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ABSTRACT 

!
!
 There is a need to improve the methods involved with targeted 

implementation and design of distributed, watershed-scale low impact 

development (LID) practices. The goal of this dissertation was to improve the 

targeted implementation and design of distributed, watershed-scale low impact 

development (LID) practices, focusing on rainwater harvesting (RWH). This 

research resulted in protocols and customized geospatial analysis toolsets that 

filter local LID constraint datasets. These products were then applied to the 31 

square kilometer case study location, Chollas Creek, San Diego, CA, USA, to 

determine their accuracy and reproducibility in targeting cost-effectiveness (e.g., 

best hydrologic reduction per dollar invested). !

The baseline for improvement was established with the analysis of a 

passive watershed RWH program using traditional, uniform applications of 

design parameters. To remedy uniformity assumptions, a suitability-based 

protocol was developed and tested. This protocol incorporated object-based 

image analysis (OBIA) classification techniques, via eCognition, to improve the 

identification and quantification of individual, parcel-level rooftops. OBIA was 

92% accurate for overall classification of residential rooftops, using area-based 

quality assessment guidelines. A customized geospatial analysis toolset aided 

the filtering of extensive datasets, which were established as RWH constraints,



!
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for watershed-scale design and implementation. Compared with the uniform 

results, the Suitability Protocol quantified an average rooftop area of 227 square 

meters, with 11% less households (by number) and 51% greater cumulative 

rooftop area. Long-term hydrologic simulations found 51% and 44% greater 

reductions in average annual watershed peak outflow rates and volumes, 

respectively, with the Suitability Protocol. The Suitability Protocol included the 

LID Site Suitability (LIDSS) and Quality Assessment (QA) toolsets. !

 The targeting of intrawatershed locations, via the Suitability Protocol, was 

improved with the Prioritization Protocol and the Rainwater Harvesting Analyzer 

(RWHA) and Prioritization LID (PriorLID) toolsets. Prioritization was driven by 

user-defined hydrologic and economic thresholds to yield the most cost-effective 

spatial configuration for watershed-scale RWH. The Prioritization Protocol 

resulted in refined intrawatershed priority locations with increasing iterations of 

the protocol/toolsets. Monte Carlo Uncertainty Estimation (MCM) yielded an 

insensitive watershed hydrologic response to changes in subcatchment 

imperviousness (n=100). Extended to RWH effectiveness, uncertainty results 

highlighted a watershed buffering capacity (18%) for increases in 

imperviousness.!
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CHAPTER 1 

!
!

INTRODUCTION!

!
!

The goal of this research is to develop and apply a reproducible 

methodology combining image analysis classification, geospatial analysis, 

hydrologic model simulations, and cost-effectiveness to inform the planning, 

design, operation and maintenance of watershed-scale low impact development 

(LID) practices. This research improves current methods that uniformly apply LID 

principles to sustainable urban watershed stormwater management due to 

dataset and processing limitations requiring time and resources on the part of 

modelers and analysts. The Chollas Creek watershed, in San Diego, CA, USA, 

serves as the case study location for which the protocols and toolsets were 

applied and assessed. The targeted audience of this work includes engineers, 

geoscientists, and urban planners.  

!
!

1.1 Study Background 

1.1.1 Urban Stormwater Management 

Urbanization has negatively impacted the resources and processes of the 

natural environment. Specifically, the conversion from natural to impervious land 

cover has affected stormwater quantity and quality, including increased flood risk 
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and pollution of receiving water bodies (Schueler, 1994; Lee & Heaney, 2003). 

To mitigate these consequences, traditional stormwater management focused on 

improving conveyance with centralized mitigation (Roy et al., 2008; Debo & 

Reese, 2010). This resulted in watershed management plans that often span 

multiple municipalities and governing bodies (Brown et al., 2007). Such plans 

enforced the construction of large capacity, end-of-pipe practices located at 

downstream termination points within large drainage areas. These practices, and 

other urban infrastructure, may be increasingly vulnerable to changes in climatic 

and anthropogenic conditions (Bates et al., 2008; Dorfman & Mehta, 2011). This 

is compounded by the fact that some traditional designs were based on 

parameter stationarity, which assumed that the runoff load would remain 

constant within an expected window of variability over time (Denault et al., 2006). 

As such, historic designs may become over- or under-utilized as a function of 

increasingly variable future storm events. In response, stormwater management 

practices (e.g., low impact development, LID) have evolved to mimic natural, pre-

developed conditions by focusing on annual rainfall distribution patterns rather 

than a single return event. !

LID represents decentralized practices, providing source control with 

smaller capacity units. Mitigation is accomplished via the capture, storage, 

infiltration, and treatment of stormwater runoff (Prince George’s County, 1999; 

USEPA, 2007a). In 1999, Prince George’s County released a seminal document 

detailing integrated design strategies for sustainable management of stormwater 

runoff. This guide highlighted the importance of site planning, hydrologic 
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principles, and hydrologic analysis tools (Prince George’s County, 1999), all of 

which necessitate site-specific knowledge on the part of the designer. Research 

repeatedly cites local conditions’ applicability and effectiveness of the stormwater 

control measure (SCM) as the most important component of data analysis 

(Marsalek & Chocat, 2002; NRC, 2008). In addition, nontechnical obstacles to 

LID success include property owner motivation and education, such that 

sustainable modifications to land cover and policies result (Braden & Johnston, 

2004; Chocat et al., 2007). By targeting these individuals, who manage the 

largest proportion of developed land (e.g., residential), the likelihood of achieving 

significant improvements in stormwater runoff mitigation increases (Lee & 

Heaney, 2003). Supporting research found that LID practices provide quantifiable 

reductions in annual average runoff volumes, peak discharge rates, and pollutant 

loading (Dietz, 2007; Han et al., 2008; Roy et al., 2008; Lim et al., 2010; Spatari 

et al., 2011; Jia et al., 2012). An empirical study by Burns et al. (2014) monitored 

demand supplementation and runoff management impacts from RWH (capacity 

range of 3,000 to 28,000 liters per household). Results stressed the importance 

of regular, large domestic demands to yield substantial stormwater runoff 

reductions in addition to larger unit capacities (Burns et al., 2014).!

 The majority of this research has focused on smaller spatial scales, 

including households, parcels, and the neighborhood (Sample & Heaney, 2006; 

Gilroy & McCuen, 2009). Consequently, a knowledge gap exists that limits the 

extension of these results to expanded scales of planning, design and hydrologic 

analysis (Bedan & Clausen, 2009; Lee et al., 2012). When empirical data at the 
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watershed-scale are available, as in the research by Yang and Li (2013), results 

reinforce the effectiveness of integrated suites of LID in improving stormwater 

runoff reductions and water quality enhancements. However, due to the depth 

and complexity of data required for such analyses, duplication of similar efforts is 

difficult (Thomas et al., 2003; Jensen et al., 2010). Beyond data needs, accurate 

representation of LID at the necessary local and regional scales is a challenge 

due to the exhaustive methods and user-knowledge required to characterize and 

quantify impacts (Burian & Pomeroy, 2010). !

This approach of targeting site-specific stormwater management with 

decentralized source controls in pursuit of wider goals (e.g., watershed health) 

has been termed ‘flow-regime management’ by Burns et al. (2012) and remains 

in its infancy. Despite the aforementioned limitations, researchers increasingly 

extrapolate and apply LID principles either uniformly or as over-simplified, 

disconnected measures to address broader issues. This generalization reduces 

the accuracy of model representation (i.e., input parameter values) and has the 

potential to skew simulated hydrologic results. For instance, a study of urban 

rooftop runoff control practices in Brussels found that a 2.7% reduction in overall 

watershed runoff could be achieved by targeting a uniform 10% of rooftop 

infrastructure (Mentens et al., 2006). Similarly, despite designing RWH units that 

fill to 35% of capacity with the 90th percentile storm event, Basinger et al. (2010) 

indicate only 28% annual reduction in stormwater runoff volume. For larger areas 

comprised of heterogeneous land covers and land uses, site-specific planning 

and design require intensive analysis capable of discerning between datasets 
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and underlying variability. Thus, it is imperative that methods be developed to 

efficiently assess and characterize large, urban datasets for direct application in 

hydrologic models and subsequent simulations (Pataki et al., 2011).  

!
!

1.1.2 Watershed Modeling 

Traditional hydrologic modeling of urban watersheds is dependent upon 

the modeler’s judgment of parameters and methods, such that realistic conditions 

were recreated within the model framework. This involves time-intensive manual 

delineation and digitizing of vector data layers from aerial imagery or in-field 

observations (Thomas et al., 2003; Sterr & Yui Lau, 2012). The time and 

resources required to do this accurately increase with scale, with greater focus 

on replicating existing conditions. Improvements in remote sensing data, such as 

Light Detection and Ranging (lidar), and image analysis have increased precision 

in identifying and visualizing land cover types and objects (Wechsler, 2007; 

Amatya et al., 2013). Compared with manual delineation, this has resulted in 

finer resolutions of hydrologic model inputs, including basin area, slopes, flow 

paths, connectivity, and channel lengths (Rumman et al., 2005; Kunapo et al., 

2009; Amatya et al., 2013). Finer dataset resolutions are also pivotal to 

identifying, classifying, and modeling watershed boundaries, surface classes, 

and characteristics that impact hydrology (Luzio et al., 2005; Rumman et al., 

2005; Kunapo et al., 2009; Cao et al., 2012). As a result, this has improved the 

ability of water resources engineers and urban planners to model and analyze 

the structure and functionality of stormwater management plans. !

Of particular importance to these improvements are publicly-available 
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remotely-sensed datasets, which have expanded the ability to assess both local 

and regional scales (James et al., 2007; Kunapo et al., 2009). In particular, lidar 

(light detection and ranging) is increasingly employed in the visualization, 

characterization, and delineation of both surface and hydrologic models 

regardless of obstructions (e.g., tree canopy and buildings) and surface types 

(Frazier & Page, 2000; James et al., 2007; Im et al., 2008; Jensen et al., 2010; 

Zhu et al., 2012). These datasets have also contributed to the improvement of 

three-dimensional visualization and classification methodologies (Zhu et al., 

2012). For instance, classifications based solely on spectral signatures are 

improved by including other datasets, such as elevation and textural information. 

Lidar, in this case, minimizes uncertainty, or lack of precision, by incorporating 

both elevation and textural data (Lu & Weng, 2007; Peteri & Ranchin, 2007; Yu 

et al., 2010; Weng, 2012). !

Incorporation of elevation and textural data reduces misclassification due 

to shadows and improves extraction of specific land uses (e.g., rooftops versus 

paved areas). This differentiation was exhibited for a small catchment (e.g., 550 

hectares) with unusually rich resources (e.g., GIS, lidar, and aerial imagery) to 

test the siting of bioretention and green rooftops (Jensen et al., 2010). While 

researchers were able to extract sites suitable for these practices, the universal 

difficulty in duplication resulting from the limited availability of pertinent resources 

was acknowledged (Jensen et al., 2010). As such, the means to reliably and 

accurately extract and filter these resources for large areas must be made 

available for the range of backgrounds and skillsets of multiple users. !
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A potential solution to these issues resides in the improvement of 

methodologies, protocols and toolsets that employ the ever-increasing public 

repository of fine resolution, spatially diverse datasets, including spectral 

datasets and lidar point clouds. Alternatively, dataset complexity and 

heterogeneity must be accounted for with these improvements, since 

classification of land cover and land use are based on statistical pattern 

recognition (Jensen, 2005). As classification methods attempt to represent 

reality, modeled physical conditions will inherently contain degrees of error (Di 

Gregorio & Jansen, 2000). This error can be increased by heterogeneity in data, 

especially when employing pixel-based image analysis, or PBIA (Myint et al., 

2011). PBIA algorithms are based solely on pixels’ spectral values, thereby 

increasing the potential for confusion between different objects or surfaces with 

similar spectral signatures (Hsieh et al., 2001; Zhu & Blumberg, 2002; Yang et 

al., 2010a). Thus, the ability to consider entire features, or a collection of pixels 

that represents a discrete unit, becomes preferable over PBIA. !

This ability to target features is satisfied with the object-based image 

analysis (OBIA) methodology. Typically, OBIA is a function of the spatial, 

contextual, and thematic elements within a scene containing spectral, elevation 

and textural datasets. The incorporation of scale, context, geometry, and color 

improves classification by OBIA to excel over PBIA when targeting specific 

objects (Yang et al., 2010b; Wu & Yuan, 2011). OBIA applications and 

methodologies research have continually addressed issues related to land 

cover/land use mapping. For instance, in extracting impervious surfaces, greater 
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accuracy was achieved with OBIA by Hu and Weng (2011). The focus of this 

research targeted residential areas versus a complex, central business district 

(CBD), which registered 95% and 92% accuracy, respectively. This combination 

of fine-scale lidar and spectral datasets has resulted in the continual 

improvement of OBIA. !

Dataset processing has been used to improve classification results. For 

instance, the processing of elevation datasets to represent standardized heights 

of elevated structures has been shown to improve identification of targeted 

objects in urban areas (Lee et al., 2007; Yu et al., 2010; Solyman, 2012). One 

example of elevation standardization is the normalized Digital Surface Model 

(nDSM), which results from filtering the digital terrain model (DTM) from the 

digital surface model (DSM). The nDSM has been shown to be the most 

important feature in the classification improvement (Blaschke, 2010; Aguilar et 

al., 2012). The addition of texture analysis can also improve detection of objects 

based on variations in brightness values for pixel groups (Ferro & Warner, 2002; 

Mumby & Edwards, 2002). Spectral processing, such as the Normalized 

Difference Vegetation Index (NDVI) has been repeatedly shown to distinguish 

green, or vegetated, areas from urban impervious surfaces (Carlson & Ripley, 

1997; Gillies et al., 1997; Wang et al., 2010). Together, these methods can 

provide accurate thematic map layers that reframe the traditional goal of 

watershed stormwater planning and management as using this information to 

identify and design LID practices for suitable locations. 
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1.1.3 Geospatial Analysis 

Determination of locations meeting user-defined objectives can be 

achieved with GIS-based postprocessing, which improves the model analyst’s 

ability to weigh and filter multiple datasets (Malczewski, 2004; Wang et al., 2010). 

Specifically, Wang et al. (2010) highlight the link between remote sensing and 

GIS, with thematic layer development driving planning and site search analysis 

measures that, in turn, inform future conditions (Fig. 1.1). !

With site search analysis, the spatial characteristics of targeted areas can 

be explicitly extracted as a function of user-defined suitability criteria 

(Malczewski, 2004). Specific search methods include multiple criteria decision 

analysis (MCDA) and spatial clustering analysis, which weigh complex factors 

and present recommendations based upon input criteria (Malczewski, 2004). 

Jacquez (2008) used spatial clustering to recognize patterns with visualization, 

spatial statistics, and geostatistics such that locations, magnitudes, and shapes 

of statistically significant pattern descriptors were identified. Hotspot identification 

has also been applied for targeting resources and minimizing risk within a larger 

system (Anderson, 2009). Translation of geospatially distributed point data into 

representative surfaces is another method of geospatial analysis. Surface 

models are generated with individual point values (e.g., cost, elevation, or 

population) serving as the basis for surface interpolation. Methods for translating 

data to surfaces include inverse distance weighting (IDW), kriging, natural 

neighbors, and spline, which can be separated as either deterministic or 

geostatistical methods. !
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 Deterministic interpolation assigns values to cells based on surrounding 

measured values, via specific mathematical formulas that smooth the resultant 

surface. Geostatistical methods provide a measure of certainty or accuracy for 

results as a function of autocorrelation, which measures the statistical 

relationship among the targeted points. Deterministic methods include IDW, 

natural neighbor, and spline, while kriging is an example of a geostatistical 

method (ESRI, 2013). IDW estimates raster cell values based on distance from a 

set of sample points that have been assigned weights, such that cells further 

from the sample set receive less weight when calculating the cell’s value (ESRI, 

2013). Kriging, similar to IDW with its weighting of surrounding values to derive a 

prediction for an unmeasured location, interpolates with a weighted sum of the 

data and accounts for the overall spatial arrangement of the measured points. 

This is accomplished with variography, in which points that are closer are more 

alike than those farther apart (Fig. 1.2). With kriging, outputs include both the 

predicted surface and the accuracy of those predictions (ESRI, 2013). !

Despite these advances in geospatial site search analysis of local and 

regional watershed conditions, much of the research targeting LID as a 

watershed-scale stormwater management option has been applied with over-

simplified, uniformity assumptions. Additionally, incorporation of economics is 

largely missing from expanded scales, due to an undervalued national 

stormwater utility fee structure (NRC, 2008; Campbell, 2012). However, the 

economic analysis of distributed LID practices is a growing field of research, 

combining cost-effectiveness with stormwater management benefits, such as 
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flood risk mitigation (Kousky et al., 2013). Improvements to targeting resources 

within a watershed, which account for subcatchment-scale impacts from site-

specific LID, can be obtained with geospatial analysis of remotely sensed 

datasets, hydrologic simulations, and cost estimations. This approach, termed 

‘flow-regime management,’ by Burns et al. (2012), requires further development 

of methodologies and toolsets that employ publicly-available datasets and 

industry-standard software programs. As such, with LID practices as components 

of a watershed stormwater management plan, research that improves the 

suitability and prioritization of locations and designs based on user-defined 

values is essential. !

!
!

1.2 Problem Statement and Research Hypotheses 

Traditional watershed stormwater management is comprised of large, 

centralized practices, which traditionally focus on mitigating runoff quantity and 

flooding (Prince George’s County, 1999; Lee & Heaney, 2003). Such designs are 

capable of managing urban area runoff resulting from larger events; however, 

negative water quality impacts have occurred (e.g., erosion and sedimentation) 

due to extended release rates and poor peak control for more frequent, smaller 

events (Shaver et al., 2007; NRC, 2008; Roy et al., 2008). In response, LID shifts 

management objectives away from quantity to quality by providing control of 

smaller events (Lee & Heaney, 2003). As such, research and design 

methodologies have focused primarily at individual scales. Integrating LID 

practices and principles as components of a broader system’s stormwater 

management plan has been recommended and studied, though gaps exist 
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regarding design methods and anticipated impacts to the hydrologic cycle 

(Marsalek & Chocat, 2002; Berke et al., 2003; Thurston et al., 2003; Roy et al., 

2008; Shuster et al., 2008). When watershed LID frameworks are designed, it is 

typically completed on a case-by-case, or pilot project, basis (Damodaram et al., 

2010; Mandarano, 2011). Thus, the ability to assess large areas and their current 

parameters is required to successfully advance the ability of users to model and 

analyze the hydrologic implications of watershed-scale LID. !

Another critical gap is the lack of examples providing technical guidance, 

insight, or empirical data for reproducibility in other watersheds (Northeast Ohio 

Regional Sewer District, 2011; Central New York Regional Planning & 

Development Board, 2012; Yang & Li, 2013). A study by Yang and Li (2013) 

highlights empirically-derived water quality benefits of green infrastructure by 

comparing monitored results from two case study watersheds. However, it is 

widely acknowledged that the depth of required data and analyses for such 

scales proves challenging (Jensen et al., 2010). This results in a greater 

requirement of time, expertise and resources on the part of designers (Burian & 

Pomeroy, 2010). More often, LID research at this scale relies on 

oversimplification of methods and modeling processes applied to dynamic 

underlying watershed parameters. Economically, insufficient evidence hampers 

public support of investment in watershed-scale LID networks (Godchalk et al., 

2009). Thus, there exists the need to improve the planning, design, and 

management methodologies accounting for LID constraints and toolsets that 

facilitate prioritization. Doing so would improve the targeted identification of urban 
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stormwater management frameworks as a function of user-defined criteria rather 

than lumping, or uniformly distributing, LID practices. Further, the need for 

accurate protocols and parameters addresses the design and modeling 

requirements for individual, distributed LID practices, which would improve 

hydrologic modeling scenarios and, when combined with cost analysis, indicate 

the spatially explicit cost-effectiveness for variations in both user-defined 

constraints and goals. !

This dissertation addressed the following hypotheses:!

Hypothesis I: The identification of site-suitable LID locations in urban 

watershed that meet user-defined criteria is improved by combining remote 

sensing and geospatial analysis. Accuracy of the methodology was established 

as a minimum 85% overall accuracy for Object-Based Image Analysis (OBIA) 

classification results. Confirmation of this hypothesis validated the use of the 

proposed Suitability Protocol and related toolsets, including the LID Site 

Suitability (LIDSS) and Quality Assessment (QA) tools. More importantly, it 

indicated that OBIA of publicly-available datasets can improve the accuracy of 

both identifying suitable RWH locations and designing RWH practices specific to 

the parcel scale of analysis. !

Hypothesis II: The targeting, or prioritization, of intrawatershed suitable 

LID locations is informed by geospatial analysis and visualization of long-term 

hydrologic simulations and life cycle economic datasets. Since the accuracy of 

suitable locations was determined through work completed addressing 

Hypothesis I, the accuracy of prioritized locations was assessed through user-
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defined economic and hydrologic threshold scenarios. These scenarios, 

representative of the subcatchment classes containing homogenous cost-

effectiveness values, were ranked according to meeting the economic threshold 

established by the user. Hydrologic analysis of the targeted classes then 

provided an estimate of whether hydrologic thresholds could be met. This 

hypothesis was further assessed with Monte Carlo Methods (MCM) of 

uncertainty analysis for the subcatchment percent imperviousness’ impact on the 

simulated long-term hydrologic model rainfall-runoff response.!

!
!

1.3 Study Objectives 

The goal of the proposed research is to improve the ability of users to 

prioritize the implementation of LID, using RWH as the targeted practice, through 

improved local design constraint analysis. This is accomplished by (1) 

establishing the requirements and extent of results provided following traditional 

hydrologic analysis methods with the application of a passive watershed RWH 

management plan, (2) developing a Suitability Protocol, with geospatial analysis 

toolsets, that identifies, quantifies, and collates suitable locations for 

implementation of LID at the watershed-scale, and (3) Developing a Prioritization 

Protocol, with RWH design and site search toolsets, that filter and target suitable 

LID practices as a function of top-down economic and hydrologic reduction 

thresholds. Finally, the impact of subcatchment percent imperviousness on 

watershed hydrologic response was assessed with Monte Carlo Methods (MCM) 

of uncertainty estimation, with results extended to the effectiveness of LID. !

!
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1.4 Uniqueness of Research 

As previously outlined, traditional stormwater management planning relies 

on large, centralized practices designed to mitigate urban runoff volumes. These 

inadequate designs have led to negative impacts to the receiving environment for 

smaller, more frequent events. In response, LID has arisen as an alternative to 

provide quality improvements. LID design is focused on smaller, more frequent 

events; however, distributing these small, site-focused practices throughout the 

greater watershed is often done on a site-by-site basis and without regard to a 

wider stormwater management framework. Therefore, the need exists to develop 

protocols that address the combination of urban land cover characterization and 

remote sensing analysis with urban hydrologic simulations. Reproducibility and 

accuracy of the protocol and related toolsets is a priority of the research; 

therefore, publicly-available datasets and widely used software programs are 

incorporated. The adaptability is also a concern, since users will opt for 

incorporation of expanded datasets and analysis methods to adequately plan, 

design, and manage watershed-scale stormwater plan scenarios. The research 

proposed herein serves as the initial basis for contributing to the ultimate goal of 

improving the suitability and priority of watershed-scale stormwater management 

frameworks based on distributed LID principles. !

The Suitability Protocol improves visualization and understanding of the 

multiple factors influencing the placement of LID at the watershed level. The 

Prioritization Protocol aids in the targeting of locations as a function of cost and 

hydrologic benefit relative to top-down thresholds (e.g., budget, hydrologic 
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reduction goals). This study is novel in that it builds upon remote sensing 

methods of land cover/land use characterization, with customized OBIA methods, 

and spatial targeting of resources throughout heterogeneous, urbanized 

watersheds. These identified locations and their characteristics are used to size 

LID practices, amend validated hydrologic models, and provide long-term 

simulation results. Incorporation of equivalent annual costs (EAC) with hydrologic 

results for individual subcatchments can be analyzed to prioritize suitable 

locations as a function of existing watershed constraints and municipal economic 

and hydrologic thresholds.!

!
!

1.5 Overview of Methodology 

In contributing to the field of flow regime management, this dissertation 

addressed existing gaps by accomplishing the following tasks. First, a 

watershed-scale management plan incorporating passive rainwater harvesting 

was tested and analyzed for the Chollas Creek watershed, San Diego, CA, USA 

(Walsh et al., 2014). This research followed traditional methods of LID 

implementation and provided the basis upon which suitability and prioritization 

protocols would be developed and assessed. Next, land cover/land use 

classification was carried out with customized process rule sets within an OBIA 

framework. Pertinent to this analysis were processed lidar, thematic (e.g., parcel, 

subcatchment), and aerial imagery datasets. OBIA was carried out with 

eCognition. Resultant classifications representing existing building rooftops were 

exported for quality assessment and further geospatial analysis. Quality 

assessment of OBIA results was based on random sample sites (n=50, 3.14 
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hectares) targeting areal- and location-based metrics (e.g., Root Mean Square 

Error) for households. Classifications served as a driving component within the 

LID Site Suitability (LIDSS) toolset. LIDSS was developed to provide geospatial 

analysis of the constraining physical datasets throughout the watershed. It was 

driven by user-defined parameters for maximum allowable slopes, the land 

cover/land use types, the soils, the depth to groundwater (when available), the 

presence of flood risk or floodway zones, and the proximity to existing 

infrastructure. !

Running LIDSS, which filtered through the datasets, resulted in the 

extraction of suitable locations for the implementation of the targeted LID. The 

objective of LIDSS was not on individual LID practices, rather to allow the 

broader ability of users to guide extraction and identification by more general 

design parameters. The attribute table for this layer, containing parcel- and 

subcatchment-specific values for drainage areas, was used to quantify the 

number and design parameters of LID practices required to meet hydrologic 

goals. The resultant Suitability Protocol and toolsets were applied, In this case, 

for RWH. The results were then imported using the Rainwater Harvesting 

Analyzer (RWHA), which was a VBA-enabled toolset that sized parcel-scale 

practices based on user guidance. This included the specific design event depth 

(e.g., Water Quality Control Volume, or WQCV) and nominal RWH unit capacity. 

Results automatically amended a validated SWMM .inp model for simulation of 

the rainfall-runoff response for the user-designed watershed RWH scenario 

(LID227). Hydrologic simulations were facilitated using the EPA Storm Water 
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Management Model (SWMM), version 5.0.022, and the validated model from 

previous work (Walsh et al., 2014). This work was presented as a case study 

paper, to be submitted Summer 2014 (Walsh et al., in review) to the Journal of 

Water Resources Planning and Management. !

Based on the results of the Suitability Protocol (Walsh et al., in review), 

prioritization was geospatially assessed by combining long-term hydrologic 

simulations with long-term costs. Hydrologic simulations targeted the overall 

watershed and subcatchment-scales, with outflow volumes and peak flow rates 

highlighted. Time scales of analysis include cumulative, long-term (1948-2012), 

annual, and monthly. For cost estimation, the WERF BMP and LID Whole Life 

Cost Model, version 2.0, was used to calculate a total cost for the options. The 

equivalent annual cost (EAC) was then calculated, accounting for capital, 

operation and maintenance, and replacement of all units (at 50 years) throughout 

the entire 62-year lifetime. These values were then joined to a spatially-explicit 

map for analysis at the subcatchment scale. Long-term hydrologic results were 

joined to the subcatchments, as well, providing spatial distribution of both volume 

and rate data. With these data, surfaces were interpolated with the Inverse 

Distance Weighted (IDW) method. These surfaces provided the basis for cost-

effectiveness derivation, by dividing the benefit by the cost and applying the 

zonal statistics to the individual subcatchments.!

Assessment of priority was driven by the prioritization toolset, referred to 

as PriorLID, which was created to iterate classifications of the rasterized cost-

effectiveness surface to provide groupings, or classes, of homogenous values. 
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Values represented the cost-effectiveness, or volumetric reduction per dollar 

invested. Top-down economic thresholds were established relative to the 

maximum EAC for the watershed and based on realistic budgets, which drove 

postprocessing selection of classes. These classes, then, represented the most 

cost-effective locations meeting both user-defined suitability criteria and 

economic thresholds. The suitability hydrologic model (LID227) was then 

adapted to represent the classes meeting the economic threshold (LID227p). 

Comparisons were made with both the BASE and LID227 model results. 

Simulations were driven by long-term, hourly precipitation data (1948-2012). 

Results determined the locations that provided not only the most cost-effective 

choices based on economic thresholds but also an acceptable overall watershed 

reduction based on hydrologic thresholds. !

The addition of seven climatic regimes’ continuous, hourly precipitation 

(1960-1991) provided an analysis of the impacts of precipitation characteristics 

on watershed RWH reductions. Event-specific results were binned by depth and 

compared against those obtained with San Diego data. The change in 

watershed-scale reductions was analyzed with respect to the change in 

precipitation characteristics (e.g., interevent time, duration, intensity, and depth). 

Uncertainty analysis was applied to quantify the impact of variability in 

subcatchment percent imperviousness on hydrologic model simulations. A Monte 

Carlo Method (MCM) of uncertainty estimation was employed for 100 

randomized models that simulated runoff response with continuous, hourly 

precipitation from 1999-2007. Targeted results included the exceedance 
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probabilities of monthly peak flow rates and monthly total outflow volumes. 

Randomized models were further extended to assess the independent variable’s 

impact on the suitably-extracted RWH scenarios (which were held constant while 

percent imperviousness varied). This research was presented as an application 

paper, to be submitted Summer 2014 (Walsh & Pomeroy, in review) to the 

Journal of Urban Planning and Development.!

Ultimately, this dissertation improves the extraction of distributed locations 

meeting user-defined constraints and goals for site-specific LID practices, 

primarily RWH. The resultant thematic maps and data attribute tables are not 

only representative of the underlying parameters but are also prioritized to yield a 

cost-effective stormwater management solution meeting users’ objectives. The 

Suitability Protocol was found to provide acceptable approximations of rooftop 

areas and filter locations for further implementation and design at both the parcel 

and subcatchment-scales. The Prioritization Protocol improved the ability to 

account for both economic and hydrologic thresholds, as determined by the user. 

Uncertainty analysis found negligible impact of subcatchment imperviousness on 

overall watershed hydrologic response. Together, these protocols and toolsets 

are available to several disciplines, from urban planning to civil and 

environmental engineering, and employ publicly-available datasets and 

widespread software. Together, the work in this dissertation improves upon the 

conventional methods of LID design and distribution at the watershed-scale.!

!
!
!
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1.6 Organization of Dissertation 

The details for the research methodologies and results obtained are 

presented in the following chapters. Beginning with Chapter 2, the development 

and application of a hydrologic model targeting the implementation of a passive 

RWH program for an urbanized, semi-arid watershed is presented and 

discussed. This research followed traditional methods of RWH implementation 

and assessed the impacts of variations in storage capacity, watershed percent of 

implementation, and management parameters (e.g., drain delay, drain duration). 

This chapter was published, with co-authors Dr. Christine Pomeroy and Dr. Steve 

Burian, in the Journal of Hydrology in January 2014. Next, Chapter 3 presents 

the development and application of an LID Site Suitability Protocol, with 

associated toolsets. This research incorporates remote sensing image-based 

analysis methods in conjunction with geospatial analysis toolsets to characterize, 

identify, and quantify locations meeting user-defined suitability criteria. This 

chapter is currently under review by co-authors, Dr. Christine Pomeroy and Dr. 

Philip Dennison. It will be submitted Summer 2014 to the Journal of Water 

Resources Planning and Management. !

Chapter 4 presents the development and application of an LID 

Prioritization Protocol, with associated toolsets. This section builds on the needs 

and base models established in Chapter 2 and the results and toolsets from 

Chapter 3. This research provides geospatial analysis of both cost and 

hydrologic estimations for suitably extracted RWH frameworks. Monte Carlo 

Methods (MCM) of uncertainty estimation were applied to the independent 
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parameter, subcatchment percent of imperviousness, with watershed and 

subcatchment outflow hydrologic responses targeted for assessment of impacts. 

To date, this journal article has not been submitted, though a Summer 2014 

submission to the Journal of Landscape Planning and Management is projected.  

Chapter 5 provides a summary of the conclusions from each of the research 

sections, a description of future research topics, and recommendations for 

improvements to the development and application of suitability and priority driven 

protocols. Finally, four appendices are included, highlighting Software and Data 

Sources (Appendix A), Hydrologic Model Development, Calibration, and 

Validation (Appendix B), RWH Design Guidance and Resources (Appendix C), 

and Protocol Application Guidelines (Appendix D). 

!
!

Figure 1.1: Integrated contributions of remote sensing and GIS applications 
(adapted from Wang et al., 2010).  
!
!
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!

Figure 1.2: Generalization of an empirical semivariogram plot, in which 
points that are spatially closer together are more alike than those further 
apart (ESRI, 2013).   
!
!
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CHAPTER 2 

!
!

HYDROLOGIC MODELING ANALYSIS OF A PASSIVE, 

RESIDENTIAL RAINWATER HARVESTING !

PROGRAM IN AN URBANIZED, !

SEMI-ARID WATERSHED1!

!
!

This research study was published in the Journal of Hydrology in January 

2014 with my co-authors, Dr. Christine Pomeroy and Dr. Steve Burian.!

!
!

2.1 Abstract 

This paper presents the results of a long-term, continuous hydrologic 

simulation analysis of a watershed-scale residential rainwater harvesting (RWH) 

program in the Chollas Creek watershed, San Diego, California, USA. The U.S. 

Environmental Protection Agency’s Storm Water Management Model (SWMM) 

simulated rainfall-runoff responses for variations in a RWH network, including the 

RWH unit storage size, the number of implementing households, the amount of 

time before a unit is allowed to release captured runoff (i.e., drain delay), and the 

time it takes for the unit to drain (i.e., coefficient of discharge). Comparison of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1! Reprinted!with!permission!from!Elsevier,!Journal(of(Hydrology.!
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results found reductions to increase linearly with capacity and implementation. 

Maximum long-term watershed volumetric reductions between 10.1% - 12.4% 

were observed for the period of analysis (1948-2011) with a range of RWH 

storage sizes (227 liter barrels to 7,571 liter cisterns). The ratio of overflow to 

underdrain flow, ranging from 5.17 - 0.014 (227 - 7,571 liters), exhibits the ability 

of cisterns to fully capture the majority of annual and long-term events. Sensitivity 

analysis found regional precipitation characteristics and disconnection of rooftop 

runoff to impact long-term watershed reduction potential more so than available 

RWH capacity. Drain delay control and dry duration time increased reduction 

variability with cisterns, though long-term reductions were not significantly 

impacted. Normalization of net present value (NPV) to volumetric reductions 

yielded a RWH unit cost of $0.20-$1.71 per 1,000 liters of watershed runoff 

reduced on average per year. Minor variations in cost based on the extent of 

watershed implementation highlight the potential to incrementally institute RWH 

programs. For the case study location, the 227-liter rain barrel provided the 

greatest cost-effectiveness, reducing an average 6,500 liters of runoff per dollar 

invested for the analysis period.!

!
!

2.2 Introduction 

The impervious characteristics and interconnectivity of built-up urban 

areas contribute negatively to stormwater quantity and quality (Alley & Veenhuis, 

1983; Schueler, 1994; Lee & Heaney, 2003). In response, low impact 

development (LID) practices have been designed to mimic natural, pre-

developed conditions through the capture, infiltration, and treatment of 
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stormwater runoff at its source (Prince George’s County, 1999; USEPA, 2000; 

USEPA, 2007a). This reduces annual average runoff volumes (De Graaf & Der 

Brugge, 2010; Foraste & Hirschman, 2010; Jia et al., 2012), peak discharge rates 

(Mitchell et al., 2007; Dietz, 2007; Han et al., 2008), and pollutant loading (Roy et 

al., 2008; Lim et al., 2010; Spatari et al., 2011). One such LID practice is 

rainwater harvesting (RWH), which intercepts rooftop runoff to meet end uses 

(Prince George’s County, 1999; USEPA, 2000), including subsurface infiltration, 

landscape irrigation, nonpotable indoor uses, and potable consumption (County 

of San Diego, 2012). RWH is unique in its ability to supplement water demands 

with captured runoff, thereby reducing water bills, and to provide stormwater 

storage in space-limited areas, resulting in a higher retrofit-ability. !

Against other storage-based LID practices, studies found comparable 

stormwater runoff reductions from RWH (Benedict & McMahon, 2002; Shuster et 

al., 2008; Endreny & Collins, 2009; Young et al., 2009); however, knowledge 

gaps exist with respect to design procedures, effectiveness, and application 

(Schneider & McCuen, 2006; Ahiablame et al., 2012), specifically, expansion of 

study scales from lot to watershed, assessing cumulative impacts to watershed-

scale stormwater runoff (Bedan & Clausen, 2009; Lee et al., 2012), and 

movement towards simulations driven by long-term, continuous precipitation 

(McClintock et al., 1995; Roesner, 1999; Grimaldi et al., 2012). Improving on this 

knowledge informs spatio-temporal considerations, designs, and implementation 

extents prior to inclusion in local stormwater management plans (Gilroy & 

McCuen, 2009; Shen et al., 2013). !
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For instance, design storm simulations fail to account for long-term 

antecedent conditions, which influence catchment hydrologic response (Bhaduri 

et al., 2000). This is important when simulating RWH’s impact on water balance 

(Baek & Coles, 2011). For RWH at single-family residential lots, Gilroy and 

McCuen (2009) simulated 1- and 2-year design storms, and found significant 

reductions in runoff volumes (e.g., 32%, 30%) and peak rates (e.g., 10%, 6%) at 

the lot scale without regard for long-term viability. Despite finding similar results, 

Damodaram et al. (2010) recommended both application of RWH with other LID 

practices and increasing the range of storm events when determining efficiency. 

Such volume-centric results appear promising despite neglecting a continuous 

range of events, which can lead to misrepresentations of LID effectiveness (Pitt, 

1999). For example, in a study to improve reliability of RWH capture estimates 

for demand supplementation, Basinger et al. (2010) did not pay similar attention 

to stormwater runoff, highlighting a mere 28% annual reduction for units that 

would theoretically fill to 35% of capacity with the 90th percentile storm event. !

These studies highlight the need for long-term simulations (Pitt, 1999), 

watershed-scale LID implementation (Rosemarin, 2005), and targeted hydrologic 

metrics that replace single, flow-based standards and inform urban water 

management (Olden & Poff, 2003, Petrucci et al., 2012). Expanded metrics 

include the magnitude, frequency, and duration of long-term events, emphasizing 

conservation and rehabilitation (Olden & Poff, 2003; Booth et al., 2004; Kennard 

et al., 2010; Petrucci et al., 2012). Normalizing reductions to long-term costs 

yields feasibility of implementation relative to the bottom line (Herrmann & Hasse 
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1997; Damodaram et al., 2010). Together, these allow comparisons of program 

variations and, ultimately, a recommendation for the most feasible option as a 

watershed-scale stormwater management practice.!

This paper presents a quantification of the stormwater management 

benefits associated with watershed-scale implementation of a storage-based 

RWH program for a densely urbanized, semi-arid region. Determination of 

reduction significance and benefit normalization to the net present value (NPV) of 

implementation was completed at the watershed outlet and subcatchment-

scales. This provided a measure of cost-effectiveness for comparison with other 

storage-based stormwater management practices. A linear relationship is 

theorized to exist between RWH capacity and reductions in watershed 

stormwater runoff. Given the precipitation characteristics of the study location, 

the high urban density, and the routing of LID mediated flow to pervious areas, 

the smaller RWH configuration (e.g., 227 liter barrels) is expected to provide the 

most cost-effective long-term option for the watershed. !

!
!

2.3 Materials and Methods 

The following sections outline and discuss the study area, study design, 

hydrologic analysis and municipal RWH scenarios employed in this study. !

!
!

2.3.1 Study Area 

The South Fork of Chollas Creek, part of the greater Pueblo Watershed, is 

located southeast of downtown San Diego, California, USA within the San Diego-

Carlsbad-San Marcos metropolitan area (Fig. 2.1). It has a drainage area of 30.7 
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square kilometers (km2) (Weston Solutions, Inc., 2010a; 2010b) and was 

selected due to interest by City of San Diego stormwater officials in implementing 

a rain barrel downspout disconnect (RBDD) program (City of San Diego, 2010). 

The headwaters are located in Lemon Grove, ultimately discharging into the San 

Diego Bay and Pacific Ocean. Soils are predominantly Hydrologic Soils Group D, 

with low infiltration rates (SanGIS, 2012). The total impervious area (TIA) is 50%, 

while directly connected impervious area (DCIA) is between 38% and 46%, 

calculated using the methods of Wenger et al. (2008) and Alley and Veenhuis 

(1983), respectively. The DCIA parameter was approximated using land use 

estimates based on parcel data. Impervious areas were digitized for four random 

subcatchments, quantifying the subcatchment-specific TIA. !

 Population density is roughly 5,400 people per km2 (City Data, 2011), 

representative of a high-density residential area (City of San Diego, 2002) and 

comprised of typical urban land uses (Fig. 2.2). Chollas Creek is not tidally 

influenced in the study reach, but does experience intermittent flow (City of San 

Diego, 2002; Weston Solutions, Inc., 2006). Since rainfall patterns are spatially 

consistent, streamflow can be attributed to urban rainfall runoff (City of San 

Diego, 2002; Weston Solutions, Inc. 2006; 2010a; 2010b). On average, 

precipitation ranges from 0.05 – 51.6 mm per month (i.e., 0.2% of annual rainfall 

in July and 20% in January) and 259 mm annually. The 85th percentile 24-hour 

duration storm event depth is approximately 16.5-mm. Average monthly potential 

evaporation ranges from a high (6.3 mm/day) in July to a low (2.3 mm/day) in 

December. !
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2.3.2 Study Design 

Discussions with San Diego Coastkeeper and City of San Diego 

stormwater management staff aided in the development of RWH scenarios, with 

the greatest potential at single-family residential lots. Commercial and industrial 

rooftops were excluded from this study. The first step to identify single-family 

residential lots was to cross-reference GIS-based residential parcels with local 

business addresses (SanGIS, 2012). Validation was completed by combining 

extracted residential parcels with aerial imagery for visual verification, yielding 

20,787 single-family residential lots. Next, calculation of the average rooftop area 

was completed with a random sample of 150 parcels identified as residential, 

providing an average of 186 square meters (m2). A conservative 50% capture 

efficiency was then applied to account for losses including evaporation, the 

inability to detain all rooftop runoff, and the assumption that RWH units would 

only be placed at one corner of the household, with additional units connected in 

series. The adjusted area (93 m2) was multiplied by the validated number of 

single-family residential lots to obtain the subcatchment-specific percent of 

impervious area treated by RWH.!

In this study, the researchers  quantified the watershed impacts of RWH 

by assessing changes in the cumulative, annual, and daily stormwater runoff 

volumes, flow rates (i.e., peak and average), and event exceedance frequency 

for long-term (water years 1949-2011) hydrologic simulations. Design storms (up 

to the 24-hour, 0.01 probability event) provided watershed reduction comparisons 

with continuous, long-term simulations, in which antecedent conditions are 
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considered. Sensitivity analysis was performed by varying one independent 

variable at a time. Independent variables included: the capacity of the units (a 

total of five volumes), the percent of maximum watershed households targeted (a 

total of four allocations), the coefficient of discharge, and the drain delay 

parameter. For each individual variation, both overall and hourly time series long-

term simulation results were collated for analysis. Differences in annual 

performance, in terms of precipitation depth, average event intensity, and 

seasonal variation, were targeted. Comparison of RWH scenario results with a 

base case (no RWH) provided quantification. Last, normalization of runoff results 

to the total NPV per permutation gave a cost-based metric for relating multiple 

LID practices (Foraste et al., 2012; McGarity, 2012), with insight to option 

feasibility. Sensitivity analysis of storage capacity, RWH discharge-governing 

parameters (e.g., drain delay and drain duration), and modeling methods (e.g., 

LID Editor versus LID storage conversion to impervious area depression storage) 

extended the interpretation of results.!

!
!

2.3.3 Hydrologic Analysis 

Hydrologic modeling was performed using the U.S. Environmental 

Protection Agency’s (USEPA) Storm Water Management Model (SWMM), 

Version 5.0.022 (Rossman, 2010), a dynamic stormwater runoff and hydraulic 

routing software that simulates water quantity, quality, and LID controls (USEPA, 

2012). SWMM is a widely used framework suited to development of sizing 

guidelines for devices and programs, such as municipal RWH, across the 

catchment, subdivision, and site scales (Elliott & Trowsdale, 2007). Multiple 
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sources of data were used to build the Chollas Creek model. Subcatchments 

were delineated via discussions with the City of San Diego and validated with 

digital elevation model (DEM) and land use data, resulting in 78 subcatchments 

ranging in size from 0.02 - 3.06 km2. Land surface slopes were estimated using 

0.61-m contours acquired from SanGIS (2012), ranging between 0.5% - 10.9%. 

Manning’s roughness values of 0.20 (e.g., dense grass) and 0.009 were 

assigned to pervious and impervious surfaces, respectively. Pervious depression 

storage was representative of lawns (e.g., 3.81 mm) and impervious depression 

storage was set as 0.635 mm (ASCE, 1992). Conduit slope and lengths were 

determined with node elevations provided by SanGIS (2012) storm drain network 

data. Average slope along the 10-km main branch of Chollas Creek was found to 

be 1.33%. !

The storm drainage network is comprised of 151 open (e.g., natural 

channel) and closed (e.g., drain pipe) segments. Characterization of the channel 

geometry and lengths was obtained from storm sewer GIS shapefiles (e.g., point 

and polyline) and confirmed with aerial imagery (SanGIS, 2012). Conduit 

roughness (Manning’s n coefficient) was set as 0.013 for circular, concrete pipes 

and 0.02 for trapezoidal concrete-lined channels (USDOT, 1986; ASCE, 1992). 

The Green-Ampt method was chosen to govern soil infiltration, with the following 

parameters: suction head of 239 mm (i.e., sandy clay), conductivity of 1.27 

mm/hour (i.e., sandy clay), and initial deficit of 0.25 (Rossman, 2010; County of 

San Diego, 2012). Long-term hourly precipitation data, acquired for San Diego 

Lindbergh Field airport (COOP ID 047740, 32°44'N/117°11'W, period of record 
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1948-2011), and SCS Type I design storms were created, with Chollas Reservoir 

station data (ID 92-0510, 32°43'N/117°4'W, period of record 1926-2003), 

following a 24-hour cumulative pattern (NOAA, 2012). The 1.0, 0.5, 0.2, 0.1, 

0.04, and 0.01 probability events register total depths of 34.8-, 47-, 62.7-, 74.9-, 

91.2-, and 115.6-mm, respectively. !

As continuous streamflow data were unavailable, model calibration was 

performed using an iterative method of extracting individual storm event results 

from the long-term simulations and comparing them to individual measured 

events provided by annual water quality and urban runoff monitoring reports 

(Weston Solutions, Inc., 2007; 2010a; 2010c). Calibration was performed by 

iteratively adjusting subcatchments’ overland flow path width, surface roughness 

coefficient, depression storage, and percent impervious area parameters. To 

minimize flooding and system losses, surcharge and ponding depths were 

established at the nodes of the largest subcatchments. After calibration, 

simulated peak flow rates matched the seven monitored events to within an 

average of 3.1%. Validation was accomplished by the same method but for a 

different set of measured events, provided by Schiff and Carter (2007). 

Differences in volume and outflow rate ranged from 5% - 20% for seven 

monitored events from 2006 (Schiff & Carter, 2007), representative of a range of 

storm event sizes and durations. !

Fig. 2.3 shows a comparison of modeled and monitored flow rates to 

precipitation depths for the storm events used for validation. The precipitation 

events measured in the watershed during the calibration and validation differed 
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from those used for the continuous simulations, with the differences in watershed 

discharge response linearly related. A final check involved the simulation of the 

0.01 probability, 24-hour event used by the Federal Emergency Management 

Agency (FEMA) for floodplain mapping. This simulated a 5.8% difference in the 

peak flow rate upstream of the confluence of the two reaches, known as the 

Encanto Branch (City of San Diego, n.d.). !

Discrepancies between the modeled and measured values are attributed 

to differences in contributing watershed area and variation in the temporal pattern 

of rainfall associated with each runoff producing event. Since continuously 

monitored streamflow data do not exist for the watershed, the resulting 

calibration and validation was deemed acceptable in meeting the quantification 

and scenario comparison goals of the researchers.!

!
!

2.3.4 Municipal RWH Scenarios 

Two nominal RWH capacities were evaluated in this study: 227 and 7,571 

liters, with footprints of 0.23 m2 and 22.3 m2, respectively. The 227-liter barrel 

has a maximum height of 914 mm and the 7,571-liter cistern height is 3,568 mm. 

The primary benefits of the 227-liter configuration are a smaller barrel footprint 

and a shorter duration of retention time (i.e., mitigating potential water quality 

and/or vector concerns). Alternatively, larger cisterns capture a wider range of 

storm events, with the potential for extended temporal storage and longer periods 

of use. RWH drain time is important since vector potential (e.g., mosquitoes) may 

increase with storage times exceeding 48 hours (County of San Diego, 2012). 

Household RWH configurations were chosen to represent variations of nominal 
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unit sizes, with variations in capacity and drain-governing parameters 

investigated. For 227-liter barrels, households were outfitted with one, two, four, 

or eight units, for maximum storage capacities of 227, 454, 908, and 1,817 liters, 

respectively. Only one 7,571-liter cistern per household was considered due to its 

footprint to typical lot area ratio. To account for uncertainty of public adaptation, 

the maximum number of households was downscaled by increments of 25%, 

with details for the total of 21 RWH model permutations (including the base 

model) provided in Table 2.1.!

Cost and volume are typically linear for nominally sized units. A 

conservative price is $100 for a 227-liter barrel, whereas a 7,571-liter cistern can 

be upwards of $1,000 (Tank Depot, 2012). Several Do It Yourself packages exist 

for smaller units, while larger cisterns require professional guidance for 

construction and stabilization (Smith, 2012). Operation and maintenance (O&M) 

is assumed to be undertaken by homeowners, which was found by Coombes 

(2002) to be negligible. As a result, the cost analysis from the perspective of the 

local government did not consider O&M. Additionally, with proper care, the 

expected life of RWH units can exceed 50 years (Coombes et al., 2000). Thus, 

replacement of all units was provided at 50 years of service. Future values of 

replacement costs were accounted for by applying an inflation rate of 1.5% (as of 

April 2013) in the calculation of the NPV. This provides the current total cost for 

each scenario with a 3.0% discount rate, including one-time cash outflows in 

years zero and 50 for purchasing and replacing RWH units, respectively. Thus, 

costs incurred for this study included the one-time purchasing costs at times zero 
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and 50. !

Within SWMM, RWH discharge (i.e., both overflow and underdrain flow) 

was directed to the pervious portion of the subcatchment to represent the routing 

of residential rooftop runoff to lawns (e.g., downspout disconnection). In SWMM, 

flow through the underdrain (q, unit depth per time) is governed by Eq. (1) and 

was modeled as a submerged orifice. C represents the drain coefficient, n is the 

drain exponent, h is the unit height, and Hd is the drain offset.!

!
!

€ 

q = C h −Hd( )n ………………………………………………………………………..…(1)!

!
!

Duration of outflow is controlled by the drain coefficient, C, and Eq. (1). 

The C parameter can be estimated using Eq. (2), which accounts for the required 

time (T) to drain a depth, in inches, of stored water (D). The exponent value 

represents flow through an orifice and the drain offset was established at the 

bottom of each unit (e.g., zero). RWH outflow is driven by storage head, 

representing passive outflow control. A simplified diagram illustrating RWH flow 

routing with the SWMM LID Editor is provided in Fig. 2.4.!

!
!

€ 

C =
2 D0.5( )

T ……………………….……..……………………………………………(2) 

!
!

To drain barrels (e.g., 227 liters) over a 24-hour period and cisterns (e.g., 

7,571 liters) within 48 hours, C values of 0.5 were obtained with Eq. (2). These 

were then applied to Eq. (1) to simulate underdrain outflow. These 
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aforementioned drain durations were established to adhere to recommended 

lawn watering quantities for Southern California Coast climates (Hartin et al., 

2001). For instance, a typical South Coast lot (e.g., 843 m2, including an average 

building footprint of 186 m2) requires a monthly 22,220-63,141 liters of irrigation 

(Hanak & Neumark, 2006). This range represents December minimums and July 

maximums, translating to an application rate of 30-85 liters/hour, respectively. In 

addition, RWH drain durations fell within the prescribed drawdown time range for 

other storage-based LID practices (e.g., 24-48 hours) (USEPA, 2000).!

RWH distinguishes itself from other LID practices by offering monetary 

savings to homeowners (e.g., supplementing potable water demands); however, 

the goal of this study was to quantify watershed reductions resulting from 

distributed site-specific storage and assess cost-effectiveness from the local 

government’s perspective. Therefore, RWH captured runoff was not subject to 

household demand patterns. Instead, a time release dependent, storage-

discharge function controlled the drainage to pervious receiving areas. These 

details were modeled with the SWMM LID Editor. To account for no irrigation 

during or directly after precipitation events, a 24-hour drain delay was established 

for all models. This requires 24 consecutive hours of no precipitation to elapse 

before the underdrain (e.g., outlet orifice) is allowed to open. This, in effect, 

simulates a passive release method that reduces vector potential and assumes 

reliable homeowner control (e.g., opening and closing the RWH units). Variations 

in drain delay and outflow duration parameters determined the impact of 

temporal fluctuations (i.e., homeowner neglect, malfunctioning RWH units, and 
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climatic conditions). !

After adapting the base model to account for each RWH scenario, long-

term, continuous (1948-2011) and design storm simulations were carried out for 

a total of 21 models. To capture the dynamic response typical of urbanized 

catchments, a 30-second routing time step, with 5-minute wet and dry weather 

runoff time steps, was applied (Fletcher et al., 2013). Finally, hourly results were 

adjusted to provide a water year (10/1 - 9/30) analysis, as opposed to a Julian 

date (1/1 - 12/31) reducing the full record to 62 years. The frequency of daily 

peak flow events (years), T, was calculated using the Cunnane (1978) method 

(Eq. 3), where N represents the number of years of record, M is the rank of the 

event magnitude (after being arranged in descending order), and a is the plotting 

position parameter (i.e., a value of 0.4 was used).!

!
!

€ 

T = N +1− 2a( )[ ] M − a( )………………………………………………………………(3)!

!
!

With Eq. (3) results, the number of exceedances per year, E, was 

calculated via Eq. (4).!

!
!

€ 

E =1 T………………………………………………………………………………….(4) 

!
!

A one-way between subjects analysis of variance (ANOVA) was 

conducted to compare the effects RWH unit volume had on annual runoff 

volumes among the six scenarios tested, including the base. It was also applied 
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to long-term subcatchment reductions for the 20 model scenario results. ANOVA 

assumes independent, normally distributed datasets, with equal variances 

amongst the populations. The null hypothesis states there is no difference 

between the means of the data sets compared. The Tukey HSD post hoc test 

was applied to ANOVA results in which the null hypothesis was rejected. This 

determined the specific groups in the sample population that differed 

significantly. !

!
!

2.4 Results 

Analysis of long-term precipitation finds 66% of total depths and 58% of 

events to occur in the wet months of January to April, with an average depth per 

event of 8 mm (range 5.2 - 9.2 mm). Remaining months average 4.3 mm per 

event (range 1.1 - 8.2 mm). These periods established the two seasons analyzed 

for this study. Analysis of annual precipitation illuminates the region’s small storm 

hydrology (Fig. 2.5). Total annual precipitation depths in exceedance of the long-

term average (259 mm) were denoted as wet years, while dry years’ cumulative 

precipitation fell below this depth. !

!
!

2.4.1 Results of RWH Storage Capacity on Discharge 

2.4.1.1 Watershed Outlet!

Variations in RWH storage capacity resulted in linearly increasing 

volumetric runoff reductions for the long-term simulation totals (Fig. 2.6). For 

watershed coverage extents ranging from 25% to 100%, 227-liter barrels 

provided reductions in runoff volume (2.5% - 10.4%), peak flow rate (0.4% - 
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1.4%), and average flow rate (2.7% - 10.5%). For the 7,571-liter cisterns, the 

same watershed configurations yielded reductions in volume (3.1% - 12.4%), 

peak flow rate (0.5% - 1.9%), and average flow rate (3.2% - 13.7%). In general, 

reductions were found to increase with watershed allocation, maximizing at 100% 

of households targeted. There was a significant effect of RWH storage capacity 

on annual average runoff volumes at the p<0.05 level for the six model conditions 

[F(5,366)=11.61, p=1.98E-10]. Post hoc comparisons using the Tukey HSD test 

indicated that the mean score for the Base condition (M=0.384, SD=0.0018) was 

significantly different from all other conditions. There was a significant effect of 

RWH storage capacity on annual average volumetric reductions at the p<0.05 

level for the five RWH conditions [F(4,305)=23.09, p=1E-16]. Post hoc 

comparisons using the Tukey HSD test indicated that the mean score for the 

7,571-liter scenario (M=0.049, SD=2E-5) was significantly different from all other 

conditions and the mean score for the 1,817-liter scenario (M=0.046, SD=1E-5) 

was significantly different than the 227- and 456-liter scenarios. Average annual 

reductions in volumes and peak discharge rates were greater during dry years 

than wet years (Table 2.2). !

Long-term simulation flow rate exceedance frequency curves (Fig. 2.7) 

demonstrated differences between pre- and post-LID application results (Table 

2.3). Design storm runoff reductions ranged from 13.1% - 9.3% (7,571-liter 

scenario) and 13.1% - 4.4% (227-liter scenario). For the range of storage sizes, 

the highest reductions were achieved for the 2.0 probability event. Differences in 

runoff reductions were shown to increase with precipitation depth (Fig. 2.8). !
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Overflow of individual RWH units occurs, with the ratio of overflow to 

underdrain-mediated flow ranging on average from 5.17 – 0.014 for the smallest 

to largest storage sizes. Compared with continuous simulations, individual storm 

events simulations demonstrated a greater magnitude of watershed runoff 

reductions for the range of RWH scenarios, indicating the impacts of antecedent 

conditions. Differences between RWH reductions increase with the combination 

of available RWH capacity and precipitation depth (Fig. 2.8). This highlights the 

ability of cisterns to completely capture greater event depths, while barrels 

overflow with relatively small storms (e.g., approximately 2.4 mm for the adjusted 

rooftop area fills the 227-liter unit).  

!
!
 2.4.1.2 Subcatchment!

Plotting the percent of impervious area controlled by RWH versus 

stormwater runoff reductions at the subcatchment level yields a linear trend 

similar to that of the overall watershed (Fig. 2.9). Average long-term 

subcatchment volumetric reductions per dollar invested range from 8,410 – 1,046 

liters/$. There was a significant effect of RWH storage capacity on long-term 

subcatchment runoff reductions at the p<0.05 level for the 20 RWH conditions 

[F(19,1520)=10.65, p=2E-30]. Post hoc comparisons using the Tukey HSD test 

(Table 2.4) indicates scenario comparisons with significant differences (e.g., <>). 

!
!
2.4.1.3 Modeling Methods!

To assess the LID Editor for RWH, comparisons were made with a 

traditional modeling alternative of converting cumulative storage volume into 
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impervious area depression storage. Simulations for the range of RWH 

permutations found watershed volumetric reduction overestimation to increase 

with storage size while smaller capacities yielded underestimations (Fig. 2.10). 

Differences in reductions provided by the range of RWH capacities increase 

when precipitation exceeds the 0.1 probability event (e.g., 74 mm).!

!
!

2.4.2 Impact of Drain Delay and Duration on Discharge 

2.4.2.1 Watershed Outlet!

Lengthening RWH drain duration resulted in increased RWH unit overflow. 

Ultimately, higher runoff volumes were simulated at the watershed outlet, with 

increases in flooding in conduits. As expected, volumetric sensitivity analysis 

demonstrated that the RWH barrels (e.g., 227 liters) reach capacity with smaller 

precipitation events, relative to the larger cisterns (e.g., 7,571 liters). Therefore, 

increases in drain duration limit the unit’s ability to capture subsequent runoff. 

Similarly, increasing drain delay yielded increases in the ratio of overflow to 

underdrain flow for RWH units. Reductions in annual outflow volumes highlight 

the variability introduced by altering the drain delay for RWH. Compared with a 

responsible 24-hour drain delay, severe homeowner neglect (504 hours) resulted 

in annual reduction differences between -46% to 13% and -26% to 47% for 227- 

and 7,571-liter scenarios, respectively. Overall watershed runoff coefficients 

experienced less than 1% deviations from the 24-hour drain delay results. Fig. 

2.11 exhibits improvements in long-term volumetric reductions at the watershed 

outlet with smaller barrels, while cistern removal was slightly impeded. Variation 

in outflow duration did not impact the long-term watershed outflow reductions for 
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the Chollas Creek watershed. There was not a significant effect of varying drain 

delay times on RWH storage capacities’ annual average runoff volumes at the 

p<0.05 level for the 227-liter [F(2,183)=0.69, p=0.51] and 7,571-liter 

[F(2,183)=0.73, p=0.48] conditions. 

!
!
2.4.2.2 Subcatchment!

Extending drain duration resulted in increased subcatchment runoff 

coefficients, indicating a higher ratio of outflow to precipitation. Flooding in 

conduits was also increased. Prolonged drain delay times had different impacts 

on subcatchment runoff reductions for the RWH scenarios. For 7,571-liter 

cisterns, 504-hour drain delays simulated less reduction relative to the 24-hour 

delay results. Alternatively, 227-liter barrels provided greater reductions in runoff 

for 504 hours, versus a 24-hour drain delay. Quantification of reduction 

differences for the range of drain delay times exhibited a linearly decreasing 

effectiveness with the percent of impervious area targeted for cisterns. Rain 

barrels difference quantifications found a linearly increasing effectiveness (Fig. 

2.12).!

!
!

2.4.3 Cost-Effectiveness 

2.4.3.1 Watershed Outlet!

Total program NPVs ranged from $0.52 - $30.8 million US dollars (USD) 

for all of the RWH permutations (Fig. 2.13). Normalization of overall watershed 

volumetric reductions to the NPV provided an economic analysis weighing 

implementation extent and cost with stormwater benefits. Regardless of the 



!

!

51!

extent of implementation, the greatest reductions per dollar were derived from 

the single 227-liter barrel. On average, this scenario provided a long-term 

removal of 6,481 liters per dollar (liters/$). !

Cisterns removed 757 liters/$ (Fig. 2.14). The range for overall watershed 

long-term RWH cost-effectiveness is $0.15 - $1.35 per 1,000 liters. Analysis of 

annual cost-effectiveness highlights greater benefit in wet years than dry, with an 

average NPV per 1,000 liter reductions ranging between $0.12 - $0.97 and $0.25 

- $2.20, respectively. Long-term annual averages ranged from $0.13 - $1.15 per 

1,000 liters. 

!
!
2.4.3.2 Subcatchment!

Subcatchment total NPVs follow a linearly increasing trend, similar to the 

overall watershed results. Normalization of NPV to reductions finds greater cost-

effectiveness with rain barrels, versus cisterns. The relationship between percent 

of impervious area targeted and costs normalized to reductions exhibited a point 

of diminishing returns for both rain barrels and cisterns (Fig. 2.15). Cost-

effectiveness decreases as the percent of targeted impervious area is expanded. 

Baseline cost-effectiveness (e.g., minimums) of $0.10 and $0.81 per 1,000 liter 

reductions in volume were established for the 227- and 7,571-liter scenarios, 

respectively. Long-term average subcatchment cost-effectiveness is $0.12 and 

$0.98 for 227- and 7,571-liter configurations.!

!
!
!
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2.5 Discussion and Conclusions 

It should be noted that the results presented are specific to the case study, 

though these general conclusions provide guidance for implementation in other 

watersheds. !

!
!

2.5.1 Watershed 

Results of this study indicated a linear relationship between runoff 

reductions and available capacity, maximizing with the largest RWH scenarios 

(e.g., 100% of the watershed households supplied with 7,571 liter cisterns). 

However, since a primary goal of municipal stormwater management is 

maximizing volumetric runoff reductions and minimizing flooding, a decentralized 

residential RWH program cannot be expected to provide such quantities by itself. 

Alternatively, if a local government requires supplemental reductions to increase 

the effectiveness of existing centralized stormwater controls, then consideration 

of RWH as a network component may be prudent. This study found that a 

watershed-scale RWH program, when operated as a passive storage-based 

practice, can provide significant annual average watershed runoff volume 

reductions, though only to an annual maximum of 14% for all scenarios. With 

respect to existing infrastructure, such reductions in long-term loads can 

complement a watershed’s stormwater management goals. !

Comparison of long-term continuous and design storm simulation results 

demonstrates the importance of capturing regional precipitation characteristics 

and antecedent conditions when watershed-scale impacts of distributed RWH 

are warranted. Precipitation characteristics include interevent dry time, variation 
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in event depth, wet versus dry year conditions, and seasonality. For the case 

study watershed, investigation of variations in annual seasonal precipitation 

found increased reductions in dry years, stemming from greater overall capture 

of annual events. For all climatic regions, it is important that simulations capture 

the full range of the watershed’s precipitation and flow-routing characteristics, as 

these were found to influence watershed outlet reductions more so than varying 

RWH storage size. Due to overland flow routing, conversion to impervious area 

depression storage results in over-estimation of captured runoff when input 

precipitation volume is less than the available storage. This is evident in the 41% 

runoff reduction with the 7,571-liter scenario despite a maximum volume 

available to input precipitation volume of 36% (Fig. 2.10). The LID Editor method 

is preferred since pervious area routing (i.e., downspout disconnection) is 

accounted for and reduction errors due to overland flow removal with depression 

storage are mitigated. !

While variation in drain delay and outflow duration were not significant, the 

elongation of drain delay time (i.e., homeowner negligence and malfunctioning 

units) resulted in a greater range of annual average volumetric reductions. This 

variability stems from the drain delay either syncing with or exceeding the dry 

duration. Dry duration, in this case, is the consecutive time period in which no 

precipitation event occurs. When drain delay exceeds the dry duration, the RWH 

unit is not allowed to empty and, instead, is more likely to overflow to the 

pervious discharge location. When drain delay is less than the dry duration, the 

units are allowed to empty unimpeded by precipitation events, leaving greater 
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capacity for future events. However, as drain delay approaches the dry duration, 

captured water will be directed to the pervious discharge location, resulting in soil 

saturation and, thereby, less infiltration of approaching precipitation events. Thus, 

drain delay may have a greater impact on long-term reductions for watersheds 

with different climates (i.e., wetter, less dry durations). Similarly, outflow duration 

did not have a significant impact on average annual runoff reductions for RWH 

scenarios. This demonstrates the double-edged implication of transferring RWH 

O&M responsibilities to the homeowner collective, highlighting greater annual 

variability with larger units, a dampening of long-term reduction variability with 

downspout disconnection, and importance of drain delay relative to dry duration 

(Maher & Lustig, 2003). !

Individually, rain barrels are not only less likely to reduce overall volumes 

and rates but are also more likely to be capacity-limited and, therefore, overflow. 

For example, while the 227-liter rain barrel had the highest ratio of overflow to 

underdrain-mediated flow (e.g., 5.17), compared with the cistern, the difference 

in long-term watershed reductions were found to be statistically similar. For 

individual events, sensitivity analysis of RWH storage size found a 72% greater 

runoff reduction for the 0.01 probability event with the 7,571-liter cistern, versus 

the 227-liter rain barrel (Fig. 2.8). Both of these examples highlight the 

dampening of storage size impacts by regional precipitation characteristics and 

flow routing of rooftop runoff to pervious areas (e.g., downspout disconnection). 

Studies by Steffen et al. (2013) and Dixon et al. (1999) drew similar conclusions 

regarding decreased stormwater reductions with increasing precipitation and the 
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driving factors of RWH storage size and climatic patterns. !

Normalization of the NPV to the respective scenario reductions 

determined economic feasibility from the standpoint of the municipality. The 

greatest watershed benefits were derived from the 227-liter barrel scenario, with 

an average reduction of 6,500 liters per dollar invested (range 6,322 – 6,703 

liters/$). The least economic scenario is the 7,571-liter cistern, resulting in a long-

term average reduction of 750 liters per dollar invested (range 743 – 763 liters/$). 

Minor variations in cost-effectiveness result for the range of implementation 

permutations. This indicates that incremental implementation would likely be the 

method of choice by local jurisdictions. Annual analysis finds increased cost-

effectiveness in wet years, due to the greater overall volumes removed by 

downspout disconnection. !

In addition to its cost-effectiveness, the single 227-liter barrel provides the 

fastest drain times (i.e., within recommendations for monthly South Coast 

irrigation rates), the smallest footprint, and the greatest ease when it comes to 

implementation and O&M by homeowners. Minimal differences for the range of 

RWH sizes and relatively constant volumetric reductions for scenarios the range 

of RWH sizes over the 50-year life span (e.g., less than 2%) further reinforce the 

recommendation of employing rain barrels over cisterns.!

!
!

2.5.2 Subcatchment 

Results of this study reinforced the linearly increasing trend of 

subcatchment reductions with the percent of impervious area targeted by RWH. 

Greater reductions in outflow volumes and rates were simulated as RWH storage 
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capacity and targeted rooftop area increased. ANOVA and Tukey HSD post hoc 

investigations (Table 2.4) guide planning level scenario implementation to 

achieve statistically significant reductions, again finding greater benefit with 

greater capacity. Variations in drain delay and duration parameters resulted in 

trends similar to those at the watershed-scale. However, when plotted against 

the percent of impervious area targeted by RWH, the difference between 

reductions resulting from 24- and 504-hour drain delays linearly increased for 

227-liter barrels and linearly decreased for 7,571-liter cisterns (Fig. 2.12). While 

this reinforced the conclusion of the previously emphasized drivers (e.g., 

precipitation and pervious area routing), it also indicated that negligence was 

dampened in smaller units due to the ability to quickly empty. Alternatively, 

cistern effectiveness was hampered due to longer temporal drain periods. !

Quantification of subcatchment cost-effectiveness provided a finer 

analysis compared to the overall watershed. Logarithmic relationships were 

found to exist between the percent of impervious area targeted and the 

normalized costs to reductions (Fig. 2.15), indicating that negligible changes in 

cost-effectiveness resulted from increasing the impervious area routed to the 

RWH units. These baseline values (e.g., approximately $0.83 and $0.10 per 

1,000 liter reduction for cisterns and barrels, respectively) aid in establishing a 

watershed’s maximum expected cost-effectiveness for the RWH program 

configuration applied. Thus, in combination with climate and pervious area 

routing, these conclusions further reinforce the choice of rain barrels over 

cisterns, both at the watershed and subcatchment-scales.!



!

!

57!

2.5.3 Future 

As SWMM5.0.022 does not allow for placement of a household demand to 

dictate RWH outflow, the results of this study provide a baseline for not only 

potential stormwater runoff reductions but also cost-effectiveness of a RWH 

program from the perspective of a municipality. Future work will expand this 

study to include additional LID practices to determine a logical combination, or 

framework, such that watershed benefits are maximized with cost-effectiveness. 

This work is currently underway for the options provided in SWMM5.0.022. The 

geographic placement and sizing of these networks and LID practices will be 

based on land cover classification and geospatial analysis of the watershed 

governing parameters of LID implementation and design. The results of this LID 

feasibility study lend further insight to not only the cost-effectiveness of 

reductions from a range of RWH storage sizes but also the potential impacts of 

transferring a portion of stormwater management responsibilities from the local 

government to the citizen.!

!
!
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Figure 2.1: Geographical location of the study area.!
!
!

Figure 2.2: Land use composition of Chollas Creek watershed.!
!
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Figure 2.3: Percent difference between observed and simulated storm 
events’ input precipitation depths versus peak flow rates.!
!
!

Figure 2.4: SWMM5.0.022 flow routing, with RWH chosen as the LID. 
Underdrain outflow is established with the drain delay and Eq. (1) 
functions, with drain outflow driven by head. 
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Figure 2.5: Long-term precipitation analysis, with event depth as a percent 
of the total rainfall record storm events (primary axis) and the cumulative 
percent of events (secondary axis) for each depth. 
!
!

Figure 2.6: Presentation of long-term watershed reductions in average 
(primary axis) and peak (secondary axis) flow rates for RWH scenarios’ 
reductions in watershed stormwater runoff. Note: clusters represent the 
impact of varied watershed RWH implementation rate, with less variation at 
lower watershed allocations.!
!
!
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!
Figure 2.7: Flow duration curve, highlighting the negligible differences 
between RWH scenarios at maximum (e.g., 100%) watershed 
implementation. Inset exhibits the difference for event exceedance 
probabilities less than 0.01. Flow rates are exhibited in cubic meters per 
second (CMS).!
!
!
!
!
!
!
!
!
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!
Figure 2.8: Individual precipitation event results, highlighting the difference 
in watershed stormwater runoff reduction for the RWH capacity range. 
Simulations include the 2.0, 1.0, 0.1, 0.04, and 0.01 probability events.!
!
!

Figure 2.9: Long-term subcatchment stormwater runoff reductions versus 
the percent of subcatchment impervious area targeted by RWH. 
!
!
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Figure 2.10: Comparison of watershed runoff volume reductions for the 
range of capacities, when RWH is modeled either as Impervious Area 
Depression Storage or with the LID Editor. The addition of maximum RWH 
capacity to input precipitation volume indicates the maximum volumetric 
removal achievable for each scenario.!
!
!
!
!
!
!
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Figure 2.11: Comparison of 50-year moving averages for annual watershed 
runoff reductions provided by 227-liter and 7,571-liter units when drain 
delay is varied to represent homeowner neglect.!
!
!

!
Figure 2.12: Difference between runoff reductions simulated for the range 
of RWH storage sizes when drain delays of 24 and 504 hours were selected.!
!
!
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Figure 2.13: NPV for each RWH scenario permutation. 
!
!

Figure 2.14: Volumetric reduction (liters) per dollar invested for each 
permutation of RWH with increasing extent of watershed implementation. 
!
!
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Figure 2.15: Subcatchment cost-effectiveness (NPV per 1,000 liters 
volumetric reduction) versus the percent of impervious area targeted by 
RWH. 
!
!
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Table 2.1: Estimates for total RWH capacity per household with variations in the extent of watershed 
implementation.!

!
!
!

!
Table 2.2: Reductions in average annual outflow volumes and peak outflow rates for the total record simulated, 
the wet years (i.e., annual precipitation exceeding 24.6 cm), the dry years (i.e., annual precipitation less than 24.6 
cm), and the difference between annual reductions for wet and dry years.!

!
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!
2.3: Recurrence event flow rate results (cubic meters per second, CMS) for all model scenarios with 100% 
implementation, as extracted from the flow duration curves for the long-term, continuous simulations (Fig. 2.7). 
Reductions are calculated with the base scenario results (no RWH provided). Note: Qn represents the flow rate 
for the n-probability event, as extracted from the long-term simulation results transformed by the Cunnane 
Method. !

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Table 2.4: ANOVA and Tukey HSD post hoc results for subcatchment long-term volumetric reductions. Columns 
and rows are listed in order of greatest to least mean reduction for the full range of scenarios (n=20). Cells 
present statistical significance of combined RWH capacity and percent of implementation. Acceptance of the null 
(=) indicates statistically similar means while a rejection of the null (<>) designates statistical difference. Shading 
by percent of implementation indicates scenario extent of significance with respect to volumetric reductions for 
the case study watershed. Scenarios listed as (A) 7,571 L, (B) 1,817 L, (C) 908 L, (D) 456 L, and (E) 227 L.!

!
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 This journal article is entitled, Application of Object-Based Image 

Analysis with Geospatial Analysis to Quantify Suitable Sites for Watershed-

Scale Low Impact Development. My co-authors include Dr. Christine 

Pomeroy and Dr. Philip Dennison, who are currently reviewing a draft of this 

work. Expected submission is Summer 2014, to the Journal of Water 

Resources Planning and Management. !

!
!

3.1 Abstract 

Low impact development (LID) practices are traditionally site-specific, 

requiring assessment of local constraints for proper planning and design; 

however, they are increasingly applied to solve watershed-scale stormwater 

management issues. This necessitates accurate representation of watershed 

parameters, over the conventional uniform design and distribution of LID 

resulting from the complexity of required LID analysis methods and lack of 

pertinent datasets (e.g., extent, resolution). Researchers created the LID Site 

Suitability (LIDSS) toolset to filter layers necessary for proper hydrologic 
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modeling, simulation, and analysis. These datasets included land cover/land use 

from object-based classification, slopes, soils, and flood zones. This paper 

presents the results of a study combining object-based image classification 

methods (91.3% overall classification accuracy of buildings) with geospatial 

analysis to identify suitable locations for rainwater harvesting (RWH) throughout 

the Chollas Creek watershed, San Diego, CA, USA. Quality assessment (n=50 

sites, 3.14 hectares) of the protocol indicated over-classification of building areas 

by an average 23%. This resulted from discrepancy between the spatial 

resolutions of the elevation and spectral datasets. Comparison with a uniformly 

distributed RWH scenario (UNI227) found rooftop area to be 51% greater with 

LIDSS. A 44% long-term (1948-2011) average annual volumetric reduction 

difference (range 34%-51%) with LID227 was achieved versus UNI227, relating 

to a 16% long-term watershed outflow reduction. Changes in average peak flow 

rate reductions (51%) followed changes in rooftop area, whereas a smaller 

difference (44%) was simulated for watershed outflow volumes. This study finds 

the suitability protocol and toolsets provide adequate estimates for LID siting and 

design for hydrologic modeling, though finer resolution elevation data are 

expected to improve estimates and final results. !

!
!

3.2 Introduction 

Urbanization has negatively impacted the resources and processes of the 

natural environment. Specifically, the conversion from natural to impervious land 

cover affects stormwater quantity and quality, including increased flood risk and 

pollution of receiving water bodies (Schueler, 1994; Lee & Heaney, 2003). To 
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mitigate these consequences, traditional stormwater management focused on 

improving conveyance with centralized mitigation (Roy et al., 2008; Debo & 

Reese, 2010). This resulted in watershed management plans that often span 

multiple municipalities and governing bodies (Brown et al., 2007). Such plans 

enforced the construction of large capacity, end-of-pipe practices located at 

downstream termination points within large drainage areas. Recent emphasis 

has been increasingly placed on site-specific practices, known as low impact 

development (LID), incorporating water quality management of smaller, more 

frequent events (Prince George’s County, 1999). However, the majority of 

research assessing the quantity and quality benefits of LID has focused on 

smaller scales, such as the parcel or neighborhood, at the expense of the 

expanded watershed (Bedan & Clausen, 2009; Lee et al., 2012). Studies at the 

watershed-scale, including those that are empirically-based, are difficult to 

duplicate, requiring time and money (Jensen et al., 2010; Yang & Li, 2013). 

Regardless, a gap exists with regard to users’ abilities to characterize and 

quantify the impacts of LID distributed at the local and regional scales (Burian & 

Pomeroy, 2010). !

The fields of remote sensing and geospatial analysis, in tandem with 

publicly-available, high-resolution datasets, have expanded the abilities of 

modelers to assess fine-scale watershed conditions (Kunapo et al., 2009). In 

addition, classification of input datasets (e.g., elevation, spectral, and thematic) 

has expanded from pixel-by-pixel algorithms (Yang et al., 2010b) to object-based 

rule sets, which allows for consideration of individual features (i.e., collection of 
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homogeneous pixels representing an object) (Yang et al., 2010a; Wu & Yuan, 

2011). Combining these classifications with other LID implementation and design 

constraint layers, such as slopes, floodplain zones, soils, can satisfy watershed-

scale user-defined objectives via GIS-based postprocessing (Malczewski, 2004). 

For instance, conditional filtering based on targeted, user-defined values 

(Malczewski, 2004), spatial clustering (Jacquez, 2008), and hotspot analysis 

(Anderson, 2009) can improve the identification of locations, magnitudes, and 

shapes of statistically-significant clusters. In this case, clusters are represented 

by the design, implementation, benefits, and costs of individual LID practices 

throughout the watershed. !

The goal of our work is to present an applied methodology combining 

OBIA with geospatial analysis to identify locations for LID implementation 

meeting both the user’s requirements and the physical constraints of the 

watershed. For this application, the LID practice known as rainwater harvesting 

(RWH) was targeted. We highlight the application and quality assessment (QA) 

of OBIA classification of watershed land cover/land use (e.g., rooftops). We then 

address the geospatial analysis components required to filter, quantify, and 

design RWH units meeting user requirements and watershed constraints aided 

by customized toolsets. Finally, accuracy estimation of the suitability 

methodology was applied to the case study watershed, Chollas Creek, Sand 

Diego, CA, USA. Specific objectives included the creation of a reliable process 

rule set for OBIA, testing performance for varying spatial scales of 

implementation, and assessing the resultant RWH framework relative to a 
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traditional, uniformly applied scenario. This work ultimately provides a novel 

methodology for assessing a watershed’s current conditions, via publicly-

available elevation, spectral, and thematic datasets, to design and assess the 

potential long-term stormwater management benefits from LID at the watershed-

scale. !

!
!

3.3 Background 

Urban infrastructure, stormwater management in particular, may be 

increasingly vulnerable to changes in climatic and anthropogenic conditions 

(Bates et al., 2008; Dorfman & Mehta, 2011), given the assumption of parameter 

stationarity in their design (Denault et al., 2006). Input stationarity implies that the 

runoff load used for sizing is assumed to remain constant within an expected 

window of variability over time (Denault et al., 2006). As such, historic designs 

may become over- or under-utilized as a function of future storm events. In 

response, stormwater management practices (e.g., low impact development, 

LID) have evolved to mimic natural, predeveloped conditions by focusing on 

annual rainfall distribution patterns rather than single return events (e.g., 10-year, 

24-hour). !

LID consist of decentralized practices, providing source control with 

smaller capacity units. Mitigation is accomplished via the capture, storage, 

infiltration, and treatment of stormwater runoff (Prince George’s County, 1999; 

USEPA, 2007a). In 1999, Prince George’s County released a seminal document 

detailing integrated design strategies for sustainable management of stormwater 

runoff. This guide highlighted the importance of site planning, hydrologic 
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principles and hydrologic analysis tools (Prince George’s County, 1999), all of 

which necessitate site-specific knowledge on the part of the designer. Research 

repeatedly cites local conditions’ applicability and effectiveness of the stormwater 

control measure (SCM) as the most important component of data analysis 

(Marsalek & Chocat, 2002; NRC, 2008). In addition, nontechnical obstacles to 

LID success include property owner motivation and education, such that 

sustainable modifications to land cover and policies result (Braden & Johnston, 

2004; Chocat et al., 2007). By targeting these individuals, who manage the 

largest proportion of developed land (e.g., residential), the likelihood of achieving 

significant improvements in stormwater runoff mitigation increases (Lee & 

Heaney, 2003). Supporting research found that LID practices provide quantifiable 

reductions in annual average runoff volumes, peak discharge rates, and pollutant 

loading (Dietz, 2007; Han et al., 2008; Roy et al., 2008; Lim et al., 2010; Spatari 

et al., 2011; Jia et al., 2012). An empirical study by Burns et al. (2014) monitored 

demand supplementation and runoff management impacts from RWH (capacity 

range of 3,000 to 28,000 liters per household). Findings stress the importance of 

regular, large domestic demands to yield substantial stormwater runoff 

reductions in addition to larger unit capacities (Burns et al., 2014). !

It should be noted that the majority of this research has focused on 

smaller spatial scales (e.g., household, parcel, and neighborhood). 

Consequently, a knowledge gap results that limits their extension to expanded 

scales of planning, design and hydrologic analysis (Bedan & Clausen, 2009; Lee 

et al., 2012). When empirical data at the watershed-scale are available, as in the 
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research by Yang and Li (2013), results reinforce the effectiveness of integrated 

suites of LID in improving stormwater runoff reductions and water quality 

enhancements. However, due to the depth and complexity of data required for 

such analyses, duplication of similar efforts is recognized as difficult (Thomas et 

al., 2003; Jensen et al., 2010). Beyond data needs, accurate representation of 

LID at the necessary local and regional scales is a challenge due to the 

exhaustive methods and knowledge required on the part of the user to 

characterize and quantify impacts (Burian & Pomeroy, 2010). !

This approach of targeting site-specific stormwater management with 

decentralized source controls in pursuit of wider goals (e.g., watershed health) 

has been termed ‘flow-regime management’ by Burns et al. (2012) and is still in 

its infancy. Despite the aforementioned limitations, researchers increasingly 

extrapolate and apply LID principles either uniformly or as over-simplified, 

disconnected measures to address broader issues. This generalization coarsens 

the resolution of both model representation and simulation results. For instance, 

a study of urban rooftop runoff control practices related a 10% conversion of 

rooftop infrastructure in the city of Brussels to a watershed runoff reduction of 

2.7%, with single buildings capable of reducing 54% of annual runoff (Mentens et 

al., 2006). For larger areas comprised of heterogeneous land covers and land 

uses, site-specific planning and design requires intensive analysis capable of 

discerning between datasets and underlying variability. Thus, it is imperative that 

methods be developed that efficiently assess and characterize large, urban 

datasets for direct application to hydrologic models and subsequent simulations 
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(Pataki et al., 2011). !

Traditionally, hydrologic modeling of urban watersheds was dependent 

upon the modeler’s judgment of parameters and methods, such that realistic 

conditions were recreated within the model framework. This involved time-

intensive manual delineation and digitizing of vector data layers from aerial 

imagery or in-field observations (Thomas et al., 2003; Sterr & Yui Lau, 2012). 

Improvements in remote sensing (e.g., Light Detection and Ranging, or lidar) and 

image analysis have increased precision in identifying and visualizing land cover 

types and objects (Wechsler, 2007; Amatya et al., 2013). Compared with manual 

delineation, this has resulted in finer resolutions of hydrologic model inputs, 

including basin area, slopes, flow paths, connectivity, and channel lengths 

(Rumman et al., 2005; Kunapo et al., 2009; Amatya et al., 2013). Finer dataset 

resolutions are also pivotal to identifying, classifying, and modeling watershed 

boundaries, surface classes, and characteristics that impact hydrology (Luzio et 

al., 2005; Rumman et al., 2005; Kunapo et al., 2009; Cao et al., 2012). As a 

result, this has improved the ability of water resources engineers and urban 

planners to model and analyze the structure and functionality of stormwater 

management plans. !

Of particular importance to these improvements are remotely sensed 

datasets, which have expanded the abilities of modelers to assess both local and 

regional areas (James et al., 2007; Kunapo et al., 2009). In particular, lidar has 

been increasingly employed in the visualization, characterization, and delineation 

of both surface and hydrologic models regardless of obstructions (e.g., tree 
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canopy and buildings) and surface types (Frazier & Page, 2000; James et al., 

2007; Im et al., 2008; Jensen et al., 2010; Zhu et al., 2012). Lidar complements 

traditional high-resolution color imagery by providing elevation and structural 

information. This reduces misclassification due to shadows and improves 

extraction of specific land uses separated by relative elevation (e.g., rooftops 

versus paved areas). For example, a small catchment (e.g., 550 hectares) with 

unusually rich resources (e.g., GIS, lidar, and orthoimagery) was used to test the 

siting of bioretention and green rooftops (Jensen et al., 2010). While researchers 

were able to extract suitable sites, they acknowledged difficulty in duplication 

stemming from the limited availability of pertinent resources (Jensen et al., 2010). 

As such, the means to reliably and accurately extract and filter these resources 

for large(r) areas must be made available for multiple users’ skillets. !

A potential solution to this resides in the ever-increasing resolution and 

spatial extent of publicly-available datasets, including NAIP aerial imagery and 

lidar point cloud data. However, these improvements are also the source for 

increased complexity and heterogeneity inherent in the data. As such, there 

exists greater potential to complicate classification methods and reduce overall 

accuracy, especially when employing pixel-based image analysis, or PBIA (Myint 

et al., 2011). Since PBIA classification algorithms are based solely on pixels’ 

spectral values, the potential for confusion between different objects or surfaces 

with similar spectral signatures is more likely (Hsieh et al., 2001; Zhu & 

Blumberg, 2002; Yang et al., 2010a). Alternatively, object-based image analysis 

(OBIA) is applied to both spatial and thematic elements within the scene. OBIA 
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excels over PBIA in that it incorporates scale, context, geometry, and color (Yang 

et al., 2010b; Wu & Yuan, 2011). Research on OBIA applications and 

methodologies continually address land cover and land use mapping. For 

instance, in extracting impervious surface areas, Hu and Weng (2011) achieved 

greater accuracy in residential areas over the more complex, central business 

district (CBD), registering 95% and 92%, respectively. The combination of lidar 

datasets with spectral imagery is increasingly shown to improve OBIA 

classification results, with the normalized Digital Surface Model (nDSM) proving 

to be the most important feature for improvement (Blaschke, 2010; Aguilar et al., 

2012). Using these methods to provide accurate thematic map layers, the goal of 

watershed stormwater planning and management then becomes finding and 

designing LID practices for suitable locations.!

Determination of locations meeting user-defined objectives can be 

achieved with GIS-based postprocessing, which improves the model analyst’s 

ability to weigh and filter multiple datasets (Malczewski, 2004). Site search 

analysis explicitly extracts areas, along with spatial characteristics, meeting 

suitability criteria (Malczewski, 2004). Specific search methods include multiple 

criteria decision analysis (MCDA) and spatial clustering analysis, which weigh 

complex factors and present recommendations based upon input criteria 

(Malczewski, 2004). Jacquez (2008) used spatial clustering to recognize patterns 

with visualization, spatial statistics, and geostatistics such that locations, 

magnitudes, and shapes of statistically significant pattern descriptors were 

identified. Hotspot identification has also been applied for targeting resources 
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and minimizing risk within a larger system (Anderson, 2009). The economic 

analysis of distributed LID practices is a growing field of research, combining 

cost-effectiveness with stormwater management benefits, such as flood risk 

mitigation (Kousky et al., 2013). !

!
!

3.4 Materials and Methods 

3.4.1 Case Study and Hydrologic Model 

The 3,110-hectare south branch of the Chollas Creek watershed, San 

Diego, California was chosen as the case study location. The heterogeneity and 

complexity of the existing land cover and land use provided adequate conditions 

for which the study’s objectives could be tested and improved. With PBIA, the 

watershed was found to consist of 52.7% impervious surface, a combined 43.9% 

pervious surface (e.g., grasses and tree canopy), and 3.4% water surface. An 

analysis of parcel level owner data found the total number of residential, single-

family households to be 20,787. Quantification of rooftop areas for a random 

sampling of 150 households yielded an average area of 186 square meters, 

which was multiplied by a conservative factor of 0.5 to account for losses 

resulting in an adjusted average rooftop area of 93 m2 (Walsh et al., 2014). The 

work completed by Walsh et al. (2014) focused on synthesizing a hydrologic 

model and assessing the impact of variations in a passive RWH program, 

comparing reductions in watershed and subcatchment runoff volumes and rates. 

Results found greater cost-effectiveness with smaller barrels (227 liters) versus 

larger cisterns (7,571 liters) for the specific catchment, with overall reductions 

ranging from 10.1% to 12.4% for the range of RWH unit sizes (assuming 100 
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percent of households were fitted with units). Further details of the watershed, 

the hydrologic parameters and models, and results can be found in Walsh et al. 

(2014). !

As a comparison for the application of the OBIA classification and LID Site 

Suitability methodology, rainwater harvesting was chosen as the targeted LID. 

The hydrologic models that were calibrated and validated through previous work 

(Walsh et al., 2014) served as the basis for applying and comparing the results of 

the proposed methodology. The original hydrologic models involved in this study 

included the base model, representing current conditions without additional LID 

practices implemented, and the 227-liter scenario model, representing an 

adapted base model in which all households implemented a single 227-liter 

rainwater harvesting barrel. These models are hereby referred to as BASE and 

UNI227, respectively. To model the results from the suitability methodology, the 

BASE model was adapted. For RWH, 227-liter barrels were implemented at all 

extracted households meeting the suitability criteria. This model is hereby 

referred to as LID227. As this research was focused on the application of the 

synthesized protocols to improve the siting and hydrologic modeling of LID 

practices, namely RWH, variations in the hydrologic model parameters were not 

considered. For instance, drain delay, drain coefficients, and unit sizing remained 

constant for both UNI227 and LID227.  

!
!

3.4.2 Classification 

An object-based approach was used to classify building rooftops within the 

study watershed, which required elevation (via lidar), orthoimagery, and thematic 
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parcel datasets for classification. Fig. 3.1 presents the workflow for the OBIA 

classification processes, with the following comments provided as guidance.!

(A) Lidar point cloud datasets were obtained for the watershed 

(approximately two-meter point spacing); however, the spatial extent of these 

datasets was limited, representing 75% of the total watershed. Datasets were 

then merged using BCAL Tools (BCAL LiDAR Tools ver. 1.5.3, 2013) and 

LAStools (Isenburg, 2013). These toolsets offer a suite of open-source options to 

process, analyze, and visualize lidar datasets, with LAStools providing additional 

ArcGIS plug-ins (Isenburg, 2013). For processing the lidar point cloud, a 

methodology similar to Shiravi et al. (2012) was adapted, including filtering points 

to extract rasterized surfaces representing the minimum (i.e., last), maximum 

(i.e., first), and bare earth returns. Erroneous, or No Data, values were replaced 

using ENVI’s replace values tool. As a check, a finer resolution bare earth raster 

was created from the 0.5-meter elevation contours (SanGIS, 2012) using ArcGIS 

(ESRI, 2013). Band math, which is the process of applying an operator to one or 

several bands (e.g., raster surface or aerial red band) to create a new band that 

is a function of the inputs, was then performed. One example of band math is the 

creation of the normalized Digital Surface Model (nDSM), which normalizes all 

objects of height from the minimum raster to the bare earth raster layer, or band. 

For this research, the nDSM was extracted with a method similar to Zhu et al. 

(2012), resulting in a raster, or band, featuring only objects of height, such as 

buildings and trees. To remove low ground objects (e.g., cars), a height filter of 

2.6-meters was instituted, leaving only objects with targeted heights. The filtered 



!

!

90!

nDSM was then used for classification.!

(B) Orthoimagery was obtained from the National Agricultural Imagery 

Program (NAIP) at one-meter resolution (USGS). Imagery dated from 2010, with 

a total of four bands (Red, Green, Blue and Near Infrared). To ensure the 

datasets were aligned, image-to-image spatial registration was used. To 

differentiate vegetation from other land surfaces, band math using the Near 

Infrared (NIR) and Red bands was completed, yielding the Normalized Difference 

Vegetation Index (NDVI) raster. In combination, the NDVI and lidar datasets have 

been found to improve distinction between natural and manmade structures, with 

greater NDVI and height values for trees, respectively (Zhu et al., 2012). The 

original and NDVI imagery datasets were then used for classification. (C) The 

thematic layer representing parcel boundaries was obtained for the study area to 

improve the classification for the scale required. All input dataset coordinates 

were converted to UTM, NAD83, Zone 11, California State Quarter Quadrangle 

(meters). The elevation, spectral, and thematic datasets were used for OBIA with 

eCognition. 

(D) The first step in OBIA undertaken was image segmentation, which split 

the input datasets into separate regions, or objects, as a function of the user-

defined parameters: shape, compactness, and scale. The shape factor adjusts 

for homogeneity relative to the object’s shape while compactness determines 

how smooth and compact the boundaries are for the object’s shape. The scale 

parameter determines the size of homogeneous objects, or the maximum change 

in heterogeneity that may occur in merged objects (Wu & Yuan, 2011). To 
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finalize segmentation weights and components, variations in scale parameters 

(5-50) and shape factors (0.1-0.9) were evaluated with respect to their impacts 

on classification, similar to Wu and Yuan (2011). Weights applied to the shape, 

compactness, and scale parameters for image segmentation were 0.1, 0.1 and 

15, respectively. For spectral input, weights were applied uniformly to the Red, 

Green, Blue, and NIR bands. Due to spatial discrepancy with the spectral inputs 

(one meter), the elevation dataset (two meter) was not included for image 

segmentation. Image segmentation was then carried out for the prior weights and 

components, resulting in object-based classes throughout the study area. (E) 

Next, qualitative and quantitative assessments of the resultant segmentations 

were provided with trial and error, assuring that the segmentation components 

were adequate. !

The process-based rule set for refinement of the segmented image was 

synthesized as a function of the elevation, spectral, and contextual input data. 

Since rainwater harvesting was the LID method chosen for the application, only 

two land cover classes were targeted for delineation: buildings and unclassified 

(e.g., everything except rooftops). The latter was disregarded in the geospatial 

analysis since rooftop runoff was the primary focus of the suitability analysis. (F) 

The first step in the rule set involved classification by elevation with the standard 

deviation filter, which is a relational function that calculates the standard 

deviation of an image object to its neighbors. Neighbors are defined as the 

relation image object at the same level, or elevation in this case. When the 

standard deviation is high, this indicates greater variation in height values within 
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a given area and, thus, can be classified as trees, whereas buildings will have 

low standard deviation values since they are relatively constant within a given 

area. (G) Refinement based on spectral information targeted the band indices 

NDVI and Ratio Vegetation Index (RVI). RVI is a band math procedure that 

relates NIR to Red. These steps further distinguished objects representing 

vegetation (H) Final refinement was based on contextual information, employing 

the mean difference to neighbors and number of brighter objects for elevation. 

The mean distance to neighbors assesses the difference between objects within 

a given distance (e.g., 50, based on the objects’ center of gravity) that fall within 

that mean area. This helped relate targeted groups of similar land cover types. 

With the number of brighter objects, refinement was based on normalized objects 

of height, with brighter cells indicating higher elevations and darker cells 

indicating lower elevations. In sequence, the process rule set functions were 

carried out, resulting in all classified objects representing rooftop areas. (I) 

Finally, these regions were merged and exported as a vector layer (polygon 

shapefile) for accuracy assessment and geospatial analysis in ArcGIS. It is 

important to note that, due to the limitation on the spatial extent of lidar data, only 

the fully classified subcatchments were used in the overall comparison of the 

classifications. !

To assess the accuracy of OBIA classification results, methods must go 

beyond simple pixel- and block-based approaches to determine whether the 

object is represented accurately (Whiteside et al., 2014). Geometric accuracy of 

shape and location is important when resultant images are required to drive 
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further analysis, such as in GIS or decision-making (Foody, 2002; Schopfer et al., 

2008; Whiteside et al., 2014). Heavily used in PBIA validation are confusion 

matrices, which are not able to provide the level of detail required for OBIA 

assessment (Whiteside et al., 2014). Therefore, an appropriate sampling design 

must be employed in assessing the accuracy of the OBIA classification (Foody, 

2002). For this study, we chose a simple random sampling method for accuracy 

assessment of thematic errors (errors of commission and omission). A similar 

approach was completed by Whiteside et al. (2014) to assess area-based 

validation of OBIA classifications. This method used random sampling accuracy 

assessment, which addresses the lack of observed rooftop area data for the 

entire watershed.!

Random distribution of sample points (n = 50) throughout the Chollas 

Creek watershed was provided via ArcGIS and in accordance with 

recommendations by Congalton (1991). A 100-m buffer was then applied to all 

random points, resulting in individual sample areas of 3.14 hectares. This 

established a total validation area of 157 hectares, representing 5% of the overall 

watershed area. A qualitative assessment of the randomly generated sample 

sites found them to be fully representative of the land use and land cover 

conditions found throughout the watershed (Foody, 2002). Manual delineation of 

building footprints within each sample site was completed using the NAIP aerial 

imagery. These validated polygons were used in the thematic and geometric 

accuracy assessments of the classification results for each area and throughout 

the watershed. Within ArcGIS, a Quality Assessment (QA) toolset was created to 
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determine the accuracy of land cover/land use classifications. The input layers to 

QA included the validated building polygons, classified building polygons, and 

sample site area polygons. The QA workflow consisted of quantifying the true 

positive, false positive, and false negative areas relative to the sample sites. 

These values were then used to construct the confusion matrix and assess the 

overall, user’s, and producer’s accuracies for the resultant classification. 

Assessment of nonthematic errors (e.g., misregistration) was completed with the 

RMSE for the location of centroids (Eq. 1) for spatial registration (Zhan et al., 

2005; Congalton & Green, 2009). QA completed this by converting the classified 

and validated polygons to points (i.e., centroids) and calculating the near 

distances between the two (e.g., within a 10-m radius). !

!
!

€ 

RMSEcentroid = xci − xRi( )2 + yci − yRi( )2[ ]i=1

n
∑ n …………………….………………..(1)!

!
!

For Eq. (1), xci and yci represent the classified coordinates while xRi and yRi 

represent the validated coordinates for the sample population, n. Assessment of 

the RMSE for the individual areas per sample sites was also provided (Eq. 2), 

where yi is the classified building area and represents the validated building area 

for the sample population, n.!

!
!

€ 

RMSEarea = yi − ˆ y i( )2

i=1

n
∑ n …………………………............................................(2)!

!
!
!
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3.4.3 Geospatial Analysis 

The first step in LID design and planning is to acquire the necessary 

datasets beyond the contributing drainage area, including the digital elevation 

model (DEM), elevation contours, land use, land cover, parcel boundaries, flood 

zones, soils, and stormwater infrastructure (SanGIS, 2012). Since rainwater 

harvesting was chosen as the applied LID practice, the rooftop classifications 

from eCognition represented the impervious area to be targeted by the 

stormwater management framework. Using the previously mentioned datasets, 

the hydrologic model was created via the delineation and quantification of 

catchment areas, land surface slopes, surface roughness estimates, depression 

storage estimations, and channel geometry and roughness characteristics. For 

hydrologic analysis of the suitable locations and designs, the model simulations 

were driven by long-term hourly precipitation data. Precipitation was obtained for 

the nearby San Diego Lindbergh Field airport (COOP ID 047740, 

32°44'N/117°11'W) (NOAA 2012), which is located approximately seven 

kilometers (km) from the watershed outlet. The precipitation record was 

determined to be uniformly representative of the local climatic conditions 

throughout the watershed. !

!
!
3.4.3.1 LID Site Suitability Toolset!

The LID Site Suitability (LIDSS) toolset was created to facilitate the 

identification and quantification of areas meeting user-defined criteria for 

stormwater management practices. The workflow for LIDSS, including the inputs, 

methods, commentary and outputs, is visualized with Fig. 3.2. !
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To filter the design constraint layers, the LID Site Suitability (LIDSS) tool 

was created. The goal of LIDSS was to identify specific locations throughout the 

expansive case study area as a function of user constraints, given the multiple 

datasets, for the LID practice chosen. To begin, LIDSS requires input be in raster 

format; thus, dataset manipulation was applied to create a slope raster from 

elevation contours. The resultant raster was validated with DEM data acquired 

for the same location. To determine locations meeting the ideal soil, slope, land 

use, and land cover conditions, LIDSS relies on conditional if-then statements to 

filter through datasets on a cell-by-cell basis. Resulting filtered areas are 

presented as both raster and vector layers, as determined by the analyst. Either 

format allows for further analysis or quantification of identified locations’ design 

parameters. Pertinent parameters include area, perimeter, slope, soil, and unique 

identifier for each site. With this information, users are prompted to establish a 

sub-area upon which to integrate the extracted locations layer, such as the parcel 

or subcatchment. Next, the tool recalculates the design parameters for the sub-

area discretized layer and exports the results as a geodatabase. This data 

attributes table can then be opened with any application for further analysis and 

design (e.g., Microsoft Excel). LIDSS’ framework ensures that selected locations 

are not only a function of user-specific, local criteria but also spatially accurate 

representations of existing conditions. This toolset and research improves upon 

the traditional, uniform application of LID principles to the watershed-scale of 

planning, design, and analysis. !

In applying LIDSS, users were capable of establishing a maximum slope, 
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for which values in exceedance would be removed from the resulting thematic 

map. Next, the soils and land use datasets were manually simplified to represent 

infiltration rates and general uses.  Land use was grouped into one of five 

classes: residential, road/paved, pervious/vegetated, building (not residential), 

and water surface. Users were then able to further filter based on infiltration and 

land use requirements, yielding locations satisfying the three former design 

constraints. LIDSS was shown to be capable of filtering through these datasets, 

guided by user-defined constraints, to yield locations either meeting or exceeding 

the required range of parameters. For users not familiar with design constraints 

of LID, these can be found in numerous documents, such as the Prince George’s 

County LID Manual (1999), which has been adapted and summarized for this 

research (Table 3.1). !

For this application of LIDSS, specifically targeting the planning and 

design of rainwater harvesting, the only applicable layer became the OBIA 

classified dataset (e.g., Land Use Raster). For this study, both the parcel and 

subcatchment thematic layers were joined as the subarea analysis layers, such 

that the hydrologic model (LID227) accurately represented RWH for the pertinent 

scales. Running LIDSS resulted in the aforementioned geodatabase file, 

containing the subcatchment identifier, parcel identifier, area of rooftop (m2), and 

perimeter of rooftop (m2) for all of the classified rooftop areas within the 

watershed.!

!
!
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3.5 Results 

3.5.1 Classification and Suitability Analysis 

OBIA classification resulted in the quantification of 273 hectares of total 

rooftop area throughout the Chollas Creek watershed (negating those 

subcatchments not fully classified). This translated to an average rooftop area of 

213 m2 (102 – 517 m2) per subcatchment, while the total rooftop area per 

subcatchment averaged 4.0 hectares (0.3 – 22.5 hectares). The total number of 

households meeting the classification and analysis methodology was 14,263. 

Excluding the subcatchments that were not completely classified, the total 

number of rooftops was reduced by 10.2% to 12,813. !

The rooftop analysis completed by Walsh et al. (2014) was adjusted for 

the same subset of catchments, resulting in a total of 14,412 households. This 

represented a 30.7% reduction in the potential number of RWH locations from 

the original UNI227 model. In their work, Walsh et al. (2014) quantified the 

average rooftop area to be 186 m2, which was adjusted by 50% to 93 m2 to 

account for losses. Combined with the subset of households per subcatchment, 

this resulted in 268 and 134 hectares, respectively, for total rooftop area. Since 

only the adjusted rooftop area was employed by Walsh et al. (2014) for scenario 

comparison, the same conditions were used for this study. This equated to nearly 

51% less impervious area managed by RWH for UNI227 compared with LID227. !

The LIDSS toolset was found capable of identifying and quantifying the 

criteria-specific locations for the range of user requirements, including residential 

rooftop land use and land cover, no slope or soil restrictions, and not to be 
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implemented within the 100-year flood zone. An example of the classified rooftop 

areas meeting the LIDSS constraints (e.g., Buildings) is presented, with validated 

areas presented with solid black boundaries within sample sites (Fig. 3.3). 

Results from the centroid RMSE are visualized in Fig. 3.4. 

!
!

3.5.2 Accuracy Assessment 

The resulting OBIA rooftop area classification was found to have an 

overall feature classification accuracy, measured by total positive classified pixels 

to validated pixels, of 91.3%. An accuracy of 75.2% was achieved for the 

Buildings feature class producer’s and user’s accuracy throughout the 50 sample 

sites, as indicated by the confusion matrix (Table 3.2). Calculation of the average 

RMSEArea resulted in 0.7% (208 m2), which represents the ratio of the RMSE 

area to the total sample site area. !

There appeared to be confusion between some rooftop areas with similar 

spectral reflectance values to that of pavement and red soil, as indicated in Fig. 

3.3. This supported the accuracies achieved with the confusion matrix. The 

results of the OBIA classification accuracy assessment for sample sites’ versus 

validated datasets are presented in Fig. 3.5. This plot also shows that the 

classification protocol resulted in slightly greater overall sample site areas 

delineated versus those validated (average of 5% greater). The extracted R-

squared value of 0.74 was deemed acceptable for this application. Relative to the 

location of the centroids, a 3.3 m RMSEcentroid was calculated. This indicated that 

a classified centroid would be within +/- 3.3 m of the actual, or validated, centroid.!

!
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3.5.3 Hydrologic Model Alteration 

With the suitability results from LIDSS, the BASE model was altered to 

represent the new parameters associated with the residential households 

targeted for RWH. Hydrologic simulations were carried out for all of the models 

with the long-term hourly precipitation record driving simulations. Results were 

recorded at hourly time steps and collated for both the watershed outlet and 

subcatchment-scales. Results were then broken down annually for further 

analysis. At the watershed-scale, with results assessed at the watershed outlet 

node, reductions resulting from the uniform (UNI227) and suitability (LID227) 

methodologies are presented in Table 3.2. Using Analysis of Variance (ANOVA) 

for annual results found watershed outlet volumetric reductions to be significantly 

different [F(1,124)=190.7, p=0] between the UNI227 and LID227 model 

simulations. All watershed-scale reductions followed a normal distribution. For 

the fully classified subcatchments, results followed the trend of increasing 

reduction with increasing LID-targeted area. However, the application of RWH 

did not produce reductions for all subcatchments. For instance, subcatchments 

D49 and D69 simulated a 5% and 10% increase for the long-term record, 

respectively. For the range of all other subcatchments, reductions can be found 

in Table 3.4. !

!
!

3.6 Discussion 

The combination of the accuracy of the OBIA classification targeting 

rooftop areas with the increased efficiency via the related toolsets (e.g., LIDSS, 

QA) reveals the novelty of this methodology to urban water resources 
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engineering. This research improves upon the approaches of past works that 

employed the assumption of uniformity due to either limited data availability or 

lack of analyst time and resources. The suitability methodology and toolsets stem 

from a discipline with a long history of applying similar methods to quantify land 

cover and land use for numerous other assessments. The ability to more 

efficiently characterize and quantify the land cover and land use components of 

urbanized watersheds allows designers and planners to focus their attention on 

enhancing the sustainability of the water infrastructure with finer resolution 

results. With reference to Fig. 3.5, it appears the OBIA methodology 

overclassified the rooftop areas for the sample site locations. It is expected that 

this overclassification results from coarseness of elevation data.  As a 

comparison, classification accuracy (92%) was similar to that targeting 

impervious areas for residential and densely urbanized (e.g., CBD) locations, 

95% and 92%, respectively (Hu & Weng, 2011). In terms of time required, the 

manual delineation of the 1,500 building areas for the 50 sample sites was just 

over 14 hours. As previously stated, these sample sites totaled only 5% of the 

entire watershed, which has an average population density of 5,400 persons per 

km2 (City Data, 2011). Thus, for the majority of stakeholders and regions without 

vast resources, such as existing thematic maps representing building footprints, 

the proposed suitability methodology and toolsets can improve not only 

outcomes but also monetary savings otherwise spent on labor intensive duties, 

such as digitizing land use/land cover.!

Beyond accuracy and efficiency, LIDSS improves the ability of the user to 
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both vary the constraining parameters to meet local conditions and thresholds 

and visualize these variations for the locations extracted. The ability to 

manipulate constraints as a function of watershed conditions, based on site-

specific criteria, provides a powerful stand-alone tool that is capable of 

functioning with many common, stand-alone software programs, such as 

Microsoft Excel and ArcGIS. Specific to the application of RWH, LIDSS not only 

identified household areas for both parcel- and subcatchment-scales but also 

allowed the analysts to design a RWH framework mitigating all suitable 

contributing drainage areas. This application could have been further refined to 

include commercial and industrial buildings by expanding the conditional 

statement pertaining to land use or cadastre datasets. Similarly, if an infiltration-

based practice was the focus of the study, LIDSS users have the potential to 

establish constraints on soils (i.e., infiltration) and groundwater data. !

Finally, the suitability methodology provides users the ability to manipulate 

the output geodatabase file as a function of local or individual design 

requirements, such as the Water Quality Control Volume (WQCV) depth. This 

control more accurately translates and projects realistic conditions into the 

hydrologic modeling space. This is important for locations where parcels are less 

dictated by the lack of available area and, therefore, possess greater potential for 

cistern implementation. As robust models, such as SWMM, continue to make 

improvements with subarea routing, LID representation, and computational time, 

the methods and toolsets presented in this research can only further reinforce 

their importance for the average analyst, designer, and planner.!
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Extending results from OBIA classification and geospatial analysis to the 

hydrologic models and, by extension, to hydrologic simulations resulted in major 

differences between the UNI227 and LID227 scenarios. Compared with the 

method of uniform subcatchment application, based on a random sampling of the 

average rooftop area (n=150 households), LID227 simulated greater reductions 

in the overall watershed volumes and rates. For instance, the LIDSS method 

produced in an increase in both the long-term and annual average reductions 

ranging from 44% to 51%. At the subcatchment-scale, this range was slightly 

higher (46% – 55%), with a 22% average long-term volumetric reduction and a 

22% peak rate dampening. Focusing on individual subcatchments, annual 

reductions followed a similar trend to that of the overall watershed. !

!
!

3.7 Conclusions 

The proposed protocol and associated toolsets allow users to establish 

local requirements and to account for local constraints when searching for 

suitable locations specific to the LID practice(s) chosen. As with a site-specific 

LID design, the local guidelines should be observed in selecting parameters 

(Table 3.1). Application of the proposed methodology exhibited the ability to 

accurately account for the multiple datasets required when designing site-specific 

practices for expanded scales of implementation. Additionally, the time required 

to classify contributing drainage areas (e.g., individual rooftops) was greatly 

reduced with OBIA classification. Due to the open-source nature of LIDSS, user 

manipulation of inputs to account for variability in future climate and watershed 

development is a potential avenue for investigation. For instance, users can 
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employ resampling of land use datasets to represent alterations to or future 

projections in the existing conditions. Since precipitation datasets are also 

external of the toolset, yet pivotal to the hydrologic model simulations, users have 

the opportunity to further analyze vulnerabilities and the adaptive capacity of 

green and grey infrastructure into the future.  !

With respect to the OBIA classification component, the process rule set 

provided accurate areal approximations for household rooftops within the 

heterogeneous landscapes employing publicly-available datasets, with an overall 

accuracy of 92%. Producer’s and user’s accuracies for buildings were 72% and 

74%, respectively (see Table 3.2). These values indicate the probabilities that a 

building on the ground will be classified correctly and that a building classified as 

such will actually be a building, respectively. For the random sample sites 

assessed, a RMSE of 0.7% (218 m2) for the OBIA methodology was found to 

adequately extract and quantify rooftop areas throughout the heterogeneous 

landscape assessed. Limitations related to the classification included the 

discrepancy in spatial resolution between the elevation and spectral datasets. 

Choice of a different surface interpolation algorithm and improved 

orthorectification of datasets is anticipated to improve classifications. In applying 

the results to amend the base input file (BASE) for SWMM, results found the 

suitability protocol (LID227) to result in stronger positive correlations between 

stormwater runoff reduction and watershed area targeted, as compared with the 

uniform method (UNI227). Researchers determined this to further reinforce the 

accuracy of the classification method and LIDSS, since building 
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misclassifications (e.g., over- and under-simplifications) with UNI227 resulted in 

skewed hydrologic reductions that reduced the expected strength of the 

correlation.!

The significance of this study resides in its improvement upon traditional 

methods of both LID and watershed-scale design employing LID principles. OBIA 

and LIDSS improve the ability of users to assess variability of local inputs and 

constraints, which are pertinent to LID planning and design. This project 

establishes the necessary baseline for incorporating additional datasets that 

influence both current and future mitigation plans. For instance, the ability to 

incorporate future urban build-out scenarios, from agent-based modeling, and 

greenway development improves the targeting of suitable sites throughout 

dynamic urban watersheds. Combining suitability results and methodologies with 

hydrologic models allows users to simulate and analyze the hydrologic 

responses of various scenarios relative to local thresholds and objectives. More 

importantly, the inclusion of monetary costs and benefits improves the ability of 

municipalities to establish tiered implementation plans as a function of budget 

and future projections of growth and build-out.  !

The topic of repurposing existing green space within the built environment 

to satisfy multiple objectives, including environmental, ecological, and social 

improvements, stands to benefit from such research (James et al., 2009). The 

ability to accurately classify existing and historical land use and land cover 

conditions with freely available public data extends to all of these realms, as 

indicated in past OBIA research on the complex urban-natural transition 
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(Tuominen & Pekkarinen, 2005), the range of land uses (Platt & Rapoza, 2008), 

urban area parcel-level classification (Zhou & Troy, 2008), and urban tree cover 

monitoring (Moskal et al., 2011). However, extension to watershed LID planning 

and design remains an under-researched area in literature. As such, this 

research provides a basis for future research requiring assessment of current 

watershed conditions to site and design LID practices that are representative of 

user requirements and physical constraints. !

Building upon this work, the researchers are in the process of developing 

a prioritization protocol that combines the suitability analysis toolsets with 

hydrologic and cost analysis models. This work will further the ability and 

efficiency of users to refine targeting methods by focusing on stormwater 

hotspots and budgetary constraints. Future research will provide a hierarchy of 

potential applications and implementation plans for users, ranging from urban 

planners to municipal engineers. The Chollas Creek Watershed will, again, be 

used as the case study location. !
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Figure 3.1: OBIA classification workflow. Comments are linked to the in-text methodology section.!
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!
Figure 3.2: LIDSS workflow for filtering datasets: A. User defines the maximum slope allowed in the resulting 
Maximum Slope Constraint, B. User establishes the land cover type to extract as a function of the area satisfying 
slope criteria, C. User determines the soil type for conditional extraction of the land use dataset, and D. User 
extracts the land use areas that satisfy the previous steps’ (A-C) results. The output, Maximum Slope, Land 
Cover, Suitable Soils, and Land Use Constraints, presents the suitable areas filtered according to user criteria 
guided by Table 3.1.!
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!
Figure 3.3: Sample area results presenting rooftop classification and 
validation polygons. Qualitative analysis of results indicates minor 
confusion between rooftops with reflectance values similar to paved 
objects, despite inclusion of lidar.!
!
!



!

!

110!

!
Figure 3.4: QA visualization for both area- and location-based RMSE for 
classified and validated buildings throughout sample sites.!
!
!
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!
Figure 3.5: Comparison of classification accuracy assessment employing 
randomized sampling sites (n = 50, 3.14 hectares). Axes provide sample 
summation of classified and validated building areas (hectares).!
!
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Table 3.1: LID design constraints, adapted from Prince George’s County (1999).!
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Table 3.2: Confusion matrix for validated (column) and classified (row) feature area for all accuracy assessment 
sample sites.!

!
!
!
Table 3.3: Watershed-scale hydrologic impacts for UNI227 and LID227.!

!
!
!
Table 3.4: Subcatchment-scale hydrologic impacts for UNI227 and LID227.!

!
!
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CHAPTER 4 

!
!

GREEN INFRASTRUCTURE PRIORITIZATION 

PROTOCOL!

!
!

The proposed journal article, entitled Prioritization of Site-Suitable Green 

Infrastructure Practices, will be submitted to the Journal of Urban Planning and 

Development Summer 2014 with my co-author, Dr. Christine Pomeroy. This 

journal provides the best venue for the research goals of Chapter 4, targeting 

civil engineering aspects of urban planning, such as the coordination of planning 

and programming of public works and utilities, and the development and 

redevelopment of urban areas (ASCE 2014). While this journal currently only has 

an impact factor of 0.95, it is just over a decade old and increasing with time 

(e.g., 5-year impact factor of 1.17). !

!
!

4.1 Abstract 

This paper presents the development and application of a watershed-

scale rainwater harvesting (RWH) prioritization study, based on cost and 

hydrologic reductions (i.e., cost-effectiveness). Uncertainty analysis with Monte 

Carlo Methods (MCM) was used to evaluate the impact of subcatchment percent 

imperviousness on watershed hydrologic response and subcatchment-scale LID 
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effectiveness. Regional precipitation datasets for the Mountain West, Southwest, 

Southeast, East Coast, Midwest, West Coast, and Pacific Northwest were used 

to drive continuous hourly rainfall-runoff simulations (1960-1991). This provided 

an analysis of regional climatic impacts on hydrologic response and RWH 

effectiveness. !

The authors present a Prioritization Protocol, with related toolsets, that 

design, alter the hydrologic model input file, and target household RWH as a 

function of user-defined constraints and thresholds. Geospatial distribution and 

analysis of long-term hydrologic simulations and life-cycle costs (including 

capital, operation and maintenance, and replacement) for the Chollas Creek 

watershed, San Diego, California, USA provided cost-effectiveness estimates 

(liters of stormwater reduction per equivalent annual cost, L/$). Geospatial 

prioritization resulted in priority zones for initial targeting, which can be refined 

with finer-scale (e.g., household) hydrologic and suitability data. Prioritized 

results highlight the linear tradeoff between user-defined cost and watershed 

reductions (e.g., $1.0MIL for a 6.3% reduction). Uncertainty analysis indicated 

negligible impact from variations in subcatchment percent imperviousness on 

both watershed outlet volume and peak flow rate. Extended to RWH 

effectiveness, uncertainty analysis found RWH capable of buffering the impact of 

increasing subcatchment imperviousness on runoff (i.e., increasing runoff with 

increasing impervious area) by approximately 18%. For the Chollas Creek 

watershed, the cost-effectiveness methods were applicable for subcatchments 

with impervious areas less than 40 hectares. Application of the protocols found 
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that targeting watershed-scale reductions with RWH does not benefit from spatial 

prioritization for Chollas Creek. Analysis of regional climatic data indicated 

greater watershed hydrologic reductions for the Mountain West and West Coast 

regions. Overall reductions were found to be inversely proportional to individual 

event depths for all climates.!

!
!

4.2 Introduction 

Just as watershed-scale LID suitability analyses must account for site-

specific conditions (i.e., physical constraints), the prioritization of LID must be 

capable of targeting user-defined objectives, including stormwater management 

benefits and costs. This paper addresses the ability to successfully prioritize the 

allocation of suitably-located LID practices, using rainwater harvesting (RWH) as 

the focus. The implementation is a function of a larger stormwater management 

framework using RWH to mitigate stormwater runoff quantity. An uncertainty 

analysis assessing the impact of variations in subcatchment percent 

imperviousness on watershed response and LID performance was also 

completed. This research applies a customized Prioritization Protocol, building on 

previous work by Walsh et al. (2014; in review), and investigates the impacts of 

uncertainty in subcatchment percent imperviousness on both overall watershed 

and LID reduction responses.  

!
!
!
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4.3 Background 

4.3.1 Hydrologic Impacts of Urbanization 

Urbanized areas are complex, heterogeneous, and dynamic landscapes 

upon which planning, design and management must adapt to provide sustainable 

solutions to resource management (Foresman et al., 1997; Cadenasso et al., 

2007). Urbanization has resulted in the intensification of negative hydrologic 

impacts on stormwater runoff quantity, rates, and quality (Alley & Veenhuis, 

1983; Schueler, 1994; Lee & Heaney, 2003; EPA, 2007b). Stormwater runoff is 

any source of water that is intercepted by a catchment and not lost to 

abstractions as it travels through a watershed. The relationship between rainfall 

and runoff is complex and dependent upon antecedent soil moisture conditions, 

evaporation, infiltration, land cover characteristics and the distribution or duration 

of the precipitation (Isik et al., 2013). !

As changes in urban land use, land cover, and climate continue, increased 

stormwater runoff volumes, rates, and pollution concentrations can be expected, 

with synergistic amplification of impacts when alterations occur in tandem 

(Kirshen et al., 2008; Tong et al., 2012). In particular, Denault et al. (2007) 

indicate that efforts to mitigate small future increases in imperviousness (e.g., 5-

10%) are likely to be overwhelmed by climate change related increases in runoff. 

As such, adaptive measures must be expanded to include multiple constraining 

parameters.  

!
!
!
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4.3.2 Urban Watershed Stormwater Management Plans 

Traditional urban watershed drainage design, which relied on centralized 

stormwater controls, has been found to be increasingly inadequate (NRC, 2008). 

Centralized controls have resulted in greater durations of outflow rates and a lack 

of peak flow control for more frequent, smaller events that disturb downstream 

environments (Shaver et al., 2007; NRC, 2008). The paradigm shift that followed 

in response included the implementation of Best Management Practices (BMPs), 

which range from policy- to physically-based control measures. A BMP subgroup 

that follows this new paradigm includes low impact development (LID) practices. !

LID practices are source controls designed to recreate the pre-

development hydrologic conditions of the site. Specifically, the implementation of 

storage-based LID practices and pervious area routing of runoff (e.g., downspout 

disconnection) has been linked to improved stormwater runoff reductions 

(Brander et al., 2004; de Graaf & der Brugge, 2010; Spatari et al., 2011; Jia et 

al., 2012). One such application, rainwater harvesting (RWH), is unique in its 

ability to serve both runoff reduction and demand supplementation objectives. 

These targets, however, have been shown to exhibit tradeoffs with one another 

(Sample et al., 2012). !

The benefits of RWH over other LID practices include the feasibility of 

implementation as part of larger, integrated management frameworks, low 

maintenance requirements, greater independence from soil infiltration rate 

constraints, and greater potential for retrofitting of existing impervious, or 

developed, areas (Prince George’s County, 1999). With respect to the 
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homeowner, implementation of RWH can reduce water bills (Woods-Ballard et 

al., 2007; Foraste & Hirschmann, 2010) and supplement potable water demands, 

such as toilet flushing and outdoor irrigation (Mitchell et al., 2005a; 2005b; 

Rosemarin, 2005; Fletcher et al., 2007; Mitchell et al., 2007; Foraste & 

Hirschman, 2010). Potential limitations of RWH include storage capacity, reliance 

upon homeowner operation and maintenance, lack of direct water quality 

treatment, increased vector (e.g., mosquito) potential, restrictive local permitting 

and regulations, and additional infrastructure requirements (e.g., pumps, valves) 

to enable more complex end uses (Prince George’s County, 1999; Roy et al., 

2008; USEPA, 2013). Regarding sustainable watershed-scale management 

plans, Roy et al. (2008) highlighted the following seven impediments:!

1. Uncertainties in LID performance and cost, !

2. Insufficient engineering standards and guidelines, !

3. Fragmentation of responsibilities, !

4. Lack of institutional capacity, !

5. Lack of legislative mandates for sustainable management, !

6. Lack of funding and effective market incentives, and !

7. Resistance to change on the part of the public and government.  !

Future interdisciplinary research that addresses these impediments must, 

therefore, consider the processes, interactions, and governing policies of the 

underlying heterogeneous, complex, and dynamic landscape (Brown et al., 

2005). Distributing LID throughout a watershed has the potential to reconnect the 

hydrologic cycle, supplement existing system storage, and provide additional 
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treatment (Huber et al., 2006; Guo, 2008). However, prior to implementation, 

urban water management practices (e.g., LID) must be assessed for their 

collective ability to respond to future uncertainties at the scale of analysis, such 

as the watershed outlet (Benedict & McMahon, 2002; Maher & Lustig, 2003; 

USEPA, 2007a; Guo, 2008; Shuster et al., 2008; Endreny & Collins, 2009; NRC, 

2009; USEPA, 2011b). Research by Gilroy & McCuen (2009) reinforced the 

importance of microscale (e.g., parcel) location and volumetric capacity when 

maximizing overall benefits. Often, location is overlooked with respect to 

stormwater management policies, which necessitates improvements in LID 

design procedures and cost benefit analysis to scale up and expand the foci of 

stormwater control systems (Schneider & McCuen, 2006; USEPA, 2007a; Pitt & 

Clark 2008; Roy et al., 2008; Gilroy & McCuen, 2009; Ahiablame et al., 2012). 

Prioritization is a method that incorporates site search components to distribute 

resources based on suitably-informed frameworks, hydrologic results, and cost 

estimations. !

!
!

4.3.3 Prioritization of LID Implementation and Design 

Considerations 

Proper LID implementation and design requires in-depth understanding 

and expertise on the part of the designer (Dietz, 2007; Han et al., 2008; Pitt & 

Clark, 2008; Spatari et al., 2011; Vermonden et al., 2011). Deviation from a case-

by-case LID application requires greater time and resources as the scale 

increases (NRC, 2008). For instance, comprehensive plans, such as the US 

EPA’s Smart Growth program, assess multidimensional parameters, including 
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ecological, economic, social, and planning, that aim to maximize benefits without 

creating redundancies (Hurd et al., 1999; Baycan-Levent et al., 2009; USEPA, 

2013). With respect to economics, both policy- and physically-based options 

must be assessed to ensure cost-effectiveness is maximized for large areas. For 

instance, no-cost municipal zoning and subdivision regulations can improve cost-

effectiveness by requiring neither size nor albedo modifications to the existing 

built infrastructure (Stone & Norman, 2006). Similarly, variations in climatic 

conditions should be investigated for their impact on costs and benefits of LID 

frameworks. This is especially pertinent for municipalities with limited budgets. As 

such, the ability to capture the spatial and temporal dynamics of the underlying 

landscape can improve the prioritization of suitable networks for the target 

watershed (Akbari et al., 2003; Akbari, 2008). !

As economic thresholds are often the limiting factor in hydrologic 

mitigation plans, the ability to target resources to achieve the best result is 

preferred. Targeting is accomplished with increasing accuracy through remote 

sensing analysis (i.e., classification) of landscape data, hydrologic analysis, 

geospatial analysis, and geostatistical analysis of influencing datasets. For 

instance, conditional filtering based on user-defined values (Malczewski, 2004), 

spatial clustering (Jacquez, 2008), and hotspot analysis (Anderson, 2009) were 

shown to improve the identification of locations, magnitudes, and shapes of 

statistically-significant clusters. Clusters, for instance, can represent the 

simulated benefits (e.g., hydrologic reductions) and costs related to RWH 

distributed throughout the watershed. Despite the increasing prevalence of 



!

!

129!

considering multiple criteria for suitable spatial placement of LID with GIS 

resources and tools (e.g., multicriteria decision analysis, or MCDA), there 

remains a significant investment of time, resources, background expertise and 

technical knowledge on the part of designers and planners (Malczewski, 2004; 

Pitt & Clark, 2008; Burian & Pomeroy, 2010). When extensive, empirical data are 

available for expanded scales of LID analysis, as in research by Yang and Li 

(2013), the depth and complexity required to prioritize suitability results remains a 

limiting factor (Thomas et al., 2003; Jensen et al., 2010). !

GIS-based postprocessing (i.e., site search analysis) can improve the 

ability to weigh and filter multiple datasets when assessing locations’ ability to 

meet user-defined constraints (Malczewski, 2004). Specific search methods 

include MCDA and spatial clustering analysis, which weigh complex factors and 

present recommendations based upon input criteria (Malczewski, 2004). Jacquez 

(2008) used spatial clustering to recognize patterns with visualization, spatial 

statistics, and geostatistics such that locations, magnitudes, and shapes of 

statistically significant pattern descriptors were identified. Hotspot identification 

has also been applied for targeting resources and minimizing risk within a larger 

system (Anderson, 2009). !

Site search analysis identifies the most critical problem areas to be 

targeted with available resources first. Site search examples are common in 

greenway and conservation planning and management studies, such as the 

Maryland Green Infrastructure Assessment (Weber, 2006) and the New York 

Green Infrastructure Planning for Improved Stormwater Management in Central 
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New York (Central New York Regional Planning & Review Board, 2012). 

Similarly, spatial decision support systems (SDSS), such as the Watershed 

Management Priority Indices (WMPI) framework by Zhang et al. (2011), prioritize 

based on weighting of multiple parameters based on the relative importance to 

the index considered. While these studies provide overall recommendations, final 

data resolution remains a function of user choice (i.e., weight). Improvement 

upon these methods, by allowing users to define constraints and thresholds 

rather than weights, can contribute to and improve future stormwater permitting, 

management needs, and modeling paradigms (NRC, 2008). For urban 

stormwater management research (e.g., flood risk mitigation), the targeting of 

long-term hydrologic benefits and economic valuations of distributed LID 

practices is a growing field of research (Kousky et al., 2013). This approach of 

targeting site-specific stormwater management with decentralized source 

controls in pursuit of wider goals (e.g., watershed health) has been termed ‘flow-

regime management’ by Burns et al. (2012) and remains in its infancy. !

This study synthesizes a Prioritization Protocol that builds on previous 

suitability analysis methods, toolsets, and results (Walsh et al., in review). The 

objective of Walsh et al. (in review) was to improve the ability of users to assess 

detailed watershed-scale parameter datasets to site LID as a function of local 

constraints. The methods listed and applied in this paper provide users with a 

framework for designing, implementing, and planning a basin-wide LID 

stormwater management plan based upon cost and hydrologic thresholds. 

Specifically, the application of RWH is targeted for analysis within the Chollas 
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Creek watershed, San Diego, CA, USA. The authors then address the 

uncertainty associated with the independent variable, subcatchment percent 

imperviousness, and how this impacts hydrologic runoff response(s) and LID 

benefit(s). The objective of this research is to improve users’ abilities to prioritize 

the implementation of suitably-designed LID practices with geospatial analysis 

techniques such that targeting of resources (e.g., cost) yields the greatest 

benefits (e.g., hydrologic reductions). Application of uncertainty analysis allows 

for further basin-specific analysis relating the variation in subcatchment percent 

imperviousness and watershed outflow response.  !

!
!

4.4 Materials and Methods 

This section provides an overview of the case study location, the materials 

and methods required for development and testing of the prioritization protocol 

and its toolsets, assessment of seven climatic regions’ impact on watershed 

hydrologic response, and an uncertainty analysis for the impact(s) of 

subcatchment percent imperviousness on overall watershed hydrologic 

response. !

!
!

4.4.1 Case Study Location 

The area studied was located in the Chollas Creek watershed, San Diego, 

CA, USA (Fig. 4.1). This 3,110-hectare basin provided the basis for development, 

implementation, and analysis of a passive watershed RWH plan using traditional 

design methods (Walsh et al., 2014) and a proposed suitability protocol 

employing remote sensing and geospatial analysis to improve the targeting of 
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RWH at the watershed scale (Walsh et al., in review). !

The watershed consists of 53% impervious cover, 44% pervious cover 

(e.g., grass, tree canopy), and 3% water surface. Walsh et al. (in review) 

quantified an average suitable rooftop area of 227 m2 (102 – 517 m2) per 

subcatchment. Total rooftop area per subcatchment averaged 4.0 hectares (0.3 – 

22.5 hectares). Based on the Suitability Protocol, the total number of households 

was 13,566 (Walsh et al., in review). In total, approximately 310 hectares (10%) 

of the overall watershed were attributed to rooftops. 

!
!

4.4.2 LID Prioritization Protocol 

The goal of the LID Prioritization Protocol was to achieve the greatest 

overall stormwater management benefits, as defined by user thresholds, for the 

watershed as a function of the simulated hydrologic and economic results. 

Geospatial analysis of datasets provided visualization and analysis for the 

ultimate prioritization of individual and collective placements of RWH in the 

Chollas Creek watershed. Fig. 4.2 provides a workflow for the steps associated 

with the Prioritization Protocol. !

!
!
4.4.2.1 Hydrologic Model Development and Simulation!

To assess the impact of LID on watershed-scale hydrologic response, the 

validated case study watershed hydrologic model, created through work by 

Walsh et al. (2014), was employed. Details of the datasets and work required to 

complete this portion are presented in the hydrologic analysis completed by 

Walsh et al. (2014). The hydrologic model representing base conditions (BASE), 
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prior to LID implementation, was used to simulate the long-term rainfall-runoff 

response with continuous, hourly precipitation data (1948-2012). Time series 

results were collected at the watershed outlet, with long-term results collected for 

each subcatchment. This model served as the foundation upon which suitability 

studies for variations in the implementation and design of a RWH management 

plan were based. Suitability scenarios were driven by the results (.dbf file) from 

the Suitability Protocol and LID Site Suitability (LIDSS) toolset, created and 

tested by Walsh et al. (in review). This output .dbf file contained the household-

specific values (e.g., rooftop area) and identifiers required to size and distribute 

individual RWH units throughout the watershed. !

!
!
4.4.2.2 Establishment of Thresholds!

To introduce benchmarks upon which to assess the protocol, hydrologic 

and cost thresholds were established. For this analysis, economic thresholds 

were instituted at the overall watershed scale and based on the maximum cost 

for RWH implementation. Economic prioritization of the subcatchments was 

established by the minimization of cost relative to the hydrologic benefits. The 

range of hydrologic thresholds was established before application of the 

Prioritization Protocol and assumed the user would account for and not exceed 

the maximum possible benefit. The maximum was established by implementing 

all suitable households with RWH (LID227). Hydrologic prioritization of 

subcatchments was assigned based on maximizing the individual volumetric 

reduction, or benefit, per equivalent annual cost (EAC). !

!
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4.4.2.3 LID Sizing, Modeling, and Simulation!

LID sizing and modeling were completed with results from previous 

suitability research (Walsh et al., in review) and the creation of the Rainwater 

Harvesting Analyzer, or RWHA (Fig. 4.3). The RWHA guided users, step-by-step, 

to create an amended SWMM .inp file, referred to as LID227, that accounted for 

RWH. The graphical user interface (GUI) for the RWHA allows users to define 

specific rain barrel characteristics.!

The RWHA facilitates the analysis and design of a watershed stormwater 

management network consisting of suitably located RWH units. To begin, users 

open the Microsoft Excel (.xlsm) file, which brings up the GUI. The GUI contains 

a list of directions for proper application of RWHA, including:!

1. Click Here to Upload Your ARCGIS.DBF File. This button allows the 

user to upload the ArcGIS .dbf file, which identifies the unique parcels 

and subcatchments deemed suitable for RWH implementation. 

Specifically, this file contains drainage areas and parcel areas. RWHA 

uses these areas (m2), to find the total required volume to be captured 

by the units. !

2. Click Here to Upload Your Existing SWMM.inp File. This button allows 

the user to upload the existing SWMM .inp file, which contains the 

parameters for the validated hydrologic model representing BASE 

conditions. Model parameters representing RWH will be added to this 

file with RWHA. !

3. Perform Volume Captured/# Barrels Employed Calcs. This button 
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creates a new worksheet within the tool that combines the parameters 

from the previously uploaded datasets (steps 1 and 2) and performs 

the following calculations. !

a. Summation of the total drainage area per subcatchment. This 

value represents the total area that will be managed, or directed, 

by the LID. The pivotal value is the percent of impervious area 

managed by the LID, which is obtained by dividing this summed 

value by the subcatchment impervious area.!

b. With the user-defined WQCV Depth (in), the total volume of runoff 

is calculated for each individual drainage area. This represents 

the total volume that must be managed, per household, by the 

LID. The total volume is then divided by the user-specified Size 

(gal), which results in a rounded-up value for the total number of 

units required to completely capture the targeted event. Users are 

provided with nominal sizes to choose from, which are linked to 

nominal parameters required by SWMM (Table 4.1). !

c. The total number of rounded up units, along with Rain Barrel 

Characteristics, are then collated to the subcatchment scale. !

4. Enter your WQCV Depth (in). This box allows users to type in a 

numeric value for the depth of analysis used to determine the total 

number of RWH units per household (step 3b).!

a. The water quality control volume (WQCV) is a function of the 

retention fraction of annual runoff to be retained on site, varying 
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as a function of climatic and catchment conditions (Chin 2012). 

For numerous states, this capture represents 80% to 95% of a 

site’s runoff; however, the targeted sizing parameter can also be 

established as a set percentage, or percentile, of annual 

precipitation events (Clar et al., 2004). For instance, the 85th 

percentile correlates to the depth for which 85% of cumulative 

annual events will be exceeded. !

5. The remaining fields, following the Rain Barrel Characteristics, are 

required to model and simulate the RWH units within SWMM. They 

include a unique identifier, the volumetric capacity of the units (step 

3b), the drain coefficient for the individual units, the drain exponent, the 

drain offset height, and the drain delay time. These values are user-

dependent, and caution should be exercised when choosing the best 

values for each scenario.!

6. Construct SWMM Input Modifier, can then be selected, which 

automatically creates a new, modified SWMM .inp file for the RWH 

scenario chosen by the user (LID).!

For this study, the 227-liter RWH barrel was chosen for analysis. The 

design WQCV depth for the study region was 16.5 mm, which is equivalent to the 

85th Percentile event. A drain duration of 24 hours was established with a drain 

coefficient value of 0.5. The drain exponent was set to 0.5 (i.e., orifice), the drain 

offset height was set to 0, and a 24-hour drain delay was entered. With these rain 

barrel characteristics and suitability results, the BASE SWMM model was 
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amended (LID227) with the RWHA. LID227 .inp was then used to perform 

hydrologic simulations with the long-term precipitation data for comparison with 

the BASE scenario. This provided a range of hydrologic responses relative to 

variations in user-defined constraints. The use of batch processing facilitated the 

collation of hydrologic simulation results, which targeted both the overall 

watershed (long-term, annual, daily, and hourly) and the subcatchment (long-

term) scales. Results for the hydrologic simulations were saved as .csv files at 

the subcatchment scale of analysis for relation to the geospatial framework. !

!
!
4.4.2.4 Cost Estimation and Analysis!

Linked with the RWHA is the ability for users to estimate the costs for the 

individual RWH units designed and implemented throughout the watershed. Cost 

estimation targeted both the parcel-specific units and the cumulative number of 

units at the subcatchment scale. Cost analysis was informed by the WERF BMP 

and LID Whole Life Cost Tools, Cistern toolset (Houdeshel et al., 2011) and 

implemented a low operation and maintenance (O&M) rate. This assumed 

homeowners would cover the majority of the annual costs for cleaning, emptying, 

and clearing drain lines for the units. A maximum annual O&M cost of $10 per 

unit was instituted, with full replacement of all units at 50 years. Replacement 

costs were accounted for as a net present value (NPV) per subcatchment, with a 

3.5% interest rate (i) over 50 years. With capital costs of purchasing, the NPV for 

replacement at 50 years, and annual O&M costs, the EAC (Eq. 1) was calculated 

for each subcatchment for the entire 62-year study.  

!
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€ 

EAC = P i 1+ i( )N 1+ i( )
N −1# 

$ % 
& 
' ( ………………..…………………………..………………(1)!

!
!

The total annual costs per year were represented by P while the total 

number of interest periods (N) was set 62. The EAC provided a comparison of 

results at the subcatchment scale for prioritized scenarios, with extension to 

annual hydrologic reductions (i.e., cost-effectiveness). The goal of this was to 

analyze each prioritized scenario as a function of the probability of annualized 

cost and hydrologic reduction. An interest rate, i, of 3.5% was applied. Results 

from the cost estimation were saved as .csv files at the subcatchment scale of 

analysis for relation to the geospatial framework. !

!
!
4.4.2.5 Geospatial Distribution and Analysis of Results!

With the results from the hydrologic and economic assessments, a 

geospatial framework was created for each subcatchment within the watershed. 

Geospatial analysis was accomplished by, first, joining the hydrologic and cost 

results and, then, applying a toolset that interpolated and iterated the 

classification of surfaces representing the input datasets. This toolset assessed 

the priority of locations based on the cost-effectiveness of each location within 

the greater watershed. !

!
!
4.4.2.5.1 Surface Interpolation and Analysis !

A surface, or grid, represents a functional surface that contains a single Z 

value for any (X,Y) location. Functional surfaces are different from three-

dimensional surfaces in that they can also represent mathematical expressions 
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and statistical surfaces. Interpolation resulting in grids provides cells of equal 

size, contained in rows and columns, associated with attribute values that have 

been predicted between sampled data points. Interpolation is based on spatial 

autocorrelation, which determines the degree of dependence between objects 

both near and far. !

The development of the prioritization toolset, PriorLID, allowed users to 

select the datasets to be interpolated and processed for any number of iterations 

to yield .dbf files indicating the total cost, total volumetric reduction, and average 

percent reductions for peak rates and outflow volumes relative to similarly 

grouped classes. PriorLID began with surface interpolation, using the Inverse 

Distance Weighted (IDW) method. Targeted datasets for interpolation included 

the long-term and annual volumetric reductions (as a fraction), long-term and 

annual peak rate reductions (as a fraction), and total costs. The IDW Method was 

chosen due to the density of point spacing with parcels, thereby capturing the 

local surface variations. With these surfaces, the cost-effectiveness raster was 

created with the math tool, Divide, and applying the volumetric reduction 

(denominator) and cost (numerator) raster datasets. This resulted in a cost per 

volume reduced by RWH ($/liter) surface. !

Unsupervised classification, with the ISODATA classification algorithm, 

was then applied to the processed cost-effectiveness raster surface. The model 

builder iteration tool, For, enabled multiple class choices to be assessed. This 

choice ranged from one to a user-defined maximum and provided various 

grouping scenarios of similar cost-effectiveness values throughout the 
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watershed. Values driving classification were a function of the interpolated cost-

effectiveness surface provided by dividing cost by the targeted hydrologic benefit. !

Results from the classification were established on a per class basis, with 

the following datasets extracted: mean volumetric reduction, mean peak flow rate 

dampening, total runoff volume reduction, and total cost of implementation. The 

summary statistics function was used to export individual tables containing these 

class-specific datasets after each successful iteration. The toolset then exported 

the results as database (.dbf) files for collation and further analysis with Microsoft 

Excel. A posteriori knowledge was required on the part of the analyst in 

determination of the best classification options. This was facilitated by ranking 

the results relative to the classes. Since hydrologic simulations were limited to 

the subcatchment scale, parcel level cost-effectiveness was not possible for this 

study. Thus, the subcatchment served as the finest scale for cost-effectiveness 

prioritization. Parcel-scale costs were visualized and assessed for priority purely 

as a function of costs. !

Users were then able to upload and assess the iterated classification 

results and choose the best options, via ranking of exported statistics, for 

targeting RWH. Once the best options were determined by the user, the LID227 

.inp model could be amended to represent the targeted scenarios. This model 

was renamed LID227p to represent the analysis of the prioritized subcatchments 

based on the cost threshold. Hydrologic simulations for LID227p were then 

carried out with the long-term precipitation data. Results were collated for 

analysis with respect to the hydrologic threshold. This provided users with 
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greater insight to the potential benefits based on targeted prioritization. !

!
!

4.4.3 Climatic Region Analysis 

Building on previous research by Steffen et al. (2013), the long-term 

precipitation datasets of seven climatic regions were used to drive the Chollas 

Creek hydrologic model. Regions included the Mountain West (Denver, CO or 

DEN), Southwest (Phoenix, AZ or PHX), Southeast (Atlanta, GA or ATL), East 

Coast (Baltimore, MD or BAL), Midwest (Columbus, Ohio or COL), West Coast 

(Los Angeles, CA or LA) for replication, and Pacific Northwest (Portland, WA or 

POR). Long-term simulations (1960-1991) targeted the impact of precipitation 

pattern variations on watershed-scale hydrologic reductions (e.g., outflow 

volumes and peak flow rates) via the suitably implemented RWH scenarios. The 

number of units remained constant for all model simulation permutations. !

The 85th percentile event depths for each region for the time period of 

analysis were estimated to be 25.4-mm (ATL), 22.1-mm (BAL), 14.7-mm (COL), 

8.9-mm (DEN), 20.6-mm (LA), 21.7-mm (PHX), 12.4-mm (POR), and 13.7-mm 

(SD). Average annual precipitation depths for each region were 1,286-mm (ATL), 

1,040-mm (BAL), 961-mm (COL), 391-mm (DEN), 304-mm (LA), 1,052-mm 

(PHX), 922-mm (POR), and 249-mm (SD).  

!
!

4.4.4 Uncertainty Estimation and Analysis 

As uncertainty is present in both parameters and model processes, it must 

be assessed to qualify recommendations. This was completed by, first, 

quantifying the basic statistics for the independent and dependent datasets. This 
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included the input parameters, subcatchment percent imperviousness and 

precipitation, and the results, watershed outflow volumes and peak rates. 

Frequency analysis was then applied to results. Finally, Monte Carlo Methods 

(MCM) of uncertainty estimation were used to assess the impact of variation in 

the subcatchment percent imperviousness values on the overall watershed 

hydrologic response (e.g., volume, peak flow rate). Fig. 4.4 provides an overview 

of the steps applied to perform uncertainty estimation and analysis for the 

research components. !

!
!
4.4.4.1 Statistical Analysis of Dependent and Independent Data!

In assessing sample datasets such as runoff volumes, flow rates (e.g., 

flood and low flows), and precipitation, statistical frequency analysis is commonly 

applied in hydrologic sciences. The goal of frequency analysis is to make 

predictions of either probabilities or magnitudes for random variables from a 

population (McCuen, 2005). For frequency analysis, the following steps were 

required to derive the frequency curve to represent the population (McCuen, 

2005), !

1. Hypothesize the underlying density function!

2. Obtain a sample and compute the sample moments!

3. Equate the sample moments and parameters of the proposed density 

function!

4. Construct a frequency curve that represents the underlying population!

The first step in this effort was to hypothesize the underlying density 

function. A log-transformed fit was hypothesized. Next, the computation of the 
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sample characteristics was completed, such that population characteristics could 

be estimated. This employed the method of moments, yielding quantification of 

the mean, standard deviation, and skew values for each sample dataset. From 

the long-term simulated results (i.e., dependent data), the annual peak outflow 

rate (CMS) and annual outflow volume (ML) were assessed. Independent data 

analyzed included the annual precipitation depth (mm) and subcatchment 

percent of imperviousness parameters. Since a logarithmic function was 

hypothesized as the underlying density for hydrologic datasets, the samples were 

transformed, creating new random variables. The method of moments was 

reapplied for transformed datasets. !

To ensure the plots provided acceptable representation of the data, the fit 

was assessed with plotting positions. Plotting positions determine how well 

measured data agrees with the fitted curve of the assumed population. To 

assess this, the Cunnane (1978) method was applied (Eq. 2). !

!
!

€ 

PExceedence = i − 0.4( ) n + 0.2( ) ……………………………………………………………(2) 
!
!

Samples were ranked in descending order, with the highest value 

receiving a rank of one. Eq. (2) incorporates the rank (i) and total sample dataset 

(n) to estimate the probability of exceedance. Exceedance probability is defined 

as the probability a given random variable will be equaled or exceeded in one 

time period. The data were then plotted, with the exceedance probability on the 

abscissa (or horizontal axis) and the ranked and ordered sample values on the 

ordinate (or vertical axis). These plots were assessed for which probability 
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distribution best fit the data.!

Population fit was assessed for each logarithmic-based distribution with 

the Log-Pearson Type III (LP3) method. The LP3 distribution, which is 

recommended in Bulletin 17B (IACWD 1982), provides a good fit to measured 

annual peak flow rate data. The LP3 requires a logarithmic transformation of the 

sample data, with a standardized variate, K, which is a function of the dataset 

skew and selected values of exceedance probability. In plotting the population 

line of fit, LP3 calculates the population values with the sample set’s average, µ, 

and one standard deviation, σ, from the mean multiplied by the standardized 

variate, K (Eq. 3). !

!
!

€ 

Y = µ + K +σ( )……..…………………………………...………………………………(3)!
!
!

When extracting discharge values from these population lines, the 

antilogarithm of the transformed random variable, Y, must be applied. These data 

were used to construct histograms, probability mass functions (PMFs), 

cumulative distribution functions (CDFs), and probability density functions 

(PDFs). Histograms indicate the number of samples contained within a sample 

interval. The sample interval sizes were based on recommendations by Panofsky 

and Brier.!

With histograms, the PMFs were constructed, which described the 

distribution of the discrete random variables. The height of the individual bars is 

equal to the number of occurrences divided by the total number of samples and 

represents the probability of occurrence for a given class interval. In conjunction 
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with frequency analysis, these plots were qualitatively analyzed to determine the 

distribution fit of the datasets. Determination of the probabilities associated with 

uncertainty around the datasets allows for a measurement of the likelihood an 

event will occur. !

!
!
4.4.4.2 MCM Uncertainty Estimation!

Since uncertainty is inherent in both modeling processes and datasets, its 

assessment becomes pivotal in qualifying the associated results and 

recommendations. One such method of uncertainty estimation is the Monte Carlo 

Method, or MCM. MCM simulations account for risk in quantitative analysis and 

decision making by providing a range of possible outcomes, or distributions, and 

the probabilities that will occur for any choice of action. These probability 

distributions provide a more realistic way of describing uncertainty in variables of 

a risk analysis. MCM indicates the potential for what could happen and how likely 

it is to occur. As such, MCM simulations can provide probabilistic results, 

graphical results, sensitivity analysis, scenario analysis, and correlation of inputs. !

For this study, MCM uncertainty analysis targeted the subcatchment 

percent of imperviousness, since this parameter was expected to influence the 

generation of runoff. First, the subcatchment percent imperviousness PDF was 

used to randomly sample values that were then implemented into random 

models (Fig. 4.5). !

A total of 100 randomized models were created and used to simulate the 

hydrologic response for a total of 8 years (1999-2007). This temporal period was 

chosen due to its inclusion of both the driest and wettest years of precipitation on 
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record. Long-term, annual, and daily results were collected for each random 

scenario simulation and compared with those of the original BASE model. 

Targeted metrics for comparison included both the monthly peak outflow rate and 

monthly total outflow volume results. These were collated, ranked from greatest 

to least, and plotted versus the exceedance probability (e.g., inverse time step in 

months) for the period of analysis. The Cunnane Method (Eq. 2) was used for 

ascertaining plotting positions. Next, the results’ 97.5th and 2.5th percentiles, 

bounding the average for the 100 simulations, were plotted to assess the 

subcatchment percent of imperviousness’ impact on overall watershed response.!

The randomized models were then used to assess the impact of 

subcatchment imperviousness on the simulated LID benefits. This was facilitated 

by applying the suitably extracted subcatchment area managed by the LID to the 

randomized subcatchment impervious percentage. It is important to note that the 

LID-managed area remained constant for each subcatchment, since housing 

stock was not assumed to change over time. By keeping the household area to 

be managed by RWH constant, the impact of variations in overall impervious 

area was assessed. For scenarios in which the LID area exceeded the 

subcatchment impervious area, a value of 100% was assumed. The results of 

this analysis were presented as the percent change in subcatchment 

imperviousness versus the percent change in subcatchment runoff coefficients. 

Runoff coefficients are a metric relating the watershed outflow to inflow. Thus, a 

value closer to the maximum of 1.0 indicates that all inflow is converted to 

outflow (i.e., little reduction). For the percent change in outflow, a value closer to 
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100% indicated maximum reduction of outflow.  !

!
!

4.4.5 Annualization of Benefits 

 Annualized risk (Eq. 4) is often applied in the analysis of flood event risk 

relative to the annual costs of damages (Tsakiris, 2010). 

!
!

€ 

Riskannualized = Pexceedence × Damage……………………………………………………….(4)!
!
!
 This methodology has been applied to target the best flood control for 

various recurrence interval events (Kalyanapu et al., 2014). Similar to the 

annualized risk, the annualized benefit (Eq. 5) was calculated with the 

watershed-scale reductions per EAC. !

!
!

€ 

Benefitannualized = Pexceedence × Benefit……………………………..………………………(5)!
!
!
 The extraction of the annualized benefit followed a similar methodology, in 

which the annual watershed cost-effectiveness values (Benefit) were ranked in 

decreasing order following the Cunnane Method and multiplied by the 

Exceedance Probability. This methodology improves the ability to assess the 

probabilistic cost-effectiveness of a watershed-scale management plan. This 

goes beyond simple payback periods and event-specific reductions, visualizing 

the underlying driving characteristics as probabilistic long-term trends. !

!
!
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4.5 Results and Discussion 

 This section presents the results of applying the Prioritization Protocol for 

watershed stormwater management with RWH in meeting hydrologic and 

economic thresholds. The hydrologic thresholds were a function of the percent 

reduction in the watershed outlet outflow volume (e.g., 2.5%, 5.0%, 10.0%, 

15.0%, and maximum). The economic thresholds were a function of the overall 

EAC for the scenario implemented, with budgets of $0.25MIL, $0.5MIL, $1.0MIL, 

$2.0MIL, and a maximum budget. Prioritized locations, via the PriorLID toolset, 

are visualized and presented. Following this, the uncertainty analysis results are 

presented, with respect to the overall watershed and LID-specific impacts. !

!
!

4.5.1 Prioritization Protocol 

The Prioritization Protocol was capable of sizing, modeling, costing, and 

assessing the hydrologic impacts of various RWH scenarios. These scenarios, a 

function of the iterated classification groups, improved the ability of users to 

spatially target RWH practices, via economic thresholds, such that hydrologic 

thresholds could be obtained. The maximum suitable scenario (LID227) provided 

the greatest potential watershed reductions and costs for the study area. For 

cost-effectiveness, a total of four classes were identified, represented by HIGH, 

MID, LOW, and NULL, and used to assess the prioritization based on economic 

and hydrologic thresholds.   

!
!
!
!
!
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4.5.1.1 RWH Design and Implementation!

The RWHA toolset was capable of processing the suitability dataset for 

the WQCV event depth (16.5 mm). The number of households targeted per 

subcatchment ranged from 11 to 868 (watershed total 13,566). Total 

subcatchment rooftop area ranged from 0.28 hectares to 22 hectares (watershed 

total 310 hectares), with a 227-m2 watershed average. Based on a nominal RWH 

capacity of 227 liters and a 16.5 mm design event, subcatchment units ranged 

from 210 to 16,688 (watershed total of 232,015). This represented a total 

watershed volumetric storage capacity of 52.7 million liters (ML). !

Application of PriorLID with the LID227 scenario’s subcatchment 

hydrologic and economic results yielded locations throughout the watershed with 

similar cost-effectiveness values. A total of 25 iterations were established, 

resulting in unique classes of increasing resolution of priority. A subset, including 

iterations 3, 5, 10, 15, and 25, are presented (Fig. 4.6). These results highlight 

the presence of priority zones, which increase in resolution with each successive 

iteration.!

!
!
4.5.1.2 Economic Implications!

Economic valuations were a function of the sizing parameters established 

with RWHA, including the precipitation design depth and the nominal unit size. 

For 227-liter units and a design depth of 16.5 mm, the subcatchment EAC values 

for all prioritized scenario were calculated (Table 4.2). The original LID227 

scenario established the maximum cost for the user-defined conditions.!

!
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4.5.1.3 Hydrologic Implications!

 The watershed conditions for the fully-implemented RWH scenario were 

assessed with the results from LIDSS and the RWHA toolsets. This included the 

design, location, and collation of individual parcel-specific RWH practices to the 

subcatchment scale. Long-term hydrologic simulations yielded linearly increasing 

trends between RWH capacity and subcatchment reductions in both outflow 

rates and volumes. Frequency analysis of peak annual outflow rate (Fig. 4.7) and 

reductions in annual outflow volumes (Fig. 4.8) indicate greater reductions have 

a higher probability of exceedance. Simulation of the 85th percentile precipitation 

event (16.5 mm) with LID227 yielded a maximum watershed reduction of 22 and 

27% for outflow volume and peak flow rate, respectively. !

 At the watershed scale, reductions followed a similar linearly increasing 

trend with RWH capacity. Compared with the BASE scenario, LID227 yielded 

average annual reductions of 10% and 24% for outflow volumes and peak 

outflow rates, respectively. Watershed hydrologic reductions for all scenarios are 

provided in Table 4.3. !

!
!
4.5.1.4 Cost-Effectiveness Implications!

Normalization of the annual volumetric reduction to the total EAC provided 

an estimate of the spatial and temporal distribution of cost-effectiveness (L/$) for 

the study area. For maximum RWH implementation (LID227), average annual 

cost-effectiveness ranged from 1.0 L/$ to 6.3 L/$ (average 3.1 L/$). Results from 

the prioritization scenarios targeting subcatchments designated based on 

homogeneous cost-effectiveness (e.g., HIGH, MID, LOW, NULL, and HIGH-MID) 
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are presented in Table 4.4. User thresholds were based on addressing these 

results with respect to the total watershed reductions and costs. The minimum 

and maximum annual cost-effectiveness establish the expected bounds for the 

watershed. This means that full implementation of 227-liter barrels throughout the 

study watershed targeting the capture of the WQCV event produce a minimum 

annual average of 0.95 L/$. !

Annual cost-effectiveness results were ranked and plotted against the 

probability of exceedance (Fig. 4.9). Analysis of prioritized scenarios found the 

highest cost-effectiveness with the HIGH scenario, while the least cost-effective 

was NULL. Increasing annual cost-effectiveness resulted from years with higher 

precipitation amounts.!

!
!
4.5.1.5 Annualized Benefits for Priority Scenarios!

 Annualization of scenario benefits (i.e., watershed volumetric reductions) 

with the scenario-specific EAC (Fig. 4.10) indicated a return of maximum 

annualized benefits (0.52-0.59 L/$) between 1.28-1.33 years for all priority 

scenarios except the Null. The Null returned a maximum benefit (0.36 L/$) every 

2 years. The greatest annualized benefit was with the High priority scenario. !

 The analysis of annualized benefits for priority scenarios improves the 

ability to compare distributed measures’ impacts on watershed-scale systems. 

Annualizing the benefits provides insight to the return, or probability, of achieving 

maximum reductions within the watershed for each proposed priority scenario. 

For instance, with a 99% probability of exceedance (i.e., 1 year recurrence), 

RWH can be expected to provide watershed benefits between 0.17 – 0.35 L/$ 
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(average of 0.31 L/$). Prioritization can improve cost-effectiveness, though 

scenario annualized benefit results remain similar (neglecting the Null scenario).  

!
!

4.5.2 Climatic Region Implications 

4.5.2.1 Hydrologic Implications for Climatic Regions!

For the regional 85th percentile events, the range of reductions in 

watershed outflow volume and peak flow rate was 9%-12% and 11%-18%, 

respectively. For the entire range of events, average reductions are provided 

(Fig. 4.11 and Fig. 4.12). These plots indicate the range of regional event-specific 

reductions. Long-term averages were similar throughout regions despite 

variations in extreme event reductions. Cities with tighter ranges include ATL, 

BAL, COL, PHX, and POR, which were also cities with annual average 

precipitation exceeding 350-mm. Greater ranges of reduction extremes were 

experienced in DEN, LA, and SD (average annual precipitation less than 400-

mm).!

Analysis of the reduction potential for events (Fig. 4.13 and Fig. 4.14), 

binned by depth, indicated exponentially decreasing reductions for greater 

depths. Outliers are due to undersized sample populations (n<10) and represent 

the uncertainty of reduction potential for individual events greater than 88.9-mm. 

The addition of SD results with the trend for all climatic regions analyzed 

indicates that RWH can reliably provide watershed-scale reductions for similar 

precipitation depths. For instance, despite regional variations in event intensities 

and timing (e.g., event duration, interevent time), the simulated reductions are 

comparable for each region’s long-term analysis. For all precipitation datasets 
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analyzed, event bin reductions ranged from 17%-28% and 14%-24% for average 

peak flow rate and outflow volumes, respectively.!

Targeting the change in average annual event depth (mm/event) versus 

the SD dataset (Y-axis), annual watershed volumetric reductions (X-axis) were 

shown to increase with greater average depths (Fig. 4.15). Thus, regions with 

smaller individual events and greater small events produced less reduction 

potential with the Chollas Creek model. With increasing event depths, or greater 

rainfall, long-term reductions are expected to increase. !

While these results are different from those for the individual event 

analysis by bins, they indicate the long-term temporal benefits of RWH resulting 

from both immediate reduction and prolonged storage. While RWH may not be 

capable of providing volumetric and peak flow rate reductions for individual 

extreme events, such as the infamous chubascos, or Mexican storms (Tubbs, 

1972), they can address more frequent individual events (i.e., 85th percentile) for 

a variety of regional climates.!

!
!
4.5.2.2 Annualized Benefits for Climatic Regions!

 For climatic regions, annualized benefits distinguish two groups (Fig. 

4.16), i. ATL, BAL, COL, PHX, and POR, and ii. DEN, LA, and SD. These groups 

yield the highest and lowest long-term annualized benefits (L/$). This shows that 

maximized watershed cost-effectiveness may not be as viable an option in 

climates such as the Mountain West and West Coast, where the annual 

precipitation averages less than 400 mm. This is further enforced by the cost-

effectiveness plot for individual years as a function of the total annual 



!

!

154!

precipitation (Fig. 4.17). !

!
!

4.5.3 Uncertainty Estimation and Analysis 

4.5.3.1 Subcatchment Percent Impervious!

The impact of variations in the subcatchment percent imperviousness on 

the overall watershed hydrologic response was found to be negligible for both 

outflow rate (Fig. 4.18) and outflow volumes (Fig. 4.19). Analysis focused on both 

monthly peak rates (CMS) and monthly total outflow volumes (ML) for the 

uncertainty years of analysis (1999-2007). The exceedance plots indicated that 

extreme events cause greater variation in the relationship between the 

dependent and independent variables being assessed. The effect, however, is 

predictable in that a greater event will cause greater differences for the range of 

imperviousness values considered.  

!
!
4.5.3.2 RWH Effectiveness!

Extension of randomized uncertainty models to the implementation of 

RWH found that the subcatchment influence of imperviousness is reduced when 

RWH is implemented throughout the study area. This indicates that the impact of 

alterations to an urban impervious area can be dampened with the addition of 

decentralized storage units. Fig. 4.20 presents the subcatchment-scale impacts 

of variations in imperviousness’ impact on outflow for BASE and LID227. !

The slope for LID227 (0.9782) was steeper than that of BASE (0.7968), 

implying that the BASE scenario yields greater outflow for smaller changes in 

imperviousness, relative to when RWH is implemented. This shows that RWH 
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has the potential to buffer the impacts of future changes in imperviousness. 

Simulated long-term results for all scenarios found approximately 18% 

dampening of imperviousness’ impact on outflow reductions with maximum 

RWH. Subcatchment outflow for LID227 begins to exceed original BASE 

conditions when imperviousness increases by approximately eighteen percent 

(Fig. 4.21). These results indicate that while the overall watershed reductions 

with RWH may be small, the retrofit-ability of RWH may provide a more cost-

effective option for further mitigating the impacts of altered land cover. !

 Validation of the results was completed by randomly implementing RWH 

for a total monetary input of $1.53 MIL. Locations were chosen regardless of 

priority class. The long-term simulation yielded a 10% reduction at the watershed 

outlet (Fig. 4.22). 

!
!

4.6 Conclusions 

The development and application of the Prioritization Protocol, based on 

prior suitability research (Walsh et al., in review), was assessed with the goal of 

targeting distributed RWH practices as a function of cost-effectiveness while 

meeting user-defined hydrologic and economic thresholds. The impact of 

parameter uncertainty on watershed hydrologic response was addressed using 

MCM for a randomized population (n=100). These were based on the PDF 

representing validated subcatchment percent imperviousness values. Uncertainty 

was extended to RWH effectiveness, focused on subcatchment-scale impacts. !

Spatial targeting of resources found that central locations of priority (i.e., 

cost-effectiveness) exist across resolutions. When users minimize the number of 



!

!

156!

classes used to drive classification (i.e., homogeneous grouping) of cost-

effectiveness values, coarse locations of priority are identified. As the number of 

classes increases, the resolution of spatial priority is refined, though still 

contained within coarse zones. These results reinforce findings by Perez-Pedini 

et al. (2005) and Haith (2003), who recommended a systems-based approach to 

watershed quantity and quality management via targeting. !

Hydrologic modeling of prioritized scenarios reinforced a strong linear 

relationship between EAC and reductions; however, for the case study location, 

the subcatchment impervious area impacted the accuracy of this trend. For the 

subcatchments studied, a maximum impervious area of 40 hectares was 

established as the upper limit for reliable cost-benefit estimations. Beyond 40 

hectares, costs and reductions were variable and less predictable for the Chollas 

Creek watershed. At the watershed-scale, plotting the maximized LID scenario’s 

annual cost-effectiveness ($/L) against the probability of exceedance established 

the potential bounds for the watershed-scale RWH framework. Maximum 

reductions and costs should be used as guidance for users when using PriorLID 

to assess and target classes of similar cost-effectiveness within the watershed. 

For the Chollas Creek watershed, a linear relationship between cost and 

reduction can be expected, regardless of spatial location of RWH (Fig. 4.23). !

 Fig. 4.23 enables users to forecast the watershed volumetric reductions as 

a function of a total EAC. The total cost estimations, based on the simulated 

hydrologic reductions, are presented in Table 4.5. This indicates the trade-off that 

exists at watershed-scale, despite the ability to target individual subcatchments 
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based on cost-effectiveness. !

 MCM uncertainty analysis found that changing the subcatchment 

imperviousness had negligible impacts on the watershed outflow volumes and 

rates. This was based on 100 models created by randomly sampling the 

subcatchment imperviousness PDF. These results indicate the reliability of model 

simulations at the watershed outlet with respect to variations in subcatchment 

imperviousness. Further, uncertainty analysis infers that, regardless of the spatial 

variation, the change in watershed outflow response will remain relatively 

constant. Extended to analysis of the impacts on RWH effectiveness, maintaining 

the same impervious area managed by LID (i.e., rooftop disconnection) resulted 

in a dampened subcatchment response. This linear relationship, between 

changes in imperviousness and reductions in outflow, reinforces the 

subcatchment-scale benefits of distributed volumetric storage despite smaller 

impacts on the overall watershed response. Together, uncertainty and 

prioritization results at the watershed-scale highlight that negligible impacts exist 

with respect to subcatchment targeting, for subcatchments with impervious areas 

less than 40 hectares. On the other hand, if subcatchment benefits are required, 

finer-scale prioritization with the proposed protocols can be used to distribute 

RWH based on cost-effectiveness.!

The ease of implementation and O&M of RWH, coupled with the ability to 

dampen the negative stormwater impacts of future land cover and potential 

climatic changes highlight passive watershed-scale RWH as a low-cost option for 

long-term management. This is especially important for urban planning and 
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management as urban areas expand and densify. The inclusion of seven 

regions’ long-term precipitation in this hydrologic analysis found reliable 

reductions for more frequent events within the Chollas Creek watershed model. 

For instance, peak flow rate and volumetric outflow reductions ranged from 25%-

28% (26% average) and 22%-24% (23% average), respectively, for events less 

than 25.4-mm in depth (e.g., 91% of all events). Extreme events, such as the 

chubascos, were more prevalent in the Mountain West and West Coast regions 

and were negligibly reduced with the implementation of passive RWH. !

Annualization of benefits for priority scenarios found similar probabilities of 

maximum benefits for all scenarios except the Null. This translated to a return 

period ranging from 1.28-1.33 years (Null return was 2.0 years). Annualization of 

benefits for climatic regions yielded a regional distinction, resulting in two 

separate groupings. The first, including the Mountain West and West Coast cities 

(DEN, LA, and SD), which provided the least cost-effectiveness and annualized 

benefit for the long-term simulation. The maximized annualized benefits ranged 

between 1.53-2.60 L/$, with return periods spanning 1.14-1.60 years. These 

regions’ annual average rainfall was less than 400 mm. The other group 

consisted of the remaining regions: Southwest (PHX), Southeast (ATL), East 

Coast (BAL), Midwest (COL), and Pacific Northwest (POR). This group had 

maximum annualized benefits ranging from 7.70-8.76 L/$, with return periods of 

1.03-1.14 years. Annualization of the climatic region benefits highlighted the 

applicability of RWH for other regions over those with less annual precipitation. 

Similarly, this implied that prioritization may have a greater influence in other 
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regions, beyond the Mountain West and West Coast. !

Areas for potential future research include the expansion of the protocols 

to include additional realms related to sustainability. These areas include 

ecological, social, and urban structure and function. The incorporation of these 

datasets would improve the targeting of resources. Beyond additions to the 

protocols, expansion of the Monte Carlo Method uncertainty estimation would 

further improve the insight of the results. Parameters informing the distribution 

and cost-effectiveness of RWH include the data-driven probability distribution 

functions (PDFs) for subcatchment percent imperviousness, precipitation 

characteristics, evaporation rates, and rooftop area as a percent of the 

impervious area. Finally, expanding the protocols’ applications to include other 

LID practices, such as bioretention, green rooftops, and permeable pavement, 

will contribute to a greater base of recommended practices targeting sustainable 

stormwater management. Eventually, the incorporation of a cost valuation of 

services will be incorporated, such that an informed payback period or economic 

incentive can be provided. This will include a tax structure similar to that passed 

by the State of Maryland (HB987) in 2012 (MDE, 2014), in which parcel area 

imperviousness elicits a taxed rate for stormwater management. !

!
!
!
!
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!
Figure 4.1: Study location, Chollas Creek watershed, San Diego, CA, USA.!
!
!
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!
Figure 4.2: The Prioritization Protocol workflow, including the inputs, 
generalized steps, and outputs related to successful implementation.!
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!
Figure 4.3: RWHA GUI. Users are prompted to upload suitability results and 
existing SWMM .inp datasets for use in the sizing and allocation of RWH 
units throughout the watershed.!
!
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!
Figure 4.4: Steps required for MCM uncertainty estimation and analysis for 
the independent variable, subcatchment percent imperviousness.!
!
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!
Figure 4.5: PDF and CDF plots for the subcatchment percent of 
imperviousness sample dataset. The PDF was used to randomly sample 
values as inputs for the randomized SWMM simulations (n=100).!
!
!

!
Figure 4.6: Prioritization Protocol results with PriorLID toolset for n=3, 5, 
10, 15, and 25 classes. Comparison indicates the refinement in 
classifications when iterations increase the number of classes. Central 
locations to target remain.!
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!
Figure 4.7: Exceedance probabilities for annual peak flow rate (CMS) 
sample populations for all scenarios assessed.!
!
!

!
Figure 4.8: Exceedance probabilities for annual volumetric reductions (ML) 
in watershed outflow for all scenarios assessed.!
!
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!
Figure 4.9: Exceedance probabilities for annual average cost-effectiveness 
results at the overall watershed-scale, for all scenarios targeting the WQCV 
event depth with 227-liter barrels. Increasing effectiveness is observed for 
less probable events, which indicates the importance of downspout 
disconnection.!
!
!

!
Figure 4.10: Annualized benefits (annual volumetric reduction, in liters, per 
equivalent annual dollar invested) for priority scenarios assessed. !
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!
Figure 4.11: Regional volumetric outflow reductions for percentile events. !
!
!

!
Figure 4.12: Regional peak outflow rate reductions for percentile events. !
!
!
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!
Figure 4.13: Averaged watershed peak outflow rate reductions for 
individual events, binned by depth (mm).!
!
!

!
Figure 4.14: Averaged watershed outflow volume reductions for individual 
events, binned by depth (mm).!
!
!
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!
Figure 4.15: Change (versus SD data) in annual precipitation event depth 
(X-axis) versus the average annual watershed volumetric reduction (Y-
axis). 
!
!

!
Figure 4.16:Annualized benefits for the regions assessed. Two groups are 
distinctly visualized, with DEN, LA, and SD providing the least cost-
effectiveness and annualized benefit. !
!
!
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!
Figure 4.17: Annual precipitation depth (mm) versus the annual cost-
effectiveness (L/$) for each climatic region. A linearly increasing trend 
exists.!
!
!

!
Figure 4.18: Exceedance probability versus the monthly peak flow rate 
(CMS) for random simulations (n=100) assessing the uncertainty of the 
hydrologic model, with respect to subcatchment percent imperviousness. 
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!
Figure 4.19: Exceedance probability versus the monthly total outflow 
volume (ML) for random simulations (n=100) assessing the uncertainty of 
the hydrologic model, with respect to subcatchment percent 
imperviousness. 
!
!
!
!
!
!
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!
Figure 4.20: Uncertainty analysis results representing the change in 
subcatchment percent imperviousness (X-axis) versus the change in the 
subcatchment outflow reductions (Y-axis). The relationships between 
imperviousness and outflow reduction for LID227 and BASE indicate the 
ability of RWH to dampen the impact of land cover change.!
!
!
!
!
!
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!
Figure 4.21: Graphical relationship between the reduction of outflow for 
BASE and LID227 scenarios for the same change in subcatchment percent 
imperviousness. Relationship implies that RWH is capable of dampening 
the negative hydrologic impacts of development (i.e., alterations in 
imperviousness).!
!
!

!
Figure 4.22: Validation of linear cost-effectiveness relation for watershed-
scale RWH in the Chollas Creek watershed. Green dot represents the 
randomly applied RWH scenario for a total of $1.53 MIL. 
!
!



!

!

174!

!
Figure 4.23: Total cost ($MIL) versus the total volumetric reduction for all 
scenarios assessed. 
!
!
Table 4.1: Nominal RWH unit parameters for use with the RWHA toolset. As 
a note, all barrel geometries were circular whereas cisterns could be either 
circular or rectangular (differentiated under Dimensions). D represents the 
diameter, W represents the width, and L represents the length.!

!
!
!
Table 4.2: Economic estimation, as EAC, for overall (maximum 
implementation) and prioritized RWH scenarios.!

!
!
!
!
!

Scenario Total EAC Average Subcatchment 
EAC

LID227 $3,163,002 $41,078 
HIGH-MID $2,018,914 $69,250 
HIGH $1,135,621 $32,446 
MID $883,293 $36,804 
LOW $915,834 $83,258 
NULL $228,253 $32,608 
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Table 4.3: Average annual hydrologic results for overall (maximum 
implementation) and prioritized RWH scenarios.!

!
!
!
Table 4.4: Average annual cost-effectiveness for overall (maximum 
implementation) and prioritized RWH scenarios. Range of values are 
presented in parentheses. !

!
!
!
Table 4.5: Assessment of user-defined thresholds based on hydrologic 
simulations and cost estimations.!

!
!
!

Scenario Average Annual Volumetric 
Reduction

Average Annual Peak 
Flow Rate Reduction

LID227 20% 24%
HIGH-MID 13% 19%
HIGH 8% 11%
MID 5% 8%
LOW 6% 5%
NULL 1% 0.40%

Scenario Average Annual Cost-
Effectiveness (L/$)

Average Annual Cost-
Effectiveness ($/L)

3.11 $0.40 
(0.95-6.27) ($0.16-$1.05)

3.22 $0.38 
(1.01-6.53) ($0.15-$0.99)

3.3 $0.37 
(1.06-6.73) ($0.15-$0.94)

3.13 $0.40 
(0.92-6.32) ($0.16-$1.09)

3.02 $0.42 
(0.91-6.05) ($0.17-$1.10)

2.19 $0.63 
(0.51-5.01) ($0.20-$1.96)NULL

LID227

HIGH-MID

HIGH

MID

LOW

Watershed 
Reduction

Estimated Cost 
($MIL)

User-Defined 
Cost Thresholds 

($MIL)

Projected Cost 
Difference

2.50% $0.41 $0.25 49%
5% $0.80 $0.50 46%

10% $1.58 $1.00 45%
15% $2.36 $2.00 17%
20% $3.14 $3.16 -1%
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CHAPTER 5 

!
!

CONCLUSIONS!

!
!

The objectives of this dissertation research are to improve the prioritized 

implementation of LID, targeting RWH, by enhancing the ability to assess local 

design constraints and long-term hydrologic conditions. This is accomplished by 

the following steps: (1) establishing the need for improvement with a traditional 

hydrologic analysis of a passive, watershed-scale RWH framework, (2) 

developing and testing a Suitability Protocol (with related toolsets, LIDSS and 

QA) that identifies suitable RWH locations with geospatial analysis of OBIA 

classifications and LID design constraints, and (3) developing and applying a 

Prioritization Protocol (with related toolsets, RWHA and PriorLID) to target cost-

effective locations based on hydrologic and economic analyses of user-defined 

thresholds. !

The first step resulted in a validated hydrologic model, using EPA 

SWMM5.0.022, for the Chollas Creek watershed. This model, built following a 

uniform application methodology, established the baseline for future 

assessments of suitability and prioritization of RWH scenarios. The focus of this 

research was on the impacts of variations in RWH capacity, watershed 

implementation rates, and unit-specific controls (e.g., drain delay, drain duration). 
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Results reinforced increasing benefits with increasing capacity and greater cost-

effectiveness for smaller barrels (e.g., 227-liters) versus larger cisterns (e.g., 

7,571-liters). However, both the drainage area and local precipitation 

characteristics were found to influence benefits. These findings support similar 

work, by Steffen et al. (2013), who determined the effectiveness of RWH 

throughout the US at a regional scale. !

Analysis of variations in RWH outflow duration and drain delay found 

negligible impact on overall watershed reductions; however, as drain delay time 

approached, or exceeded, the local dry duration (i.e., consecutive time period in 

which precipitation does not occur), the unit’s effectiveness was found to 

decrease. Effectiveness, in this case, was a function of the ability of the unit to 

properly empty prior to future precipitation events and, therefore, maximize long-

term storage versus overflow. Thus, it is suggested that municipalities analyze 

the long-term precipitation when providing RWH management guidance for both 

sizing and regulating temporal storage and outflow. This is especially pertinent 

when systems are designated as passive, meaning that users are not actively 

draining or using the stored water. !

This study and its results are presented in Chapter 2. The time required 

and uniformity assumptions of this research established the need for improved 

protocols and methodologies that classify existing land cover/use and provide 

assessment of pivotal constraints with publicly-available data. The ability to 

assess unique, distributed locations’ conditions, such as slopes, soils, and 

floodway and floodplain zones, improves watershed-scale suitability analysis. 
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Further, such methodologies would contribute to watershed-scale management 

plans and frameworks targeting the implementation, design, and analysis of site-

specific LID controls. !

Based on the findings of the first step, the objective of the Suitability 

Protocol was to provide an improved method for watershed-scale implementation 

and design of LID practices. This study, presented in Chapter 3, targeted the 

improved, suitable implementation of RWH for the Chollas Creek watershed. The 

Suitability Protocol was based on the combination of OBIA with geospatial 

analysis of constraining datasets and driven by user-defined values. These 

values represented the targeted LID practice, which was RWH for this study. As 

such, research focused on the needs for both accurate OBIA and spatial filtering 

of LID constraints based on user goals. The results of this study found that OBIA 

can provide accurate classification (e.g., identification and quantification) of 

buildings throughout a dense (5,400 persons per square kilometer) and 

heterogeneous (52.7% impervious, approximately 10% rooftops) urban 

watershed. An overall accuracy of 92% was achieved for buildings, though some 

misclassification remained due to spatial registration issues and the surface 

interpolation algorithm choice. !

Compared with the results from the traditional, uniform design method 

(Chapter 2), the Suitability Protocol estimated fewer rooftops (11% reduction), 

but a 51% greater impervious area targeted by RWH. This difference may result 

from clumping of households, which is a function of the spatial resolution of the 

classified datasets and the OBIA rule set parameters. Hydrologic analysis of 
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uniformly- and suitably-informed RWH scenarios (single 227-liter units at each 

household) found LIDSS increased the reduction of annual outflow volume and 

peak flow rate by 44% and 51%, respectively, compared with the single 227-liter 

model (UNI227) results from Chapter 2. For instance, the influence of 

disconnecting impervious areas over storage capacity was highlighted, since a 

51% increase in targeted rooftop area (LID227) simulated similar differences in 

watershed-scale reductions (UNI227 versus LID227). !

Assessment of the Suitability Protocol for the Chollas Creek watershed 

indicated that OBIA can improve the ability of users to accurately identify and 

quantify site-specific rooftops using publicly-available spectral, elevation, and 

parcel datasets. The accuracy of quantifications and spatial locations impact not 

only the cumulative influence on watershed hydrologic response but also the 

costs of RWH systems at the parcel and subcatchment scales. These findings 

improve the design of watershed-scale LID measures that must account for local, 

site-specific constraints. However, suitability is not the only constraint in 

developing watershed water management plans. The ability to account for life-

cycle costs and overall, long-term benefits must also be provided. !

Based on the results of the suitability study in Chapter 3, the objective of 

the Prioritization Protocol (Chapter 4) focused on the improvement of distributing, 

or targeting, RWH practices as a function of both cost-effectiveness and user-

defined thresholds. These thresholds included watershed hydrologic reductions, 

or benefits, and economic constraints (e.g., budgets). The goals of this step in 

the dissertation included (1) adapting the BASE hydrologic model to 
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accommodate LIDSS results from Chapter 3 and provide a baseline for 

improvement, (2) analyzing the long-term hydrologic impacts and life cycle costs, 

as EAC, for watershed-scale suitable RWH practices, (3) prioritization of 

subcatchments as a function of rasterized cost-effectiveness surfaces, resulting 

in homogenous priority classes, and (4) hydrologic analysis of priority scenarios 

to determine the extent to which thresholds could be met. Additionally, MCM 

uncertainty analysis was completed for the subcatchment percent 

imperviousness parameter to determine the impact of variations on the 

watershed hydrologic response. In addition, the long-term precipitation for seven 

climatic regions was used to assess the impact of variations in precipitation on 

RWH effectiveness at the watershed-scale.!

The results of this research determined the Prioritization Protocol and 

toolsets were capable of providing prioritized recommendations of 

subcatchments based on cost-effectiveness. The protocol also improved the 

ability of users to target locations within a watershed, such that the spatial 

distribution of RWH maximized the hydrologic benefits relative to the cost. This 

targeting, combined with the hydrologic modeling and simulation of long-term 

precipitation, determined the economically-driven prioritized scenarios’ impacts 

on the hydrologic thresholds. Visualization of the prioritization results from 

PriorLID indicated that core zones of prioritization exist for all iterative 

classifications based on cost-effectiveness. For fewer targeted classes (n=3), 

coarseness of resulting prioritization zones is anticipated, whereas increasing 

classes (n=25) refines the spatial targeting. These spatial distributions can be 
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further refined as scale is reduced (e.g., from subcatchment to parcel) for intra-

subcatchment targeting; however, this requires finer-scale hydrologic models be 

developed and validated. The priority zones, via the Prioritization Protocol, offer 

an initial estimate for targeting locations and guiding analysts to these areas, 

since finer scale models may not be feasible for larger catchments.!

Climatic regions indicated reliable reductions in both peak outflow rates 

and volumes for smaller, more frequent events (up to the 25.4-mm depth), which 

represented over 91% of all events simulated for all regions. Greater event-

specific reductions were achieved for smaller depths, exponentially decreasing 

with depth. Overall, long-term reductions were increased for regions with greater 

precipitation, regardless of event duration and interevent time. This analysis 

indicated that RWH was incapable of providing reductions for more extreme 

events, such as the chubascos or Mexican storms, in the Chollas Creek 

watershed. That being said, these events make up a small component of the 

long-term record. !

Uncertainty analysis of the subcatchment percent imperviousness 

indicated that random variations at the subcatchment-scale produced negligible 

watershed-scale impacts for volumes and peak flow rates. Extension of 

uncertainty results to RWH effectiveness found that RWH provided a buffer to the 

negative impacts stemming from land cover change (e.g., natural, or pervious, to 

impervious). Negative impacts included increases in the annual volumetric 

outflow for the watershed, as well as the annual peak flow rates. This buffer 

indicated that an 18% increase in imperviousness was required before 
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subcatchment volumetric outflow reductions would be reduced to the BASE 

model levels (i.e., no RWH). Thus, while the maximized LID implementation 

results highlight only 20% reductions in long-term watershed outflow volumes, 

the benefits related to the buffering capacity of RWH should also be considered 

at the subcatchment scale. !

Analysis of cost-effectiveness for the prioritized homogeneous classes 

produced a positive linear trend (R2 = 0.998) between total watershed EAC and 

watershed volumetric reductions for all scenarios. The relationship with annual 

peak flow rate had a similar, though weaker, linear trend (R2 = 0.947). Hydrologic 

simulations of priority scenarios yielded a similar linear relationship between 

impervious area disconnection and effectiveness (L/$), further highlighting the 

importance of drainage area for simulated hydrologic results. However, the 

applicability of the protocol was restricted to a maximum subcatchment 

impervious area of 40 hectares, since volumetric reductions varied beyond this 

maximum. An R2 of 0.67 was established for the long-term volumetric reductions 

in subcatchments with impervious areas less than 40 hectares. This indicates the 

areal limitations of not only the Prioritization Protocol, but also the hydrologic 

model. For watershed-scale analyses of RWH benefits, users should consider 

delineations of subcatchments such that impervious areas do not exceed 40 

hectares. !

Similarly, subcatchment EAC was more strongly related to long-term 

volumetric reductions when the maximum impervious area (40 hectares) was 

obeyed (R2 = 0.94). Outliers in this relationship indicate the subcatchments 
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where added costs result in diminishing reductions. For targeting overall 

watershed reductions, prioritization highlighted the linear trade-off that exists 

between costs and hydrologic benefits. For the Chollas Creek watershed, a 6.3% 

reduction in long-term watershed outflow volume could be expected with $1.0MIL 

EAC invested, regardless of the location. This finding, in tandem with the 

uncertainty analysis, suggests that robust prioritization of subcatchments may not 

be pertinent when overall watershed reductions are targeted. However, the 

Prioritization Protocol was shown to improve subcatchment-scale targeting, 

which could be extended to finer scale prioritization. !

The outcomes of the research presented in Chapters 2, 3, and 4 highlight 

(1) improved watershed-scale assessment of stormwater reduction benefits with 

RWH and (2) greater ability of users, through protocols and toolsets, to (i) identify 

suitable RWH locations, (ii) design individual RWH practices, and (iii) refine 

targeted implementation scenarios within a watershed based on cost-

effectiveness. This work improves the methods of designing and assessing 

watershed-scale RWH frameworks by combining geospatial analysis, remote 

sensing analysis, hydrologic modeling and simulations, cost analysis, and 

uncertainty analysis. The protocols and toolsets employ publicly-available 

datasets and either industry standard or publicly-available software programs. 

Since only hydrologic and economic characteristics are targeted with this 

dissertation, future works can build upon it by incorporating the following:!

1. Expanding Suitability Protocol metrics to include additional constraints, 

such as ecological, social (i.e., human health and well-being), 
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demographics, and urban planning and management datasets. This 

would improve the impact and extension of these protocols by 

targeting, for instance, improved urban conservation management and 

planning with decentralized LID. !

2. Expanding the application of the protocols to more regions to assess 

the impact of land use and land cover variability on classification and 

targeting, or prioritization, accuracy. !

3. Extending the MCM uncertainty analysis to other independent 

datasets, such as precipitation, to assess the impacts of future 

variability in climate on both the watershed response and the benefits, 

or disservices, of distributed RWH and other LID practices.  !

4. Expanding the applications of the Suitability and Prioritization Protocols 

to determine the accuracy and reliability of these proposed 

methodologies for other LID practices, including cisterns, green 

rooftops, bioretention, and permeable pavement. !
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APPENDIX A 

!
!

SOFTWARE AND DATA SOURCES!

!
!
 This appendix lists the software programs and programming languages 

used to accomplish the work in this dissertation. It also provides an overview of 

the data sources for important input parameters. !

!
!

A.1 Software 

 This section presents the software used in this dissertation. A discussion 

of the general purpose, available methodologies, and sources is provided for 

each. !

 ArcGIS is a geographic information system (GIS) software program that 

allows for map creation, compiling, visualizing, and analyzing geographic data, 

and managing this information as a database. Applications include spatial and 

temporal research. Data can be used with external software, such as MS Excel 

and ENVI, as well. The ArcGIS Model Builder tool offers the ability to create, edit, 

and manage models, or workflows, that string together sequences of 

geoprocessing tools (ESRI, 2011). !

Website: www.esri.com/software/arcgis !

 BCAL Lidar Tools are a suite of open-source tools for the processing, 
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analysis, and visualization of lidar datasets. They are developed and maintained 

by Idaho State University, Boise Center Aerospace Laboratory (BCAL). They are 

written using IDL programming language and serve as an add-on to ENVI. Within 

ENVI, lidar data (as .las files) can be processed to create various outputs, 

including tiling of datasets, data exploration, data buffering, data filtering, and 

data rasterization. !

Website: www.idaholdar.org/tools/bcal-lidar-tools !

 Building Life-Cycle Cost (BLCC), version 5.3, is software that provides 

economic analyses (e.g., cost-effectiveness) of buildings and building-related 

systems or components. It has the ability to consider numerous alternative 

designs with one another to rank and order the long-term benefits and costs. It 

calculates net savings, savings-to-investment ratios, adjusted internal rate of 

return, and payback period. While buildings are the primary focus of the software, 

it is applicable to nearly any design project that must balance higher capital 

investment costs with lower future operation-related costs.!

Website: http://www.wbdg.org/tools/blcc.php !

 ENVI is an image-processing system designed to provide comprehensive 

data visualization and analysis for images of variable scale and type. ENVI 

combines file- and band-based techniques, such that processing, classification, 

and analysis can be carried out for both features. Inputs include large multiband 

data, screen-sized images, spectral plots and libraries, and image regions-of-

interest. Functions include, but are not limited to, X, Y, Z profiling, image 

transects, linear and nonlinear histogramming and contrast stretching, color 
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tables, density slicing, and classification color mapping, quick filter preview, and 

region of interest definition and processing. Other functions include three-

dimensional viewing, surface shading, image draping and animation, and 

geometric rectification and mosaicking. Image data can then be transferred to a 

final map via image-to-image and image-to-map registration, basic 

orthorectification, image mosaicking, and map composition. Exporting to 

shapefiles (e.g., ArcGIS) is facilitated. !

Website: www.exelisvis.xom/ProductsServices/ENVI/ENVI.aspx !

 eCognition is an image-processing system designed to provide data 

visualization and analysis for images of variable scale and type. It differs from 

ENVI in that it allows for object-based classification with rule sets. Classification 

rule sets are a function of numerous processing options, including image 

segmentation and classification based on geometric, textural, spectral, height, 

and other characteristics. Rule sets are run as process trees, with resulting 

classifications exported as either raster or vector layers. Website: 

http://www.ecognition.com/products. !

 LAStools are a suite of open-source MS-DOS command line and ArcGIS 

plug-in available tools for the processing, analysis, and visualization of lidar 

datasets. They are developed and maintained by Martin Isenburg. The tools 

classify, tile, convert, filter, rasterize, triangulate, contour, clip, and polygonize 

lidar data. !

Websites: www.rapidlasso.com/lastools/ and www.cs.unc.edu/~isenburg/lastools/ !

 MS Excel is a software program within the Microsoft Office umbrella that 
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allows for collation, coordination, and analysis of data from multiple sources. 

Pivot tables are useful in coordination, filtering, and visualizing large amounts of 

data. For instance, extracting temporal and seasonal variations in hourly outflow 

data can be achieved with the use of pivot tables. MS Excel can be used with 

other software, including R, SWMM, ArcGIS, and the BMP and LID Whole Life 

Cost Models. !

 SWMM is a dynamic rainfall-runoff simulation model, specifically for urban 

areas, driven by either single event or long-term, continuous precipitation data. 

Runoff is generated from input precipitation applied to the subcatchments via a 

nonlinear reservoir method, which included overland flow routing. Subcatchments 

are represented as rectangular planes and characterized by area, width, slope, 

and imperviousness. Inputs are based on a priori knowledge of the user. Routing 

is achieved for both pervious and impervious subplanes, with outflow created and 

routed according to model development. SWMM couples the spatially lumped 

continuity equation with hydraulic flow equations (e.g., Manning’s equation) to 

produce a nonlinear differential equation for the water depth. Results are 

simulated both as cumulative and as a time series, with recording time step 

determined by the user. The current version includes LID modeling components, 

though input is subcatchment-specific and simulated results are presented on a 

per unit basis in the SWMM output. !

Website: www.epa.gov/nrmrl/wswrd/wq/models/swmm/ !

 VBA, known as Visual Basic for Applications, is a programming language 

that enables user-defined functions, automation of processes, and other low-level 
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functions. VBA is built in and used with most Microsoft Office applications, 

including Excel and ArcGIS. !

 The Water Quality Capture Optimization Statistical Model (WQ-

COSM), version 2.0, is a Windows-based computer program that processes 

long-term precipitation data with catchment hydrologic parameters to determine 

the water quality capture volume (WQCV) for any stormwater treatment facility. 

The tool was developed by the Urban Watersheds Research Institute (UWRI) 

and Urban Drainage and Flood Control District (UDFCD). Users can specify the 

Rational, Horton, or Green-Ampt methods. The software provides percent and 

total runoff volume, percent of all runoff captured, and percent of individual 

storms captured in total by various WQCV basin sizes. !

Website: http://www.uwtrshd.com/software/software.html !

 The WERF BMP and LID Whole Life Cost Models, Version 2.0, is a 

program developed to function within MS Excel. Spreadsheets allow user 

identification and quantification of one-time, construction, and long-term 

maintenance costs associated with different stormwater management options. 

The list of models is extensive, including retention ponds, extended detention 

basins, swales, permeable pavement, green rooftops, large commercial cisterns, 

residential rain gardens, curb-contained bioretention, and in-curb planter vaults. 

This software allows for the cost analysis of the different LID network options, for 

comparison against each other and with traditional stormwater management 

practices. !

Website: www.werf.org/i/a/Ka/Search/ResearchProfile.aspx?ReportId=SW2R08 !
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A.2 Data Sources 

 This section discusses the inputs required for successful image-based 

classification(s), development and validation of the hydrologic model(s), 

geospatial analysis of inputs for design and implementation of LID, cost 

estimation of LID, and geospatial analysis for prioritization of options. Table A.1 

provides the pertinent details, source, and primary scale of analysis for each 

dataset. !

 Lidar point cloud data were obtained through the National Science 

Foundation (NSF) OpenTopography portal. Due to download size restrictions, a 

total of five point cloud datasets, in .las format, were downloaded. All returns 

(e.g., maximum, minimum, and intensity) were included in the returned datasets. !

 Orthoimagery was obtained from the National Agriculture Imagery 

Program (NAIP). NAIP image data were obtained through the USGS National 

Map Seamless Server. They can also be obtained through the USDA Geospatial 

Data Gateway. !

 Geospatial, or GIS, data were obtained from both the San Diego 

Geographic Information Source (SanGIS) and the San Diego Association of 

Governments (SANDAG) distributors. Both SanGIS and SANDAG provide users 

with a range of geospatial data through the Regional Data Warehouse. Datasets 

included land use, slopes, soil types, roads/transportation networks, storm sewer 

networks, stream and river networks, vegetation, flood zones, and estimations for 

groundwater depths. !

 Hydrologic data were obtained through the National Oceanic and 
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Atmospheric Administration (NOAA) Atlas 14 and the National Climatic Data 

Center (NCDC), with the Climate Data Online interactive map application. The 

following bullets discuss, specifically, the data sources for both design storm and 

long-term, continuous precipitation:!

● Precipitation frequency data were obtained from NOAA Atlas 14 in 

2011 and applied to create design storms. The Station Name for these 

data is Chollas Reservoir. The Site ID is 92-0510, at latitude (32.7333) 

and longitude (-117.0667) and an elevation of 131 meters. Design 

storm depths were obtained for the 24-hour duration storms at 

recurrence intervals of 1, 2, 5, 10, and 25 years. The depths were then 

processed into cumulative design storm events for modeling in SWMM. 

These events are presented in Appendix B.!

● NCDC provided long-term, continuous historical precipitation data 

(e.g., hourly intervals) from 07/01/1948 to 07/13/2012. The Station 

Name for these data is San Diego Lindbergh Field, CA US. The Site ID 

is COOP:047740, at latitude (32.7336) and longitude (-117.1831) and 

an elevation of 4.6 meters. The station is approximately 7 km from the 

watershed outlet, though variation in climate was not expected to 

impact the resultant hydrologic simulations.!

!
!
!
!
!
!
!
!
!
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Table A.1: Dataset metadata and scale of analysis for the study. 

!
!
!
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APPENDIX B 

!
!

HYDROLOGIC MODEL DEVELOPMENT, CALIBRATION, 

AND VALIDATION!

!
!
 This appendix provides the steps necessary to developing, calibrating, 

and validating the hydrologic model for the Chollas Creek watershed. Hydrologic 

modeling was accomplished with USEPA SWMM 5.0.022, a dynamic stormwater 

runoff and hydraulic routing software that simulates water quality, quantity, and 

LID controls (Rossman, 2010; USEPA, 2012). SWMM is a widely used 

framework suited to development of sizing guidelines for devices and programs 

across the catchment, subdivision, and site scales (Elliott & Trowsdale, 2007). 

Multiple sources of data were used to build the Chollas Creek model. To 

successfully calibrate and validate the model, the following bulleted steps were 

required for the Chollas Creek watershed:!

● Delineation of the subcatchments was completed by former graduate 

students Pascaline Loricourt and Jennifer Steffen, and was determined 

through conversations with San Diego Coastkeeper and San Diego 

County officials. Validation of the subcatchments was provided by 

digital elevation model (DEM) and land use datasets, resulting in 78 

subcatchments ranging in size from 0.02 – 3.06 km2. Land surface 
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slopes were estimated using 0.61-m contours acquired from SanGIS 

(2012), ranging between 0.5% - 10.9%. Manning’s roughness values of 

0.20 (e.g., dense grass) and 0.009 were assigned to pervious and 

impervious surfaces, respectively. Pervious depression storage was 

representative of lawns (e.g., 0.381 cm) and impervious depression 

storage was set as 0.0635 cm (ASCE 1992). Finalized values for 

subcatchment areas can be found in Table B.1.!

● Land use datasets were obtained through the Regional Data 

Warehouse for the 2008 temporal period. These datasets were cross-

referenced with that available through the US Census Bureau, known 

as the Topologically Integrated Geographic Encoding and Referencing 

(TIGER). !

● Impervious area was a user-defined parameter and was one of the 

parameters varied in the process of calibration and validation; 

however, it should be noted that the overall values were not 

qualitatively misrepresentative of actual conditions. Reports for the San 

Diego watershed stated the overall impervious area to be 

approximately 50%. This was confirmed by PBIA analysis, finding a 

51% overall imperviousness. Final values for the subcatchment 

impervious areas can be found in Table B.1.!

● Infiltration parameters were estimated using the soils data layer 

(provided by SanGIS Regional Data Warehouse). The majority of the 

watershed’s soils were representative of Hydrologic Soils Group D. 
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This class of soil is associated with the following infiltration parameters 

for application of the Green-Ampt Equation, which was used in SWMM 

to drive infiltration (Rossman, 2010; County of San Diego, 2012),!

o Suction Head – 239 mm (i.e., sandy clay)!

o Conductivity – 1.27 mm per hour!

o Initial Deficit – 0.25 !

● Subcatchment overland flow path widths were estimated within ArcGIS 

by former graduate students Pascaline Loricourt and Jennifer Steffen. 

Final input values are provided in Table B.1.!

● Subcatchment average surface slopes were estimated within ArcGIS 

by former graduate students Pascaline Loricourt and Jennifer Steffen. 

Final input values are provided in Table B.1.!

● Flow routing was governed by the existing storm sewer network in the 

watershed. Conduit parameters (e.g., geometry, length) were extracted 

from Storm Sewer System GIS data provided by the SanGIS Regional 

Data Warehouse (2012). Conduit slopes were determined via the node 

elevations extracted from the storm drain network dataset (SanGIS, 

2012). The storm drainage network was comprised of 151 open (e.g., 

natural channel) and closed (e.g., drain pipe) segments. GIS and aerial 

imagery datasets were used to characterize the channel geometry and 

lengths throughout the watershed. Confirmation was provided 

qualitatively with aerial imagery and topographic maps (SanGIS, 

2012). Conduit roughness was set as 0.013 for circular, concrete pipes 
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and 0.02 for trapezoidal concrete-lined channels (USDOT, 1986; 

ASCE, 1992). Final values are provided in Table B.1.!

● Junction invert elevations were determined with ArcGIS elevation 

contours and node inlet datasets provided by the SanGIS Regional 

Data Warehouse. Aerial imagery overlaid with the sewer network 

polyline and inlet node point features provided these estimates. !

● Depression storage was a user-defined estimate for both the 

impervious and pervious land surfaces. These parameters were 

changed as part of the calibration and validation of the hydrologic 

model. Guidance for values was provided by ASCE (1992). Final 

values are provided in Table B.1.!

● Surface roughness of subcatchments was a user-defined estimate for 

both the impervious and pervious land surfaces. These parameters 

were used in the calibration and validation of the hydrologic model. 

Guidance for values was provided by ASCE (1992). The resulting, final 

value can be found in Table B.1.!

● Surface runoff routing was set to the outlet for all subcatchments, with 

100% routed. This was assumed since the watershed is densely 

urbanized, with a large amount of directly connected impervious areas. 

The ability to route a percentage of impervious area to the LID within 

the model provided an additional level of disaggregation, which was 

representative of the actual conditions. To minimize flooding and 

system losses, surcharge and ponding depths were established at the 
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nodes of the largest subcatchments. This ensured that all input 

precipitation could be accounted for through the length of the 

simulation. !

 As continuous streamflow data were unavailable, model calibration was 

performed using an iterative method of extracting individual storm event results 

from the long-term simulations and comparing them against measured values for 

these events. Comparison event data were provided by annual water quality and 

urban runoff monitoring reports (Weston Solutions, Inc., 2007; 2010a; 2010b). 

Simulated peak flow rates matched the seven monitored events to within an 

average of 3.1%. Validation was accomplished by the same method but for a 

different set of measured events. These events were provided by Schiff & Carter 

(2007). Differences in volume and outflow rate ranged from 5% to 20% for the 

seven monitored events from 2006 (Schiff & Carter, 2007). These storms 

represented a range of event sizes and durations. A final check involved the 

simulation of the 100-year, 24-hour event used by the Federal Emergency 

Management Act (FEMA) for floodplain mapping. This simulation yielded a 5.8% 

difference in the peak flow rate measured upstream of the confluence of the two 

reaches, known as the Encanto Branch (City of San Diego, n.d.). !

 Discrepancies between the modeled and measured values were attributed 

to differences in contributing watershed area and variation in the temporal pattern 

of rainfall associated with each runoff producing event. Since continuously 

monitored streamflow data do not exist for the watershed, the resulting 

calibration and validation were deemed acceptable in meeting the quantification 
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and scenario comparison goals of the researchers. Subcatchment parameters 

are provided below (Table B.1.), which were used as input for the SWMM model 

.inp file. !

!
!
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Table B.1: Final SWMM subcatchment input parameters.!
Basin Rain 

Gage Outlet
Total 
Area 

(acres)

Impervious-
ness (%)

Width 
(m)

Slope 
(%) Basin Rain 

Gage Outlet
Total 
Area 

(acres)

Impervious-
ness (%)

Width 
(m)

Slope 
(%)

D1 1 I1 31.9 59.76 300 5 D40 1 I40 102 52 250 7.3
D2 1 I2 26.7 57.68 300 5.4 D42 1 I42 68 50.51 300 7.8
D4 1 I4 21.2 19.08 300 3 D43 1 I43 82 50.51 300 7
D3 1 I3 46.2 49.58 300 0.5 D44 1 I44 120 55.12 100 7.1
D5 1 i73 48.9 55.58 300 2.4 D45 1 I45 115 42.92 300 10.4
D6 1 I6 98.4 59.37 300 3.5 D46 1 I46 101 26.19 300 6.9
D7 1 I7 215 50.6 300 5 D47 1 I47 66.6 56.25 300 6.3
D8 1 I8 122 55.05 300 4 D48 1 I48 41.1 55.26 300 7
D9 1 I9 73.9 54.28 300 7 D49 1 I49 5 25 300 5
D10 1 I10 48.2 52.59 300 7.6 D50 1 I50 97.3 25 300 5.8
D11 1 I11 75.7 50.6 300 8.1 D51 1 I51 378 58.82 100 2.3
D12 1 I12 113 47.22 300 5.5 D52 1 I52 115 52.08 300 8.6
D13 1 I13 125 52.6 300 8.2 D53 1 I53 127 58.63 300 5.5
D14 1 I14 119 44 150 9.6 D54 1 I54 210 55.15 300 3
D15 1 I15 76.9 52.01 300 10.7 D55 1 I55 330 56.47 300 3.8
D16 1 I16 48.3 52.92 300 5.6 D56 1 I56 39.9 56.91 300 2.6
D17 1 I17 45.2 52.9 300 10.9 D57 1 I57 36.8 56.76 300 5
D18 1 I18 84.2 56.17 300 8.9 D58 1 I58 7.22 53.04 300 5.6
D19 1 I19 78.2 52.22 100 7.6 D59 1 I59 49.2 53.72 300 3.3
D20 1 I20 24 55.16 300 6.3 D60 1 I60 30.3 57.39 300 3.2
D21 1 I21 36.8 55.01 100 8.3 D61 1 I61 41.3 55.48 100 4.7
D22 1 I22 31.1 53.71 300 9.8 D62 1 I62 427 54.72 50 1
D23 1 I23 47.1 52.94 300 9.3 D63 1 I63 436 58.28 250 1
D24 1 I24 23.5 53.6 300 7.3 D64 1 I64 556 56.72 50 10
D25 1 I25 29.9 55.16 300 4.2 D65 1 I65 124 53.13 100 3
D26 1 I26 42.8 55.32 300 6.5 D66 1 I66 33.6 52.65 300 9
D27 1 I27 38.9 55.6 300 2.2 D67 1 I67 89.1 51.72 150 7
D28 1 I28 11.1 53.89 300 4.9 D68 1 I68 279 18.6 300 3
D29 1 I124 15.3 46.48 300 8.7 D69 1 I69 51.8 1.47 300 4.7
D30 1 I30 32.9 50.27 300 4.2 D70 1 I142 15.2 56.83 300 7
D31 1 I31 34.7 53.45 300 5.5 D71 1 I134 32.9 39.65 300 5.5
D32 1 I32 755 53.2 50 0.7 D72 1 I135 5 25.39 100 5
D33 1 I33 24.6 54.11 300 6.3 D73 1 I136 17.3 17.83 100 10.4
D34 1 I34 49.9 52.14 300 7 D74 1 I137 30 55.09 300 7.8
D35 1 I35 26 58.07 300 7.5 D75 1 I138 67.7 43.16 100 7
D36 1 I36 67.3 53.23 300 4.8 D76 1 I139 68.5 56.43 250 2.3
D37 1 I37 57 53.73 300 8.9 D77 1 I140 52.3 56.28 250 2.3
D38 1 I38 65.7 53.73 300 8.4 D78 1 I141 30.3 58.88 300 6.3
D39 1 i107 103 52.55 250 6.6
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APPENDIX C 

!
!

LID DESIGN GUIDANCE AND RESOURCES!

!
!
 This appendix provides an overview of the methods and models used to 

simulate the rainfall-runoff response of catchments with RWH applied. It 

specifically discusses the EPA SWMM5.0.022 software and provides an example 

of a neighborhood-scale RWH scenario. !

!
!

C.1 Introduction 

 Since LID practices are limited by the constraints of the site they are 

meant to manage, there are steps that must be considered. In developing a site 

or, moreover, a watershed for the application of LID either individually or as part 

of a larger framework, the following steps should be considered by the designer 

(Prince George’s County, 1999),!

1. Define the hydrologic control required or warranted for both the site 

and the overall watershed. Hydrologic controls include:!

a. Infiltration, discharge frequency, volume of discharges, 

groundwater recharge!

2. Evaluate the site constraints, including:!

a. Available space, soil infiltration characteristics, water table, 
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slopes, drainage patterns!

3. Screen the candidate practices available that meet the suitability 

criteria and determine the following:!

a. Site opportunities, site constraints, functions and limitations of 

integrated management practices!

4. Evaluate the hydrologic performance of candidate integrated 

management practices in various configurations!

a. Develop a list for potential implementation, including number, 

size, volume, etc.!

5. Select the preferred configuration and design, with the goal of:!

a. Choosing the configurations that best meet the goals of the 

watershed!

6. Supplement with conventional controls, if necessary, such as:!

a. Determination of whether additional stormwater control is needed, 

identification of siting operations, consideration and design end of 

pipe controls!

 It is important to note that each LID practice has different design guideline 

specifics, despite the aforementioned universal recommendations for overall site 

development (Prince George’s County, 1999).  

!
!

C.2 RWH Modeling 

 The following sections provide brief descriptions of RWH as a stormwater 

management practice. Discussions of available software for modeling RWH are 

provided, with a primary focus on the EPA SWMM5.0.022 program. A full 
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presentation of modeling components for SWMM5.0.022 is provided, with a case 

study example of potential results for a residential neighborhood. This document 

was developed as a chapter in the upcoming EWRI LID Computations Task 

Committee’s Stormwater Control Measures (SCMs) technical guidance 

document.!

!
!

C.2.1 Description 

 Harvesting rainwater runoff can be divided into two categories, passive 

and active systems. The former include no moving parts and focus on capture via 

land surface modification (e.g., curb cuts, rain gardens, rainscapes, and 

permeable pavement). Active systems provide containment structures with the 

goal of extending temporal use. For this report, active rainwater harvesting 

techniques are highlighted. Rainwater harvesting (RWH) intercepts stormwater 

runoff generated by impervious surfaces, such as household rooftops, to meet 

end goals. These include reductions in runoff volumes, time to peak flow rates, 

water quality improvement, and supplementation of water demands. End uses 

determine system complexity, ranging from simple to intricate, and thereby the 

cost of the system.  

!
!

C.2.2 System Components 

 The primary components of RWH include the catchment surface, a 

conveyance network, the storage unit, the outflow distribution network, and 

storage unit stabilization considerations. Catchment surfaces include rooftops, 

parking lots, and any impervious surface intercepting rainfall. Conveyance 
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components include gutters, downspouts, and piping for movement of runoff to 

the collection unit(s). Storage units are available in a range of capacities. Rain 

barrels are smaller (e.g., 50-100 gallons, or 189-379 liters) and typically placed 

aboveground, whereas cisterns have greater capacities (e.g., greater than 100 

gallons, or 379 liters) and can be placed either above or below ground. Outflow 

considerations include discharge orifice(s), overflow piping, discharge piping 

(e.g., underdrain-mediated outflow), and the location of discharge. Discharge 

locations should direct flow away from building foundations and prevent nuisance 

flows to adjacent properties. Unit stabilization must be provided to address the 

added weight of stored water, which is more important for cisterns. !

 Additional components are directly a function of system complexity, 

including prestorage bypass and treatment, pump(s), and dual piping network(s). 

When reuse of stored rainfall is an end goal, owners must consider the quality 

and distribution of the water. Prestorage considerations target water quality with 

pretreatment measures. This includes the diversion, or removal, of the first flush 

volume. Conventional guidance suggests a 50% reduction in contamination with 

every mm of rainfall depth flushed (Martinson & Thomas, 2005) and flushing one 

to two gallons per 100 square feet of catchment area (e.g., 0.41-0.81 mm). 

Additionally, filtration via screening removes particulates and prevents future 

clogging. Pumps must be considered when movement of water is required. Local 

plumbing codes provide accurate guidance on piping requirements regarding 

both potable and nonpotable applications.!

!
!
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C.2.3 Benefits and Limitations 

 Research indicates increasing stormwater runoff volumetric reductions 

with increasing unit capacity and runoff routing to pervious areas (e.g., 

downspout disconnection) (Brander et al., 2004; de Graaf & der Brugge, 2010; 

Spatari et al., 2011; Jia et al., 2012). Water quality improvements have also been 

noted for individual applications. In general, advantages of RWH include (Prince 

George’s County, 1999), !

● Source control capture of runoff, !

● Feasible implementation as part of a larger BMP treatment train, !

● Low maintenance requirements, !

● Less reliance on soil infiltration rates, !

● Reductions in homeowner water bills (Woods-Ballard et al., 2007; 

Foraste & Hirschmann, 2010)!

● Supplementation of potable water demands, such as irrigation and 

toilet flushing (Mitchell et al., 2005a; 2005b; Rosemarin, 2005; Fletcher 

et al., 2007; Mitchell et al., 2007; Foraste & Hirschman, 2010), and !

● Greater ability to retrofit existing, space-limited areas. !

 Limitations of RWH include storage capacity restrictions (e.g., rain barrels 

provide less storage), a lack of direct water quality treatment, infrastructure 

requirements (e.g., pumps, valves) for complex end uses, an increased vector 

potential when maintenance is neglected, and implementation and design may 

require building permits, fulfillment of government code, or geotechnical 

considerations.!
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C.2.4 Design and Implementation 

 Numerous sources of design guidance exist and vary by region for green 

infrastructure practices. Increasingly, states and municipalities consider RWH for 

its potential to meet stormwater reduction and demand supplementation goals. 

For instance, the Texas Development Water Board (2010), Virginia Department 

of Health (2011), and Minnesota Pollution Control Agency (2008; 2013) provide 

comprehensive documents regarding the applicability, technical constraints, and 

considerations related to RWH. Another work, the Low-Impact Development 

Design Strategies: An Integrated Design Approach by Prince George’s County 

(1999), was one of the first to address LID in detail. Additional resources are 

provided in the section Resources. !

!
!

C.2.5 Maintenance 

 While RWH has low maintenance requirements, such activities ensure 

long-term reliability and vary with climatic regime. These include twice annual 

inspection for adequate operation (e.g., no leaking or broken parts); annual and 

seasonal cleaning of gutters, conveyance systems, screens, and internal tank to 

prevent clogging and control vectors; regular drainage of captured water to 

increase capacity for future storm events, and; annual system winterization to 

prevent freeze damage (if applicable).!

!
!
!
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C.3 Computational Methods for RWH Modeling and 

Simulation 

 This section provides an overview of the computational methods available 

for modeling, simulating, and/or analyzing the implementation of RWH as a 

stormwater control measure. The individual and watershed scales serve as 

separate foci. !

!
!

C.3.1 Individual Scale 

 Numerous methods exist to assess RWH performance at individual scales 

(Ward et al., 2010). In general, designs balance regional climatic variables and 

household demands with water supply. Variables include the catchment area, 

storage size, and end uses. The following are four examples of various models 

available for site-scale design and analysis of RWH:!

● The Rainwater Harvester (RH), version 2.0, released by researchers at 

North Carolina State University assists in sizing RWH as a function of 

rainfall data and demand, or usage. Outputs include cost summary and 

use statistics. Available at: !

http://www.bae.ncsu.edu/topic/waterharvesting/model.html. !

● The RainCycle (RC) is a Microsoft Excel spreadsheet-based simulation 

program that provides whole-life costing analysis with hydraulic 

simulations of water fluxes (e.g., supply and demand). A freeware is 

available. Available at: http://sudsolutions.co.uk/raincycle.htm. !

● The Storm Water Calculator is another Microsoft Excel spreadsheet-

based program used to determine the quantity of stormwater that will 
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need to be managed to meet permit requirements for the City of Santa 

Rosa, California. This software accompanies the City of Santa Rosa 

and County of Sonoma Storm Water Low Impact Development 

Technical Design Manual (2011). Available at: http://ci.santa-

rosa.ca.us/departments/utilities/stormwatercreeks/swpermit/Pages/swL

IDtechManual.aspx. !

● The Rainwater Analysis and Simulation Program (RASP) is a 

MATLAB-based program developed to assess single-scenario 

operation of RWH, with reliability metrics relating water supply and 

runoff capture. This aids in sizing RWH units to achieve runoff 

reduction and demand supplementation goals (Sample et al., 2013).!

!
!

C.3.2 Watershed Scale 

 The application of source controls, such as RWH, within the greater 

watershed is an area of increasing interest. Improvements in software to assess 

the hydrologic impacts of distributed LID are increasing. The following are two 

examples of models used in the design and testing of catchment-scale RWH 

applications:!

● The EPA Storm Water Management Model (SWMM), version 5.0.022, 

a widely used dynamic rainfall-runoff model, now includes explicit 

modeling of LID controls. These include porous pavement, rain 

gardens, green roofs, street planters, rainwater harvesting, infiltration 

trenches, and vegetative swales. LID controls are represented at the 

subcatchment scale. SWMM requires users to calibrate and validate 
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watershed parameters such that simulations are reliable and accurate. 

The model is capable of processing both individual events and long-

term continuous precipitation. Available at: !

http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/. !

● The EPA National Stormwater Calculator (SWC), which uses SWMM 

as its computational engine, offers a simple calculation of LID 

hydrologic impacts for uniform, small sites (e.g., recommended up to 

several dozens of acres) within the United States. Simulations of 

hydrologic reductions from LID are based on user-defined soil type, 

landscape, land use, and historical precipitation datasets. As of 

October 2013, the ability to link the SWC with future climate scenarios 

had not been released. Available at: !

http://epa.gov/nrmrl/wswrd/wq/models/swc/. !

!
!

C.4 SWMM5.0.022 LID Editor 

 In SWMM, RWH is represented using the LID Control Editor, located 

under the Hydrology tab. Within the LID Control Editor, the user defines the type 

of LID, which is Rain Barrel in this case. The process layers for RWH encompass 

both storage and underdrain, representative of the capacity and the drainage 

components. For the Storage layer, the only input is the height of the unit (D), in 

inches (in) or millimeters (mm). A typical height for a 227-liter rain barrel is 914 

mm. Cistern heights will vary, as a function of the capacity. The Underdrain layer 

governs the temporal outflow parameters, with the drain coefficient (C), drain 

exponent (n), drain offset height (Hd), and drain delay. !
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 The drain delay is determined by users and establishes the consecutive 

dry conditions time (hours) that must elapse before the RWH unit is allowed to 

discharge. This establishes the opening of units after a storm event as a simple 

temporal constraint related to the interevent precipitation characteristics. All other 

underdrain parameters simulate the outflow (q) through a simplified submerged 

orifice (Eq. 1), in unit depth per hour (in/hr or mm/hr). This outflow is normalized 

to the areal footprint of the unit. If no underdrain exists (i.e., units capture water 

and overflow but have no underdrain-mediated flow), then C is set to zero.!

!
!

€ 

q = C h −Hd( )n………..………………………………………………………………(1)!
!
!
 To understand and quantify the parameters influencing unit outflow, users 

should first establish the required time to drain the unit (T), in hours. This 

temporal variable is different from the drain delay period. The T establishes how 

quickly the unit will drain once allowed to open. This value is used with Eq. (2) to 

estimate the C value for Eq. (1). It is important to note that Eq. (2), as presented, 

is specific to a circular orifice (i.e., n = 0.5). The parameter Hd represents the 

height of the outflow drain from the bottom of the unit (in or mm). Last, h is a 

dynamic parameter, changing with the volume of water stored over time (in or 

mm) and never exceeding the maximum depth, which is the height of the unit.!

!
!

€ 

C = 2 D( ) T……………………………………………………………………………(2)!
!
!
!
!
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 Using C, h, Hd, and n, SWMM simulates the outflow through the 

underdrain (in/hr, mm/hr) once the unit is allowed to open, as dictated by the 

drain delay time. Users can enter the information for the LID Control Editor, 

located in the Hydrology tab. !

 LID Controls are manually added by users for each subcatchment desired. 

This entails opening the subcatchment editor and selecting the LID Controls 

drop-down. This opens a pop-up where users must Add the desired control(s). 

After clicking Add, users are prompted with the LID Usage Editor. This is specific 

to each subcatchment and allows users to determine the extent of LID control. 

Extent is a function of the number of replicate units, the area of each unit, the 

percent of impervious area treated, and the outflow discharge location (e.g., 

return to pervious or directly to the outlet). This establishes the desired drain time 

for units. A screenshot of the model interface (Fig. C.1) illustrates where users 

will find and apply LID parameters. !

 As a note, the percent of impervious area treated is dependent on the 

subcatchment characteristics and must account for the ratio of rooftop area to 

impervious area per subcatchment. In general, the cumulative percent of 

impervious area treated per subcatchment may not exceed 100%. The Usage 

Editor allows users to establish the flow routing location via the Send Outflow to 

Pervious Area button. Checking this sends LID mediated flow back to the 

pervious area of the subcatchment while not checking routes it directly to the 

subcatchment outlet node. Pervious routing allows for further losses (e.g., 

evaporation, infiltration). This is represented in the .inp file as either a 0 or a 1. If 
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RWH-routed water is assumed to supplement irrigation uses, it is justifiable to 

route it back to the subcatchment pervious area. The other parameters, LID 

occupies full subcatchment, top width of overland flow surface of each unit, and 

percent initially saturated, do not apply to RWH and, therefore, should remain as 

the default values.!

 Last, users have the option to create a detailed report file for each 

subcatchment LID control. This report (as a tab-delimited .txt file) provides the 

individual temporal LID unit flow routing results. These are recorded at the same 

rate as the reporting time step. Results include total inflow (in/hr), total 

evaporation (in/hr), surface infiltration (in/hr), soil percolation (in/hr), bottom 

infiltration (in/hr), surface runoff (in/hr), drain outflow (in/hr), surface depth (in), 

soil/pave moisture, and storage depth (in). The contents of the detailed report are 

more detailed than those presented in the Status Report, which provide a per unit 

summary of the LID water balance at the subcatchment level. The Status 

Report’s LID Results section presents the total inflow, evaporative losses, 

infiltration losses, surface outflow, drain outflow, initial storage, and final storage 

results as depths per the LID footprint area. To obtain the total volume of runoff 

reduced, in gallons, at the subcatchment level (i.e., cumulative removal), the user 

should apply Eq. (3).  

!
!

€ 

Vsubcstchment = 7.481× nLID × depth footpr int( ) × Areaunit…………………………..……(3)!
!
!
 Eq. (3) consists of the total number of LID implemented within the 

subcatchment (nLID), the simulated result of depth per areal footprint (in) (found in 
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the Summary Report), the area of the unit (ft2), and a conversion from cubic feet 

to gallons. This results in the Vsubcatchment, which is the cumulative volume 

(gallons) mediated by the LID control implemented. In the case of RWH, the 

surface outflow column represents all flow that passes through the unit as 

overflow, while the drain outflow column represents all flow that passes through 

the underdrain (i.e., captured). The underdrain flow is subject to the drain delay 

and Eq. (1), while overflow is not. See the simplified schematic (Fig. C.2) for flow 

routing using RWH in SWMM.!

!
!

C.4.1 Model Simulations 

 To assess the impacts of the passive RWH programs on the local 

hydrology, SWMM models should be driven by long-term, continuous 

precipitation data. Users establish the climatic conditions in the Options and Rain 

Gage layers. For this application, an 8.45-hectare residential watershed was 

chosen in Murray, Utah, USA. A total of three SWMM models were created to 

provide an analysis of the impacts of RWH, implemented as either rain barrels 

(227-liter) or cisterns (6,375-liter), on the stormwater runoff for the residential 

catchment. Manual delineation and subsequent quantification of impervious 

surfaces, including household footprints, were completed for each parcel. These 

values represented current conditions within the watershed at the parcel level. 

Subcatchment percent imperviousness ranged from 16% to 65% (average 36%) 

and was representative of all impervious surfaces on the property (e.g., rooftops, 

driveways, and sidewalks). Rooftop area, as a percent of the subcatchment 

impervious area, was then calculated with household footprints to determine the 
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percent of subcatchment area directed to, or managed by, the LID practice. In 

this application, rooftops accounted for 60% of the cumulative impervious area 

and 21.4% of the total watershed area. In essence, 60% of the impervious area 

was disconnected from the impervious area. For RWH, this is referred to as 

downspout disconnection. !

 A model representing the existing conditions (BASE), in which no RWH 

was implemented, provided the basis for comparison with RWH scenarios. The 

Salt Lake City International Airport (COOP: 427598) historical precipitation 

dataset was used for long-term, continuous simulations (1950-2010). These 

datasets can be acquired from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Climatic Data Center (NCDC) portal (NCDC, 

2013). Necessary corrections to precipitation data file format should be made to 

ensure the model runs correctly. Research suggests subdaily (i.e., hourly or 

finer) precipitation time steps for hydrologic simulations used to estimate RWH 

performance (Coombes & Barry, 2007; Mitchell et al., 2007; Burian & Jones, 

2010). 

!
!

C.4.2 Results 

 For the residential, case study watershed, the following results were 

obtained by modeling the 227-liter rain barrels (227Liter) and 6,735-liter cisterns 

(6375Liter) at each household (n=100). Simulations driven by continuous, long-

term (e.g., hourly) precipitation (1950-2010) indicate 58% reductions in long-term 

runoff volumes for both 227Liter and 6375Liter scenarios (Table C.1). Average 

annual reductions follow a similar trend for the case study watershed, with an 
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equivalent average reduction of 58% (range 46% to 59%).!

 When the RWH discharge location is changed from pervious (i.e., 

checked) to the subcatchment outlet (i.e., unchecked), the overall simulations 

indicate negligible volumetric reductions with both RWH scenarios versus the 

base case. This is a function of not allowing disconnected rooftop runoff to 

infiltrate, reinforcing that this disconnection to pervious area provides the actual 

volumetric reductions. Flow rate timing changes are more pronounced when 

routing to impervious, especially for larger RWH volumes, since all RWH-

mediated runoff will exit the system as surface flow and not as infiltrated, 

subsurface loss. The flow frequency at the outlet for the BASE model is 7.3%, 

whereas the 227Liter models simulate 6.4% and 18.3% for pervious and 

impervious routing scenarios and the 6375Liter models simulate 6.4% and 42.6% 

for pervious and impervious routing scenarios. Percent differences with the 

BASE are minor for pervious area routing while routing to the outlet results in 

flow frequency differences of 43% and 71% for the 227Liter and 6375Liter model 

simulations, respectively. Greater flow losses occur when routing to impervious 

areas, hence the discrepancy in runoff and outflow volumes for the LID scenarios 

(Table C.2).!

 Design storm simulations provide an instantaneous estimate of potential 

reductions stemming from RWH. This differs from long-term, continuous 

analyses in that antecedent conditions are not considered. Additionally, 

subsequent precipitation events do not occur outside of that included in the 

design event. The former implication influences the amount of potential infiltration 
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while the latter results in consistent opening of the RWH units, based on the 

drain delay time. Therefore, to quantify the long-term impacts of RWH, users 

should choose long-term, continuous precipitation. !

 In terms of average annual runoff time (days), both scenarios simulate a 

long-term reduction of 17%. This correlates to runoff conditions for an average of 

14 days per year (range 9 to 26 days), compared with a pre-LID annual average 

of 17 days (range 11 to 30 days). For monthly analysis, runoff-producing events 

are reduced with RWH by an average of 14% (range 2% to 23%). This is a 

function of the season, with the least reductions occurring in the following two 

groups: a. April and May (4%, 3%), and b. August and September (2%, 3%). 

Remaining months provide an average of 20% fewer runoff-producing events.!

!
!

C.5 Conclusions 

 A one-way between subjects analysis of variance (ANOVA) was 

conducted to compare the effects RWH unit volume had on annual runoff 

volumes for the three scenarios tested, including the base. ANOVA assumes 

independent, normally distributed datasets, with equal variances among the 

populations. The null hypothesis states there is no difference between the 

dataset means. The Tukey HSD post hoc test was applied to the ANOVA results 

in which the null hypothesis was rejected. This determined which groups differed 

significantly. There was a significant effect of RWH storage capacity on annual 

average runoff volumes (MGAL) at the p<0.05 level for the three model 

conditions [F(3,177)=247.6, p=5.2E-52]. Post hoc comparisons using the Tukey 

HSD test indicated that the mean score for the base model (M=2.55, SD=0.62) 
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was significantly different than both RWH conditions, 227Liter (M=1.06, SD=0.26) 

and 6375Liter (M=1.08, SD=0.07). There was no difference between means of 

the RWH scenarios for the conditions tested. !

 Reductions in the peak annual outflow rates match those for runoff 

volumes, with long-term averages of 52% and 56% for the 227Liter and 6375Liter 

scenarios, respectively. It should be noted that these pre-LID peak flow rates 

range from 0.034 CMS to 0.58 CMS. Thus, the results for this catchment (at 8.45 

hectares and primarily residential) should not be extended to other watersheds 

with differing land use and land cover compositions. Simulation fluctuations can 

be expected from variations in other parameters governing the operation of RWH 

units. These include the drain delay time, the drain coefficient, the LID-mediated 

catchment area, and the precipitation regime (i.e., climate). !

!
!

C.5.1 Model Improvements 

 As SWMM, version 5.0.022, currently exists, the application of passive 

RWH system is limited in its ability to model variable demands placed on 

individual RWH units. The addition of a demand driven option to the RWH LID 

Control, representative of a diurnal demand pattern, would add benefit to the 

SWMM model. Opposite of head-driven discharge, RWH outflow would be 

governed by a time series, representative of variable uses. These include indoor 

nonpotable functions, such as flushing toilets and washing laundry. Research 

indicates a conservative estimate of household demand supplementation is 

achievable by applying the Yield After Spillage (YAS) algorithm (Fewkes, 2000). 

This would open up the possibility for SWMM to produce a postanalysis water 
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savings estimate, or efficiency, for RWH at the various levels of analysis. !

!
!

C.6 Resources 

 This section provides resources that present, in detail, the applicability, 

site and design considerations, limitations, operation and maintenance 

considerations, effectiveness, and cost considerations for RWH practices in 

regions throughout the United States.!

• Prince George’s County (1999), pp 4-18 – 4-19. !

• CASQA (2003), Website: 

http://www.cabmphandbooks.com/Documents/Development/SD-11.pdf !

• Southern California Stormwater Monitoring Coalition (2010), pp 114-

124.!

• County of San Diego (2007i, 2007ii), pp 64-65; Appendix 4, pp 84-86.!

• US EPA (2013). Rainwater Harvesting: Conservation, Codes, and Cost 

Literature Review and Case Studies. EPA-841-R-13-002.
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!
Figure C.1: SWMM screenshot, with arrows indicating the process by which users enter LID Usage data at the 
subcatchment level. 
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!
Figure C.2: SWMM5.0.022 flow routing for RWH, with underdrain outflow 
established via the drain delay and Eq. (1) functions and drain outflow 
driven by head (Walsh et al., 2014).!
!
!
Table C.1: Overall, long-term simulation results for Murray, UT. LID-
mediated flow is directed to subcatchment pervious areas for further 
infiltration (i.e., downspout disconnection).!

!
!
!
Table C.2: Overall, long-term simulation results for Murray, UT. LID-
mediated flow is directed to the subcatchment outlet, without further 
potential for infiltration (i.e., directly connected impervious areas).!

!
!

Scenario Precipitation Evaporation Infiltration Runoff Outflow 
Volume

Peak 
Outflow 

Rate

Average 
Outflow 

Rate
1,000 mm 1,000 mm 1,000 mm 1,000 mm ML CMS CMS

BASE 23.3 1.94 15 6.4 544.7 0.58 0.0051
227Liter 23.3 1.93 18.7 2.7 228.1 0.57 0.002

6375Liter 23.3 1.94 18.7 2.7 230.2 0.58 0.0022

Scenario Precipitation Evaporation Infiltration Runoff Outflow 
Volume

Peak 
Outflow 

Rate

Average 
Outflow 

Rate
1,000 mm 1,000 mm 1,000 mm 1,000 mm ML CMS CMS

BASE 23.3 1.94 15 6.44 544.3 0.578 0.0051
227Liter 23.3 1.94 15 6.45 545.1 0.58 0.002
6375Liter 23.3 1.93 14.9 6.26 551.2 0.577 0.0008
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APPENDIX D 

!
!

PROTOCOL APPLICATION GUIDELINES!

!
!
 This appendix provides guidelines for the application of both the Suitability 

and Prioritization Protocols, including the toolsets: LIDSS, QA, RWHA, and 

PriorLID. The following sections provide a summarized list of steps required to 

successfully apply the Suitability and Prioritization protocols. In addition, the 

steps for assessing the uncertainty and accuracy of the individual components 

are discussed. !

!
!

D.1 Suitability Protocol 

 The Suitability Protocol follows a workflow (Fig. D.1) requiring users to 

process both lidar and spectral datasets prior to the application of classification 

methodologies and geospatial analysis of results. Using Fig. D.1 as a reference, 

the following steps are required to successfully apply the Suitability Protocol, 

beginning with a general overview:!

1. Suitability Protocol Overview: The protocol incorporates the 

classification of watershed conditions using publicly-available datasets 

and, combined with the toolsets created (LIDSS, QA), improves the 

ability and accuracy of targeting of site-suitable LID practices based on 
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user-defined constraints. These constraints include slopes, land use, 

land cover, soils, and floodplain zones. The potential for expansion of 

layers to include more constraints is also possible. The creation of a 

.dbf file contains the locations and areas specific to the LID constraints 

chosen, which can be assessed using the Prioritization Protocol’s 

RWHA toolset. Based upon the user’s choice of LID and the imported 

.dbf file from the LIDSS toolset, users can size individual LID units as a 

function of any precipitation depth (e.g., WQCV event depth). The 

result is a subcatchment-by-subcatchment summation of the total 

number of units and related characteristics (e.g., areal footprint, height, 

drainage coefficient, drainage delay time, underdrain height, and 

discharge location). These data are then imported into the user-

uploaded base SWMM .inp file to model the LID practices for the scale 

chosen (e.g., subcatchment). !

2. Process lidar datasets: Since a high-resolution image (e.g., 1-meter) is 

necessary for delineating specific classes present within the 

heterogeneous urban region, the need to address within-class 

confusion can be met with the inclusion of lidar data. Lidar data 

improve the extraction of elevation and attribute height information to 

discriminate man-made structures from natural objects (Hartfield et al., 

2011). Lidar point cloud datasets (.las files) can obtained from the 

Open Topography, or any state or federal data repository, and merged 

using BCAL Tools and LAStools. For this research, a methodology 
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similar to Shiravi et al. (2012) was applied to process lidar datasets, 

which contained multiple returns. Lidar datasets should processed to 

separate the minimum (i.e., last), maximum (i.e., first), and bare earth 

returns. These points are then used to extract a raster surface for use 

within ENVI and eCognition. If the bare earth raster contains too many 

No Data and erroneous points, the elevation contours polyline (e.g., 

0.5-meter resolution) can also be used to generate a bare earth raster 

with ArcGIS. To ensure raster datasets are aligned properly, image-to-

image orthorecitification can be applied using ENVI. !

3. ENVI processing of datasets: Using methods similar to Zhu et al. 

(2012), perform band math on the processed lidar rasters, DTM and 

DSM, to obtain the nDSM. Height filtering can also be carried out to 

remove low ground objects such as cars, leaving only objects of 

targeted heights (e.g., houses and trees). The height chosen is a 

function of both the data and the user’s choice of threshold. 

Differentiation of vegetation from buildings can be improved with band 

indices, such as the NDVI. This is calculated on the spectral dataset 

(e.g., NAIP orthoimagery) using the NIR and Red bands (Rottensteiner 

et al., 2003). Next, the processed NDVI and lidar datasets can be used 

to differentiate natural from manmade structures with greater height 

and NDVI values for trees (Zhu et al., 2012). To improve the inclusion 

of texture in the data (i.e., smoothness or roughness of a surface), the 

Co-occurrence methods of Variance and Entropy can be included. 
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Once preprocessing has been completed, a layer-stacked image band 

can be created for all previously mentioned datasets.!

4. Pixel-Based Image Analysis: First, users are required to delineate 

regions of interest (ROIs) that represent both training and reference 

(i.e., accuracy assessment) goals. For training, a minimum of 20 to 30 

ROIs per class should be delineated, following recommendations by 

Van Genderen & Lock (1977). This is done to ensure between 85% 

and 90% classification accuracy with a 0.05 confidence. For reference 

ROIs, a minimum of 50 sites per class is recommended to provide 

sound statistical analysis (Congalton & Green, 1999). Users can then 

apply the classification algorithm of choice. This choice is a function of 

the datasets and needs of the analyst. Classification is then carried out 

on the layer stacked image with the training ROIs for the user-defined 

classes. Anderson et al. (1976) should be used as guidance in 

choosing classes. !

5. Object-Based Image Analysis: With spectral, height-filtered, and parcel 

thematic layers, eCognition can be used to perform OBIA. Users are 

required to create a customized process rule set for their respective 

datasets. This is accomplished through the process of trial-and-error 

such that targeted features are accurately classified. With RWH, the 

targeted features are households and, specifically, rooftops. For 

heterogeneous, complex areas (i.e., urban centers), a wide range of 

rooftops, represented by the dataset values, should be accounted for. !
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6. Export Classifications to ArcGIS: Classified thematic map components 

can be sent to ArcGIS for visualization and geospatial assessment 

either as vector or raster datasets. In ENVI, the Classification to Vector 

and Vector to Shapefile tools can be used. In eCognition, results can 

be exported as both data types. Users should indicate whether to 

export one class per layer or multiple classes per layer. This is 

important for large datasets, since exporting to ArcGIS can be time 

intensive. Classification layers can then be imported into ArcGIS and 

assessed against the background imagery for qualitative analysis of 

the classification(s). !

7. LIDSS Tool: In ArcGIS, users are prompted to upload classification 

layers and constraining datasets. These include soils, slopes, land use, 

floodplain and flood zones, and land cover. These watershed 

parameters (i.e., constraints to suitability of LID implementation) can 

then be applied to the LIDSS toolset. LIDSS then allows users to 

establish constraint values, including the maximum allowable slope 

(entered as a degree), the targeted land use type (e.g., Residential, 

Commercial/Industrial, etc.), the maximum allowable flood risk (e.g., 

100-year Floodplain, 100-year Floodway), and the targeted soils (e.g., 

Hydrologic Soils Types A, B, C, or D). Running LIDSS results in a 

quantifiable framework of suitable locations specific to the user-defined 

constraints (e.g., soils, slopes, land use, land cover). Specific 

parameters include drainage areas, parameters, unique location 
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identifiers, and subcatchment identifiers. After having successfully run 

for the user’s constraints and datasets, output database files (.dbf) are 

exported to the user-defined folder with the area, perimeter, unique 

identifier (e.g., building centroid location, parcel identifier, building 

identifier), and subcatchment identifier. These are representative of 

each extracted framework and are specific to the constraints identified. 

Further analysis of the .dbf is possible in Microsoft Excel. !

8. Quality Assessment: The first step in assessing the accuracy of the 

Suitability Protocol is with the classification results. PBIA classifications 

are assessed with confusion matrices while OBIA results must be 

assessed with areal-based methods. PBIA accuracy is assessed with 

the previously delineated reference ROIs (different from the training 

ROIs). Within ENVI, users can quickly assess the accuracy by building 

a confusion matrix that is a function of the reference ROIs and the 

classified image. Overall, user’s, and producer’s accuracies are 

provided with this matrix, indicating the accuracy of the results. For 

OBIA results, quality assessment can be carried out using the QA 

toolset developed with this dissertation. Prior to its application, the user 

must perform the following tasks: (1) randomly distribute sample points 

throughout the area of analysis for a total of 50 sites (n=50), (2) buffer 

the random points with a justifiable distance (e.g., 100 meters), (3) 

qualitatively assess the buffered sites to ensure overall watershed 

conditions are represented, and (4) manually delineate targeted 
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feature areas using the spectral imagery dataset. Manually delineated 

objects represent the validated classes within each random sample 

site for the entire classification area. QA requires users to upload the 

classification dataset (as vector), the validated dataset, and the sample 

site dataset. With this completed, QA quantified the true positive, false 

negative, and false positive areas. Results are then presented as a 

confusion matrix, which is similar to PBIA except as a function of the 

area-specific objects rather than pixels. A minimum 85% accuracy is 

targeted with the Suitability Protocol for the overall watershed. !

!
!

D.2 Prioritization Protocol 

 The workflow for the Prioritization Protocol is provided in Fig. D.2. This 

includes (1) the development, calibration, and validation of a hydrologic model 

that represents the targeted watershed area, (2) the establishment of economic 

and hydrologic thresholds, (3) the sizing, modeling, and simulation of LID 

practices based on Suitability Protocol results, (4) cost estimation and analysis, 

and (5) geospatial distribution and analysis of previous results (e.g., hydrologic, 

economic). The following steps were required to successfully apply the 

Prioritization Protocol:!

1. Development, calibration, and validation of the base hydrologic model: 

A hydrologic model representing the targeted study area should be 

created using the pertinent resources (see Appendix A for an example 

workflow required to develop, calibrate, and validate a hydrologic 

model). This hydrologic model serves as the basis upon which both 
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uncertainty analysis and LID scenarios will be implemented, as per the 

results of the Suitability Protocol and the Prioritization Protocol. As 

such, no LID practices should be implemented if the impact of LID is 

targeted.!

2. Hydrologic simulations: Hydrologic simulations should be completed 

for the base model previously developed and validated. These results 

serve as the framework for comparison with future scenarios that are 

adapted based on extracted suitable LID results. All hydrologic model 

permutations should be driven by continuous, long-term precipitation to 

assess the impacts of the LID on the watershed hydrologic response. 

All hydrologic model files (.inp and .ini for SWMM) should be saved to 

a unique folder for future batch simulation and analysis. For reference, 

the base model should be named BASE, or similar, to differentiate 

from LID-adapted permutations. !

3. Establishment of thresholds: To frame prioritization, thresholds should 

be developed for both hydrologic and economic aspects of the 

analysis. These are based on the maximum reduction and maximum 

cost for the watershed, based on the Suitability Protocol and RWHA 

results. Hydrologic thresholds, which focus on the subcatchment and 

overall watershed scales, can be assessed as a function of any of the 

following:!

a. Reductions in the stormwater runoff volumes for long-term and 

annual time frames!
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b. Dampening of the peak flow rates for annual time frames, and/or !

c. Capture of annual events!

d. Stormwater runoff volumes and flow rates can be assessed for 

simulations driven by both long-term continuous and design storm 

precipitation events.  The point of hydrologic analysis for this 

study is the watershed outlet, which is where the municipality 

would be focusing; however, this can vary based on the objective 

of the user. For instance, this study establishes the range of 

hydrologic thresholds as: A. 2.5%, B. 5%, C. 10%, D. 15%, and E. 

maximum reductions. Hydrologic priority is assigned on the basis 

that the greater the reduction or benefit, the higher the priority. 

For economic thresholds, the equivalent annual cost (EAC) is 

tabulated for each scale of analysis (e.g., parcel, subcatchment). 

The breakdown of budgets is based on the user’s preference and 

should represent the maximum budget allowable, as determined 

by the Suitability Protocol. For this study, the following municipal 

budget ranges were applied: A. $0.25MIL, B. $0.5MIL, C. 

$1.0MIL, D. $2.0MIL, and E. maximum budget. For the economic 

prioritization, the focus can be on the overall watershed costs, 

individual households, and subcatchments. !

4. Sizing, design, and implementation of LID practices: The sizing of units 

is provided using the extracted locations’ data (as .dbf file from 

ArcGIS), including the contributing drainage area (e.g., rooftop), parcel 
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area, unique location identifier, and subcatchment identifier. Sizing is 

completed by the RWHA (see Chapter 4, section 4.4.2.3 for extensive 

application of this toolset in the sizing and design of LID practices). 

Implementation is provided by the .dbf file from the Suitability Protocol, 

with unique identifiers for the targeted scale of analysis (e.g., 

household, subcatchment).!

5. Amend hydrologic model: The hydrologic model representing BASE 

conditions should be amended to represent the LID practices extracted 

and sized with the RWHA. This is done easily with the RWHA and 

instructions provided the user with unique resultant .inp files for 

simulation and analysis. For simplicity, a nominal range of RWH units 

can be selected for each individual scenario to be modeled. For 

example, this study chose the 227-liter nominal size for analysis, 

though others are available, including: 379- and 757-liter RWH barrels, 

and 1,893-, 3,785- and 7,571-liter cisterns. Amended hydrologic 

models should be stored in unique folders for future batch analysis. !

6. Cost estimation and analysis: Cost analysis of each suitable LID 

framework can be completed with the aid of the WERF BMP and LID 

Whole List Cost Models. To account for long-term operation and 

maintenance costs, BLCC5.3 can also be used, which provides 

scenario life-cycle assessments. For this study, the EAC for each 

subcatchment-collated scenario was assessed, including the operation 

and maintenance, capital, and replacement costs (from the WERF 
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Cistern toolset). These values should be saved at the targeted scale of 

analysis and in-line with the unique identifier for future joining in 

ArcGIS.!

7. Prioritization protocol: To improve the ability of users to collate, 

visualize, and assess the existing watershed and economic conditions, 

a prioritization toolset was created. Extensive protocol steps are 

specifically addressed in Chapter 4, section 4.4.2. The ArcGIS Model 

Builder tool was employed in facilitating the prioritization (PriorLID). 

The first step of the toolset includes importing, or joining, both the 

simulated hydrologic and cost estimate results for LIDs as point 

shapefiles. For hydrologic results, the level of projection was limited to 

subcatchment in this case. Cost estimates were capable of spanning 

the range of scales (parcel, subcatchment), though they were collated 

to the subcatchment-scale for cost-effectiveness estimation. 

Visualization of results was improved through surface interpolation. 

These surfaces represented the EAC, volumetric reductions (annual, 

long-term), and peak rate reductions (annual, long-term). The Inverse 

Distance Weighted (IDW) method was used for this study to extract 

surfaces based on the values. Using Raster Math, the cost surface can 

be divided by the hydrologic reduction surface, resulting in data values 

equivalent to the cost ($) per volume of runoff reduced (ML). To 

perform grouping of distributed locations with similar data values, the 

unsupervised classification algorithm, ISODATA, was employed. To 
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provide a range of priority alternatives, such that the top-down 

threshold of budget could be assessed, an iterative approach was 

implemented via the Model Builder (For tool). This improves the 

potential to, first, identify priority zones and, further, refine these zones 

to target variations in groups based on class iterations determined by 

the user. Further analysis of resultant classes is provided by importing 

the .dbf files containing the zonal statistics (at the subcatchment scale) 

for each classes in MS Excel. Zonal statistics included: average 

volumetric reductions (percent), total volumetric reductions (ML), and 

total costs ($) per class. Ranking and ordering these results allows 

users to select the groups, or classes, meeting the economic 

thresholds while attempting to provide a maximized hydrologic 

reduction. The hydrologic impact of the priority scenarios can then be 

used to amend the original LID .inp model and carry out long-term 

hydrologic simulations. !

!
!

D.3 Uncertainty Estimation and Analysis 

 For this dissertation, the workflow provided in Fig. D.3 presents the steps 

necessary to carry out Monte Carlo Methods (MCM) of uncertainty estimation for 

the hydrologic components of the Suitability and Prioritization protocols. With Fig. 

D.3, the following tasks are required for users to assess the accuracy of the 

previously applied protocols:!

1. Uncertainty analysis: Monte Carlo (MC) methods of uncertainty 

analysis can be applied to the calibrated and validated hydrologic 
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model representing the BASE conditions. The targeted independent 

variable for MC analysis, in this dissertation, was the subcatchment 

percent of imperviousness. The specific steps for accomplishing the 

MC analysis included:!

a. Creation of a probability density function (PDF) for the sample 

dataset containing the subcatchment percent imperviousness 

values.!

b. Random sampling of values from the PDF to create sample 

models (n=100), which were used to simulate long-term, 

continuous precipitation data for analysis of the independent 

variable’s impacts on the overall watershed and subcatchment 

hydrologic regime(s). !

c. Application of batch scripting to run and collate sample models for 

the user’s determined period of hydrologic analysis. Of note, this 

should contain variation in the expected annual precipitation 

patterns to reliably assess the hydrologic conditions of the study 

watershed. Batch scripting steps include:!

d. Creation of a unique folder for housing the batch script 

components!

e. Importing the swmm.exe file for use with the batch script!

f. Importing the unique SWMM .inp and .ini files for use with the 

batch script (n=100)!

g. Creation of a batch (.bat) file, with the following example lines of 
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code, for n=100 randomized models:!

swmm5.exe C:\Users\batch\chollas.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas.rpt  !
swmm5.exe C:\Users\batch\chollas1.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas1.rpt  !
swmm5.exe C:\Users\batch\chollas2.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas2.rpt  !
swmm5.exe C:\Users\batch\chollas3.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas3.rpt  !
swmm5.exe C:\Users\batch\chollas4.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas4.rpt !
swmm5.exe C:\Users\batch\chollas5.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas5.rpt  !
swmm5.exe C:\Users\batch\chollas6.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas6.rpt !
swmm5.exe C:\Users\batch\chollas7.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas7.rpt  !
swmm5.exe C:\Users\batch\chollas8.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas8.rpt !
swmm5.exe C:\Users\batch\chollas9.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas9.rpt  !
swmm5.exe C:\Users\batch\chollas10.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas10.rpt !
swmm5.exe C:\Users\batch\chollas11.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas11.rpt  !
swmm5.exe C:\Users\batch\chollas12.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas12.rpt !
swmm5.exe C:\Users\batch\chollas13.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas13.rpt !
swmm5.exe C:\Users\batch\chollas14.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas14.rpt  !
swmm5.exe C:\Users\batch\chollas15.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas15.rpt !
swmm5.exe C:\Users\batch\chollas16.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas16.rpt !
swmm5.exe C:\Users\batch\chollas17.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas17.rpt  !
swmm5.exe C:\Users\batch\chollas18.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas18.rpt !
swmm5.exe C:\Users\batch\chollas19.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas19.rpt  !
swmm5.exe C:\Users\batch\chollas20.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas20.rpt !
swmm5.exe C:\Users\batch\chollas21.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas21.rpt  !
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swmm5.exe C:\Users\batch\chollas22.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas22.rpt  !
swmm5.exe C:\Users\batch\chollas23.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas23.rpt  !
swmm5.exe C:\Users\batch\chollas24.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas24.rpt  !
swmm5.exe C:\Users\batch\chollas25.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas25.rpt !
swmm5.exe C:\Users\batch\chollas26.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas26.rpt  !
swmm5.exe C:\Users\batch\chollas27.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas27.rpt !
swmm5.exe C:\Users\batch\chollas28.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas28.rpt  !
swmm5.exe C:\Users\batch\chollas29.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas29.rpt !
swmm5.exe C:\Users\batch\chollas30.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas30.rpt  !
swmm5.exe C:\Users\batch\chollas31.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas31.rpt !
swmm5.exe C:\Users\batch\chollas32.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas32.rpt  !
swmm5.exe C:\Users\batch\chollas33.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas33.rpt !
swmm5.exe C:\Users\batch\chollas34.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas34.rpt !
swmm5.exe C:\Users\batch\chollas35.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas35.rpt  !
swmm5.exe C:\Users\batch\chollas36.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas36.rpt !
swmm5.exe C:\Users\batch\chollas37.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas37.rpt !
swmm5.exe C:\Users\batch\chollas38.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas38.rpt  !
swmm5.exe C:\Users\batch\chollas39.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas39.rpt !
swmm5.exe C:\Users\batch\chollas40.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas40.rpt  !
swmm5.exe C:\Users\batch\chollas41.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas41.rpt !
swmm5.exe C:\Users\batch\chollas42.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas42.rpt  !
swmm5.exe C:\Users\batch\chollas43.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas43.rpt  !
swmm5.exe C:\Users\batch\chollas44.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas44.rpt  !
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swmm5.exe C:\Users\batch\chollas45.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas45.rpt !
swmm5.exe C:\Users\batch\chollas46.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas46.rpt  !
swmm5.exe C:\Users\batch\chollas47.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas47.rpt !
swmm5.exe C:\Users\batch\chollas48.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas48.rpt  !
swmm5.exe C:\Users\batch\chollas49.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas49.rpt !
swmm5.exe C:\Users\batch\chollas50.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas50.rpt  !
swmm5.exe C:\Users\batch\chollas51.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas51.rpt  !
swmm5.exe C:\Users\batch\chollas52.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas52.rpt  !
swmm5.exe C:\Users\batch\chollas53.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas53.rpt  !
swmm5.exe C:\Users\batch\chollas54.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas54.rpt  !
swmm5.exe C:\Users\batch\chollas55.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas55.rpt !
swmm5.exe C:\Users\batch\chollas56.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas56.rpt  !
swmm5.exe C:\Users\batch\chollas57.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas57.rpt !
swmm5.exe C:\Users\batch\chollas58.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas58.rpt  !
swmm5.exe C:\Users\batch\chollas59.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas59.rpt !
swmm5.exe C:\Users\batch\chollas60.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas60.rpt  !
swmm5.exe C:\Users\batch\chollas61.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas61.rpt !
swmm5.exe C:\Users\batch\chollas62.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas62.rpt  !
swmm5.exe C:\Users\batch\chollas63.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas63.rpt !
swmm5.exe C:\Users\batch\chollas64.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas64.rpt !
swmm5.exe C:\Users\batch\chollas65.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas65.rpt  !
swmm5.exe C:\Users\batch\chollas66.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas66.rpt !
swmm5.exe C:\Users\batch\chollas67.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas67.rpt !
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swmm5.exe C:\Users\batch\chollas68.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas68.rpt  !
swmm5.exe C:\Users\batch\chollas69.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas69.rpt !
swmm5.exe C:\Users\batch\chollas70.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas70.rpt  !
swmm5.exe C:\Users\batch\chollas71.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas71.rpt !
swmm5.exe C:\Users\batch\chollas72.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas72.rpt  !
swmm5.exe C:\Users\batch\chollas73.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas73.rpt  !
swmm5.exe C:\Users\batch\chollas74.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas74.rpt  !
swmm5.exe C:\Users\batch\chollas75.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas75.rpt  !
swmm5.exe C:\Users\batch\chollas76.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas76.rpt !
swmm5.exe C:\Users\batch\chollas77.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas77.rpt  !
swmm5.exe C:\Users\batch\chollas78.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas78.rpt !
swmm5.exe C:\Users\batch\chollas79.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas79.rpt  !
swmm5.exe C:\Users\batch\chollas80.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas80.rpt !
swmm5.exe C:\Users\batch\chollas81.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas81.rpt  !
swmm5.exe C:\Users\batch\chollas82.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas82.rpt !
swmm5.exe C:\Users\batch\chollas83.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas83.rpt  !
swmm5.exe C:\Users\batch\chollas84.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas84.rpt !
swmm5.exe C:\Users\batch\chollas85.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas85.rpt !
swmm5.exe C:\Users\batch\chollas86.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas86.rpt  !
swmm5.exe C:\Users\batch\chollas87.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas87.rpt !
swmm5.exe C:\Users\batch\chollas88.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas88.rpt !
swmm5.exe C:\Users\batch\chollas89.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas89.rpt  !
swmm5.exe C:\Users\batch\chollas90.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas90.rpt !
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swmm5.exe C:\Users\batch\chollas91.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas91.rpt  !
swmm5.exe C:\Users\batch\chollas92.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas92.rpt !
swmm5.exe C:\Users\batch\chollas93.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas93.rpt  !
swmm5.exe C:\Users\batch\chollas94.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas94.rpt  !
swmm5.exe C:\Users\batch\chollas95.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas95.rpt  !
swmm5.exe C:\Users\batch\chollas96.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas96.rpt !
swmm5.exe C:\Users\batch\chollas97.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas97.rpt  !
swmm5.exe C:\Users\batch\chollas98.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas98.rpt !
swmm5.exe C:\Users\batch\chollas99.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas99.rpt  !
swmm5.exe C:\Users\batch\chollas100.inp  
Z:\Students\Walsh\PhD\Uncertainty\chollas100.rpt !
pause!

!
a. This code identifies the executable file (swmm5.exe) the location 

of the .inp file for simulation, and the location of the output 

location for the .rpt file!

b. The batch file can either simply be double-clicked to commence 

simulations in the background of the computer or the user can 

access the command prompt (.cmd), navigate to the folder 

containing the batch script, call the script, and run it. Either 

method will run through the multiple models and collate the 

results as separate report files.!

c. Analysis of collated results to determine the impacts of random 

variations in subcatchment percent imperviousness on the overall 

watershed hydrologic characteristics can be completed for the 
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exported .rpt files in MS Excel. Collation of results is improved by 

creating an import function based on the number of rows targeted 

for analysis within the desired file (e.g., .rpt). The following VBA 

script can perform this, specifically created for this dissertation’s 

Chollas Creek watershed model!

i. To import the long-term results’ Status Report file:!

Private Sub CommandButton2_Click()!
!
Dim fPATH As String, fNAME As String, wbDATA As Workbook, 
wsMAIN As Worksheet!
!
MsgBox Please select the folder containing the original files.!
With Application.FileDialog(msoFileDialogFolderPicker)!
'choose folder with files to import!
.AllowMultiSelect = False!
.InitialFileName = Z:\Students\Walsh\PhD\Uncertainty\!
.Show!
If .SelectedItems.Count = 0 Then Exit Sub Else fPATH = 
.SelectedItems(1) & \!
End With!
!
Set wsMAIN = ThisWorkbook.Sheets(Sheet1)          'sheet in 
thisworkbook to collect data into!
fNAME = Dir(fPATH & *.rpt*)                        'get first filename 
from chosen path!
Application.ScreenUpdating = False                  'turn off screen 
flicker!
!
Do While Len(fNAME) > 0                             'repeat actions until 
no more files found!
Set wbDATA = Workbooks.Open(fPATH & fNAME)      'open 
current file!
Range(A99:A189).Copy wsMAIN.Range(A & 
Rows.Count).End(xlUp).Offset(1)    'copy data!
wbDATA.Close False                              'close opened file!
!
fNAME = Dir                                     'get next filename!
Loop!
!
Application.ScreenUpdating = True                   'screen back to 
normal!
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!
End Sub 

!
ii. To import the continuous, time series results for the watershed 

outlet:!

Private Sub CommandButton3_Click()!
Dim fPATH As String, fNAME As String, wbDATA As Workbook, 
wsMAIN As Worksheet!
!
MsgBox Please select the folder containing the original files.!
With Application.FileDialog(msoFileDialogFolderPicker)!
'choose folder with files to import!
    .AllowMultiSelect = False!
    .InitialFileName = Z:\Students\Walsh\PhD\Uncertainty\!
    .Show!
    If .SelectedItems.Count = 0 Then Exit Sub Else fPATH = 
.SelectedItems(1) & \!
End With!
!
    Set wsMAIN = ThisWorkbook.Sheets(Sheet2)          'sheet in 
thisworkbook to collect data into!
    fNAME = Dir(fPATH & *.rpt*)                        'get first filename 
from chosen path!
    Application.ScreenUpdating = False                  'turn off 
screen flicker!
    !
    Do While Len(fNAME) > 0                             'repeat actions 
until no more files found!
        Set wbDATA = Workbooks.Open(fPATH & fNAME)      
'open current file!
        Range(A1020:A71190).Copy wsMAIN.Range(A & 
Rows.Count).End(xlUp).Offset(1)    'copy data!
        wbDATA.Close False                              'close opened file!
        !
        fNAME = Dir                                     'get next filename!
    Loop!
    !
    Application.ScreenUpdating = True                   'screen back 
to normal!
    !
End Sub!
!

iii. To condense these results, use:!
!

Private Sub CommandButton1_Click()!
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Dim vaCells As Variant!
    Dim vOutput() As Variant!
    Dim i As Long, j As Long!
    Dim lRow As Long!
!
    If TypeName(Selection) = Range Then!
        If Selection.Count > 1 Then!
            If Selection.Count <= Selection.Parent.Rows.Count 
Then!
                vaCells = Selection.Value!
!
                ReDim vOutput(1 To UBound(vaCells, 1) * 
UBound(vaCells, 2), 1 To 1)!
!
                For j = LBound(vaCells, 2) To UBound(vaCells, 2)!
                    For i = LBound(vaCells, 1) To UBound(vaCells, 1)!
                        If Len(vaCells(i, j)) > 0 Then!
                            lRow = lRow + 1!
                            vOutput(lRow, 1) = vaCells(i, j)!
                        End If!
                    Next i!
                Next j!
!
                Selection.ClearContents!
                Selection.Cells(1).Resize(lRow).Value = vOutput!
            End If!
        End If!
    End If!
End Sub!

!
a. Calculation of the 97.5th and 2.5th percentiles is provided for the 

data, ranked and order, and plotted against the exceedance, or 

return, frequency using the Cunnane Plotting position (or 

whichever method is preferred by the user). This indicated the 

bounds of the simulated results and the impacts of the variations 

in the independent variable. !

2. Prioritization protocol assessment: Since prioritization was based on 

both top-down and bottom-up thresholds determined by the user, 

accuracy assessment targeted the ability of the protocol to extract 
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unique scenarios within to reach the targeted threshold(s). 

Assessments can be based on:!

a. Overall watershed hydrologic impacts (e.g., reduction in volumes, 

dampening of peak flow rates) and !

b. Total costs of the LID scenario chosen at the overall watershed 

and subcatchment scales. !

 These results are analyzed based on comparing the anticipated hydrologic 

reduction versus the actual, simulated watershed response. Similarly, the costs 

are analyzed by quantifying the difference in total cost (i.e., budget) versus the 

actual cost required to provide the hydrologic benefit desired. !

!
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!
Figure D.1: Suitability protocol workflow!
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!
Figure D.2: Prioritization protocol workflow.
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!
Figure D.3: MCM uncertainty estimation and analysis workflow. 
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