can self-assemble to provide a variety of 
architectures including micelles, vesicles, and tubes. 

The earliest example of an amphiphilic DPC capable of well-ordered 

assembly was reported by Park and coworkers in 2001.12 This report describes 

the conjugation of poly(D,L-lactic-co-glycolic acid) (PLGA) to a 15 nucleotide 

DNA sequence. In aqueous solvent, the monomers were designed to undergo 

phase-driven assembly into micellar structures in which the hydrophobic polymer 

is shielded from the polar solvent while the DNA is well-solvated by the aqueous 

environment. The amphiphilic monomers synthesized by Park and coworkers 

assembled into micelles having an average diameter of 65 nm. Excitingly, these 

micelles were also found to be cell permeable, enabling the nucleic acid segment 

to act as an antisense therapeutic. Since this initial report, the scope of both 

structure and function for DPCs has rapidly expanded, providing fundamental 

insights into the biophysical properties for these amphiphilic molecules, and also 
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significantly advancing the fields of nanoscience and nanomedicine through 

practical applications. The current review is divided into four sections, each 

covering a key aspect of DPCs. In the first section, we will discuss strategies for 

synthesizing DPCs, which can be challenging due to the orthogonal solubilities of 

DNA and organic polymers. Next, we will explore the types of architectures that 

can be formed by modulating the size and shape of the DNA and polymer 

components in the DPCs. Third, we will investigate how assembly impacts the 

properties of DNA such as nuclease resistance and binding affinity with other 

nucleic acids. Finally, we will highlight key applications in chemistry, biology, and 

medicine that have been made possible using DPCs.  

Synthesis of DPCs 

The geometry of the DNA and polymer units, as well as the connectivity 

between the two have a large impact on the properties of the resulting DPC 

assemblies, so these aspects must be taken into consideration during the design 

process. Typically, the DNA and polymer are covalently linked, but noncovalent 

conjugation using an intercalating moiety attached to the polymer has also been 

reported recently.13 A broad range of chemical functionalities can be incorporated 

into DNA and organic polymers, enabling conjugation via a diverse array of 

chemical coupling reactions. Additionally, DNA can be easily modified either 

terminally or internally, enabling attachment of the polymer to a variety of sites 

along the length of the DNA strand.14 Three general strategies have been 

reported for the synthesis of DPCs (Figure 1.2): (1) independent synthesis of 

DNA and polymer followed by solution-phase conjugation; (2) attachment of the  
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Figure 1.2. General methods for the synthesis of DPCs: (a) independent 
synthesis of DNA and polymer followed by solution-phase conjugation; (b) 
attachment of the polymer to DNA during solid-phase DNA synthesis; (c) 
incorporation of an initiator during solid-phase DNA synthesis followed by 
polymer growth. 

polymer to DNA through a phosphoramidite linkage during solid-phase DNA 

synthesis; (3) incorporation of a polymerization initiator during solid-phase DNA 

synthesis followed by polymer growth from the DNA strand.10,15 Once the DNA 

has been conjugated to the polymer, further modifications can be made such as 

enzymatic DNA extension or polymer cross-linking to stabilize the assembly. 

Solution-phase conjugation of DNA and polymer 

The most common method for generating DPCs involves separate 

synthesis of the DNA and polymer followed by solution-phase conjugation 

(Figure 1.2a). The polymer can be synthesized using a variety of polymerization 

methods including ring-opening metathesis polymerization (ROMP)16 or atom-
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transfer radical-polymerization (ATRP)17 to give linear or branched polymers. 

Depending upon the structure and properties desired, the composition of the 

polymer can be adjusted to tune hydrophobicity, which in turn modulates the 

assembly properties of the resulting DPCs.18 One strategy to accomplish such 

tuning employs diblock copolymers, which are synthesized from two monomers 

having differing polarities. The chemical properties of these polymers are dictated 

by the composition ratio of the two monomers, enabling fine-tuning of the overall 

hydrophobicity.19 

Once the DNA and polymer are synthesized, a large number of chemical 

conjugation reactions can be utilized for coupling of the two to generate a DPC. 

The two key requirements for these reactions are that they must be compatible 

with the relatively polar solvents required to dissolve DNA, and they must not use 

reagents that are damaging to the DNA or polymer. Among the most commonly 

utilized coupling reactions are copper-catalyzed azide-alkyne cycloaddition,20 

Michael addition,21 disulfide bond formation,17 and amide bond formation.22 In 

some cases, additional reagents must be added to prevent polymer or DNA 

degradation. For example, the copper (I) catalyst employed in azide-alkyne 

cycloaddition can degrade DNA via oxidative strand cleavage. However, a 

number of ligands have been reported that are capable of binding to copper to 

prevent DNA degradation, and in some cases these ligands have the added 

benefit of improving reaction efficiency.23 

In carrying out conjugation reactions, the DNA and polymer do not 

necessarily have to be conjugated using a 1:1 stoichiometry. DPC monomers 

can be synthesized having varying stoichiometries of polymer to DNA if multiple 
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reactive groups are incorporated into one of the subunits. In one study, multiple 

reactive groups were appended to poly(N-isopropylacrylamide) (PNIPAAm) to 

enable attachment of several DNA strands to each polymer. By synthesizing 

monomers having this brush-type architecture, the authors were able to generate 

capsule-shaped assemblies.24 

The solution-phase conjugation strategy for generating DPCs has the 

benefit of providing excellent flexibility with regard to polymer structure and 

chemical functionality at the DNA-polymer linkage. However, finding a solvent 

that is capable of dissolving both the DNA and polymer, while still facilitating the 

desired chemical reaction in good yield, can be extremely challenging. 

 

Attachment of polymer during DNA synthesis 

The second approach to DPC synthesis involves attachment of the 

polymer during solid-phase DNA synthesis (Figure 1.2b). Among the earliest 

reported examples of this is the “syringe method,” in which the DNA is 

synthesized using standard solid-phase methods, then the synthesis cartridge is 

removed and a syringe is used to manually inject the reactants required to 

conjugate the polymer to the DNA.25 While effective, early iterations of this 

approach often suffered from inconsistency of reaction yields. However, 

Gianesschi and coworkers have recently demonstrated that conjugation can be 

achieved with high efficiency on the solid support using amide bond forming 

conditions. 26 

To avert this challenge, fully automated phosphoramidite chemistry has 

been developed in which the polymer is directly attached to the DNA during solid-
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phase synthesis. In this method, the polymer is functionalized as a 

phosphoramidite, enabling attachment to the 5’ terminus, or is attached to the 

nucleobase of a standard DNA phosphoramidite monomer, enabling internal 

modification. A key benefit of this method is that solid-phase synthesis enables 

multiple polymer units to be incorporated at specific sites along the DNA 

sequence. For example, a recent report by Sleiman and coworkers demonstrated 

that hydrophobic hexaethylene and hydrophilic hexaethylene glycol blocks could 

be incorporated into a DNA strand in a sequence-defined manner.27 By 

controlling the location and number of polymers added to the DNA strand, they 

were able to tune the overall hydrophobicity as well as the assembly properties. 

Sleiman and coworkers reported incorporation of up to 12 polymer units in a 

single DNA sequence. However, due to the excellent yields achieved and facile 

purification, they predict that a larger number of polymer units could be 

incorporated if desired. Sequence-controlled polymer addition during DNA 

synthesis has also been reported using a modified uracil base functionalized with 

a hydrophobic dodec-1-yne strand.18 

 

Polymerization from an initiator in the DNA sequence 

In the previous two strategies, the polymer must be fully formed prior to 

attachment to the DNA. However, solubility can present a challenge in these 

cases, as hydrophobic polymers often have limited solubility in the solvents used 

for DNA synthesis. The third strategy for DPC synthesis averts this limitation by 

incorporating an ATRP initiator into the DNA sequence during solid-phase 

synthesis (Figure 1.2c). Das and coworkers recently reported a phosphoramidite 
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monomer containing a bromoisobutyryl ATRP initiator, and showed that polymers 

including poly[oligo(ethyleneoxide) methacrylate] (POEOMA) or poly(benzyl 

methacrylate) (PBnMA) could be synthesized on a DNA strand either before or 

after cleavage of the DNA from the solid support.15 Synthesis of the polymer prior 

to cleavage from the solid support enables facile purification of the DPC from 

excess monomers, but does require that the polymer be stable to the high pH 

conditions used in the cleavage step.28 

 

Post-synthetic modification 

Following synthesis, DPCs can be further modified in order to increase 

functionality or control assembly. For example, the DNA can be extended 

through PCR29 or enzymatic primer extension.30,31 Rather than creating a single 

continuous DNA strand, Vebert-Nardin and coworkers used DNA origami to 

generate a hydrophilic corona composed of two-dimensional DNA structures.32 In 

this case, the polymer was conjugated to a short DNA primer using copper-

catalyzed azide-alkyne cycloaddition, then the origami structure assembled from 

the primer. Interestingly, if the DNA origami was assembled prior to attaching the 

polymer, the conjugation reaction did not proceed. This highlights the role that 

sterics can play in determining the efficiency of DNA-polymer conjugation 

reactions. 

The dynamic nature of noncovalently assembled DPCs can be a benefit in 

certain applications, but stabilization of the assembled structure may also be 

desirable. This can be achieved by incorporating photoreactive groups into the 

polymer, which react with one another upon irradiation with UV light. Reaction 

9



between functional groups on different monomers provides covalent crosslinks 

which prevent dissociation of the assembled structures (Figure 1.3).31 32 

  

Controlling Assembly of DNA-Polymer Conjugates 

The majority of DPCs assemble to form micelles,28 and while these 

architectures have found many uses, the ability to access alternative 

morphologies further expands the scope of potential applications. In 2007, the 

first DPC capable of assembling into vesicles was reported,33 and DPCs have 

also been incorporated into liposomes in order to enhance function.34 The phase-

driven assembly of DPCs is controlled in large part by the monomer structure, 

including factors such as DNA and polymer volume,18 hydrophilic to hydrophobic 

ratio,35 geometric shape, and electrostatics.36 Assembly can also be controlled by 

environmental factors such as ionic strength, temperature, and solvent polarity, 

or by the addition of specific chemical or biological stimuli.37 DPCs form dynamic 

structures in which monomers experience fluidity within the structure, and are 

capable of reversible assembly and disassembly.22 This dynamic nature of DPCs 

enables them to respond to changes in structure or environmental conditions with 

a change in assembly morphology. As such, the reversibility of assembly and 

transformation between morphologies has drawn much interest. 

 

Controlling assembly through polymer 

and DNA modification 

DPC assembly is in large part driven by minimizing contact between the 

hydrophobic polymer regions and the aqueous solvent. Thus, thermoresponsive  
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Figure 1.3. As the monomer concentration is reduced below the CMC, the 
micelles dissociate. However, cross-linking of the polymer segments stabilizes 
the micelle assemblies, preventing dissociation at low concentrations. 
 
 

polymers such as PNIPAAm or poly[tri(ethylene glycol)ethyl ether methacrylate] 

(pTriEGMA) can be employed to control assembly as a function of 

temperature.17,38,39 Below a lower critical solution temperature (LCST), these 

polymers are water soluble; however, once the solution temperature is raised 

above the LCST, the polymers become hydrophobic, initiating assembly. Maeda 

and coworkers found that for PNIPAAm-containing DPCs, both polymer size and 

structure influence assembly behavior.40 DPCs having either linear or branched 

PNIPAAm form micelles at temperatures above the LCST, and increasing 

PNIPAAm content decreases the LCST. However, linear PNIPAAm provided 

micelles having larger overall diameter and number of monomers per assembly 

(Nagg) compared to branched PNIPAAm.  

The hydrophobic:hydrophilic balance of the DPCs can also be modulated 

using modified nucleobases having an appended hydrophobic group. Herrmann 
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and coworkers synthesized DNA strands containing dodec-1-yne modified uracil 

nucleotides, and explored the effect of the number and location of the modified 

nucleotides on assembly properties.18 By increasing the number of hydrophobic 

groups at the terminus of the DNA strand from two to four, the critical micelle 

concentration (CMC) decreased from 8.1 mgL-1 to 5.4 mgL-1 and the micelle 

diameter decreased by approximately 15%. Interestingly, however, moving the 

hydrophobic groups from the terminus to the middle of the DNA strand did not 

significantly affect the micelle shape, size, or CMC. An alternative approach to 

modulating hydrophobic:hydrophilic ratio is to incorporate an organic spacer 

between the DNA and polymer segments. Kokkoli and coworkers found that 

DPCs having hydrophilic spacers formed micelles while DPCs having 

hydrophobic spacers assembled into bilayer nanotapes.28  

 The size and sequence of the DNA portion of amphiphilic monomers can 

also be modulated in order to control assembly. Zauscher and coworkers 

investigated DNA amphiphiles having BODIPY as the hydrophobic portion and 

reported a combined theoretical and experimental approach to investigating the 

size and aggregation number of amphiphiles having 300-900 nucleotide DNA 

strands.41 As the length of the DNA increased from 300 to 600 nucleotides, the 

Nagg decreased from 9 to 5 monomers, but for DNA lengths above 600 

nucleotides, Nagg remained constant. Ionic strength was also found to influence 

the size of the DNA corona, with corona size increasing as ionic strength 

decreases. This occurs because at low ionic strength, fewer cations are available 

to shield the negative charge of the DNA, which leads to an increase in 

interstrand DNA repulsion. While these conjugates are not technically DPCs, the 

12



results of this study would be expected to be applicable to a variety of DNA 

amphiphiles. For a vesicular DPC assembly, the diameter was found to be 

dependent upon DNA sequence, with increasing G content leading to an 

increase in vesicle diameter.42 Assembly morphology can also be influenced by 

the conformation of the sugar of the nucleotide bound to the polymer. Changing 

the sugar conformation from syn to anti by heating to 35 °C resulted in an 

irreversible change in morphology from twisted micellar superstructures to 

aligned filaments.37 

 

Stimuli-responsive changes in assembly 

Engineering DPCs to enable stimuli-responsive control of assembly and 

disassembly has potential to enhance their functionality in applications such as 

drug delivery and biosensing. Alexander and coworkers have reported DPCs 

composed of two complementary DNA strands that are each functionalized with 

pTriEGMA such that upon hybridization, there is one polymer attached to each 

end of the duplex (Figure 1.4).17 These amphiphilic duplexes can assemble into 

micellar structures, and this assembly process can be directed using three differ- 

ent types of stimuli. First, due to the thermoresponsive nature of pTriEGMA, the 

micelles dissociate when the solution temperature is reduced below the LCST. 

Second, the structure of the micelles can be altered by invading the DNA duplex 

with a longer complementary strand. Third, the polymer is attached to the DNA 

using a disulfide bond, which can be cleaved under reducing conditions, resulting 

in destruction of the micelle assembly. 

Specific stimuli can also be utilized to alter the morphology of DPC  
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Figure 1.4. DPCs are capable of disassembly or morphology change in response 
to reducing temperature below the LCST of the thermoresponsive polymer, re-
hybridizing one of the DNA strands to a complementary nucleic acid, or cleaving 
the disulfide bonds connecting the DNA to the polymer. 
 
 
 
assemblies. Gianneschi and coworkers have explored the use of stimuli-

responsive changes to the DNA portion of the DPC as a means to control 

monomer shape, and thus assembly morphology (Figure 1.5a).43 Starting with 

conical shaped DPCs having a branched DNA structure and a linear polymer, a 

spherical assembly is formed. Enzymatic cleavage of the DNA brushes results in 

a decrease of curvature, causing the assemblies to switch to a tubular 

morphology. However, addition of a complementary DNA strand increases 

rigidity and electrostatic repulsion, enabling the assemblies to switch back to a 

spherical morphology. While the initial enzymatic cleavage step is irreversible, 

the tube-to-sphere transition can be reversibly controlled by adding or removing 

the complementary DNA strand. DNA hybridization can also be used to  
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Figure 1.5. Stimuli-responsive changes to assembly morphology. (a) Enzymatic 
cleavage and addition of a complementary DNA strand enables switching 
between micelles and tubes (adapted with permission from Wiley); (b) Addition of 
a long complementary DNA strand transforms micelles into ladder structures 
(adapted with permission from Wiley); (c) Changing solvent polarity enables 
switching between micelles and tubes; (d) pH-dependent formation of an i-motif. 
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assemble micelles into higher order structures. For example, Herrmann and 

coworkers have shown that the addition of long DNA sequences capable of 

hybridizing to multiple DPC strands can shift assembly from micelles to ladder-

like structures (Figure 1.5b).44 

 In addition to altering the chemical composition of the DPCs, changes in 

environmental conditions can be used to control assembly morphology. For 

example, DPCs can be designed to only assemble in the presence of ions such 

as Mg2+.27 In another example, Liu and coworkers showed that DPCs having a 

Fréchet-type dendrimer as the polymer unit form tubular structures in water, but 

can be switched to form micelles upon addition of 10% tetrahydrofuran (THF) 

(Figure 1.5c).45 This transition could be reversed using dialysis to change the 

solvent conditions. X-ray diffraction (XRD) revealed that π-stacking in the 

dendrimer core contributed to stabilization of the tube formation, and presumably 

these interactions are strengthened in pure water. While switching assembly 

morphology using dialysis is effective, it can require long time scales. Thus, alter- 

native methods such as changing pH offer some advantages. Liu and coworkers 

also investigated DPCs having cytosine-rich sequences, as these can form 

bimolecular i-motif structures at pH values below 6.3 (Figure 1.5d).46 Under basic 

conditions, the cytosine-rich DNA is linear. But, as acidity increases, the 

cytosines become protonated, enabling them to base-pair with each other to form 

an i-motif. Interestingly, conjugation of the cytosine-rich DNA to poly(propylene 

oxide) (PPO) stabilizes the i-motif, increasing dissociation temperature by 30 °C 

compared to unconjugated DNA strands. At high pH, the DPCs composed of 

cytosine-rich DNA conjugated to PPO have a linear structure and thus form 

16



micelles. However, upon lowering pH, the DNA transitions from linear to a 

bimolecular quadruplex structure, triggering the micelles to reassemble into 

tubes. Control DPCs that are not capable of forming the i-motif do not display this 

pH-dependent switching behavior.  

 

Unique Properties of DNA-Polymer Conjugates 

To take advantage of the information-rich nature of the DNA in DPCs, it is 

critical that the DNA retain its native function, such as the ability to hybridize to 

complementary nucleic acids with Watson-Crick specificity. Fortuitously, it has 

been found that some of the properties of DNA, including mismatch 

discrimination, duplex stability, and nuclease resistance, are actually enhanced 

upon polymer conjugation. These effects are hypothesized to predominantly 

arise from the close packing of DNA strands upon DPC assembly. 

 

Duplex formation and stability 

Circular dichroism studies reveal that the attachment of and identity of the 

polymer do not appear to effect the ability of DNA to adopt a canonical B-form 

structure.42 Additionally, conjugating a polymer to a DNA strand does not prevent 

it from hybridizing to its complementary strand.19,47 To further assess the ability of 

DNA to form duplexes while in DPC aggregates, the intercalating dye SYBR 

Green I was used in conjunction with polyacrylamide gel electrophoresis 

(PAGE).18 SYBR Green I is specific for double-stranded DNA, enabling it to serve 

as a reporter of hybridization efficiency. No significant difference in hybridization 

efficiency was observed for free duplexes compared with those conjugated to a 
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hydrophobic polymer. As reported by others,48 a slight increase in micelle radius 

upon DNA hybridization was observed, possibly due to transition of random-coil 

DNA into a rigid B-form duplex structure. One study has reported that the 

diameter of DPC aggregates in fact decreased upon hybridization of a 

complementary DNA strand. However, this can potentially be explained by a 

decrease in Nagg upon hybridization.39 The cooperativity of hybridization has also 

been investigated for DNA assembled into DPC micelles compared with DNA 

that is free in solution. To observe thermal denaturation of the DNA duplexes, the 

DPC micelles were hybridized to gold nanoparticles (AuNPs). When the DNA is 

hybridized, the AuNPs aggregate and thus display a purple color. Upon thermal 

duplex melting, the AuNPs separate, turning the solution red. The DPCs showed 

a sharper melting transition than the free DNA, which is indicative of greater 

cooperativity in the hybridization process.49 This cooperativity can be attributed to 

the close packing of DNA in DPC micelles, as these strands can interact with one 

another and share a cation cloud.50 

Assembly of DPCs can also influence the effect of sequence mismatches 

on structure. For example, DPC micelles composed of DNA-PNIPAAm aggregate 

at high salt concentrations when hybridized with a fully complementary DNA 

strand. However, a single base pair mismatch at the terminus of the duplex 

prevents this aggregation (Figure 1.6a). This is hypothesized to arise from the 

increased entropy of the mismatched duplex, as fraying increases the flexibility of 

the duplex ends.51 This study demonstrates that small modifications such as a 

single base pair mismatch can be sufficient for stabilizing DPC micelle structures 

in applications requiring high ionic strengths.  
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Figure 1.6. DNA properties can be altered by assembly into DPCs. (a) Terminal 
mismatches prevent aggregation at high ionic strength; (b) DPC assembly 
hinders cleavage of DNA by nucleases. 
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Nuclease resistance 

A critical challenge for the use of DPCs and other nucleic acid-based 

technologies in vivo is degradation of the DNA by nucleases. Mirkin and 

coworkers have observed that nuclease degradation of DNA is slowed when the 

DNA is densely assembled onto the surface of AuNP.52 It is hypothesized that 

the close packing of the DNA strands introduces steric hindrance and generates 

a dense cation cloud, both of which limit access of nucleases to the DNA. 

Considering that DPCs can have a similar high-density packing of DNA, it was 

anticipated that they might also benefit from increased resistance to nucleases. 

To test this hypothesis, Gianneschi and coworkers used Förster resonance 

energy transfer (FRET) experiments to quantify nuclease degradation of both 

single-stranded and double-stranded DNA when free in solution or assembled 

into DPC micelles.26 Over the course of 100 min, the free DNA was cleaved, but 

the DNA assembled into DPC micelles showed no observable degradation 

(Figure 1.6b). This result demonstrates that polymer-driven assembly of DNA can 

impart the increased biostability necessary for in vivo applications. 

 

Tissue and cell permeability 

Tissue and cell permeability are also critical challenges for the use of 

nucleic acid technologies in vivo. DPC micelles often have diameters in the range 

of 10-100 nm, and it is hypothesized that this will enable them to accumulate in 

tumor tissues as a result of the enhanced permeability and retention (EPR) 

effect.53 The ability of DPCs to cross the plasma membrane of cells has also 

been investigated. Tan and coworkers synthesized DPCs having diacyllipid tails, 
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and found that by varying DNA length, micelles having diameters of 8-36 nm 

could be formed.54 Upon interacting with cell membranes, the micelles 

disassemble and undergo transferrin receptor-mediated endocytosis. Micelle size 

was found to impact cellular uptake, with smaller micelles showing more rapid 

endocytosis. These results in conjunction with studies of similar systems55,56 led 

to the hypothesis that DPC monomers are capable of incorporating into cell 

membranes and endosomes. Importantly, even at monomer concentrations as 

high as 5 μM, no cytotoxicity was observed. In addition to assembly size, 

assembly morphology may also impact cell permeability. To investigate this 

effect, Herrmann and coworkers generated spherical micelles having a diameter 

of 5 nm and rod-like micelles having dimensions of 29 x 3 nm.57 The rod-like 

micelles showed significantly higher cellular uptake as well as lower toxicity 

compared to their spherical counterparts. 

 

Applications of DNA-Polymer Conjugates 

Considering the high specificity of nucleic acid interactions combined with 

the biostability and cell permeability offered by DPCs, it is not surprising that 

these assemblies have found use in numerous biological and medical 

applications.10 While DPCs do have many of the key properties required for in 

vivo use, further modifications have been required to enhance biocompatibility 

and functionality. In the sections below, we discuss these modifications, as well 

as applications of DPCs in therapeutics, medical imaging, and other areas 

including materials science and chemical synthesis. 
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Modifications for in vivo applications 

The modifications made to DPCs to improve their function in vivo primarily 

fall into two categories: (1) passivation of the DPC surface to improve stability 

and reduce immunogenicity and (2) incorporation of targeting moieties to direct 

the DPCs to the desired site of action. Because these modifications are intended 

to influence the interactions of the DPCs with their surroundings, the 

modifications must be made at the surface of the DNA corona. Fortunately, 

modification at this site can be easily accomplished by either modifying the DNA 

used to generate the DPC architecture or by hybridizing the DPC to a 

complementary strand bearing the desired surface functionality.  

PEG has been widely used to increase the biocompatibility of 

nanoparticles.58,59 Passivation of nanoparticles using PEG increases circulation 

lifetime by reducing accumulation in the liver and kidneys, promotes 

accumulation in tumor regions via the EPR effect, and reduces immunogenicity. 

As described above, assembly of DPCs protects DNA from nuclease 

degradation,26 but addition of PEG to the DPC surface contributes additional 

steric hindrance, further enhancing nuclease resistance.60 However, the steric 

hindrance provided by PEG can also interfere with the intended function of the 

DPC assembly, and thus it is necessary to remove the PEG modification once 

the DPC reaches its desired target. If the PEG is conjugated to the DPC via 

hybridization, removal can be easily accomplished using a nucleic acid that is 

complementary to the PEG-DNA passivation strand (Figure 1.7). Using a similar 

hybridization approach, targeting moieties such as folate can be conjugated to 

the surface of the DPC assemblies, increasing their uptake by cancer cells  
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Figure 1.7. Hybridization of a PEG-modified DNA strand increases the 
biocompatibility of DPC assemblies. The PEG-modified strand can be removed 
by addition of a complementary nucleic acid. 
 

  
overexpressing the folate receptor.55 

Virus capsids can also be used to passivate the surface of DPC 

assemblies, as they form stable protein cage structures and have been naturally 

evolved to protect and deliver nucleic acid cargo. Herrmann and coworkers 

showed that DPCs could be assembled into micelles, loaded with hydrophobic 

guest molecules, then used to template the assembly of Cowpea Chlorotic Mottle 

Virus (CCMV) coat protein.61 Assembly of the virus capsid protein on the surface 

of the DPC is driven by electrostatic interactions between the negatively charged  

nucleic acids and the positively charged interior surface of the protein, and thus 

occurs spontaneously. While not investigated in this study, it is anticipated that 

the virus capsid provides significant protection of the DPCs from nuclease 

degradation. Moreover, the DPCs aid in the retention of hydrophobic molecules 

within the interior of the capsid. Thus, the DPC assembly and virus capsid act 
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synergistically to create a stable vehicle with significant promise for use in drug 

delivery applications. 

 
 

Therapeutics and drug delivery 

DPCs can act as drug delivery vehicles in two distinct ways – the 

assembly can sequester hydrophobic drug molecules in the polymer interior, or 

the nucleic acids in the corona can be used directly as antisense therapeutics.32 

One of the first examples demonstrating the potential of DPC assemblies for use 

in drug delivery involved assembly of DNA-PPO DPCs in the presence of the 

anticancer drug doxorubicin (DOX). A folate-functionalized DNA strand was 

hybridized to the DPCs to aid in targeting of cancer cells. The DPC architectures 

were shown to be taken up by the cancer cells, resulting in cell death, 

presumably from release of the DOX payload into the cytosol.55 Cellular delivery 

of DOX has also been accomplished using DPC vesicles.62 In this case, the DNA 

strand hybridized to the DPCs was functionalized with the tLyp-1 peptide, which 

is known to enable targeting of breast cancer cells. Once assembled, the DPC 

vesicles were shown to be capable of sequestering DOX at a concentration of 

3.5 µM. Binding of DOX to the vesicle was shown to be pH dependent, and drug 

release could be initiated by decreasing the solution pH below 6.5. This 

characteristic is especially useful for delivery of anticancer drugs, as tumor 

environments are known to have reduced pH. 

As described in the section above on controlling assembly of DPCs, the 

assemblies can be designed such that disassembly occurs in the presence of 

specific chemical, biological, or environmental stimuli. Given this 
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programmability, the potential for use of these DPCs as selective drug delivery 

vehicles is clear. Herrmann and coworkers have reported DNA-PPO conjugates 

for which light can be used to trigger guest release.63 The DPC monomers 

assemble into tightly packed vesicles, which are unable to release cargo 

molecules without the aid of synthetic channels or enzymes to disrupt the bilayer. 

However, the DNA segment of the DPC contains a sequence-specific 

photosensitizer that produces 1O2 when activated with 530 nm light. This reactive 

oxygen species triggers release of bound guest molecules, likely due to oxidation 

of the PPO.  

A method for specific stimuli-responsive guest release without disruption 

of the micelle structure has been reported by Barthélémy and coworkers (Figure 

1.8).64 In this study, DPCs having either two or three hydrophobic chains were 

assembled into micelles and loaded with the anticancer drug paclitaxel (PX). 

When the DNA segment of the DPC is single-stranded, the PX remains bound 

within the micelles. However, upon duplex formation with a complementary DNA 

strand, the PX is released into the surrounding environment. It is hypothesized 

that upon DNA duplex formation, the hydrophobic core of the micelle compacts, 

eliminating any available pockets for binding PX. 

Given the cell permeability of DPCs, these architectures also hold 

significant promise for the delivery of nucleic acid therapeutics. Tan and 

coworkers have reported DPC micelles in which the DNA portion targets the c-

raf-1 mRNA, which is a cancer biomarker. The DPCs induce apoptosis in A549 

lung cancer cells, reducing viability to 25%. It is hypothesized that the DPCs act 

by binding to the target mRNA and activating RNase H for mRNA degradation.  
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paclitaxel

Figure 1.8. Addition of a complementary DNA strand compacts the hydrophobic 
core of the DPC, triggering release of paclitaxel. 

Control experiments using unconjugated DNA molecular beacons or mismatched 

DPC micelles showed no significant cellular toxicity.65 

Cellular imaging and theranostics 

Imaging and biosensing applications generally require a molecular 

recognition event between the target molecule and a probe, followed by a 

transduction event that enables the probe to emit a detectible signal. For cellular 

imaging, fluorescence is among the most convenient types of output, as it is non-

destructive to cells and can be easily detected and quantified using a 

fluorescence microscope66 or flow cytometry.65 In the case of DPCs, the DNA 

serves as an excellent recognition element, as it is able to bind with high fidelity 

to complementary nucleic acids. Additionally, nucleic acid sequences called 

aptamers can be generated by in vitro selection, and bind selectively to a wide 

variety of small-molecule, protein, and cellular targets.67 In addition to the ability 

of DNA to bind to biological targets with high selectivity and affinity, DNA can 
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also be programmed to undergo a change in conformation upon binding, which in 

turn can be used to generate a fluorescence output via FRET.  

In the DPCs targeting c-raf-1 mRNA reported by Tan and coworkers, the 

DNA portion is a molecular beacon, enabling fluorescence imaging of the target 

RNA (Figure 1.9a).65 A molecular beacon is a hairpin structure which is 

functionalized with a fluorophore at one terminus and a quencher at the opposite 

terminus.68 Upon hybridizing with the target mRNA sequence, the stem loop of 

the hairpin is disrupted, moving the fluorophore away from the quencher and thus 

increasing fluorescence emission. As described above, formation of the 

DNA:RNA duplex also initiates RNAse H activity, enabling the DPCs to trigger 

cell apoptosis. Thus, this DPC is an example of a theranostic, as it combines 

diagnostic imaging with a therapeutic effect. It is important to note that DNA 

molecular beacons have been widely used for cellular RNA imaging.69 However, 

in this specific case, conjugation to a hydrophobic polymer provides the benefit of 

cell permeability, abrogating the need for transfection reagents that can interfere 

with fluorescence measurements. 

Utilizing an aptamer as the DNA portion of the DPC significantly broadens 

the scope of molecules that can be imaged. Tan and coworkers constructed 

DPCs having an ATP-binding aptamer beacon (Figure 1.9b),56 which functions 

similar to a molecular beacon, but changes conformation in response to the ATP 

target rather than a nucleic acid.70 Importantly, the aptamer is selective for ATP 

over other nucleoside triphosphates. The DPCs were shown to undergo cellular 

uptake, and were successfully used to monitor changes in ATP concentration in 

HeLa cells. Aptamer DPCs have also been used for fluorescence-based  
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Figure 1.9. Cellular imaging using DPCs. (a) mRNA detection using molecular 
beacons; (b) ATP detection using aptamer beacons. In both DPC motifs, binding 
of the target moves the fluorophore away from the quencher, resulting in an 
increase in fluorescence emission. 
 
 

detection of cancer cells. In this example, Yan and coworkers synthesized DPCs 

containing an aptamer that binds to nucleolin receptors, which are overexpressed 

on some cancer cells (Figure 1.10).71 A separate set of micelles were also 

synthesized having a fluorescein dye. In both cases, the hydrophobic core was 

composed of the block copolymer hyperbranched poly [3-ethyl-3-oxetanemeth- 

anol)-star-poly(ethylene oxide)] (HBPO-star-PEO). The two types of micelles 

underwent co-assembly to form a larger structure, which was readily uptaken by 

MCF-7 cells, rendering them fluorescent. As an important control, incubation of 

the micelles with 3T3 cells which do not express the nucleolin receptor resulted 

in only minimal fluorescence, demonstrating the ability of the DPCs to selectively 

target the MCF-7 cancer cells. 
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Figure 1.10. Co-assembly of FAM-labeled micelles with DPC micelles encoding 
the nucleolin aptamer enables selective uptake by and imaging of cancer cells 
(adapted with permission from Yu S, Dong R, Chen J, Chen F, Jiang W, Zhou Y, 
Zhu X, Yan D. Biomacromolecules 2014, 15 (5), 1828-1836. Copyright 2014 
American Chemical Society). 
 
 

Other applications of DNA-polymer conjugates 

While most applications of DPCs are focused on biology and medicine, 

there are a few that move beyond this scope into the fields of materials science 

and synthetic chemistry. For example, DPCs can be used to organize other 

materials, such as AuNPs.45 DPCs having a mixed DNA/PEG corona and a 

hydrophobic PPO core are capable of binding to AuNP functionalized with a 

complementary DNA sequence, forming clusters of AuNPs surrounding the 

micelle.47 

In addition to encapsulating hydrophobic organic drug molecules, DPCs 

can also encapsulate inorganic moieties such as magnetic nanoparticles. Park 

and coworkers synthesized DPCs containing a polystyrene polymer, and showed 

that dissolving the DPCs in DMF in the presence of iron oxide nanoparticles, 
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followed by addition of water and dialysis into buffer, resulted in micelles 

encapsulating the iron oxide nanoparticles.72 These assemblies can be used for 

magnetic separation of DNA strands, and have potential for use in medical 

applications such as magnetic resonance imaging or magnetic hyperthermia 

treatment.  

The close spatial arrangement of DNA strands in DPCs also enables them 

to serve as a scaffold to template organic reactions. DNA strands bearing 

reactive groups are hybridized to the DPC, bringing the reactants into close 

proximity and thus promoting a reaction. The reactants can be attached to either 

terminus of the free DNA strand, enabling the reactions to occur either in the 

interior of the micelle or at the solvent-exposed surface. Examples of reactions 

that can be carried out using this method include amide bond formation and 

Michael addition.48 Another example using DPCs to control chemical reactions 

employs DPC vesicles to encapsulate an enzyme. The vesicle is initially 

impermeable to reactants, but upon addition of a pore-forming protein, the 

reagents can access the enzyme and undergo reaction.42 

Conclusion and Dissertation Overview 

In conclusion, DPCs provide a unique architecture which benefits from the 

information storage capacity of DNA and the ability of hydrophobic polymers to 

directly assemble in aqueous solution. A significant portion of structure space 

has been explored with regard to DPCs, and has revealed that modulating the 

properties of the DNA or polymer can lead to micelles having a wide range of 

assembly properties, as well as alternative assembly morphologies including 
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vesicles and tubes. However, the challenges associated with synthesis of some 

DPCs does still limit this exploration of structure-activity space. New techniques 

involving solid-phase addition of polymers to DNA appear promising for 

overcoming these challenges, as they avert many of the solubility issues 

experienced when trying to conjugate hydrophobic polymers to DNA in solution.  

Critical to the use of DPCs in many applications, the DNA retains its ability 

to recognize complementary nucleic acids, as well as small molecules and 

proteins. And, in some cases, the properties of the DNA are actually enhanced 

by assembly into DPCs. Two notable examples of this are nuclease resistance 

and cell permeability. Interestingly, the use of non-native nucleic acids in DPCs 

remains relatively unexplored, and has potential to further improve biostability as 

well as provide new functions.  

DPCs can be engineered to respond to chemical, biological, or 

environmental stimuli, enabling them to selectively release cargo molecules in 

response to these stimuli. This ability along with their cell permeability makes 

them well-suited for use in drug delivery applications. The DNA portion of the 

DPC can also be used as a recognition element to detect nucleic acids, proteins, 

and small molecules, making the DPCs useful in cellular imaging and theranostic 

applications. To date, examples of drug delivery and imaging using DPCs 

primarily use cells in culture. However, given the biostability of the DPCs, 

combined with efforts to increase biocompatibility through passivation, it is 

anticipated that DPCs will find use in multiple in vivo applications in the near 

future. 

In order to develop DPC micelles for use in these applications, this 
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dissertation explores the use of DNA hybridization as a means to introduce 

noncovalent crosslinks throughout the micelle corona in order to stabilize the 

micelle and guest encapsulation. For these studies, the monomers consist of a 

DPC unit containing dendrimer DNA attached to a tocopherol unit. During 

assembly characterization, we found that Nile Red was not capable of measuring 

the CMCs. Therefore, we evaluated the utility of using DiO to measure the CMCs 

for a range of surfactants and found that it gave consistent, accurate values. 

Further studies investigated the function of free, aptameric DNA in the presence 

of surfactants, in which we showed that the binding ability of aptamers is 

preserved in the presence of micelles. Finally, PNA-DNA-AuNP conjugates were 

investigated. Like micelles, these structures require electrostatic tuning to 

maintain monodispersity, which is essential for maintaining nucleic acid assembly 

and hybridization properties. 
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CHAPTER 2 

DNA CROSS-LINKED MICELLES AS 

PROGRAMMABLE MATERIALS

Introduction 

Micelles form when amphiphilic monomers self-assemble to minimize 

unfavorable interactions between hydrophobic and hydrophilic surfaces. This 

assembly only occurs above what is known as the critical micelle concentration 

(CMC).1 Since one of the major applications of micelles is drug delivery,2 proper 

design and optimization must be performed to ensure that the micelles remain 

intact and the guest molecules encapsulated until a trigger is present. Keeping 

the micelle-drug complex intact can be a great challenge because the monomer 

concentration is drastically lowered as the complex disperses into a patient’s 

blood stream. Therefore, if the CMC of the micelles is not low enough, 

disassembly will occur, releasing the drug molecule. In order to avoid this, the 

CMC must be low enough to withstand dilution into the bloodstream. However, if 

the micelle is still intact, the problem remains that guest molecules are at 

equilibrium with the surrounding solution.3 Without further stabilization, as the 

micelles move through the body, they will leak their cargo. Many researchers 

have explored creating cross-links between the monomers, forming a micelle in 



order to stabilize the structure.4,5 Cross-links physically hold the structure 

together and create a steric barrier that prevents molecules from leaving the 

micelle. In these studies, it has been found that as cross-linking density 

increases, micellar stability increases, and guest molecule leakage decreases.6 

By designing the micelles to react with a condition-specific stimulus, targeted 

drug release can be achieved. Many approaches have been used to introduce 

stimuli responsiveness into micelles such that they react to changes in conditions 

such as temperature, pH, or redox potential.7 These conditions are often based 

on distinct conditions present at the desired therapeutic site. 

As many studies have explored incorporating negatively charged DNA into 

DNA polymer conjugate (DPC) monomers capable of forming micelles,8,9 we 

proposed that using monomers having complementary DNA strands would 

enable duplex formation between monomers, creating noncovalent cross-links 

throughout the DNA corona (Figure 2.1). Although not covalent bonds, Watson-

Crick base pairing between DNA strands is very strong, so we hypothesize they 

will behave similarly, stabilizing the micellar assembly and therefore lowering the 

CMC. Additionally, if DNA cross-links function similarly to other cross-linking  

 

 

Figure 2.1. Monomers using complementary DNA sequences to create cross-
links for micelle stabilization and to prevent the release of guest molecules. 
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methods, guest molecules would be stably encapsulated. Typically, stimuli- 

responsiveness in micelles is programmed by changes in temperature, pH, or 

redox potential. Alternatively, DNA has the ability to respond to many other 

stimuli, providing a versatile, programmable corona. Aptamers are short DNA 

strands that selectively bind a range of targets such as small molecules, proteins, 

or cells.10-12 Some, such as the cocaine or L-tyrosinamide aptamers, function in 

the presence of a displacement strand (Figure 2.2).13,14 In the absence of target, 

the strands are hybridized together; however, when the target is introduced, the 

aptamer preferentially binds the target, displacing the complement. Such a 

biosensor could be used to create a responsive micelle to a particular target. The 

duplex could also use its native function to bind a complementary sequence or 

be degraded by a restriction endonuclease, which targets specific sequences. 

Therefore, using DNA to facilitate cross-linking would allow the micelle to 

selectively respond to a target molecule, a complementary sequence, and/or 

enzymatic degradation (Figure 2.3).  

In order to maximize the benefits of DNA cross-links, these interactions 

should occur throughout the entire corona of the micelle. In our design, this was 

achieved by incorporating multiple DNA strands within each monomer. If only two  

 
 

+
 

Figure 2.2. Structure-switching biosensor. The aptamer has a complementary 
strand, which is displaced in the presence of the target. 
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Figure 2.3. DNA cross-linked micelles could respond to a variety of stimuli such 
as a molecular target, a target nucleic acid, or enzymatic degradation. 
 
  

DNA strands are incorporated within a monomer unit, the formation of dimers 

between two adjacent monomers is very likely, thus providing little to no 

stabilization for the overall micellar structure (Figure 2.4a). We hypothesize that if 

additional DNA strands are attached to each monomer unit, it would be sterically 

improbable to form a dimer using all of these strands, therefore enabling cross-

linking between additional monomers (Figure 2.4b). We explored the use of an α-

tocopherol (vitamin E) hydrophobic group, where a series of three or four 

tocopherol units were incorporated in an effort to tune dynamics through 

hydrophobicity. If the hydrophobic driving force is too strong, any changes within 

the hydrophilic corona have less of an effect. However, if there is not enough 

hydrophobicity to drive micelle formation, the polar groups may have too much of 

an effect, therefore solubilizing the monomer and increasing the CMC. The 

tocopherol units were attached to the DNA via a dendrimeric construct. One of 

these utilized a trebler DNA attachment where three equivalent DNA strands 
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a)

b)

 

Figure 2.4. Monomer assembly (a) if a monomer has only two DNA strands, di-
mer formation is possible; (b) by incorporating more strands, duplexes form be-
tween multiple monomers, enabling cross-linking across the entire micelle for-
mation. 
 
 
 
branch off the multiplier. For our other construct, we used two doubler monomers 

in succession to enable attachment of four parallel DNA strands (Figure 2.5). By 

using two different constructs, we could compare to see if hybridization had a 

greater effect based on the number of incorporated strands. 

 

Results and Discussion 

Synthesis of DNA amphiphiles 

The constructs explored herein were generated using solid-phase DNA 

synthesis. As shown in Table 2.1, we synthesized monomers using tocopherol 

and DNA strands to provide amphiphilic molecules capable of self-assembly to 

form micelles. During synthesis, the tocopherol amidites are added first, followed 

by the dendrimer unit(s). Therefore, in order to accommodate antiparallel DNA  
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Figure 2.5. The structure of the monomer units. The waved line represents the 
hydrophobic tocopherol unit used. In order to synthesize multiple DNA strands 
within a single monomer, either a trebler (oval) was used to give three DNA 
strands or a series of two doublers (circle) was incorporated to give a total of four 
strands. 
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Table 2.1. The sequences for the monomers in this study. The sequences re-
ported 5’ -> 3’ were synthesized using standard phosphoramidites while the 3’ -> 
5’ strands are formed from reverse amidites. The green bases represent the mu-
tated bases in the mismatched sequence. The red bases represent the EcoRI 
cleavage site.  

 

Study Strand 
Name Sequence 

Preliminary 

PFT3 5’ GCACGTCTAGCAGTA trebler-spacer9-toco3 

PRT3 3’ CGTGCAGATCGTCAT trebler-spacer9-toco3 

PFT4 5’ GCACGTCTAGCAGTA trebler-spacer9-toco4 

PRT4 3’ CGTGCAGATCGTCAT trebler-spacer9-toco4 

Main 

TMT3 
5’ ACCGGCATGGAATTCTGTA trebler-spacer9-

toco3 

TFT3 
5’ ACAGGCACGGAATTCAGTA trebler-spacer9-

toco3 

TRT3 3’ CGTGCCTTAAGTCAT trebler-spacer9-toco3 

TFCT3 5’ AATTCA GTA trebler-spacer9-toco3 

TRCT3 3’ GTCAT trebler-spacer9-toco3 

DMT3 
5’ ACCGGCATGGAATTCTGTA doubler2-spacer9-

toco3 

DFT3 
5’ ACAGGCACGGAATTCAGTA doubler2-spacer9-

toco3 
DRT3 3’ CGTGCCTTAAGTCAT doubler2-spacer9-toco3 

DFCT3 5’ AATTCAGTA doubler2-spacer9-toco3 

DRCT3 3’  GTCAT doubler2-spacer9-toco3 

Doubler 
Series 

DS1T3 5’GTC TCC C-C3-C3-toco3 
DS1T2 5’GTC TCC C-C3-C3-toco2 
DS2T3 5’GTC TCC C-doubler-C3-toco3 

DS2T2 5’GTC TCC C-doubler-C3-toco2 

DS4T3 5’GTC TCC C-doubler-doubler-toco3 

DS4T2 5’GTC TCC C-doubler-doubler-toco2 

 
 

 

46



hybridization, the complementary DNA strands were synthesized using reverse-

protected amidites to allow for 5’ to 3’ synthesis. 

Assembly characterization 

Preliminary DLS studies were performed using monomers that contained 

three or four tocopherol units. These were done to ensure that assembly 

occurred to form a monodisperse population. The diameters for the micelles are 

below 50 nm as shown in Table 2.2.  Using DLS we were able to verify that the 

monomers mix to form a single population. For the four tocopherol series, we 

found that the micelles from monomers using the PFT4 (5’->3’ amidites) were 

48.8 ± 1.4 nm while the PRT4 (3’ -> 5’ amidites) were smaller at 28.7 ± 5.1 nm. 

This is likely caused by the different packing and configurations due to flipping 

the orientation of the chiral ribose-phosphate backbone. The difference in sizes 

made it easy to determine if they were making a single population upon mixing.  

Table 2.2. The DLS averages, polydispersity index (PDI), and zeta potentials for 
the initial monomer studies. The error is an average of three trials. 

Monomer(s) Diameter 
(nm) PDI Zeta (mV) 

PRT4 28.7 ± 5.1 0.265 ± 
0.013 - 

PFT4 48.8 ± 1.4 0.431 ± 
0.010 -75.9 ± 0.3 

PRT3 19.3 ± 1.9 0.275 ± 
0.039 -78.6 

PFT3 17.4 ± 8.8 0.332 ± 
0.129 -63.2 ± 0.4 

PRT4 + 
PFT4 26.1 ± 1.3 0.384 ± 

0.009 -74.5 ± 2.1 
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Following mixing and heating-cooling the monomers, we found that they formed 

a single population at 26.1 ± 1.3 nm, similar in dimension to the reverse amidite 

monomers. This shows that the different monomers are indeed able to 

incorporate and form a single population. Additionally, the DLS data confirmed 

that the structures disassemble at low monomer concentrations (Figure 2.6). The 

zeta potentials were also measured to determine particle stability against 

agglomeration. As expected, due to the negative backbone, the zeta potentials 

were highly negative (Table 2.2). As such, they have strong repulsion between 

assemblies, preventing the particles from agglomerating. TEM was also 

employed to examine the structure and polydispersity of these structures. The 

TEM images suggest that micelles with defined structures were formed (Figure 

2.7). Since both the monomers with three and four tocopherol units were able to 

form stable assemblies, we used three tocopherol units in our future studies in 

order to maximize any changes within the DNA corona. 

 
 

CMC characterization 

Initially we anticipated that the CMC and guest release could be controlled 

using DNA hybridization or DNA length. We hypothesized that the CMC could be 

lowered by creating DNA duplexes between monomer units to stabilize the 

micelle structure. Additionally, we anticipated that decreasing the length of the 

DNA strand would reduce the hydrophilic portion of the monomer, which should 

consequently increase the CMC. To accomplish this, we introduced an EcoRI 

recognition site into our DNA sequences. In the presence of the matched DNA  
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a)

b)

 

Figure 2.6. The DLS data for (a) the complementary PRT4 and PFT4 monomers 
form two distinct peaks; however, when combined, they form a single population; 
(b) as the concentration of the PRT4 monomer decreases, the radius stays the 
same. Below the CMC, the monomers dissociate. 
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Figure 2.7. TEM image for PFT3. The image shows that distinct spherical 
structures are present. 
 
 
 
duplex, EcoRI will cleave the DNA strands. We anticipated that this would initiate 

micelle dissociation if the monomer concentration is above the CMC for the full-

length strand but below that of the cleaved product. Knowledge of the CMC is not 

only important for micelle dissociation control but also for the proper design of 

experiments such as those to quantify guest exchange kinetics. This is due to the 

fact that below the CMC, there are no micelles present, invalidating any 

experiments.  

To test our hypotheses for tuning the critical micelle concentration (CMC) 

by introducing noncovalent cross-links or modulating DNA length, we first 

attempted to determine the CMCs of our micelles using pyrene as a fluorescent 

probe. When pyrene is excited at 332 nm, it has multiple emission peaks, 

including one at 373 nm (I1) and one at 384 nm (I3). (Figure 2.8). In a polar  

50



I1 I31.0

 

Figure 2.8. The emission spectrum of pyrene contains multiple bands. The 
emission peak at 373 nm is known as the I1 band while the 384 peak is referred 
to as the I3 band. 
 
 

environment, the peak at 373 nm is larger than the 384 nm peak.15 As the 

hydrophobicity of pyrene’s environment increases, the peak at 384 nm increases 

relative to the 373 nm peak. By plotting the 384:373 nm ratio versus the 

monomer concentration, two distinct dependencies are observed. One line 

results from data below the CMC. This ratio increases gradually due to a greater 

number of hydrophobic groups available to interact with the pyrene. However, 

once micelles begin to form, pyrene is incorporated into the hydrophobic core, 

greatly changing the polarity of the environment where pyrene is located. As a 

result, the slope of the second trend increases at a sharper rate. After graphing 

the trends, the CMC is determined by using the calculated linear regression of 

the two lines to determine the concentration at which the two lines intersect 

(Figure 2.9).16  
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Figure 2.9. Example pyrene data for the matched micelle TFT3 and TRT3 in 
20% EtOH. The CMC is determined by finding the intersection between the 
upper and lower regions. 
 

 

In measuring the CMC values of the monomers, we found that the 

presence of DNA duplexes does slightly lower the CMC compared to the 

mismatched micelle, but it did not do so to a significant degree (Table 2.3). We 

also included what would be the product following digestion to allow testing this 

hypothesis (Table 2.1, cleaved sequences TFCT3 and DFCT3). We found that 

these truncated sequences did not significantly raise CMCs compared to their 

respective full-length sequences. We hypothesize that the presence of DNA 

duplexes or enzymatic degradation provides insignificant improvement in CMC 

due to the strong hydrophobic force from the tocopherol groups. Since micelles 

form due to a balance of hydrophobicity and hydrophilicity, if the hydrophobic 

forces are too strong, changes in the hydrophilic corona would not have as 

significant of an impact on the micelle formation. However, these CMC values  
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Table 2.3. The CMC values calculated using pyrene. 
 

Sequences CMC (nM) 

Doublers 

Matched 
DFT3 and DRT3 210 

Mismatched 
DFT3 and DMT3 300 

Digest 
DFCT3 and DRCT3 370 

Trebler 

Matched 
TFT3 and TRT3 470 

Mismatched 
TFT3 and TMT3 590 

Digest 
TFCT3 and TRCT3 630 

 
 
 
are comparable to CMC values for drug delivery systems, which are typically in 

the range of 10-6 -10-7 M.17 Following the CMC measurements, other 

characterization studies were done at concentrations 3-fold higher than the CMC. 

In order to test the hypothesis that the hydrophobic force was 

overshadowing the driving forces from the DNA, we decided to measure the 

CMC values in a solution containing 10 or 20% ethanol in PBS. By adding 

ethanol, the polarity of the solvent is decreased, lowering the energy gained by 

hydrophobic assembly of the tocopherol units in micelle formation. We tested this 

using the trebler sequences having matched (TFT3 and TRT3) and mismatched 

(TFT3 and TMT3) DNA sequences. Interestingly, the CMC was not significantly 

affected by the presence of EtOH (Table 2.4). The difference between the CMC 

values of matched and mismatched micelles increases slightly but not by a 

clinically relevant amount. Since the driving forces for micelle formation are very  
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Table 2.4. CMC values calculated using the trebler monomers in 10 or 20% eth-
anol 
 

Conditions CMC (nM) 

10% EtOH 

Matched 
TFT3 and TRT3 630 

Mismatched 
TFT3 and TMT3 840 

20% EtOH 

Matched 
TFT3 and TRT3 610 

Mismatched 
TFT3 and TMT3 1320 

 
 

strong using these monomers, changing the tocopherol to a less polar group may 

increase the impact that DNA alterations have on the CMC values. 

 The size and monodispersity of these structures were examined using 

DLS. As in the previous DLS studies, the monomers are assembling to form 

monodisperse structures with a diameter below 50 nm (Table 2.5) 

 

EcoRI digestion 

 Some studies within the literature show that assembly of DNA into 

nanoparticles slows the enzymatic degradation of the DNA.18 We therefore 

decided to monitor the kinetics for EcoRI digestion of the DNA in our micelles. In 

order to do this, we decided to use FRET to monitor the EcoRI digestion by 

labeling the complementary DNA sequences with a FRET pair (FAM and Cy3). 

When the strands are intact and hybridized, the FAM and Cy3 modifications are 

within FRET range. As the strands are digested, the ends of the strands with 

FAM and Cy3 are released and no longer have sufficient affinity to hybridize to  
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 Table 2.5. DLS data for the EcoRI strands. 
 

 
Sequence Diameter (nm) PDI 

Trebler 

TRT3 28.26 ± 2.49 0.317 ± 0.042 

TFT3 39.46 ± 4.92 0.354 ± 0.048 

TMT3 49.95 ± 1.83 0.410 ± 0.014 

Doublers 

DRT3 44.36 ± 3.53 0.390 ± 0.019 

DFT3 34.89 ± 2.13 0.527 ± 0.010 

DMT3 47.62 ± 5.98 0.520 ± 0.024 

Trebler 
Cleaved 

TRCT3 17.45 ± 4.38 0.323 ± 0.005 

TFCT3 13.99 ± 2.48 0.295 ± 0.003 

Doublers 
Cleaved 

DRCT3 17.58 ± 0.98 0.286 ± 0.026 

DFCT3 16.57 ± 2.85 0.278 ± 0.012 
Trebler 

Mix 
TRT3 & 
TFT3 19.66 ± 8.88 0.288 ± 0.010 

Doublers 
Mix 

DRT3 & 
DFT3 33.48 ± 2.85 0.339 ± 0.066 

 
 

one another, turning off FRET (Figure 2.10). We conducted an EcoRI digestion 

using the matched micelle TFT3 (FAM labelled) and TRT3 (Cy3 labelled). EcoRI 

digestion of these micelles was compared to the digestion of a free DNA duplex 

(no dendrimer or tocopherol) and the mismatched micelle formed from the 

strands TRT3 and TMT3 (FAM labelled). Assembly into micelles does appear to 

slightly slow the digestion compared to the free strand, but not significantly. As 

expected, our control containing mismatched monomers did not show digestion 

since they are not able to form a duplex (Figure 2.11). 
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Figure 2.10. EcoRI digestion monitored by the disappearance of the Cy3 signal. 
 

 

 

 

Figure 2.11. The progression of EcoRI digestion as monitored by FRET. The 
matched micelle sequences (blue) show slightly slowed kinetics compared to that 
of free DNA (green). The mismatched micelle sequences (red) did not show deg-
radation. 
  

56



Guest exchange 

 To probe the stability of guest molecule binding within our micelles, we 

used the FRET method developed by the Thayumanavan group using DiO 

(donor, λem = 510 nm) and DiI (acceptor, λem = 570 nm) as a FRET pair.19 Due to 

their hydrophobic nature, these dyes are readily sequestered within the 

hydrophobic core of micelles, and the stability of this binding event can be 

determined by monitoring the exchange of guest molecules measured using 

FRET. In this method, two micelle populations are prepared, one containing DiO 

and the other containing DiI. Upon mixing the two populations, two possible 

outcomes may occur. If the micelles stably bind the guest molecules, no 

exchange occurs and the dyes remain sequestered apart from one another. 

However, in leaky micelles, the development of an emission signal around 570 

nm can be observed from the acceptor dye coming into close proximity to the 

donor dye (Figure 2.12). The more stable binding is, the slower the exchange 

occurs. In the case of very leaky micelles such as Tween80 or SDS, this 

exchange occurs instantly (Figure 2.13). However, we found that the presence of 

the negative DNA slows this exchange. This is likely because the cationic 

molecules must cross through the highly charged DNA corona. By monitoring the 

ratio of the donor and acceptor peaks using Eq 1-5, we found that the exchange 

followed first-order kinetics (Figure 2.14). Using both the trebler and doubler 

units, we observed similar exchange rates between hybridized and unhybridized 

micelles. Next, we measured the differences between the full sequences and the 

EcoRI digests. Again, we observed that the exchange rate did not significantly  
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a b

 

Figure 2.12. Guest molecule stability was monitored using the exchange of a 
FRET pair including (a) DiI and DiO; (b) There are two possible outcomes upon 
mixing a population containing DiI and one containing DiO. If the micelles 
stabilize the guest molecules, no exchange occurs and FRET is not observed 
(top). If the micelles are leaky, dye exchange occurs, initiating the FRET signal 
(bottom). 
 

 

 

Figure 2.13. Upon mixing populations of SDS containing DiI and DiO, dye 
exchange occurs immediately, with the main emission peak being the acceptor 
peak at 580 nm. This shows that SDS is a leaky micelle. 
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Figure 2.14. Dye exchange follows a first order rate equation (TFT3). The rate is 
given by determining the slope of the line. 
 
 

change based on DNA length. 

 

Doubler series 

Since the presence of the DNA slowed the guest molecule exchange 

relative to traditional surfactants, we decided to see if the number of strands 

present in the monomer unit showed a difference in the exchange rate. Rather 

than compare the rates between three and four strands, we decided to explore a 

wider range, so we synthesized sequences containing one, two, and four DNA 

strands. In order to keep the length of the monomers the same, we included 

spacers to replace the missing dendrimer units. We also decided to try units with 
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two and three tocopherol monomers to investigate whether decreasing the 

hydrophobic driving force would allow changes in the DNA shell to have a larger 

effect on micelle formation. We again used pyrene to measure the CMCs for the 

monomers. The results are shown in Table 2.6. CMC values were obtained for 

monomers containing a single DNA strand. Our results for these monomers were 

inconsistent, likely due to the inability of these monomers to form stable micelles. 

While the CMC values were similar for the series using two and three tocopherol 

units, there was a slight deviation in the measurement depending on the number 

of DNA strands. Increasing the quantity of strands from two to four for the 

monomers containing three tocopherol units slightly stabilized the assembly. On 

the other hand, the units containing two tocopherol units appear to be slightly 

destabilized by increasing the number of DNA strands. Additional tests would 

need to be performed to confirm this trend. While the data are noisy, the number 

of DNA strands does not appear to significantly affect the exchange rate, so 

further testing was not performed on these monomers (Figure 2.15).  

 

Conclusion 

We hypothesized that DNA could be used to introduce cross-links for the 

stabilization of micelles in order to prevent guest molecule escape and decrease 

the CMC. Additionally, the incorporation of DNA introduces a potentially stimuli- 

responsive group into the micelle. In order to test this hypothesis, we surveyed a 

range of monomers containing different combinations of dendrimer DNA attached 

to tocopherol units where the amphiphilic nature drives assembly formation. We  
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Table 2.6. CMC values for the doubler series. *These monomers did not give 
consistent results and it is likely they are not forming micelles. 

 
# DNA 
Strands Sequence CMC (nM) 

1 
DS1T3 1,800* 

DS1T2 2,100* 

2 
DS2T3 1,100 

DS2T2 930 

4 
DS4T3 540 

DS4T2 1,800 
 
 

 

Figure 2.15. Exchange trend lines for DS2T3 (blue line) and DS4T3 (red line). 
Though the data are noisy, the exchange appears to occur at approximately the 
same rate. 
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characterized the resulting structures using DLS, TEM, and pyrene. We found 

using DLS and TEM that these sequences produce distinct structures that are 

under 50 nm in diameter. We also found that the complementary sequences are 

able to combine to form a single population, presumably having noncovalent 

crosslinks between the DNA strands. However, CMC analysis using pyrene did 

not show the differences that we were anticipating between cross-linked and 

noncross-linked micelles. Further, we tested the effects of hybridization and 

sequence truncation that would result from EcoRI cleavage. While the sequence 

length and hybridization had a slight effect on the CMC, these changes were not 

significant and would not provide adequate control over monomer assembly. We 

confirmed that the sequences were able to hybridize, as was evidenced by their 

ability to undergo EcoRI digestion. While the hybridization did not significantly 

affect the CMC, we wanted to determine if the hybridization was able to slow 

guest release. We were not able to observe a consistent, significant change in 

the exchange of guest molecules as analyzed using FRET to monitor the 

exchange of DiO and DiI molecules. 

 

Experimental Section 

General methods 

All DNA was purchased from the University of Utah DNA/Peptide 

Synthesis Core Facility, where it was synthesized using phosphoramidites and 

CPG cartridges from Glen Research (Table 2.1). All other materials were 

purchased from commercial suppliers without further purification unless 
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otherwise noted. Absorbance and most fluorescence measurements were 

recorded using a Biotek Synergy Mx microplate reader.  

For micelle preparation, the monomers were dissolved in phosphate-

buffered saline (PBS) pH = 7.4. They were then heated to 95 °C and slowly 

cooled.  

 

CMC measurements 

For the pyrene studies, the fluorescence was measured using a Hitachi F-

7000 spectrophotometer. DNA stock solutions were made concentrations (X) in 1 

μM pyrene solution. Serial dilutions were then made in 1 μM pyrene in PBS and 

the solutions were incubated at 25 °C for 3 h. The samples were then excited at 

332 nm, and the emission was scanned from 365 to 390 at a rate of 240 nm/min 

with an excitation bandpass of 5.0 nm and an emission bandpass of 2.5 nm. The 

ratio of fluorescence of the 384 and 373 wavelengths were graphed as a function 

of concentration. The CMC was then calculated by calculating the intersection of 

the two resulting lines.  

 

Dynamic light scattering and zeta potentials 

Prior to dynamic light scattering (DLS) measurements, all samples were 

filtered through a 200 nm filter and allowed to equilibrate at 25 °C overnight. DLS 

was carried out using a Malvern Zetasizer. All measurements were acquired at 

25 °C. The DLS was measured at a 173° scattering angle. Zeta potentials were 

measured using a Smoluchowski model. 
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Transmission electron microscopy 

 For Transmission electron microscopy (TEM) visualization, formvar- 

coated copper grid with 200 mesh was used. The grid was arc discharged from 

30 s to 4 min. The sample was dropped on the mesh and allowed to sit for 1 min. 

It was then wicked off, and replaced with uranyl acetate for 30 s. This was again 

removed and the grid was dipped in water for 5 sec, and the liquid wicked off. 

The grid was allowed to dry at room temperature and imaged at 120 kV using a 

FEI Technai T12 instrument. 

EcoRI digestion 

EcoRI digestion was monitored via FRET by labeling the TFT3 and TMT3 

strands with FAM and the TRT3 with Cy3.  The samples were equilibrated to 37 

°C. EcoRI was then added to the samples to give 1 Unit/µL, and the fluorescence 

was excited at 440 nm and the emission was monitored at 520 and 565 nm, 

maintaining a temperature of 37 °C. 

Guest exchange 

Stock solutions were prepared at a concentration of six times the CMC for a 

given monomer and contained either 3,3’-dioctadecyloxacarbocyanine perchlo-

rate (DiO) or 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate 

(DiI). This was done in one of two ways. In the first method, stock solutions of the 

dye were prepared in DMSO at 900 μM. This was added to the monomers to give 

a final dye concentration of 15 μM. The solutions were then sonicated and al-
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lowed to equilibrate for 5 h. In the second method, 20 µL 15 μM dye was dis-

solved in 500 µL acetone. The DNA was added to the solution, and the acetone 

was evaporated. The solution was then resuspended in 10 µL PBS and sonicated 

for 30 min. The solutions were allowed to equilibrate at 25 °C for at least 3 hours. 

A control was prepared to quantify the final FRET signal. This was done by creat-

ing an equimolar solution of DiO and DiI before incubation with the monomers. 

 The solutions were then mixed and scanned using the fluorescence plate 

reader. The FRET signal was monitored using λex = 450 nm and λem = 510 and 

570 nm. The ratio of the emission wavelengths was then used to monitor 

exchange progression. In order to calculate the FRET ratio Eq 1 was used: 

                      (1) 

in which R is the normalized fluoresence ratio, IA is the fluoresence of DiO, and ID 

is the fluorescence of DiI. In order to monitor the kinetics of the exchange Eq 2 

was used: 

                    (2) 

where RI is R at time = 0, RF is the final ratio measured using the premixed dyes, 

and R is the value at the timepoint of interest. Using the integrated rate laws, it 

was determined that exchange follows first-order kinetics, giving Eq 3: 

                    (3) 

where t is time and k is is the rate constant. This can then be solved to give Eq 4: 

𝑅𝑅 =  
𝐼𝐼𝐴𝐴

𝐼𝐼𝐴𝐴 + 𝐼𝐼𝐷𝐷
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑅𝑅 − 𝑅𝑅𝐼𝐼
𝑅𝑅𝐹𝐹 − 𝑅𝑅𝐼𝐼

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) = 1 − 𝑒𝑒−𝑘𝑘𝑅𝑅 
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                   (4) 

and the rate can be determined by graphing the relationship 

                   (5) 

  

 
𝑅𝑅𝐹𝐹 − 𝑅𝑅
𝑅𝑅𝐹𝐹 − 𝑅𝑅𝐼𝐼

= 𝑒𝑒−𝑘𝑘𝑅𝑅 

 𝑙𝑙𝑙𝑙 �
𝑅𝑅𝐹𝐹 − 𝑅𝑅
𝑅𝑅𝐹𝐹 − 𝑅𝑅𝐼𝐼

� = −𝑘𝑘𝑅𝑅 
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CHAPTER 3 

3,3’-DIOCTADECYLOXACARBOCYANINE PERCHLORATE 

(DiO) AS A FLUOROGENIC PROBE FOR MEASUREMENT 

OF CRITICAL MICELLE CONCENTRATION 

Introduction 

Amphiphilic molecules, generally referred to as surfactants, can undergo 

phase-driven assembly to form higher order structures such as vesicles, bilayers, 

and micelles. Of these structures, micelles are the most common.1 In aqueous 

environments, the micelle structure is solvated by the hydrophilic portion of the 

amphiphile to minimize unfavorable interactions between the hydrophobic region 

and the polar solvent. Because of their ability to sequester hydrophobic guest 

molecules, micelles have shown significant utility in applications including drug 

delivery, separations, and reaction catalysis.2-6 In order to utilize micelles in these 

applications, their assembly must be well-characterized. Micelle assembly is a 

concentration-dependent process that is characterized by a sharp transition at 

the critical micelle concentration (CMC). Below this concentration, the surfactant 

_______________________ 
1 Reprinted with permission from Peterson, A. M.; Tan, Z.; Kimbrough, E. M.; 

Heemstra, J. M. 3,3’-Dioctadecyloxacarbocyanine Perchlorate (DiO) as a 
Fluorogenic Probe for Measurement of Critical Micelle Concentration. Anal. 
Methods. 2015, 7, 6877-6882. Copyright 2015 The Royal Society of Chemistry



molecules can be free in solution or form a monolayer at the air-solvent interface. 

However, as the surfactant concentration increases above the CMC, the 

molecules assemble to form micelles. While the CMC is largely dictated by the 

chemical properties of the surfactant, it is also dependent on environmental 

conditions such as pH, temperature, or ionic strength.7     

  CMC values have been measured using a variety of methods including 

tensiometry,8 conductivity,9 dynamic light scattering (DLS),10 fluorescence 

polarization,11 and capillary electrophoresis.12 However, these procedures require 

specialized equipment and are not well suited for all surfactants. For example, 

conductivity requires a charged state, and thus is not capable of measuring the 

CMC values of nonionic surfactants. In contrast, a number of methods utilize 

fluorogenic probe molecules that undergo a change in fluorescence intensity or 

emission wavelength upon sequestration in the hydrophobic core of a micelle.  

The key benefit of this approach is that analysis is carried out using a fluorimeter 

or fluorescence plate reader, which is more commonly available in research labs.  

A number of fluorogenic probes have been reported, including coumarin, 

curcumin, 1,6-diphenyl-1,3,5-hexatriene (DPH), pyrene, and Nile Red (NR).13-15 

Of these probes, pyrene and NR are used most commonly in CMC studies using 

DPC monomers. In the presence of micelles, pyrene undergoes a change in the 

relative intensity of emission at 373 and 384 nm.16,17 Though useful, resolving 

these two wavelengths requires a more sophisticated fluorimeter, and we have 

found that a standard fluorescence plate reader does not provide sufficient 

resolution to enable CMC measurement using pyrene. In contrast, with NR 

(Figure 3.1a), the fluorescence intensity increases in the presence of micelles  
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Figure 3.1. Chemical structure and emission spectra for (a) NR and (b) DiO in 
DMSO (blue) and water (red). RFU = relative fluorescence intensity. 
 
 

and often undergoes a blue shift in emission wavelength. These changes are of 

sufficient magnitude to enable CMC measurement using a standard fluorescence 

plate reader.18,19 However, instances have been reported in which the emission 

wavelength of NR instead undergoes a red shift as surfactant concentration 

increases.20,21 In these cases, the authors hypothesize that this anomalous 

behavior may be the result of dye aggregation. This is consistent with a recent 

report by Mohr and coworkers describing aggregation of NR to form nonemissive 

dimers via π-π stacking interactions.22  This behavior creates a significant 

challenge for CMC measurement, as aggregation results in a hydrophobic 

environment similar to the core of a micelle, producing misleading results.  

  In our attempt to measure the CMC of our DPC micelles, we observed 

many inconsistencies using NR. These inconsistent results coupled with our 

observation of NR aggregation in our own lab caused us to seek an alternative 

fluorogenic dye that could offer greater reliability while remaining suitable for 

measuring CMC values using a standard fluorescence plate reader. We found 
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that 3,3’-dioctadecyloxacarbocyanine perchlorate (DiO, Figure 3.1b) shows 

similar fluorogenic properties to NR, and has been previously used for lipophilic 

staining23 and monitoring guest exchange dynamics in micelles and nanogels.24 

Upon transitioning from water to DMSO, DiO undergoes a dramatic increase in 

fluorescence intensity, with an emission maximum at 510 nm.  Impressively, DiO 

shows a 93-fold fluorescence enhancement upon transition from water to DMSO, 

compared to only 20-fold enhancement observed for NR (Figure 3.1).  

Herein, we evaluate the utility of DiO for fluorescence-based CMC 

measurement and directly compare its performance to that of NR. We find that 

DiO is compatible with a variety of surfactant types, and while NR and DiO both 

provide CMC measurements that agree with literature values, DiO did not suffer 

from failed measurements, as NR often did.  Additionally, DiO was easier to 

handle than NR, as solubility and aggregation problems were not observed with 

DiO, but were frequent with NR.  Therefore, DiO provides an accurate and 

reliable method for measuring CMC values without the need for specialized 

equipment. 

 

Results and Discussion 

To test the feasibility of using DiO as a fluorogenic dye for CMC 

measurement, we first employed the widely used nonionic surfactant Triton X-

100. As shown in Figure 3.2, increasing the surfactant concentration produces an 

increase in fluorescence intensity with a λmax of 510 nm.  This increase mirrors 

the change in fluorescence intensity observed when DiO is transferred from 

aqueous to organic solvent, strongly suggesting that DiO is being sequestered to 
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Figure 3.2. DiO shows increasing fluorescence intensity with increasing 
concentrations of Triton X-100 surfactant. 

 
  

the hydrophobic core of the Triton X-100 micelles.  

Having established that DiO displays a dramatic fluorescence 

enhancement in the presence of Triton X-100, we set out to evaluate the 

accuracy and versatility of DiO for CMC measurement. We selected a set of 12 

commonly used surfactants that included examples from each of the four ionic 

states and spanned a wide range of CMC values. For each surfactant, we carried 

out parallel experiments using DiO and NR to compare the accuracy and 

consistency of each probe. We initially used a dye concentration of 2 μM, as this 

is typical for NR studies.19 While this dye concentration provided accurate CMC 

values for most surfactants, we observed atypical results in some cases, and 

found that increasing the dye concentration to 10 μM produced consistent results 

for all surfactants. Thus, unless otherwise noted, all reported data were collected 

using DiO or NR concentrations of 10 μM. In CMC measurements using 

fluorogenic dyes, an incubation time is required to allow equilibration of the dyes 

binding in the micelles. We found that for all surfactants, accurate CMC values 
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could be measured after 5 hours of incubation, and for some surfactants, DiO 

provided accurate results with only 2 hours of incubation. This allows for fast 

screening of CMC values compared to some NR protocols that suggest overnight 

incubation.25 

      The λmax values for DiO and NR show small variations based on 

surfactant structure, but at concentrations near or above the CMC of the 

surfactants, the emission maxima for DiO and NR were found to be centered 

upon 510 and 636 nm, respectively. Thus, these wavelengths were used in all 

CMC calculations. For each dye, plotting the fluorescence intensity as a function 

of surfactant concentration yields a sigmoidal curve, if a wide enough 

concentration range is used. In the region far below the CMC, fluorescence 

intensity is constant or increases slightly. Upon approaching the CMC, 

fluorescence intensity increases sharply as micelles form and sequester the dye 

molecules. Then, this trend levels off as all of the dye molecules become bound 

in micelles. Typically, the transition is sufficiently gradual to allow linear fits of the 

lower and middle regions of the sigmoid, and the intersection point of these two 

lines provides the CMC value (Figure 3.3a).1,11 In some cases, the transition is 

too sharp to provide a linear fit for the transition region. In these cases, the entire 

curve can be fit to a sigmoid, and the CMC value calculated by finding the 

maximum of the second derivative.  This value represents the lower transition 

point, which is analogous to the intersection of the two lines in the former 

approach (Figure 3.3b). 

 The data in Table 3.1 show the CMC values obtained using DiO and NR 

with each of the twelve surfactants tested. Both dyes show good accuracy, giving  
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Figure 3.3. Representative fluorescence data for CMC calculation. (a) If three or 
more data points can be obtained for the transition region, the CMC value can be 
calculated using the two-line method. (b) If the slope of the transition region is too 
steep to enable a linear fit, the second derivative method is used.  

 
 
 

CMC values comparable to those reported in the literature.7,8,26-28 However, DiO 

provided overall greater precision, as some measurements using NR gave 

inconsistent data, leading to higher standard deviations.  This is especially 

pronounced in the cases of Triton X-100, Brij 58, and Zwittergent 3-14. Figure 3.4 

shows data collected for Triton X-100 using both DiO and NR. The first NR trial 

gave two distinct lines, while the subsequent two trials resulted in noisy data that 

were more difficult to fit. On the other hand, each of the three DiO trials provided 

consistent data. It is also important to note that in the case of DiO, the change in 

slope between the two lines is much greater than that observed for NR. This 

made the assignment of data points to their respective regions easier when 

working with DiO, further demonstrating its superior accuracy and precision. 

We also found that DiO consistently provided usable data, whereas many 

trials using NR provided data that could not be used to calculate a CMC value 

(Figure 3.5).  These failures on the part of NR are not directly reflected in the  
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Table 3.1. CMC values obtained at 25 ± 0.2 °C using DiO and Nile Red 
compared to those reported in the literature. Most CMC values were calculated 
using the two-line method. CMC values calculated using a sigmoidal fit are noted 
with an asterisk. The error represents the average of at least three trials. 
 
†The CMC value for Tween20 was obtained using 1.25 μM NR. 

 
Charge 
State Surfactant CMC (lit) CMC 

(DiO) CMC (NR) Ref. 

Nonionic 

Triton X-
100 240 μM 195 ± 2 

μM 
271 ± 19 

μM 7, 25 

Tween 20 60-80 
μM 

66.5 ± 0.5 
μM 

79.9 ± 1.5† 

μM 7, 8, 25 

Tween 80 12 μM 13.0 ± 0.2 
μM 

11.4 ± 1.6 
μM 7, 8, 25 

Brij 58 24-77 
μM 

32.4 ± 2.4 
μM 

36.7 ± 7.3 
μM 8, 25 

Anionic 

SDS 8.2 mM 7.11 ± 
0.77 mM 

8.37 ± 
0.45* mM 7 

NaGC 4-14 mM 14.2 ± 0.1 
mM 

9.12 ± 
0.34 mM 24 

NaTC 6-11 mM 14.3 ± 0.5 
mM 

6.10 ± 
0.18 mM 7, 23 

Cationic 
DTAB 14-16 

mM 
12.7± 0.8* 

mM 
14.1 ± 1.0* 

mM 7 

CTAB 0.9-1.0 
mM 

2.65 ± 
0.14 mM 

0.780 ± 
0.135* mM 7, 25 

Zwitterionic 

CHAPS 6-10 mM 8.25 ± 
0.20 mM 

8.46 ± 
2.13 mM 7, 25 

EMPIGEN 
BB 

1.6-2.1 
mM 

1.95 ± 
0.04 mM 

1.38 ± 
0.07 mM 7 

Zwittergent 
3-14 

100-400 
μM 

268 ± 14 
μM 

259 ± 26 
μM 25 
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Figure 3.4. CMC curves collected for Triton X-100 using (a) NR and (b) DiO. DiO 
shows superior consistency as well as greater change in slope upon micelle 
formation. 
 

a

111

b

333

c

 
Figure 3.5. Examples of failed trials with NR: (a) Brij 58 (b) DTAB. The sigmoidal 
fit produced a CMC for one of the trials. (c) Tween 80. In each graph, the red and 
blue points represent concentrations below and above the literature CMC value, 
respectively.  
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data, as we repeated these experiments numerous times to obtain  at least three 

usable data sets with NR that were then utilized to generate the CMC values 

reported in Table 3.1. This highlights the fact that CMC measurement using NR 

generally required greater time and resources compared to DiO, further 

convincing us of the superiority of DiO. 

In addition to lower precision and success rate, we found that NR often 

showed a problematic shift in λmax as a function of surfactant concentration, while 

the λmax values for DiO remained consistent across surfactant concentrations. For 

example, in the case of NaGC, DiO maintains a λmax value of 508-510 nm across 

all surfactant concentrations. In contrast, the λmax for NR undergoes a gradual 

increase, followed by a sharp decrease, as surfactant concentration decreases 

(Table 3.2).  While working with both of the dyes in our lab, we found that DiO 

consistently showed excellent solubility at 10 μM concentration, while NR often 

left a ring of dye adhered to the side of the microcentrifuge tube (Figure 3.6).  

This observation is worrisome, as it indicates that the actual concentration of NR 

in the solutions is not necessarily reproducible, which may be the source of many  

  

Table 3.2. λmax for DiO and NR emission in the presence of NaGC. White boxes 
indicate data above the CMC and shaded boxes indicate data below the CMC. 

 
[NaGC] 
(mM) 

DiO 
(nm) 

NR 
(nm) 

51.0 508 638 
26.0 508 638 
18.0 508 642 
6.47 510 650 
2.24 508 654 
0.77 510 620 
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DiO NR

 

Figure 3.6. NR often left a visible ring of aggregated dye (right) while DiO did not 
(left). 
 
 

of the issues discussed above.  It also accounts for the inconsistencies observed 

in λmax value, as the NR is likely aggregating in solution, leading to a change in 

local environment and thus emission wavelength. 

Among the four classes of surfactants, we found that the cationic 

surfactants CTAB and DTAB proved to be the most challenging for measuring 

CMC values using either DiO or NR.  Despite surveying very narrow intervals of 

surfactant concentration, we were typically unable to acquire a sufficient number 

of data points in the transition region to calculate CMC using the two-line method.  

Thus, in the analysis of DTAB using either DiO or NR and the analysis of CTAB 

using NR, we instead employed the second derivative method.  Despite using a 

different analysis method, CMC values in line with reported values were still 

obtained (Table 3.1). In the case of CTAB analysis using DiO, we observed an 

interesting and reproducible peak in fluorescence intensity at approximately 0.6 

μM surfactant (Figure 3.7a). While the source of this peak is unclear, we did 

observe the expected transition as surfactant concentration was increased, and 

were able to measure the CMC of CTAB by using data points at concentrations 

above this anomalous signal (Figure 3.7b). Our calculated CMC value using this  
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Figure 3.7. CMC measurements for CTAB (a) The emission intensity of DiO 
temporarily spikes at approximately 0.6 μM CTAB. (b) However, the CMC can be 
calculated for CTAB using a smaller concentration interval range. 
 
 

method is slightly higher than the previously reported values, demonstrating that 

for this surfactant, NR does provide greater accuracy than DiO. However, it is 

important to note that cationic surfactants represent only about 5% of all 

commercially available surfactants,29 and thus this limitation associated with DiO 

is relatively minor. 

 

Conclusion 

The data presented here demonstrate that DiO is a promising alternative 

to NR for the measurement of surfactant CMC values.  We find that both DiO and 

NR provide CMC values that are consistent with those previously reported in the 

literature.  However, DiO provides superior precision and reproducibility.  We 

hypothesize that the inconsistency of results obtained using NR largely stems 

from its propensity to aggregate in aqueous solution, especially in the presence 

of low surfactant concentrations.  In our hands, this led to difficulties in sample 
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handling as well as multiple instances of failed experiments.  Thus, we find that 

DiO is generally a more user-friendly and reliable fluorogenic dye for the 

measurement of surfactant CMC values. 

 

Experimental Section 

All chemicals were purchased from commercial sources and used without 

further purification. NR and DiO stock solutions were prepared by dissolving the 

dye in DMSO to a concentration of 900 μM. Concentrated stock solutions of each 

surfactant were prepared in water (MilliQ), then combined with dye solution and 

additional water (MilliQ) to provide the appropriate final concentrations.  The 

solutions were sonicated for 30 min at 35 °C then incubated at 25 °C for 5 hours. 

Following incubation, the solutions were transferred to a 96- or 384-well 

microplate, centrifuged, and allowed to equilibrate at 25 °C for 10 minutes. 

      All fluorescence measurements were carried out using a Biotek Synergy 

MX plate reader at 25 ± 0.5 oC. Excitation/emission wavelengths of 450/510 nm 

(DiO) and 485/636 nm (NR) were used, with a bandwidth of ±9 nm. Fluorescence 

intensity was plotted as a function of surfactant concentration, and each CMC 

value was calculated by one of two methods: (1) If the data formed two distinct 

lines, the concentration at which these lines intersect was calculated and 

determined to be the CMC. (2) If the transition was too sharp to provide a second 

intersecting line, the data were fit to a sigmoid function using Origin Pro 9.0. The 

second derivative was then used to determine the surfactant concentration at the 

lower inflection point, which is analogous to the intersection of the two lines, and 

thus represents the CMC.1,30 
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CHAPTER 4 

MODULATING THE SUBSTRATE SELECTIVITY OF 

DNA APTAMERS USING SURFACTANTS*

 Introduction 

Nucleic acid aptamers1-3 hold significant promise for replacing antibodies 

in analytical applications, as aptamers are capable of binding to a wide variety of 

small-molecule and protein targets.4-8 The most commonly cited benefits of ap-

tamers relative to antibodies include their ability to retain function after thermal 

denaturation and the fact that they are chemically synthesized, which reduces 

both cost and batch-to-batch variation.8,9 We were curious as to whether ap-

tamers might also have the advantage of functioning in the presence of chemical 

denaturants such as surfactants, but we found no reports in the literature explor-

ing this intriguing question. Antibodies and other proteins are readily denatured 

by surfactants, as the hydrophobic portion of the surfactant can interact with hy-

drophobic surfaces on the protein, reducing the enthalpic cost of protein unfold-

ing in an aqueous medium.10 However, unlike proteins, nucleic acids do not pos- 

______________________ 

* Reprinted with permission from Peterson, A. M.; Jahnke, F. M.; Heemstra, J. M.
Modulating the Substrate Selectivity of DNA Aptamers Using Surfactants.
Langmuir. 2015, 11769–11773. Copyright 2015 American Chemical Society



sess large surfaces composed of aliphatic side chains, and thus we hypothesized 

that they would be less likely to be disrupted by surfactants. In addition to 

exploring the ability of aptamers to function in the presence of surfactants, we 

envisioned that the surfactants could provide a unique dimension of control over 

the substrate binding preferences of aptamers. At low concentrations, 

amphiphilic surfactant molecules are dispersed in solution and form a monolayer 

at the air-water interface. However, at concentrations above the critical micelle 

concentration (CMC) of the surfactant, self-assembly occurs to form micelles.11 

These spherical or ellipsoidal structures possess a hydrophobic core that is 

capable of sequestering nonpolar molecules. As a result, surfactants are 

commonly used for applications such as purification and reaction catalysis.12,13 In 

the context of aptamer-target binding, we hypothesized that analytes would show 

variable partitioning into the micelle core depending upon their hydrophobicity, 

effectively increasing the selectivity of aptamers toward hydrophilic analytes. 

Substrate binding selectivity is critical to many applications of aptamers, and 

previous studies have explored approaches to modulating selectivity through 

sequence mutation, the incorporation of unnatural bases, or the addition of 

hydrophobic groups near the binding pocket of the aptamer.14-17 Due to the 

nature of these chemical modifications, they typically increase the binding affinity 

for hydrophobic targets. Thus, the use of surfactants offers a complementary 

approach to modulating the substrate binding selectivity of aptamers.  

To explore the effect of surfactants on aptamer function and the substrate 

binding preference, we used a series of structure-switching DNA aptamer 

biosensors previously reported by Stojanovic and co-workers that bind to steroid 
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targets (Figure 4.1).18 Each structure-switching biosensor is composed of an 

aptamer and a short complementary strand, which are functionalized with a 

fluorophore and quencher, respectively. In the absence of the target molecule, 

the complementary strand binds to the aptamer and fluorescence is quenched. 

However, in the presence of a target that binds to the aptamer, the 

complementary strand is displaced, resulting in a dose-dependent increase in 

fluorescence signal. Here we show that the aptamers maintain their secondary 

structure and substrate binding capability in the presence of neutral and anionic 

surfactants, and that the presence of surfactant can be used to modulate the 

substrate binding preference to favor more hydrophilic ligands (Figure 4.2). The 

demonstrated ability of aptamers to function in the presence of surfactants is ant- 

icipated to expand their scope of potential applications. Additionally, the ability to  

 

 

Figure 4.1. Experimental design for the steroid biosensors. (a) Structure-
switching biosensors provide a dose-dependent fluorescence response to target 
analytes. (b) Chemical structures of steroid targets. 
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SDS

 

Figure 4.2. At surfactant concentrations above the CMC, the hydrophobic 
molecules are sequestered in the micelle. As a result, the biosensor selectively 
responds to the more hydrophilic molecules. 
 
  

modulate the substrate binding preferences of aptamers using a simple additive 

provides a novel route to increasing the selectivity in analytical applications.  

 

Results and Discussion 

Choice of aptamer sequences 

To investigate the effect of surfactants on aptamer-ligand recognition, we 

realized that it was necessary to use aptamers that bind to small-molecule, rather 

than protein, targets. This is because nearly all protein-binding aptamers have 

been selected to recognize folded proteins, and thus even if the aptamer retained 

its structure and function, the addition of surfactant would compromise the 

protein target in such a way as to preclude binding. We also strategically sought 

to utilize aptamers that had been reported in a structure-switching biosensor 

format,19 as this enables convenient fluorescence-based monitoring of target 

binding. Thus, we chose three aptamer biosensors previously reported by 

Stojanovic and co-workers that bind to small-molecule steroid targets.18 These 

aptamers were selected using the steroid targets DCA, DIS, and BE, and were 
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intentionally selected to have a broad substrate scope, with each aptamer 

sequence having an affinity for multiple steroid targets.  

 

Exploring the effect of surfactant type 

We chose the DIS aptamer as a model to survey the effect of varying 

surfactant types on substrate binding. Using five common surfactants that 

represent all four ionic states including cationic, anionic, nonionic, and 

zwitterionic, we measured the fluorescence response of the aptamer biosensor to 

DIS in the presence of 1% (w/v) of each surfactant. This concentration is above 

the CMC for each of the surfactants,11 ensuring the formation of micelles. We 

were very encouraged to observe that in the presence of SDS, Tween 20, or 

Triton X-100, the biosensor shows only a slightly attenuated response compared 

to its behavior in pure buffer (Figure 4.3). However, the biosensor shows no 

detectible response in the presence of positively charged CTAB, and in 

zwitterionic CHAPS, the biosensor begins to show a response only at the highest 

DIS concentrations. This is not surprising, as surfactants having a positively 

charged functional group are more likely to interact with the negatively charged 

DNA backbone. In fact, a 2% CTAB solution is often used for DNA precipitation.20 

We decided to utilize SDS for all further studies, as the biosensor performed well 

in this surfactant, and SDS is frequently used for protein denaturation.  

 

Structural analysis using CD spectroscopy 

The ability of the DIS aptamer to bind its target molecule in the presence 

of 1% SDS suggests that this concentration of surfactant does not significantly  
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Figure 4.3. Response of the DIS biosensor to increasing concentrations of DIS 
ligand in the presence of 1% of various commonly used surfactants. The error 
bars represent the standard deviation of three independent trials. 
 

 
disrupt DNA folding. To validate this idea and explore the tolerance of DNA 

folding to increased concentrations of SDS, we acquired CD spectra for each of 

the three aptamers in the presence of 0, 0.01, 1, and 4% SDS. These SDS 

concentrations were chosen as they allow a comparison of DNA secondary 

structure at SDS concentrations below (0 and 0.01%) and above (1 and 4%) the 

CMC. As a positive control to ensure that a change in the CD spectrum would be 

observed upon DNA unfolding, we also acquired spectra for each aptamer in the 

presence of 8 M urea, which is well established to denature the DNA secondary 

structure.21  

As shown in Figure 4.4, the CD spectra for each aptamer remain constant 

as the SDS concentration is increased from 0 to 4%. However, in the presence of 

8 M urea, the CD signal undergoes a noticeable bathochromic shift and a slight 

decrease in intensity. Together, these data suggest that the aptamers are able to 

maintain their secondary structure in the presence of up to 4% SDS, which is 

impressive given that this concentration of SDS leads to the denaturation of most  
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Figure 4.4. CD spectra for the (a) DIS, (b) BE, and (c) DCA aptamers in the 
presence of 0, 0.01, 1, and 4 % SDS, or 8 M urea.  
 

 

proteins.10 Additionally, we were encouraged by these results in which all three 

aptamers were likely to maintain their target-binding ability in the presence of up 

to 4% SDS. 

 

Modulating target selectivity 

To test our hypothesis that surfactant could be used to increase the 

selectivity for hydrophilic ligands, we investigated the response of the DIS 
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aptamer to both DIS and the more hydrophobic steroid, DOA (Table 4.1), in the 

presence of increasing concentrations of SDS (Figure 4.5). In buffer and 0.01% 

SDS, we observed that DOA binds to the DIS biosensor with a slightly higher 

affinity than the DIS ligand. In both of these solutions, the fluorescence signal 

from DOA unexpectedly decreases at high ligand concentrations, possibly due to 

aggregation of the hydrophobic steroid. Upon increasing the SDS concentration 

to 1 or 4%, we were excited to observe that the biosensor shows no response to 

even millimolar concentrations of DOA, but shows only a slightly attenuated 

binding to DIS. This switch in substrate binding preference presumably results 

from the sequestration of the hydrophobic DOA in the micelles, whereas the 

hydrophilic DIS remains solvated by the aqueous phase.  

We also investigated the impact of increasing SDS concentration on the 

substrate specificity of the DCA and BE biosensors. As shown in Figure 4.6, the 

DCA biosensor binds DCA with a slightly higher affinity than it does DIS in buffer 

or 0.01% SDS. However, in the presence of micelles at 1 or 4% SDS, the binding 

to DCA is dramatically attenuated, switching the preferred ligand to DIS. We 

were initially surprised to observe such a dramatic reduction in DCA binding in 

the presence of micelles, as DCA has a charged carboxylate functional group, 

and thus would be expected to have some ability to remain solvated by the 

aqueous phase. However, DCA does possess an additional aliphatic chain 

relative to DIS, and the sulfate group of DIS contains a greater number of polar 

heteroatoms than the carboxylate of DCA. Thus, it is reasonable that the micelles 

sequester DCA, while leaving DIS free in solution.  

 In the case of the BE biosensor, the effect of SDS on substrate selectivity  
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Table 4.1. Partitioning coefficients (logD) estimated using the ChemAxon logD 
calculator. All values calculated for pH= 7.4. 
 

Steroid logD 
DIS 1.04 
DOA 3.77 
DCA 1.15 
BE 3.75 
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Figure 4.5. Fluorescence response of the DIS biosensor to DOA (red) or DIS 
(blue) in (a) buffer, (b) 0.01% SDS, (c) 1% SDS, and (d) 4% SDS. The error bars 
represent the standard deviation of three independent trials.  
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Figure 4.6. Fluorescence response of the DCA biosensor to DCA (red) or DIS 
(blue) in (a) buffer, (b) 0.01% SDS, (c) 1% SDS, and (d) 4% SDS. The error bars 
represent the standard deviation of three independent trials.  
 
 

proved to be slightly more complex. At SDS concentrations below the CMC, the 

biosensor strongly favors BE, showing the highest affinity binding of all of the 

aptamer-ligand pairs (Figure 4.7 a,b). Above the CMC, the biosensor shows 

nearly equal binding to both DIS and BE (Figure 4.7 c,d). Increasing the 

concentration of SDS from 1 to 4% shows no appreciable effect on the binding, 

which is somewhat surprising, as we expected that BE would be strongly 

sequestered within the micelles due to its hydrophobicity. However, BE has been 

shown to bind to its cognate aptamer with a much higher affinity than any of the 

other aptamer-ligand pairs,18 and the exchange of hydrophobic ligands between 

micelles is known to be a dynamic process.22 Thus, we hypothesize that the 

anomalous behavior observed for BE reflects the ability of the aptamer to  
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Figure 4.7. Fluorescence response of the BE biosensor to BE (red) or DIS (blue) 
in (a) buffer, (b) 0.01% SDS, (c) 1% SDS, and (d) 4% SDS. The error bars 
represent the standard deviation of three independent trials.  
 
 
 
effectively compete with the micelles for binding to the BE that is transiently 

available in the solution. However, despite some unexpected results, we found 

that for each of the three biosensors, surfactant can be used to increase the 

relative affinity for hydrophilic over hydrophobic substrates.  

 
 

Conclusions 

Here we provide the first evidence that DNA aptamers can retain their sec- 

ondary structure and substrate binding capability in the presence of up to 4% 

surfactant. We find that anionic and nonionic surfactants are well tolerated, 

whereas cationic and zwitterionic surfactants do compromise substrate binding, 

likely because the positively charged functional groups on the surfactant interact 
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with the negatively charged backbone of the DNA. However, SDS and Triton X-

100 are among the most commonly used surfactants in biochemical applications, 

and SDS in particular is known to readily denature antibody reagents.23 Thus, the 

ability of aptamers to maintain their function in the presence of both of these 

surfactants provides an additional competitive advantage relative to antibodies, 

and is likely to significantly increase the scope of analytical applications for which 

aptamers can be employed. We also investigated the hypothesis that surfactant 

micelles could be used to modulate the substrate binding preferences of 

aptamers by selectively encapsulating more hydrophobic ligands. For all three 

aptamers tested, we observe that the presence of SDS at concentrations above 

the CMC greatly diminishes or completely eliminates the biosensor response to 

the more hydrophobic substrate. However, the biosensor response to the 

hydrophilic substrate is only slightly attenuated. Thus, the studies reported here 

establish surfactant addition as a novel, facile, and effective method for 

increasing the substrate selectivity of DNA aptamers. We anticipate that this will 

enable the use of aptamers having nonideal substrate selectivity for analytical 

applications where minimizing the cross-reactivity is of critical importance.  

Experimental Section

General methods

All DNA was purchased from the University of Utah DNA/Peptide 

Synthesis Core Facility, where it was synthesized using phosphoramidites and 

CPG cartridges from Glen Research (Table 4.2). All other materials were 

purchased from commercial suppliers and used without further purification.  
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Table 4.2. Sequences of DNA aptamers (Apt) and complementary strands (CS). 
FAM = fluorescein; BHQ1 = Black Hole quencher 1. 

Name Sequence (5’-3’)

BE-Apt FAM-CTCTCGGGACGACATGGATTTTCCATCAACGAAGTGCGTCCGTCCCG 

BE-CS GTCGTCCCGAGAG-BHQ1 

DCA-Apt FAM-CTCTCTCGGGACGCTGGGTTTTCCCAGGACGAAGTCCGTCCCGA 

DCA-CS CGTCCCGAGAGA-BHQ1

DIS-Apt FAM-CTGCTCTCGGGACGTGGATTTTCCGCATACGAAGTTGTCCCGAG

DIS-CS GTCCCGAGAGCA-BHQ1

Absorbance and fluorescence measurements were recorded using a Biotek 

Synergy Mx microplate reader. 

Preparation of stock solutions 

All samples were prepared in a buffer containing 20 mM Tris, and 150 mM 

NaCl, at pH 7.4. This salt concentration was chosen to avoid SDS precipitation. 

The aptamer and complementary strand were annealed by incubating at 90 °C 

for 5 min, followed by rapid cooling. The following DNA concentrations were used 

for each biosensor: DIS, 1 μM aptamer and 2 μM displacement strand; BE, 0.15 

μM aptamer, and 0.30 μM displacement strand; DCA, 1 μM aptamer and 2 μM 

displacement strand. DNA structure-switching biosensors rely on competing 

equilibria to bind the aptamer to the displacement strand or the target. Thus, the 

DNA concentration impacts the response of the sensor to the target ligand. The 

DNA concentrations used in our experiments were chosen empirically to 
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maximize the signal-to-background ratio. Stock solutions of surfactants were 

prepared by dissolving sodium dodecyl sulfate (SDS), cetyltrimethylammonium 

bromide (CTAB), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

(CHAPS), Triton X-100, or Tween 20 in Tris buffer at 5 or 10% (w/v). Ligand 

solutions were prepared by dissolving each steroid in DMSO (DCA, BE, DIS) or 

2:1 CHCl3/DMSO (DOA) at 500 mM and then performing a 3-fold dilution series 

in DMSO to maintain the concentration of organic solvent in all samples constant 

at 2%.  

 

Fluorescence measurements 

 For initial testing of the surfactant scope, solutions were prepared having 

0 or 1% (w/v) surfactant. To monitor the effects of increasing SDS, solutions 

were prepared having 0, 0.01, 1, or 4% SDS. The DNA stock solution and 

surfactant were combined in Tris buffer and allowed to equilibrate for 5 min. The 

ligand was then added, and the solutions were incubated for 20 min at 25 °C. 

Fluorescence measurements were then acquired with λex = 495 nm and λem = 

525 nm at 25.0 ± 0.2 °C. The percent displacement (%D) for each biosensor was 

calculated using eq 1: 

%𝐷𝐷 = � 𝐹𝐹−𝐹𝐹0
𝐹𝐹𝑚𝑚−𝐹𝐹0

� ∗ 100                                               

(1) 

in which F is the measured fluorescence, F0 is the fluorescence of the biosensor 

in the absence of ligand, and Fm is the fluorescence of the aptamer alone.24  
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Circular dichroism (CD) analysis

CD spectra were acquired using a Jasco J815 CD spectrometer. The CD 

spectra were collected using unlabeled aptamers (10 μM) prepared in Tris buffer 

containing 0, 0.01, 1, or 4% SDS. As a positive control for denaturation, we also 

acquired CD spectra for each aptamer in Tris buffer with 8 M urea. Following 

heating and cooling, the aptamer strands were incubated at 25 °C for 2 h. All CD 

spectra were recorded at 23 °C, scanning from 220 to 320 nm at 100 nm/min 

(cell path length = 2.00 mm). The final spectra are an average of six scans.  
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CHAPTER 5 

miRNA-221 DETECTION USING 

PNA-DNA-AuNP CONJUGATES 

Introduction 

Prostate cancer is a serious disease which accounts for approximately 3% 

of male deaths in the United States; however, nearly half of prostate cancer tu-

mors pose little to no health threat if left untreated.1 Consequently, many patients 

are overtreated, leaving them with unnecessary side effects in surrounding or-

gans such as the colon and bladder. Since the risks of prostate cancer can vary 

so widely, the ability to properly diagnose and treat patients depends greatly on 

the ability to distinguish between aggressive and indolent prostate cancer. How-

ever, current methods for analysis are invasive, often requiring a transrectal bi-

opsy.2 Developing a noninvasive screening procedure would greatly aid in the 

diagnosis of aggressive cancers and help prevent the overtreatment of prostate 

cancer. 

Accurate diagnosis for this and any other diseases requires the identifica-

tion of a proper biomarker. Nucleic acids are excellent biomarkers for detecting 

gene-related diseases such as cancer due to the specificity of Watson-Crick 

base-pairing. Many studies have looked specifically at miRNA since these small 



noncoding RNA sequences control gene expression and are misregulated in 

most cancers. In searching for prostate cancer biomarkers, researchers found 

that aggressive forms of prostate cancer have a 10-fold increase in the expres-

sion of miRNA-221 compared to the indolent forms, making it a good indicator for 

the aggressiveness of the tumor.3,4 

While native nucleic acids such as DNA and RNA bind specific miRNA 

sequences, they risk degradation in the body. Therefore, many labs have em-

ployed nucleic acid mimics to increase oligonucleotide stability. Peptide nucleic 

acid (PNA) is one such mimic where, in place of the negatively charged phos-

phate groups, there is a neutral peptide-like aminoethylglycine backbone (Figure 

5.1).5 Due to this unique architecture, PNA is resistant to both proteases and nu-

cleases.6 Further, PNA is capable of forming Watson-Crick base pairs with native 

nucleic acids at greater stabilities than a native duplex. Due to its increased sta-

bility, PNA shows great promise in medicinal applications targeting a specific ge-

netic sequence. However, it faces challenges for use within the body, as it has 

low cell permeability and rapid clearance through the kidneys. In mouse studies, 

intravenously delivered PNA was removed from circulation within half an hour.7 

As native nucleic acids face similar challenges, many transfection agents 

have been developed to prevent renal clearance and enable cellular delivery. 

The Mirkin group has shown that gold nanoparticles (AuNPs) effectively deliver 

nucleic acids into cells when functionalized with thiolated DNA due to the high 

negative charge density. This charge density recruits positively charged chaper-

one proteins, which assist the DNA-AuNPs across the cell membrane.8 Addition-

ally, due to their increased size, AuNPs avoid removal by the kidneys, and the  
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Figure 5.1. The chemical structures of DNA, RNA, and PNA 

plasmonic properties efficiently quench fluorescence near the surface.9 In one 

study, Mirkin and coworkers used fluorophore-labeled DNA to detect the mRNA 

sequence SKBR3. Compared to control cells, they measured a 3.8-fold fluores-

cence increase in cells containing SKBR3.10 

While the Mirkin group found that the DNA-AuNP conjugates partially pro-

tect DNA from nucleases, degradation still occurs, limiting the detection accura-

cy. We hypothesize that, due to the resistance to degradation and higher target 

specificity of PNA, PNA-DNA-AuNP conjugates would achieve better efficiency 

and sequence flexibility than DNA-AuNPs for intracellular targeting. Due to their 

high surface area-to-volume ratio, nanoparticles inherently have high surface en-

ergies, which cause particle agglomeration. This is often prevented by placing 

charged molecules on the nanoparticle surface to cause repulsion. In the case of 

DNA-AuNPs, DNA provides the necessary repulsive forces to maintain monodis-

persity. However, since PNA has a neutral backbone, it does not create the re-

pulsive forces necessary to maintain monodispersity when functionalized to 

AuNPs. Other studies use surfactants for PNA-AuNP stabilization, but these 

105



cannot be used for biological purposes due to surfactant toxicity.11 Also, the lack 

of a high negative charge density would prevent the particles from recruiting the 

proteins necessary for cell permeability. We hypothesize that DNA can be used 

to circumvent these challenges if the AuNP surface is covalently functionalized 

with DNA possessing a terminal thiol. Fluorophore-modified PNA can then be 

hybridized to the DNA-AuNP conjugates, resulting in attenuation of the signal 

due to quenching. Due to a toe-hold region on the PNA, the PNA will leave the 

DNA-AuNPs and hybridize the RNA target due to the increased number of base 

pairs, consequently restoring fluorescence in a dose-dependent manner (Figure 

5.2). 

We anticipate that by using a fluorescent PNA-DNA-AuNP detection plat-

form, aggressive and indolent prostate cancers can be distinguished as a func-

tion of cellular miRNA-221 levels. We will target miRNA-221 using complemen-

tary fluorescently-labeled PNA hybridized to DNA-AuNP conjugates, wherein the 

AuNPs will quench the fluorescence until the PNA leaves in the presence of  

Figure 5.2. Thiolated DNA bonded to a gold nanoparticle then hybridized to a 
fluorophore-labeled PNA strand quenching fluorescence. Upon miRNA-221 addi-
tion, the PNA rehybridizes to the RNA and leaves the AuNP, restoring fluores-
cence. 
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miRNA-221. This study aimed to develop and characterize a PNA-DNA-AuNP 

detection platform, determine its ability to quantify miRNA-221, and perform initial 

studies into the cellular permeability of PNA-DNA-AuNP conjugates. 

Results and Discussion 

PNA-DNA-AuNP conjugates 

As we started designing and characterizing our initial detection platform, we 

wanted to verify that PNA without a toehold region would not cause agglomera-

tion by shielding the repulsive forces. We initially used the Nielsen 10-mer se-

quence of PNA (Table 5.1, PNA 5.1) since it has been well studied in previous 

research.5 As is customary with PNA studies, a positively charged lysine mono-

mer was added to the C-terminus in order to facilitate water solubility. While 

many of the properties have been optimized for DNA-AuNP systems, we tested 

some to verify if the same trends remain when PNA is hybridized to the conju-

gates. These properties include the number of bases between the AuNP and the 

hybridization region (spacer), the method for attaching the thiolated DNA, and the 

hybridization technique.12-14 In order to test the spacer length required for maxi-

mum PNA hybridization, we tested DNA 5.1.NS with no spacer between the thiol 

and hybridization region, and two spacer types, poly(A) and poly(T) with 5 and 10 

bases (DNA 5.1.A5, A10, T5, and T10). Similar to studies using DNA-DNA du-

plexes, the 10 base spacers gave the best hybridization, with T10 giving better 

hybridization than A (Table 5.2). Thus the studies described below all use a 

poly(T)10 spacer. 

AuNPs have unique optical properties that make it easy to detect agglome- 
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Table 5.1. DNA sequences used during the AuNP studies. The orange region 
shows the PNA-DNA hybridization region. For the miRNA-221 sequence, the 
blue region shows the binding footprint of PNA 5.2 to miRNA-221 and the under-
lined portion is the hybridization region for PNA 5.3. 

Name Sequence (5’-3’)
DNA 5.1.NS 5’-AGT GAT CTA C-S-3’ 
DNA 5.1.A5 5’-AGT GAT CTA CAA AAA-S-3’

DNA 5.1.A10 5’-AGT GAT CTA CAA AAA AAA AA-S-3’ 
DNA 5.1.T5 5’-AGT GAT CTA CTT TTT-S-3’

DNA 5.1.T10 5’-AGT GAT CTA CTT TTT TTT TT-S-3’

PNA 5.1 C-Lys+ TCA CTA GAT G-N 
DNA 5.2 5’- TTG TCT GCT TTT TTT TTT-S-3’

PNA 5.2 C-Lys+ CGA TGT AAC AGA CGcf-N 
miRNA-221 5’-A GCU ACA UUG UCU GCU GGG UUU C-3’

DNA 5.3 5’- CA TTG TCT GCT TTT TTT TTT-S-3’

PNA 5.3 C-Asp- A TGT AAC AGA CGcf-N

Table 5.2. The fluorescence increase upon addition of miRNA-221 to PNA-DNA-
AuNP conjugates containing an A10 or T10 spacer. 

[miRNA-221] 
(µM) A10 T10 

60 3.72 4.21 
47 3.48 3.95 
43 3.25 3.71 
36 2.70 3.15 
20 2.05 2.88 
30 0.56 1.51 
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ration. Due to their plasmonic properties, 12 nm AuNPs are red and have a sharp 

extinction peak around 520 nm when they are monodisperse in solution. As the 

particles agglomerate, this peak broadens, the λmax redshifts, and the solution 

becomes purple, eventually turning blue. While different approaches were em-

ployed for functionalization and hybridization, the results from each method were 

similar. During each step of the functionalization we monitored for agglomeration 

using UV analysis. As shown in Figure 5.3, after DNA functionalization the λmax 

shifts only slightly while retaining its sharp peak. Upon PNA addition, λmax re-

mains the same, showing that the repulsive forces from the DNA are sufficient to 

stabilize the AuNPs despite the neutral charge shielding and positive charge due 

to Lys+-PNA addition.  

Next, we wanted to verify the functionality of the conjugates and ensure 

that the PNA was still able to leave the DNA-AuNPs. We did this using melting  

Figure 5.3. UV scans of AuNPs at various stages of functionalization. Black is 
citrate-AuNPs, red is DNA-AuNPs, and blue is PNA-DNA-AuNPs. The sharp 
peak and λmax show that agglomeration did not occur. 
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behavior. The melting temperature was measured for both the free PNA-DNA 

duplex and the PNA-DNA-AuNP conjugates. The absorbance was graphed 

as a function of temperature and fit to a sigmoidal function using Origin 8.5.1 

(Figure 5.4). The melting temperature was then calculated by using the first 

derivative to find the inflection point of the sigmoid. For our PNA-DNA-AuNP con-

jugates, the melting temperature was determined to be 44 ± 2 °C compared to 

the free duplex, which was measured at 50.3 ± 0.4 °C. Interestingly, this trend is 

the opposite of what is observed in DNA-AuNP studies. However, like DNA-

AuNPs, the transition of the AuNP conjugates was sharper than the free duplex, 

suggesting cooperativity in the hybridization event.15 The duplex dissociation 

demonstrates that the PNA can reversibly hybridize to the DNA-AuNPs.  

miRNA-221 detection studies 

After demonstrating that PNA successfully hybridizes to DNA-AuNPs with-

out causing agglomeration, we moved forward to develop a conjugate using the 

miRNA-221 target, we extended PNA 5.2 beyond the DNA 5.2 terminus to give a 

toehold region for the miRNA (Table 5.1). As we knew nothing of the displace-

ment kinetics or tolerance for the hydrophobic region, the initial length was exper-

imental. The PNA was fluorescently labeled using carboxyfluorescein, which is 

quenched upon hybridization to the DNA-AuNPs. In these experiments, we used 

the “fast” salt method described by Mirkin and coworkers to functionalize the 

AuNPs with DNA.13 Following DNA functionalization, PNA was hybridized to the 

conjugates. Unlike the previous study, PNA hybridization induced agglomeration, 

as demonstrated by the solution turning purple. The agglomeration was confirm- 
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Figure 5.4. Melting curve for PNA-DNA-AuNPs and a PNA-DNA duplex. The in-
flection point represents the melting point. 

ed using Dynamic Light Scattering (DLS), which showed a large population of 

agglomerates having hydrodynamic diameter around 150 nm (Figure 5.5).  

We decided to proceed with the miRNA-221 addition to see if it could re-

move the PNA from the DNA-AuNPs, and if doing so would reverse agglomera-

tion of the particles. (Figure 5.6). While we saw an increase in fluorescence, it did 

not correlate with the quantity of added miRNA-221. This is likely due to the ag-

glomeration of the particles, which creates a heterogeneous solution. Additional-

ly, rather than a smooth displacement, they showed a slower initial rate followed 

by a more rapid release. The change in rate likely occurs as the particles begin to 

separate, and all the PNA can be released from inside the agglomerated parti-

cles. Additionally, following the PNA displacement, the AuNPs returned to a red 

color, confirming that the agglomeration was due to the presence of the PNA on 

the particles.  

After reflecting on these results, we determined that two factors likely 

caused the agglomeration upon PNA addition. First, we followed standard proto- 
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Figure 5.5. DLS of PNA-DNA-AuNP complex showing particle agglomeration. 
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Figure 5.6. Fluorescence monitoring upon addition of miRNA-221 to PNA-DNA-
AuNPs. The fluorescence increases as the PNA is displaced from the AuNPs. 
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col and synthesized the PNA with a positively charged lysine residue to enhance 

its solubility. Following PNA hybridization, the positive charge is on the outermost 

portion of the conjugate, allowing the lysine to interact with the negatively 

charged DNA on other particles. Also, as anticipated when developing our pre-

liminary study, the toehold region extends the neutral PNA beyond the DNA 

shell. The neutral PNA can then form hydrophobic interactions with PNA on other 

particles. Our preliminary results show that PNA release occurred within a clini-

cally desirable timeframe and could even be slowed without losing applicability. 

Rather than verifying if the agglomeration was due to one or both factors, we de-

cided to reduce the toehold region and change to a negatively charged amino 

acid. In order to shorten the toehold, we removed some of the overhanging PNA 

bases and extended the DNA hybridization region, thus increasing the negative 

charge surrounding the particles. We also changed our amino acid from positive-

ly charged lysine to negatively charged aspartic acid, yielding strands PNA 5.3 

and DNA 5.3 (Table 5.1). 

Following functionalization and hybridization as previously described, DLS 

showed that the particles remained separate with a narrow size distribution (Fig-

ure 5.7). Since the particles had a good distribution after DNA functionalization 

and PNA hybridization, we were able to compare the sizes throughout the pro-

cess. As expected, the hydrodynamic radius became larger with each step. The 

citrate-capped AuNPs have the smallest hydrodynamic radius at 18.5 ± 0.4 nm. 

Upon DNA functionalization, the size increases to 26 ± 1 nm, then 29 ± 1 nm fol-

lowing PNA hybridization. Again, the particles displayed a sharp melting point 

transition with a melting point of 42.1± 0.9 °C. This is above body temperature,  
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Figure 5.7. DLS data for the PNA-DNA-AuNPs after changing to aspartic acid 
and shortening the overhang region 
 
 
 
so the PNA will remain on the nanoparticle in physiological conditions. 

Since our particles were stable with the new DNA and PNA strands, we  

tested their ability to give consistent, dose-dependent fluorescence upon miRNA-

221 addition. Following optimization, we were able to generate displacement 

curves that showed a good, logarithmic trend for both the increase after 20 min 

and the initial slope of the displacement (Figure 5.8). 

  

Cell permeability study 

Next, we wanted to test the ability of the nanoparticles to enter cells. We 

chose HeLa cells as our initial model since they are widely studied. Table 5.3 

shows the raw data as well as the calculated number of particles per cell. As 

shown, it is likely that the DNA-AuNPs and DNA-PNA-AuNPs are able to enter 

HeLa cells without killing the cells. Further testing is needed to verify this conclu-

sion. Once it is verified that the AuNP conjugates are able to enter HeLa cells, 

permeability studies will also be performed using prostate cancer cell lines. 
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Figure 5.8. Dose-dependent PNA displacement with miRNA-221 addition. (a) 
Displacement curves of the modified PNA-DNA-AuNP conjugates (b) Fluores-
cence increase 20 min after miRNA-221 addition. 

 

Table 5.3. The cell count and viability, gold found in the cells, and the calculated 
particles per cell. The PNA samples are two different PNA hybridization methods. 

 

  Cells/mL Viability Au (ng) Particles 
/Cell 

Cells without AuNPs 4.02E+05 97 <0.1 - 
4.05E+05 96 <0.1 - 

5 nM DNA-
AuNPs 

2.25E+05 95 21.8 5.63E+11 
10nM 2.21E+05 84 51.6 1.35E+12 
5 nM PNA-

DNA-
AuNPs 1 

2.38E+05 89 7.0 1.70E+11 

10nM 2.43E+05 71 11.7 2.79E+11 

5 nM PNA-
DNA-

AuNPs 2 

2.40E+05 90 4.7 1.14E+11 

10nM 2.61E+05 90 26.1 5.81E+11 
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Conclusions 

By using negatively charged DNA as the repulsive force in AuNP conju-

gates, PNA can successfully hybridize to DNA-AuNPs without causing agglom-

eration. However, the electrostatics of the PNA also play a key role in maintain-

ing particle dispersity. When designed with a toehold region, the length of the 

overhang region and the amino acid chosen for water solubility both affect parti-

cle stability and dispersity. Detection with this AuNP conjugate system is 

achieved using fluorescently labeled PNA where the fluorescence is quenched 

when hybridized to DNA-AuNPs. Signal can be subsequently restored upon PNA 

dissociation from the AuNPs during rehybridization to the target miRNA. In the 

presence of miRNA-221, the fluorescence increases in a dose-dependent man-

ner and can therefore be used for measuring miRNA-221 concentration. Toward 

the goal of studying miRNA-221 levels in cells, preliminary studies suggest that 

PNA-DNA-AuNPs can enter HeLa cells. These results show potential for fluores-

cently detecting aggressive prostate cancer in vivo. 

 

Experimental Section 

General methods 

 For the studies reported here, we used 12 nm citrate-stabilized AuNPs from 

nanoComposix. DNA was purchased from the core facility at the University of 

Utah (Table 5.1). All absorbance and fluorescence readings were recorded using 

a Biotek Synergy Mx plate reader. All studies were done in phosphate-buffered 

saline (PBS) (pH = 7.2) 

  

116



PNA synthesis 

 PNA was synthesized according to literature methods in a manual vessel or 

using a semiautomated Activotec P-14 Peptide Synthesizer.16 The oligomers 

were synthesized using solid phase synthesis on TGR R resin (0.2 mmol/g). Fol-

lowing synthesis, the PNA was cleaved using TFA:triisopropylsilane:H2O 

(95:2.5:2.5) and precipitated using diethyl ether. Purification was carried out us-

ing RP-HPLC (Agilent ZORBAX 300SB-C18, 5 µM particle size, 9.4×250 mm) 

and analyzed using MALDI-TOF mass spectrometry (Waters Micromass MALDI 

Micro MX). 17 The samples were lyophilized and resuspended in MilliQ water prior 

to use. All experiments were performed in PBS (pH = 7) unless otherwise noted. 

 

AuNP conjugate preparation 

The thiol group on the DNA was activated by suspending the DNA in 0.1 M 

DTT in 0.18 M phosphate buffer (pH = 8.0). It was then allowed to incubate for 1 

h at room temperature. The DNA was purified using a NAP-5 column and lyophi-

lized. The DNA was then resuspended in MilliQ water. The DNA-AuNP conju-

gates were prepared using literature methods.13 Briefly, DNA was incubated with 

AuNPs (1 OD DNA/1 mL AuNP) in 0.1 M phosphate buffer (pH = 8.0) and 0.01% 

SDS. The solution was sonicated for 10 s and allowed to incubate at room tem-

perature for 20 min. NaCl solution was then increased to 0.1 M in 0.05 M then to 

1 M in 0.1 increments, sonicating and incubating each time. Following the last 

addition, the particles were incubated at room temperature overnight. The parti-

cles washed by centrifuging at 4 °C at 13,000 rpm, removing the supernatant and 

resuspending in PBS. This was repeated three times. 

117



 After washing the particles, the PNA complement was hybridized to the 

DNA by adding PNA to the DNA-AuNPs (1 OD PNA/500 µL AuNP) and incubat-

ed overnight at room temperature. The particles were again washed via centrifu-

gation until the supernatant was no longer fluorescent. All concentrated conju-

gates were stored at 4 °C until use and were resuspended prior to use. 

 

Melting temperature analysis 

 Melting temperatures were acquired with a Shimadzu UV-1800 instrument 

with temperature control and a 10 mm path length. UV-Vis absorbance was rec-

orded at 260 and 520 nm using the absorbance at 380 nm as a correction factor. 

The melting temperature was measured for both the PNA-DNA-AuNP conjugates 

and a free PNA-DNA duplex. The samples were heated at a rate of 1 °C/min 

from 20-80 °C. The samples were shaken every 5 minutes, and the data were 

recorded every 1 °C. Origin 8.5.1 was used to fit the data to a sigmoidal trend, 

and the melting temperature was calculated by determining the maximum value 

of the first derivative. 

 

DLS measurements 

Prior to DLS measurement, all samples were filtered through a 220 nm 

filter. DLS was done using a Malvern Zetasizer. All measurements were done at 

25 °C using a 173° scattering angle.  
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miRNA-221 displacement 

 To measure the displacement of PNA using miRNA-221, 90 µL PNA-DNA-

AuNP conjugates were placed in a white, nonstick, 384-well plate. The samples 

were equilibrated to 37 °C, and 10 µL miRNA-221 was added to give a final con-

centration from 0-8.1 µM. The fluorescence was monitored using λex= 490 nm 

and λem= 520 nm every 1 min, slowly shaking between measurements to prevent 

particle agglomeration.  

 

Cell permeability studies 

 HeLa cells were grown at 37 °C in 5% CO2. For this study, we put 25,000 

cells/well in a 96 well plate with MEM media supplemented with 10% heat-

inactivated FBS and 1% penicillin/streptomycin. After 24 h, the media was re-

moved and replaced with fresh media containing either 5 or 10 nM DNA-AuNPs 

or PNA-DNA-AuNPs. After 48 h, the cells were washed 3 times with PBS. Fol-

lowing trypsinization, the cells were counted and their viability measured using an 

Orflo Moxi Z cell counter, and they were digested using hot HCl and HNO3. The 

quantity of gold present was then measured using ICP-MS. 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

Micellar Studies 

The presence of cross-links in micelles has been shown to improve stability, 

prevent the release of guest molecules, and provide stimuli-responsiveness. We 

have incorporated nucleic acids by attaching them to a hydrophobic tail to form 

amphiphilic monomers capable of forming micelles. We hypothesized the DNA 

would provide a means of forming noncovalent cross-links to stabilize the micelles 

nonand prevent guest molecules from escaping. The DNA strand also allows for 

micelle response to a complementary target nucleic acid, enzyme, or small-

molecule target. In order to encourage the formation of cross-links across the 

surface of the micelle rather than the formation of dimers, DNA was synthesized 

using a trebler or two sequential doubler modifications to introduce three or four 

DNA strands, respectively.  

The studies reported here show the initial characterization of micelles 

formed using trebler or doubler DNA attached to a hydrophobic tocopherol tail. We 

found that these sequences did in fact form micellar structures. Additionally, 

multiple sequences can be combined to form a single population of micelles. 

Pyrene was used to measure the CMCs for our monomers by comparing the 



emission bands at 373 and 384 nm to monitor micelle formation. Initially it was 

anticipated that the hybridization of the DNA would stabilize the micelles and 

decrease the CMC; however, it was found that this stabilization was minimal. It 

was shown that the micelles could undergo enzymatic degradation, which 

confirmed the presence of crosslinks. The stability of these micelles was also 

investigated using an exchange process monitoring the FRET after combining 

micelle populations containing DiO and DiI. We observed that the presence of DNA 

slowed the exchange; however, the exchange did not appear to be slowed by 

introduction of the cross-links. 

We had previously hypothesized that EcoR1 cleavage of the micelles would 

initiate guest exchange. CMC measurements of the full-length sequences and the 

truncated sequences that would result from EcoR1 cleavage did not yield 

significantly different results. Additionally, we used FAM- and Cy3-labeled 

sequences to monitor EcoR1 cleavage of the duplexes via FRET. We observed 

that the digestion of the duplexes in the micelle was slightly slower than that of the 

free DNA duplex.  

In conducting these experiments, we found that DiO was very responsive 

to changes in polarity and was easy to work with. These observations were 

extremely encouraging, since previous attempts to characterize our micelles using 

NR had proven frustrating and inconsistent. As a result, we tried to measure the 

CMC of micelles using DiO and found that this method gave accurate, consistent 

results. We show DiO gives better data by performing a side-by-side comparison 

with NR. This was done using multiple commonly used surfactants which 

encompass the four ionic states. We found that while both NR and DiO give 
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accurate results, DiO gives more reliable, precise data. Preliminary studies have 

been performed using the DiO method for our DNA amphiphiles, giving CMC 

values comparable to those found using pyrene. Conversely, NR failed to yield 

accurate results. Therefore, future characterization of our monomers will be 

performed using DiO. 

Future studies for this system will continue looking for methods to change 

micelle stability and guest release due to changes in the DNA corona. Changing 

to a different hydrophobic group may affect these properties, since micelle 

formation represents a balance between hydrophobic and hydrophilic groups. In 

these studies, we have used trietyhleneglycol groups to connect the tocopherol to 

the DNA. It is probable that this linker has a role in monomer geometry, which in 

turn affects the packing capability and stability of the micelle structure. It may also 

interact with guest molecules that change the stability of the assembly. Therefore, 

exploring different lengths of PEG chain or the use of a carbon chain may improve 

the desired properties in assembly. It may also be possible to change the CMC 

and guest release kinetics by using a structure-switching aptamer in the corona. 

The monomers would be formed by attaching the displacement strand to the 

hydrophobic group. When the aptamer is hybridized to the monomer, it would 

increase the blockage of the micelle; however, when the aptamer is released upon 

target binding, we anticipate that it would then allow for increased guest exchange. 

Targeted drug delivery and sensing applications would become accessible upon 

control of guest release using DNA cross-linked micelles. 
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Aptamer Functionality in the Presence of Surfactants 

 Many affinity reagents, such as antibodies, are not stable in solutions 

containing surfactants and lose their ability to bind their target molecules. We 

hypothesized that DNA aptamers may be able to overcome this limitation. 

Aptamers are rising in their use as affinity reagents and, unlike antibodies, can be 

developed in vitro and produced with low batch-to-batch variability. Herein we 

demonstrated that aptamers retain their functionality in the presence of negative 

and neutral surfactants. Using CD spectroscopy, we were able to verify that 

aptamers retain their structure in the presence of up to 4% surfactant. We were 

also able to show that the presence of micelles modulates the binding of 

hydrophobic molecules to the biosensor likely due to encapsulation of these 

molecules. Importantly, the binding of hydrophilic molecules is only slightly 

affected. 

Since we have determined that aptamers maintain their functionality in 

surfactants, we are currently working to select aptamers under such conditions. 

Specifically, we would like to be able to generate an aptamer that can bind to 

denatured proteins. Detecting new disease biomarkers is a great challenge 

because they are found in very low quantities and can be masked by high 

abundance proteins such as HSA. However, HSA cannot be simply removed from 

the plasma samples, because it frequently interacts with other proteins, causing 

the loss of potential biomarker proteins or peptides.1 Therefore, we propose that 

all protein-protein interactions must be disrupted before removing the HSA. In 

order to do this, we will use SDS and a reducing agent such as DTT or tris(2-

carboxyethyl)phosphine (TCEP) to eliminate disulfide bonds. Using the biosensor 
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for L-tyrosinamide,2 we have shown that DTT only minimally affects target binding 

(Figure 6.1). 

 We have started employing a process known as the systematic evolution of 

ligands by exponential enrichment (SELEX) to generate an aptamer which can 

bind denatured HSA. SELEX is an iterative process to select for nucleic acid 

sequences that have affinity for a selected target. We are specifically using the 

procedure known as FluMag-SELEX, where the target is covalently attached to a 

magnetic bead (Figure 6.2).3 This allows for separation of the bound sequences 

from the vast majority of nonbinding sequences and also allows for washing of the 

protein to remove weak or nonspecific binders. With each cycle, the bound fraction 

is amplified, consequently enriching the binding sequences in the next round of 

selection. Once the percent of strands that bind during selection plateaus, the 

enriched pool of nucleic acids can be sequenced and tested for binding affinity. 

Once an aptamer is selected, it will be tested for affinity and specificity, minimized, 

and will be used to deplete HSA within a sample. 

 

PNA-DNA-AuNP Conjugates 

 Many labs use DNA-DNA-AuNP conjugates in order to deliver DNA into cells 

and monitor the increase in fluorescence to quantify a target nucleic acid 

sequence. While this approach provides increased stability to the DNA duplex, it 

is still susceptible to degradation. The use of an artificial nucleic acid, such as PNA, 

prevents any degradation from occurring. However, since PNA has a neutral 

backbone, it results in aggregation of the AuNP. By first attaching DNA to AuNP, 

PNA can be subsequently hybridized to AuNP for cellular delivery and detecting a 
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Figure 6.1. Binding of the L-tyrosinamide biosensor to its target in the presence of 
4% SDS and 50 mM DTT. 
 
 
 

 

Figure 6.2. The basic cycle FluMag-SELEX. Binding sequences are enriched 
through a cyclical process of isolating and amplifying binding strands. 
 

127



target nucleic acid sequence. To prevent nanoparticle aggregation, the PNA can 

be solubilized using aspartic acid rather than lysine. In the presence of a target 

sequence, the fluorescence increase due to PNA release is dose dependent. 

These particles also demonstrate cell permeability. These data are preliminary, 

and will be repeated in future experiments to accurately characterize this system. 

Enzymatic degradation studies would also confirm the utility of this system over 

traditional DNA-DNA-AuNP systems.  

Since different batches of AuNPs have given us very different results, future 

work for this project will begin with the synthesis of AuNPs from HAuCl4 and citrate 

to ensure consistency in AuNP composition. We would also like to determine the 

loading of the DNA and PNA on the AuNP. We have attempted to accomplish this 

by displacing the thiolated DNA using 6-mercapto-1-hexanol and DTT, but this has 

given very inconsistent results. To overcome this, our next trial will utilize KCN to 

dissolve the AuNPs in order to isolate and quantify the DNA. This shall be done 

using fluorescently-labeled DNA and again with fluorescent PNA to determine the 

loading of each individually. Once the AuNP is dissolved, we will quantify the DNA 

and PNA using fluorescence measurements. Since PNA should stabilize the 

duplexes, we will also quantify the digestion using nucleases and proteases. We 

will use both trypsin and DNase I to measure the degradation of the DNA-PNA-

AuNPs. We will compare this to the same studies on the corresponding DNA-DNA-

AuNPs. We shall finish the preliminary characterization by repeating the 

displacement studies with miRNA-221 to determine reproducibility and the 

platform’s detection range. 

Following the studies to assess cell permeability, we will verify that the PNA-
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DNA-AuNPs are indeed entering the cells, rather than simply sticking to the 

surface. This will be done by adding the PNA-DNA-AuNPs to the cells shortly 

before the washing and trypsinization steps. After confirming cellular entry, we will 

need to verify that the PNA is not being removed prior to cellular entrance of the 

complex. This can be done by using cells that have varying expression levels of 

miRNA-221 and measuring fluorescence. Specifically, we will use the prostate cell 

lines, LNCaP and PC3, to study nanoparticle permeabilities and relative 

fluorescence values. PC3 cells are aggressive cancer cell lines and have shown a 

>10-fold increase in miRNA-221 concentrations compared to LNCaP cells, an 

indolent form of prostate cancer. After incubating the cells with our PNA-DNA-

AuNP constructs, cellular fluorescence will be measured using fluorescence-

activated cell sorting (FACS). Ultimately, these experiments will be considered 

successful if fluorescence measurements are able to distinguish LNCaP cells PC3 

cell lines due to AuNP internalization and PNA release. 

Throughout this dissertation, electrostatic interactions play an important 

role in the functionality of nucleic acids and their assembly properties. In 

DNA-based nanostructures, the electrostatics must be properly tuned in 

order to avoid agglomeration such as the case of the AuNPs. DNA biosensors 

do not function in the presence of CTAB; however, they maintain their 

binding abilities in the presence of negative and neutral surfactants. Further, 

SDS micelles are capable of modulating the binding of target molecules with 

different hydrophobicities. When incorporating nucleic acids into sensing and 

drug delivery applications, the electrostatics must be properly tuned to 

give the desired functionality while preventing undesired effects. 
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